1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-12-30 17:13:27 +00:00

RL code organization

This commit is contained in:
Mo8it 2022-01-11 19:00:41 +01:00
parent eba1e53cd2
commit 913406312b
7 changed files with 277 additions and 260 deletions

7
src/Error.jl Normal file
View file

@ -0,0 +1,7 @@
module Error
export method_not_implemented
method_not_implemented() = error("Method not implemented!")
end # module

76
src/RL/Env.jl Normal file
View file

@ -0,0 +1,76 @@
abstract type Env <: AbstractEnv end
mutable struct EnvSharedProps{state_dims}
n_actions::Int64
action_space::Vector{SVector{2,Float64}}
action_ind_space::OneTo{Int64}
n_states::Int64
state_space::Vector{SVector{state_dims,Interval}}
state_ind_space::OneTo{Int64}
state_ind::Int64
reward::Float64
terminated::Bool
function EnvSharedProps(
n_states::Int64,
state_space::Vector{SVector{state_dims,Interval}};
n_v_actions::Int64=2,
n_ω_actions::Int64=3,
max_v::Float64=40.0,
max_ω::Float64=π / 2,
) where {state_dims}
@assert n_v_actions > 1
@assert n_ω_actions > 1
@assert max_v > 0
@assert max_ω > 0
v_action_space = range(; start=0.0, stop=max_v, length=n_v_actions)
ω_action_space = range(; start=-max_ω, stop=max_ω, length=n_ω_actions)
n_actions = n_v_actions * n_ω_actions
action_space = Vector{SVector{2,Float64}}(undef, n_actions)
ind = 1
for v in v_action_space
for ω in ω_action_space
action_space[ind] = SVector(v, ω)
ind += 1
end
end
action_ind_space = OneTo(n_actions)
state_ind_space = OneTo(n_states)
return new{state_dims}(
n_actions,
action_space,
action_ind_space,
n_states,
state_space,
state_ind_space,
INITIAL_STATE_IND,
INITIAL_REWARD,
false,
)
end
end
function reset!(env::Env)
env.shared.terminated = false
return nothing
end
RLBase.state_space(env::Env) = env.shared.state_ind_space
RLBase.state(env::Env) = env.shared.state_ind
RLBase.action_space(env::Env) = env.shared.action_ind_space
RLBase.reward(env::Env) = env.shared.reward
RLBase.is_terminated(env::Env) = env.shared.terminated

49
src/RL/EnvHelper.jl Normal file
View file

@ -0,0 +1,49 @@
abstract type EnvHelper end
struct EnvHelperSharedProps{H<:AbstractHook}
env::Env
agent::Agent
hook::H
n_steps_before_actions_update::Int64
goal_gyration_tensor_eigvals_ratio::Float64
n_particles::Int64
old_states_ind::Vector{Int64}
states_ind::Vector{Int64}
actions::Vector{SVector{2,Float64}}
actions_ind::Vector{Int64}
function EnvHelperSharedProps(
env::Env,
agent::Agent,
hook::H,
n_steps_before_actions_update::Int64,
goal_gyration_tensor_eigvals_ratio::Float64,
n_particles::Int64,
) where {H<:AbstractHook}
return new{H}(
env,
agent,
hook,
n_steps_before_actions_update,
goal_gyration_tensor_eigvals_ratio,
n_particles,
fill(0, n_particles),
fill(0, n_particles),
fill(SVector(0.0, 0.0), n_particles),
fill(0, n_particles),
)
end
end
function gen_env_helper(::Env, env_helper_params::EnvHelperSharedProps)
return method_not_implemented()
end
function get_env_agent_hook(env_helper::EnvHelper)
return (env_helper.shared.env, env_helper.shared.agent, env_helper.shared.hook)
end

70
src/RL/Hooks.jl Normal file
View file

@ -0,0 +1,70 @@
function pre_integration_hook(::EnvHelper)
return method_not_implemented()
end
function state_update_helper_hook(
::EnvHelper, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64}
)
return method_not_implemented()
end
function state_update_hook(::EnvHelper, particles::Vector{Particle})
return method_not_implemented()
end
function update_reward!(::Env, ::EnvHelper, particle::Particle)
return method_not_implemented()
end
function update_table_and_actions_hook(
env_helper::EnvHelper, particle::Particle, first_integration_step::Bool
)
env, agent, hook = get_env_agent_hook(env_helper)
id = particle.id
if !first_integration_step
# Old state
env.shared.state_ind = env_helper.shared.old_states_ind[id]
action_ind = env_helper.shared.actions_ind[id]
# Pre act
agent(PRE_ACT_STAGE, env, action_ind)
hook(PRE_ACT_STAGE, agent, env, action_ind)
# Update to current state
env.shared.state_ind = env_helper.shared.states_ind[id]
# Update reward
update_reward!(env, env_helper, particle)
# Post act
agent(POST_ACT_STAGE, env)
hook(POST_ACT_STAGE, agent, env)
end
# Update action
action_ind = agent(env)
action = env.shared.action_space[action_ind]
env_helper.shared.actions[id] = action
env_helper.shared.actions_ind[id] = action_ind
return nothing
end
act_hook(::Nothing, args...) = nothing
function act_hook(
env_helper::EnvHelper, particle::Particle, δt::Float64, si::Float64, co::Float64
)
# Apply action
action = env_helper.shared.actions[particle.id]
vδt = action[1] * δt
particle.tmp_c += SVector(vδt * co, vδt * si)
particle.φ += action[2] * δt
return nothing
end

