1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-12-21 00:51:21 +00:00

Merge branch 'compass_to_center_of_mass'

This commit is contained in:
Mo8it 2022-01-08 19:38:59 +01:00
commit 275b69c928
3 changed files with 232 additions and 133 deletions

View file

@ -26,13 +26,16 @@ function animate_bundle!(args, sim_consts)
color = get(args.color_scheme, rem2pi(bundle_φ[i, frame], RoundDown) / π2) color = get(args.color_scheme, rem2pi(bundle_φ[i, frame], RoundDown) / π2)
args.colors[][i] = RGBAf(color) args.colors[][i] = RGBAf(color)
if args.debug if args.show_interaction_circle
args.interaction_circles[][i] = Circle( args.interaction_circles[][i] = Circle(
Point2(c[1], c[2]), sim_consts.interaction_r Point2(c[1], c[2]), sim_consts.interaction_r
) )
args.interaction_colors[][i] = RGBAf(color, 0.08)
end
if args.show_skin_circle
args.skin_circles[][i] = Circle(Point2(c[1], c[2]), sim_consts.skin_r) args.skin_circles[][i] = Circle(Point2(c[1], c[2]), sim_consts.skin_r)
args.interaction_colors[][i] = RGBAf(color, 0.08)
args.skin_colors[][i] = RGBAf(color, 0.04) args.skin_colors[][i] = RGBAf(color, 0.04)
end end
end end
@ -47,21 +50,24 @@ function animate_bundle!(args, sim_consts)
) )
end end
if args.n_bundle == 1 if args.n_bundle == 1 # First and only frame of first bundle
poly!(args.ax, args.circles; color=args.colors) poly!(args.ax, args.circles; color=args.colors)
if args.show_center_of_mass if args.show_center_of_mass
poly!(args.ax, args.center_of_mass_circle; color=RGBAf(1, 1, 1, 0.5)) poly!(args.ax, args.center_of_mass_circle; color=RGBAf(1, 1, 1, 0.5))
end end
if args.debug if args.show_interaction_circle
poly!(args.ax, args.interaction_circles; color=args.interaction_colors) poly!(args.ax, args.interaction_circles; color=args.interaction_colors)
end
if args.show_skin_circle
poly!(args.ax, args.skin_circles; color=args.skin_colors) poly!(args.ax, args.skin_circles; color=args.skin_colors)
end end
println("Recording started!") println("Recording started!")
else else
if args.debug && frame > 1 if args.show_frame_diff && frame > 1
@simd for i in 1:(sim_consts.n_particles) @simd for i in 1:(sim_consts.n_particles)
first_ind = 2 * i - 1 first_ind = 2 * i - 1
second_ind = 2 * i second_ind = 2 * i
@ -79,6 +85,9 @@ function animate_bundle!(args, sim_consts)
args.ax, args.segments_x, args.segments_y; color=args.colors args.ax, args.segments_x, args.segments_y; color=args.colors
) )
end end
notify(args.segments_x)
notify(args.segments_y)
end end
notify(args.circles) notify(args.circles)
@ -88,15 +97,14 @@ function animate_bundle!(args, sim_consts)
notify(args.center_of_mass_circle) notify(args.center_of_mass_circle)
end end
if args.debug && frame > 1 if args.show_interaction_circle
notify(args.interaction_circles) notify(args.interaction_circles)
notify(args.interaction_colors) notify(args.interaction_colors)
end
if args.show_skin_circle
notify(args.skin_circles) notify(args.skin_circles)
notify(args.skin_colors) notify(args.skin_colors)
notify(args.segments_x)
notify(args.segments_y)
end end
end end
@ -108,8 +116,32 @@ function animate_bundle!(args, sim_consts)
return nothing return nothing
end end
function sort_bundle_paths(bundle_paths::Vector{String})
n_bundles = length(bundle_paths)
