1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2024-09-19 19:01:17 +00:00

Verlet list

This commit is contained in:
MoBit 2021-11-10 15:41:04 +01:00
commit d209bba675
11 changed files with 411 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
Manifest.toml
exports

11
Project.toml Normal file
View file

@ -0,0 +1,11 @@
[deps]
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GLMakie = "e9467ef8-e4e7-5192-8a1a-b1aee30e663a"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
ProfileView = "c46f51b8-102a-5cf2-8d2c-8597cb0e0da7"
ProgressMeter = "92933f4c-e287-5a05-a399-4b506db050ca"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
Traceur = "37b6cedf-1f77-55f8-9503-c64b63398394"

64
src/Particle.jl Normal file
View file

@ -0,0 +1,64 @@
mutable struct Particle
id::Int64
c::Vector{Float64} # Center
tmp_c::Vector{Float64} # Temporary center
φ::Float64 # Angle
function Particle(; id::Int64, c::SVector{2,Float64}, φ::Float64)
return new(id, c, c, φ)
end
end
get_c(p::Particle) = p.c
get_c_x(p::Particle) = p.c[1]
get_c_y(p::Particle) = p.c[2]
get_φ(p::Particle) = p.φ
function restrict_coordinate(value::Float64; l::Float64)
if value < -l
value += 2 * l
elseif value >= l
value -= 2 * l
end
return value
end
function restrict_coordinates!(p::Particle; l::Float64)
@simd for i in 1:2
p.tmp_c[i] = restrict_coordinate(p.tmp_c[i]; l=l)
end
return nothing
end
function minimum_image_coordinate(value::Float64; l::Float64)
if value <= -l
value += 2 * l
elseif value > l
value -= 2 * l
end
return value
end
function minimum_image(v::SVector{2,Float64}; l::Float64)
return minimum_image_coordinate.(v; l=l)
end
function are_overlapping(p1::Particle, p2::Particle, overlapping_r²::Float64, l::Float64)
r⃗₁₂ = SVector{2}(p2.c) - SVector{2}(p1.c) # 1 -> 2
r⃗₁₂ = minimum_image(r⃗₁₂; l=l)
distance² = r⃗₁₂[1]^2 + r⃗₁₂[2]^2
return (distance² < overlapping_r², r⃗₁₂, distance²)
end
function update!(p::Particle)
@simd for i in 1:2
p.c[i] = p.tmp_c[i]
end
end

19
src/PreVector.jl Normal file
View file

@ -0,0 +1,19 @@
mutable struct PreVector{T}
last_ind::UInt64
v::Vector{T}
PreVector(T, N) = new{T}(UInt64(0), Vector{T}(undef, N))
end
function push!(pv::PreVector{T}, x::T) where {T}
pv.last_ind += 1
pv.v[pv.last_ind] = x
return nothing
end
function reset!(pv::PreVector{T}) where {T}
pv.last_ind = 0
return nothing
end

24
src/ReCo.jl Normal file
View file

@ -0,0 +1,24 @@
using Pkg
Pkg.activate(".")
using Random, Distributions
using JLD2
using ProgressMeter
using GLMakie
using LaTeXStrings
using StaticArrays
import Dates: now, CompoundPeriod, canonicalize
import Base.push!
# Development deps
using Revise
using BenchmarkTools
includet("PreVector.jl")
includet("Particle.jl")
includet("setup.jl")
includet("simulation.jl")
includet("data.jl")
includet("animation.jl")
includet("run.jl")

72
src/animation.jl Normal file
View file

@ -0,0 +1,72 @@
function animate(sol::Solution, args, name_part::String; framerate::Int64=10)
println("Generating animation...")
fig = Figure()
ax = Axis(
fig[1, 1];
limits=(-args.l, args.l, -args.l, args.l),
aspect=AxisAspect(1),
xlabel=L"x",
ylabel=L"y",
)
animation_path = "exports/$name_part.mkv"
record(fig, animation_path; framerate=framerate) do io
old_cx = zeros(args.N)
old_cy = zeros(args.N)
new_cx = zeros(args.N)
new_cy = zeros(args.N)
segments_x = zeros(2 * args.N)
segments_y = zeros(2 * args.N)
done_first_iter = false
@showprogress 0.5 for frame in 1:args.n_frames
new_cx .= get_c_x.(sol.position[frame])
new_cy .= get_c_y.(sol.position[frame])
if done_first_iter
empty!(ax)
for i in 1:(args.N)
segments_x[2 * i - 1] = old_cx[i]
segments_x[2 * i] = new_cx[i]
segments_y[2 * i - 1] = old_cy[i]
segments_y[2 * i] = new_cy[i]
end
linesegments!(ax, segments_x, segments_y; color=1:(args.N))
else
done_first_iter = true
println("Started recording!")
end
old_cx .= new_cx
old_cy .= new_cy
poly!(
ax,
[Circle(Point2(x, y), args.particle_diameter / 2) for (x, y) in zip(new_cx, new_cy)];
color=1:(args.N),
)
# DEBUG BEGIN
for (x, y) in zip(new_cx, new_cy)
arc!(ax, Point2(x, y), args.interaction_r, 0.0, 2 * π)
end
# DEBUG END
ax.title = "t = $(round(sol.t[frame], digits=2))"
recordframe!(io)
end
end
println("Animation done and saved to $animation_path.")
return nothing
end

