1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-11-08 22:21:08 +00:00

Restructured code to include all environments

This commit is contained in:
Mo8it 2022-01-11 01:31:30 +01:00
parent 9c00da84ea
commit bb3246a1e7
5 changed files with 265 additions and 191 deletions

140
src/RL/LocalCOMEnv.jl Normal file
View file

@ -0,0 +1,140 @@
export LocalCOMEnv
struct LocalCOMEnv <: Env
params::EnvParams
distance_state_space::Vector{Interval}
direction_angle_state_space::Vector{Interval}
max_distance::Float64
function LocalCOMEnv(
sim_consts; n_distance_states::Int64=3, n_direction_angle_states::Int64=3
)
@assert n_direction_angle_states > 1
direction_angle_state_space = gen_angle_state_space(n_direction_angle_states)
min_distance = 0.0
max_distance = sim_consts.skin_r
distance_state_space = gen_distance_state_space(
min_distance, max_distance, n_distance_states
)
n_states = n_distance_states * n_direction_angle_states + 1
state_space = Vector{SVector{2,Interval}}(undef, n_states - 1)
ind = 1
for distance_state in distance_state_space
for direction_angle_state in direction_angle_state_space
state_space[ind] = SVector(distance_state, direction_angle_state)
ind += 1
end
end
# Last state is when no particle is in the skin radius
params = EnvParams(n_states, state_space)
return new(params, distance_state_space, direction_angle_state_space, max_distance)
end
end
struct LocalCOMEnvHelper <: EnvHelper
params::EnvHelperParams
vec_to_neighbour_sums::Vector{SVector{2,Float64}}
n_neighbours::Vector{Int64}
function LocalCOMEnvHelper(params::EnvHelperParams)
return new(
params, fill(SVector(0.0, 0.0), params.n_particles), fill(0, params.n_particles)
)
end
end
function gen_env_helper(::LocalCOMEnv, env_helper_params::EnvHelperParams)
return LocalCOMEnvHelper(env_helper_params)
end
function pre_integration_hook(env_helper::LocalCOMEnvHelper)
@simd for id in 1:(env_helper.params.n_particles)
env_helper.vec_to_neighbour_sums[id] = SVector(0.0, 0.0)
env_helper.n_neighbours[id] = 0
end
return nothing
end
function state_update_helper_hook(
env_helper::LocalCOMEnvHelper, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64}
)
env_helper.vec_to_neighbour_sums[id1] += r⃗₁₂
env_helper.vec_to_neighbour_sums[id2] -= r⃗₁₂
env_helper.n_neighbours[id1] += 1
env_helper.n_neighbours[id2] += 1
return nothing
end
function state_update_hook(env_helper::LocalCOMEnvHelper, particles::Vector{Particle})
n_particles = env_helper.params.n_particles
@turbo for id in 1:(n_particles)
env_helper.params.old_states_ind[id] = env_helper.params.states_ind[id]
end
env = env_helper.params.env
for id in 1:n_particles
n_neighbours = env_helper.n_neighbours[id]
if n_neighbours == 0
state_ind = env.params.n_states
else
vec_to_local_center_of_mass =
env_helper.vec_to_neighbour_sums[id] / n_neighbours
distance = sqrt(
vec_to_local_center_of_mass[1]^2 + vec_to_local_center_of_mass[2]^2
)
distance_state = find_state_interval(distance, env.distance_state_space)
si, co = sincos(particles[id].φ)
direction_angle = angle2(SVector(co, si), vec_to_local_center_of_mass)
direction_angle_state = find_state_interval(
direction_angle, env.direction_angle_state_space
)
state = SVector{2,Interval}(distance_state, direction_angle_state)
state_ind = find_state_ind(state, env.params.state_space)
end
env_helper.params.states_ind[id] = state_ind
end
return nothing
end
function update_reward!(env::LocalCOMEnv, env_helper::LocalCOMEnvHelper, particle::Particle)
id = particle.id