bundle_nums = Vector{Int64}(undef, n_bundles)
extension_length = 5 # == length(".jld2")
for i in 1:n_bundles
bundle_path = bundle_paths[i]
bundle_num_string = bundle_path[(findfirst("bundle_", bundle_path).stop + 1):(end - extension_length)]
bundle_nums[i] = parse(Int64, bundle_num_string)
end
sort_perm = sortperm(bundle_nums)
return bundle_paths[sort_perm]
end
function animate_with_sim_consts( function animate_with_sim_consts(
dir::String, sim_consts, framerate::Int64, show_center_of_mass::Bool, debug::Bool dir::String,
sim_consts,
framerate::Int64,
show_center_of_mass::Bool,
show_interaction_circle::Bool,
show_skin_circle::Bool,
show_frame_diff::Bool,
) )
set_theme!(theme_black()) set_theme!(theme_black())
@ -153,26 +185,24 @@ function animate_with_sim_consts(
) )
end end
if debug if show_interaction_circle
segments_x = Observable(zeros(2 * n_particles))
segments_y = Observable(zeros(2 * n_particles))
interaction_circles = Observable(Vector{Circle}(undef, n_particles)) interaction_circles = Observable(Vector{Circle}(undef, n_particles))
skin_circles = Observable(Vector{Circle}(undef, n_particles)) skin_circles = Observable(Vector{Circle}(undef, n_particles))
end
if show_skin_circle
interaction_colors = Observable(Vector{RGBAf}(undef, n_particles)) interaction_colors = Observable(Vector{RGBAf}(undef, n_particles))
skin_colors = Observable(Vector{RGBAf}(undef, n_particles)) skin_colors = Observable(Vector{RGBAf}(undef, n_particles))
end end
if show_frame_diff
segments_x = Observable(zeros(2 * n_particles))
segments_y = Observable(zeros(2 * n_particles))
end
bundle_paths = readdir("$dir/bundles"; join=true, sort=false) bundle_paths = readdir("$dir/bundles"; join=true, sort=false)
sort_perm = sortperm([ bundle_paths = sort_bundle_paths(bundle_paths)
parse(Int64, s[(findfirst("bundle_", s).stop + 1):(end - length(".jld2"))]) for
s in bundle_paths
])
bundle_paths = bundle_paths[sort_perm]
sort_perm = nothing
@showprogress 1 for (n_bundle, bundle_path) in enumerate(bundle_paths) @showprogress 1 for (n_bundle, bundle_path) in enumerate(bundle_paths)
bundle::Bundle = JLD2.load_object(bundle_path) bundle::Bundle = JLD2.load_object(bundle_path)
@ -180,7 +210,9 @@ function animate_with_sim_consts(
args = (; args = (;
# Input # Input
show_center_of_mass, show_center_of_mass,
debug, show_interaction_circle,
show_skin_circle,
show_frame_diff,
# Intern # Intern
io, io,
ax, ax,
@ -207,13 +239,26 @@ function animate_with_sim_consts(
end end
function animate( function animate(
dir::String; framerate::Int64=1, show_center_of_mass::Bool=false, debug::Bool=false dir::String;
framerate::Int64=1,
show_center_of_mass::Bool=false,
show_interaction_circle::Bool=false,
show_skin_circle::Bool=false,
show_frame_diff::Bool=false,
) )
println("Generating animation...") println("Generating animation...")
sim_consts = JSON3.read(read("$dir/sim_consts.json", String)) sim_consts = JSON3.read(read("$dir/sim_consts.json", String))
animate_with_sim_consts(dir, sim_consts, framerate, show_center_of_mass, debug) animate_with_sim_consts(
dir,
sim_consts,
framerate,
show_center_of_mass,
show_interaction_circle,
show_skin_circle,
show_frame_diff,
)
println("Animation done.") println("Animation done.")

