diff --git a/Aufgaben_zur_Vorbereitung_von_Kapitel_1.ipynb b/Aufgaben_zur_Vorbereitung_von_Kapitel_1.ipynb deleted file mode 100644 index 6f21739..0000000 --- a/Aufgaben_zur_Vorbereitung_von_Kapitel_1.ipynb +++ /dev/null @@ -1,1313 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Vorbereitung Kapitel 1. Einstieg in die Welt von Python:\n", - "\n", - "In unserer heutigen digitalen Welt sind Computer nicht mehr aus unserem Alltag wegzudenken. Ob in der Finanzwelt, Industrie aber auch in der Wissenschaft erledigen Computer in Sekundenschnelle komplizierte Rechnungen und helfen dem Anwender komplizierte Sachverhalte vereinfacht wiederzugeben. Daher empfiehlt es sich insbesondere als Physiker zumindest die Grundlagen einer beliebigen Programmiersprache zu beherrschen.\n", - "\n", - "Im folgenden werden wir uns gemeinsam die Grundzüge der Programmiersprache **Python** erarbeiten. Ein besonderes Augenmerk liegt hierbei auf den verschiedenen Herausforderungen, die das Analysieren von experimentellen Daten mit sich bringt. Um Sie bestens auf die Anforderungen im **physikalischen Grundpraktikum (PGP)** vorzubereiten, lernen wir im Folgenden wie man:\n", - "\n", - "* einfache Rechnungen mit Python durchführt\n", - "* \"Mathematische\" Funktionen definiert\n", - "* Funktionen auf größere Zahlenmengen anwendet\n", - "* Daten in Form von Graphen richtig darstellt\n", - "* eine Ausgleichsgerade von Datenpunkten berechnen kann.\n", - "\n", - "Damit Sie das neu erlernte Wissen direkt vertiefen können, wird dieses Notebook an verschiedenen Stellen kleinere Aufgaben für Sie bereithalten. Die Aufgaben sind durch orangefarbene Boxen hervorgehoben. Es gilt alle Aufgaben zu bearbeiten!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Grundlagen zu Python bzw. Jupyter Notebooks:\n", - "\n", - "Bevor wir mit dem eigentlichen Programmieren beginnen, müssen wir uns erst einmal mit unserem so genannten Interpreter (**Jupyter Notebook**) vertraut machen. Bei der Programmiersprache **Python** handelt es sich um eine so genannte **Interpretersprache**. Dies bedeutet, dass eingegebene Befehle, ähnlich wie bei einem Taschenrechner, direkt ausgeführt werden." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "ExecuteTime": { - "end_time": "2018-11-17T13:26:34.382179Z", - "start_time": "2018-11-17T13:26:34.350979Z" - } - }, - "source": [ - "
\n", - " \n", - "#### Aufgabe 1.: Zum Vertraut werden mit dem Jupyter Notebook\n", - "\n", - "Im folgenden wollen wir erst einmal mit den Grundlagen des Notebooks vertraut machen. Insbesondere wollen wir lernen, wie wir eine Markdown- und eine Code-Zelle erstellen, bearbeiten und ausführen. \n", - "\n", - "* Erstellen Sie zunächst eine Code-Zelle unterhalb dieser Aufgaben-Zelle und berechnen Sie die Summe zweier beliebiger ganzer Zahlen. Gehen Sie dabei wie folgt vor:\n", - " 1. Klicken Sie die Zelle dieser Aufgabe an, sodass die Zelle eine blaue Umrandung bekommt (je nach Bildschirmauflösung könnten Sie nur links einen blauen Balken erkennen). Sie befinden sich nun im so genannten \"Command Modus\". In diesem Modus können Sie mit Hilfe der Pfeiltasten durch das Notebook navigieren oder die Struktur des Notebooks bzw. seiner Zellen mit Hilfe von Tasten/Tastenkombinationen modifizieren.\n", - " 2. Benutzen Sie nun die Taste **B**, um eine Code-Zelle unterhalb (**B**elow) dieser Zelle zu erstellen. Sie werden feststellen, dass Ihr Navigator direkt zu der neu erstellten Zelle springt (blaue Umrandung).\n", - " 3. Um nun diese neu erstellte Code-Zelle zu editieren, klicken Sie diese mit dem Mauszeiger an. Die Zellenumrandung sollte von Blau auf Grün wechseln. Dies zeigt an, dass Sie sich nun im Editiermodus für diese Zelle befinden.\n", - " 4. Nun können Sie die Summe aus zwei beliebigen ganzen Zahlen mithilfe des Syntax\n", - " ```python\n", - " 3 + 5\n", - " ```\n", - " berechnen.\n", - " 5. Um diese Code-Zelle auszuführen, müssen Sie anschließend die Tastenkombination: **STRG + ENTER** oder **SHIFT + ENTER** benutzen. Das Ergebnis wird direkt unterhalb der Zelle angezeigt.\n", - " \n", - " \n", - "* Erstellen Sie nun eine Markdown-Zelle oberhalb ihrer Code-Zelle. Hierfür müssen Sie wie folgt vorgehen: \n", - " 1. Klicken Sie die zuvor erstellte Code-Zelle an. Die Zelle sollte eine grüne Umrandung anzeigen, da Sie sich nach wie vor im Editiermodus befinden.\n", - " 2. Drücken Sie die **ESC**-Taste, um vom Editier- in den Command-Modus zu wechseln (blaue Umrandung).\n", - " 3. Drücken Sie nun die Taste **A**, um eine neue Code-Zelle oberhalb (**A**bove) Ihrer angewählten Zelle zu erstellen. Der Navigator wird wieder automatisch zu der neu erstellten Zelle springen.\n", - " 4. Drücken Sie nun die Taste **M**, um die Code-Zelle in eine Markdown-Zelle zu verwandeln. Sie werden feststellen, dass eine Markdown-Zelle im Vergleich zu einer Code-Zelle kein \"In []:\"-Anzeige links der Zelle hat. \n", - " 5. Wechseln Sie nun in der Markdown-Zelle in den Editiermodus (grüne Umrandung), indem Sie diese anklicken. \n", - " 6. Fügen Sie nun die folgenden Objekte in die Markdown-Zelle mit dem entsprechenden Syntax ein:\n", - " * Eine level 1 und level 2 Überschrift\n", - " * Eine numerische Aufzählung (1. 2. und 3.) wobei 1. ein fett gedrucktes Wort 2. ein kursive geschriebenes Wort und 3. ein Wort im true type beinhalten soll.\n", - " * Fügen Sie dem zweiten Aufzählungspunkt (2.) drei nicht nummerierte Unterpunkte hinzu.\n", - " \n", - "**Hinweise:**\n", - "In *Kapitel 0* wurden Ihnen bereits alle benötigten Formatierungen angezeigt. Sie können diese nachgucken, indem Sie in das Notebook *Kapitel 0* wechseln und die entsprechende Markdown-Zelle mittels Doppelklick anwählen. \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Neben diesen nützlichen Befehlen gibt es noch weitere tolle Kürzel wie zum Beispiel:\n", - "* **D + D**, um eine Zelle zu **löschen** \n", - "* **Y** verwandelt eine aktuelle **Markdown**-Zelle in eine **Code**-Zelle\n", - "* **Strg** + **Shift** + **Minus** splittet eine Zelle an der Position des Cursors\n", - "* **F** für \"Find and Replace\" (nützlich wenn Sie zum Beispiel einen Variablennamen austauschen wollen)\n", - "* **I** + **I**, um den *\"Kernel\"* zu stoppen (wichtig falls Sie mal eine unendliche LOOP gebaut haben)\n", - "\n", - "Des Weiteren können Sie [hier](https://www.cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/) eine Auflistung weiterer Jupyter-Befehle finden." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Python als Taschenrechner:\n", - "\n", - "Neben dem einfachen Summieren zweier Zahlen ermöglicht uns Python natürlich auch das Verwenden weiterer Operatoren. Hierbei haben die Operatoren, ähnlich wie in der Mathematik, gewisse Prioritäten (*Punkt vor Strich*). Die Operation mit dem niedrigeren Prioritätswert wird zu erst ausgeführt. \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
OperatorErgebnisPriorität
x + yDie Summe von x und y6
x - yDifferenz von x und y5
x * yProdukt von x und y4
x / yQuotient von x und y3
x % yRest von x / y2
x ** yx bei der Potenz von y1
\n", - "\n", - "Hier ein paar Beispiele:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.038328Z", - "start_time": "2019-10-27T12:25:06.026497Z" - } - }, - "outputs": [], - "source": [ - "2 / 3 - 2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.053766Z", - "start_time": "2019-10-27T12:25:06.042411Z" - } - }, - "outputs": [], - "source": [ - "3**2 * 2 - 8 " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T13:42:34.321719Z", - "start_time": "2020-02-08T13:42:34.291969Z" - } - }, - "outputs": [], - "source": [ - "4**0.5" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.069278Z", - "start_time": "2019-10-27T12:25:06.057589Z" - } - }, - "outputs": [], - "source": [ - "3**2**2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wie in der Mathematik können wir auch bei Python Klammern verwenden, um die Rechenreihenfolge zu ändern:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.085191Z", - "start_time": "2019-10-27T12:25:06.071226Z" - } - }, - "outputs": [], - "source": [ - "3**2 * 2 - 8 " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.101225Z", - "start_time": "2019-10-27T12:25:06.087057Z" - } - }, - "outputs": [], - "source": [ - "3**2 * (2 - 8) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Um unsere Rechnungen besser zu strukturieren, können wir Zahlen auch Variablen zuordnen. Hierzu verwenden wir das Gleichheitszeichen, um einer Variablen (*links*) einem Wert (*rechts*) zuzuordnen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.116447Z", - "start_time": "2019-10-27T12:25:06.102883Z" - } - }, - "outputs": [], - "source": [ - "a = 5" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.132372Z", - "start_time": "2019-10-27T12:25:06.119281Z" - } - }, - "outputs": [], - "source": [ - "a" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Variablen können neben einfachen Buchstaben auch mittels komplexerer Ausdrücke dargestellt werden. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.149182Z", - "start_time": "2019-10-27T12:25:06.135155Z" - } - }, - "outputs": [], - "source": [ - "variable = 2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.164477Z", - "start_time": "2019-10-27T12:25:06.151305Z" - } - }, - "outputs": [], - "source": [ - "variable_die_eine_multiplikation_beinhaltet = a * variable" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "variable_die_eine_multiplikation_beinhaltet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bei der Definition von Variablen ist es wichtig, auf die Reihenfolge zu achten. Dies gilt nicht nur innerhalb einer Zelle..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.180459Z", - "start_time": "2019-10-27T12:25:06.167499Z" - } - }, - "outputs": [], - "source": [ - "a = 4\n", - "b = 3\n", - "a = 7\n", - "\n", - "a * b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "... sondern auch für die Reihenfolge, in der die Code-Zellen ausgeführt werden (Angezeigt durch In []:). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.195614Z", - "start_time": "2019-10-27T12:25:06.183176Z" - } - }, - "outputs": [], - "source": [ - "a = 7" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.211590Z", - "start_time": "2019-10-27T12:25:06.197947Z" - } - }, - "outputs": [], - "source": [ - "a = 4" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.231469Z", - "start_time": "2019-10-27T12:25:06.212585Z" - } - }, - "outputs": [], - "source": [ - "a * b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ein weiterer Vorteil (bzw. auch Nachteil) ist, dass Python eine so genannte *dynamische* Datentypenvergabe nutzt. Um besser zu verstehen, was dies bedeutet, gucken wir uns das nachfolgende Beispiel an. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.247553Z", - "start_time": "2019-10-27T12:25:06.233424Z" - } - }, - "outputs": [], - "source": [ - "a = 2\n", - "b = 5\n", - "c = a * b\n", - "c" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.279581Z", - "start_time": "2019-10-27T12:25:06.251320Z" - } - }, - "outputs": [], - "source": [ - "a = 2\n", - "b = 5.0\n", - "c = a * b\n", - "c " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In der oberen Zelle ist **c** vom Datentyp `int` (*Integer*), was einer Ganzenzahl entspricht. In der unteren Zelle jedoch ist **c** vom Datentyp `float` (*Floating Point Number*) also eine Gleitkommazahl. Dies liegt daran, das wir in der unteren Zelle **b** als Gleitkommazahl definiert haben. Um uns Arbeit abzunehmen, hat Python für uns im Hintergrund dynamisch entschieden, dass somit **c** ebenfalls vom Typ `float` sein muss. \n", - "\n", - "Neben den primitiven Datentypen `float` und `int` gibt es noch die wichtigen Datentypen `str` (*string*) was einer Zeichenkette entspricht (z.B. Buchstaben, Wörter und Sätze), `complex` für Komplexe Zahlen und `bool` für Wahrheitswerte. Was genau Wahrheitswerte sind und wofür diese verwendet werden, werden Sie noch im **PGP2** lernen. \n", - "\n", - "Für das **PGP1** sind erstmal nur die Typen `int`, `float` und `str` von Bedeutung." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "ExecuteTime": { - "end_time": "2018-11-25T16:19:02.118966Z", - "start_time": "2018-11-25T16:19:02.087766Z" - } - }, - "source": [ - "
\n", - " \n", - "#### Aufgabe 2.a.: Beschleunigte Bewegung\n", - "\n", - "Die zurückgelegte Distanz eines Objekts, welches eine beschleunigte Bewegung ausführt (z.B. der freie Fall einer Kugel in einem Gravitationsfeld), kann mit Hilfe von \n", - "\n", - "$$s(t) = \\frac{1}{2}\\cdot a \\cdot t^2 + v_0 \\cdot t + s_0$$\n", - "\n", - "beschrieben werden. Hierbei beschreibt $t$ die verstrichene Zeit, $a$ die Beschleunigung, $v_0$ die Startgeschwindigkeit und $s_0$ die Startposition des Objekts. Erstellen Sie unterhalb der Aufgabe eine neue Code-Zelle und berechnen Sie die folgenden Werte:\n", - "\n", - "Wie lange bräuchte ein Stift, welcher in einer Höhe von $s_0 = 1.2\\,$m losgelassen wird ($v_0 = 0\\,\\text{m}/\\text{s}$)... \n", - "\n", - "* ... im Schwerefeld der Erde $(g_\\text{E} = - 9.81\\,\\text{m}/\\text{s}^2)$ ...\n", - "* ... im Schwerefeld des Mondes $(g_\\text{M} = - 1.62\\,\\text{m}/\\text{s}^2)$ ...\n", - "* ... im Schwerefeld der Sonne $(g_\\text{S} = - 274\\,\\text{m}/\\text{s}^2)$ ...\n", - "\n", - "... bis er auf dem Boden aufschlägt? (Reibungseffekte sind zu vernachlässigen)\n", - "\n", - "Mit welcher Geschwindigkeit (in km/h) schlägt der Stift auf die Sonnenoberfläche auf?\n", - "\n", - "**Hinweis:** \n", - "Sofern Sie alle Berechnungen innerhalb einer Zelle ausführen wollen, können Sie mithilfe der `print`-Funktion die Ergebnisse \"ausdrucken\"/anzeigen lassen. Gehen Sie dabei wie folgt vor:\n", - "```python\n", - "print(Variablennamen1, Variablennamen2, Variablennamen3 ...)\n", - "```\n", - "oder\n", - "```python\n", - "print(Variablennamen1) \n", - "print(Variablennamen2)\n", - "print(Variablennamen3)\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Zeichenketten\n", - "\n", - "Wie eben bereits erwähnt, gibt es neben den Zahlen-Datentypen `int`, `float` und `complex` auch noch den Datentyp einer Zeichenkette `str`. Zeichenketten werden in Programmiersprachen vielseitig verwendet z.B. bei einer Nutzereingabe (z.B. einem Passwort), Dateiname bei einer Installation, oder bei Textrückgaben von Programmen. Letzteres haben Sie bereits in Aufgabe 2 a. mithilfe der `print`-Funktion gesehen.\n", - "\n", - "Für das PGP-1 wollen wir uns zunächst darauf beschränken, dass Zeichenketten in so genannten **Formatstrings** dazu genutzt werden können, schönere `print` Rückgaben zu erzeugen, bzw. wir mit Zeichenketten Achsenbeschriftungen an Graphen anbringen können. \n", - "\n", - "Zunächst erst aber einmal eine einfache Zeichenkette:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.297413Z", - "start_time": "2019-10-27T12:25:06.284068Z" - } - }, - "outputs": [], - "source": [ - "'Dies ist eine Zeichenkette'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hierbei kann eine Zeichenkette auch alle Symbole enthalten, die euer Interpreter unterstützt. In Jupyter sind dies alle gewohnten Zeichen wie Buchstaben, Zahlen, Sonderzeichen und Leerzeichen: " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.328594Z", - "start_time": "2019-10-27T12:25:06.301834Z" - } - }, - "outputs": [], - "source": [ - "s1 = '0123456789'\n", - "s2 = 'äöü'\n", - "s3 = '*+~`´?ß-@€'\n", - "s4 = 'python 3.7>'\n", - "\n", - "print(s1,s2,s3,s4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Einen **Formatstring** kann man so generieren:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T13:40:14.532316Z", - "start_time": "2020-02-08T13:40:14.507294Z" - } - }, - "outputs": [], - "source": [ - "a = 'Formatstring'\n", - "\n", - "print(f'Dies ist ein {a}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Neben dem Einfügen von Strings oder Zahlen in eine Zeichenkette können wir die eingefügten Werte auch formatieren:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T13:41:34.601805Z", - "start_time": "2020-02-08T13:41:34.577256Z" - } - }, - "outputs": [], - "source": [ - "pi = 3.1415926535\n", - "\n", - "print(f'Dies ist pi auf 4 Nachkommastellen gerundet: {pi:.4f}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "... oder sofern Sie eine Rückgabe lieber über mehrere Zeilen ausgeben lassen möchten, können Sie dies wie folgt machen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T13:43:48.431735Z", - "start_time": "2020-02-08T13:43:48.411817Z" - } - }, - "outputs": [], - "source": [ - "U = 12.0 #V\n", - "dU = 0.1 #V\n", - "I = 0.30 #mA\n", - "dI = 0.01 #mA\n", - "\n", - "R = U / I #kOhm \n", - "dR = R * ((dU / U)**2 + (dI / I)**2)**0.5\n", - "\n", - "print(f'''An einem Widerstand R wurden die folgenden Werte gemessen:\n", - "Spannung: {U}+/-{dU} V\n", - "Strom: {I}+/-{dI} mA\n", - "Hierraus resultiert ein Widerstand von {R}+/-{dR:.2f} kOhm ''') " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hierbei zeigt `:` an, dass Sie eine spezielle Formatierung verwenden möchten. Die Zahl hinter dem `.