normalization = (env.max_distance * env_helper.params.n_particles)
n_neighbours = env_helper.n_neighbours[id]
if n_neighbours == 0
env.params.reward = -(env.max_distance^2) / normalization
else
vec_to_local_center_of_mass = env_helper.vec_to_neighbour_sums[id] / n_neighbours # TODO: Reuse vec_to_local_center_of_mass from state_update_hook
env.params.reward =
-(vec_to_local_center_of_mass[1]^2 + vec_to_local_center_of_mass[2]^2) /
normalization
end
return nothing
end

View file

@ -1,6 +1,6 @@
module RL module RL
export run_rl export run_rl, LocalCOMEnv
using Base: OneTo using Base: OneTo
@ -12,12 +12,14 @@ using LoopVectorization: @turbo
using Random: Random using Random: Random
using ProgressMeter: @showprogress using ProgressMeter: @showprogress
using ..ReCo: ReCo, Particle, angle2, Shape using ..ReCo: ReCo, Particle, angle2, Shape, DEFAULT_SKIN_TO_INTERACTION_R_RATIO
const INITIAL_REWARD = 0.0
const INITIAL_STATE_IND = 1 const INITIAL_STATE_IND = 1
const INITIAL_REWARD = 0.0
function angle_state_space(n_angle_states::Int64) method_not_implemented() = error("Method not implemented!")
function gen_angle_state_space(n_angle_states::Int64)
angle_range = range(; start=-π, stop=π, length=n_angle_states + 1) angle_range = range(; start=-π, stop=π, length=n_angle_states + 1)
angle_state_space = Vector{Interval}(undef, n_angle_states) angle_state_space = Vector{Interval}(undef, n_angle_states)
@ -37,57 +39,12 @@ function angle_state_space(n_angle_states::Int64)
return angle_state_space return angle_state_space
end end
mutable struct Env <: AbstractEnv function gen_distance_state_space(
n_actions::Int64 min_distance::Float64, max_distance::Float64, n_distance_states::Int64
action_space::Vector{SVector{2,Float64}} )
action_ind_space::OneTo{Int64}
distance_state_space::Vector{Interval}
direction_angle_state_space::Vector{Interval}
n_states::Int64
state_space::Vector{SVector{2,Interval}}
state_ind_space::OneTo{Int64}
state_ind::Int64
reward::Float64
terminated::Bool
function Env(;
max_distance::Float64,
min_distance::Float64=0.0,
n_v_actions::Int64=2,
n_ω_actions::Int64=3,
max_v::Float64=40.0,
max_ω::Float64=π / 2,
n_distance_states::Int64=3,
n_direction_angle_states::Int64=3,
)
@assert min_distance >= 0.0 @assert min_distance >= 0.0
@assert max_distance > min_distance @assert max_distance > min_distance
@assert n_v_actions > 1
@assert n_ω_actions > 1
@assert max_v > 0
@assert max_ω > 0
@assert n_distance_states > 1 @assert n_distance_states > 1
@assert n_direction_angle_states > 1
v_action_space = range(; start=0.0, stop=max_v, length=n_v_actions)
ω_action_space = range(; start=-max_ω, stop=max_ω, length=n_ω_actions)
n_actions = n_v_actions * n_ω_actions
action_space = Vector{SVector{2,Float64}}(undef, n_actions)
ind = 1
for v in v_action_space
for ω in ω_action_space
action_space[ind] = SVector(v, ω)
ind += 1
end
end
action_ind_space = OneTo(n_actions)
distance_range = range(; distance_range = range(;
start=min_distance, stop=max_distance, length=n_distance_states + 1 start=min_distance, stop=max_distance, length=n_distance_states + 1
@ -107,29 +64,60 @@ mutable struct Env <: AbstractEnv
) )
end end
direction_angle_state_space = angle_state_space(n_direction_angle_states) return distance_state_space
end
n_states = n_distance_states * n_direction_angle_states + 1 abstract type Env <: AbstractEnv end
state_space = Vector{SVector{2,Interval}}(undef, n_states - 1) mutable struct EnvParams{state_dims}
n_actions::Int64
