2022-01-23 02:05:05 +00:00
|
|
|
using CairoMakie
|
|
|
|
using LaTeXStrings: @L_str
|
|
|
|
using Dates: Dates
|
|
|
|
using Random: Random
|
|
|
|
using StaticArrays: SVector
|
|
|
|
using JLD2: JLD2
|
2022-01-23 03:18:51 +00:00
|
|
|
using CellListMap: CellListMap
|
2022-01-23 04:26:27 +00:00
|
|
|
using ProgressMeter: ProgressMeter
|
2022-01-23 02:05:05 +00:00
|
|
|
|
|
|
|
using ReCo: ReCo
|
|
|
|
|
2022-01-23 03:18:51 +00:00
|
|
|
# IMPORTANT: Disable the periodic boundary conditions
|
|
|
|
# The arguments types have to match for the function to be overwritten!
|
2022-01-23 04:26:27 +00:00
|
|
|
ReCo.push_to_verlet_list!(::Any, ::Any, ::Any) = nothing
|
2022-01-23 03:18:51 +00:00
|
|
|
ReCo.update_verlet_lists!(::Any, ::CellListMap.CellList) = nothing
|
2022-01-23 04:26:27 +00:00
|
|
|
ReCo.update_verlet_lists!(::Any, ::Nothing) = nothing
|
2022-01-23 03:18:51 +00:00
|
|
|
ReCo.gen_cell_list(::Vector{SVector{2,Float64}}, ::CellListMap.Box) = nothing
|
2022-01-23 04:26:27 +00:00
|
|
|
ReCo.gen_cell_list(::Vector{SVector{2,Float64}}, ::Nothing) = nothing
|
2022-01-23 03:18:51 +00:00
|
|
|
ReCo.gen_cell_list_box(::Float64, ::Float64) = nothing
|
|
|
|
ReCo.restrict_coordinate(value::Float64, ::Float64) = value
|
|
|
|
ReCo.restrict_coordinates(v::SVector{2,Float64}, ::Float64) = v
|
2022-01-23 04:26:27 +00:00
|
|
|
ReCo.restrict_coordinates!(::ReCo.Particle, ::Float64) = nothing
|
2022-01-23 03:18:51 +00:00
|
|
|
ReCo.minimum_image_coordinate(value::Float64, ::Float64) = value
|
|
|
|
ReCo.minimum_image(v::SVector{2,Float64}, ::Float64) = v
|
2022-01-23 02:05:05 +00:00
|
|
|
|
|
|
|
function mean_squared_displacement(;
|
|
|
|
n_simulations::Int64, v₀s::AbstractVector{Float64}, T::Float64
|
|
|
|
)
|
|
|
|
Random.seed!(42)
|
|
|
|
|
|
|
|
n_v₀s = length(v₀s)
|
|
|
|
|
2022-01-23 04:26:27 +00:00
|
|
|
δt = 1e-4
|
2022-01-23 02:05:05 +00:00
|
|
|
Dₜ = ReCo.DEFAULT_Dₜ
|
|
|
|
|
|
|
|
main_parent_dir = "mean_squared_displacement_$(Dates.now())"
|
|
|
|
|
|
|
|
sim_dirs = Matrix{String}(undef, (n_simulations, n_v₀s))
|
|
|
|
|
2022-01-23 04:26:27 +00:00
|
|
|
progress = ProgressMeter.Progress(n_v₀s * n_simulations; dt=3, desc="MSD: ")
|
|
|
|
|
2022-01-23 02:05:05 +00:00
|
|
|
for (v₀_ind, v₀) in enumerate(v₀s)
|
|
|
|
max_possible_displacement = T * v₀ + T / δt * sqrt(2 * Dₜ * δt)
|
|
|
|
|
|
|
|
parent_dir = main_parent_dir * "/$v₀"
|
|
|
|
|
|
|
|
Threads.@threads for sim_ind in 1:n_simulations
|
|
|
|
dir = ReCo.init_sim(;
|
|
|
|
n_particles=1,
|
|
|
|
v₀=v₀,
|
|
|
|
parent_dir=parent_dir,
|
|
|
|
comment="$sim_ind",
|
|
|
|
half_box_len=max_possible_displacement,
|
|
|
|
)
|
|
|
|
|
|
|
|
sim_dirs[sim_ind, v₀_ind] = dir
|
|
|
|
|
2022-01-23 03:18:51 +00:00
|
|
|
ReCo.run_sim(
|
|
|
|
dir;
|
|
|
|
duration=T,
|
|
|
|
seed=rand(1:typemax(Int64)),
|
2022-01-23 04:26:27 +00:00
|
|
|
snapshot_at=0.5,
|
|
|
|
n_bundle_snapshots=1000,
|
2022-01-23 03:18:51 +00:00
|
|
|
)
|
2022-01-23 04:26:27 +00:00
|
|
|
|
|
|
|
ProgressMeter.next!(progress; showvalues=[(:v₀, v₀)])
|
2022-01-23 02:05:05 +00:00
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
ts = Float64[]
|
|
|
|
|
|
|
|
bundle_paths = ReCo.sorted_bundle_paths(sim_dirs[1, 1])
|
|
|
|
|
|
|
|
