1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/julia_course.git synced 2024-11-16 13:28:10 +00:00

Small fixes

This commit is contained in:
Mo8it 2022-03-30 22:28:47 +02:00
parent 0a85005cce
commit 5334e3f8f5

View file

@ -127,7 +127,7 @@ df2[0.15 .< df2.B .< 0.2, :]
df2[(0.15 .< df2.B .< 0.2) .|| (df2.B .> 0.97), :] df2[(0.15 .< df2.B .< 0.2) .|| (df2.B .> 0.97), :]
# ╔═╡ 403e40d1-87ba-4847-951f-be7bca058573 # ╔═╡ 403e40d1-87ba-4847-951f-be7bca058573
# Replace all table enteries having the value 100 with 42 # Replace all table entries having the value 100 with 42
replace!(df2.A, 100 => 42) replace!(df2.A, 100 => 42)
# ╔═╡ 44dd5cb6-0ad9-443a-ba48-fa551d8971b4 # ╔═╡ 44dd5cb6-0ad9-443a-ba48-fa551d8971b4
@ -135,7 +135,7 @@ replace!(df2.A, 100 => 42)
last(df2, 3) last(df2, 3)
# ╔═╡ 53c09851-b6a8-4e1e-abfb-9b1b7bc991e1 # ╔═╡ 53c09851-b6a8-4e1e-abfb-9b1b7bc991e1
# More flexiblity using `replace!` # More flexibility using `replace!`
replace!(df2.A) do x replace!(df2.A) do x
# Anonymous function # Anonymous function
if isodd(x) if isodd(x)
@ -330,7 +330,8 @@ end
# Usually, you should not copy code! 😯 # Usually, you should not copy code! 😯
# There is a better way of handling this redefinition without much copying. # There is a better way of handling this redefinition without much copying.
# But this code improvement was not done to avoid complication at this point. # The most elegant way would be to define a macro that rewrites your function and adds the two exclamation marks.
# But this code improvement was not done to avoid unneeded complexity at this point.
# ╔═╡ 5280cdc2-bfcf-4c38-85f2-6134aa95d679 # ╔═╡ 5280cdc2-bfcf-4c38-85f2-6134aa95d679
# How to use the custom scattering function # How to use the custom scattering function
@ -454,7 +455,7 @@ Again, you can automate this process!
""" """
# ╔═╡ ef6274cf-f1fb-4f86-becf-eeb181ed92fc # ╔═╡ ef6274cf-f1fb-4f86-becf-eeb181ed92fc
function automated_fit(model, df, x_column_name, y_column_name, p0=[1.0, 1.0]) function automated_fit(model, df, x_column_name, y_column_name, p0)
fit = curve_fit( fit = curve_fit(
model, model,
ustrip.(Measurements.value.(df[!, x_column_name])), ustrip.(Measurements.value.(df[!, x_column_name])),
@ -475,6 +476,7 @@ param2, sigma2 = automated_fit(
df_I_B_with_err, df_I_B_with_err,
"I", "I",
"B", "B",
p0
) )
# ╔═╡ 00000000-0000-0000-0000-000000000001 # ╔═╡ 00000000-0000-0000-0000-000000000001