View file

@ -13,270 +13,23 @@ using Random: Random
using ProgressMeter: @showprogress
using ..ReCo:
ReCo, Particle, angle2, norm2d, sq_norm2d, Shape, DEFAULT_SKIN_TO_INTERACTION_R_RATIO
ReCo,
Particle,
angle2,
norm2d,
sq_norm2d,
Shape,
DEFAULT_SKIN_TO_INTERACTION_R_RATIO,
method_not_implemented
const INITIAL_STATE_IND = 1
const INITIAL_REWARD = 0.0
method_not_implemented() = error("Method not implemented!")
include("Env.jl")
include("EnvHelper.jl")
function gen_angle_state_space(n_angle_states::Int64)
angle_range = range(; start=-π, stop=π, length=n_angle_states + 1)
angle_state_space = Vector{Interval}(undef, n_angle_states)
@simd for i in 1:n_angle_states
if i == 1
bound = Closed
else
bound = Open
end
angle_state_space[i] = Interval{Float64,bound,Closed}(
angle_range[i], angle_range[i + 1]
)
end
return angle_state_space
end
function gen_distance_state_space(
min_distance::Float64, max_distance::Float64, n_distance_states::Int64
)
@assert min_distance >= 0.0
@assert max_distance > min_distance
@assert n_distance_states > 1
distance_range = range(;
start=min_distance, stop=max_distance, length=n_distance_states + 1
)
distance_state_space = Vector{Interval}(undef, n_distance_states)
@simd for i in 1:n_distance_states
if i == 1
bound = Closed
else
bound = Open
end
distance_state_space[i] = Interval{Float64,bound,Closed}(
distance_range[i], distance_range[i + 1]
)
end
return distance_state_space
end
abstract type Env <: AbstractEnv end
mutable struct EnvSharedProps{state_dims}
n_actions::Int64
action_space::Vector{SVector{2,Float64}}
action_ind_space::OneTo{Int64}
n_states::Int64
state_space::Vector{SVector{state_dims,Interval}}
state_ind_space::OneTo{Int64}
state_ind::Int64
reward::Float64
terminated::Bool
function EnvSharedProps(
n_states::Int64,
state_space::Vector{SVector{state_dims,Interval}};
n_v_actions::Int64=2,
n_ω_actions::Int64=3,
max_v::Float64=40.0,
max_ω::Float64=π / 2,
) where {state_dims}
@assert n_v_actions > 1
@assert n_ω_actions > 1
@assert max_v > 0
@assert max_ω > 0
v_action_space = range(; start=0.0, stop=max_v, length=n_v_actions)
ω_action_space = range(; start=-max_ω, stop=max_ω, length=n_ω_actions)
n_actions = n_v_actions * n_ω_actions
action_space = Vector{SVector{2,Float64}}(undef, n_actions)
ind = 1
for v in v_action_space
for ω in ω_action_space
action_space[ind] = SVector(v, ω)
ind += 1
end
end
action_ind_space = OneTo(n_actions)
state_ind_space = OneTo(n_states)
return new{state_dims}(
n_actions,
action_space,
action_ind_space,
n_states,
state_space,
state_ind_space,
INITIAL_STATE_IND,
INITIAL_REWARD,
false,
)
end
end
function reset!(env::Env)
env.shared.terminated = false
return nothing
end
RLBase.state_space(env::Env) = env.shared.state_ind_space
RLBase.state(env::Env) = env.shared.state_ind
RLBase.action_space(env::Env) = env.shared.action_ind_space
RLBase.reward(env::Env) = env.shared.reward
RLBase.is_terminated(env::Env) = env.shared.terminated
struct EnvHelperSharedProps{H<:AbstractHook}
env::Env
agent::Agent
hook::H
n_steps_before_actions_update::Int64
goal_gyration_tensor_eigvals_ratio::Float64
n_particles::Int64
old_states_ind::Vector{Int64}
states_ind::Vector{Int64}
actions::Vector{SVector{2,Float64}}
actions_ind::Vector{Int64}
function EnvHelperSharedProps(
env::Env,
agent::Agent,
hook::H,
n_steps_before_actions_update::Int64,
goal_gyration_tensor_eigvals_ratio::Float64,
n_particles::Int64,
) where {H<:AbstractHook}
return new{H}(
env,
agent,
hook,
n_steps_before_actions_update,
goal_gyration_tensor_eigvals_ratio,
n_particles,
fill(0, n_particles),
fill(0, n_particles),
fill(SVector(0.0, 0.0), n_particles),
fill(0, n_particles),
)
end
end
abstract type EnvHelper end
function gen_env_helper(::Env, env_helper_params::EnvHelperSharedProps)
return method_not_implemented()
end
function pre_integration_hook(::EnvHelper)
return method_not_implemented()
end
function state_update_helper_hook(
::EnvHelper, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64}
)
return method_not_implemented()
end
function find_state_ind(state::S, state_space::Vector{S}) where {S<:SVector}
return findfirst(x -> x == state, state_space)
end
function find_state_interval(value::Float64, state_space::Vector{Interval})::Interval
for state in state_space
if value in state
return state
end
end
end
function state_update_hook(::EnvHelper, particles::Vector{Particle})
return method_not_implemented()
end
function get_env_agent_hook(env_helper::EnvHelper)
return (env_helper.shared.env, env_helper.shared.agent, env_helper.shared.hook)
end
function update_reward!(::Env, ::EnvHelper, particle::Particle)
return method_not_implemented()
end
function update_table_and_actions_hook(
env_helper::EnvHelper, particle::Particle, first_integration_step::Bool
)
env, agent, hook = get_env_agent_hook(env_helper)
id = particle.id
if !first_integration_step
# Old state
env.shared.state_ind = env_helper.shared.old_states_ind[id]
action_ind = env_helper.shared.actions_ind[id]
# Pre act
agent(PRE_ACT_STAGE, env, action_ind)
hook(PRE_ACT_STAGE, agent, env, action_ind)
# Update to current state
env.shared.state_ind = env_helper.shared.states_ind[id]
# Update reward
update_reward!(env, env_helper, particle)
# Post act
agent(POST_ACT_STAGE, env)
hook(POST_ACT_STAGE, agent, env)
end
# Update action
action_ind = agent(env)
action = env.shared.action_space[action_ind]
env_helper.shared.actions[id] = action
env_helper.shared.actions_ind[id] = action_ind
return nothing
end
act_hook(::Nothing, args...) = nothing
function act_hook(
env_helper::EnvHelper, particle::Particle, δt::Float64, si::Float64, co::Float64
)
# Apply action
action = env_helper.shared.actions[particle.id]
vδt = action[1] * δt
particle.tmp_c += SVector(vδt * co, vδt * si)
particle.φ += action[2] * δt
return nothing
end
include("States.jl")
include("Hooks.jl")
function gen_agent(n_states::Int64, n_actions::Int64, ϵ_stable::Float64)
# TODO: Optimize warmup and decay
@ -334,7 +87,7 @@ function run_rl(;
skin_to_interaction_r_ratio=skin_to_interaction_r_ratio,
packing_ratio=packing_ratio,
)
n_particles = sim_consts.n_particles # This not always equal to the input!
n_particles = sim_consts.n_particles # Not always equal to the input!
env = EnvType(sim_consts)