240
src/RL.jl
View file

@ -2,6 +2,8 @@ module RL
export run_rl export run_rl
using Base: OneTo
using ReinforcementLearning using ReinforcementLearning
using Flux: InvDecay using Flux: InvDecay
using Intervals using Intervals
@ -10,37 +12,62 @@ using LoopVectorization: @turbo
using Random: Random using Random: Random
using ProgressMeter: @showprogress using ProgressMeter: @showprogress
using ..ReCo: ReCo, Particle, angle2, center_of_mass using ..ReCo: ReCo, Particle, angle2, Shape
const INITIAL_REWARD = 0.0 const INITIAL_REWARD = 0.0
const INITIAL_STATE_IND = 1
function angle_state_space(n_angle_states::Int64)
angle_range = range(; start=-π, stop=π, length=n_angle_states + 1)
angle_state_space = Vector{Interval}(undef, n_angle_states)
@simd for i in 1:n_angle_states
if i == 1
bound = Closed
else
bound = Open
end
angle_state_space[i] = Interval{Float64,bound,Closed}(
angle_range[i], angle_range[i + 1]
)
end
return angle_state_space
end
mutable struct Env <: AbstractEnv mutable struct Env <: AbstractEnv
n_actions::Int64 n_actions::Int64
action_space::Vector{SVector{2,Float64}} action_space::Vector{SVector{2,Float64}}
action_ind_space::Vector{Int64} action_ind_space::OneTo{Int64}
distance_state_space::Vector{Interval} distance_state_space::Vector{Interval}
angle_state_space::Vector{Interval} direction_angle_state_space::Vector{Interval}
position_angle_state_space::Vector{Interval}
n_states::Int64 n_states::Int64
state_space::Vector{SVector{2,Interval}} state_space::Vector{SVector{3,Interval}}
state_ind_space::Vector{Int64} state_ind_space::OneTo{Int64}
state_ind::Int64 state_ind::Int64
reward::Float64 reward::Float64
terminated::Bool terminated::Bool
center_of_mass::SVector{2,Float64} center_of_mass::SVector{2,Float64} # TODO: Use or remove
gyration_tensor_eigvec_to_smaller_eigval::SVector{2,Float64}
gyration_tensor_eigvec_to_bigger_eigval::SVector{2,Float64}
function Env( function Env(;
max_distance::Float64; max_distance::Float64,
min_distance::Float64=0.0, min_distance::Float64=0.0,
n_v_actions::Int64=3, n_v_actions::Int64=2,
n_ω_actions::Int64=3, n_ω_actions::Int64=3,
max_v::Float64=40.0, max_v::Float64=40.0,
max_ω::Float64=π / 2, max_ω::Float64=π / 2,
n_distance_states::Int64=3, n_distance_states::Int64=4,
n_angle_states::Int64=4, n_direction_angle_states::Int64=3,
n_position_angle_states::Int64=8,
) )
@assert min_distance >= 0.0 @assert min_distance >= 0.0
@assert max_distance > min_distance @assert max_distance > min_distance
@ -48,9 +75,12 @@ mutable struct Env <: AbstractEnv
@assert n_ω_actions > 1 @assert n_ω_actions > 1
@assert max_v > 0 @assert max_v > 0
@assert max_ω > 0 @assert max_ω > 0
@assert n_distance_states > 1
@assert n_direction_angle_states > 1
@assert n_position_angle_states > 1
v_action_space = 0.0:(max_v / (n_v_actions - 1)):max_v v_action_space = range(; start=0.0, stop=max_v, length=n_v_actions)
ω_action_space = (-max_ω):(2 * max_ω / (n_ω_actions - 1)):max_ω ω_action_space = range(; start=-max_ω, stop=max_ω, length=n_ω_actions)
n_actions = n_v_actions * n_ω_actions n_actions = n_v_actions * n_ω_actions
@ -64,10 +94,11 @@ mutable struct Env <: AbstractEnv
end end
end end
action_ind_space = collect(1:n_actions) action_ind_space = OneTo(n_actions)
distance_range = distance_range = range(;
min_distance:((max_distance - min_distance) / n_distance_states):max_distance start=min_distance, stop=max_distance, length=n_distance_states + 1