action_space::Vector{SVector{2,Float64}}
action_ind_space::OneTo{Int64}
n_states::Int64
state_space::Vector{SVector{state_dims,Interval}}
state_ind_space::OneTo{Int64}
state_ind::Int64
reward::Float64
terminated::Bool
function EnvParams(
n_states::Int64,
state_space::Vector{SVector{state_dims,Interval}};
n_v_actions::Int64=2,
n_ω_actions::Int64=3,
max_v::Float64=40.0,
max_ω::Float64=π / 2,
) where {state_dims}
@assert n_v_actions > 1
@assert n_ω_actions > 1
@assert max_v > 0
@assert max_ω > 0
v_action_space = range(; start=0.0, stop=max_v, length=n_v_actions)
ω_action_space = range(; start=-max_ω, stop=max_ω, length=n_ω_actions)
n_actions = n_v_actions * n_ω_actions
action_space = Vector{SVector{2,Float64}}(undef, n_actions)
ind = 1 ind = 1
for distance_state in distance_state_space for v in v_action_space
for direction_angle_state in direction_angle_state_space for ω in ω_action_space
state_space[ind] = SVector(distance_state, direction_angle_state) action_space[ind] = SVector(v, ω)
ind += 1 ind += 1
end end
end end
# Last state is when no particle is in the skin radius
action_ind_space = OneTo(n_actions)
state_ind_space = OneTo(n_states) state_ind_space = OneTo(n_states)
return new( return new{state_dims}(
n_actions, n_actions,
action_space, action_space,
action_ind_space, action_ind_space,
distance_state_space,
direction_angle_state_space,
n_states, n_states,
state_space, state_space,
state_ind_space, state_ind_space,
@ -141,94 +129,78 @@ mutable struct Env <: AbstractEnv
end end
function reset!(env::Env) function reset!(env::Env)
env.state_ind = env.n_states env.params.terminated = false
env.terminated = false
return nothing return nothing
end end
RLBase.state_space(env::Env) = env.state_ind_space RLBase.state_space(env::Env) = env.params.state_ind_space
RLBase.state(env::Env) = env.state_ind RLBase.state(env::Env) = env.params.state_ind
RLBase.action_space(env::Env) = env.action_ind_space RLBase.action_space(env::Env) = env.params.action_ind_space
RLBase.reward(env::Env) = env.reward RLBase.reward(env::Env) = env.params.reward
RLBase.is_terminated(env::Env) = env.terminated RLBase.is_terminated(env::Env) = env.params.terminated
struct Params{H<:AbstractHook} struct EnvHelperParams{H<:AbstractHook}
env::Env env::Env
agent::Agent agent::Agent
hook::H hook::H
n_steps_before_actions_update::Int64
goal_gyration_tensor_eigvals_ratio::Float64
n_particles::Int64
old_states_ind::Vector{Int64} old_states_ind::Vector{Int64}
states_ind::Vector{Int64} states_ind::Vector{Int64}
actions::Vector{SVector{2,Float64}} actions::Vector{SVector{2,Float64}}
actions_ind::Vector{Int64} actions_ind::Vector{Int64}
n_steps_before_actions_update::Int64 function EnvHelperParams(
goal_gyration_tensor_eigvals_ratio::Float64
n_particles::Int64
max_distance::Float64
vec_to_neighbour_sums::Vector{SVector{2,Float64}}
n_neighbours::Vector{Int64}
function Params(
env::Env, env::Env,
agent::Agent, agent::Agent,
hook::H, hook::H,
n_steps_before_actions_update::Int64, n_steps_before_actions_update::Int64,
goal_gyration_tensor_eigvals_ratio::Float64, goal_gyration_tensor_eigvals_ratio::Float64,
n_particles::Int64, n_particles::Int64,
max_distance::Float64,
) where {H<:AbstractHook} ) where {H<:AbstractHook}
n_states = env.n_states
return new{H}( return new{H}(
env, env,
agent, agent,
hook, hook,
fill(0, n_particles),
fill(n_states, n_particles),
fill(SVector(0.0, 0.0), n_particles),
fill(0, n_particles),
n_steps_before_actions_update, n_steps_before_actions_update,
