1
0
Fork 0
mirror of https://codeberg.org/Mo8it/AdvLabDB.git synced 2024-11-08 21:21:06 +00:00
AdvLabDB/advlabdb/analysis.py

143 lines
3.6 KiB
Python
Raw Normal View History

2022-09-24 17:29:56 +00:00
from base64 import b64encode
from io import BytesIO
import numpy as np
from flask_login import current_user
from matplotlib.figure import Figure
from matplotlib.ticker import MaxNLocator
from sqlalchemy import select
from .models import MAX_MARK, MIN_MARK, Assistant, Semester, User, db
def html_fig(fig):
buf = BytesIO()
fig.savefig(buf, format="png")
return b64encode(buf.getbuffer()).decode("ascii")
def mark_hist(data, title):
fig = Figure()
ax = fig.subplots()
ax.set_xlim(MIN_MARK - 0.5, MAX_MARK + 0.5)
ax.set_xticks(np.arange(MAX_MARK + 1))
# Only integer ticks
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xlabel("Mark")
N = data.size
title += f"\nN = {N}"
if N > 0:
ax.hist(
data,
bins=np.arange(MAX_MARK + 2) - 0.5,
)
title += f" | mean = {round(np.mean(data), 1)}"
ax.set_title(title)
return html_fig(fig)
def get_experiment_marks(assistant, attr):
data = []
for experiment_mark in assistant.experiment_marks:
mark = getattr(experiment_mark, attr)
if mark is not None:
data.append(mark)
return np.array(data)
def mark_hists(markType, active_assistants):
attr = markType.lower() + "_mark"
mark_type_title_addition = f" | {markType} marks"
marks = [get_experiment_marks(assistant, attr) for assistant in active_assistants]
hists = [
mark_hist(
data=marks[i],
title=str(active_assistants[i]) + mark_type_title_addition,
)
for i in range(len(marks))
]
hists.append(
mark_hist(
data=np.hstack(marks),
title="All" + mark_type_title_addition,
)
)
return hists
def assistant_marks_analysis(cls):
2023-11-02 17:09:10 +00:00
active_assistants = db.session.scalars(select(Assistant).join(User).where(User.active is True)).all()
2022-09-24 17:29:56 +00:00
oral_mark_hists = mark_hists("Oral", active_assistants)
protocol_mark_hists = mark_hists("Protocol", active_assistants)
return cls.render(
"analysis/assistant_marks.jinja.html",
hist_indices=range(len(oral_mark_hists)),
oral_mark_hists=oral_mark_hists,
protocol_mark_hists=protocol_mark_hists,
)
def get_final_part_marks(part):
data = []
for part_student in part.part_students:
mark = part_student.final_part_mark
if mark is not None:
data.append(mark)
return np.array(data)
def final_part_marks_analysis(cls):
parts = current_user.active_semester.parts
active_semester_final_part_marks_hists = [
mark_hist(
data=get_final_part_marks(part),
title=part.str(),
)
for part in parts
]
semesters = db.session.scalars(select(Semester)).all()
mean_final_part_marks = np.array(
[np.mean(np.hstack([get_final_part_marks(part) for part in semester.parts])) for semester in semesters]
)
fig = Figure()
len_mean_final_part_marks = mean_final_part_marks.size
ax = fig.subplots()
x = range(len_mean_final_part_marks)
ax.plot(
x,
mean_final_part_marks,
marker="d",
)
ax.set_xticks(x, [semester.str() for semester in semesters])
ax.set_xlabel("Semester")
ax.set_ylabel("Mean final experiment mark")
ax.set_title("Mean final experiment mark over all semesters")
mean_final_part_mark_plot = html_fig(fig)
return cls.render(
"analysis/final_part_marks.jinja.html",
active_semester_final_part_marks_hists=active_semester_final_part_marks_hists,
mean_final_part_mark_plot=mean_final_part_mark_plot,
)