)
distance_state_space = Vector{Interval}(undef, n_distance_states) distance_state_space = Vector{Interval}(undef, n_distance_states)
@ -83,50 +114,38 @@ mutable struct Env <: AbstractEnv
) )
end end
angle_range = (-π):(2 * π / n_angle_states):π direction_angle_state_space = angle_state_space(n_direction_angle_states)
position_angle_state_space = angle_state_space(n_position_angle_states)
angle_state_space = Vector{Interval}(undef, n_angle_states) n_states = n_distance_states * n_direction_angle_states * n_position_angle_states
@simd for i in 1:n_angle_states state_space = Vector{SVector{3,Interval}}(undef, n_states)
if i == 1
bound = Closed
else
bound = Open
end
angle_state_space[i] = Interval{Float64,bound,Closed}(
angle_range[i], angle_range[i + 1]
)
end
n_states = n_distance_states * n_angle_states + 1
state_space = Vector{SVector{2,Interval}}(undef, n_states - 1)
ind = 1 ind = 1
for distance_state in distance_state_space for distance_state in distance_state_space
for angle_state in angle_state_space for direction_angle_state in direction_angle_state_space
state_space[ind] = SVector(distance_state, angle_state) for position_angle_state in position_angle_state_space
ind += 1 state_space[ind] = SVector(
distance_state, direction_angle_state, position_angle_state
)
ind += 1
end
end end
end end
# Last state is SVector(nothing, nothing)
state_ind_space = collect(1:n_states) state_ind_space = OneTo(n_states)
# initial_state = SVector(nothing, nothing)
initial_state_ind = n_states
return new( return new(
n_actions, n_actions,
action_space, action_space,
action_ind_space, action_ind_space,
distance_state_space, distance_state_space,
angle_state_space, direction_angle_state_space,
position_angle_state_space,
n_states, n_states,
state_space, state_space,
state_ind_space, state_ind_space,
initial_state_ind, INITIAL_STATE_IND,
INITIAL_REWARD, INITIAL_REWARD,
false, false,
SVector(0.0, 0.0), SVector(0.0, 0.0),
@ -165,21 +184,18 @@ struct Params{H<:AbstractHook}
n_steps_before_actions_update::Int64 n_steps_before_actions_update::Int64
goal_shape_ratio::Float64 goal_gyration_tensor_eigvals_ratio::Float64
n_particles::Int64 n_particles::Int64
half_box_len::Float64 half_box_len::Float64
max_elliptic_distance::Float64 max_elliptic_distance::Float64
local_centers_of_mass::Vector{SVector{2,Float64}}
updated_local_center_of_mass::Vector{Bool}
function Params( function Params(
env::Env, env::Env,
agent::Agent, agent::Agent,
hook::H, hook::H,
n_steps_before_actions_update::Int64, n_steps_before_actions_update::Int64,
goal_shape_ratio::Float64, goal_gyration_tensor_eigvals_ratio::Float64,
n_particles::Int64, n_particles::Int64,
half_box_len::Float64, half_box_len::Float64,
) where {H<:AbstractHook} ) where {H<:AbstractHook}
@ -196,41 +212,36 @@ struct Params{H<:AbstractHook}
fill(SVector(0.0, 0.0), n_particles), fill(SVector(0.0, 0.0), n_particles),
fill(0, n_particles), fill(0, n_particles),
n_steps_before_actions_update, n_steps_before_actions_update,
goal_shape_ratio, goal_gyration_tensor_eigvals_ratio,
n_particles, n_particles,
half_box_len, half_box_len,
max_elliptic_distance, max_elliptic_distance,
fill(SVector(0.0, 0.0), n_particles),
falses(n_particles),
) )
end end
end end
function pre_integration_hook(rl_params::Params) function pre_integration_hook(rl_params::Params)
@simd for id in 1:(rl_params.n_particles)
rl_params.local_centers_of_mass[id] = SVector(0.0, 0.0)