goal_gyration_tensor_eigvals_ratio, goal_gyration_tensor_eigvals_ratio,
n_particles, n_particles,
max_distance, fill(0, n_particles),
fill(0, n_particles),
fill(SVector(0.0, 0.0), n_particles), fill(SVector(0.0, 0.0), n_particles),
fill(0, n_particles), fill(0, n_particles),
) )
end end
end end
function pre_integration_hook(rl_params::Params) abstract type EnvHelper end
@simd for id in 1:(rl_params.n_particles)
rl_params.vec_to_neighbour_sums[id] = SVector(0.0, 0.0)
rl_params.n_neighbours[id] = 0
end
return nothing function gen_env_helper(::Env, env_helper_params::EnvHelperParams)
return method_not_implemented()
end
function pre_integration_hook(::EnvHelper)
return method_not_implemented()
end end
function state_update_helper_hook( function state_update_helper_hook(
rl_params::Params, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64} ::EnvHelper, id1::Int64, id2::Int64, r⃗₁₂::SVector{2,Float64}
) )
rl_params.vec_to_neighbour_sums[id1] += r⃗₁₂ return method_not_implemented()
rl_params.vec_to_neighbour_sums[id2] -= r⃗₁₂
rl_params.n_neighbours[id1] += 1
rl_params.n_neighbours[id2] += 1
return nothing
end end
function find_state_ind(state::S, state_space::Vector{S}) where {S<:SVector{2,Interval}} function find_state_ind(state::S, state_space::Vector{S}) where {S<:SVector}
return findfirst(x -> x == state, state_space) return findfirst(x -> x == state, state_space)
end end
@ -240,89 +212,40 @@ function find_state_interval(value::Float64, state_space::Vector{Interval})::Int
end end
end end
function state_update_hook(rl_params::Params, particles::Vector{Particle}) function state_update_hook(::EnvHelper, particles::Vector{Particle})
@turbo for id in 1:(rl_params.n_particles) return method_not_implemented()
rl_params.old_states_ind[id] = rl_params.states_ind[id]
end
env = rl_params.env
for id in 1:(rl_params.n_particles)
n_neighbours = rl_params.n_neighbours[id]
if n_neighbours == 0
state_ind = env.n_states
else
vec_to_local_center_of_mass = rl_params.vec_to_neighbour_sums[id] / n_neighbours
distance = sqrt(
vec_to_local_center_of_mass[1]^2 + vec_to_local_center_of_mass[2]^2
)
distance_state = find_state_interval(distance, env.distance_state_space)
si, co = sincos(particles[id].φ)
direction_angle = angle2(SVector(co, si), vec_to_local_center_of_mass)
direction_angle_state = find_state_interval(
direction_angle, env.direction_angle_state_space
)
state = SVector{2,Interval}(distance_state, direction_angle_state)
state_ind = find_state_ind(state, env.state_space)
end
rl_params.states_ind[id] = state_ind
end
return nothing
end end
function get_env_agent_hook(rl_params::Params) function get_env_agent_hook(env_helper::EnvHelper)
return (rl_params.env, rl_params.agent, rl_params.hook) return (env_helper.params.env, env_helper.params.agent, env_helper.params.hook)
end end
function update_reward!(env::Env, rl_params::Params, particle::Particle) function update_reward!(::Env, ::EnvHelper, particle::Particle)
id = particle.id return method_not_implemented()
normalization = (rl_params.max_distance * rl_params.n_particles)
n_neighbours = rl_params.n_neighbours[id]
if n_neighbours == 0
env.reward = -(rl_params.max_distance^2) / normalization
else
vec_to_local_center_of_mass = rl_params.vec_to_neighbour_sums[id] / n_neighbours # TODO: Reuse vec_to_local_center_of_mass from state_update_hook
env.reward =
-(vec_to_local_center_of_mass[1]^2 + vec_to_local_center_of_mass[2]^2) /
normalization
end
return nothing