` gibt an, wie viele Nachkommastellen Sie anzeigen lassen möchten. Das `f` bedeutet, dass es sich bei der Zahl um eine Gleitkommazahl handelt." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "#### Aufgabe 2.b.: Beschleunigte Bewegung Zusatz\n", - " \n", - "Lassen Sie nun Ihre berechneten Werte aus Aufgabe 2 mithilfe von `print` erneut ausgeben. Nutzen Sie jedoch dieses Mal **Formatstrings** für eine schönere und bedeutungsvollere Rückgabe. Achten Sie dabei ins besonders auf:\n", - "\n", - "* Die Angabe der richtigen Einheiten.\n", - "* Das Runden der berechneten Werte der Anzahl an signifikanten Nachkommastellen entsprechend. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Definieren von Funktionen:\n", - "\n", - "Anstatt Berechnungen wie bei einem Taschenrechner immer wieder manuell einzugeben, ermöglicht uns eine Programmiersprache das Definieren von Funktionen. Funktionen können hierbei ähnlich wie mathematische Funktionen definiert und behandelt werden. Im folgenden wollen wir uns dies im Fall des Ohmschen Gesetzes, welches durch \n", - "\n", - "$$U(R, I) = R \\cdot I$$ \n", - "\n", - "beschrieben wird, angucken. Hierbei wird die Spannung $U$ durch die Variablen $R$ (Widerstand) und $I$ (Strom) beschrieben. Dies gilt auch analog für Funktionen in einer Programmiersprache:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.397242Z", - "start_time": "2019-10-27T12:25:06.383825Z" - } - }, - "outputs": [], - "source": [ - "def Spannung(Widerstand, Strom): # U(R,I)\n", - " return Widerstand * Strom # Wiedergabe der Funktion" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bitte beachten Sie, dass die Rückgabe `return` der Funktion mit Hilfe der Tab-Taste eingerückt wurde. Dieser Syntax wird von Python vorgegeben und muss eingehalten werden.\n", - "\n", - "Diese Funktion können wir nun auf Messdaten anwenden. Wir Messen z.B. bei einem Widerstand von $1\\,\\text{k}\\Omega$ einen Strom von $10\\,\\text{mA}$:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.412442Z", - "start_time": "2019-10-27T12:25:06.402410Z" - } - }, - "outputs": [], - "source": [ - "# Leider müssen wir hier auf die Einheiten selbst achten.\n", - "# Deshalb ist es ratsam, sich die Einheiten zu den Werten zu notieren.\n", - "U = Spannung(1000, 0.01) # in V \n", - "U " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Neben mathematischen Funktionen, können Funktionen in einer Programmiersprache auch viel allgemeinere Aufgaben erfüllen bzw. komplexe Algorithmen beinhalten. Hierfür benötigen wir meist mehr als nur eine Zeile. Um Python verständlich zu machen, dass mehre Zeilen zu einer Funktion gehören müssen wir die entsprechenden Zeilen wie zuvor den `return`-Befehl einrücken." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T14:00:35.030562Z", - "start_time": "2020-02-08T14:00:35.020705Z" - } - }, - "outputs": [], - "source": [ - "def complex_function(a, b, c, d):\n", - " result = a + b\n", - " result = result * c\n", - " result = result / d\n", - " return result" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T14:00:35.310478Z", - "start_time": "2020-02-08T14:00:35.290633Z" - } - }, - "outputs": [], - "source": [ - "complex_function(1, 2, 3, 4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bitte beachten Sie, dass Variablen, welche in einer Funktion definiert und genutzt werden, auch nur dort zur Verfügung stehen. Versuchen Sie, die entsprechenden Variablen im Notebook zu verwenden, werden Sie einen Fehler bekommen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T14:01:53.810639Z", - "start_time": "2020-02-08T14:01:53.785432Z" - } - }, - "outputs": [], - "source": [ - "result" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sollten Sie das Ergebnis dennoch in einer Variablen speichern wollen, können Sie dies natürlich machen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T14:04:10.690109Z", - "start_time": "2020-02-08T14:04:10.670371Z" - } - }, - "outputs": [], - "source": [ - "result = complex_function(1, 2, 3, 4)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-08T14:04:10.890200Z", - "start_time": "2020-02-08T14:04:10.870502Z" - } - }, - "outputs": [], - "source": [ - "result" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Für das Grundpraktikum sind längere und kompliziertere Funktionen eher die Ausnahme. Sie werden in Veranstaltungen wie \n", - "\n", - "* Computer in der Wissenschaft\n", - "* Programmieren für Physiker\n", - "* Einführung in die Programmierung\n", - "\n", - "noch mehr über Programme und Algorithmen lernen." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "#### Aufgabe 3. Umgang mit dem Ohmschen Gesetz:\n", - "\n", - "Bei einem $500\\,\\Omega$ Widerstand wird eine Spannung $U$ von 5, 10, 20 und 50 Volt angelegt. Wie hoch sollte der jeweils entsprechende Strom $I$ ausfallen und welche Leistung wird in dem Widerstand umgesetzt? \n", - "\n", - "Des Weiteren nehmen Sie an, dass Ihr Widerstand einen Fehler von $+/-20\\,\\Omega$ und ihre angelegte Spannung eine Ungenauigkeit von $+/-10\\,\\%$ aufweist. Wie groß wäre der Fehler des gemessenen Stroms bei ihrer $50\\,$V Messung? Benutzen Sie hierfür die Gaus'sche Fehlerfortpflanzung und definieren Sie die entsprechende Funktion in Python.\n", - "\n", - "**Tipp:**\n", - "\n", - "Die Leistung, welche in einem ohmschen Widerstand umgesetzt wird, lässt sich durch\n", - "\n", - "$$P(U, I ) = U \\cdot I $$\n", - "\n", - "berechnen, wobei $U$ die angelegte Spannung und $I$ der elektrische Strom ist. \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Tipp: \n", - "Es ist ratsam, gleich von Anfang an Funktionen zu dokumentieren. Hierzu dienen in Python die sogenannten `Doc-Strings`. Sie beinhalten Informationen über die Funktion selbst, ihre verwendeten Parameter und ihre Ausgabe. Zum Beispiel für das Ohmschen Gesetzes würde ein solcher Doc-String wie folgt aussehen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Spannung" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.429738Z", - "start_time": "2019-10-27T12:25:06.416013Z" - } - }, - "outputs": [], - "source": [ - "def Spannung(Strom, Widerstand):\n", - " '''\n", - " Diese Funktion berechnet die Spannung eines Ohmschen \n", - " Widerstands.\n", - " \n", - " Args:\n", - " Strom (float): Der gemessene Strom in mA.\n", - " Widerstand (float): Der Wert des verwendeten Widerstands\n", - " in Ohm.\n", - " \n", - " Returns:\n", - " float: Die berechnete Spannung in V.\n", - " '''\n", - " return Widerstand * Strom / 1000" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Messtabellen in Python:\n", - "\n", - "Damit uns eine Programmiersprache wie Python Arbeit abnehmen kann, sollte es auch möglich sein, größere Datenmengen, wie z.B. die Werte einer Messtabelle, in einer Variablen zu speichern. Python bietet hierfür verschiedene Konzepte an. Jedes dieser Konzepte hat unterschiedliche Stärken und Schwächen. Die gängigsten Methoden sind list, tuple, bzw. sogenannte numpy.arrays und pandas.dataframes. Aufgrund der limitierten Zeit im PGP 1 werden wir uns hier lediglich mit zwei dieser vier Methoden auseinander setzen. \n", - "\n", - "Fangen wir zunächst mit Listen an. Eine Liste ist eine Ansammlung von Werten, welche alle den gleichen oder ganz unterschiedliche Datentypen haben können. Eine Liste kann so erstellt werden:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.446484Z", - "start_time": "2019-10-27T12:25:06.432594Z" - } - }, - "outputs": [], - "source": [ - "Messwerte1 = ['Wert1', 'Wert2', 'Wert3']\n", - "Messwerte1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sobald wir eine liste erstellt haben, können wir eine ganze Reihe von unterschiedlichen Manipulationen durchführen, um sie nach unserem Belieben zu verändern.\n", - "\n", - "Wir können zum Beispiel die bestehende Liste um einen Wert erweitern (`append`) oder einen zusätzlichen Wert an eine beliebige Stelle in der Liste hinzufügen (`insert`)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.492972Z", - "start_time": "2019-10-27T12:25:06.480376Z" - } - }, - "outputs": [], - "source": [ - "Messwerte1.append('Wert5')\n", - "Messwerte1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Man kann eine leere Liste erstellen und später mit `append` Einträge hinzufügen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "empty_list = [] # Leere Liste\n", - "empty_list.append(42)\n", - "empty_list" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.509050Z", - "start_time": "2019-10-27T12:25:06.496701Z" - } - }, - "outputs": [], - "source": [ - "Messwerte1.insert(4, 'Wert4')\n", - "Messwerte1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ups, was ist denn in der letzten Zelle passiert? Wert4 wurde ja garnicht an Stelle 4 der Liste gesetzt, Python scheint nicht zählen zu können... \n", - "\n", - "Leider zählt Python doch richtig. In Python läuft der Index von Objekten in einer Liste immer von 0,1,2,3...n. Dies können wir auch ganz einfach überprüfen, indem wir unsere Liste in verschiedene \"Scheiben\" schneiden (so genanntes slicing). Dies geht wie folgt:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.524167Z", - "start_time": "2019-10-27T12:25:06.511411Z" - } - }, - "outputs": [], - "source": [ - "NeueWerte = ['Wert1', 'Wert2', 'Wert3', 'Wert4', 'Wert5', 'Wert6'] " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Die kleinste Scheibe, welche wir abschneiden können, ist ein einzelner Wert:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.540756Z", - "start_time": "2019-10-27T12:25:06.525161Z" - } - }, - "outputs": [], - "source": [ - "NeueWerte[0] # Hier sehen Sie, dass der erste Wert den Index 0 hat." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.556003Z", - "start_time": "2019-10-27T12:25:06.541754Z" - } - }, - "outputs": [], - "source": [ - "wert_index_2 = NeueWerte[2] \n", - "wert_index_2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wie bei einer Pizza können wir uns natürlich auch größere Stücke nehmen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.571456Z", - "start_time": "2019-10-27T12:25:06.561307Z" - } - }, - "outputs": [], - "source": [ - "NeueWerte[0:3]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.603263Z", - "start_time": "2019-10-27T12:25:06.579819Z" - } - }, - "outputs": [], - "source": [ - "NeueWerte[2:5] # Python behandelt den letzten Wert wie in einem offenen Intervall [2,5)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.634032Z", - "start_time": "2019-10-27T12:25:06.607460Z" - } - }, - "outputs": [], - "source": [ - "NeueWerte[2:] # Hier werden alle Werte mit dem Index >= 2 zurückgegeben" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.649485Z", - "start_time": "2019-10-27T12:25:06.635504Z" - } - }, - "outputs": [], - "source": [ - "NeueWerte[-3:] # Mit negativen Zahlen fangen Sie vom Ende der Liste an" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Neben `insert`, `append` und `slicing` bietet Python noch ein paar weitere Listenmanipulationen an. Mit Hilfe des `+` Operators können Sie die Werte in einer Liste direkt an eine andere Liste anfügen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.680320Z", - "start_time": "2019-10-27T12:25:06.654941Z" - } - }, - "outputs": [], - "source": [ - "Messwerte1 + NeueWerte" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:22:59.315752Z", - "start_time": "2019-10-27T12:22:59.289651Z" - } - }, - "source": [ - "Anders als `append`, welches die zweite Liste als Ganzes an die erste Liste anfügt:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.696566Z", - "start_time": "2019-10-27T12:25:06.684462Z" - } - }, - "outputs": [], - "source": [ - "Messwerte1.append(NeueWerte)\n", - "Messwerte1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Aber aufgepasst, bei `append` wird die Liste, an welche Sie die Daten anhängen (hier Messwerte1), direkt geändert (dies gilt auch für `insert`), während Sie beim `+` Operator die Variable überschreiben müssen, damit die Änderung wirksam wird. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.712798Z", - "start_time": "2019-10-27T12:25:06.700559Z" - } - }, - "outputs": [], - "source": [ - "Messwerte1 = Messwerte1 + NeueWerte\n", - "# Tipp: Dies können Sie auch einfach mithilfe von\n", - "# Messwerte1 += NeueWerte\n", - "Messwerte1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Zwei weitere nützliche Befehle im Zusammenhang von Listen ist die `len`- und `range`-Funktion. \n", - "\n", - "`len` gibt die Länge einer Liste zurück " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.728109Z", - "start_time": "2019-10-27T12:25:06.716256Z" - } - }, - "outputs": [], - "source": [ - "print(Messwerte1)\n", - "len(Messwerte1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`range` erstellt ganzzahlige Werte zwischen zwei ganzen Zahlen" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.745008Z", - "start_time": "2019-10-27T12:25:06.731772Z" - } - }, - "outputs": [], - "source": [ - "range(0, # <-- Startwert\n", - " 5, # <-- Endwert (nicht mehr enthalten, offenes Ende)\n", - " 2 # <-- Schrittweite\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sie können die `range` Rückgabe auch wieder in eine Liste umwandeln" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:25:06.760820Z", - "start_time": "2019-10-27T12:25:06.748599Z" - } - }, - "outputs": [], - "source": [ - "list(range(0, 5, 2))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-27T12:24:39.369806Z", - "start_time": "2019-10-27T12:24:39.330456Z" - } - }, - "source": [ - "
\n", - " \n", - "#### Aufgabe 4.a.: Erstellen von Messwerttabellen:\n", - "\n", - "Erstellen Sie für jede Spalte der nachfolgenden Messtabelle eine Liste, welche die Messdaten beinhaltet.\n", - "\n", - "| Messwertnummer | Spannung [V] | Strom [mA] | Fehler der Spannung [V] | Fehler des Stroms [mA] |\n", - "|----------------|--------------|------------|-------------------------|---------------------------|\n", - "| 1 | 12.00 | 110 | 0.32 | 10 |\n", - "| 2 | 11.78 | 98 | 0.15 | 10 |\n", - "| 3 | 12.56 | 102 | 0.63 | 10 |\n", - "| 4 | 12.34 | 124 | 0.12 | 10 |\n", - "| 5 | 12.01 | 105 | 0.20 | 10 |\n", - "| 6 | 11.94 | 95 | 0.17 | 10 |\n", - "\n", - "\n", - "Verwenden Sie anschließend das Slicing, um die umgesetzte Leistung im Widerstand für die Meswerte 3 und 5 zu berechnen.\n", - "\n", - "**Tipp:**\n", - "\n", - "1. Sie haben bereits die Funktionen für die Leistung in Aufgabe 3 definiert und können sie hier erneut verwenden. \n", - "\n", - "2. Geben Sie an, wie sich die Messwertnummer zum Listenindex verhält.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": { - "ExecuteTime": { - "end_time": "2020-02-09T08:32:29.596168Z", - "start_time": "2020-02-09T08:32:29.564926Z" - } - }, - "source": [ - "
\n", - " \n", - "#### Vorbereitungsaufgabe 1.: Werte der Schiefen Ebene in Python übertragen:\n", - "\n", - "Stellen Sie sich den folgenden Versuch vor: Jahr 2132, die Firma SpaceY hat Sie auf eine Außenmission auf den Planeten X geschickt. Hier sollen Sie zusammen mit ihrem Versuchspartner die Fallbeschleunigung $g_X$ des Planeten bestimmen. Als Versuch lassen Sie eine Kugel aus unterschiedlichen Fallhöhen innerhalb einer evakuierten Glasröhre fallen. Sie lassen die Kugel insgesamt aus 10 unterschiedlichen Höhen fallen. Die Messdaten und die dazugehörigen Fehler protokollieren Sie in der unteren Tabelle:\n", - "\n", - "| Fallhöhe [m] | Höhenfehler [m] | Fallzeit [s] | Zeitfehler [ms] |\n", - "| ------------ | --------------- | ------------ | --------------- |\n", - "| 1.00 | 0.01 | 0.74 | 12 |\n", - "| 1.20 | 0.01 | 0.80 | 11 |\n", - "| 1.40 | 0.01 | 0.87 | 9 |\n", - "| 1.60 | 0.01 | 0.94 | 8 |\n", - "| 1.80 | 0.01 | 0.99 | 10 |\n", - "| 2.00 | 0.01 | 1.03 | 11 |\n", - "| 2.20 | 0.01 | 1.10 | 12 |\n", - "| 2.40 | 0.01 | 1.15 | 13 |\n", - "| 2.60 | 0.01 | 1.17 | 80 |\n", - "| 2.80 | 0.01 | 1.24 | 10 |\n", - "\n", - "Am Python-Einführungs-Tag selbst wollen wir anhand der Messdaten zur Bestimmung der Fallbeschleunigung auf Planet X das Fitten von Funktionen mittels $\\chi^2$ üben. Als Vorbereitung hierfür sollen Sie die Messdaten der gemessenen Zeiten und Höhen so wie ihre Fehler als Listen in Python eintippen.\n", - "\n", - "Darüber hinaus definieren Sie sich eine Python-Funktion $h(t, g)$ mit $h$ als Höhe, $t$ als Zeit und $g$ als die Beschleunigung $g_X$. Diese Funktion soll am Ende des Tages gegen die Messdaten in einem Höhe-gegen-Zeit Diagramm gefittet werden.\n", - " \n", - "**Tipp:**\n", - " \n", - "Um welche Art von Bewegung handelt es sich bei einem freien Fall im luftleeren Raum?\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/Einfuehrung_iminuit.ipynb b/Einfuehrung_iminuit.ipynb new file mode 100644 index 0000000..414ca74 --- /dev/null +++ b/Einfuehrung_iminuit.ipynb @@ -0,0 +1,2857 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c9a4045f-f389-40f5-9f19-32f8bbebc75d", + "metadata": {}, + "source": [ + "# Methode der kleinsten Quadrate\n", + "\n", + "Im folgenden wollen wir die **Methode der kleinsten Quadrate (Least Squares)** näher beleuchten. Diese Methode wird oft benutzt, um eine Funktion $\\lambda(x; \\ $**$\\phi$**$)$ mit den Funktionsparametern $\\mathbf{\\phi}$ an die gemessenen Punkte **$(x,y)$** anzupassen. Um jedoch die **Methode der kleinsten Quadrate** zu verstehen, wollen wir sie erst einmal anschaulich und halb-mathematisch herleiten. Dabei stüzen wir uns im Folgenden auf eine Herleitung aus dem Buch **\"Statistical Data Analysis\"** von **Glen Cowan**." + ] + }, + { + "cell_type": "markdown", + "id": "5a8f4ef9-222c-440f-8621-e612a8988fd0", + "metadata": {}, + "source": [ + "Bevor wir dies jedoch tun, schauen wir uns das Problem des Fittens doch erst einmal anschaulich an. \n", + "\n", + "