for i in 2:length(bundle_paths) # Skip the first bundle to avoid t = 0
|
|
|
|
bundle::ReCo.Bundle = JLD2.load_object(bundle_paths[i])
|
|
|
|
|
|
|
|
append!(ts, bundle.t)
|
|
|
|
end
|
|
|
|
|
|
|
|
mean_sq_displacements = zeros((length(ts), n_v₀s))
|
|
|
|
|
|
|
|
@simd for v₀_ind in 1:n_v₀s
|
|
|
|
for sim_ind in 1:n_simulations
|
|
|
|
sim_dir = sim_dirs[sim_ind, v₀_ind]
|
|
|
|
|
|
|
|
bundle_paths = ReCo.sorted_bundle_paths(sim_dir)
|
|
|
|
snapshot_ind = 1
|
|
|
|
|
|
|
|
for i in 2:length(bundle_paths)
|
|
|
|
bundle::ReCo.Bundle = JLD2.load_object(bundle_paths[i])
|
|
|
|
|
|
|
|
for c in bundle.c
|
|
|
|
sq_displacement = ReCo.sq_norm2d(c)
|
|
|
|
mean_sq_displacements[snapshot_ind, v₀_ind] += sq_displacement
|
|
|
|
|
|
|
|
snapshot_ind += 1
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
mean_sq_displacements ./= n_simulations
|
|
|
|
|
|
|
|
return (ts, mean_sq_displacements)
|
|
|
|
end
|
|
|
|
|
|
|
|
function expected_mean_squared_displacement(t::Float64, v₀::Float64)
|
|
|
|
Dₜ = ReCo.DEFAULT_Dₜ
|
|
|
|
particle_radius = ReCo.DEFAULT_PARTICLE_RADIUS
|
|
|
|
|
|
|
|
Dᵣ = 3 * Dₜ / ((2 * particle_radius)^2)
|
|
|
|
|
|
|
|
return (4 * Dₜ + 2 * v₀^2 / Dᵣ) * t + 2 * v₀^2 * (exp(-Dᵣ * t) - 1) / (Dᵣ^2)
|
|
|
|
end
|
|
|
|
|
|
|
|
function plot_mean_sq_displacement_with_expectation(
|
|
|
|
ts::Vector{Float64},
|
|
|
|
mean_sq_displacements::Matrix{Float64},
|
|
|
|
v₀s::AbstractVector{Float64},
|
|
|
|
)
|
|
|
|
CairoMakie.activate!()
|
|
|
|
set_theme!()
|
|
|
|
|
|
|
|
text_width_in_pt = 405
|
|
|
|
|
|
|
|
fig = Figure(;
|
|
|
|
resolution=(text_width_in_pt, 0.55 * text_width_in_pt),
|
|
|
|
fontsize=10,
|
|
|
|
figure_padding=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
ax = Axis(fig[1, 1]; xlabel=L"t", ylabel=L"\mathbf{MSD}", xscale=log10, yscale=log10)
|
|
|
|
|
|
|
|
t_linrange = LinRange(ts[1], ts[end], 1000)
|
|
|
|
|
|
|
|
v₀_scatter_plots = []
|
|
|
|
|
|
|
|
for (v₀_ind, v₀) in enumerate(v₀s)
|
|
|
|
scatter_plot = scatter!(
|
|
|
|
ax, ts, view(mean_sq_displacements, :, v₀_ind); markersize=4
|
|
|
|
)
|
|
|
|
|
|
|
|
push!(v₀_scatter_plots, scatter_plot)
|
|
|
|
|
|
|
|
expected_mean_sq_displacements = expected_mean_squared_displacement.(t_linrange, v₀)
|
|
|
|
|
|
|
|
lines!(ax, t_linrange, expected_mean_sq_displacements)
|
|
|
|
end
|
|
|
|
|
2022-01-23 04:26:27 +00:00
|
|
|
Legend(fig[1, 2], v₀_scatter_plots, [L"v_0 = %$v₀" for v₀ in v₀s])
|
2022-01-23 02:05:05 +00:00
|
|
|
|
|
|
|
colgap!(fig.layout, 5)
|
|
|
|
rowgap!(fig.layout, 5)
|
|
|
|
|
|
|
|
parent_dir = "exports/graphics/"
|
|
|
|
mkpath(parent_dir)
|
|
|
|
|
|
|
|
save("$parent_dir/mean_squared_displacement.pdf", fig; pt_per_unit=1)
|
|
|
|
|
|
|
|
return nothing
|
|
|
|
end
|
|
|
|
|
|
|
|
function run_analysis()
|
|
|
|
v₀s = SVector(0.0, 20.0, 40.0, 60.0, 80.0)
|
|
|
|
|
|
|
|
ts, mean_sq_displacements = mean_squared_displacement(;
|
2022-01-23 04:26:27 +00:00
|
|
|
n_simulations=200 * Threads.nthreads(), v₀s=v₀s, T=100.0
|
2022-01-23 02:05:05 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
plot_mean_sq_displacement_with_expectation(ts, mean_sq_displacements, v₀s)
|
|
|
|
|
|
|
|
return nothing
|
|
|
|
end
|
|
|
|
|
|
|
|
# run_analysis()
|