end end
function update_table_and_actions_hook( function update_table_and_actions_hook(
rl_params::Params, particle::Particle, first_integration_step::Bool env_helper::EnvHelper, particle::Particle, first_integration_step::Bool
) )
env, agent, hook = get_env_agent_hook(rl_params) env, agent, hook = get_env_agent_hook(env_helper)
id = particle.id id = particle.id
if !first_integration_step if !first_integration_step
# Old state # Old state
env.state_ind = rl_params.old_states_ind[id] env.params.state_ind = env_helper.params.old_states_ind[id]
action_ind = rl_params.actions_ind[id] action_ind = env_helper.params.actions_ind[id]
# Pre act # Pre act
agent(PRE_ACT_STAGE, env, action_ind) agent(PRE_ACT_STAGE, env, action_ind)
hook(PRE_ACT_STAGE, agent, env, action_ind) hook(PRE_ACT_STAGE, agent, env, action_ind)
# Update to current state # Update to current state
env.state_ind = rl_params.states_ind[id] env.params.state_ind = env_helper.params.states_ind[id]
# Update reward # Update reward
update_reward!(env, rl_params, particle) update_reward!(env, env_helper, particle)
# Post act # Post act
agent(POST_ACT_STAGE, env) agent(POST_ACT_STAGE, env)
@ -331,10 +254,10 @@ function update_table_and_actions_hook(
# Update action # Update action
action_ind = agent(env) action_ind = agent(env)
action = env.action_space[action_ind] action = env.params.action_space[action_ind]
rl_params.actions[id] = action env_helper.params.actions[id] = action
rl_params.actions_ind[id] = action_ind env_helper.params.actions_ind[id] = action_ind
return nothing return nothing
end end
@ -342,10 +265,10 @@ end
act_hook(::Nothing, args...) = nothing act_hook(::Nothing, args...) = nothing
function act_hook( function act_hook(
rl_params::Params, particle::Particle, δt::Float64, si::Float64, co::Float64 env_helper::EnvHelper, particle::Particle, δt::Float64, si::Float64, co::Float64
) )
# Apply action # Apply action
action = rl_params.actions[particle.id] action = env_helper.params.actions[particle.id]
vδt = action[1] * δt vδt = action[1] * δt
particle.tmp_c += SVector(vδt * co, vδt * si) particle.tmp_c += SVector(vδt * co, vδt * si)
@ -378,6 +301,8 @@ function gen_agent(n_states::Int64, n_actions::Int64, ϵ_stable::Float64)
end end
function run_rl(; function run_rl(;
EnvType::Type{E},
parent_dir_appendix::String,
goal_gyration_tensor_eigvals_ratio::Float64, goal_gyration_tensor_eigvals_ratio::Float64,
n_episodes::Int64=200, n_episodes::Int64=200,
episode_duration::Float64=50.0, episode_duration::Float64=50.0,
@ -385,8 +310,9 @@ function run_rl(;
n_particles::Int64=100, n_particles::Int64=100,
seed::Int64=42, seed::Int64=42,
ϵ_stable::Float64=0.0001, ϵ_stable::Float64=0.0001,
parent_dir::String="", skin_to_interaction_r_ratio::Float64=DEFAULT_SKIN_TO_INTERACTION_R_RATIO,
) packing_ratio=0.22,
) where {E<:Env}
@assert 0.0 <= goal_gyration_tensor_eigvals_ratio <= 1.0 @assert 0.0 <= goal_gyration_tensor_eigvals_ratio <= 1.0
@assert n_episodes > 0 @assert n_episodes > 0
@assert episode_duration > 0 @assert episode_duration > 0
@ -398,30 +324,33 @@ function run_rl(;
Random.seed!(seed) Random.seed!(seed)
sim_consts = ReCo.gen_sim_consts( sim_consts = ReCo.gen_sim_consts(
n_particles, 0.0; skin_to_interaction_r_ratio=2.0, packing_ratio=0.22 n_particles,
0.0;
skin_to_interaction_r_ratio=skin_to_interaction_r_ratio,
packing_ratio=packing_ratio,
) )
n_particles = sim_consts.n_particles n_particles = sim_consts.n_particles # This not always equal to the input!
