1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-12-21 00:51:21 +00:00

pair_correlation

This commit is contained in:
MoBit 2021-11-20 14:15:22 +01:00
parent 7abb864cba
commit 95d3d5d9af
7 changed files with 129 additions and 83 deletions

2
.gitignore vendored
View file

@ -1,2 +1,4 @@
Manifest.toml Manifest.toml
exports exports
.ipynb_checkpoints
*.ipynb

View file

@ -1,5 +1,6 @@
[deps] [deps]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
ColorSchemes = "35d6a980-a343-548e-a6ea-1d62b119f2f4" ColorSchemes = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GLMakie = "e9467ef8-e4e7-5192-8a1a-b1aee30e663a" GLMakie = "e9467ef8-e4e7-5192-8a1a-b1aee30e663a"

View file

@ -0,0 +1,26 @@
if splitdir(pwd())[2] == "analysis"
cd("..")
end
if splitdir(pwd())[2] != "ReCo"
error("You have to be in the main directeory ReCo!")
else
include("src/ReCo.jl")
includet("src/analysis/pair_correlation_function.jl")
end
##
using CairoMakie
CairoMakie.activate!()
##
dirs = readdir("exports/2021_11_19"; join=true)
##
for dir in dirs
data = JLD2.load("$dir/data.jld2")
display(pair_correlation(data["sol"], data["variables"]).fig)
end

View file

@ -16,6 +16,8 @@ import Base: push!, run, iterate
using Revise using Revise
using BenchmarkTools using BenchmarkTools
set_theme!(theme_black())
includet("PreVector.jl") includet("PreVector.jl")
includet("Particle.jl") includet("Particle.jl")
includet("setup.jl") includet("setup.jl")

View file

@ -0,0 +1,72 @@
function plot_g(radius, g, variables)
fig = Figure()
ax = Axis(
fig[1, 1];
xticks=0:ceil(Int64, maximum(radius)),
yticks=0:ceil(Int64, maximum(g)),
xlabel=L"r",
ylabel=L"g(r)",
title="v = $(variables.v)",
)
scatterlines!(ax, radius, g; color=:white, markercolor=:red)
return fig
end
function pair_correlation(sol, variables)
n_r = 100
n_last_frames = 200
min_radius = variables.particle_diameter / 2
max_radius = 10.0 * variables.particle_diameter
dr = (max_radius - min_radius) / n_r
radius = range(min_radius, max_radius; length=n_r)
N_g = zeros(variables.N, n_r)
Threads.@threads for r_ind in 1:n_r
r = radius[r_ind]
@simd for i in 1:(variables.N)
for j in 1:(variables.N)
if i != j
for k in 1:n_last_frames
frame = variables.n_frames - k + 1
c1 = sol.center[i, frame]
c2 = sol.center[j, frame]
r⃗₁₂ = SVector(c1[1] - c2[1], c1[2] - c2[2])
r⃗₁₂ = minimum_image(r⃗₁₂; l=variables.l)
distance = sqrt(r⃗₁₂[1]^2 + r⃗₁₂[2]^2)
if (distance >= r) && (distance <= r + dr)
N_g[i, r_ind] += 1
end
end
end
end
end
end
g = zeros(n_r)
@simd for r_ind in 1:n_r
r = radius[r_ind]
tmp_g = 0.0
@tturbo for i in 1:(variables.N)
tmp_g += N_g[i, r_ind]
end
tmp_g *=
(2 * variables.l)^2 /
((variables.N * n_last_frames) * variables.N * 2 * π * r * dr)
g[r_ind] = tmp_g
end
fig = plot_g(radius, g, variables)
return (; fig, radius, g)
end

