1
0
Fork 0
mirror of https://gitlab.rlp.net/mobitar/ReCo.jl.git synced 2025-01-09 16:10:26 +00:00

Added reward shaping plot

This commit is contained in:
Mo8it 2022-01-30 04:38:57 +01:00
parent eb29ca3d10
commit fd83c13333
5 changed files with 35 additions and 4 deletions

View file

@ -133,7 +133,7 @@ function plot_mean_sq_displacement_with_expectation(
fig = gen_figure() fig = gen_figure()
ax = Axis(fig[1, 1]; xlabel=L"t", ylabel=L"\mathbf{MSD}", xscale=log10, yscale=log10) ax = Axis(fig[1, 1]; xlabel=L"t", ylabel=L"\mathbf{MSD}(t)", xscale=log10, yscale=log10)
t_linrange = LinRange(ts[1], ts[end], 1000) t_linrange = LinRange(ts[1], ts[end], 1000)

View file

@ -164,7 +164,7 @@ function plot_radial_distributions(;
xticks=0:(2 * particle_radius):floor(Int64, max_lower_radius), xticks=0:(2 * particle_radius):floor(Int64, max_lower_radius),
yticks=0:ceil(Int64, max_g), yticks=0:ceil(Int64, max_g),
xlabel=L"r / d", xlabel=L"r / d",
ylabel=L"g", ylabel=L"g(r)",
limits=(min_lower_radius - 0.03, max_lower_radius + 0.03, min_g, max_g * 1.03), limits=(min_lower_radius - 0.03, max_lower_radius + 0.03, min_g, max_g * 1.03),
) )

View file

@ -14,7 +14,7 @@ function run_reward_discount_analysis()
γ = γs[γ_ind] γ = γs[γ_ind]
env_helper = ReCo.run_rl(; env_helper = ReCo.run_rl(;
EnvType=ReCo.OriginEnv, EnvType=ReCo.OriginEnv,
n_episodes=3, n_episodes=400,
episode_duration=15.0, episode_duration=15.0,
n_particles=150, n_particles=150,
update_actions_at=0.08, update_actions_at=0.08,

View file

@ -28,7 +28,9 @@ function plot_potentials()
max_y = 1.05 max_y = 1.05
min_y = -max_y min_y = -max_y
ax = Axis(fig[1, 1]; xlabel=L"r/σ", ylabel=L"U/ϵ", limits=(0.88, max_x, min_y, max_y)) ax = Axis(
fig[1, 1]; xlabel=L"r / σ", ylabel=L"U(r) / ϵ", limits=(0.88, max_x, min_y, max_y)
)
r_σ_ratio = LinRange(0.95, max_x, 1000) r_σ_ratio = LinRange(0.95, max_x, 1000)

View file

@ -0,0 +1,29 @@
using CairoMakie
using LaTeXStrings: @L_str
using ReCo: ReCo
includet("../src/Visualization/common_CairoMakie.jl")
function plot_reward_function()
init_cairomakie!()
fig = gen_figure()
min_x = 0.0
max_x = 1.15
ax = Axis(
fig[1, 1]; xlabel=L"x / x_{\max}", ylabel=L"R(x)", limits=(min_x, max_x, 0.0, 1.05)
)
x = LinRange(min_x, max_x, 1000)
lines!(ax, x, ReCo.RL.minimizing_reward.(x, 1.0))
set_gaps!(fig)
save_fig("reward_shaping.pdf", fig)
return nothing
end