1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-11-08 22:21:08 +00:00
ReCo.jl/analysis/radial_distribution_function/radial_distribution_function.jl

241 lines
6.3 KiB
Julia
Raw Normal View History

2022-01-24 19:43:37 +00:00
using CairoMakie
using LaTeXStrings: @L_str
using StaticArrays: SVector
using JLD2: JLD2
using Dates: Dates
using CSV: CSV
using DataFrames: DataFrames
using Random: Random
using ReCo: ReCo
includet("../../graphics/common_CairoMakie.jl")
function radial_distribution_simulation(;
n_particles::Int64, v₀s::NTuple{N,Float64}, T::Float64, packing_ratio::Float64
) where {N}
Random.seed!(42)
n_v₀s = length(v₀s)
sim_dirs = Vector{String}(undef, n_v₀s)
parent_dir = "radial_distribution_$(Dates.now())"
Threads.@threads for v₀_ind in 1:n_v₀s
v₀ = v₀s[v₀_ind]
dir = ReCo.init_sim(;
n_particles=n_particles,
v₀=v₀,
packing_ratio=packing_ratio,
parent_dir=parent_dir,
comment="$v₀",
)
ReCo.run_sim(dir; duration=T, seed=v₀_ind)
sim_dirs[v₀_ind] = dir
end
return sim_dirs
end
function circular_shell_volume(lower_radius, Δradius)
return π * (2 * lower_radius * Δradius + Δradius^2)
end
function radial_distribution(;
sim_dirs::Vector{String}, n_radii::Int64, n_last_snapshots::Int64, n_particles::Int64
)
sim_consts::ReCo.SimConsts = JLD2.load_object("$(sim_dirs[1])/sim_consts.jld2")
particle_radius = sim_consts.particle_radius
min_lower_radius = 0.0
max_lower_radius = 5 * (2 * particle_radius)
Δradius = (max_lower_radius - min_lower_radius) / n_radii
lower_radii = LinRange(min_lower_radius, max_lower_radius, n_radii)
box_volume = (2 * sim_consts.half_box_len)^2
volume_per_particle = box_volume / n_particles
n_sim_dirs = length(sim_dirs)
gs = Vector{Vector{Float64}}(undef, n_sim_dirs)
Threads.@threads for sim_dir_ind in 1:n_sim_dirs
sim_dir = sim_dirs[sim_dir_ind]
cs = Matrix{SVector{2,Float64}}(undef, (n_particles, n_last_snapshots))
bundle_paths = ReCo.sorted_bundle_paths(sim_dir; rev=true)
snapshot_conunter = 0
break_bundle_path_loop = false
for bundle_path in bundle_paths
bundle::ReCo.Bundle = JLD2.load_object(bundle_path)
for snapshot_ind in (bundle.n_snapshots):-1:1
snapshot_conunter += 1
@simd for particle_ind in 1:n_particles
cs[particle_ind, snapshot_conunter] = bundle.c[
particle_ind, snapshot_ind
]
end
if snapshot_conunter == n_last_snapshots
break_bundle_path_loop = true
break
end
end
if break_bundle_path_loop
break
end
end
if snapshot_conunter != n_last_snapshots
error("snapshot_conunter != n_last_snapshots")
end
g = zeros(n_radii)
for snapshot_ind in 1:n_last_snapshots
for p1_ind in 1:n_particles
for p2_ind in (p1_ind + 1):n_particles
c1 = cs[p1_ind, snapshot_ind]
c2 = cs[p2_ind, snapshot_ind]
r⃗₁₂ = c2 - c1
r⃗₁₂ = ReCo.minimum_image(r⃗₁₂, sim_consts.half_box_len)
distance = ReCo.norm2d(r⃗₁₂)
lower_radius_ind = ceil(Int64, distance / Δradius)
if lower_radius_ind <= n_radii
g[lower_radius_ind] += 2
end
end
end
end
for (lower_radius_ind, lower_radius) in enumerate(lower_radii)
g[lower_radius_ind] *=