rl_params.updated_local_center_of_mass[id] = false
end
return nothing return nothing
end end
function state_update_helper_hook( function state_update_helper_hook(
rl_params::Params, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64} rl_params::Params, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64}
) )
rl_params.local_centers_of_mass[id1] += r⃗₁₂
rl_params.local_centers_of_mass[id2] -= r⃗₁₂
rl_params.updated_local_center_of_mass[id1] = true
rl_params.updated_local_center_of_mass[id2] = true
return nothing return nothing
end end
function get_state_ind(state::S, state_space::Vector{S}) where {S<:SVector{2,Interval}} function find_state_ind(state::S, state_space::Vector{S}) where {S<:SVector{3,Interval}}
return findfirst(x -> x == state, state_space) return findfirst(x -> x == state, state_space)
end end
function find_state_interval(value::Float64, state_space::Vector{Interval})::Interval
for state in state_space
if value in state
return state
end
end
end
function state_update_hook(rl_params::Params, particles::Vector{Particle}) function state_update_hook(rl_params::Params, particles::Vector{Particle})
@turbo for id in 1:(rl_params.n_particles) @turbo for id in 1:(rl_params.n_particles)
rl_params.old_states_ind[id] = rl_params.states_ind[id] rl_params.old_states_ind[id] = rl_params.states_ind[id]
@ -238,44 +249,43 @@ function state_update_hook(rl_params::Params, particles::Vector{Particle})
env = rl_params.env env = rl_params.env
env_distance_state = env.distance_state_space[1] env.center_of_mass = Shape.center_of_mass(particles, rl_params.half_box_len)
env_angle_state = env.angle_state_space[1]
state_ind = 0
for id in 1:(rl_params.n_particles) for id in 1:(rl_params.n_particles)
if !rl_params.updated_local_center_of_mass[id] particle = particles[id]
state_ind = env.n_states
else
local_center_of_mass = rl_params.local_centers_of_mass[id]
distance = sqrt(local_center_of_mass[1]^2 + local_center_of_mass[2]^2) vec_to_center_of_mass = ReCo.minimum_image(
env.center_of_mass - particle.c, rl_params.half_box_len
)
for distance_state in env.distance_state_space distance = sqrt(vec_to_center_of_mass[1]^2 + vec_to_center_of_mass[2]^2)
if distance in distance_state
env_distance_state = distance_state
break
end
end
si, co = sincos(particles[id].φ) distance_state = find_state_interval(distance, env.distance_state_space)
angle = angle2(SVector(co, si), local_center_of_mass) si, co = sincos(particles[id].φ)
for angle_state in env.angle_state_space direction_angle = angle2(SVector(co, si), vec_to_center_of_mass)
if angle in angle_state position_angle = atan(-vec_to_center_of_mass[2], -vec_to_center_of_mass[1])
env_angle_state = angle_state
break
end
end
state = SVector{2,Interval}(env_distance_state, env_angle_state) direction_angle_state = find_state_interval(
state_ind = get_state_ind(state, env.state_space) direction_angle, env.direction_angle_state_space
end )
position_angle_state = find_state_interval(
position_angle, env.position_angle_state_space
)
state = SVector{3,Interval}(
distance_state, direction_angle_state, position_angle_state
)
state_ind = find_state_ind(state, env.state_space)
rl_params.states_ind[id] = state_ind rl_params.states_ind[id] = state_ind
end end
env.center_of_mass = center_of_mass(particles, rl_params.half_box_len) v1, v2 = Shape.gyration_tensor_eigvecs(particles, rl_params.half_box_len) # TODO: Reuse center_of_mass