\n", + "\"{{\n", + "
\n", + "\n", + "Beim Fitten, zum Beispiel einer Geraden (lila) an eine Reihe von Messpunkten (schwarz), wollen wir den Abstand zwischen den einzelnen Messpunkten und der Geraden (orange) möglichst klein halten. Sprich die Summe über alle $\\Delta Y_i$ \n", + "\n", + "$$\\sum_i \\Delta Y_i $$\n", + "\n", + "sollte möglichst klein sein, wobei $\\Delta Y_i$ durch \n", + "\n", + "$$ \\Delta Y_i = y_i – f(x_i, \\vec{\\theta})$$\n", + "\n", + "gegeben ist und $f(x, \\vec{\\theta})$ unsere Fitfunktion repräsentiert. Hierbei symbolisiert $\\vec{\\theta}$ die Parameter unserer Funktion. Sprich im Fall einer Geraden die Steigung $m$ und den Offset $y_0$ ($\\vec{\\theta}=(m, y_0)$). \n", + "\n", + "Darüber hinaus sollte die Richtung des Abstandes, sprich ob ein Messpunkt unterhalb oder oberhalb der Fitfunktion liegt, keine Rolle spielen. Daher quadrieren wir das Ganze und erhalten somit\n", + "\n", + "$$ LS = \\sum_i = (y_i – f(x_i, \\theta))^2$$\n", + "\n", + "Dies ist die allgemeinste Form der Methode der kleinsten Quadrate. Sie besagt, dass die Funktion, welche die Messpunkte am besten beschreibt, sprich die optimalen Werte für $\\vec{\\theta}$ aufweist, den Ausdruck LS minimiert. \n", + "\n", + "Nun weisen unsere Messpunkte nicht nur Werte für X und Y aus, sondern sind noch zusätzlich durch einen Messunsicherheit (Messfehler) charakterisiert. Diese sollten wir natürlich bei der Bestimmung unserer Parameter $\\vec{\\theta}$ berücksichtigen. Sprich Messwerte mit einer großen Unsicherheit sollten weniger stark berücksichtigt werden wie Messwerte mit einer kleinen Unsicherheit. Dies können wir gewährleisten, sofern wir die Distanzen $\\Delta Y_i$ mit den jeweiligen Unsicherheiten $\\Delta y_i$ gewichten, sprich \n", + "\n", + "$$ \\chi^2 = \\sum_i =\\frac{(y_i – f(x_i, \\theta))^2}{\\Delta y_i^2}$$\n", + "\n", + "berechnen. Das Quadrieren der Unsicherheiten sorgt dafür, dass der Ausdruck dimensionslos wird. Diese besondere Form der kleinsten Quadrate nennt man auch oft $\\chi^2$-Fit. Wir werden später noch einmal genauer beleuchten warum. " + ] + }, + { + "cell_type": "markdown", + "id": "1153a474-8afe-44ae-8511-b403a4ad861d", + "metadata": {}, + "source": [ + "Nun wollen wir uns erst einmal ein Beispiel anschauen, wie dies in der Praxis aussieht. In der nachfolgenden Animation wird ein Ohm’schwer Widerstand an eine Reihe von Spannungs- und Strommessungen gefittet. Dies entspricht unserem obigen Geradenbeispiel. \n", + "
\n", + "\"{{\n", + "
\n", + "\n", + "Wie die Animation zeigt, werden so lange verschiedene Widerstände ausprobiert, bis ein Wert gefunden wurde, bei dem das $\\chi^2$ minimal wird. Dieses Variieren der Widerstandswerte passiert nicht zufällig, sondern basiert auf einem Algorithmus für Optimierungsverfahren. \n", + "\n", + "Es gibt verschiedene Arten von Algorithmen, um Minimierungsprobleme zu lösen. Wie diese genau aufgebaut sind, lernen Sie in anderen Programmierveranstaltungen, wie zum Beispiel *Programmieren für Physiker* oder *Computer in der Wissenschaft*. Zum Glück haben uns in Python bereits andere Menschen diese Arbeit abgenommen. Im folgenden wollen wir uns das package `iminuit` etwas genauer anschauen, welches bereits ein sehr umfangreiches und mächtiges Fittingtool darstellt. \n", + "\n", + "[iminuit](https://iminuit.readthedocs.io/en/stable/tutorials.html) verfügt auch über eine exzellente Dokumentation, mit Hilfe derer Sie auch komplexere Probleme lösen können." + ] + }, + { + "cell_type": "markdown", + "id": "702b9a12-539d-43b5-8314-7f8dcdf93cda", + "metadata": {}, + "source": [ + "Um mit Hilfe von `imnuit` etwas zu fitten brauchen wir zunächst einmal ein paar Messdaten und ein Fitmodel. Im Folgenden wollen wir die Entladekurve eines Kondensators mit der Kapazität $C$ über einen Widerstand $R$ bestimmen. Die Entladekurve ist durch eine einfache Exponentialfunktion der Form \n", + "\n", + "$$ I = I_0 \\exp\\{-t/RC\\}$$\n", + "\n", + "gegeben. Die Messdaten befinden sich in einer CSV-Datei im Ordner `data`. Die CSV-Datei kann mit Hilfe des `pandas` package eingelesen werden. [pandas](https://pandas.pydata.org/) ist ähnlich wie `numpy` ein package welches eine Fülle an Funktionen zum Verarbeiten und Verwalten von Daten bereitstellt. Es gehört ähnlich wie auch `numpy`, `scipy` und `matplotlib` zu den Standardbibliotheken, welche sehr häufig in der Wissenschaft verwendet werden. Aufgrund der zeitlichen Limitierung des Versuchstages können wir leider nicht auf alle Funktionen von `pandas` eingehen und wollen uns im Folgenden lediglich auf die Grundlagen beschränken. Für ihre zukünftigen Praktika lohnt es sich jedoch, noch mehr über `pandas` in Ihrer Eigenstudienzeit zu lernen." + ] + }, + { + "cell_type": "markdown", + "id": "5215840a-1276-49c1-9181-274cd8a2b4bf", + "metadata": {}, + "source": [ + "CSV-Datein können wie folgt eingelesen werden" + ] + }, + { + "cell_type": "code", + "execution_count": 485, + "id": "f8ef1be0-a42d-4a11-b674-c2ed099fefcb", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "data_frame = pd.read_csv('data/discharge_data.csv')" + ] + }, + { + "cell_type": "markdown", + "id": "15800aa8-8a7f-4d59-ab06-3edc6bb1e443", + "metadata": {}, + "source": [ + "Dabei gibt pandas die Daten als so genannten DataFrames zurück. Dies sind Objekte, welche ähnlich wie strukturierte `numpy.arrays` zu behandeln sind. DataFrames werden allgemein als Tabellen dargestellt." + ] + }, + { + "cell_type": "code", + "execution_count": 486, + "id": "f14ca80f-e0d7-4447-9335-b3744f7a028f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0timecurrentdelta_currentdelta_time
000.0006371.0665380.050.000637
110.0885530.4063160.050.011447
220.1947730.1430930.050.005227
330.3064130.0781410.050.006413
440.4052850.0650420.050.005285
550.5073900.0118850.050.007390
660.613279-0.0188240.050.013279
770.7075010.0445130.050.007501
880.7904790.0068810.050.009521
990.883672-0.0190520.050.016328
\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 time current delta_current delta_time\n", + "0 0 0.000637 1.066538 0.05 0.000637\n", + "1 1 0.088553 0.406316 0.05 0.011447\n", + "2 2 0.194773 0.143093 0.05 0.005227\n", + "3 3 0.306413 0.078141 0.05 0.006413\n", + "4 4 0.405285 0.065042 0.05 0.005285\n", + "5 5 0.507390 0.011885 0.05 0.007390\n", + "6 6 0.613279 -0.018824 0.05 0.013279\n", + "7 7 0.707501 0.044513 0.05 0.007501\n", + "8 8 0.790479 0.006881 0.05 0.009521\n", + "9 9 0.883672 -0.019052 0.05 0.016328" + ] + }, + "execution_count": 486, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_frame" + ] + }, + { + "cell_type": "markdown", + "id": "fc24d5fa-d3c0-4866-b18a-9dd07768a222", + "metadata": {}, + "source": [ + "Um die Daten aus einer bestimmente Spalte zu bekommen, können diese einfach mit dem Spaltennamen aufgerufen werden:" + ] + }, + { + "cell_type": "code", + "execution_count": 487, + "id": "93b7cbb1-1095-4a53-83d9-7b32f068daea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.000637\n", + "1 0.088553\n", + "2 0.194773\n", + "3 0.306413\n", + "4 0.405285\n", + "5 0.507390\n", + "6 0.613279\n", + "7 0.707501\n", + "8 0.790479\n", + "9 0.883672\n", + "Name: time, dtype: float64" + ] + }, + "execution_count": 487, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_frame['time']" + ] + }, + { + "cell_type": "markdown", + "id": "4476302c-eb65-409a-b1aa-2342ecbd9c88", + "metadata": {}, + "source": [ + "oder" + ] + }, + { + "cell_type": "code", + "execution_count": 488, + "id": "969d8afa-5d52-4e01-8b64-ddab090891b8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1.066538\n", + "1 0.406316\n", + "2 0.143093\n", + "3 0.078141\n", + "4 0.065042\n", + "5 0.011885\n", + "6 -0.018824\n", + "7 0.044513\n", + "8 0.006881\n", + "9 -0.019052\n", + "Name: current, dtype: float64" + ] + }, + "execution_count": 488, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_frame['current']" + ] + }, + { + "cell_type": "markdown", + "id": "32249263-ec9f-44de-81b7-7a6c69e23332", + "metadata": {}, + "source": [ + "Einzelne Messwerte lassen sich mit Hilfe von `.loc` bestimmen." + ] + }, + { + "cell_type": "code", + "execution_count": 489, + "id": "e4b44637-8e25-46c1-863d-3cd7604f52dd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0118852615051639" + ] + }, + "execution_count": 489, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_frame.loc[5, 'current']" + ] + }, + { + "cell_type": "markdown", + "id": "a2c0c04b-be37-482d-aabc-802bfa2965d2", + "metadata": {}, + "source": [ + "Sollten Sie eine Spalte von Messdaten in ein `numpy.array` umwandeln wollen, so können Sie dies wie folgt erreichen" + ] + }, + { + "cell_type": "code", + "execution_count": 490, + "id": "f246f55e-5fc8-427c-990d-3e97799b5aeb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.06653795, 0.40631626, 0.1430927 , 0.07814083, 0.06504185,\n", + " 0.01188526, -0.01882397, 0.04451315, 0.00688072, -0.01905164])" + ] + }, + "execution_count": 490, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_frame['current'].values" + ] + }, + { + "cell_type": "markdown", + "id": "3d2bd9ed-852d-4448-a051-a6f677ea891d", + "metadata": {}, + "source": [ + "Die Messdaten können Sie auch wie gewohnt mit Hilfe von `matplotlib` darstellen." + ] + }, + { + "cell_type": "code", + "execution_count": 491, + "id": "e3898686-3926-48a0-be4c-4d460a1792f3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAooUlEQVR4nO3dfXTU1Z3H8c/MkEyUkICNTEISifIgqDw/ZINSH5oSxaXl7NmVI12gWcQnyilku4UokiItoVQpXYgFKRzYc+qC7Vq3p7BBjXBaNXtQMCJVguGhPEgGqJKBQQnM/PYPl6kjAWaGmfkld96vc+aczJ37m/kOd8J8cuf+7jgsy7IEAABgCKfdBQAAAMQT4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCid7C4g2YLBoD7++GN16dJFDofD7nIAAEAELMvSqVOn1KNHDzmdl5+bSblw8/HHH6uwsNDuMgAAQAwOHTqkgoKCy/ZJuXDTpUsXSV/842RlZdlcDQAAiITP51NhYWHoffxyUi7cXPgoKisri3ADAEAHE8mSEhYUAwAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcBMnfr9fDodDDodDfr/f7nIAAEhZhBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhJgGOHDlidwkAAKQswk2crFu3LvRz//79tXr1ahurAQAgdTksy7LsLiKZfD6fsrOz1dLSoqysrLjc5+HDh9WzZ08Fg8FQm8vl0oEDB1RQUBCXxwAAIJVF8/7NzE0cfPTRR2HBRpICgYCamppsqggAgNRFuImDPn36yOkM/6d0uVzq3bu3TRUBAJC6CDdxUFBQoGXLloWuu1wurVy5ko+kAACwAWtu4sTv9yszM1OS1NjYqL59+8btvgEASHWsubFZfn6+3SUAAJCyCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCid7C7AFJ07d1aKfZMFAADtkq0zN3/84x81btw49ejRQw6HQy+//PIVj9m6dauGDh0qt9ut3r17a+3atQmvEwAAdBy2hhu/369BgwappqYmov779+/X/fffr7vvvlsNDQ2aOXOmHnroIW3evDnBlQIAgI7C1o+l7rvvPt13330R91+xYoVuvPFGPfvss5Kk/v3764033tDPf/5zlZWVJapMAADQgXSoBcX19fUqLS0NaysrK1N9ff0ljzl79qx8Pl/YBQAAmKtDhZvm5mZ5PJ6wNo/HI5/Pp88++6zNY6qrq5WdnR26FBYWJqNUAABgkw4VbmJRWVmplpaW0OXQoUN2lwQAABKoQ50KnpubK6/XG9bm9XqVlZWla665ps1j3G633G53MsoDAADtQIeauSkpKVFdXV1Y26uvvqqSkhKbKgIAAO2NreHm9OnTamhoUENDg6QvTvVuaGjQwYMHJX3xkdLkyZND/R999FHt27dPP/zhD7V7924999xzevHFFzVr1iw7ygcAAO2QreHmnXfe0ZAhQzRkyBBJUkVFhYYMGaJ58+ZJko4ePRoKOpJ04403auPGjXr11Vc1aNAgPfvss/rVr37FaeAAACDEYaXYdwb4fD5lZ2erpaVFWVlZdpcDAAAiEM37d4dacwMAAHAlhBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGsT3c1NTUqKioSBkZGSouLta2bdsu23/p0qW6+eabdc0116iwsFCzZs3S559/nqRqAQBAe2druNmwYYMqKipUVVWlHTt2aNCgQSorK9OxY8fa7P/CCy9ozpw5qqqq0ocffqjVq1drw4YNeuKJJ5JcOQAAaK9sDTdLlizRtGnTVF5erltuuUUrVqzQtddeqzVr1rTZ/6233tLtt9+uiRMnqqioSGPGjNGDDz54xdkeAACQOmwLN62trdq+fbtKS0v/VozTqdLSUtXX17d5zKhRo7R9+/ZQmNm3b582bdqksWPHXvJxzp49K5/PF3YBAADm6mTXA584cUKBQEAejyes3ePxaPfu3W0eM3HiRJ04cUJ33HGHLMvS+fPn9eijj172Y6nq6mrNnz8/rrUDAID2y/YFxdHYunWrFi5cqOeee047duzQSy+9pI0bN2rBggWXPKayslItLS2hy6FDh5JYMQAASDbbZm5ycnLkcrnk9XrD2r1er3Jzc9s85qmnntKkSZP00EMPSZIGDBggv9+vhx9+WE8++aSczouzmtvtltvtjv8TAAAA7ZJtMzfp6ekaNmyY6urqQm3BYFB1dXUqKSlp85gzZ85cFGBcLpckybKsxBULAAA6DNtmbiSpoqJCU6ZM0fDhwzVy5EgtXbpUfr9f5eXlkqTJkycrPz9f1dXVkqRx48ZpyZIlGjJkiIqLi9XU1KSnnnpK48aNC4UcAACQ2mwNNxMmTNDx48c1b948NTc3a/DgwaqtrQ0tMj548GDYTM3cuXPlcDg0d+5cHTlyRNdff73GjRunn/zkJ3Y9BQAA0M44rBT7PMfn8yk7O1stLS3KysqyuxwAABCBaN6/O9TZUgAAAFdCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYpVMknf793/896jsuLy9Xly5doj4OAADgajgsy7Ku1MnpdKqgoEAulyuiOz106JD27Nmjm2666aoLjDefz6fs7Gy1tLQoKyvL7nIAAEAEonn/jmjmRpLeeecdde/ePaK+zNgAAAC7RLTmpqqqSpmZmRHf6RNPPKHrrrsu5qIAAABiFdHHUibhYykAADqeaN6/OVsKAAAYJaJwM3ToUH366acR3+kdd9yhI0eORNS3pqZGRUVFysjIUHFxsbZt23bZ/idPntT06dOVl5cnt9utvn37atOmTRHXBgAAzBbRguKGhga99957Ea+jaWho0NmzZ6/Yb8OGDaqoqNCKFStUXFyspUuXqqysTI2NjW0uXm5tbdU3v/lNde/eXb/97W+Vn5+vv/zlL+ratWtEdQEAAPNFfCq4w+FQpMtzHA6HPvrooyueCl5cXKwRI0Zo+fLlkqRgMKjCwkLNmDFDc+bMuaj/ihUr9LOf/Uy7d+9WWlpaRLWcPXs2LGj5fD4VFhay5gYAgA4k7qeC79+/P+oiCgoKLnt7a2urtm/frsrKylCb0+lUaWmp6uvr2zzm97//vUpKSjR9+nT993//t66//npNnDhRs2fPvuQePNXV1Zo/f37U9QMAgI4ponDTs2fPuD/wiRMnFAgE5PF4wto9Ho92797d5jH79u3T66+/ru985zvatGmTmpqa9Pjjj+vcuXOqqqpq85jKykpVVFSErl+YuQEAAGaKeBO/9iAYDKp79+56/vnn5XK5NGzYMB05ckQ/+9nPLhlu3G633G53kisFAAB2sS3c5OTkyOVyyev1hrV7vV7l5ua2eUxeXp7S0tLCPoLq37+/mpub1draqvT09ITWDAAA2j/b9rlJT0/XsGHDVFdXF2oLBoOqq6tTSUlJm8fcfvvtampqUjAYDLXt2bNHeXl5BBsAACDJ5k38KioqtGrVKq1bt04ffvihHnvsMfn9fpWXl0uSJk+eHLbg+LHHHtMnn3yi73//+9qzZ482btyohQsXavr06XY9BQAA0M5E/bHUTTfdpLfffltf+9rXwtpPnjypoUOHat++fRHf14QJE3T8+HHNmzdPzc3NGjx4sGpra0OLjA8ePCin82/5q7CwUJs3b9asWbM0cOBA5efn6/vf/75mz54d7dMAAACGivq7pZxOp5qbmy/aZM/r9eqGG26IaPM+O/HdUgAAdDxx3+dG+mKPmQs2b96s7Ozs0PVAIKC6ujoVFRVFXy0AAEAcRRxuxo8fL+mL3YenTJkSdltaWpqKior07LPPxrU4AACAaEUcbi6coXTjjTfq7bffVk5OTsKKAgAAiFXUC4pj+SoGAACAZIlpE7+6ujrV1dXp2LFjYXvOSNKaNWviUhgAAEAsog438+fP19NPP63hw4crLy9PDocjEXUBAADEJOpws2LFCq1du1aTJk1KRD0AAABXJeodiltbWzVq1KhE1AIAAHDVog43Dz30kF544YVE1AIAAHDVov5Y6vPPP9fzzz+v1157TQMHDlRaWlrY7UuWLIlbcQAAANGKOtzs3LlTgwcPliTt2rUr7DYWFwMAALtFHW62bNmSiDoAAADiIuo1Nxc0NTVp8+bN+uyzzyRJUX7/JgAAQEJEHW7++te/6hvf+Ib69u2rsWPH6ujRo5KkqVOn6l//9V/jXiAAAEA0og43s2bNUlpamg4ePKhrr7021D5hwgTV1tbGtTgAAIBoRb3m5pVXXtHmzZtVUFAQ1t6nTx/95S9/iVthAAAAsYh65sbv94fN2FzwySefyO12x6UoAACAWEUdbkaPHq3/+I//CF13OBwKBoNavHix7r777rgWBwAAEK2oP5ZavHixvvGNb+idd95Ra2urfvjDH+rPf/6zPvnkE7355puJqBEAACBiUc/c3HbbbdqzZ4/uuOMOffvb35bf79c//MM/6N1331WvXr0SUSMAAEDEopq5OXfunO69916tWLFCTz75ZKJqAgAAiFlUMzdpaWnauXNnomoBAAC4alF/LPXP//zPWr16dSJqAQAAuGpRLyg+f/681qxZo9dee03Dhg1T586dw27nW8EBAICdog43u3bt0tChQyVJe/bsCbuNbwUHAAB2iyrcBAIBzZ8/XwMGDFC3bt0SVRMAAEDMolpz43K5NGbMGJ08eTJB5QAAAFydmPa52bdvXyJqAQAAuGpRh5sf//jH+sEPfqA//OEPOnr0qHw+X9gFAADATg7LsqxoDnA6/5aHvryA2LIsORwOBQKB+FWXAD6fT9nZ2WppaVFWVpbd5QAAgAhE8/4d9dlSW7ZsibkwAACARIs63Nx5552JqAMAACAuog43f/zjHy97+9e//vWYiwEAALhaUYebu+6666K2L6+9ae9rbvA3fr9fmZmZkqTTp09ftNs0AAAdUdRnS3366adhl2PHjqm2tlYjRozQK6+8kogaAQAAIhb1zE12dvZFbd/85jeVnp6uiooKbd++PS6FAQAAxCLqmZtL8Xg8amxsjNfdAQAAxCTqmZudO3eGXbcsS0ePHtWiRYs0ePDgeNUFAAAQk6jDzeDBg+VwOPTVvf/+7u/+TmvWrIlbYQAAALGIOtzs378/7LrT6dT111+vjIyMuBUFAAAQq6jDTc+ePRNRBwAAQFxEvKD49ddf1y233NLml2O2tLTo1ltv1Z/+9Ke4FgcAABCtiMPN0qVLNW3atDa/rCo7O1uPPPKIlixZEtfiAAAAohVxuHnvvfd07733XvL2MWPGsMcNAACwXcThxuv1Ki0t7ZK3d+rUScePH49LUUi+I0eO2F0CAABxEXG4yc/P165duy55+86dO5WXlxdTETU1NSoqKlJGRoaKi4u1bdu2iI5bv369HA6Hxo8fH9Pjprp169aFfu7fv79Wr15tYzUAAMRHxOFm7Nixeuqpp/T5559fdNtnn32mqqoq/f3f/33UBWzYsEEVFRWqqqrSjh07NGjQIJWVlenYsWOXPe7AgQP6wQ9+oNGjR0f9mJAOHz6sGTNmhK4Hg0E98sgjOnz4sI1VAQBw9RzWV3fjuwSv16uhQ4fK5XLpe9/7nm6++WZJ0u7du1VTU6NAIKAdO3bI4/FEVUBxcbFGjBih5cuXS/riTbawsFAzZszQnDlz2jwmEAjo61//uv7lX/5Ff/rTn3Ty5Em9/PLLET2ez+dTdna2Wlpa2lwcnSq2bNmie+65p832tr75HQAAO0Xz/h3xPjcej0dvvfWWHnvsMVVWVoZ2KHY4HCorK1NNTU3Uwaa1tVXbt29XZWVlqM3pdKq0tFT19fWXPO7pp59W9+7dNXXq1Cuefn727FmdPXs2dL2tU9lTUZ8+feR0OhUMBkNtLpdLvXv3trEqAACuXlSb+PXs2VObNm3Sp59+qqamJlmWpT59+qhbt24xPfiJEycUCAQuCkUej0e7d+9u85g33nhDq1evVkNDQ0SPUV1drfnz58dUn8kKCgq0bNkyTZ8+XdIXwWblypUqKCiwuTIAAK5OTN8K3q1bN40YMUIjR46MOdjE4tSpU5o0aZJWrVqlnJyciI6prKxUS0tL6HLo0KEEV9lxTJkyJfTzBx98oKlTp9pYDQAA8RH11y/EU05Ojlwul7xeb1i71+tVbm7uRf337t2rAwcOaNy4caG2Cx+rdOrUSY2NjerVq1fYMW63W263OwHVmyU/P9/uEgAAiIuYZm7iJT09XcOGDVNdXV2oLRgMqq6uTiUlJRf179evn95//301NDSELt/61rd09913q6GhQYWFhcksHwAAtEO2ztxIUkVFhaZMmaLhw4dr5MiRWrp0qfx+v8rLyyVJkydPVn5+vqqrq5WRkaHbbrst7PiuXbtK0kXtAAAgNdkebiZMmKDjx49r3rx5am5u1uDBg1VbWxtaZHzw4EE5nbZOMAEAgA4k4n1uTME+N3/j9/uVmZkpSTp9+rQ6d+5sc0UAALQtmvdvpkQAAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABjF9lPBYZ/OnTsrxU6WAwCkAGZuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKO0i3BTU1OjoqIiZWRkqLi4WNu2bbtk31WrVmn06NHq1q2bunXrptLS0sv2BwAAqcX2cLNhwwZVVFSoqqpKO3bs0KBBg1RWVqZjx4612X/r1q168MEHtWXLFtXX16uwsFBjxozRkSNHklw5AABojxyWZVl2FlBcXKwRI0Zo+fLlkqRgMKjCwkLNmDFDc+bMueLxgUBA3bp10/LlyzV58uQr9vf5fMrOzlZLS4uysrKuun4AAJB40bx/2zpz09raqu3bt6u0tDTU5nQ6VVpaqvr6+oju48yZMzp37pyuu+66Nm8/e/asfD5f2AUAAJjL1nBz4sQJBQIBeTyesHaPx6Pm5uaI7mP27Nnq0aNHWED6surqamVnZ4cuhYWFV103AABov2xfc3M1Fi1apPXr1+t3v/udMjIy2uxTWVmplpaW0OXQoUNJrhIAACRTJzsfPCcnRy6XS16vN6zd6/UqNzf3ssc+88wzWrRokV577TUNHDjwkv3cbrfcbndc6kXH4Pf7lZmZKUk6ffq0OnfubHNFAIBksnXmJj09XcOGDVNdXV2oLRgMqq6uTiUlJZc8bvHixVqwYIFqa2s1fPjwZJQKAAA6CFtnbiSpoqJCU6ZM0fDhwzVy5EgtXbpUfr9f5eXlkqTJkycrPz9f1dXVkqSf/vSnmjdvnl544QUVFRWF1uZkZmaG/loHAACpy/ZwM2HCBB0/flzz5s1Tc3OzBg8erNra2tAi44MHD8rp/NsE0y9/+Uu1trbqH//xH8Pup6qqSj/60Y+SWToAAGiHbN/nJtnY58Z8rLkBAPN0mH1uAAAA4o1wAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbGO3IkSN2lwAASDLCDYyzbt260M/9+/fX6tWrbawGAJBsbOIHoxw+fFg9e/ZUMBgMtblcLh04cEAFBQU2VgYAuBps4oeU9dFHH4UFG0kKBAJqamqyqSIAQLIRbmCUPn36hH0XmfTFzE3v3r1tqggAkGyEGxiloKBAy5YtC113uVxauXIlH0kBQAphzQ2M8+UvzmxsbFTfvn1trggAcLVYcwP8v/z8fLtLSAi/3y+HwyGHwyG/3293OQDQrhBuAACAUQg3AADAKIQbAABgFMINANuwdghAIhBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXAD43Tu3FmWZcmyLHXu3NnucgC0A5yZl1oIN0AHd+TIEbtLAIB2hXADdEDr1q0L/dy/f3+tXr3axmoAoH0h3AAdzOHDhzVjxozQ9WAwqEceeUSHDx+2sSoAaD8IN0AH89FHHykYDIa1BQIBNTU12VQRALQvhBugg+nTp4+czvBfXZfLpd69e9tUUXywdghAvBBugA6moKBAy5YtC113uVxauXKlCgoKbKwqNqwdApAIDsuyLLuLSCafz6fs7Gy1tLQoKyvL7nKAmPj9fmVmZkqSGhsb1bdvX5srit7hw4fVs2fPsI/YXC6XDhw40CGDGtq3L//OnD59mm0iOqBo3r+ZuQE6uPz8fLtLiAlrhwAkCuEGgC1MXTvEZnGA/Qg3AGxh0tohIF4Ix/FBuAFgmylTpoR+/uCDDzR16lQbq0Gq4Mw88xFuALQLHXXtEDoGzsxLLYQbAIDR2NU79RBuAABG48y81EO4AQAYzdQz83BphBsAgNE4My/1EG4AAMbjzLzUQrgBOqDOnTvLsixZlsU28kgKk/Zf4cy8xGkvrxPCDQAAMArhBgAShM3iAHsQbgAgjtgsDvFCOI4d4QaAbUxbO8RmcbhahOP4aBfhpqamRkVFRcrIyFBxcbG2bdt22f6/+c1v1K9fP2VkZGjAgAHatGlTkioFgEtjszhcDcJx/NgebjZs2KCKigpVVVVpx44dGjRokMrKynTs2LE2+7/11lt68MEHNXXqVL377rsaP368xo8fr127diW5cgAIx2ZxuBqE4/ixPdwsWbJE06ZNU3l5uW655RatWLFC1157rdasWdNm/1/84he699579W//9m/q37+/FixYoKFDh2r58uVt9j979qx8Pl/YBQASgc3icDUIx/Fja7hpbW3V9u3bVVpaGmpzOp0qLS1VfX19m8fU19eH9ZeksrKyS/avrq5WdnZ26FJYWBi/JwAAX8FmcYgV4Th+bA03J06cUCAQkMfjCWv3eDxqbm5u85jm5uao+ldWVqqlpSV0OXToUHyKB4ArYLM4RItwHB+d7C4g0dxut9xut91lAABsdOHMvI6EcBw7W2ducnJy5HK55PV6w9q9Xq9yc3PbPCY3Nzeq/gCA+GL/FUTCzteJreEmPT1dw4YNU11dXagtGAyqrq5OJSUlbR5TUlIS1l+SXn311Uv2BwBcPfZfQSTay+vEYdk8T7dhwwZNmTJFK1eu1MiRI7V06VK9+OKL2r17tzwejyZPnqz8/HxVV1dL+uJU8DvvvFOLFi3S/fffr/Xr12vhwoXasWOHbrvttis+ns/nU3Z2tlpaWpSVlZXopwcgxfj9fmVmZkqSTp8+bczmhD179gw7TdnlcunAgQMsdo2zjvz6SfTrJJr3b9vX3EyYMEHHjx/XvHnz1NzcrMGDB6u2tja0aPjgwYNhp8aNGjVKL7zwgubOnasnnnhCffr00csvvxxRsAEARO9y+68QbnBBe3qd2D5zk2zM3ABIpI78l/elMHOTPB359dOeZm5s38QPANC+sf8KItGeXifM3ABAHHXkv7wv58vPq7GxUX379rW5IjN19NdPIl8nzNwAABKG/VcQCTtfJ7YvKAYAk3TEzeIA0zBzAwAAjMLMDQAA7QQzf/HBzA0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFE4FRwAcEWcooxItJfXCTM3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKN0sruAZLMsS5Lk8/lsrgQAAETqwvv2hffxy0m5cHPq1ClJUmFhoc2VAACAaJ06dUrZ2dmX7eOwIolABgkGg/r444/VpUsXORyOuN2vz+dTYWGhDh06pKysrLjdL64eY9M+MS7tE+PSPjEuX8zYnDp1Sj169JDTeflVNSk3c+N0OlVQUJCw+8/KykrZF157x9i0T4xL+8S4tE+pPi5XmrG5gAXFAADAKIQbAABgFMJNnLjdblVVVcntdttdCr6CsWmfGJf2iXFpnxiX6KTcgmIAAGA2Zm4AAIBRCDcAAMAohBsAAGAUwg0AADAK4SYKNTU1KioqUkZGhoqLi7Vt27bL9v/Nb36jfv36KSMjQwMGDNCmTZuSVGnqiWZsVq1apdGjR6tbt27q1q2bSktLrziWiE20vzMXrF+/Xg6HQ+PHj09sgSkq2nE5efKkpk+frry8PLndbvXt25f/zxIg2nFZunSpbr75Zl1zzTUqLCzUrFmz9Pnnnyep2nbOQkTWr19vpaenW2vWrLH+/Oc/W9OmTbO6du1qeb3eNvu/+eablsvlshYvXmx98MEH1ty5c620tDTr/fffT3Ll5ot2bCZOnGjV1NRY7777rvXhhx9a3/3ud63s7Gzr8OHDSa7cbNGOywX79++38vPzrdGjR1vf/va3k1NsCol2XM6ePWsNHz7cGjt2rPXGG29Y+/fvt7Zu3Wo1NDQkuXKzRTsuv/71ry232239+te/tvbv329t3rzZysvLs2bNmpXkytsnwk2ERo4caU2fPj10PRAIWD169LCqq6vb7P/AAw9Y999/f1hbcXGx9cgjjyS0zlQU7dh81fnz560uXbpY69atS1SJKSmWcTl//rw1atQo61e/+pU1ZcoUwk0CRDsuv/zlL62bbrrJam1tTVaJKSnacZk+fbp1zz33hLVVVFRYt99+e0Lr7Cj4WCoCra2t2r59u0pLS0NtTqdTpaWlqq+vb/OY+vr6sP6SVFZWdsn+iE0sY/NVZ86c0blz53TdddclqsyUE+u4PP300+revbumTp2ajDJTTizj8vvf/14lJSWaPn26PB6PbrvtNi1cuFCBQCBZZRsvlnEZNWqUtm/fHvroat++fdq0aZPGjh2blJrbu5T74sxYnDhxQoFAQB6PJ6zd4/Fo9+7dbR7T3NzcZv/m5uaE1ZmKYhmbr5o9e7Z69OhxURhF7GIZlzfeeEOrV69WQ0NDEipMTbGMy759+/T666/rO9/5jjZt2qSmpiY9/vjjOnfunKqqqpJRtvFiGZeJEyfqxIkTuuOOO2RZls6fP69HH31UTzzxRDJKbveYuUFKW7RokdavX6/f/e53ysjIsLuclHXq1ClNmjRJq1atUk5Ojt3l4EuCwaC6d++u559/XsOGDdOECRP05JNPasWKFXaXltK2bt2qhQsX6rnnntOOHTv00ksvaePGjVqwYIHdpbULzNxEICcnRy6XS16vN6zd6/UqNze3zWNyc3Oj6o/YxDI2FzzzzDNatGiRXnvtNQ0cODCRZaacaMdl7969OnDggMaNGxdqCwaDkqROnTqpsbFRvXr1SmzRKSCW35e8vDylpaXJ5XKF2vr376/m5ma1trYqPT09oTWngljG5amnntKkSZP00EMPSZIGDBggv9+vhx9+WE8++aScztSeu0jtZx+h9PR0DRs2THV1daG2YDCouro6lZSUtHlMSUlJWH9JevXVVy/ZH7GJZWwkafHixVqwYIFqa2s1fPjwZJSaUqIdl379+un9999XQ0ND6PKtb31Ld999txoaGlRYWJjM8o0Vy+/L7bffrqamplDYlKQ9e/YoLy+PYBMnsYzLmTNnLgowFwKoxVdGcip4pNavX2+53W5r7dq11gcffGA9/PDDVteuXa3m5mbLsixr0qRJ1pw5c0L933zzTatTp07WM888Y3344YdWVVUVp4InSLRjs2jRIis9Pd367W9/ax09ejR0OXXqlF1PwUjRjstXcbZUYkQ7LgcPHrS6dOlife9737MaGxutP/zhD1b37t2tH//4x3Y9BSNFOy5VVVVWly5drP/8z/+09u3bZ73yyitWr169rAceeMCup9CuEG6isGzZMuuGG26w0tPTrZEjR1r/+7//G7rtzjvvtKZMmRLW/8UXX7T69u1rpaenW7feequ1cePGJFecOqIZm549e1qSLrpUVVUlv3DDRfs782WEm8SJdlzeeustq7i42HK73dZNN91k/eQnP7HOnz+f5KrNF824nDt3zvrRj35k9erVy8rIyLAKCwutxx9/3Pr000+TX3g75LAs5q8AAIA5WHMDAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAOg3fnud7+r8ePHJ/1x165dK4fDIYfDoZkzZ4ba77rrrlB7Q0ND0usCEB2+FRxAUjkcjsveXlVVpV/84he2fflfVlaWGhsb1blz51DbSy+9pL1792rkyJG21AQgOoQbAEl19OjR0M8bNmzQvHnz1NjYGGrLzMxUZmamHaVJ+iJ85ebmhrVdd9118vl8NlUEIFp8LAUgqXJzc0OX7OzsUJi4cMnMzLzoY6m77rpLM2bM0MyZM9WtWzd5PB6tWrVKfr9f5eXl6tKli3r37q3/+Z//CXusXbt26b777lNmZqY8Ho8mTZqkEydOJPkZA0g2wg2ADmHdunXKycnRtm3bNGPGDD322GP6p3/6J40aNUo7duzQmDFjNGnSJJ05c0aSdPLkSd1zzz0aMmSI3nnnHdXW1srr9eqBBx6w+ZkASDTCDYAOYdCgQZo7d6769OmjyspKZWRkKCcnR9OmTVOfPn00b948/fWvf9XOnTslScuXL9eQIUO0cOFC9evXT0OGDNGaNWu0ZcsW7dmzx+ZnAyCRWHMDoEMYOHBg6GeXy6Wvfe1rGjBgQKjN4/FIko4dOyZJeu+997Rly5Y21+/s3btXffv2TXDFAOxCuAHQIaSlpYVddzgcYW0XzsIKBoOSpNOnT2vcuHH66U9/etF95eXlJbBSAHYj3AAw0tChQ/Vf//VfKioqUqdO/FcHpBLW3AAw0vTp0/XJJ5/owQcf1Ntvv629e/dq8+bNKi8vVyAQsLs8AAlEuAFgpB49eujNN99UIBDQmDFjNGDAAM2cOVNdu3aV08l/fYDJHJZd24ACQDuzdu1azZw5UydPnrzotgMHDujGG2/Uu+++q8GDBye9NgCR488XAPiSlpYWZWZmavbs2aG2++67T7feequNVQGIBjM3APD/Tp06Ja/XK0nq2rWrcnJyJElHjhzRZ599Jkm64YYblJ6ebluNAK6McAMAAIzCx1IAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFH+D4JJ1k4ecslYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.errorbar(\n", + " data_frame['time'], \n", + " data_frame['current'], \n", + " data_frame['delta_current'], \n", + " ls='', \n", + " marker='.', \n", + " color='k'\n", + ")\n", + "plt.xlabel('Time []')\n", + "plt.ylabel('Current []')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "100a4fe4-a5c4-4be3-a7f7-13337b97a194", + "metadata": {}, + "source": [ + "Nun wollen wir die Messdaten mit Hilfe von `iminuit` fitten. Hierzu müssen wir zunächste zwei Module des packages importieren und eine Funktion für die Entladekurve des Kondensators definieren:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "520f4973", + "metadata": {}, + "outputs": [], + "source": [ + "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `iminuit` zu installieren!\n", + "# import sys\n", + "# import subprocess\n", + "# subprocess.check_call([\n", + "# sys.executable, \n", + "# '-m',\n", + "# 'pip',\n", + "# 'install',\n", + "# '--proxy',\n", + "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", + "# 'iminuit'\n", + "# ])" + ] + }, + { + "cell_type": "code", + "execution_count": 492, + "id": "2ffe340b-cd0f-45ec-b5b8-42e7a0349d4c", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "from iminuit import Minuit, cost\n", + "import numpy as np\n", + "\n", + "def discharge_current(t, I0, R, C):\n", + " return I0 * np.exp(-t/(R*C))" + ] + }, + { + "cell_type": "markdown", + "id": "ef87da8f-7af9-4e3f-af63-c28a2e1d9830", + "metadata": {}, + "source": [ + "Nun können wir den Fit selbst durchführen. Hierzu muss zuerst mittels dem `cost` Modul eine sogenannte Kostenfunktion erstellt werden. Die Kostenfunktion ist im Grunde unsere $\\chi^2$ Funktion\n", + "\n", + "$$ \\chi^2 = \\sum_i =\\frac{(y_i – f(x_i, \\theta))^2}{\\Delta y_i^2}$$\n", + "\n", + "welche minimiert werden soll. Dies ist bereits bei `iminuit` für uns vordefiniert. Anschließend können wir die genutzt Kostenfunktion über `Minuit` minimieren lassen. Hierzu müssen wir zunächst geeignete Startwerte für den Minimierungsprozess vorgeben. Diese sollten im Idealfall nicht allzu weit von den wahren Werten entfernt liegen. Wir werden an einem späteren Beispiel noch einmal genauer zeigen, wie man hier vorgehen kann. Um den Minimierungsprozess zu starten muss noch am Ende `migrad()` aufgerufen werden." + ] + }, + { + "cell_type": "code", + "execution_count": 493, + "id": "bf36b7b9-fb20-47b7-8538-479026b48fb2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 2.707 (χ²/ndof = 0.4) Nfcn = 103
EDM = 2.18e-10 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance FORCED pos. def.
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 I0 1.07 0.05
1 R 0.03e6 0.05e6
2 C 3e-6 5e-6
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
I0 R C
I0 0.00253 -34.4329 (-0.014) -3.448e-9 (-0.014)
R -34.4329 (-0.014) 2.25e+09 -224.599380820e-3 (-0.997)
C -3.448e-9 (-0.014) -224.599380820e-3 (-0.997) 2.25e-11
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:45.613232\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 2.707 (χ²/ndof = 0.4) │ Nfcn = 103 │\n", + "│ EDM = 2.18e-10 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance FORCED pos. def. │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ I0 │ 1.07 │ 0.05 │ │ │ │ │ │\n", + "│ 1 │ R │ 0.03e6 │ 0.05e6 │ │ │ │ │ │\n", + "│ 2 │ C │ 3e-6 │ 5e-6 │ │ │ │ │ │\n", + "└───┴──────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌────┬───────────────────────────────────────────────────────┐\n", + "│ │ I0 R C │\n", + "├────┼───────────────────────────────────────────────────────┤\n", + "│ I0 │ 0.00253 -34.4329 -3.448e-9 │\n", + "│ R │ -34.4329 2.25e+09 -224.599380820e-3 │\n", + "│ C │ -3.448e-9 -224.599380820e-3 2.25e-11 │\n", + "└────┴───────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 493, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Kostenfunktion:\n", + "ls = cost.LeastSquares(\n", + " data_frame['time'],\n", + " data_frame['current'], \n", + " data_frame['delta_current'], \n", + " discharge_current,\n", + ")\n", + "\n", + "# Minimierung\n", + "mi = Minuit(ls, # Kostenfunktion \n", + " I0=0.9, # Startwerte\n", + " R=10*10**3, \n", + " C=10**-6\n", + " )\n", + "mi.migrad()\n", + "mi.hesse()" + ] + }, + { + "cell_type": "markdown", + "id": "b5df2d60-8284-4757-96c8-7f26afc17942", + "metadata": {}, + "source": [ + "Wie ihr seht gibt euch minuit euch vier verschiedene Objekte zurück. Für euch am wichtigsten ist die erste Tabelle, welche euch zeigt, ob euer Fit funktioniert hat. Im Allgemeinen gilt sind hier alle Felder grün hat euer Fit funktioniert, gelbe Felder können ein Problem andeuten müssen sie aber nicht und lila Felder bedeuten, dass etwas mit eurem Fit nicht in Ordnung ist. Die Bedeutungen der einzelnen Felder für unseren obigen Fit sind auch nochmal in der nachfolgenden Abbildung einzeln erklärt. Die Bedeutung der meisten Felder werden wir noch im laufe des Kurses kennen lernen. \n", + "\n", + "
\n", + "\"{{Fit\n", + "
\n", + "\n", + "Wie wir unserer Tabelle entnehmen können, gibt es also ein Problem mit unserem Fit. Um besser verstehen zu können, was das Problem sein könnte, wollen wir uns auch noch die anderen Outputs ansehen.\n", + "\n", + "Die zweite Tabelle zeigt uns die bestimmten Werte für die Parameter in der Spalte `Value` und deren Unsicherheiten in der Spalte `Hess error`. Hierbei fällt auf, dass für unseren obigen Fit die Unsicherheiten der Parameter $R$ und $C$ größer sind als die bestimmten Werte selbst. \n", + "\n", + "Die dritte Tabelle ist die sogennnante **Kovarianzmatrix**. Die Kovarianzmatrix hat als Einträge auf ihrer **Hauptdiagonalen** die **Varianzen der entsprechenden Parameter** auf der **Nebendiagonalen** stehen die **Kovarianzen**. Der Wert in Klammern gibt die **Korrelation** zwischen den entspechenden Parametern an. Sind zwei Parameter stark **korreliert**, wird das entsprechende Feld **blau** dargestellt, bei einer **Antikorrelation** ist das Feld **rot**. \n", + "\n", + "Die letzte Ausgabe ist ein Plot unserer Messwerte zusammen mit der Fitfunktion basierend auf den Parametern des besten Fits. (Nur für neuere Version von `iminuit`)" + ] + }, + { + "cell_type": "markdown", + "id": "72665daa-1d74-41da-8b9a-1e4c427eed07", + "metadata": {}, + "source": [ + "Obwohl underser Fit unsere Messdaten gut widerspiegelt, scheint es ein Problem mit der Bestimmung einiger Parameter zu geben. Die große Unsicherheit in $R$ und $C$ deutet an, dass hier das Problem liegt. Um dies zu bestätigen, können wir uns einmal das reduzierte $\\chi^2(x, I_0, R, C)$ als Funktion des entsprechenden Parameters von `iminuit` plotten lassen, während wir die anderen Parameter, so wie die x-Werte, konstant lassen. \n", + "\n", + "Für $I_0$ sieht das entsprechende Profil so aus:" + ] + }, + { + "cell_type": "code", + "execution_count": 494, + "id": "d3230cb6-fbe3-4093-ba09-5271dc168a4d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Matthias\\.venv\\jupyter\\lib\\site-packages\\iminuit\\minuit.py:2579: IMinuitWarning: Specified nsigma bound, but error matrix is not accurate\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHHCAYAAABQhTneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsj0lEQVR4nO3dd3hT9f4H8Hd2uvekpbRlFCirBcoqQ8oGwQGoqKAI6oUr4FVRf1dBvQoqKg5URBEnMhwoKgrIEspoKbNsCi0dlNI90qbJ9/dHaLRSRtu0J+P9ep4+lJOTk/fJSZpPzvkOmRBCgIiIiMhByKUOQERERNScWPwQERGRQ2HxQ0RERA6FxQ8RERE5FBY/RERE5FBY/BAREZFDYfFDREREDoXFDxERETkUFj9ERETkUFj8EBERkUNh8UMOZcWKFZDJZEhKSqq1vLCwENOnT4efnx9cXFwwaNAg7N+/v9nznThxAnPmzEGfPn2g1Wohk8lw7ty5em3j2LFjGD58OFxdXeHt7Y377rsPly5dqrXO/PnzIZPJrvmzc+dOC+4VUFlZiblz5yI4OBhOTk6Ii4vDxo0bb/r+mZmZmDBhAjw9PeHu7o6xY8fi7NmzV613rf1ZuHBhg7ZZUVGBqVOnIjo6Gh4eHnB1dUWXLl3w9ttvQ6/X1/+JsIBPPvkE7du3h1arRZs2bfDuu+/e9H1v9jgMHDiwzudx+PDhDd7mK6+8gl69esHPz8+cffbs2Ve9Nomag1LqAERSMxqNGDVqFA4ePIgnn3wSvr6+eP/99zFw4EAkJyejTZs2zZYlMTER77zzDjp06ID27dvjwIED9br/hQsX0L9/f3h4eOCVV15BaWkpFi1ahMOHD2Pv3r1Qq9UAgNtvvx2tW7e+6v7PPvssSktL0aNHD0vsjtmUKVOwdu1azJ49G23atMGKFSswcuRIbNmyBf369bvufUtLSzFo0CAUFRXh2WefhUqlwltvvYUBAwbgwIED8PHxqbX+kCFDcP/999da1q1btwZts6KiAkePHsXIkSPRqlUryOVy7Nq1C3PmzMGePXvw9ddfW+DZuXlLly7FI488gjvuuAOPP/44duzYgcceewzl5eWYO3fuDe9fn+MQEhKCBQsW1FoWHBzc4G0mJyeja9euuOuuu+Dm5oZjx45h2bJl+Pnnn3HgwAG4uLg08FkhagBB5EA+/fRTAUDs27fPvGzVqlUCgFizZo15WW5urvD09BR33313s+a7fPmyKC4uFkII8frrrwsAIi0t7abv/+ijjwonJydx/vx587KNGzcKAGLp0qXXvW96erqQyWRi2rRpDcp+LXv27BEAxOuvv25eVlFRISIjI0Xv3r1veP9XX31VABB79+41Lzt27JhQKBTimWeeqbUuADFjxgyLbrMuM2fOFABEdnb2Ddf9p8mTJ4sBAwbU+37l5eXCx8dHjBo1qtbySZMmCRcXF5Gfn3/d+9fnOAwYMEB07Njxhpkae2zXrl0rAIiVK1fecF0iS+JlL3J4a9euRUBAAG6//XbzMj8/P0yYMAHr1q1DZWVls2Xx9vaGm5tbg+//7bffYvTo0WjZsqV5WUJCAtq2bYvVq1df974rV66EEAKTJk1q8OPXZe3atVAoFJg+fbp5mVarxdSpU5GYmIiMjIwb3r9Hjx61zkZFRUVh8ODB19yniooK6HQ6i27z71q1agXAdLm0uWzZsgWXL1/Gv/71r1rLZ8yYgbKyMvz888/XvX9DjkN1dTVKS0stus2/k+J5JALY5ocIKSkpiImJgVxe++3Qs2dPlJeX4+TJk9e9f2lpKfLy8m74U1RU1JS7gczMTOTm5qJ79+5X3dazZ0+kpKRc9/5fffUVQkND0b9/f4vmSklJQdu2beHu7n5VJgDXvbRnNBpx6NCha+7TmTNnUFJSUmv5ihUr4OLiAicnJ3To0OGqS1MN2WZVVRXy8vKQkZGB77//HosWLUJYWFidlw6bSs3x+2fu2NhYyOXyGx7f+h6HkydPwsXFBW5ubggMDMRzzz13VTun+m5TCIG8vDzk5OSYL9kpFAoMHDjwutmJLI1tfsjhZWdn1/mBHxQUBADIyspCp06drnn/mTNn4rPPPrvh4wwYMABbt25tcM4byc7OBvBX7r8LCgpCfn4+KisrodForrr96NGjOHToEJ566inIZDKL57pWJsD0/F5LTeYb3b9du3YAgD59+mDChAkIDw9HVlYWlixZgkmTJqGoqAiPPvpog7YJAN999x3uvvtu8/+7d++O5cuXQ6lsvj+h2dnZUCgU8Pf3r7VcrVbDx8fnus9jzf1v9jhERkZi0KBB6NSpE8rKyrB27Vr873//w8mTJ7Fq1aoGbRMALl68WGv9kJAQfP3114iKirpudiJLY/FDDq+ioqLOgkCr1Zpvv56nnnoK99577w0fx8vLq2EBb1JNzhvtS123f/XVVwBg8Ute13vMm3l+b3afavyzl9qDDz6I2NhYPPvss5gyZQqcnJzqvU0AGDRoEDZu3IjCwkJs3rwZBw8eRFlZ2TVz1zAajcjPz6+1rLKyEnq9Hnl5ebWWe3h4QKVSXXNbFRUV5gbrdeW+0eu0Psfhk08+qbXOfffdh+nTp2PZsmWYM2cOevXqVe9tAqbLuhs3boROp0NKSgq+++67615WI2oqLH7I4Tk5OdXZrqemzYiTk9N179+hQwd06NChSbLVR03O+u6LEAJff/01oqOj0blz5xs+TkVFxVWX8AIDA6+bq6HPb0P3qYZarcbMmTPxyCOPIDk5Gf369WvQNgMCAhAQEAAAuPPOO/HKK69gyJAhOHXq1HX3PT09HeHh4XXe5ufnV+v/W7Zsue7lHycnJ1RVVdV5m06nu+HrtLGv8//85z9YtmwZNm3aZC5+6rtNtVqNhIQEAMDo0aMxePBg9O3bF/7+/hg9evR1H5/Iklj8kMMLCgoyXzL6u5pldXXv/buioqIbfusGTH/4vb29GxbyJtRcTrjWvnh7e9f5LX3nzp04f/78Vd2ar2XVqlV44IEHai0TQlw3V2ZmZp2ZgOs/vzWZG3N8QkNDAcB8BsYS27zzzjvxf//3f1i3bh0efvjha64XGBh41Zg3r7/+OnJycvDGG2/UWt6lS5frPmZQUBAMBgNyc3NrXfqqqqrC5cuXb5i5MccBuPp5tMQ2+/Tpg6CgIHz11VcsfqhZsfghh9e1a1fs2LEDRqOxVqPnPXv2wNnZGW3btr3u/WfNmmUVbX5atGgBPz+/qwZwBIC9e/eia9eudd7vq6++gkwmwz333HNTjzNs2LB6DVDYtWtXbNmyBcXFxbUaxu7Zs8d8+7XI5XJ06tSpzn3as2cPIiIibtg7rmbgwpozLZbYZk2xe6NG7Fqt1nymo8aXX36JysrKq5bfSM3zlJSUhJEjR5qXJyUlwWg0Xvd5rLl/Q48DcPXzaIltAqazRE3dGYDoKtL2tCdqXnWN8/PNN99cNc7PpUuXhKenp5g4ceINt3n06FGxcePGG/4kJSXVK+uNxvk5ffq0OH36dK1ljzzyiHBychLp6enmZZs2bRIAxAcffHDVNqqqqoSPj4+Ij4+vV7b62L1791Vjweh0OtG6dWsRFxdXa93z58+LY8eO1Vq2cOHCq47Z8ePHhUKhEHPnzjUvy83Nveqxi4uLRWRkpPD19RWVlZX13ualS5eE0Wi8ars14/xs3rz5Zp6CWhozzo+3t7cYPXp0reX33nuvcHZ2FpcvX66V+9ixY6KsrMy87GaPQ1FRkdDpdLUew2g0iokTJwoAIjk5ud7bLC0trZWlRs04P88991x9ngqiRmPxQw6lruKnurpa9OrVS7i6uooXXnhBLFmyRHTs2FG4ubmJ48ePN2u+wsJC8dJLL4mXXnpJDB8+XAAQ//nPf8RLL70k3n333VrrhoWFibCwsFrL0tPThY+Pj4iMjBTvvPOOeOWVV4SXl5fo1KnTVR9oQgjx008/CQDiww8/bMrdEuPHjxdKpVI8+eSTYunSpaJPnz5CqVSKbdu21VpvwIAB4p/fyWoKGH9/f/Haa6+Jt956S4SGhorg4OBaBc+8efNEly5dxH//+1/x0UcfiRdeeEGEhYUJmUwmvvzyywZt86233hLt2rUTc+fOFUuXLhWLFi0SQ4YMEQDEmDFjGvRcNLT4EUKIJUuWCADizjvvFMuWLRP333+/ACBefvnlWuvNmzdPABBbtmyptfxmjsOWLVtEYGCgmDNnjliyZIlYtGiR6Nu3rwAgpk+fflWmm9lmSkqK8PHxEf/617/EO++8I9577z0xZcoUoVQqRatWrUReXl6Dng+ihmLxQw6lruJHCCHy8/PF1KlThY+Pj3B2dhYDBgy4ap3mkJaWJgDU+fPPQqeu4kcIIY4cOSKGDh0qnJ2dhaenp5g0aZLIycmp8/HuuusuoVKpap01aAoVFRXiiSeeEIGBgUKj0YgePXqIDRs2XLVeXcWPEEJkZGSIO++8U7i7uwtXV1cxevRocerUqVrr/P7772LIkCEiMDBQqFQq4enpKYYOHXrNszM3s819+/aJ8ePHi5YtWwqNRiNcXFxETEyMePPNN4Ver2/Qc9GY4kcIIT766CPRrl07oVarRWRkpHjrrbeuOjt1reLnZo7D2bNnxfjx40WrVq2EVqsVzs7OIjY2Vnz44Yd1ngW7mW1eunRJTJ8+XURFRQkXFxehVqtFmzZtxOzZs8WlS5ca/FwQNZRMiOu0VCQiIiKyMxzhmYiIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIodj29hdFoRFZWFtzc3CCTyaSOQ0RERDdBCIGSkhIEBwfXmnbIUuy6+MnKyjJPxkdERES2JSMjAyEhIRbfrl0XPzWTE2ZkZNSadI8IAFJSUqSOQA2k0+kwfPhwAMCGDRug1WolTkQN0a1bN6kjkJUqLi5GaGjoDScZbii7Ln5qLnW5u7uz+KGruLq6Sh2BGkihUJh/d3FxgZOTk4RpqKH4d5lupKmarLDBMxERETkUFj9ERETkUOz6shcR2SeFQoHRo0ebfyciqg8WP0Rkc9RqNebPny91DCKyUbzsRURERA6FZ36IyOYIIaDT6QAAWq2Wg5gSUb3wzA8R2RydTof4+HjEx8ebiyAiopvF4oeIiIgcCosfIiIicigsfoiIiMihsPghIiIih8Lih4iIiBwKi58GMBgFdp+9DINRSB2FiIhIEidySnCppFLqGA3CcX7qSQiBEW9vx8mLpfh6Whz6RPpKHYnI4cjlcgwePNj8OxE1v+fXHcG+c/l4+65uGNMlWOo49cLip55kMhm6hXrh5MVSrD+UzeKHSAIajQavvvqq1DGIHNbFYh32nsuHEEBMmJfUceqNX5kaYHSXIADAhiM5qDYYJU5DRETUvH45nG0qfFp6ooWnk9Rx6o3FTwP0jvCBt4sa+WVVSDx7Weo4REREzWr9oWwAwOjOtnW5qwaLnwZQKuQYHh0IAFh/MFviNESOp6KiAt27d0f37t1RUVEhdRwih5JVWIHk8wWQyYBRnYOkjtMgLH4aaPSVA77haA6qqnnpi4iIHMMvh01f+nu08kaAu1biNA3D4qeB4sJ94OuqQVGFHjtP50kdh4iIqFn8ZL7kZZtnfQAWPw2mkMswspPp0tdPh7IkTkNERNT0MvLLcTCjEHIZMCKaxY9DqmnotfHoRVRWGyROQ0RE1LR+vnLJq1eED/zcNBKnaTgWP43QPcwLge5alFRWY/tJXvoiIiL7tv7KlQ5b7eVVg8VPI8jlMozsZDrtt56XvoiIyI6dyyvDkcxiKOQyc49nW8Xip5FqBjzclHoROj0vfRE1B7lcjr59+6Jv376c3oKomdR8ye8TaRrrzpZxeotG6hZqGt0ys7ACW47nYkQn220ARmQrNBoN3n77baljEDmUmoENx9j4JS+AZ34aTSaTmQd5Wn+YAx4SEZH9OZ1biuM5JVApZBjW0bYveQEsfiyiZqyDzccuoqyyWuI0RERElvXTQdMlr36tfeHhrJI4TeOx+LGATi08EObjDJ3eiE3HLkodh8juVVRUoF+/fujXrx+ntyBqYkII83h2t3a1/UteAIsfi5DJZLi1i+kFUVMdE1HT0ul00Ol0UscgsntHs4px9lIZNEo5hnSw/UteAIsfixlzpfjZdvISCsurJE5DRERkGTVnfQa394erxj76SbH4sZC2AW6ICnSD3iDw29EcqeMQERE1mtEosP6g/fTyqsHix4Jqzv78yEtfRERkB/anFyCzsAKuGiUGRflLHcdiWPxYUE1VnHjmMnJL2BaBiIhsW0071qEdAqBVKSROYzksfiyopY8zuoZ6wiiAXw5xzB8iIrJd1QajeSLTMXbSy6sGix8Lq7n09ROLH6ImI5PJEBMTg5iYGMhkMqnjENml3WfzkVdaBS9nFfq19pU6jkXZR7NtKzK6cxD+93Mqks8X4EJBOUK8nKWORGR3tFotPvroI6ljENm1Hw9mAgBGdAqCSmFf50rsa2+sQIC7Fr3CfQD8NQ8KERGRLamsNuDXI6aey/bUy6sGi58mYO71dYC9voiIyPZsP5mHEl01Atw16BnuLXUci2Px0wRGRAdCKZchNbsYp3NLpY5DZHcqKiqQkJCAhIQETm9B1ARqhmwZ3TkYCrn9tatj8dMEvFzUiG9jahzGMX+ImkZhYSEKCwuljkFkd8oqq7Ep1TRPZc2VDHvD4qeJjO3aAgDw44FMCCEkTkNERHRzNh27iAq9AWE+zugS4iF1nCbB4qeJDOkQACeVAucul+PQhSKp4xAREd2UH1JMvbzGdgm226EkWPw0EReNEkM6BAAAfjiQKXEaIiKiG7tcWontp/IAALdeuYJhj1j8NKGxV0bE/OlgNgxGXvoiIiLr9sth0+dVdAt3tPZ3lTpOk2Hx04T6t/WDl7MKeaWVSDxzWeo4RERE17XuyhAt4+z4rA/A4qdJqRRyjOwUBICXvogsSSaToUOHDujQoYPdtkkgam4Z+eVIOl8AmczUxd2esfhpYuO6marnDUdyoNMbJE5DZB+0Wi0+//xzfP7559BqtVLHIbILNUOz9I7wQaCHfb+vWPw0sdiWXmjh6YTSymr8cTxX6jhERER1qpmVYKydzeBeFxY/TUwul5kHiVrHS19ERGSFjmUX48TFEqgVcgyPDpI6TpNj8dMMxnUzFT9bjl9CUYVe4jREtk+n02HMmDEYM2YMdDqd1HGIbF5NQ+dBUX7wcFJJnKbpsfhpBlGB7mgX4IYqgxEbjnCmd6LGEkIgOzsb2dnZHEGdqJGMRoEfr1yZsPdeXjVY/DSTsd1qLn1xri8iIrIeSecLkFWkg5tGiUFR/lLHaRYsfprJrVfa/SSevYycIp6mJyIi61AzFMuw6EBoVQqJ0zQPFj/NJMTLGT1beUMINnwmIiLrUFltwM+HTM0xbuvmGJe8ABY/zapmzJ/vU1j8EBGR9Go64gS6a9ErwkfqOM2GxU8zGtUpCGqFHMdzSnAsu1jqOERE5OC+T7kAwDS2j0LuOKOls/hpRh7OKtxypTHZDzz7Q9RgMpkMERERiIiI4PQWRA1UWF6FLccvAQBui3GcS14Ai59mV/MC++FAJmd6J2ogrVaL1atXY/Xq1ZzegqiBfjmcgyqDEVGBbogKdJc6TrNi8dPMBrYzDSB1sbgSu89ypnciIpJGzSUvR2roXIPFTzPTKBUY1dk0dPh3+3npi4iIml9Gfjn2nTPN4D7WQQY2/DsWPxK43TzTezYqqjjTO1F96XQ6TJgwARMmTOD0FkQNUNPutE+k/c/gXhebKX4WLlwImUyG2bNnSx2l0WLDvBDq7YSyKgN+T82ROg6RzRFC4OzZszh79iyntyCqJyEEvr8y3txt3UIkTiMNmyh+9u3bh6VLl6Jz585SR7EImUyG266cZmSvLyIiak6HM4tw9lIZtCo5hnUMkDqOJKy++CktLcWkSZOwbNkyeHl5SR3HYmoGPNx+Kg+XSiolTkNERI6ipr3pkA6BcNPa/wzudbH64mfGjBkYNWoUEhISbrhuZWUliouLa/1Yqwg/V3QJ9YTBKPDTQU52SkRETU9vMGL9IdNnzu0O2MurhlUXP9988w3279+PBQsW3NT6CxYsgIeHh/knNDS0iRM2zm1dTZOdcroLIiJqDjtOXUJeaRV8XNTo18ZX6jiSsdriJyMjA7NmzcJXX31104OYPfPMMygqKjL/ZGRkNHHKxrm1awso5TIczizCyYslUschIiI7922y6cv22K4toFJYbQnQ5Kx2z5OTk5Gbm4uYmBgolUoolUps27YN77zzDpRKJQyGq7uIazQauLu71/qxZt4uagy6Mt3Ft/svSJyGyHbIZDIEBQUhKCiI01sQ3aSicj02HrsIALjdwaaz+Cel1AGuZfDgwTh8+HCtZQ888ACioqIwd+5cKBQKiZJZ1h0xIdiYehE/pGTiqWFRDjWxHFFDabVa/PTTT1LHILIp6w9noaraNJ1Fx2DrPjnQ1Ky2+HFzc0N0dHStZS4uLvDx8blquS0bFOUHT2fTdBc7T+ehf1s/qSMREZEdqunldXtMC4c/Y2q1l70chUapwJjOpobP3/HSFxERNYG0vDIkny+AXAaMc8DpLP7Jas/81GXr1q1SR2gSd8SG4Ivd57HhaA5KdHqHHXeB6GbpdDpMnz4dAPDRRx9xZneiG/j+ypfr+DZ+8Hfn+4VnfqxAlxAPRPi5QKc34tcjnO6C6EaEEEhNTUVqaiqntyC6AaNR4Nsrl7zuiHXM6Sz+icWPFZDJZLgjxvSC/DaZl76IiMhy9p7LR2ZhBdw0Sgzt4JjTWfwTix8rcVu3FpDJgD1p+cjIL5c6DhER2YmaL9WjOgdBq7KPntKNxeLHSgR7OqFPpA8AjvhMRESWUV5VjV8OZwMAbo/hJa8aLH6syO3dTC/M7/ZfYDsGIiJqtN+PXkRZlQGh3k7o0cp+JgdvLBY/VmR4dCCc1Qqcu1yO5PMFUschIiIbt/bKJa/bu4U4/Ng+f8fix4q4aJQYER0E4K8XLBHVzdPTE56enlLHILJamYUV2HkmDwBwJ3t51cLix8qM7256ga4/lI3yqmqJ0xBZJycnJ2zatAmbNm2Ck5OT1HGIrNJ3yRcgBNArwhuh3s5Sx7EqLH6sTM9W3mjp7YzSymr8dpRj/hARUf0JIbD2ysCGd8aGSpzG+rD4sTJy+V9j/qxJ4qUvIiKqv33nCnD+cjlc1AqM7BQodRyrw+LHCt0RaxrzZ9eZy7hQwDF/iP6pZnqL6dOnQ6fTSR2HyOqsTc4AYBrbx1ltUzNZNQsWP1YoxMvZPObPt8kc84fon4QQ2L9/P/bv389hIYj+obyqGj8fMo3tw0tedWPxY6VqWuav3Z8Bo5F/3ImI6Ob8cjgHZVUGtPJx5tg+18Dix0oN7xgEV40SGfkV2HsuX+o4RERkI2oued0Zy7F9roXFj5VyUiswurNpzB82fCYiopuRfrkcu8/mQybjdBbXw+LHitWM+fPrkWyUVXLMHyIiur5vr3Rv79faF8GeHAPrWlj8WLGYll6I8HVBeZUBP1+ZmI6IiKguRqMwzw7AEZ2vj8WPFZPJZLgjtmbMnwyJ0xBZF61WC61WK3UMIquRePYyMgsr4KZVYlhHju1zPSx+rNwdMSGQy0wDVp25VCp1HCKr4OTkhD///BN//vknp7cgumL1lS/Jt3YJhlalkDiNdWPxY+UCPbQY2M4fwF8vbCIior8rKtfj1yOmKZEm9uDYPjfC4scGTOhueiF/m5wJvcEocRoiIrI26w5moqraiKhAN3Rq4SF1HKvH4scGDG7vD19XNfJKK7H1xCWp4xBJrrKyErNmzcKsWbNQWVkpdRwiya3aZ7oyMLFHKMf2uQksfmyASiE3j9dQ8wIncmRGoxE7d+7Ezp07YTTybCg5tiOZRTiaVQy1Qo5xXVtIHccmsPixETWXvracyEVuMSdyJCIik5r2oEM6BsDLRS1xGtvA4sdGtPZ3RWyYFwxGgW/3c7JTIiICdHoDfkgxfSZM7M6GzjeLxY8NqXlhr0nK4EzWRESE347moFhXjRaeTujb2lfqODaDxY8NGdk5CM5qBc7mlWHfuQKp4xARkcRqLnndERsChZwNnW8Wix8b4qpRmic7ZcNnIiLHlpFfjp2nL0MmA8ZzOot6YfFjY2oGr/rlcDZKdHqJ0xARkVRqpj3qG+mLUG9nidPYFhY/NiampRda+7uiQm/AjwezpI5DJAknJyckJSUhKSmJ01uQQzIYBdZcmcR0Akd0rjcWPzZGJpPhrisv9JV70yVOQ0REUth2MhfZRTp4OaswtEOA1HFsDosfG3R7TAjUCjmOZBbjSGaR1HGIiKiZfb3HdMnr9pgQTmLaACx+bJC3ixrDogMB8OwPOabKykrMnTsXc+fO5fQW5HAuFuuw5UQuAODunrzk1RAsfmzU3Vcufa07kIXyqmqJ0xA1L6PRiM2bN2Pz5s2c3oIczpqkDBiMAt3DvNDa303qODaJxY+N6hXhgzAfZ5RWVmP9oWyp4xARUTMwGgVWXenldXfPlhKnsV0sfmyUXC4zd3vnpS8iIsew80weMvIr4KZVYmSnIKnj2CwWPzbsztgQKOUypKQX4kROidRxiIioiX2z13TW57ZuLeCkZkPnhmLxY8P83bRIaG/q4sizP0RE9i2vtBK/p+YAAO7qwUtejcHix8bddaWl//cpmdDpDRKnISKipvJt8gXoDQJdQj3RIdhd6jg2jcWPjYtv44cWnk4oqtBjw5EcqeMQEVETEEKY53S8myM6NxqLHxunkMswobvpjfA1L32Rg9BqtdixYwd27NgBrVYrdRyiJrcnLR9n88rgolZgTJdgqePYPBY/dmBij1Ao5DLsTcvH6Vw2fCb7J5PJ4OTkBCcnJ8hkMqnjEDW5r/aYvtze2rUFXDRKidPYPhY/diDQQ4vBUf4A/nqDEBGRfcgrrcSGI6bx3CbFsaGzJbD4sRP3XHlDfJt8gQ2fye5VVVVh/vz5mD9/PqqqqqSOQ9Sk1iT91dA5uoWH1HHsAosfO9G/jR9CvJxQrOOIz2T/DAYD1q9fj/Xr18NgYLFP9stoFOahTCZxRGeLYfFjJ+Rymfnsz1d7zkuchoiILOHP03lIzy+Hm1aJ0V04orOlsPixI+NjQ80jPqdmFUsdh4iIGqnmy+wdMSFwVrOhs6Ww+LEjfm4aDIsOBAB8vZdnf4iIbNnFYh02HcsF8Fe7TrKMBhU/Tz31FHQ6naWzkAXU9AT4fn8mSiurJU5DREQNtWpfBgxGgR6tvNA2wE3qOHalQcXP4sWLUVRUBACYMmUKysvLLRqKGq53hA8ifF1QVmXAjweypI5DREQNUG0w/tXQOS5M4jT2p0HFT3BwMA4cOAAA+OKLL1BaWmrJTNQIMlnths9CCIkTERFRfW09cQnZRTp4Oasw/EpzBrKcBhU///nPfzBmzBjEx8cDAL766ivs3bsXFRUVFg1HDXNHTAjUSjmOZhXj4IUiqeMQWZxWq8XGjRuxceNGTm9BdqmmofOdsSHQqhQSp7E/DSp+/v3vfyMpKQnDhw+HEAJLlixBnz594O7ujvbt2+Ouu+7CwoUL8euvv1o6L90ELxc1RncydYn8cjcbPpP9kclk8PLygpeXF6e3ILuTfrkcW09eAgDczbF9mkSDe3t17twZ//d//4fIyEjs3r0bJSUl+PPPPzF79mx4eXlh3bp1mDBhgiWzUj3c29t0jfing1koKOMIuEREtuKrvechBBDfxhcRfq5Sx7FLjR404NSpU+bf4+LiEBcXZ/4/25tIp1uoJzoGu+NoVjHWJl/AtP4RUkcispiqqiq89dZbAIA5c+ZArVZLnIjIMnR6A1bvywAA3NeLDZ2bSpOO88PT0dKRyWTmN86Xe87DaGQhSvbDYDBgzZo1WLNmDae3ILvy86FsFJTrEeyhxS1XJqwmy2t08VNdXY2XX34ZvXv3RkxMDCZPnoyNGzdaIhs10tiuLeCmVeL85XJsP3VJ6jhERHQDX1xpp3lPXEsoFRyHuKk0+pl9+umn8f7772Pw4MEYN24cKisrMXr0aDzwwAO87CUxJ7UC42NDAbDhMxGRtTt8oQgHMgqhUsgwsQcbOjelRrf5+frrr/HNN9+gf//+5mVpaWkYPXo0Fi1ahCeffLKxD0GNMKlXSyzfmYbNx3ORkV+OUG9nqSMREVEdar6kjogOgp+bRuI09q3RZ37KysoQEhJSa1l4eDjeffddfPTRR43dPDVSpJ8r+rX2hRDA11dGCyUiIutSVK7HuoOZAID7erOhc1NrdPHTr18/fPbZZ1ctDw8PR1ZWw6dX+OCDD9C5c2e4u7vD3d0dvXv35rhBDXTvlYbPq/ZloLKajUOJiKzNmuQM6PRGRAW6oXuYl9Rx7F6ji59XX30VixcvxmOPPWbu9q7X6/Huu++iQ4cODd5uSEgIFi5ciOTkZCQlJeGWW27B2LFjcfTo0cZGdjgJ7f0R5KFFflkVfj2cI3UcIiL6G6NR4Ks9pjPz9/UOY0/pZtDo4ic6Ohpbt25FYmIi2rVrB61WC2dnZ3zxxRdYvHhxg7c7ZswYjBw5Em3atEHbtm3x8ssvw9XVFbt3725sZIejVMhxz5VRQj9PPCdtGCIL0Gg0+PHHH/Hjjz9Co2HbCLJtf57OQ1peGVw1Sozr2kLqOA6h0Q2eAaBbt27Yt28fjh8/jtTUVLi5uSEuLg7u7u6W2Lx5TI+ysjL07t37mutVVlaisrLS/P/i4mKLPL49mNgzFO/8cQr70wtx+EIROoV4SB2JqMHkcjmCg4OljkFkETVfSu+IaQEXjUU+lukGGvQs9+7dG926dUPXrl3RtWtXdO7cGVqtFlFRUYiKirJYuMOHD6N3797Q6XRwdXXF999/f91LaQsWLMALL7xgsce3J/5uWozsFIR1B7KwYtc5vDGhi9SRiIgcXvrlcmw+ngsAuL9PK2nDOJAGXfYaNWoU8vLy8MYbb6BPnz5wc3NDhw4dcM899+C1117D77//jtzc3EaHa9euHQ4cOIA9e/bg0UcfxeTJk5GamnrN9Z955hkUFRWZfzIyMhqdwZ5MvvLG+ulQFi6XVl5/ZSIrptfr8fbbb+Ptt9+GXq+XOg5Rg32x+5x5Hq9IzuPVbGSikSMR7t27F+PGjUO/fv2gUqmQkpKC48ePQyaTISAgoFE9vv4pISEBkZGRWLp06U2tX1xcDA8PDxQVFVnsEpwtE0Jg7JKdOHShCE8Oa4cZg1pLHUlSycnJUkegBqqoqEB8fDwAYMeOHXBycpI4ETVEbGys1BEkVV5VjV6vbEaxrhqfTO6Owe0DpI5kNZr687vRDZ4fffRRLFmyBKtXr8ZXX32F1NRUrF+/HkFBQXjggQcskdHMaDTWatND9SOTyTC5dysApsG0qg1GaQMRETmw71MyUayrRpiPMwa14zxezanRxc+xY8fQtWvXWstGjhyJ999/H7t27Wrwdp955hls374d586dw+HDh/HMM89g69atmDRpUiMTO7bRXYLg46JGdpEOv6delDoOEZFDEkLgs13nAJhmb5fL2b29OTW6+OnRo0edgxx26tQJe/fubfB2c3Nzcf/996Ndu3YYPHgw9u3bh99++w1DhgxpTFyHp1EqcPeVbu8rrrzxiIioeSWevYyTF0vhpFJgfPdQqeM4nEb3qXvzzTdxyy234Pz585gzZw6io6NRVVWFN954A76+vg3e7ieffNLYaHQNk3q1xAfbzmBvWj6OZRejfRDbQxERNaeasz63x7SAh5NK2jAOqNFnfmJjY7Fnzx6kp6eja9eucHJygpubGz755BMsWLDAEhnJwoI8nDC8YyCAv96ARETUPC4UlGPjlWYHk9m9XRIWGU0pKioKmzdvRnp6Og4cOAC5XI7Y2FgEBQVZYvPUBCb3aYWfD2fjhwOZeHpEFDyd1VJHIiJyCF/uTodRAH0ifdA2wE3qOA6p0Wd+9u3bh8GDB6Nz586YPXs2Dhw4AKPRyLE3rFyPVl5oH+QOnd6Ib/ZxPCSyLRqNBqtWrcKqVas4vQXZFJ3egFX7TPN48ayPdBpd/Nx3331QKBSYPn06wsPDsW3bNjzwwANo1aoVfHx8LJGRmoBMJsMDV954n+86x27vZFPkcjkiIyMRGRkJubzRf8aIms33KZkoKNcjxMsJCRzXRzKNvuyVkZGBn3/+GZGRkbWWnz9/HgcOHGjs5qkJ3do1GAs3HEdWkQ6/Hb2IUZ15mZKIqKkIIfDpzjQAwJQ+raBg93bJNPorU+/evZGZmXnV8rCwMIwdO7axm6cmpFUpcG+cqdv78itvSCJboNfrsXTpUixdupSX2Mlm7Dxt6t7uolZgQg92b5dSo4ufOXPm4MUXX0R+fr4l8lAzu7dXGFQKGZLPF+BgRqHUcYhuSnV1NZYtW4Zly5ahurpa6jhEN6XmS+b47qFw17J7u5QaXfyMGTMGW7ZsQdu2bTF16lR8/PHHSE5ORlVVlSXyURPzd9diTOdgADCfjiUiIss6e6kUfxzPhUzGhs7WoNHFz+nTp7F27VrMnDkT+fn5eOWVV9CjRw+4ubmhc+fOlshITeyBvuEAgPWHsnGxWCdxGiIi+1Mzov7gKH+E+7pIG4Ya3+A5IiICERERuO2228zLiouLcfDgQRw6dKixm6dm0CnEAz1beWPvuXx8kXgeTwxrJ3UkIiK7UVSux5qkCwD++rJJ0mrwmZ/nn38eycnJdd7m7u6O+Ph4zJgxo8HBqHk92K8VAOCrPeeh0xukDUNEZEdWJaWjQm9AuwA39InkEDDWoMHFz4ULFzBixAiEhITg0Ucfxa+//sp2PjZsSIdAtPB0QkG5Hj+kXN17j4iI6q/aYMRnu84DMH3JlMnYvd0aNLj4Wb58OXJycrBy5Uq4ublh9uzZ8PX1xR133IHPP/+cvb9sjEIuw5QrjfCW70yDEELaQEREduD31IvILKyAt4saY7u2kDoOXdGoBs9yuRzx8fF47bXXcOLECezZswdxcXFYunQpgoOD0b9/fyxatKjOcYDI+kzoEQoXtQInL5Zi+6k8qeMQXZNarcZnn32Gzz77DGo156Uj6/XxjrMAgHt6toRWpZA4DdWw6Ljw7du3x1NPPYWdO3ciPT0dkydPxo4dO7By5UpLPgw1EQ8nlXngrZo3LJE1UigU6NixIzp27AiFgh8oZJ2Szxdgf3oh1Ao57u8TJnUc+huLzOqu1+uRk5OD8vJy+Pn5wdvbG/7+/pg6dSqmTp1qiYegZvJg33B8tuscdpzKw/GcYkQFuksdiYjIJtV8iRzbNRj+blqJ09DfNfjMT0lJCT744AMMGDAA7u7uaNWqFdq3bw8/Pz+EhYVh2rRp2LdvnyWzUjMI9XbG8OhAAMDHOzjoIVknvV6Pzz//HJ9//jmntyCrlH65HL8dzQEAPBQfIXEa+qcGFT9vvvkmWrVqhU8//RQJCQn44YcfcODAAZw8eRKJiYmYN28eqqurMXToUAwfPhynTp2ydG5qQjVv1HUHMpHLQQ/JClVXV+Odd97BO++8w+ktyCot35kGowD6t/VDu0A3qePQPzToste+ffuwfft2dOzYsc7be/bsiQcffBAffvghPv30U+zYsQNt2rRpVFBqPjEtvRAb5oXk8wX4LPEcnhwWJXUkIiKbUVSux+qkDADAtHgOamiNGlT83GwDZo1Gg0ceeaQhD0ESmxYfjuTzBfhydzpmDGoNZ7VFmocREdm9r/emo7zKgKhAN/Rr7St1HKpDg9v8pKam4rnnnkNhYaEF45C1GNIhEGE+ziiq0GNt8gWp4xAR2YSqaiNW7DK1l3woPoKDGlqpBhc/CxYswJEjR+Dp6XnVbTqdDsePH29MLpKYQi7Dg1fmoPnkzzQYjBz0kIjoRtYfysLF4kr4u2lwa5dgqePQNTS4+Nm9ezcee+yxOm/TarWYNm0aFixY0OBgJL3x3UPg4aTC+cvl2Jh6Ueo4RERWTQhh7iU7uU8rqJUWHUqPLKhRc3u1bt36mrc/8sgj+PHHHxu6ebICzmolJsW1BAAs46CHRETXtfP0ZaRmF8NJpTD/7STr1ODix9vbG9nZ2de8vWfPnjh9+nRDN09WYkqfVlAr5Eg+X4Ckc5yvjayDWq3Ghx9+iA8//JDTW5DVWLr9DABgYo9QeDrzdWnNGlz89O/fHytWrLj2huVy6HQcI8bW+btrcUesaTK+D7edkTgNkYlCoUD37t3RvXt3Tm9BVuFIZhF2nMqDQi7D1H7s3m7tGlz8PPHEE1i2bBk++uijOm9PTExERARHtbQHph4LwKZjuTh1sUTqOEREVuej7aamAaM7ByHU21niNHQjDS5+YmNj8f777+Nf//oXhgwZgh9++AHp6enIz8/HunXrMHfuXNxzzz2WzEoSifRzxdAOAQD+eoMTSam6uhqrV6/G6tWrOcIzSS4jvxzrD2UBAKb355d+W9CopujTpk3D1q1bUVRUhNtvvx3h4eHw8/PDbbfdhk6dOmHOnDmWykkSe3hAJADghwOZyCni5UySll6vx2uvvYbXXnuNc3uR5D7ecRZGAcS38UXHYA+p49BNaPSwvf369cPevXtx/Phx7N+/H+Xl5YiOjkavXr0skY+sRExLL/Rs5Y295/Lx6c40PDOyvdSRiIgkl19WhVVXprJ45MqXRLJ+FpuzICoqClFRnAPKnj08IAJ7z+Xjqz3pmHFLa7hrVVJHIiKS1OeJ56DTG9GphQf6RPpIHYduEkdgops2qJ0/2ga4orSyGl/vSZc6DhGRpCqqDPhs1zkApi+HnMrCdrD4oZsml8swvb/ptO7yP9NQWW2QOBERkXTWJGegoFyPlt7OGN4xUOo4VA8sfqhebu0SjCAPLXJLKvHd/kyp4xARSUJvMGLpNlPv14fiw6FU8OPUljTp0ZLL5bjllluQnJzclA9DzUitlOOheFNXzg+3nUG1wShxIiKi5vfTwSxkFlbA11WNCd1DpY5D9dSkxc/y5cvRv39/zJgxoykfhprZ3T1D4eVsmvD0lyM5UschB6RSqbB48WIsXrwYKhUb3lPzMhoF3t9qGvH+wX7h0Ko4yritadLiZ8qUKZg/fz52797dlA9DzcxZrcQDfU3Dt7+/5TSEEBInIkejVCrRr18/9OvXD0qlxTqtEt2Ujccu4nRuKdw0StzbK0zqONQAvEhJDTK5dyu4qBU4nlOCLSdypY5DRNQshBB4f4tp0u77+4RxyA8b1aji5/z58/j999+Rk1P3pY+srKzGbJ6smIezyvyNZ8mWMzz7Q82quroaP/30E3766SdOb0HNateZyzh4oQgapdx8BpxsT4OLn5UrV6J169YYPnw4IiIi8MUXXwAA0tPTsXDhQsTFxaFly5YWC0rWZ2q/cKiVciSfL8DetHyp45AD0ev1eOGFF/DCCy9wegtqVkuunPW5u2dL+LpqJE5DDdXg4uell17Cv//9bxw+fBhDhgzBo48+iueeew6RkZFYsWIFunfvjjVr1lgyK1kZf3ctxseGAIC58R8Rkb1KSS/ArjOXoZTLMI0TmNq0BrcUPHPmDGbNmoWwsDAsWbIELVu2xM6dO3Ho0CG0b895nxzFw/0jsXJvOradvIQjmUWIbsFJ/YjIPtV8yRvXrQVaeDpJnIYao8FnfvR6PZycTAc/JCQEWq0WixYtYuHjYFr6OOPWLsEAgPe3npY4DRFR0ziRU4KNqRchk3ECU3vQqAbPX3/9NY4fPw4AUCgU8PLyskgosi3/GtQaAPDrkRyculgicRoiIst770pbnxHRgWjt7ypxGmqsBhc/8fHxmDdvHjp27AhfX1/odDq8/fbbWL16NVJTU9kDw4G0DXDD8I6BEOKvPxBERPbidG4p1h8y9V6eOaiNxGnIEhrc5mfbtm0AgFOnTiE5ORn79+/H/v378fnnn6OwsBBqtRpt27bFoUOHLBaWrNfMW1pjw9Ec/HQwC7MT2iLc10XqSEREFmEazBVIaB+ADsHuUschC2j00Kht2rRBmzZtcNddd5mXpaWlISkpCSkpKY3dPNmI6BYeGBzlj83Hc7Fky2ksGt9F6khkx1QqFRYuXGj+naipnL9chnUHTWd9HhvcWuI0ZClNMi58eHg4wsPDMX78+KbYPFmpfw9ug83Hc/F9SiZmDW6DUG9nqSORnVIqlUhISJA6BjmA97ecgcEoMKCtHzqHeEodhyyE01uQxXQN9UR8G18Y/jbpHxGRrbpQUI5v918AwLM+9obFD1nUY4NNjQHXJmcgq7BC4jRkr6qrq7Fp0yZs2rSJnSuoyXy47QyqjQJ9In0QG+YtdRyyIBY/ZFE9WnmjV4Q39AaBpdt49oeahl6vx9NPP42nn36a01tQk8gp0mH1PtNZn3/fwh5e9qZJix+5XI5bbrkFycnJTfkwZGUeu/KHYuW+DFws1kmchoio/pZuP4MqgxE9WnmhVwTP+tibJi1+li9fjv79+2PGjBlN+TBkZXpH+iA2zAtV1UZ8wLY/RGRjLhbr8NWedACmS/kymUziRGRpjS5+SkquPaLvlClTMH/+fOzevbuxD0M2RCaTYXaC6ezP13vTkVPEsz9EZDs+2HoGVdVGxIZ5oV9rX6njUBNodPETHx+PnJwcS2QhO9KvtS+6m8/+cNRnIrINOUU6fL3XdNZnTkJbnvWxU40ufrp164a4uDjzHF81Dhw4gJEjRzZ282SjZDIZ5gxpCwBYuTeDZ3+IyCZ8sPU0qqpNbX36tvaROg41kUYXP59++immTJmCfv364c8//8TJkycxYcIExMbGQqFQWCIj2ag+kT7o2cobVQYjZ3wnIquXXVSBlXszAPCsj72zyAjPL7zwAjQaDYYMGQKDwYDBgwcjMTERPXv2tMTmyUbJZDLMHtIG9yzbg2/2ZuCRAZEI9nSSOhbZAZVKhXnz5pl/J7KED7aaenj1bOWN3pE862PPGn3m5+LFi5g1axb+97//oUOHDlCpVJgyZQoLHwIA9In0RVw4z/6QZSmVSowZMwZjxoyBUtkks/SQg8kqrMA3V876zB7CHl72rtHFT3h4OLZv3441a9YgOTkZ3377LaZPn47XX3/dEvnIDtS0/Vm1LwOZHPWZiKzQ+1tPo8pgRFy4N/pEsoeXvWt08bN8+XKkpKRg1KhRAIDhw4djy5YteOuttxo1vs+CBQvQo0cPuLm5wd/fH+PGjcOJEycaG5ck0CvCB70jfKA3CCzZwrM/1HjV1dX4888/8eeff3J6C2q0zMIKrNp3pa3PlS9rZN8aXfzcddddVy2LiYnBrl278McffzR4u9u2bcOMGTOwe/dubNy4EXq9HkOHDkVZWVlj4pJEav6grN6XgfTL5RKnIVun1+sxe/ZszJ49m9NbUKO9u/kU9AaB3hE+6BXBtj6OoMkulrdq1Qq7du1q8P03bNhQ6/8rVqyAv78/kpOT0b9//8bGo2bWM9wb8W18seNUHhZvPok3J3SVOhIREdLyyrAm2TSH1xPDeNbHUTTp9BZeXl4W21ZRUREAwNv72nOsVFZWori4uNYPWY8nhrYDAPyQkonTudceGZyIqLks3nQSBqPAoHZ+nLndgdjErO5GoxGzZ89G3759ER0dfc31FixYAA8PD/NPaGhoM6akG+kS6omhHQJgFMBbG09JHYeIHNyJnBL8eDALAPCfK1/OyDHYRPEzY8YMHDlyBN98881113vmmWdQVFRk/snIyGimhHSzHh/aFjIZ8PPhbBzJLJI6DhE5sDd+PwEhgJGdAhHdwkPqONSMmrT4kcvluOWWW5CcnNzgbcycORPr16/Hli1bEBISct11NRoN3N3da/2QdYkKdMeYzsEAgDc3npQ4DRE5qoMZhfg99SLkMuBx9vByOE1a/Cxfvhz9+/