mirror of
https://gitlab.rlp.net/mobitar/ReCo.jl.git
synced 2024-12-21 00:51:21 +00:00
Added reward shaping plot
This commit is contained in:
parent
eb29ca3d10
commit
fd83c13333
5 changed files with 35 additions and 4 deletions
|
@ -133,7 +133,7 @@ function plot_mean_sq_displacement_with_expectation(
|
|||
|
||||
fig = gen_figure()
|
||||
|
||||
ax = Axis(fig[1, 1]; xlabel=L"t", ylabel=L"\mathbf{MSD}", xscale=log10, yscale=log10)
|
||||
ax = Axis(fig[1, 1]; xlabel=L"t", ylabel=L"\mathbf{MSD}(t)", xscale=log10, yscale=log10)
|
||||
|
||||
t_linrange = LinRange(ts[1], ts[end], 1000)
|
||||
|
||||
|
|
|
@ -164,7 +164,7 @@ function plot_radial_distributions(;
|
|||
xticks=0:(2 * particle_radius):floor(Int64, max_lower_radius),
|
||||
yticks=0:ceil(Int64, max_g),
|
||||
xlabel=L"r / d",
|
||||
ylabel=L"g",
|
||||
ylabel=L"g(r)",
|
||||
limits=(min_lower_radius - 0.03, max_lower_radius + 0.03, min_g, max_g * 1.03),
|
||||
)
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ function run_reward_discount_analysis()
|
|||
γ = γs[γ_ind]
|
||||
env_helper = ReCo.run_rl(;
|
||||
EnvType=ReCo.OriginEnv,
|
||||
n_episodes=3,
|
||||
n_episodes=400,
|
||||
episode_duration=15.0,
|
||||
n_particles=150,
|
||||
update_actions_at=0.08,
|
||||
|
|
|
@ -28,7 +28,9 @@ function plot_potentials()
|
|||
max_y = 1.05
|
||||
min_y = -max_y
|
||||
|
||||
ax = Axis(fig[1, 1]; xlabel=L"r/σ", ylabel=L"U/ϵ", limits=(0.88, max_x, min_y, max_y))
|
||||
ax = Axis(
|
||||
fig[1, 1]; xlabel=L"r / σ", ylabel=L"U(r) / ϵ", limits=(0.88, max_x, min_y, max_y)
|
||||
)
|
||||
|
||||
r_σ_ratio = LinRange(0.95, max_x, 1000)
|
||||
|
||||
|
|
29
graphics/reward_shaping.jl
Normal file
29
graphics/reward_shaping.jl
Normal file
|
@ -0,0 +1,29 @@
|
|||
using CairoMakie
|
||||
using LaTeXStrings: @L_str
|
||||
|
||||
using ReCo: ReCo
|
||||
|
||||
includet("../src/Visualization/common_CairoMakie.jl")
|
||||
|
||||
function plot_reward_function()
|
||||
init_cairomakie!()
|
||||
|
||||
fig = gen_figure()
|
||||
|
||||
min_x = 0.0
|
||||
max_x = 1.15
|
||||
|
||||
ax = Axis(
|
||||
fig[1, 1]; xlabel=L"x / x_{\max}", ylabel=L"R(x)", limits=(min_x, max_x, 0.0, 1.05)
|
||||
)
|
||||
|
||||
x = LinRange(min_x, max_x, 1000)
|
||||
|
||||
lines!(ax, x, ReCo.RL.minimizing_reward.(x, 1.0))
|
||||
|
||||
set_gaps!(fig)
|
||||
|
||||
save_fig("reward_shaping.pdf", fig)
|
||||
|
||||
return nothing
|
||||
end
|
Loading…
Reference in a new issue