env.gyration_tensor_eigvec_to_smaller_eigval = v1
env.gyration_tensor_eigvec_to_bigger_eigval = v2
return nothing return nothing
end end
@ -284,6 +294,18 @@ function get_env_agent_hook(rl_params::Params)
return (rl_params.env, rl_params.agent, rl_params.hook) return (rl_params.env, rl_params.agent, rl_params.hook)
end end
function update_reward!(env::Env, rl_params::Params, particle::Particle)
env.reward =
-Shape.elliptical_distance(
particle,
env.gyration_tensor_eigvec_to_smaller_eigval,
env.gyration_tensor_eigvec_to_bigger_eigval,
rl_params.goal_gyration_tensor_eigvals_ratio,
) / (rl_params.max_elliptic_distance^2 * rl_params.n_particles)
return nothing
end
function update_table_and_actions_hook( function update_table_and_actions_hook(
rl_params::Params, particle::Particle, first_integration_step::Bool rl_params::Params, particle::Particle, first_integration_step::Bool
) )
@ -305,13 +327,7 @@ function update_table_and_actions_hook(
env.state_ind = rl_params.states_ind[id] env.state_ind = rl_params.states_ind[id]
# Update reward # Update reward
vec_to_center_of_mass = ReCo.minimum_image( update_reward!(env, rl_params, particle)
particle.c - env.center_of_mass, rl_params.half_box_len
)
env.reward =
-(vec_to_center_of_mass[1]^2 + vec_to_center_of_mass[2]^2) /
rl_params.max_elliptic_distance / rl_params.n_particles
# Post act # Post act
agent(POST_ACT_STAGE, env) agent(POST_ACT_STAGE, env)
@ -343,47 +359,57 @@ function act_hook(
return nothing return nothing
end end
function gen_agent(n_states::Int64, n_actions::Int64, ϵ::Float64) function gen_agent(n_states::Int64, n_actions::Int64, ϵ_stable::Float64)
# TODO: Optimize warmup and decay
warmup_steps = 200_000
decay_steps = 1_000_000
policy = QBasedPolicy(; policy = QBasedPolicy(;
learner=MonteCarloLearner(; learner=MonteCarloLearner(;
approximator=TabularQApproximator(; approximator=TabularQApproximator(;
n_state=n_states, n_action=n_actions, opt=InvDecay(1.0) n_state=n_states, n_action=n_actions, opt=InvDecay(1.0)
), ),
), ),
explorer=EpsilonGreedyExplorer(ϵ), explorer=EpsilonGreedyExplorer(;
kind=:linear,
ϵ_init=1.0,
ϵ_stable=ϵ_stable,
warmup_steps=warmup_steps,
decay_steps=decay_steps,
),
) )
return Agent(; policy=policy, trajectory=VectorSARTTrajectory()) return Agent(; policy=policy, trajectory=VectorSARTTrajectory())
end end
function run_rl(; function run_rl(;
goal_shape_ratio::Float64, goal_gyration_tensor_eigvals_ratio::Float64,
n_episodes::Int64=200, n_episodes::Int64=200,
episode_duration::Float64=50.0, episode_duration::Float64=50.0,
update_actions_at::Float64=0.1, update_actions_at::Float64=0.1,
n_particles::Int64=100, n_particles::Int64=100,
seed::Int64=42, seed::Int64=42,
ϵ::Float64=0.01, ϵ_stable::Float64=0.0001,
parent_dir::String="", parent_dir::String="",
) )
@assert 0.0 <= goal_shape_ratio <= 1.0 @assert 0.0 <= goal_gyration_tensor_eigvals_ratio <= 1.0
@assert n_episodes > 0 @assert n_episodes > 0
@assert episode_duration > 0 @assert episode_duration > 0
@assert update_actions_at in 0.001:0.001:episode_duration @assert update_actions_at in 0.001:0.001:episode_duration
@assert n_particles > 0 @assert n_particles > 0
@assert 0.0 < ϵ < 1.0 @assert 0.0 < ϵ_stable < 1.0
# Setup # Setup
Random.seed!(seed) Random.seed!(seed)
sim_consts = ReCo.gen_sim_consts( sim_consts = ReCo.gen_sim_consts(
n_particles, 0.0; skin_to_interaction_r_ratio=1.8, packing_ratio=0.15 n_particles, 0.0; skin_to_interaction_r_ratio=1.5, packing_ratio=0.22