max_distance = sim_consts.skin_r env = EnvType(sim_consts)
env = Env(; max_distance=max_distance)
agent = gen_agent(env.n_states, env.n_actions, ϵ_stable) agent = gen_agent(env.params.n_states, env.params.n_actions, ϵ_stable)
n_steps_before_actions_update = round(Int64, update_actions_at / sim_consts.δt) n_steps_before_actions_update = round(Int64, update_actions_at / sim_consts.δt)
hook = TotalRewardPerEpisode() hook = TotalRewardPerEpisode()
rl_params = Params( env_helper_params = EnvHelperParams(
env, env,
agent, agent,
hook, hook,
n_steps_before_actions_update, n_steps_before_actions_update,
goal_gyration_tensor_eigvals_ratio, goal_gyration_tensor_eigvals_ratio,
n_particles, n_particles,
max_distance,
) )
parent_dir = "RL" * parent_dir env_helper = gen_env_helper(env, env_helper_params)
parent_dir = "RL_" * parent_dir_appendix
# Pre experiment # Pre experiment
hook(PRE_EXPERIMENT_STAGE, agent, env) hook(PRE_EXPERIMENT_STAGE, agent, env)
@ -439,10 +368,13 @@ function run_rl(;
# Episode # Episode
ReCo.run_sim( ReCo.run_sim(
dir; duration=episode_duration, seed=rand(1:typemax(Int64)), rl_params=rl_params dir;
duration=episode_duration,
seed=rand(1:typemax(Int64)),
env_helper=env_helper,
) )
env.terminated = true env.params.terminated = true
# Post episode # Post episode
hook(POST_EPISODE_STAGE, agent, env) hook(POST_EPISODE_STAGE, agent, env)
@ -456,7 +388,9 @@ function run_rl(;
# Post experiment # Post experiment
hook(POST_EXPERIMENT_STAGE, agent, env) hook(POST_EXPERIMENT_STAGE, agent, env)
return rl_params return env_helper
end end
include("LocalCOMEnv.jl")
end # module end # module

View file

@ -1,6 +1,6 @@
module ReCo module ReCo
export init_sim, run_sim, run_rl, animate export init_sim, run_sim, run_rl, animate, LocalCOMEnv
using StaticArrays: SVector using StaticArrays: SVector
using OrderedCollections: OrderedDict using OrderedCollections: OrderedDict
@ -26,7 +26,7 @@ include("setup.jl")
include("Shape.jl") include("Shape.jl")
using .Shape using .Shape
include("RL.jl") include("RL/RL.jl")
using .RL using .RL
include("simulation.jl") include("simulation.jl")

View file

@ -6,7 +6,7 @@ function run_sim(
snapshot_at::Float64=0.1, snapshot_at::Float64=0.1,
seed::Int64=42, seed::Int64=42,
n_bundle_snapshots::Int64=100, n_bundle_snapshots::Int64=100,
rl_params::Union{RL.Params,Nothing}=nothing, env_helper::Union{RL.EnvHelper,Nothing}=nothing,
) )
@assert length(dir) > 0 @assert length(dir) > 0
@assert duration > 0 @assert duration > 0
@ -111,7 +111,7 @@ function run_sim(
n_bundles, n_bundles,
dir, dir,
save_data, save_data,
rl_params, env_helper,
) )
return nothing return nothing

View file

@ -35,7 +35,7 @@ end
function euler!( function euler!(
args, args,
first_integration_step::Bool, first_integration_step::Bool,
rl_params::Union{RL.Params,Nothing}, env_helper::Union{RL.EnvHelper,Nothing},
state_update_helper_hook::Function, state_update_helper_hook::Function,
