1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-11-08 22:21:08 +00:00

Added verlet_and_cell_lists.jl

This commit is contained in:
Mo8it 2022-01-26 23:37:51 +01:00
parent 574cb561c3
commit cef9d37728
4 changed files with 110 additions and 18 deletions

View file

@ -8,12 +8,12 @@ function gen_rdf_graphics()
Random.seed!(1) Random.seed!(1)
box_length = 100 box_length = 100
box_height = 100 box_length = 100
graphics_export_dir = "exports/graphics" graphics_export_dir = "exports/graphics"
mkpath(graphics_export_dir) mkpath(graphics_export_dir)
Drawing(box_length, box_height, "$graphics_export_dir/rdf_shells.pdf") Drawing(box_length, box_length, "$graphics_export_dir/rdf_shells.pdf")
origin() origin()
particle_radius = 6 particle_radius = 6
@ -23,7 +23,6 @@ function gen_rdf_graphics()
circle(Point(0, 0), particle_radius, :fill) circle(Point(0, 0), particle_radius, :fill)
N = 50 N = 50
twice_max_particle_coordinate = box_length
selected_shell_ind = 3 selected_shell_ind = 3
selected_lower_radius = (selected_shell_ind - 1) * Δr selected_lower_radius = (selected_shell_ind - 1) * Δr
@ -34,8 +33,8 @@ function gen_rdf_graphics()
for p1_ind in 1:N for p1_ind in 1:N
while true while true
x = (rand() - 0.5) * twice_max_particle_coordinate x = (rand() - 0.5) * box_length
y = (rand() - 0.5) * twice_max_particle_coordinate y = (rand() - 0.5) * box_length
p1_c = SVector(x, y) p1_c = SVector(x, y)
@ -43,7 +42,7 @@ function gen_rdf_graphics()
no_collision = true no_collision = true
if distance > 2 * particle_radius if distance >= 2 * particle_radius
for p2_ind in 1:(p1_ind - 1) for p2_ind in 1:(p1_ind - 1)
if ReCo.norm2d(p1_c - particle_cs[p2_ind]) < 2 * particle_radius if ReCo.norm2d(p1_c - particle_cs[p2_ind]) < 2 * particle_radius
no_collision = false no_collision = false

View file

@ -0,0 +1,94 @@
using Luxor
using Random: Random
using StaticArrays: SVector
using ReCo: ReCo
function gen_verlet_and_cell_lists_graphics()
Random.seed!(2)
box_length = 100
graphics_export_dir = "exports/graphics"
mkpath(graphics_export_dir)
Drawing(box_length, box_length, "$graphics_export_dir/verlet_and_cell_lists.pdf")
origin()
R_particle = 4.2
σ = 2 * R_particle
R_interaction = 2^(1 / 6) * σ
R_skin = 2 * R_interaction
setcolor("blue")
reference_particle_x = 0.25 * R_skin
reference_particle_y = -0.1 * R_skin
circle(Point(reference_particle_x, reference_particle_y), R_particle, :fill)
reference_particle_c = SVector(reference_particle_x, reference_particle_y)
N = 92
particle_cs = Vector{SVector{2,Float64}}(undef, N)
x = y = distance = 0.0
for p1_ind in 1:N
while true
x = (rand() - 0.5) * box_length
y = (rand() - 0.5) * box_length
p1_c = SVector(x, y)
distance = ReCo.norm2d(p1_c - reference_particle_c)
no_collision = true
if distance >= 2 * R_particle
for p2_ind in 1:(p1_ind - 1)
if ReCo.norm2d(p1_c - particle_cs[p2_ind]) < 2 * R_particle
no_collision = false
break
end
end
if no_collision
particle_cs[p1_ind] = p1_c
break
end
end
end
if 2 * R_particle <= distance < R_interaction
setcolor("red")
elseif R_interaction <= distance < R_skin
setcolor("green")
else
setcolor("orange")
end
circle(x, y, R_particle, :fill)
end
setcolor("black")
setline(0.28)
for R in (R_interaction, R_skin)
circle(Point(reference_particle_x, reference_particle_y), R, :stroke)
end
half_n_lines = floor(Int64, box_length / (2 * R_skin) + 0.5)
for i in 1:half_n_lines
coordinate = (i - 0.5) * R_skin
line(Point(coordinate, -box_length), Point(coordinate, box_length), :stroke)
line(Point(-coordinate, -box_length), Point(-coordinate, box_length), :stroke)
line(Point(-box_length, coordinate), Point(box_length, coordinate), :stroke)
line(Point(-box_length, -coordinate), Point(box_length, -coordinate), :stroke)
end
setcolor((0.2, 0.0, 1.0, 0.3))
rect(-1.5 * R_skin, -1.5 * R_skin, 3 * R_skin, 3 * R_skin, :fill)
finish()
return nothing
end

View file

@ -67,21 +67,20 @@ function gen_sim_consts(
ϵ = DEFAULT_ϵ ϵ = DEFAULT_ϵ
interaction_r = 2^(1 / 6) * σ interaction_r = 2^(1 / 6) * σ
buffer = 2.5 skin_r = skin_to_interaction_r_ratio * interaction_r
max_approach_after_one_integration_step = buffer * (2 * v₀ * δt) / interaction_r
@assert skin_to_interaction_r_ratio >= 1 + max_approach_after_one_integration_step buffer = 2.2
max_approach_after_one_integration_step = buffer * (2 * v₀ * δt)
@assert skin_r >= interaction_r + max_approach_after_one_integration_step
if v₀ != 0.0 if v₀ != 0.0
n_steps_before_verlet_list_update = round( n_steps_before_verlet_list_update = floor(
Int64, Int64, (skin_r - interaction_r) / max_approach_after_one_integration_step
(skin_to_interaction_r_ratio - 1) / max_approach_after_one_integration_step,
) )
else else
n_steps_before_verlet_list_update = 100 n_steps_before_verlet_list_update = 100
end end
skin_r = skin_to_interaction_r_ratio * interaction_r
grid_n = round(Int64, ceil(sqrt(n_particles))) grid_n = round(Int64, ceil(sqrt(n_particles)))
n_particles = grid_n^2 n_particles = grid_n^2

View file

@ -57,11 +57,11 @@ function euler!(
state_update_helper_hook!(env_helper, id1, id2, r⃗₁₂) state_update_helper_hook!(env_helper, id1, id2, r⃗₁₂)
if overlapping if overlapping
factor = args.ϵσ⁶δtμₜ24 / (distance²^4) * (args.σ⁶2 / (distance²^3) - 1.0) factor = args.ϵσ⁶δtμₜ24 / (distance²^4) * (1.0 - args.σ⁶2 / (distance²^3))
dc = factor * r⃗₁₂ μₜF⃗₁₂ = factor * r⃗₁₂ # Force acting on 1 from 2 multiplied with μₜ
p1.tmp_c -= dc p1.tmp_c += μₜF⃗₁₂
p2.tmp_c += dc p2.tmp_c -= μₜF⃗₁₂
end end
end end
end end