) )
n_particles = sim_consts.n_particles n_particles = sim_consts.n_particles
env = Env(sim_consts.skin_r) env = Env(; max_distance=sqrt(2) * sim_consts.half_box_len)
agent = gen_agent(env.n_states, env.n_actions, ϵ) agent = gen_agent(env.n_states, env.n_actions, ϵ_stable)
n_steps_before_actions_update = round(Int64, update_actions_at / sim_consts.δt) n_steps_before_actions_update = round(Int64, update_actions_at / sim_consts.δt)
@ -394,7 +420,7 @@ function run_rl(;
agent, agent,
hook, hook,
n_steps_before_actions_update, n_steps_before_actions_update,
goal_shape_ratio, goal_gyration_tensor_eigvals_ratio,
n_particles, n_particles,
sim_consts.half_box_len, sim_consts.half_box_len,
) )
@ -426,7 +452,9 @@ function run_rl(;
hook(POST_EPISODE_STAGE, agent, env) hook(POST_EPISODE_STAGE, agent, env)
agent(POST_EPISODE_STAGE, env) agent(POST_EPISODE_STAGE, env)
# TODO: Replace with live plot
display(hook.rewards) display(hook.rewards)
display(agent.policy.explorer.step)
end end
# Post experiment # Post experiment

View file

@ -1,20 +1,23 @@
module Shape module Shape
export center_of_mass, gyration_tensor_eigvals_ratio export center_of_mass,
gyration_tensor_eigvals_ratio, gyration_tensor_eigvecs, elliptical_distance
using StaticArrays: SVector, SMatrix using StaticArrays: SVector, SMatrix
using LinearAlgebra: eigvals, Hermitian using LinearAlgebra: eigvals, eigvecs, Hermitian, dot
using ..ReCo: Particle, restrict_coordinate, restrict_coordinates using ..ReCo: Particle, restrict_coordinate, restrict_coordinates
function project_to_unit_circle(x::Float64, half_box_len::Float64) function project_to_unit_circle(x::Float64, half_box_len::Float64)
φ = (x + half_box_len) * π / half_box_len φ = (x + half_box_len) * π / half_box_len
si, co = sincos(φ) si, co = sincos(φ)
return SVector(co, si) return SVector(co, si)
end end
function project_back_from_unit_circle(θ::T, half_box_len::Float64) where {T<:Real} function project_back_from_unit_circle(θ::T, half_box_len::Float64) where {T<:Real}
x = θ * half_box_len / π - half_box_len x = θ * half_box_len / π - half_box_len
return restrict_coordinate(x, half_box_len) return restrict_coordinate(x, half_box_len)
end end
@ -87,8 +90,31 @@ function gyration_tensor(particles::Vector{Particle}, half_box_len::Float64)
end end
function gyration_tensor_eigvals_ratio(particles::Vector{Particle}, half_box_len::Float64) function gyration_tensor_eigvals_ratio(particles::Vector{Particle}, half_box_len::Float64)
ev = eigvals(gyration_tensor(particles, half_box_len)) # Eigenvalues are sorted g_tensor = gyration_tensor(particles, half_box_len)
ev = eigvals(g_tensor) # Eigenvalues are sorted
return ev[1] / ev[2] return ev[1] / ev[2]
end end
function gyration_tensor_eigvecs(particles::Vector{Particle}, half_box_len::Float64)
g_tensor = gyration_tensor(particles, half_box_len)
eig_vecs = eigvecs(g_tensor)
v1 = eig_vecs[:, 1]
v2 = eig_vecs[:, 2]
return (v1, v2)
end
function elliptical_distance(
particle::Particle,
gyration_tensor_eigvec_to_smaller_eigval::SVector{2,Float64},
gyration_tensor_eigvec_to_bigger_eigval::SVector{2,Float64},
goal_gyration_tensor_eigvals_ratio::Float64,
)
cx = dot(particle.c, gyration_tensor_eigvec_to_bigger_eigval)
cy = dot(particle.c, gyration_tensor_eigvec_to_smaller_eigval)
return cx^2 + (cy / goal_gyration_tensor_eigvals_ratio)^2
end
end # module end # module