using StaticArrays: SVector, SMatrix using LinearAlgebra: eigvals, Hermitian function project_to_unit_circle(x, l) φ = (x + l) * π / l return SVector(cos(φ), sin(φ)) end function project_back_from_unit_circle(θ, l) x = θ * l / π - l return restrict_coordinate(x, l) end function center_of_mass(args) x_proj_sum = SVector(0, 0) y_proj_sum = SVector(0, 0) for p in args.particles x_proj_sum += project_to_unit_circle(p.c[1], args.l) y_proj_sum += project_to_unit_circle(p.c[2], args.l) end # Prevent for example atan(1e-16, 1e-15) != 0 with rounding digits = 5 # No need for 1/N with atan # If proj is (0, 0) then COM is 0 or L or -L. Here, 0 is choosen with θ = π if round(x_proj_sum[1]; digits=digits) == round(x_proj_sum[2]; digits=digits) == 0 x_θ = π else x_θ = atan(x_proj_sum[2], x_proj_sum[1]) end if round(y_proj_sum[1]; digits=digits) == round(y_proj_sum[2]; digits=digits) == 0 y_θ = π else y_θ = atan(y_proj_sum[2], y_proj_sum[1]) end return SVector( project_back_from_unit_circle(x_θ, args.l), project_back_from_unit_circle(y_θ, args.l), ) end function gyration_tensor(args) COM = center_of_mass(args) S11 = 0.0 S12 = 0.0 S22 = 0.0 for p in args.particles c = p.c x = restrict_coordinate(c[1] - COM[1], args.l) y = restrict_coordinate(c[2] - COM[2], args.l) S11 += x^2 S12 += x * y S22 += y^2 end return Hermitian(SMatrix{2,2}(S11, S12, S12, S22)) end function gyration_tensor_eigvals_ratio(args) ev = eigvals(gyration_tensor(args)) # Eigenvalues are sorted return ev[1] / ev[2] end