state_update_hook::Function, state_update_hook::Function,
update_table_and_actions_hook::Function, update_table_and_actions_hook::Function,
@ -52,7 +52,7 @@ function euler!(
p1_c, p2.c, args.interaction_r², args.half_box_len p1_c, p2.c, args.interaction_r², args.half_box_len
) )
state_update_helper_hook(rl_params, id1, id2, r⃗₁₂) state_update_helper_hook(env_helper, id1, id2, r⃗₁₂)
if overlapping if overlapping
factor = args.c₁ / (distance²^4) * (args.c₂ / (distance²^3) - 1.0) factor = args.c₁ / (distance²^4) * (args.c₂ / (distance²^3) - 1.0)
@ -64,7 +64,7 @@ function euler!(
end end
end end
state_update_hook(rl_params, args.particles) state_update_hook(env_helper, args.particles)
@simd for p in args.particles @simd for p in args.particles
si, co = sincos(p.φ) si, co = sincos(p.φ)
@ -75,9 +75,9 @@ function euler!(
restrict_coordinates!(p, args.half_box_len) restrict_coordinates!(p, args.half_box_len)
update_table_and_actions_hook(rl_params, p, first_integration_step) update_table_and_actions_hook(env_helper, p, first_integration_step)
RL.act_hook(rl_params, p, args.δt, si, co) RL.act_hook(env_helper, p, args.δt, si, co)
p.φ += args.c₄ * rand_normal01() p.φ += args.c₄ * rand_normal01()
@ -91,8 +91,8 @@ Base.wait(::Nothing) = nothing
gen_run_additional_hooks(::Nothing, args...) = false gen_run_additional_hooks(::Nothing, args...) = false
function gen_run_additional_hooks(rl_params::RL.Params, integration_step::Int64) function gen_run_additional_hooks(env_helper::RL.EnvHelper, integration_step::Int64)
return (integration_step % rl_params.n_steps_before_actions_update == 0) || return (integration_step % env_helper.params.n_steps_before_actions_update == 0) ||
(integration_step == 1) (integration_step == 1)
end end
@ -105,7 +105,7 @@ function simulate(
n_bundles::Int64, n_bundles::Int64,
dir::String, dir::String,
save_data::Bool, save_data::Bool,
rl_params::Union{RL.Params,Nothing}, env_helper::Union{RL.EnvHelper,Nothing},
) )
bundle_snapshot_counter = 0 bundle_snapshot_counter = 0
@ -143,10 +143,10 @@ function simulate(
cl = update_verlet_lists!(args, cl) cl = update_verlet_lists!(args, cl)
end end
run_additional_hooks = gen_run_additional_hooks(rl_params, integration_step) run_additional_hooks = gen_run_additional_hooks(env_helper, integration_step)
if run_additional_hooks if run_additional_hooks
RL.pre_integration_hook(rl_params) RL.pre_integration_hook(env_helper)
state_update_helper_hook = RL.state_update_helper_hook state_update_helper_hook = RL.state_update_helper_hook
state_update_hook = RL.state_update_hook state_update_hook = RL.state_update_hook
@ -156,7 +156,7 @@ function simulate(
euler!( euler!(
args, args,
first_integration_step, first_integration_step,
rl_params, env_helper,
state_update_helper_hook, state_update_helper_hook,
state_update_hook, state_update_hook,
update_table_and_actions_hook, update_table_and_actions_hook,