View file

@ -1,8 +1,6 @@
function animate(directory::String, sol::Solution, variables) function animate(directory::String, sol::Solution, variables; framerate=0)
println("Generating animation...") println("Generating animation...")
set_theme!(theme_black())
fig = Figure(; resolution=(1080, 1080)) fig = Figure(; resolution=(1080, 1080))
ax = Axis( ax = Axis(
fig[1, 1]; fig[1, 1];
@ -18,7 +16,14 @@ function animate(directory::String, sol::Solution, variables)
animation_path = "$directory/animation.mkv" animation_path = "$directory/animation.mkv"
record(fig, animation_path; framerate=variables.framerate) do io record_framerate = 0
if framerate > 0
record_framerate = framerate
else
record_framerate = variables.framerate
end
record(fig, animation_path; framerate=record_framerate) do io
circles = Observable(Vector{Circle}(undef, variables.N)) circles = Observable(Vector{Circle}(undef, variables.N))
colors = Observable(Vector{RGBAf}(undef, variables.N)) colors = Observable(Vector{RGBAf}(undef, variables.N))
@ -33,13 +38,14 @@ function animate(directory::String, sol::Solution, variables)
skin_colors = Observable(Vector{RGBAf}(undef, variables.N)) skin_colors = Observable(Vector{RGBAf}(undef, variables.N))
end end
π2 = 2 * π
particle_radius = variables.particle_diameter / 2
@showprogress 0.6 for frame in 1:(variables.n_frames) @showprogress 0.6 for frame in 1:(variables.n_frames)
@simd for i in 1:(variables.N) @simd for i in 1:(variables.N)
circles[][i] = Circle( circles[][i] = Circle(Point2(sol.center[i, frame]), particle_radius)
Point2(sol.center[i, frame]), variables.particle_diameter / 2
)
color = get(color_scheme, rem2pi(sol.φ[i, frame] / (2 * π), RoundDown)) color = get(color_scheme, rem2pi(sol.φ[i, frame], RoundDown) / π2)
colors[][i] = RGBAf(color) colors[][i] = RGBAf(color)
if variables.debug if variables.debug
@ -50,19 +56,23 @@ function animate(directory::String, sol::Solution, variables)
Point2(sol.center[i, frame]), variables.skin_r Point2(sol.center[i, frame]), variables.skin_r
) )
interaction_colors[][i] = RGBAf(color, 0.12) interaction_colors[][i] = RGBAf(color, 0.08)
skin_colors[][i] = RGBAf(color, 0.06) skin_colors[][i] = RGBAf(color, 0.04)
end end
end end
if frame > 1 if frame > 1
if variables.debug if variables.debug
@simd for i in 1:(variables.N) @simd for i in 1:(variables.N)
segments_x[][2 * i - 1] = sol.center[i, frame - 1][1] first_ind = 2 * i - 1
segments_x[][2 * i] = sol.center[i, frame][1] second_ind = 2 * i
frame_min_1 = frame - 1
segments_y[][2 * i - 1] = sol.center[i, frame - 1][2] segments_x[][first_ind] = sol.center[i, frame_min_1][1]
segments_y[][2 * i] = sol.center[i, frame][2] segments_x[][second_ind] = sol.center[i, frame][1]
segments_y[][first_ind] = sol.center[i, frame_min_1][2]
segments_y[][second_ind] = sol.center[i, frame][2]
end end
if frame == 2 if frame == 2

View file

@ -1,67 +0,0 @@
function pair_correlation(frame=0, dr=0.1)
sol, args, filename = run(;
N=1000,
T=1.0,
v=20.0,
δt=1e-5,
save_at=0.1,
framerate=10,
n_steps_before_verlet_list_update=1000,
)
n_r = 100
radius = range(0, args.l; length=n_r)
N_g = zeros((args.N, n_r))
if frame == 0
frame = args.n_frames
end
for r_ind in 1:n_r
r = radius[r_ind]
for i in 1:(args.N)
for j in 1:(args.N)
if i != j
c1 = sol.center[i, frame]
c2 = sol.center[j, frame]
r⃗₁₂ = SVector{2}(c1) - SVector{2}(c2)
r⃗₁₂ = minimum_image(r⃗₁₂; l=args.l)
distance = sqrt(r⃗₁₂[1]^2 + r⃗₁₂[2]^2)
if (distance >= r) && (distance <= r + dr)
N_g[i, r_ind] += 1
end
end
end
end
end
g = zeros(n_r)
for r_ind in 1:n_r
r = radius[r_ind]
tmp_g = 0.0
for i in 1:(args.N)
tmp_g += N_g[i, r_ind]
end
tmp_g = tmp_g * (2 * args.l)^2 / (args.N^2 * 2 * π * r * dr)
g[r_ind] = tmp_g
end
return plot_g(radius, g)
end
function plot_g(radius, g)
fig = Figure(; resolution=(1080, 1080))
ax = Axis(fig[1, 1]; xlabel=L"r", ylabel=L"g(r)")
scatterlines!(ax, radius, g)
return (; fig, radius, g)
end