1
src/benchmark.jl Normal file
View file

@ -0,0 +1 @@
using BenchmarkTools

20
src/data.jl Normal file
View file

@ -0,0 +1,20 @@
struct Solution
t::Vector{Float64}
position::Matrix{Vector{Float64}}
φ::Matrix{Float64}
function Solution(N::Int64, n_frames::Int64)
return new(zeros(n_frames), [zeros(2) for i in 1:N, j in 1:n_frames], zeros((N, n_frames)))
end
end
function save_data_jld(sol, args, name_part)
println("Saving data...")
data_path = "exports/$name_part.jld2"
jldsave(data_path; sol, args, name_part)
println("Data saved to $data_path.")
return nothing
end

63
src/run.jl Normal file
View file

@ -0,0 +1,63 @@
function run(;
N::Int64,
T::Float64,
v::Float64=20.0,
δt::Float64=2e-5,
save_at::Float64=0.1,
framerate::Int64=0,
save_data::Bool=false,
n_steps_before_verlet_list_update::Int64=100,
)
Random.seed!(42)
μ = 1.0
D₀ = 1.0
particle_diameter = 1.0
Dᵣ = 3 * D₀ / (particle_diameter^2)
σ = 1.0
ϵ = 100.0
interaction_r = 2^(1 / 6) * σ
grid_n = round(Int64, ceil(sqrt(N)))
N = grid_n^2
l = float(sqrt(N))
grid_box_width = 2 * l / grid_n
skin_r = 1.1 * (2 * v * n_steps_before_verlet_list_update * δt + 2 * interaction_r)
args = (
v = v,
c₁ = 4 * ϵ * 6 * σ^6 * δt * μ,
c₂ = 2 * σ^6,
c₃ = sqrt(2 * D₀ * δt),
c₄ = sqrt(2 * Dᵣ * δt),
vδt = v * δt,
μ = μ,
interaction_r = interaction_r,
interaction_r² = interaction_r^2,
N = N,
l = l,
particle_diameter = particle_diameter,
particles = generate_particles(grid_n, grid_box_width, l),
skin_r² = skin_r^2,
verlet_list = [PreVector(Int64, N - 1) for i in 1:N],
n_frames = floor(Int64, T / save_at) + 1,
)
sol, end_time = simulate(args, save_at, δt, T, n_steps_before_verlet_list_update)
name_part = "$(end_time)_T=$(T)_N=$(N)_v=$(v)_dt=$(δt)"
if save_data
save_data_jld(sol, args, name_part)
end
if framerate > 0
generate_animation(sol, args, name_part; framerate=framerate)
end
return (sol = sol, args = args, name_part = name_part)
end

27
src/setup.jl Normal file
View file

@ -0,0 +1,27 @@
function initial_particle_grid_pos(i, j; grid_box_width, l)
dim1_pos(x) = (x - 0.5) * grid_box_width - l
return dim1_pos.(SVector(i, j))
end
function generate_particles(grid_n, grid_box_width, l)
particles = Vector{Particle}(undef, grid_n^2)
particle_pos_in_grid_dim(i) = (i - 0.5) * grid_box_width - l
id = 1
for i in 1:grid_n
for j in 1:grid_n
particles[id] = Particle(;
id=id,
c=initial_particle_grid_pos(i, j; grid_box_width=grid_box_width, l=l),
φ=rand(Uniform(-π, π)),
)
id += 1
end
end
return particles
end

108
src/simulation.jl Normal file
View file

@ -0,0 +1,108 @@
rand_normal01() = rand(Normal(0, 1))
function update_verlet_list!(args)
@simd for pv in args.verlet_list
reset!(pv)
end
for i in 1:(args.N - 1)
for j in (i + 1):args.N
p1 = args.particles[i]
p2 = args.particles[j]
overlapping, r⃗₁₂, distance² = are_overlapping(p1, p2, args.skin_r², args.l)
if overlapping
push!(args.verlet_list[i], j)
push!(args.verlet_list[j], i)
end
end
end
end
function euler!(args)
Threads.@threads for p in args.particles
verlet_list = args.verlet_list[p.id]
for i in 1:verlet_list.last_ind
p2 = args.particles[verlet_list.v[i]]
overlapping, r⃗₁₂, distance² = are_overlapping(p, p2, args.interaction_r², args.l)
if overlapping
c = args.c₁ / (distance²^4) * (args.c₂ / (distance²^3) - 1)
@simd for j in 1:2
p.tmp_c[j] -= c * r⃗₁₂[j]
end
end
end
e = SVector(cos(p.φ), sin(p.φ))
@simd for i in 1:2
p.tmp_c[i] += args.vδt * e[i] + args.c₃ * rand_normal01()
end
p.φ += args.c₄ * rand_normal01()
restrict_coordinates!(p; l=args.l)
end
@simd for particle in args.particles
update!(particle)
end
return nothing
end
function simulate(args, save_at::Float64, δt::Float64, T::Float64, n_steps_before_verlet_list_update::Int64)
sol = Solution(args.N, args.n_frames)
save_timer = save_at
frame = 0
start_time = now()
println("Started simulation at $start_time.")
update_verlet_list_at = n_steps_before_verlet_list_update * δt
update_verlet_list_timer = update_verlet_list_at
@showprogress 0.2 for t in 0:δt:T
if save_timer >= save_at
frame += 1
sol.t[frame] = t
@simd for p in args.particles
p_id = p.id
pre_pos = sol.position[p_id, frame]
@simd for i in 1:2
pre_pos[i] = p.c[i]
end
sol.φ[p_id, frame] = p.φ
end
save_timer = 0.0
else
save_timer += δt
end
if update_verlet_list_timer >= update_verlet_list_at
update_verlet_list!(args)
update_verlet_list_timer = 0.0
else
update_verlet_list_timer += δt
end
euler!(args)
end
end_time = now()
elapsed_time = canonicalize(CompoundPeriod(end_time - start_time))
println("Done simulation at $end_time and took $elapsed_time.")
return (sol, end_time)
end