volume_per_particle / (
n_last_snapshots *
n_particles *
circular_shell_volume(lower_radius, Δradius)
)
end
gs[sim_dir_ind] = g
end
return (lower_radii, gs, particle_radius)
end
2022-01-27 14:23:29 +00:00
function plot_radial_distributions(;
2022-01-24 19:43:37 +00:00
v₀s::NTuple{N,Float64},
lower_radii::AbstractVector{Float64},
gs::Vector{Vector{Float64}},
particle_radius::Float64,
2022-01-27 14:23:29 +00:00
include_comparison::Bool,
filename_addition::String="",
2022-01-24 19:43:37 +00:00
) where {N}
println("Plotting the radial distributions")
init_cairomakie!()
fig = gen_figure()
2022-01-24 23:12:55 +00:00
min_lower_radius = 0.0
2022-01-24 19:43:37 +00:00
max_lower_radius = maximum(lower_radii)
2022-01-24 23:12:55 +00:00
min_g = 0.0
2022-01-24 19:43:37 +00:00
max_g = maximum(maximum.(gs))
ax = Axis(
fig[1:2, 1:2];
2022-01-24 23:12:55 +00:00
xticks=0:(2 * particle_radius):floor(Int64, max_lower_radius),
2022-01-24 19:43:37 +00:00
yticks=0:ceil(Int64, max_g),
xlabel=L"r / d",
ylabel=L"g",
2022-01-25 21:15:42 +00:00
limits=(min_lower_radius - 0.03, max_lower_radius + 0.03, min_g, max_g * 1.03),
2022-01-24 19:43:37 +00:00
)
lines!(
ax,
2022-01-24 23:12:55 +00:00
SVector(min_lower_radius, max_lower_radius),
2022-01-24 19:43:37 +00:00
SVector(1.0, 1.0);
linestyle=:dash,
color=:red,
linewidth=1,
)
2022-01-25 21:15:42 +00:00
for (g_ind, g) in enumerate(gs)
2022-01-27 14:23:29 +00:00
v₀ = round(Int64, v₀s[g_ind])
2022-01-25 21:15:42 +00:00
scatterlines!(
2022-01-27 14:23:29 +00:00
ax,
lower_radii,
g;
markersize=3,
linewidth=1,
label=L"Simulation with $v_0 = %$(v₀)$",
2022-01-25 21:15:42 +00:00
)
end
2022-01-27 14:23:29 +00:00
if include_comparison
comparison_curve = CSV.read(
"analysis/radial_distribution_function/g_of_r_d_ratio_with_0_37_packing_ratio.csv",
DataFrames.DataFrame;
header=3,
)
lines!(
ax,
comparison_curve.r_d_ratio,
comparison_curve.g_of_r_d_ratio;
label=L"Reference with $v_0 = 0$",
color=:orange,
)
end
2022-01-24 19:43:37 +00:00
axislegend(ax; position=:rt, padding=3, rowgap=-3)
2022-01-27 14:23:29 +00:00
save_fig("radial_distribution$filename_addition.pdf", fig)
2022-01-24 19:43:37 +00:00
return nothing
end
function run_radial_distribution_analysis()
2022-01-27 14:23:29 +00:00
v₀s = (0.0, 40.0, 80.0)
2022-01-24 19:43:37 +00:00
n_particles = 1000
sim_dirs = radial_distribution_simulation(;
2022-01-25 21:15:42 +00:00
n_particles=n_particles, v₀s=v₀s, T=100.0, packing_ratio=0.37
2022-01-24 19:43:37 +00:00
)
lower_radii, gs, particle_radius = radial_distribution(;
2022-01-27 14:23:29 +00:00
sim_dirs=sim_dirs, n_radii=58, n_last_snapshots=200, n_particles=n_particles
2022-01-24 19:43:37 +00:00
)
2022-01-27 14:23:29 +00:00
plot_radial_distributions(;
v₀s=v₀s[1:1], lower_radii, gs=gs[1:1], particle_radius, include_comparison=true
)
plot_radial_distributions(;
v₀s=v₀s[1:end],
lower_radii,
gs=gs[1:end],
particle_radius,
include_comparison=false,
filename_addition="_all_vs",
)
2022-01-24 19:43:37 +00:00
return nothing
end