module Shape export center_of_mass, gyration_tensor_eigvals_ratio, gyration_tensor_eigvecs, elliptical_distance using StaticArrays: SVector, SMatrix using LinearAlgebra: LinearAlgebra as LA using ..ReCo: ReCo, Particle function project_to_unit_circle(x::Real, half_box_len::Real) θ = (x + half_box_len) * π / half_box_len si, co = sincos(θ) return SVector(co, si) end function project_back_from_unit_circle(θ::Real, half_box_len::Real) x = θ * half_box_len / π - half_box_len return ReCo.restrict_coordinate(x, half_box_len) end function center_of_mass_from_proj_sums( x_proj_sum::SVector{2,R}, y_proj_sum::SVector{2,R}, half_box_len::R ) where {R<:Real} # Prevent for example atan(1e-16, 1e-15) != 0 with rounding digits = 5 # No need for 1/n_particles with atan # If proj is (0, 0) then COM is 0 or L or -L. Here, 0 is choosen with θ = π if round(x_proj_sum[1]; digits=digits) == round(x_proj_sum[2]; digits=digits) == 0 x_θ = π else x_θ = atan(x_proj_sum[2], x_proj_sum[1]) end if round(y_proj_sum[1]; digits=digits) == round(y_proj_sum[2]; digits=digits) == 0 y_θ = π else y_θ = atan(y_proj_sum[2], y_proj_sum[1]) end COM_x = project_back_from_unit_circle(x_θ, half_box_len) COM_y = project_back_from_unit_circle(y_θ, half_box_len) return SVector(COM_x, COM_y) end function center_of_mass( centers::AbstractVector{SVector{2,R}}, half_box_len::R ) where {R<:Real} x_proj_sum = SVector(0.0, 0.0) y_proj_sum = SVector(0.0, 0.0) for c in centers x_proj_sum += project_to_unit_circle(c[1], half_box_len) y_proj_sum += project_to_unit_circle(c[2], half_box_len) end return center_of_mass_from_proj_sums(x_proj_sum, y_proj_sum, half_box_len) end function center_of_mass(particles::AbstractVector{Particle}, half_box_len::Real) x_proj_sum = SVector(0.0, 0.0) y_proj_sum = SVector(0.0, 0.0) for p in particles x_proj_sum += project_to_unit_circle(p.c[1], half_box_len) y_proj_sum += project_to_unit_circle(p.c[2], half_box_len) end return center_of_mass_from_proj_sums(x_proj_sum, y_proj_sum, half_box_len) end function gyration_tensor( particles::AbstractVector{Particle}, half_box_len::R, COM::SVector{2,R} ) where {R<:Real} S11 = 0.0 S12 = 0.0 S22 = 0.0 for p in particles shifted_c = ReCo.restrict_coordinates(p.c - COM, half_box_len) S11 += shifted_c[1]^2 S12 += shifted_c[1] * shifted_c[2] S22 += shifted_c[2]^2 end return LA.Hermitian(SMatrix{2,2}(S11, S12, S12, S22)) end function gyration_tensor(particles::AbstractVector{Particle}, half_box_len::Real) COM = center_of_mass(particles, half_box_len) return gyration_tensor(particles, half_box_len, COM) end function gyration_tensor_eigvals_ratio( particles::AbstractVector{Particle}, half_box_len::Real ) g_tensor = gyration_tensor(particles, half_box_len) ev = LA.eigvals(g_tensor) # Eigenvalues are sorted return abs(ev[1] / ev[2]) end function gyration_tensor_eigvecs( particles::AbstractVector{Particle}, half_box_len::R, COM::SVector{2,R} ) where {R<:Real} g_tensor = gyration_tensor(particles, half_box_len, COM) eig_vecs = LA.eigvecs(g_tensor) v1 = eig_vecs[:, 1] v2 = eig_vecs[:, 2] return (v1, v2) end function elliptical_distance( v::SVector{2,R}, COM::SVector{2,R}, gyration_tensor_eigvec_to_smaller_eigval::SVector{2,R}, gyration_tensor_eigvec_to_bigger_eigval::SVector{2,R}, elliptical_a_b_ratio::R, half_box_len::R, ) where {R<:Real} v′ = ReCo.restrict_coordinates(v - COM, half_box_len) x = LA.dot(v′, gyration_tensor_eigvec_to_bigger_eigval) y = LA.dot(v′, gyration_tensor_eigvec_to_smaller_eigval) return sqrt(x^2 + (y / elliptical_a_b_ratio)^2) end end # module