59
src/RL/States.jl Normal file
View file

@ -0,0 +1,59 @@
function gen_angle_state_space(n_angle_states::Int64)
angle_range = range(; start=-π, stop=π, length=n_angle_states + 1)
angle_state_space = Vector{Interval}(undef, n_angle_states)
@simd for i in 1:n_angle_states
if i == 1
bound = Closed
else
bound = Open
end
angle_state_space[i] = Interval{Float64,bound,Closed}(
angle_range[i], angle_range[i + 1]
)
end
return angle_state_space
end
function gen_distance_state_space(
min_distance::Float64, max_distance::Float64, n_distance_states::Int64
)
@assert min_distance >= 0.0
@assert max_distance > min_distance
@assert n_distance_states > 1
distance_range = range(;
start=min_distance, stop=max_distance, length=n_distance_states + 1
)
distance_state_space = Vector{Interval}(undef, n_distance_states)
@simd for i in 1:n_distance_states
if i == 1
bound = Closed
else
bound = Open
end
distance_state_space[i] = Interval{Float64,bound,Closed}(
distance_range[i], distance_range[i + 1]
)
end
return distance_state_space
end
function find_state_ind(state::S, state_space::Vector{S}) where {S<:SVector}
return findfirst(x -> x == state, state_space)
end
function find_state_interval(value::Float64, state_space::Vector{Interval})::Interval
for state in state_space
if value in state
return state
end
end
end

View file

@ -13,6 +13,9 @@ using CellListMap: Box, CellList, map_pairwise!, UpdateCellList!
using Random: Random
using Dates: Dates, now
include("Error.jl")
using .Error
include("PreVectors.jl")
using .PreVectors