dvUJd3IQRmzpyJ77//Hn/88QfCw8ObICFJYc6QtlDIZfjjeC6SzxdIHYeIHNCi301Dp4zr1gKt/d0kTkPNrUmHRp0yZQoAYP78+fW+74wZM/D1119j3bp1cHNzM88c7+HhAScnTpFgy8J9XXBnTAhWJWVg0W8nsHJ6L6kjkY1RqVR46qmnzL8T1cees5ex41QelHIZZg/mWR9HZLVtfj744AMUFRVh4MCBCAoKMv+sWrVK6mhkAf8e3BoqhQyJZy/jz1N5UschG6NUKjFhwgRMmDCB01tQvQghzGd9JvQIRUsfZ4kTkRQs/lejoKAAv//+OzIzMwEAwcHBGDZsWL27vQshLB2NrEiIlzMmxYVhxa5zeO234+jbui/n0iGiJvfH8VzsO1cAjVKOf9/SWuo4JBGLnvn55JNP0Lt3b+zZswdGoxFGoxF79uxBnz598Mknn1jyocgOzLylNVzUChy6UIRfDudIHYdsiMFgQFJSEpKSkmAwGKSOQzbCYBR4bYPprM+Uvq0Q5MEmFI5KJix4iqVdu3bYv38/XFxcai0vLS1FTEwMTp5s3t49xcXF8PDwQFFREXt+Wam3Np7E25tPIdzXBb/P6Q+VovmuxDamFyJJq6KiAvHx8QCAHTt2sB2gjYqNjW3Wx/s2+QL+s+Yg3LVK7HjqFng4s72YtWrqz2+LftLIZDKUlFw9cm9JSQkvaVCdpvWPgI+LGml5ZVidxHGZiKhpVFYbzMNrPDqwNQsfB2fRNj+LFi3CgAEDEB0djRYtWgAALly4gKNHj+KNN96w5EORnXDVKDHzltZ44adUvL3pFG7vFgIntULqWERkZ77cnY7MwgoEuGswpU8rqeOQxCxa/IwePRojRozA3r17kZVlGjI8ODgYPXv2hELBDzSq2z1xLbF8Zxoy8iuwfGcaZgxiI0QispwSnR5LtpwGAMxOaMsvWNTw4uehhx5CbGwsYmJi0KVLF2i1WgCAQqFA7969LRaQ7J9GqcB/hrTD7FUH8OG2M5gU1xKezmqpYxGRnVi2/Szyy6oQ4eeC8bHXnymAHEODi59Tp05hzZo1KCkpgVKpRLt27czFUGxsLLp27XpVw2eia7m1SzCWbj+LY9nFWLLlNP5vVAepIxGRHbhUUomP/0wDADw5tB2UzdipgqxXg18F27ZtQ1FREU6cOIHPP/8cI0aMwIULFzB//nzEx8fDw8MDHTrwA4xujlwuw1PDTbMqf5Z4Hhn55RInIiJ7sHjTSZRXGdAl1BPDowOljkNWotFtftq0aYM2bdrgrrvuMi9LS0tDUlISUlJSGrt5ciAD2/qhT6QPdp25jEW/n8Dbd3WTOhJZKaVSiccee8z8O1FdTueW4Jt9pl6kz46IYq9jMmvQOD/p6elo2bLlTa+fmZlp7v3VnDjOj+05klmEMe/9CSGAH2f2RecQzyZ7LI7zQyStph7n56HP9mHTsVwM6RCAZfd3b9LHIsuyynF+evTogYcffhj79u275jpFRUVYtmwZoqOj8e233zY4IDmW6BYeuK2bqVB++edjnOaEiBpk15k8bDqWC4VchqdHREkdh6xMg84Xp6am4uWXX8aQIUOg1WoRGxuL4OBgaLVaFBQUIDU1FUePHkVMTAxee+01jBw50tK5yY49MbQdfj6UjT1p+eZvbUR/ZzAYcPz4cQBAVFQUh9KgWoxGgVd+OQYAuKdnS0T6uUqciKxNg878+Pj44M0330R2djbee+89tGnTBnl5eTh16hQAYNKkSUhOTkZiYiILH6q3YE8nPBQfDgBY8Osx6A1GiRORtamqqsLkyZMxefJkVFVVSR2HrMy6g5k4klkMV40SsxLaSB2HrFCjWgo6OTnhzjvvxJ133mmpPEQAgEcGROKbvRk4e6kM3+zLwH29wqSOREQ2QKc3YNFvNdNYRMLXVSNxIrJGHPCArJKbVoXZV76xLd54EiU6vcSJiMgWfLrzHDILKxDkocXUfuFSxyErVe/ip6KiApmZmVctP3r0qEUCEdW4q2dLRPi54HJZFd7fekbqOERk5fJKK/H+lWksnhjaDloV24JR3epV/KxduxZt2rTBqFGj0LlzZ+zZs8d823333WfxcOTYVAo5nh3RHgDwyY40DnxIRNf1xu8nUVJZjegW7uZeo0R1qVfx87///Q/Jyck4cOAAPv30U0ydOhVff/01ALBLMjWJwe39Ed/GF1UGo7n3BhHRP6VmFWPVvnQAwPOjO0Iu54CGdG31Kn70ej0CAkzdjmNjY7F9+3YsXboUL774IkfOpCYhk8nw31EdIJcBvx7Jwe6zl6WORERWRgiBF9cfhVEAozoHoWe4t9SRyMrVq/jx9/fHoUOHzP/39vbGxo0bcezYsVrLiSypXaAbJsWZenu9+FMqDEaeZXR0SqUS06ZNw7Rp0zi9BeG3oxex+2w+1Eo5nh7OAQ3pxupV/HzxxRfw9/evtUytVmPlypXYtm2bRYMR/d2cIW3hrlUiNbsYa5IypI5DElOpVHj44Yfx8MMPQ6VSSR2HJFRZbTBfEp8eH4FQb2eJE5EtqFfxExISgsDA2rPibtq0CQDQt29fy6Ui+gdvFzVmJbQFACz6/QS7vhMRAFPX9vT8cvi7afDowEip45CNaPQ4P6NGjcLjjz/OUVapyd3fOwwRfi7IK63Ce1e6s5JjMhqNOHPmDM6cOQOjkSOAO6pLJZV47w/T34KnhkfBRcNLoHRzGl38bN++HevXr0f37t1x5MiROtfJzs7GHXfc0diHIgenUsjx31Gmru/L/0xDWl6ZxIlIKpWVlZg4cSImTpyIyspKqeOQRF7bcBylldXoHOKB29m1neqh0cVPXFwc9u/fj+7du6NHjx548803zbcZjUakpqbi+eefx44dOxr7UEQY1M4fA9v5QW8QeOGnoxxigchBpaQXYE3yBQDAvDHs2k71Y5FzhK6urnjjjTfg7OyMJ598EitXrjQXPpWVlQgLC8OCBQss8VDk4GQyGeaN6Yhdp7dj64lL2HwsFwmc9Z3IoRiMAs+vM80qcGdsCGLDvCRORLam0Wd+Pv74Y7Rs2RK+vr5YsWIFevbsCaVSiZSUFDz00EPIz89HWloapk6daom8RAj3dTHP+v7C+qPQ6Q0SJyKi5rQ6KQOHM4vgplFiLru2UwM0uvh59tlnMWrUKKSmpqKkpASJiYlITEzEG2+8gY8//hiPP/44yss5LQFZ1sxbWiPIQ4uM/Ap8tP2s1HGIqJkUllfhtQ3HAQCzh7SFnxtnbaf6a3TxM3DgQMyfPx/t2rWrNcrznDlzsHfvXiQlJV01DxhRYzmrlXh2pKnx85ItpznvF5GDeOP3kygo16NtgCvu7x0mdRyyUY0uflavXm2e8uKfOnXqhH379mH06NHo379/Yx+KqJbRnYPQK8IbldVGvPwz5/0isndHMovw1Z7zAID5t3aEStHojzByUE3+ytFoNFi8eDHWr1/f1A9FDkYmk+GFW6OhkMuw4WgOtp+8JHUkaiZKpRL33Xcf7rvvPk5v4SCMRoH5P5rm7xrdOQh9In2ljkQ2rNnK5iFDhjTXQ5EDaRfohsm9WwEA5v3Ixs+OQqVSYdasWZg1axant3AQa/dfQNL5AjipFPi/K+N9ETUUzxmSzZszpA383TRIyyvDh9vOSB2HiCysoKwKC67M3zU7oQ2CPJwkTkS2jsUP2Tw3rQrPj+kAAHh/6xmO/OwAjEYjsrKykJWVxektHMDCX4+joFyPdgFueLBfuNRxyA6w+CG7MKpTEOLb+KKq2ojn1x3hyM92rrKyErfeeituvfVWTm9h55LO5WNVUgYA4OXbotnImSyCryKyCzKZDC+NjYZaKceOU3lYfyhb6khE1Eh6gxH/971pzsiJ3UPRvZW3xInIXrD4IbvRytcFMwa2BgC8uD4VxTq9xImIqDE+3ZmGExdL4OWswtMjOJIzWQ6LH7IrjwyMQISvCy6VVOLN309KHYeIGiizsAJvbTwFAHhmZHt4uaglTkT2hMUP2RWNUoGXxkUDAD5LPIcDGYXSBiKiehNCYN66I6jQG9CzlTfujAmROhLZGRY/ZHf6tvbFuK7BEAJ4+ttD0BvYG4jIlvxyOAebjuVCpZDhf7dFQy6X3fhORPXA4ofs0nOjO8DLWYXjOSWc+JTIhhSV6zHvx6MAgEcHtkbbADeJE5E9YvFDdsnHVWMe++ftzac49o+dUSgUGD9+PMaPHw+FQiF1HLKgV345hrzSSkT6uWDGoEip45CdYvFDdmtc1xbo39YPVdVGPPPdIY79Y0fUajXmzp2LuXPnQq1mQ1h7setMnnlMn4V3dIZGycKWmgaLH7JbMpkML4+LhpNKgd1n87H6yh9VIrI+Or0Bz353GABwb6+W6MExfagJsfghuxbq7Yz/DG0LAHj552PILdFJnIgsQQiBgoICFBQU8IyenXh78ymcu1yOAHcNnhrOMX2oabH4Ibs3pU8rdA7xQLGuGs//cJQflnZAp9NhyJAhGDJkCHQ6FrS27khmkbljwktjo+GuVUmciOwdix+ye0qFHAtv7wylXIYNR3Pw82FOfUFkLaqqjXhizUEYjAIjOwViaMdAqSORA2DxQw6hQ7A7ZgwyTX3x/LqjyCvlZJhE1mDJltM4nmOawuLFsdFSxyEHweKHHMaMQa0RFeiG/LIqzFt3VOo4RA4vNasYS7acBgC8ODYavq4aiRORo2DxQw5DrZRj0fguUMhl+PlwNnZlsK0IkVSqjQJPrDmIaqPA8I6BGN05SOpI5EBY/JBDiW7hgRkDTQOnLUspRlElp74gksL3x8uQml0ML2cVXhoXDZmMU1hQ82HxQw5n5i1tEBXohuJKIz7eXyx1HCKHc65Qj7WppQCAF8ZGw8+Nl7uoebH4IYejVsrx+p1dIJcBuy7osDOjQupIVE8KhQKjR4/G6NGjOb2FjdEbBd7bV4RqAQzrGIAxvNxFElBKHYBICp1CPHB7lAvWHivDR8nFiPJVw8eJH6K2Qq1WY/78+VLHoAZYfbQUaYXVcFPLeLmLJMMzP+SwxndwRYSnEqV6gff3FXHwQ6ImdjyvCj8cN00y/EisB/zdtBInIkfF4occllIuw2NxnlDLgQMXq/DbGV7+shVCCFRUVKCiooJFq42oqDbinb1FMAIYGKZFrxAWPiQdFj/k0ELdlZjU2Q0A8NmhYmSVVEuciG6GTqdDfHw84uPjOb2FjVhxoAQXywzwdZbjwW7uUschB8fihxzeyNbO6OSvRpUBeGdvEQxGnkkgsqSkLB02pVVABuDfPTzgouJHD0mLr0ByeHKZDDN7eMBZJcOpfD2+vdImgYgar6jSiA+STENKjG7rjGh/dmsn6bH4IQLg66zAtCun4tekluLE5SqJExHZPiEEluwrQmGlEaHuStwT7SZ1JCIAVl78bN++HWPGjEFwcDBkMhl++OEHqSORHYtvqUV8Sy2MAli8uwhleo7+TNQYv54uR3J2JVRyYHacB9QKdmsn62DVxU9ZWRm6dOmCJUuWSB2FHIBMJsO0GHf4uyiQW27A0uRi9iQiaqBzhXp8fqgEAHB/Zze08lRJnIjoL1Y9yOGIESMwYsQIqWOQA3FRyTEnzgP/tyUfOzN06BaowaBWTlLHIrIpldUCb+0pgt4IxAZpMKK1s9SRiGqx6uKnviorK1FZWWn+f3Ex522i+mvro8bEjq5YeaQUH+8vRjsfFYLd7OqtYvPkcjkGDx5s/p2sy4qDxbhQXA0vrRwzenhwFGeyOnb1V2PBggXw8PAw/4SGhkodiWzUbVEu6Oinhs4gsHhPIfTs/m5VNBoNXn31Vbz66qvQaNh7yJrsydTh97OmAUP/3dMDHhq7+pghO2FXr8pnnnkGRUVF5p+MjAypI5GNUshkmNXTA65qGc4UVOPLK20XiOjacsuqsWRfEQBgbDsXdAlgYUrWya6KH41GA3d391o/RA3l46zAzB4eAID1p8qxJ5MjCRNdi94o8EZiEcr0Am28Vbg72lXqSETXZFfFD5Gl9QjW4ta2psaa7+0rQk4pp7+wBhUVFejevTu6d++OigrOyWYNPj9YgtMFeriqZHi8lydUcrbzIetl1cVPaWkpDhw4gAMHDgAA0tLScODAAaSnp0sbjBzKpE5uaOejQrle4M3dhdAb2P6H6O8SL+jwy+lyAKZ2Pv4uCokTEV2fVRc/SUlJ6NatG7p16wYAePzxx9GtWzc8//zzEicjR6KUm77Jul1p/7PiINv/ENXIKa3G+39r59M9mLO1k/Wz6v67AwcO5CBzZBV8nRV4rKcnXv6zABvOlKODnwp9Qzn+Dzm2KoPAosRClFcLRPmocA/b+ZCNsOozP0TWJCZIg9uiXAAA7yeZxjEhcmSfpBQjrbAa7mrT2VEl2/mQjWDxQ1QPd3d0NY3/Uy3w6q4ClHP+L3JQG8+WY1NaBWQAZsV5wseZ7XzIdrD4IaoHhVyG//TygI+THFklBry7twhGXpolB3PychU+TjGNoH9PtCu6BnI8H7ItLH6I6slDq8CTfTyhlAN7syrx/fEyqSM5HLlcjr59+6Jv376c3qKZFeoMeD2xENVGIK7FX5eCiWyJVTd4JrJWbbzVmBbjjg+SirHySCkivFToxm+/zUaj0eDtt9+WOobDqTaahnvIrzCihZtpEFDO20W2iF+ZiBooIdwZQyKcIAAs3l3IARDJ7n1xqARHL+nhpJThqT5ecFbxI4RsE1+5RI0wtas72nirUKoXWLCzkA2gyW5tSivH+lN/DWQY4s4LB2S7WPwQNYJKIcNTfTzhrZXjQnE1Fu8pgoENoJtcRUUF+vXrh379+nF6i2aQeqkKy5JNDZwndHBBXAsOZEi2jcUPUSN5Oykwt68X1HIgObuSM8A3E51OB52Ok802tYtl1Xh9VwGqBdA7RIPxHTiQIdk+Fj9EFtDaW4WZPU0zwP94shx/nCuXOBFR41XojVj4ZyGKqwQiPJX4dw9PyNnAmewAix8iC+kb6oTxHUzdfpcmFeN4XpXEiYgaziAE3tpThPTianhp5Xi6rxc0ShY+ZB9Y/BBZ0IQOrujVQoNqAby6s4A9wMhmfXGoBMnZlVDJgbl9OYIz2RcWP0QWJJfJ8O+eHojwVKK4SuB/OwpQXMkeYGRbfjlVhp9Omi7dzujhgTbeaokTEVkWix8iC9Mq5Xg23gt+znJklxqwcGcBKg3sAUa2YW+mDssPmBrtT+rkiviWThInIrI8Fj9ETcBLq8D/xXvDRSXDict6zgFmYTKZDDExMYiJieEIwxZ0Kr8Kb+0phAAwJMIJt7Xj1BVkn1j8EDWRUHcl5vb1glIOJF7Q4Qt2gbcYrVaLjz76CB999BG0Wo45Ywk5pdV45c9CVBmAmEANpnVzZ2FJdovFD1ET6uinxswef3WBX3+Kk6CS9SmqNOLlK+3TIjyVeLy3BxRyFj5kv1j8EDWx+JZOmNTJNDDcpwdKsP08RyQm61GuN+LlHfnIKjXA11mOZ/t5wUnJjwayb3yFEzWD29q5YHQbZwDAu/uKkJzNkYkbo6KiAgkJCUhISOD0Fo1QZRB4dWchzhRUw10jx7z+3vByYpd2sn8sfoiagUwmw+QubhgQpoVRAIt2FSL1EgdBbIzCwkIUFhZKHcNmGYwCb+0uxJFLVXBSyvDfeC8Eu3GyUnIMLH6ImolcJsO/unuge5AGVUZgwc4CnCvUSx2LHJAQAh8mF2NvlmkQw6f7eiLSSyV1LKJmw+KHqBkp5TI83tsT7X1VKNcLvLS9AJklHAWamo8QAisOluCPcxWQA5jTyxPR/hqpYxE1KxY/RM1Mo5DhmX5eCPdUorDSiPlb85HNaTCoGQgh8OXhUqw/ZRq9+dHu7ohrwaECyPGw+CGSgItKjuf7e6OluxL5OlMBdLGMBRA1rW+OluKHE6bhFqbFuOOWcGeJExFJg8UPkUTcNXLMG+CFFm4K5FUYMX9rAS6VG6SORXZqTWop1h4zFT4PdHXD8EgWPuS4WPwQSchTq8ALA7wR5KpAbrkB87bm4zILoBuSyWTo0KEDOnTowFGIb8IPx0vxzdFSAMD9nd0wug2nrSDHxuKHSGJeTqYCKMBFgYtlBjy3NR+5ZSyArker1eLzzz/H559/zuktbmDtsVJ8cdhU+NwT7YqxnK+LiMUPkTXwcVZgfq0C6DIbQVOjCCHw9ZESrDxiKnzu6uiKO9q7SpyKyDqw+CGyEv4uCrw0yBvBrgrklRvx3JZ8XChmAUT1J4TAZ4dK8O2VNj73d3bD+A4sfIhqsPghsiI+TqYCqKW7EgU6I57bms+BEOug0+kwZswYjBkzBjodpwr5O6MQWJZSjJ9OmrqzT+3mxktdRP/A4ofIynhqFXhhoDciPJUorjRi3tZ8nLjMqTD+TgiB7OxsZGdnQwghdRyrUW0UWLKvCL+dqYAMpnF8RrZm4UP0Tyx+iKyQu0aO+QO80c5HhVK9wPxt+UjK4hkOujZdtRELdxZg63kd5DLgsZ4eSOA4PkR1YvFDZKVc1HI8398LMYEaVBmAV3cV4o+0cqljkRUqrjRi/rYCpORUQa0wzdXVP8xJ6lhEVovFD5EV0yrlmNvXEwOvzAa/JKkY3x0r5aUeMsstq8b//XEZp/L1cFXL8MIAb8QGsfs/0fWw+CGyckq5DDN7eOC2KFPbja+OlOLjlBIYjCyAHN3ZAj2e/SMfWaUG+DrL8fIgH7T1UUsdi8jqKaUOQEQ3JpPJcG8nN3hp5fj0QAk2nClHTmk1Hu/tCRcVv8M4ot0XdHhnbxEqDQIt3ZX4b38v+DgppI5FZBP4V5PIhoxq44In+3hCo5DhwMUqPPtHPnIccDBEmUyGiIgIREREONz0FkIIfHe8FK8nFqLSINA1QI3/3eLNwoeoHmTCjhsPFBcXw8PDA0VFRXB3d5c6DlmZ5ORkqSM02NkCPRb8WYB8nRHuahme6uuF9r683GHv9AaBD5OLsPW8qeffiNbOeKCLGxRy2ywAY2NjpY5AVqqpP7955ofIBkV4qbAwwQeRXkoUV5m6wv9+tpwNoe1YfoUB87blm7uyP9TNDQ91c7fZwodISix+iGyUj5MCLw30Qa8WGlQbgaXJxXg/qRhVBhZA9ubopSo8ufEyTlzWw1kpw7P9vDCCgxcSNRiLHyIbplHK8ERvT9zbyRVyAH+cq8B/t1xGbpl9twPS6XSYMGECJkyYYNfTWwghsP5kGeZvy0dhpREt3ZV4NcEH3QI1Ukcjsmns7UVk42QyGW6LckWElwqLdxfiTEE1ntx0GbPjPO32Q1IIgbNnz5p/t0cVeiM+SC7GzgxTcRffUotHYt2hVfI7K1Fj8V1EZCe6BGjw2hBftPZSobRK4H87CvDZwWLoOR6QzTmdr8cTmy5jZ4YOChkwtasbZvX0YOFDZCF8JxHZET9n06zwwyNNczr9eLIcz26+jKwS+74MZi+MQuCHE2V49o/LyCk1wNdJjhcHemNkGxeH69JP1JRY/BDZGbVChmkx7pjbxxOuahnOFlbjyY2X8Ucae4NZs4IKA/63owBfHCqBQQC9QzR4Y6gvojiEAZHFsc0PkZ3q2UKLSG8V3tlThCOXqrAkqRh7syrxcIw7vDggntUQQuDPDB0+TilGaZWARiHDg13dMDjciWd7iJoIix8iO+bjpMDzA7yw7ngZVh0txb6sShy7lIcHu7mjf0stP1wlVlBhwNL9xdiXVQkACPdUYnacJ0Lc+aeZqCnxHUZk5xQyGW5v74qYIA2W7CvC2cJqvLO3CDszdHgk1h3eNngWSCaTISgoyPy7rRFCYFu6Dp+mFKNUL6CUAeM7uGJclAuUHLSQqMlxegtyWLY8vUVDVRsF1p0ow+qjpagWgLNShonRrhgR6cyRgpvJheJqfJxSjMO5VQCASC8lZvTwQJiHSuJkzY/TW9C1NPXnN8/8EDkQpVyGO9q7okewBu8nFeNUvh6fHijBH2kVmBbjzvnBmpCu2og1qWVYf7IM1QJQya+c7WnnwsKTqJmx+CFyQC09VHj5Fm9sTqvAV4dLcL6oGv/dko+BYVrc28mNDaItSAiBxAuV+OxgMfIqjACA2CANHuzqhkBX/gkmkgLfeUQOSiGTYWiEM3q10OKrwyXYnFaBred1SLxQidFtnTGunQucVdY5GoZOp8P06dMBAB999BG0Wq3Eiep29FIVvjhUglP5egCAv7MCD3ZzQ49g68xL5ChY/BA5OHeNHI9298DgcCesOFiCE5f1+PZYGTaeKcedHVwxNNIZKiu7LCOEQGpqqvl3a5NepMeXh0uRnG3qxaVVyHBrO2eMi3KFRmFdzyWRI2LxQ0QAgLY+arw8yBt7syrx5eESZJUYsPxACdafLMe4KBcMauUENT+4ryu9SI/vjpdhZ7oORgByGZAQ7oQJHV3hpeWlRCJrweKHiMxkMhniWmjRPUiDzWkVWJVaitxyAz7aX4w1qaW4tZ0LhkY4cY6pfzidr8e3x0qx98p4PQDQq4UG93RyQws3/pklsjZ8VxLRVRRyGYZGOmNAmBM2pZVj3YkyXK4w4rODJfj+WCmGRjpjaKQzfBy4YbRBCKRkV+KX0+U4eNHUbV0GoFeIBrdHuSLCy/G6rhPZChY/RHRNGqUMo9q4YGikM7adq8D3x8uQU2bA2mNl+O54GeJaaDGitTM6+KpscrDBhiipMuKPtApsOFOO3DIDANPlrfiWWtwe5crRmYlsAN+lRHRDKrkMCRHOGNTKCXsyK/Hr6TKk5umReEGHxAs6hLorMTBMi/iWTvBxtr+zQQajwKHcKmw/X4HdF3SoMvVYh6tKhlvCnTC8tTMCXPjnlMhW8N1KRDdNIZehT6gWfUK1OFeox4Yz5dh+XoeM4mp8cbgUXx4uRbS/Gv3DtIgL1sJF3XRtgzw9PZts24CpF9nZwmpsP1+BPzN0KNQZzbe18lBiRBtnxIc6QaN0jDNeRPaE01uQw3LE6S2aQlmVEbsu6LDtfAWO5enNyxUyoL2vGt2DNegerEGQDQzoV2UQOJxbhaQsHZKzK3G54q+Cx00tQ99QJwwI06KNt+Nc5mtKnN6CrsXhp7dYsmQJXn/9deTk5KBLly5499130bNnT6ljEdEVLmo5hkQ4Y0iEM3LLqrE9XYcd6TpcKK7GkUtVOHKpCisOliDYTYFoPzXa+6rRwU8NXyu4PKY3CJwu0OPYpSqk5lUh9ZIelYa/vg9qFDLEBGkwIEyLroEaqxvviIgaxqqLn1WrVuHxxx/Hhx9+iLi4OCxevBjDhg3DiRMn4O/vL3U8IvoHfxcl7mzvijvbuyKntBpJWZVIyq5E6qUqZJUYkFVSgd/PVpjWdVagtbcKrTyVCPNQIsxTBV8neZOdUamsFsgorsa5Ij3OF1YjrVCPM/l6c/udGj5OctPZqiAtov3VHNuIyA5Z9WWvuLg49OjRA++99x4AwGg0IjQ0FP/+97/x9NNP3/D+vOxF18PLXs2nrMp45cyK6ezK2UI9jHX85XFWyuDnooCfswJ+Lgr4OivgqZXDRSWDs8r0r1Ypg76qEs8/NQcA8OJrb0Gu0qCsyohyvUCZ3oiyKoG8CgMulRmQV27ApXIDLpcbYbz6IeGhkaODnwrtfdXo6KdGmIeSl7SaCS970bU47GWvqqoqJCcn45lnnjEvk8vlSEhIQGJiYp33qaysRGXlX4OMFRcXN3lOIroxF7UcPYK15jmtKvRGnMzXI62wGucL9ThXVI3M4mqUVwucL6rG+aLq627PWKVDxoH9AIDHfr0Eufrm5spy18jRykOJME8lwjxUaOujQrCrgsUOkYOx2uInLy8PBoMBAQEBtZYHBATg+PHjdd5nwYIFeOGFF5ojHhE1gpNKji4BGnQJ0JiX6Y0COaWmszWXrpytuVRmQEmV6UxOud50Zqe82gjj3zqRqeWAWiWDs0oGF5Xc/K+3k/yvs0jOCgS6KuDJKSaICFZc/DTEM888g8cff9z8/+LiYoSGhkqYiIhulkouQ6i7EqE3MUhgRUUF4t8w/b5iXACcnJyaOB0R2ROrLX58fX2hUChw8eLFWssvXryIwMDAOu+j0Wig0WjqvI2IiIgIAKx2dkK1Wo3Y2Fhs3rzZvMxoNGLz5s3o3bu3hMmIiIjIllntmR8AePzxxzF58mR0794dPXv2xOLFi1FWVoYHHnhA6mhERERko6y6+Jk4cSIuXbqE559/Hjk5OejatSs2bNhwVSNoInI8Wu3N9fAiIvonqx7np7E4zg9dD8f5IZIWx/mha2nqz2+rbfNDRERE1BRY/BAREZFDYfFDRDansrISs2bNwqxZs2qN6k5EdDOsusEzEVFdjEYjdu7caf6diKg+eOaHiIiIHAqLHyIiInIoLH6IiIjIobD4ISIiIofC4oeIiIgcil339qoZvLq4uFjiJGSNSktLpY5ADaTT6cy/l5WVwWAwSJiGGop/m+laal4bTTUJhV1Pb3HhwgWEhoZKHYOIiIgaICMjAyEhIRbfrl0XP0ajEVlZWXBzc4NMJpM6Tp2Ki4sRGhqKjIwMu5x/jPtn27h/to37Z9scef+EECgpKUFwcDDkcsu30LHry15yubxJKsam4O7ubpcv7hrcP9vG/bNt3D/b5qj75+Hh0WSPyQbPRERE5FBY/BAREZFDYfEjMY1Gg3nz5kGj0UgdpUlw/2wb98+2cf9sG/ev6dh1g2ciIiKif+KZHyIiInIoLH6IiIjIobD4ISIiIofC4oeIiIgcCoufRlqyZAlatWoFrVaLuLg47N2795rr6vV6vPjii4iMjIRWq0WXLl2wYcOGWuu0atUKMpnsqp8ZM2aY1xk4cOBVtz/yyCMW37ft27djzJgxCA4Ohkwmww8//HDD+2zduhUxMTHQaDRo3bo1VqxYcdU6N3rOdDodZsyYAR8fH7i6uuKOO+7AxYsXLbRXf2mK/VuwYAF69OgBNzc3+Pv7Y9y4cThx4kStdWz5+M2fP/+q7FFRUbXWseXjZ8vvv+zsbNxzzz1o27Yt5HI5Zs+eXed6a9asQVRUFLRaLTp16oRffvml1u1CCDz//PMICgqCk5MTEhIScOrUKQvt1V+aYv+WLVuG+Ph4eHl5wcvLCwkJCVf9fZkyZcpVx2/48OEW3DOTpti/FStWXJVdq9XWWseWj19d7y2ZTIZRo0aZ17HU8WPx0wirVq3C448/jnnz5mH//v3o0qULhg0bhtzc3DrX/+9//4ulS5fi3XffRWpqKh555BHcdtttSElJMa+zb98+ZGdnm382btwIABg/fnytbU2bNq3Weq+99prF96+srAxdunTBkiVLbmr9tLQ0jBo1CoMGDcKBAwcwe/ZsPPTQQ/jtt9/M69zMczZnzhz89NNPWLNmDbZt24asrCzcfvvtNrF/27Ztw4wZM7B7925s3LgRer0eQ4cORVlZWa1t2erxA4COHTvWyv7nn3/Wut2Wj58tv/8qKyvh5+eH//73v+jSpUud6+zatQt33303pk6dipSUFIwbNw7jxo3DkSNHzOu89tpreOedd/Dhhx9iz549cHFxwbBhw2pNJmsJTbF/W7duxd13340tW7YgMTERoaGhGDp0KDIzM2utN3z48FrHb+XKlY3en39qiv0DTKMh/z37+fPna91uy8fvu+++q7VvR44cgUKhuOr9Z5HjJ6jBevbsKWbMmGH+v8FgEMHBwWLBggV1rh8UFCTee++9Wstuv/12MWnSpGs+xqxZs0RkZKQwGo3mZQMGDBCzZs1qXPh6AiC+//77667z1FNPiY4dO9ZaNnHiRDFs2DDz/2/0nBUWFgqVSiXWrFljXufYsWMCgEhMTLTAntTNUvv3T7m5uQKA2LZtm3mZLR+/efPmiS5dulxzG/Z2/Gzp/fd318o4YcIEMWrUqFrL4uLixMMPPyyEEMJoNIrAwEDx+uuvm28vLCwUGo1GrFy5skHZb4al9u+fqqurhZubm/jss8/MyyZPnizGjh1b/5CNYKn9+/TTT4WHh8c172dvx++tt94Sbm5uorS01LzMUsePZ34aqKqqCsnJyUhISDAvk8vlSEhIQGJiYp33qaysvOoUpZOT01XfnP/+GF9++SUefPDBqyZm/eqrr+Dr64vo6Gg888wzKC8vb+QeNV5iYmKt5wMAhg0bZn4+buY5S05Ohl6vr7VOVFQUWrZsec3ntbncaP/qUlRUBADw9vautdwWj1+NU6dOITg4GBEREZg0aRLS09PNt9nT8bO199/NuNFzkJaWhpycnFrreHh4IC4uTvLj1xDl5eXQ6/VXvf+2bt0Kf39/tGvXDo8++iguX74sUcL6Ky0tRVhYGEJDQzF27FgcPXrUfJu9Hb9PPvkEd911F1xcXGott8Txs+uJTZtSXl4eDAYDAgICai0PCAjA8ePH67zPsGHD8Oabb6J///6IjIzE5s2b8d1338FgMNS5/g8//IDCwkJMmTKl1vJ77rkHYWFhCA4OxqFDhzB37lycOHEC3333nUX2raFycnLqfD6Ki4tRUVGBgoKCGz5nOTk5UKvV8PT0vGqdnJycJs1/IzfaPycnp1q3GY1GzJ49G3379kV0dLR5ua0ePycnJ8TFxWHFihVo164dsrOz8cILLyA+Ph5HjhyBm5ubXR0/W3v/3YxrPQc1x6bm3+utY0vmzp2L4ODgWsXA8OHDcfvttyM8PBxnzpzBs88+ixEjRiAxMREKhULCtDfWrl07LF++HJ07d0ZRUREWLVqEPn364OjRowgJCbGr47d3714cOXIEn3zySa3lljp+LH6a0dtvv41p06YhKioKMpkMkZGReOCBB7B8+fI61//kk08wYsQIBAcH11o+ffp08++dOnVCUFAQBg8ejDNnziAyMrJJ94Fu3owZM3DkyJGrzuzZ8vEbMWKE+ffOnTsjLi4OYWFhWL16NaZOnSphMsvj+8+2LVy4EN988w22bt1a64z7XXfdZf69U6dO6Ny5MyIjI7F161YMHjxYiqg3rXfv3ujdu7f5/3369EH79u2xdOlSvPTSSxIms7xPPvkEnTp1Qs+ePWstt9Tx42WvBvL19YVCobiqF8vFixcRGBhY5338/Pzwww8/oKysDOfPn8fx48fh6uqKiIiIq9Y9f/48Nm3ahIceeuiGWeLi4gAAp0+fbsCeWE5gYGCdz4e7uzucnJxu6jkLDAxEVVUVCgsLr7mOVG60f383c+ZMrF+/Hlu2bEFISMh1t2srx68unp6eaNu2rTm7vRw/W3z/3YxrPQd/f//VLLvWOrZg0aJFWLhwIX7//Xd07tz5uutGRETA19fXJo7fP6lUKnTr1q3W+w+w/eNXVlaGb7755qa+UDX0+LH4aSC1Wo3Y2Fhs3rzZvMxoNGLz5s21KvO6aLVatGjRAtXV1fj2228xduzYq9b59NNP4e/vX6uL37UcOHAAABAUFFS/nbCw3r1713o+AGDjxo3m5+NmnrPY2FioVKpa65w4cQLp6ek3fF6b2o32DzB1M505cya+//57/PHHHwgPD7/hdm3l+NWltLQUZ86cMWe39eNXwxbffzfjRs9BeHg4AgMDa61TXFyMPXv2SH78btZrr72Gl156CRs2bED37t1vuP6FCxdw+fJlmzh+/2QwGHD48GFzdns4foBpOIbKykrce++9N1y3wcev0U2mHdg333wjNBqNWLFihUhNTRXTp08Xnp6eIicnRwghxH333Seefvpp8/q7d+8W3377rThz5ozYvn27uOWWW0R4eLgoKCiotV2DwSBatmwp5s6de9Vjnj59Wrz44osiKSlJpKWliXXr1omIiAjRv39/i+9fSUmJSElJESkpKQKAePPNN0VKSoo4f/68EEKIp59+Wtx3333m9c+ePSucnZ3Fk08+KY4dOyaWLFkiFAqF2LBhg3mdGz1nQgjxyCOPiJYtW4o//vhDJCUlid69e4vevXvbxP49+uijwsPDQ2zdulVkZ2ebf8rLy4UQtn/8/vOf/4itW7eKtLQ0sXPnTpGQkCB8fX1Fbm6ueR1bPn5C2O77TwhhXj82Nlbcc889IiUlRRw9etR8+86dO4VSqRSLFi0Sx44dE/PmzRMqlUocPnzYvM7ChQuFp6enWLdunTh06JAYO3asCA8PFxUVFVa/fwsXLhRqtVqsXbu21vuvpKTE/JhPPPGESExMFGlpaWLTpk0iJiZGtGnTRuh0OqvfvxdeeEH89ttv4syZMyI5OVncddddQqvVXvUc2Orxq9GvXz8xceLEOh/TUsePxU8jvfvuu6Jly5ZCrVaLnj17it27d5tvGzBggJg8ebL5/1u3bhXt27cXGo1G+Pj4iPvuu09kZmZetc3ffvtNABAnTpy46rb09HTRv39/4e3tLTQajWjdurV48sknRVFRkcX3bcuWLQLAVT81+zR58mQxYMCAq+7TtWtXoVarRUREhPj000+v2u71njMhhKioqBD/+te/hJeXl3B2dha33XabyM7Oton9q2t7AMzr2frxmzhxoggKChJqtVq0aNFCTJw4UZw+fbrWOrZ8/ISw7fdfXeuHhYXVWmf16tWibdu2Qq1Wi44dO4qff/651u1Go1E899xzIiAgQGg0GjF48OA6nwtr3L+wsLA615k3b54QQojy8nIxdOhQ4efnJ1QqlQgLCxPTpk2r9eXLmvdv9uzZ5r+dAQEBYuTIkWL//v21tmHLx08IIY4fPy4AiN9///2qx7Tk8ZNdCURERETkENjmh4iIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIoLH6IiIjIobD4ISIiIofC4oeIbMKUKVMwbtw48/+XLFmCVq1aQavVIi4uDnv37pUuHBHZFBY/RGRzVq1ahccffxzz5s3D/v370aVLFwwbNgy5ublSRyMiG8Dih4hszptvvolp06bhgQceQIcOHfDhhx/C2dkZy5cvlzoaEdkAFj9EZFOqqqqQnJyMhIQE8zK5XI6EhAQkJiZKmIyIbAWLHyKyKXl5eTAYDAgICKi1PCAgADk5ORKlIiJbwuKHiIiIHAqLHyKyKb6+vlAoFLh48WKt5RcvXkRgYKBEqYjIlrD4ISKbolarERsbi82bN5uXGY1GbN68Gb1795YwGRHZCqXUAYiI6uvxxx/H5MmT0b17d/Ts2ROLFy9GWVkZHnjgAamjEZENYPFDRDZn4sSJuHTpEp5//nnk5OSga9eu2LBhw1WNoImI6iITQgipQxARERE1F7b5ISIiIofC4oeIiIgcCosfIiIicigsfoiIiMihsPghIiIih8Lih4iIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIoLH6IiIjIofw/bg7kSn652k4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mi.draw_profile('I0')\n", + "plt.ylabel('$\\chi^2(I_0, x, R, C)/ndof$')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b837e542-d3c9-4f61-a8d1-4f22db7d5137", + "metadata": {}, + "source": [ + "Bei den anderen beiden Parametern ist dies nicht der Fall:" + ] + }, + { + "cell_type": "code", + "execution_count": 495, + "id": "af339c6e-f0e7-40cd-a2cf-61aaaa4df1e4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSF0lEQVR4nO3deVxUVRsH8N/MADMogguikIiIuOKKQuSWiSmipZVaWUKaS1Fq+rpQufYqam69ZaamkOaSVtqmlZqmlhsomaKm5r5kqSwqM8DMef+ouTKxCDOXuTPw+34+8/HOnXPvPHcGLw/nnOdelRBCgIiIiMhJqZUOgIiIiMgWTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSGrJSUlQaVSSQ8XFxc88MADiI2NxeXLl+0ez7Fjx9CvXz/Ur18flSpVgre3Nzp16oSvvvqqRNtfvXoVEydORJcuXVClShWoVCrs3Lmz0Lbff/89hgwZgpCQEGg0GtSrV0++A7HC8uXL0aRJE+h0OgQHB+Pdd9+97zbdunWDSqXCK6+8Uqax5ebmomnTplCpVJg7d+592+/cudPi5+rfjxkzZkht//0zmP9x7dq1sjysQv3888/o0KEDKlWqhNq1a2PkyJG4fft2sdvMmDEDKpUKISEhdoqyaEOHDoVKpUKvXr1K1L6476lbt25Su3PnzhXZbt26dWV1OEW6fPky+vfvj6pVq8LT0xOPP/44fv/992K32bNnjxTzX3/9ZadIqaRclA6AnN/06dMRGBgIvV6Pffv2ISkpCXv27MHRo0eh0+nsFsf58+eRlZWFmJgY+Pn54e7du/jss8/w2GOPYcmSJRg2bFix2588eRKzZ89GcHAwmjdvjr179xbZds2aNfjkk0/Qpk0b+Pn5yX0opbJkyRKMGDECTz75JMaMGYPdu3dj5MiRuHv3LiZMmFDoNp9//nmxxyend999FxcuXChx+yZNmmDVqlUF1q9atQrff/89Hn300QKvmX8G86tatWqpY7VFamoqunbtiiZNmmD+/Pm4dOkS5s6di1OnTmHLli2FbnPp0iXMnDkTlStXtmushUlOTkZSUlKp/s8W9j0lJyfjnXfeKfR7euaZZ9CzZ0+LdREREaUP1ga3b99Gly5dkJGRgddffx2urq5YsGABOnfujNTUVNSoUaPANiaTCa+++ioqV66MO3fu2DVeKiFBZKXExEQBQBw8eNBi/YQJEwQA8cknnygU2T15eXmiZcuWolGjRvdtm5mZKW7cuCGEEGLDhg0CgNixY0ehbS9fvixycnKEEEJER0eLgIAAuUKWmD/f4ty9e1fUqFFDREdHW6wfOHCgqFy5srh582aBbbKzs0W9evXE9OnTBQARFxcna9z5/fHHH8LLy0t6r7ffftvqfTVo0EAEBwdbrCvqZ1BOZ8+eLfZnwSwqKkr4+vqKjIwMad2yZcsEAPHdd98Vus2AAQPEI488Ijp37iyaNWtmdYwARGJiotXbm0wmERERIQYPHiwCAgIK/DyVxpAhQ4RKpRIXL16U1pk/Q1u+/5IICAgQU6ZMKbbN7NmzBQBx4MABad3x48eFRqMR8fHxhW6zePFiUaNGDTFq1CgBQPz5559yhk0y4DATya5jx44AgDNnzigcCaDRaODv74/09PT7tq1SpQqqV69eov36+fnB1dW1RG3T09MxevRo+Pv7Q6vVokGDBpg9ezZMJlOJti/Ojh07cOPGDbz88ssW6+Pi4nDnzh188803BbaZM2cOTCYT/vOf/9j8/vczceJENGrUCM8995xN+zlw4ABOnz6NgQMHFtkmKysLRqOxyNdNJhMWLlyIZs2aQafToVatWhg+fDhu3bplU2wAkJmZia1bt+K5556Dp6entH7QoEHw8PDA+vXrC2yza9cufPrpp1i4cKHN72+rVatW4ejRoxZDeNYwGAz47LPP0LlzZ9SpU6fQNnfu3EFOTk6x+9myZQs6duyIypUro0qVKoiOjsaxY8dsis3s008/Rbt27dCuXTtpXePGjdG1a9dCv6ebN2/izTffxPTp0+3e20clx2SGZHfu3DkAQLVq1e7b1mAw4K+//irRo6Tu3LmDv/76C2fOnMGCBQuwZcsWdO3a1drDscndu3fRuXNnfPzxxxg0aBD+97//oX379oiPj8eYMWNs3v/hw4cBAG3btrVYHxoaCrVaLb1uduHCBcyaNQuzZ8+Gu7u7ze9fnAMHDuCjjz7CwoULoVKpbNrX6tWrAaDIZKZLly7w9PREpUqV8Nhjj+HUqVMF2gwfPhzjxo1D+/bt8c477+CFF17A6tWr0b17d+Tm5toU36+//oq8vLwC34ObmxtatWpV4HswGo149dVX8eKLL6J58+Y2vbetsrKyMGHCBLz++uuoXbu2TfvavHkz0tPTi/yepk2bBg8PD+h0OrRr1w7ff/99gTarVq1CdHQ0PDw8MHv2bEyaNAlpaWno0KGDdG6xlslkwpEjRwp8TwAQFhaGM2fOICsry2L9pEmTULt2bQwfPtym96ayxTkzZLOMjAz89ddf0Ov12L9/P6ZNmwatVluiSYRr167FCy+8UKL3EUKUqN3YsWOxZMkSAIBarcYTTzyB9957r0Tbym3+/Pk4c+YMDh8+jODgYAB//1L18/PD22+/jbFjx8Lf39/q/V+9ehUajQY+Pj4W693c3FCjRg1cuXLFYv3YsWPRunVrPP3001a/Z0kIIfDqq69iwIABiIiIsOmXkNFoxCeffIKwsDA0aNDA4rVKlSohNjZWSmZSUlIwf/58PPTQQzh06JD02e7ZswcffvghVq9ejWeffVbavkuXLujRowc2bNhgsb60rl69CgDw9fUt8Jqvry92795tse6DDz7A+fPnsW3bNqvfUy7Tp0+Hu7s7XnvtNZv3tXr1ami1Wjz11FMW69VqNR599FH07dsXDzzwAH7//XfMnz8fUVFR+PLLLxEdHQ3g7/ksI0eOxIsvvoilS5dK28fExKBRo0aYOXOmxfrSunnzJgwGQ5HfEwBcuXIFjRo1AgAcOXIES5YswebNm6HRaKx+Xyp7TGbIZpGRkRbP69Wrh48//rjIbub8unfvjq1bt8oaz+jRo/HUU0/hypUrWL9+PYxG4327tcvKhg0b0LFjR1SrVs2idykyMhKzZs3Crl27pL9ib926ZTFMYq6C+XevVKVKlVCpUiUAQHZ2Ntzc3Ap9b51Oh+zsbOn5jh078Nlnn2H//v3yHFwxkpKS8Ouvv+LTTz+1eV/bt2/HH3/8gddff73Aa/3790f//v2l53369EH37t3RqVMnzJgxAx988AGAv78HLy8vdOvWzeLzDA0NhYeHB3bs2CElM7dv34Zer5famIehzEm7maurK7y8vABA+py1Wm2BGP/9Pdy4cQOTJ0/GpEmTULNmzVJ/Hnfv3sXdu3cLrL99+7ZFfBqN5r69o7/99hveeecdrF27ttDYSyMzMxPffPMNevbsWWA4pm7duvjuu+8s1j3//PNo2rQpxo4dKyUzW7duRXp6Op555pkCxxIeHo4dO3ZI6wwGQ4FeFJPJhLt37xb4P+Pt7Q3g/t9T/jYAMHLkSERFRRU6mZkcjNKTduzhxx9/FL169RK+vr4CgNi4cWOpts/OzhYxMTEiJCREaDQa8fjjjxfabseOHaJ169bCzc1NBAUFFZiQ9/7774vmzZuLKlWqiCpVqogHH3xQbN682bqDcgDmyZeLFi0SW7duFZ9++qno2bOn8PDwEDt37lQ6PEm3bt1Eu3bthMlkKvE295sAnF9xE4Dd3d0FgCIf8+fPl9oGBAQU29b8yD/BMS4uTmg0mkLfu2bNmuLpp58WQgiRm5srQkJCxKBBgyzaoIQTgG/cuCGuXr0qPdLT04tsm5GRIWrVqiUmT54srbNlAuigQYOERqMR165dK/E2Dz74oAgKCpKeR0VFFfuZPvbYY1LbmJiYEn0PnTt3lrYx/7zs2rWrQCz9+vUTtWvXlp6PGDFCNGjQQBgMBmldaSYAT5kypUTxlWRSeo8ePSyOQwhh9QTgFStWCADi008/LfE2EydOFACkycLmyblFPTw9PaVtzeefkjzM/vzzTwFATJ8+vUAsixYtEgDEiRMnhBBCrFu3Tri6uoqTJ09KbcyfPScAO54K0TNz584dtGzZEoMHD8YTTzxR6u2NRiPc3d0xcuRIfPbZZ4W2OXv2LKKjozFixAisXr0a27dvx4svvghfX190794dAFCnTh3MmjULwcHBEELgo48+wuOPP47Dhw+jWbNmNh2jksLCwqQx6D59+qBDhw549tlncfLkSXh4eBS7bXZ2NjIyMkr0PtaO5z/11FMYPnw4fvvtN6n72F5MJhO6deuG8ePHF/p6w4YNpeXVq1db/FX4/fff4+233y7Qc1W/fn1p2dfXF0ajEdevX7cYasrJycGNGzeksvGVK1fi5MmTWLJkSYEhn6ysLJw7dw4+Pj5Sj8+/PfHEE/jxxx+l5zExMUhKSiq07dy5c5GTk4MBAwZI73Xp0iUAf/dynDt3Dn5+fkX2KOWXnZ2NjRs3IjIyErVq1bpvezN/f3+cPHlSem4ymeDj4yPNvfm3/D0k48ePt5iw/Mcff+C5557D3Llz0bJlS2l9/l4P8xCFebgpv6tXr0rfw6lTp7B06VIsXLjQYghQr9cjNzcX586dg6enZ7ET0QcNGoQOHTpYrOvWrRvGjRtn0YNwvzlRP/zwA7799lt8/vnnFj8TeXl5yM7Oxrlz51C9enWLCc3FWb16Nby8vEp8jRoA0jDgzZs3UadOHWlS/KpVqwr9/+7icu9XVmG9us899xweffRRDBo0qND3q169OrRabZHfEwDpuxo3bhz69esHNzc36fMxFxJcvHgROTk5il+WgfJROpuyNxTSM6PX68XYsWOFn5+fqFSpkggLCyvyL/KYmJhCe2bGjx9f4C+rAQMGiO7duxcbT7Vq1cSHH35YmkNwGEWVxe7YsUMAEAkJCSXeR0ke1lq4cKEAIPbv31/ibeTqmWnatKmIiIgo8fvmV5LS7K+//loAEN98843F+p9++kkAECtXrhRClOyv+eJ6LJOTk8XWrVulx7Fjx4psW5KejcOHD5foM1i3bp3FcZRUaGioaNiwofT85ZdfFhqNRty9e7dU+xGiZKXZ6enpwsXFRYwbN85ivcFgEB4eHmLw4MFCiHv/N4p7jBo1qtQxworS7JL831uwYEGJ9nXlyhWhVqul4yypsWPHCgDiypUrQggh1q9fL4CiS9nvpySl2W3bthXt2rUrsL5bt26ifv360vP7fTYtW7a0KkYqGxWiZ+Z+XnnlFaSlpWHdunXw8/PDxo0b0aNHD/z666/SpM372bt3b4G5I927d8fo0aMLbW80GrFhwwbcuXPH7heNKmsPP/wwwsLCsHDhQowePbrYi3DJOWfm370TwN9Xn125ciXc3d3RtGlTaf3Vq1eRkZGBoKCgEpdYW6N///6YOnUqvvvuO6mHziw9PR0eHh4Wf22W1iOPPILq1atj8eLFFhcjW7x4MSpVqiTNRXj66afRqlWrAtv37dsXPXv2xNChQxEeHl7k+4SGhpY4ppEjR6JPnz4W665fv47hw4cjNjYWjz/+uHSBu9zcXJw5cwZeXl6FTspcs2YNKlWqhL59+xb6Xn/++WeBeSebN29GSkoKRo4cKa3r378/3n//fbz11luYOXOmRfu8vDzcvn3bprJbLy8vREZG4uOPP8akSZNQpUoVAH/3MNy+fRv9+vUDAISEhGDjxo0Ftn/zzTeRlZWFd955B0FBQVbHURqPPPJIobEMGzYMAQEBeOONNywqrcyXWigsvnXr1sFkMhVZxVTY93T58mWsWLECLVq0kL777t27w9PTEzNnzkSXLl0K/N8sbD+l9dRTT2HixIlITk6WepRPnjyJH374weJyBYV9NuvWrcMnn3yClStXlmhOINmR0tmUveFff4GeP39eaDQacfnyZYt2Xbt2LfQCSkX1zAQHB4uZM2darPvmm28EAIu/Bo8cOSIqV64sNBqN8PLyKvAXtTMp7oJl5p6NxYsX2y2ePn36iEceeURMnTpVLFu2TLz11luicePGAoCYN2+eRVtz78HZs2ct1r/11lvirbfeEk8//bQAIAYPHiyty++XX36R1jdq1EhUrVpVev7ll19K7e7cuSPatGkjXFxcxIsvvigWL14s5s6dK2JiYkTlypWLHXsvSc+MEPfG+p966imxbNkyMWjQIAFAzJgx477booRzZmxV1JwZ8/qYmJgC29y4cUO4urpK834K06BBA9GvXz8xe/Zs8cEHH4hhw4YJFxcX4e/vX2COzfDhwwUAERUVJRYsWCDee+89MWrUKOHn5yc2bNhw39jv10uXkpIitFqtaN26tVi8eLF44403hE6nE48++mix2wlRujkzhYEVPTNFKWrOTEBAQJE9kKGhocLPz08YjcZCX4+NjRUdO3YUU6dOFUuXLhWvv/66qFGjhnBzcyvwua5evVqo1WoREhIi/vvf/4olS5aIN954Q7Rq1eq+P6sl6ZnJzMwUQUFBwsfHR8yZM0csWLBA+Pv7Cz8/P3H9+vVit+WcGcdV4ZMZczd95cqVLR4uLi6if//+Bba3NZkxGAzi1KlTIjk5WUycOFF4e3sX22XvyIpLZoxGowgKChJBQUEiLy/PLvGsXbtWREZGilq1agkXFxdRrVo1ERkZKb744osCbYtKZlDCYa7iuuj//Ys5KytLxMfHiwYNGgg3Nzfh7e0tHnroITF37lzpKsKFKWkyI4QQS5cuFY0aNZImny9YsKBEE54dOZn54IMPBACL5PDfzL/kvLy8hKurq6hbt6546aWXipwsvHTpUhEaGirc3d1FlSpVRPPmzcX48eOlYY7iYi/JkOPu3bvFQw89JHQ6nahZs6aIi4sTmZmZ993OmZOZEydOCABizJgxRe5zzZo1olOnTqJmzZrCxcVFeHt7i759+4qUlJRC2+/YsUN0795deHl5CZ1OJ4KCgkRsbKxITk6+b+z3S2aEEOLixYviqaeeEp6ensLDw0P06tVLnDp16r7bMZlxXCohSnjxjnJCpVJh48aNUjf4J598goEDB+LYsWMFriPg4eFRYBJabGws0tPTsWnTJov1nTp1Qps2bSyu5pmYmIjRo0cXO8E1MjISQUFB0nVRiIiIqHQq/JyZ1q1bS9Ug5svwWyMiIgKbN2+2WLd169b7zocxmUwwGAxWvy8REVFFVyGSmdu3b+P06dPS87NnzyI1NRXVq1dHw4YNMXDgQAwaNAjz5s1D69at8eeff2L79u1o0aKFNIEyLS0NOTk5uHnzJrKyspCamgoA0qTKESNG4L333sP48eMxePBg/PDDD1i/fr3FvXHi4+MRFRWFunXrIisrC2vWrMHOnTsLXEyKiIiISkHpcS57KKoc0jxOn5OTIyZPnizq1asnXF1dha+vr+jbt684cuSItI+iLmj27/dp1aqVcHNzE/Xr1y8whm2+I62bm5uoWbOm6Nq1q/j+++/L+vCJiIjKtQo3Z4aIiIjKF4e9a7bRaMSkSZMQGBgId3d3BAUF4a233irxzQaJiIioYnDYOTOzZ8/G4sWL8dFHH6FZs2ZITk7GCy+8AC8vL4uLYREREVHF5rDDTL169UKtWrWwfPlyad2TTz4Jd3d3fPzxxyXah8lkwpUrV1ClShWoVKqyCpWIiIhkJIRAVlYW/Pz8oFbffxDJYXtmHnroISxduhS//fYbGjZsiF9++QV79uzB/Pnzi9zGYDBYlDlfvnzZ4hL2RERE5DwuXrxYoltHOGwyM3HiRGRmZqJx48bQaDQwGo2YMWNGkff+AICEhARMmzatwPqLFy+W+M6vVHEcPnxY6RDISnq9Hj169AAAfPvtt8Xe/4scV+vWrZUOgRxUZmYm/P39pfuc3Y/DJjPr16/H6tWrsWbNGjRr1gypqakYPXo0/Pz8EBMTU+g28fHxGDNmjPTc/GF4enoymaECPDw8lA6BrJT/at2VK1eGu7u7gtGQtXhepvsp6RQRh01mxo0bh4kTJ+Lpp58GADRv3hznz59HQkJCkcmMVquFVqu1Z5hERESkMIctzb57926BST8ajQYmk0mhiIiIiMgROWzPTO/evTFjxgzUrVsXzZo1w+HDhzF//nwMHjxY6dCISGEajQa9evWSlomoYnPY0uysrCxMmjQJGzduxPXr1+Hn54dnnnkGkydPhpubW4n2kZmZCS8vL2RkZHBslgpISUlROgSiCi00NFTpEMhBlfb3t8MmM3JgMkPFYTJDpCwmM1SU0v7+dthhJiKiogghoNfrAQA6nY4XxSSq4Bx2AjARUVH0ej06duyIjh07SkkNEVVcTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipsTSbSCHX7+RBpVKhursaGpYWExFZjckMkUJe3vwXBIAPe9dENR0vyV8aarUaXbt2lZaJqGJjMkOkAJMQMF96m70ypafVajF79mylwyAiB8E/aYgUYMp3ExE1cxkiIpswmSFSQP5kRsNkhojIJkxmiBRgzHd/VzWHmUotOzsbbdu2Rdu2bZGdna10OESkMCYzRAqwGGbi/0IiIpvwNEqkAJPp3jLnzBAR2YbJDJECTPmHmRSMg4ioPOB5lEgBxn9yGbUKUHHODBGRTZjMECnAPGeGlUxERLZjMkOkAHM1EyuZiIhsxysAEynAlG+YiUpPrVajffv20jIRVWxMZogUYPynmonDTNbRarV45513lA6DiBwE/6QhUoBJGmZSOBAionKAyQyRAqRhJmYzREQ2YzJDpADOmbFNdnY2OnTogA4dOvB2BkTEOTNESmBptu30er3SIRCRg2DPDJECWJpNRCQfJjNECmDPDBGRfJjMECnAaGI1ExGRXJjMECmA1UxERPJhMkOkACOHmYiIZMNqJiIFsDTbNiqVCm3atJGWiahiYzJDpAATq5lsotPpsHTpUqXDICIHwWEmIgWwmomISD4Om8zUq1cPKpWqwCMuLk7p0IhsZr7RJIeZiIhs57DDTAcPHoTRaJSeHz16FN26dUO/fv0UjIpIHuZhJg2zGatkZ2ejd+/eAICvvvoK7u7uCkdEREpy2GSmZs2aFs9nzZqFoKAgdO7cWaGIiORj5ARgm6WnpysdAhE5CIdNZvLLycnBxx9/jDFjxhRbuWAwGGAwGKTnmZmZ9giPqNRYzUREJB+HnTOT36ZNm5Ceno7Y2Nhi2yUkJMDLy0t6+Pv72ydAolLivZmIiOTjFMnM8uXLERUVBT8/v2LbxcfHIyMjQ3pcvHjRThESlQ57ZoiI5OPww0znz5/Htm3b8Pnnn9+3rVarhVartUNURLYx/VPNxNJsIiLbOXzPTGJiInx8fBAdHa10KESy4UXziIjk49A9MyaTCYmJiYiJiYGLi0OHSlQq0kXzHP7PCcekUqnQtGlTaZmIKjaHzhC2bduGCxcuYPDgwUqHQiQrlmbbRqfTYeXKlUqHQUQOwqGTmUcffRTin+54ovJEumgeexWIiGzGTm4iBbBnhohIPkxmiBTA0mzb6PV69O7dG71794Zer1c6HCJSmEMPMxGVV0YTq5lsIYTA1atXpWUiqtjYM0OkAFYzERHJh6dSIgVwmImISD5MZogUwGomIiL5MJkhUgCrmYiI5MNkhkgBHGYiIpIPq5mIFGCuZuIwk3VUKhXq168vLRNRxcZkhkgB7JmxjU6nw/r165UOg4gcBIeZiBQgJTP8H0hEZDOeSokUYK5m4kXziIhsx2SGSAHmaiYNcxmr6PV69O/fH/379+ftDIiIc2aIlMA5M7YRQuD333+XlomoYmPPDJECeNE8IiL5MJkhUoDR9Pe/7JkhIrIdkxkiBbCaiYhIPjyVEinAKFUzKRwIEVE5wGSGSAEmqZqJ2QwRka1YzUSkAFYz2UalUsHX11daJqKKjckMkQJYzWQbnU6Hr776SukwiMhBcJiJSAGsZiIikg+TGSIFSHNm+D+QiMhmPJUSKYDVTLbR6/UYNGgQBg0axNsZEBHnzBAp4d4EYGYz1hBCIC0tTVomooqNPTNECjCymomISDZMZogUwNJsIiL5MJkhUoDJxNJsIiK5MJkhUgB7ZoiI5MNkhkgB5momlmYTEdmO1UxECmA1k+2qVq2qdAhE5CCYzBAp4N6NJpWNw1m5u7tj27ZtSodBRA6CndxECmBpNhGRfBw6mbl8+TKee+451KhRA+7u7mjevDmSk5OVDovIZibpCsDMZoiIbOWww0y3bt1C+/bt0aVLF2zZsgU1a9bEqVOnUK1aNaVDI7KZiTeatIler8fIkSMBAP/73/+g0+kUjoiIlOSwyczs2bPh7++PxMREaV1gYKCCERHJhzeatI0QAocOHZKWiahic9hT6Zdffom2bduiX79+8PHxQevWrbFs2bJitzEYDMjMzLR4EDkiI4eZiIhk47DJzO+//47FixcjODgY3333HV566SWMHDkSH330UZHbJCQkwMvLS3r4+/vbMWKikmM1ExGRfBw2mTGZTGjTpg1mzpyJ1q1bY9iwYRg6dCg++OCDIreJj49HRkaG9Lh48aIdIyYqOVYzERHJx2GTGV9fXzRt2tRiXZMmTXDhwoUit9FqtfD09LR4EDkaU745HhxmIiKyncMmM+3bt8fJkyct1v32228ICAhQKCIieRjzzVflMBMRke0cNpl57bXXsG/fPsycOROnT5/GmjVrsHTpUsTFxSkdGpFNTPmSGQ4zWU+n07Ekm4gAOHBpdrt27bBx40bEx8dj+vTpCAwMxMKFCzFw4EClQyOyiSlfNqNmNmMVd3d37NmzR+kwiMhBOGwyAwC9evVCr169lA6DSFbsmSEikpfDDjMRlVecM0NEJC8mM0R2xmom2xkMBowaNQqjRo2CwWBQOhwiUphDDzMRlUdGXjDPZiaTCT/99JO0TEQVG3tmiOzMxAvmERHJiskMkZ2Zh5k0HGIiIpIFkxkiOzP+MyrCnhkiInkwmSGyM2mYif/7iIhkwdMpkZ2Zh5lYyUREJA8mM0R2ZmI1ExGRrFiaTWRnRlYz2czd3R3JyclKh0FEDoI9M0R2dm+YSeFAiIjKCSYzRHZmrmZiaTYRkTyYzBDZGS+aZzuDwYAJEyZgwoQJvJ0BETGZIbI3o3mYidmM1UwmE7Zv347t27fzdgZExGSGyN7YM0NEJC8mM0R2xtJsIiJ5MZkhsjNWMxERyYvJDJGdsZqJiEheTGaI7IxzZoiI5MVkhsjOzNVMGv7vIyKSBW9nQGRn93pm2DVjLZ1Oh927d0vLRFSxMZkhsjMOM9lOpVLB3d1d6TCIyEGwo5vIzoysZiIikhV7Zojs7N51ZpjNWCsnJwczZ84EALz++utwc3NTOCIiUhJ7ZojszHz1ffbMWM9oNOLrr7/G119/DaPRqHQ4RKQwJjNEdib1zPB/HxGRLHg6JbKze3Nm2DVDRCQHJjNEdsZqJiIieVmVzIwfPx56vV7uWIgqBCNvNElEJCurkpmFCxciIyMDABAbG4u7d+/KGhRReWbiMBMRkaysSmb8/PyQmpoKAFi1ahVu374tZ0xE5RqrmYiI5GXVdWbGjh2L3r17Izw8HACwevVqtG/fHs2bN+dVOYnug3NmbKfT6bB161ZpmYgqNqt6Zl599VUkJyejR48eEEJg0aJFeOihh+Dp6YkmTZrg6aefxqxZs7Blyxa54yVyevduNMlsxloqlQrVqlVDtWrVoOJwHVGFZ3U1U4sWLfDGG28gKCgI+/btQ1ZWFvbs2YPRo0ejWrVq+OKLL9C/f3+rA5s6dSpUKpXFo3Hjxlbvj8hRsGeGiEheNt/O4NSpU9JyeHi4NPQEAOKfv0Ct1axZM2zbtk167uLCuy+Q82M1k+1ycnKwYMECAMBrr73G2xkQVXBlmh3Y2v3r4uKC2rVryxQNkWNgNZPtjEYjNmzYAAAYOXKkwtEQkdJsvmheXl4eZsyYgYiICLRp0wYxMTHSxDxbnTp1Cn5+fqhfvz4GDhyICxcuFNveYDAgMzPT4kHkaDjMREQkL5uTmYkTJ+L9999H165d0adPHxgMBvTq1QsvvPCCTcNM4eHhSEpKwrfffovFixfj7Nmz6NixI7KysorcJiEhAV5eXtLD39/f6vcnKitGlmYTEcnK5mGmNWvWYN26dejUqZO07uzZs+jVqxfmzp2LcePGWbXfqKgoablFixYIDw9HQEAA1q9fjyFDhhS6TXx8PMaMGSM9z8zMZEJDDsfEaiYiIlnZ3DNz584d1KlTx2JdYGAg3n33XSxdutTW3UuqVq2Khg0b4vTp00W20Wq18PT0tHgQORoOMxERycvmZKZDhw746KOPCqwPDAzElStXbN295Pbt2zhz5gx8fX1l2yeREkysZiIikpXNw0yzZ89G+/btcevWLbz66qsIDg5Gbm4u3n33XTRt2tTq/f7nP/9B7969ERAQgCtXrmDKlCnQaDR45plnbA2ZSFFGVjMREcnK5mQmJCQEO3fuxLBhw/Dee+/Bzc0NRqMRVatWxaZNm6ze76VLl/DMM8/gxo0bqFmzJjp06IB9+/ahZs2atoZMpCgOM9lOq9Xiyy+/lJaJqGKT5TozrVu3xsGDB3HixAmkpaWhSpUqCA8Pt2nOyrp16+QIjcjhmKuZOMxkPbVaDT8/P6XDICIHYVUyExERgdatW6NVq1Zo1aoVWrRoAZ1Oh8aNG/OWA0T3wYvmERHJy6pkJjo6GkeOHMG8efNw5swZqFQqBAcHS8mN+eHj4yN3vEROz3w7A7XN0+8rrtzcXLz//vsAgJdffhmurq4KR0RESrIqmXnzzTel5QMHDqBPnz4ICQmBSqVCUlISTpw4AZVKhVq1asla0URUHnDOjO3y8vKwatUqAMCwYcOYzBBVcDbPmXnppZewaNEi9O3bV1q3efNmDBs2DDExMbbunqjckS6ax2EmIiJZ2NzRffz4cbRq1cpiXc+ePfH+++/j559/tnX3ROUOe2aIiORlczLTrl27Qi+a17x5cxw4cMDW3ROVO6xmIiKSl83DTPPnz8cjjzyC8+fP47XXXkNISAhycnIwb948eHt7yxEjUbnCaiYiInnZnMyEhoZi//79iIuLQ6tWreDq6gqTyQQXFxcsX75cjhiJyhVzNZOG1UxERLKQ5aJ5jRs3xvbt23HhwgWkpqZCrVYjNDSU91EiKgTnzBARycvmZObgwYOYOHEi/vzzTzRo0EC6xkxubq4c8RGVOxxmsp1Wq8Unn3wiLRNRxWZzR/fzzz8PjUaDYcOGITAwED/++CNeeOEF1KtXDzVq1JAjRqJyhT0ztlOr1QgKCkJQUBDUvPogUYVnc8/MxYsX8c033yAoKMhi/fnz55Gammrr7onKHWnODJMZIiJZ2JzMRERE4PLlywWSmYCAAAQEBNi6e6Jyx2QyDzMpHIgTy83NxYoVKwAAgwcP5hWAiSo4m/tnX3vtNUyfPh03b96UIx6ics8kVTMxm7FWXl4eli1bhmXLliEvL0/pcIhIYTb3zPTu3RsqlQoNGzbE448/Lt1Ru3nz5nBzc5MjRqJyxcg5M0REsrI5mTl9+jR++eUX6TFz5kycO3cOrq6uaNSoEY4cOSJHnETlxr1qJoUDISIqJ2xOZurXr4/69etb3GgyMzMTv/zyCxMZokLcmwDMbIaISA5Wz5mZPHkyUlJSCn3N09MTHTt2RFxcnNWBEZVXLM0mIpKX1cnMpUuXEBUVhTp16uCll17Cli1bkJOTI2dsROUSq5mIiORldTKzYsUKXLt2DWvXrkWVKlUwevRoeHt748knn8TKlStZ3URUhHs9M8xmiIjkYFNptlqtRseOHTFnzhycPHkS+/fvR3h4OJYsWQI/Pz906tQJc+fOxeXLl+WKl8jp8UaTtnNzc8NHH32Ejz76iFWTRCTPjSbNmjRpgiZNmmD8+PG4fv06vvrqK3z55ZcAgP/85z9yvhWR0+KcGdtpNBo0a9ZM6TCIyEHIkszk5ubi2rVruHv3LmrWrInq1avDx8cHQ4YMwZAhQ+R4C6Jyw/hPaTarmYiI5GF1R3dWVhYWL16Mzp07w9PTE/Xq1UOTJk1Qs2ZNBAQEYOjQoTh48KCcsRKVC+yZsV1ubi5WrlyJlStXIjc3V+lwiEhhViUz8+fPR7169ZCYmIjIyEhs2rQJqamp+O2337B3715MmTIFeXl5ePTRR9GjRw+cOnVK7riJnJIQ4t7tDJjMWC0vLw//+9//8L///Y+3MyAi64aZDh48iF27dhU5Zh0WFobBgwfjgw8+QGJiInbv3o3g4GCbAiUqD0z5llnNREQkD6uSmbVr15aonVarxYgRI6x5C6JyydwrAwBqVjMREcnC6tNpWloaJk2ahPT0dBnDISrfTPm6ZjhnhohIHlYnMwkJCTh69CiqVq1a4DW9Xo8TJ07YEhdRuWS+ySTAaiYiIrlYnczs27cPI0eOLPQ1nU6HoUOHIiEhwerAiMojY/5hJuYyRESysOneTA0aNCjy9REjRkgXzCOiv5mYzBARyc7qi+ZVr14dV69ehb+/f6Gvh4WF4fTp01YHRlQemS+YpwKrmWzh5uaGDz74QFomoorN6mSmU6dOSEpKQlhYWKGvq9Vq6PV6qwMjKo94wTx5aDQatG3bVukwiMhBWD3M9J///AfLli3D0qVLC3197969qF+/vtWB/dusWbOgUqkwevRo2fZJZG/Gf6qZeME8IiL5WJ3MhIaG4v3338fLL7+Mbt26YdOmTbhw4QJu3ryJL774AhMmTMCzzz4rS5AHDx7EkiVL0KJFC1n2R6QUczUTh5hsk5eXh/Xr12P9+vW8AjARWZ/MAMDQoUOxc+dOZGRk4IknnkBgYCBq1qyJvn37onnz5njttddsDvD27dsYOHAgli1bhmrVqtm8PyIlScNMvGCeTXJzczFnzhzMmTOH92YiItvvmt2hQwccOHAAJ06cwKFDh3D37l2EhITgwQcflCM+xMXFITo6GpGRkfjvf/9bbFuDwQCDwSA9z8zMlCUGIrlwzgwRkfxsTmbMGjdujMaNG8u1OwDAunXrcOjQoRLffTshIQHTpk2TNQYiOZmrmXjBPCIi+ThsZ/fFixcxatQorF69GjqdrkTbxMfHIyMjQ3pcvHixjKMkKh32zBARyU+2nhm5paSk4Pr162jTpo20zmg0YteuXXjvvfdgMBig0WgsttFqtdBqtfYOlajEWM1ERCQ/h01munbtil9//dVi3QsvvIDGjRtjwoQJBRIZImfAaiYiIvmVaTKjVqvx8MMP4+2330ZoaGiptq1SpQpCQkIs1lWuXBk1atQosJ7IWbCaiYhIfmWazKxYsQLnzp1DXFwc9u3bV5ZvReQUjJwzIwtXV1csXLhQWiaiiq1Mk5nY2FgAwNSpU2XZ386dO2XZD5FSTKxmkoWLiws6dOigdBhE5CDY2U1kR6xmIiKSn+w9M7du3cL333+Py5cvAwD8/PzQvXt3Xr2XCExm5JKXl4ctW7YAAKKiouDi4rC1DERkB7L2zCxfvhwRERHYv38/TCYTTCYT9u/fj4ceegjLly+X862InJLRxGEmOeTm5mLatGmYNm0ab2dARPL2zMyZMweHDh1C5cqVLda/9dZbaNOmDYYMGSLn2xE5HfbMEBHJT9aeGZVKhaysrALrs7KyoOJfokRSNZOGs9WIiGQja8/M3Llz0blzZ4SEhOCBBx4AAFy6dAnHjh3DvHnz5HwrIqd076J5CgdCRFSOyJrM9OrVC1FRUThw4ACuXLkC4O8JwGFhYbxiLxHyDzMxmyEikovVycyLL76I0NBQtGnTBi1btpRuBqnRaBARESFbgETlCS+aR0QkP6uTmVOnTmHDhg3IysqCi4sLGjVqJCU3oaGhaNWqVYGJwEQVnYnVTEREsrM6mfnxxx8B/J3UpKSk4NChQzh06BC+/PJLpKenQ61Wo2HDhkhLS5MtWCJnx2omebi6umLWrFnSMhFVbDbPmQkODkZwcDCefvppad3Zs2eRnJyMw4cP27p7onKF1UzycHFxQWRkpNJhEJGDKJPLZgYGBiIwMBD9+vUri90TOS1WMxERyY/XACeyIyOrmWSRl5cn3Xj24Ycf5u0MiCo4ngGI7Mg8Z0bDXMYmubm5mDhxIgBg9+7dTGaIKjiO3BPZkbmaicNMRETyKdNkRq1W45FHHkFKSkpZvg2R0+BF84iI5FemycyKFSvQqVMnxMXFleXbEDkNE6uZiIhkZ/NAc1ZWFqpUqVLoa7GxsQCAqVOn2vo2ROWCkdVMRESys/nvw44dO+LatWtyxEJU7nGYiYhIfjYnM61bt0Z4eDhOnDhhsT41NRU9e/a0dfdE5YqR1UxERLKzOZlJTExEbGwsOnTogD179uC3335D//79ERoayjtlE/0Lb2cgD1dXV0yZMgVTpkzh7QyISJ7rzEybNg1arRbdunWD0WhE165dsXfvXoSFhcmxe6JywyiVZjObsYWLiwt69+6tdBhE5CBs7pn5448/MGrUKPz3v/9F06ZN4erqitjYWCYyRIVgzwwRkfxs7pkJDAxEo0aNsGHDBkRHR+Pbb7/FgAEDcOHCBYwbN06OGInKDZZmyyMvLw/79u0DADz44IO8AjBRBWfzGWDFihUWd8zu0aMHduzYgV69euHcuXNYtGiRrW9BVG7cu9Eku2ZskZubi9GjRwPg7QyISIZhpvyJjFmbNm3w888/44cffrB190TlCquZiIjkV2ad3fXq1cPPP/9cVrsnckqcM0NEJL8yHbmvVq1aWe6eyOmYq5k0HGYiIpINpyES2RF7ZoiI5MdkhsiOzHNm1PyfR0QkmzI9parVajzyyCNISUkpy7chchqsZiIikl+Z1jOuWLEC586dQ1xcnHRNCKKKzMRqJlm4urpi/Pjx0jIRVWxlmszExsYCAKZOnVqWb0PkNDhnRh4uLi7o37+/0mEQkYNw2JH7xYsXo0WLFvD09ISnpyciIiKwZcsWpcMisgmHmYiI5GdTMnP+/Hl8//33uHbtWqGvX7lyxep916lTB7NmzUJKSgqSk5PxyCOP4PHHH8exY8es3ieR0oymv//lMJNtjEYjkpOTkZycDKPRqHQ4RKQwq5OZtWvXokGDBujRowfq16+PVatWAQAuXLiAWbNmITw8HHXr1rU6sN69e6Nnz54IDg5Gw4YNMWPGDHh4eHDuDTk1DjPJIycnByNGjMCIESOQk5OjdDhEpDCrk5m33noLr776Kn799Vd069YNL730EiZNmoSgoCAkJSWhbdu22LBhgyxBGo1GrFu3Dnfu3EFERESR7QwGAzIzMy0eRI7E+M8wk4bZDBGRbKyeAHzmzBmMGjUKAQEBWLRoEerWrYuffvoJR44cQZMmTWQJ7tdff0VERAT0ej08PDywceNGNG3atMj2CQkJmDZtmizvTVQW2DNDRCQ/q3tmcnNz4e7uDuDv+S06nQ5z586VLZEBgEaNGiE1NRX79+/HSy+9hJiYGKSlpRXZPj4+HhkZGdLj4sWLssVCJAcmM0RE8rNpAvCaNWtw4sQJAIBGo5H9Xkxubm5o0KABQkNDkZCQgJYtW+Kdd94psr1Wq5Wqn8wPIkfCaiYiIvlZncx07NgRU6ZMQbNmzeDt7Q29Xo933nkH69evR1paGvLy8uSMEwBgMplgMBhk3y+RvbCaiYhIflbPmfnxxx8BAKdOnUJKSgoOHTqEQ4cOYeXKlUhPT4ebmxsaNmyII0eOWLX/+Ph4REVFoW7dusjKysKaNWuwc+dOfPfdd9aGTKQ4DjMREcnP5isABwcHIzg4GE8//bS07uzZs0hOTsbhw4et3u/169cxaNAgXL16FV5eXmjRogW+++47dOvWzdaQiRTDaiZ5uLi4YOTIkdIyEVVsVp0FLly4UOw1ZAIDAxEYGIh+/foBAC5fvowHHnigVO+xfPlya0IjcmjsmZGHq6srBg0apHQYROQgrJoz065dOwwfPhwHDx4ssk1GRgaWLVuGkJAQfPbZZ1YHSFSeGHmjSSIi2VnVM5OWloYZM2agW7du0Ol0CA0NhZ+fH3Q6HW7duoW0tDQcO3YMbdq0wZw5c9CzZ0+54yZySqxmkofRaJQqKRs3bgyNRqNwRESkJKuSmRo1amD+/PmYMWMGvvnmG+zZswfnz59HdnY2vL29MXDgQHTv3h0hISFyx0vk1Ez/VDNxmMk2OTk5iImJAQDs3r1buuYVEVVMNs2cc3d3x1NPPYWnnnpKrniIyjXOmSEikp9NF80jotJhNRMRkfxKncxkZ2fj8uXLBdYfO3ZMloCIyjP2zBARya9Uycynn36K4OBgREdHo0WLFti/f7/02vPPPy97cETlDZMZIiL5lSqZ+e9//4uUlBSkpqYiMTERQ4YMwZo1awAA4p/ucyIqmjTMxGSGiEg2pZoAnJubi1q1agEAQkNDsWvXLvTt2xenT5+GiqWmRPd1r2eG/1+IiORSqmTGx8cHR44cQYsWLQAA1atXx9atWxETE2P1PZiIKhITbzQpCxcXFwwdOlRaJqKKrVRngVWrVhU4cbi5uWHt2rV45ZVXZA2MqLwRQuCfXIZzZmzk6uqK4cOHKx0GETmIUs2ZqVOnDmrXrm2xbtu2bQCA9u3byxcVUTlkyjetTM1shohINjZfZyY6OhpjxoxBTk6OHPEQlVsWyQxzGZuYTCacOXMGZ86cgck8dkdEFZbNycyuXbvw9ddfo23btjh69Gihba5evYonn3zS1rcicmrGfBV/nDNjG4PBgAEDBmDAgAEwGAxKh0NECrM5mQkPD8ehQ4fQtm1btGvXDvPnz5deM5lMSEtLw+TJk7F7925b34rIqVn2zDCbISKSiyxlAB4eHpg3bx4qVaqEcePGYe3atVIiYzAYEBAQgISEBDneishpGfMlM+yZISKSj809Mx9++CHq1q0Lb29vJCUlISwsDC4uLjh8+DBefPFF3Lx5E2fPnsWQIUPkiJfIaXHODBFR2bA5mXn99dcRHR2NtLQ0ZGVlYe/evdi7dy/mzZuHDz/8EGPGjMHdu3fliJXIqZn+yWbUAC8ySUQkI5uTmYcffhhTp05Fo0aNLE7Qr732Gg4cOIDk5OQC93Eiqoh4XyYiorJhczKzfv166RYH/9a8eXMcPHgQvXr1QqdOnWx9KyKnZq5mUtv8v46IiPIr8+uAa7VaLFy4ENHR0WX9VkQOjfdlko+Liwuef/55aZmIKja7nQW6detmr7cickgcZpKPq6srRo0apXQYROQg2OFNZCfm0myWZRMRyYv9s0R2YjLPmeEwk81MJhOuXbsGAKhduzbUnIhEVKExmSGyE+M/txBiz4ztDAYDHnvsMQDA7t274e7urnBERKQk/jlDZCecM0NEVDaYzBDZiTTMxGyGiEhWTGaI7IQ9M0REZYPJDJGdsJqJiKhsMJkhshNWMxERlQ0mM0R2wmomIqKywdJsIjvhnBn5aDQa9OvXT1omooqNyQyRnZhvNKlhNmMzNzc3TJgwQekwiMhBOOwwU0JCAtq1a4cqVarAx8cHffr0wcmTJ5UOi8hq7JkhIiobDpvM/Pjjj4iLi8O+ffuwdetW5Obm4tFHH8WdO3eUDo3IKkxm5COEwK1bt3Dr1i2If3q8iKjicthhpm+//dbieVJSEnx8fJCSkoJOnTopFBWR9VjNJB+9Xo9u3boB4O0MiMiBk5l/y8jIAABUr169yDYGgwEGg0F6npmZWeZxEZWUuZqJPTNERPJy2GGm/EwmE0aPHo327dsjJCSkyHYJCQnw8vKSHv7+/naMkqh4Jl40j4ioTDhFMhMXF4ejR49i3bp1xbaLj49HRkaG9Lh48aKdIiS6Pw4zERGVDYcfZnrllVfw9ddfY9euXahTp06xbbVaLbRarZ0iIyod6XYGTvEnBBGR83DYZEYIgVdffRUbN27Ezp07ERgYqHRIRDZhNRMRUdlw2GQmLi4Oa9aswRdffIEqVarg2rVrAAAvLy9WLpBTMnKYiYioTDhsMrN48WIAwMMPP2yxPjExEbGxsfYPiMhG7JmRj0ajQa9evaRlIqrYHDaZ4YWwqLwx8UaTsnFzc8PUqVOVDoOIHASnIhLZyb1qJoUDISIqZxy2Z4aovLlXzcRsxlZCCOj1egCATqeDivOQiCo09swQ2QnnzMhHr9ejY8eO6Nixo5TUEFHFxWSGyE7M1Uwa9iIQEcmKyQyRnbBnhoiobDCZIbIT3miSiKhsMJkhshNWMxERlQ0mM0R2YmI1ExFRmWAyQ2QnnDNDRFQ2eJ0ZIjsxcphJNmq1Gl27dpWWiahiYzJDZCfSMBNLs22m1Woxe/ZspcMgIgfBP2mI7ITDTEREZYPJDJGdGE3mi+YpHAgRUTnDZIbITu71zDCbsVV2djbatm2Ltm3bIjs7W+lwiEhhTGaI7MR8o0nOVyUikhdPq0R2wjkzRERlg8kMkZ2YeKNJIqIywWSGyE7YM0NEVDaYzBDZiflGk6xmIiKSF5MZIju5d6NJZjNERHLiFYCJ7MQo3WhS2TjKA7Vajfbt20vLRFSxMZkhshPOmZGPVqvFO++8o3QYROQg+CcNkZ1wmImIqGwwmSGyE/bMEBGVDSYzRHZirmZiMmO77OxsdOjQAR06dODtDIiIc2aI7IUXzZOXXq9XOgQichDsmSGyEyOHmYiIygSTGSI7MbE0m4ioTPC0SmQnrGYiIiobTGaI7ES6aB5zGSIiWTGZIbITlmYTEZUNVjMR2YnJxGEmuahUKrRp00ZaJqKKjckMkZ2wZ0Y+Op0OS5cuVToMInIQDj3MtGvXLvTu3Rt+fn5QqVTYtGmT0iERWY03miQiKhsOfVq9c+cOWrZsiUWLFikdCpHNWM1ERFQ2HHqYKSoqClFRUUqHQSQLVjPJJzs7G7179wYAfPXVV3B3d1c4IiJSkkMnM6VlMBhgMBik55mZmQpGQ2SJc2bklZ6ernQIROQgHHqYqbQSEhLg5eUlPfz9/ZUOiUjCaiYiorJRrpKZ+Ph4ZGRkSI+LFy8qHRKRxMRhJiKiMlGuhpm0Wi20Wq3SYRAVSrrRZLn6E4KISHk8rRLZgUkI/JPLcJiJiEhmDt0zc/v2bZw+fVp6fvbsWaSmpqJ69eqoW7eugpERlY55iAngBGAiIrk5dDKTnJyMLl26SM/HjBkDAIiJiUFSUpJCURGVXv5khnNmbKdSqdC0aVNpmYgqNodOZh5++GEIIe7fkMjBGfP9HLNnxnY6nQ4rV65UOgwichCcM0NkB5Y9M8xmiIjkxGSGyA44Z4aIqOwwmSGyA5OJw0xy0uv16N27N3r37g29Xq90OESkMIeeM0NUXki3MgAnrMpBCIGrV69Ky0RUsbFnhsgOeME8IqKyw1MrkR2YhPm+TAoHQkRUDjGZIbIDo3RfJmYzRERyYzJDZAfSnBnmMkREsmMyQ2QHxn+yGV79l4hIfqxmIrKDez0zzGbkoFKpUL9+fWmZiCo2JjNEdmBiNZOsdDod1q9fr3QYROQgeGolsgPOmSEiKjtMZojswCiVZjObISKSG5MZIjswSaXZysZRXuj1evTv3x/9+/fn7QyIiHNmiOzBXM3EYSZ5CCHw+++/S8tEVLGxZ4bIDky8aB4RUZlhMkNkB0ZOACYiKjNMZojsQOqZ4f84IiLZ8dRKZAcmVjMREZUZJjNEdsDrzBARlR1WMxHZAZMZealUKvj6+krLRFSxMZkhsoN7N5rkL1456HQ6fPXVV0qHQUQOgsNMRHbAnhkiorLDZIbIDoysZiIiKjM8tRLZAauZ5KXX6zFo0CAMGjSItzMgIs6ZIbIHXjRPXkIIpKWlSctEVLGxZ4bIDjhnhoio7DCZIbIDE6uZiIjKDJMZIjtgzwwRUdlhMkNkB5wzQ0RUdpjMENmBuZpJw2yGiEh2rGYisgP2zMivatWqSodARA6CyQyRHZjnzGiYzMjC3d0d27ZtUzoMInIQDj/MtGjRItSrVw86nQ7h4eE4cOCA0iERlZr53ky8aB4RkfwcOpn55JNPMGbMGEyZMgWHDh1Cy5Yt0b17d1y/fl3p0IhKhdVMRERlx6GHmebPn4+hQ4fihRdeAAB88MEH+Oabb7BixQpMnDhRsbiuZ+mRk2dS7P1JHtfvGO32Xrdz/v55KW0yc+OuUZpvQ/cYDHpMHv8aAGD6nAXQanUKR0TWuHTrrtIhkAy8PbTQuWoUjcFhk5mcnBykpKQgPj5eWqdWqxEZGYm9e/cWuo3BYIDBYJCeZ2Zmlklso9amYu/vN8pk31S+lTaZif/hBm5kM3H+N1OOHhdTDwEARm75E2o3JjNOafMOpSMgGawd+iAigmooGoPDJjN//fUXjEYjatWqZbG+Vq1aOHHiRKHbJCQkYNq0aWUem6uLGloXhx6hoxIQJvsmCTpXNdr4aku1jataBTf+qBVgyveZuKkBNT8jp6TiF1cuOMLwucMmM9aIj4/HmDFjpOeZmZnw9/eX/X1WDg6TfZ9kfykpKUqHcF+LetZUOgSHlJ2djY7z/l5O6lML7u7uygZEVgkNDVU6BConHDaZ8fb2hkajwR9//GGx/o8//kDt2rUL3Uar1UKrLd1fvkREROTcHLaPz83NDaGhodi+fbu0zmQyYfv27YiIiFAwMiIiInIkDtszAwBjxoxBTEwM2rZti7CwMCxcuBB37tyRqpuIiIiIHDqZGTBgAP78809MnjwZ165dQ6tWrfDtt98WmBRMRBWPTscKJiL6m0oIUW6vYpGZmQkvLy9kZGTA09NT6XDIwTjDBGCi8owTgKkopf397bBzZoiIiIhKgskMEREROTUmM0TkdAwGA0aNGoVRo0ZZXPWbiComh54ATERUGJPJhJ9++klaJqKKjT0zRERE5NSYzBAREZFTYzJDRERETo3JDBERETk1JjNERETk1Mp1NZP54saZmZkKR0KO6Pbt20qHQFbS6/XS8p07d2A0GhWMhqzFczMVxfyzUdKbFJTr2xlcunQJ/v7+SodBREREVrh48SLq1Klz33blOpkxmUy4cuUKqlSpApVKpXQ4ssrMzIS/vz8uXrxY7u87VZGOFahYx1uRjhWoWMfLYy2/7HG8QghkZWXBz88PavX9Z8SU62EmtVpdoozOmXl6elaI/zxAxTpWoGIdb0U6VqBiHS+Ptfwq6+P18vIqcVtOACYiIiKnxmSGiIiInBqTGSel1WoxZcoUaLVapUMpcxXpWIGKdbwV6ViBinW8PNbyyxGPt1xPACYiIqLyjz0zRERE5NSYzBAREZFTYzJDRERETo3JDBERETk1JjMKq1evHlQqlcVj1qxZFm2OHDmCjh07QqfTwd/fH3PmzCmwnw0bNqBx48bQ6XRo3rw5Nm/ebPG6EAKTJ0+Gr68v3N3dERkZiVOnTlm0uXnzJgYOHAhPT09UrVoVQ4YMke3+RefOncOQIUMQGBgId3d3BAUFYcqUKcjJybFo8+/PQqVSYd++fU51rLZYtGgR6tWrB51Oh/DwcBw4cEDpkCwkJCSgXbt2qFKlCnx8fNCnTx+cPHnSos3DDz9c4DscMWKERZsLFy4gOjoalSpVgo+PD8aNG4e8vDyLNjt37kSbNm2g1WrRoEEDJCUlFYinrD+vqVOnFjiWxo0bS6/r9XrExcWhRo0a8PDwwJNPPok//vjDKY+1sHORSqVCXFwcAOf/Xnft2oXevXvDz88PKpUKmzZtsnhdrvOGvc7X1h5rbm4uJkyYgObNm6Ny5crw8/PDoEGDcOXKFYt9ONLvphIRpKiAgAAxffp0cfXqVelx+/Zt6fWMjAxRq1YtMXDgQHH06FGxdu1a4e7uLpYsWSK1+emnn4RGoxFz5swRaWlp4s033xSurq7i119/ldrMmjVLeHl5iU2bNolffvlFPPbYYyIwMFBkZ2dLbXr06CFatmwp9u3bJ3bv3i0aNGggnnnmGVmOc8uWLSI2NlZ899134syZM+KLL74QPj4+YuzYsVKbs2fPCgBi27ZtFp9HTk6OUx2rtdatWyfc3NzEihUrxLFjx8TQoUNF1apVxR9//KFoXPl1795dJCYmiqNHj4rU1FTRs2dPUbduXYuf2c6dO4uhQ4dafIcZGRnS63l5eSIkJERERkaKw4cPi82bNwtvb28RHx8vtfn9999FpUqVxJgxY0RaWpp49913hUajEd9++63Uxh6f15QpU0SzZs0sjuXPP/+UXh8xYoTw9/cX27dvF8nJyeLBBx8UDz30kFMe6/Xr1y2Oc+vWrQKA2LFjhxDC+b/XzZs3izfeeEN8/vnnAoDYuHGjxetynDfseb629ljT09NFZGSk+OSTT8SJEyfE3r17RVhYmAgNDbXYhyP9bioJJjMKCwgIEAsWLCjy9ffff19Uq1ZNGAwGad2ECRNEo0aNpOf9+/cX0dHRFtuFh4eL4cOHCyGEMJlMonbt2uLtt9+WXk9PTxdarVasXbtWCCFEWlqaACAOHjwotdmyZYtQqVTi8uXLNh1jUebMmSMCAwOl5+Zk5vDhw0Vu46zHWhJhYWEiLi5Oem40GoWfn59ISEhQLKb7uX79ugAgfvzxR2ld586dxahRo4rcZvPmzUKtVotr165J6xYvXiw8PT2ln/Px48eLZs2aWWw3YMAA0b17d+m5PT6vKVOmiJYtWxb6Wnp6unB1dRUbNmyQ1h0/flwAEHv37hVCONex/tuoUaNEUFCQMJlMQojy9b3++xe8XOcNe52vbTnWwhw4cEAAEOfPn5fWOcrvppLiMJMDmDVrFmrUqIHWrVvj7bfftuiW3bt3Lzp16gQ3NzdpXffu3XHy5EncunVLahMZGWmxz+7du2Pv3r0AgLNnz+LatWsWbby8vBAeHi612bt3L6pWrYq2bdtKbSIjI6FWq7F//375DxpARkYGqlevXmD9Y489Bh8fH3To0AFffvmlxWvOeqz3k5OTg5SUFIu41Wo1IiMjpbgdUUZGBgAU+B5Xr14Nb29vhISEID4+Hnfv3pVe27t3L5o3b45atWpJ67p3747MzEwcO3ZMalPc92zPz+vUqVPw8/ND/fr1MXDgQFy4cAEAkJKSgtzcXIsYGjdujLp161r8rDnTsZrl5OTg448/xuDBgy1u0luevtf85Dpv2Ot8LbeMjAyoVCpUrVrVYr0j/G4qqXJ9o0lnMHLkSLRp0wbVq1fHzz//jPj4eFy9ehXz588HAFy7dg2BgYEW25hPFteuXUO1atVw7do1ixOIuc21a9ekdvm3K6qNj4+PxesuLi6oXr261EZOp0+fxrvvvou5c+dK6zw8PDBv3jy0b98earUan332Gfr06YNNmzbhsccek+J0tmMtib/++gtGo7HQuE+cOKFITPdjMpkwevRotG/fHiEhIdL6Z599FgEBAfDz88ORI0cwYcIEnDx5Ep9//jmAor9D82vFtcnMzER2djZu3bpll88rPDwcSUlJaNSoEa5evYpp06ahY8eOOHr0KK5duwY3N7cCvwD+/bPmLMea36ZNm5Ceno7Y2FhpXXn6Xv9NrvOGvc7XctLr9ZgwYQKeeeYZi5tGOsrvppJiMlMGJk6ciNmzZxfb5vjx42jcuDHGjBkjrWvRogXc3NwwfPhwJCQkONSlootSmmM1u3z5Mnr06IF+/fph6NCh0npvb2+Lz6Ndu3a4cuUK3n77bSmZIccRFxeHo0ePYs+ePRbrhw0bJi03b94cvr6+6Nq1K86cOYOgoCB7h2mTqKgoablFixYIDw9HQEAA1q9fD3d3dwUjK1vLly9HVFQU/Pz8pHXl6Xulv+Xm5qJ///4QQmDx4sUWrznb7yYOM5WBsWPH4vjx48U+6tevX+i24eHhyMvLw7lz5wAAtWvXLlAdYX5eu3btYtvkfz3/dkW1uX79usXreXl5uHnzptRGjmO9cuUKunTpgoceeghLly4tcr/5P4/Tp09Lz5U81rLk7e0NjUZTbNyO5JVXXsHXX3+NHTt2oE6dOsW2DQ8PBwDpe7TlZ9rT0xPu7u6KfV5Vq1ZFw4YNcfr0adSuXRs5OTlIT08vMgZnPNbz589j27ZtePHFF4ttV56+V7nOG/Y6X8vBnMicP38eW7duteiVKYxSv5tKislMGahZsyYaN25c7CP/OGN+qampUKvVUndmREQEdu3ahdzcXKnN1q1b0ahRI1SrVk1qs337dov9bN26FREREQCAwMBA1K5d26JNZmYm9u/fL7WJiIhAeno6UlJSpDY//PADTCaTdNKy9VgvX76Mhx9+GKGhoUhMTIRaff8fv9TUVPj6+krPlTzWsuTm5obQ0FCLuE0mE7Zv3y7F7QiEEHjllVewceNG/PDDDwW6mQuTmpoKANL3GBERgV9//dXiF4P5ZNq0aVOpTXHfs1Kf1+3bt3HmzBn4+voiNDQUrq6uFjGcPHkSFy5csPhZc7ZjTUxMhI+PD6Kjo4ttV56+V7nOG/Y6X9vKnMicOnUK27ZtQ40aNe67jVK/m0qsVNOFSVY///yzWLBggUhNTRVnzpwRH3/8sahZs6YYNGiQ1CY9PV3UqlVLPP/88+Lo0aNi3bp1olKlSgXK31xcXMTcuXPF8ePHxZQpUwotf6tatar44osvxJEjR8Tjjz9eaNlh69atxf79+8WePXtEcHCwbOXKly5dEg0aNBBdu3YVly5dsij3M0tKShJr1qwRx48fF8ePHxczZswQarVarFixwqmO1Vrr1q0TWq1WJCUlibS0NDFs2DBRtWpVi+oQpb300kvCy8tL7Ny50+I7vHv3rhBCiNOnT4vp06eL5ORkcfbsWfHFF1+I+vXri06dOkn7MJfwPvrooyI1NVV8++23ombNmoWW8I4bN04cP35cLFq0qNAS3rL+vMaOHSt27twpzp49K3766ScRGRkpvL29xfXr14UQf5dm161bV/zwww8iOTlZREREiIiICKc8ViH+rhyqW7eumDBhgsX68vC9ZmVlicOHD4vDhw8LAGL+/Pni8OHDUgWPHOcNe56vrT3WnJwc8dhjj4k6deqI1NRUi//H5sokR/vdVBJMZhSUkpIiwsPDhZeXl9DpdKJJkyZi5syZQq/XW7T75ZdfRIcOHYRWqxUPPPCAmDVrVoF9rV+/XjRs2FC4ubmJZs2aiW+++cbidZPJJCZNmiRq1aoltFqt6Nq1qzh58qRFmxs3bohnnnlGeHh4CE9PT/HCCy+IrKwsWY41MTFRACj0YZaUlCSaNGkiKlWqJDw9PUVYWJhF2auzHKst3n33XVG3bl3h5uYmwsLCxL59+5QOyUJR32FiYqIQQogLFy6ITp06ierVqwutVisaNGggxo0bZ3E9EiGEOHfunIiKihLu7u7C29tbjB07VuTm5lq02bFjh2jVqpVwc3MT9evXl94jv7L+vAYMGCB8fX2Fm5ubeOCBB8SAAQPE6dOnpdezs7PFyy+/LKpVqyYqVaok+vbta5GgO9OxCiHEd999JwAU+P9SHr7XHTt2FPqzGxMTI4SQ77xhr/O1tcdqvgRGYQ/zNYUc7XdTSaiEEKJ0fTlEREREjoNzZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSEiIiKnxmSGiIiInBqTGSIiInJqTGaIyGnExsZCpVJBpVLB1dUVgYGBGD9+PPR6vdKhEZGCXJQOgIioNHr06IHExETk5uYiJSUFMTExUKlUmD17ttKhEZFC2DNDRE5Fq9Widu3a8Pf3R58+fRAZGYmtW7cqHRYRKYjJDBE5raNHj+Lnn3+Gm5ub0qEQkYI4zERETuXrr7+Gh4cH8vLyYDAYoFar8d577ykdFhEpiMkMETmVLl26YPHixbhz5w4WLFgAFxcXPPnkk0qHRUQK4jATETmVypUro0GDBmjZsiVWrFiB/fv3Y/ny5UqHRUQKYjJDRE5LrVbj9ddfx5tvvons7GylwyEihTCZISKn1q9fP2g0GixatEjpUIhIIUxmiMipubi44JVXXsGcOXNw584dpcMhIgWohBBC6SCIiIiIrMWeGSIiInJqTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSEiIiKnxmSGiIiInNr/Afq445k50L5zAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUsklEQVR4nO3deXgTVdsG8DtdkhRoC4VCWymlhbKWshSo7Mgia1H0FVGUsgiCKMUNqMomQgsConyIwssiyiKoiIigwMsuO1SWshULZSmgQFe6Juf7AzMSumemmaS9f9eVi2RyMvNMpglPzjnPjEYIIUBERERkZxzUDoCIiIjIEkxiiIiIyC4xiSEiIiK7xCSGiIiI7BKTGCIiIrJLTGKIiIjILjGJISIiIrvEJIaIiIjsEpMYIiIisktMYoiIiMguMYkhq7t06RJeffVVBAQEQK/Xw83NDe3atcOnn36KjIwMq8WxZ88e9OvXD76+vtDr9fDy8kLPnj2xf//+Yr3+/PnzePPNN9G2bVvo9XpoNBpcvnw537bffvstXnrpJQQGBkKj0aBz587K7cgjjEYjZs+eDX9/f+j1egQHB2PNmjUFtl20aBGaNWsGFxcXVK1aFV26dMEff/xRavElJSWhevXq0Gg0+O6774psv2LFCmg0mgJvq1atktpOnTo13zZ6vb5U9uWnn35CixYtoNfrUatWLUyZMgW5ubn5tt2+fTu6dOkCd3d3uLq6IiQkBN9++22pxFVc3bt3h0ajweuvv15k28uXLxd6HEaMGCG13bVrV4HtDh48qPh+nD17Fj179kSlSpXg4eGBl19+GX/99Ve+bS9duoQXX3wR1atXh4uLCwIDA/H+++8rHhNZh5PaAVD5snnzZjz33HPQ6XQYPHgwgoKCkJ2djX379uHdd9/FmTNnsHjxYqvEcuHCBTg4OGDUqFHw8vLCvXv38M0336Bjx47YvHkzevbsWejrDxw4gM8++wyNGjVCw4YNERMTU2DbRYsW4dixY2jVqhXu3Lmj8J6Ye//99xEdHY0RI0agVatW2LhxI1588UVoNBoMHDjQrO2wYcOwatUqDB48GK+//jrS09Nx4sQJ3L59u9Timzx5Mu7fv1/s9h07dsTXX3+dZ/knn3yCP/74A127ds3z3KJFi1CpUiXpsaOjo2XBFmLLli14+umn0blzZyxYsACnTp3CRx99hNu3b2PRokVmbZcvX47hw4eje/fumDlzJhwdHXH+/HlcvXpV8biK64cffsCBAweK3d7T0zPf47B161asWrUKTz75ZJ7nxo4di1atWpktq1u3bsmDLcS1a9fQsWNHuLu7Y+bMmUhLS8OcOXNw6tQpHD58GFqtVmobExODzp0747HHHsPbb7+NqlWrIiEhQdXjQDIJIiv5888/RaVKlUSDBg3EjRs38jx/8eJFMX/+fBUi+1d6erqoUaOG6NGjR5Ft79y5I1JSUoQQQnz88ccCgIiPj8+3bUJCgjAYDEIIIRo3biw6deqkVMhmrl27JpydncWYMWOkZUajUXTo0EHUrFlT5ObmSsu//fZbAUD88MMPpRJLfk6dOiWcnJzEhx9+KACI9evXW7Se+/fvC1dXV9G9e3ez5VOmTBEAxF9//aVEuIVq1KiRaNq0qcjJyZGWvf/++0Kj0YizZ89Ky+Lj44WLi4sYO3asItuNj48XAMTOnTstXkdGRoaoXbu2dBwe/nspqa5duwo3NzeRkZEhLdu5c6es41sSo0ePFi4uLuLKlSvSsm3btgkA4ssvv5SWGQwGERQUJEJDQ8X9+/dLPS6yDg4nkdXMnj0baWlpWLp0Kby9vfM8X7duXURERKgQ2b8qVKgAT09PJCUlFdnWw8MDrq6uxVqvr68vHByK93G7fv06hg0bhho1akCn06Fx48ZYtmxZsV67ceNG5OTk4LXXXpOWaTQajB49GteuXTP75T1v3jy0bt0a/fv3h9FoRHp6erG2IUdERAT69++PDh06yFrPpk2bkJqaikGDBuX7vBACKSkpEEIUuI6srCxMmTIFdevWhU6ng6+vL8aPH4+srKwitx8bG4vY2FiMHDkSTk7/dmi/9tprEEKYDZN98cUXMBgM+PDDDwEAaWlphcZlDbNnz4bRaMQ777wjaz2JiYnYuXMnnnnmmQKH7FJTUwscYjP55ptvEBISAhcXF3h4eGDgwIHF7h35/vvv0bdvX9SqVUta1q1bN9SrVw/r1q2Tlv322284ffo0pkyZAhcXF9y/fx8Gg6FY2yDbxSSGrGbTpk0ICAhA27ZtLV7H/fv38ffffxd5u3fvXrHXmZKSgr///hvnzp3De++9h9OnT+c7RGENt27dwuOPP47t27fj9ddfx6effoq6deti+PDhmD9/fpGvP3HiBCpWrIiGDRuaLW/durX0PPBgnw8fPoxWrVrhvffeg7u7OypVqoSAgACzL34lrV+/Hr///jtmz54te12rVq2Ci4sLnnnmmXyfDwgIkOaevPTSS7h165bZ80ajEf369cOcOXMQFhaGBQsW4Omnn8Ynn3yC559/vsjtm97Hli1bmi338fFBzZo1peeBB3NhGjRogF9++QU1a9aEq6srqlatikmTJsFoNJZ012VLSEhAdHQ0Zs2aBRcXF1nrWrt2LYxGY4HJ5NChQ+Hm5ga9Xo8nnngCR48ezdNmxowZGDx4MAIDAzFv3jyMGzcOO3bsQMeOHYv8MXH9+nXcvn07z3EAHvzNP3ocAECn06Fly5aoWLEiKlSogIEDB+Lu3bsl2GuyKep2BFF5kZycLACIp556StZ6TMMFRd38/PyKvc4ePXpIr9NqteLVV1816xovjqKGkx5W2HDS8OHDhbe3t/j777/Nlg8cOFC4u7sX2Q3ep08fERAQkGd5enq6ACAmTpwohBDi+PHjAoCoWrWqqFGjhvj888/FqlWrROvWrYVGoxFbtmwpcj9K4v79+6JWrVoiMjJSCCFvuOHOnTtCq9WKAQMG5Hlu/vz54vXXXxerVq0S3333nYiIiBBOTk4iMDBQJCcnS+2+/vpr4eDgIPbu3Wv2+i+++EIAEPv37y80BtPxTkhIyPNcq1atxOOPPy49dnNzE1WqVBE6nU5MmjRJfPfdd+LFF180Ox4lIXc46T//+Y9o27at9BgyhpNCQkKEt7e3NFRqsn//fvHss8+KpUuXio0bN4qoqChRtWpVodfrxfHjx6V2ly9fFo6OjmLGjBlmrzcNOz66/FFHjhwRAMTKlSvzPPfuu+8KACIzM1MIIUS/fv2kv/lBgwaJ7777TkyaNEk4OTmJtm3bCqPRaNF7QOrixF6yipSUFAAo9vBLQQYPHoz27dsX2a4kvzCjo6Px9ttv4+rVq/jqq6+QnZ1dZPd3aRBC4Pvvv8eAAQMghMDff/8tPdejRw+sXbsWx48fR7t27QpcR0ZGBnQ6XZ7lpq5+U/VXWloaAODOnTs4ePAgQkNDAQD9+vWDv78/PvrooyInNpdEdHQ0cnJy8N5778le13fffYfs7Ox8f/0/Ohz57LPPonXr1hg0aBA+//xzTJw4EcCDXqGGDRuiQYMGZu9zly5dAAA7d+4stMfQ9D4W9F6b/t6BB++10WhEdHQ0JkyYIMV19+5dfPrpp3jvvfcK/VykpaUhMzNTemzqZUxOTjaL3dnZGe7u7gWux7Rf33//PQ4dOlRou+K4cOECjh07hjfffDPPUGnbtm3N3r9+/frhP//5D4KDgxEZGYmtW7cCeDC52Gg0YsCAAWb74uXlhcDAQOzcubPQv5mijoOpjU6nk/7mW7VqhW+++QbAg+NQoUIFREZGYseOHejWrZslbwWpSe0syhp2794t+vbtK7y9vQUAsWHDhhK9PiMjQ4SHh4ugoCDh6OhYYG/Czp07RfPmzYVWqxV16tQRy5cvN3v+888/F02aNBGurq7C1dVVPP744+KXX36xbKfsjFI9MaUtKytLNG7cWDz77LMlep0SPTG3bt0qsofJNAk3MTHR7GbqoSluT4zpF6y/v3+etkOHDhXOzs5mE1Yfdfv2bbPtp6amFtjWNLF12bJl0jI5PTEdO3YUHh4eIjs7u9iv8fLyEl27dpUeN2zYsND32TQJ986dO2b7mZSUJIQoWU9MxYoVBQCziadCCPHVV18JAGL37t2Fxh4eHl6s3seiJovn5OSIoKAgMXjwYLPlsLAnZvLkyQKAOHr0aLFfM3DgQKHVaqUJ5qNHjy50n4KDg4UQQqSmppodh9u3bwshStYT06dPHwFAfPXVV2btrly5IgCIadOmlfg9IPWVi56Y9PR0NG3aFMOGDStwDL0wBoMBLi4uGDt2LL7//vt828THx6NPnz4YNWoUVq1ahR07duCVV16Bt7c3evToAQCoWbMmoqOjERgYCCEEvvrqKzz11FM4ceIEGjduLGsfbZ2bmxt8fHxw+vRpWetJS0uTflEVxtHREZ6eniVev1arRb9+/RAdHY2MjAzZcwZKwjQ/4qWXXkJ4eHi+bYKDgwEgz8To5cuXY8iQIfD29sbOnTshhIBGo5GeT0xMBPBgzsbD/9aoUSPPNqpXr46cnBykp6cX+Mu+VatWuHLlivR4ypQpmDp1ar5tJ0+ejMceewydO3eWzqNz8+ZNAMBff/2Fy5cvo1atWsWa+JyQkIC9e/di5MiRcHZ2LrK9ia+vr9m8B6PRiCZNmmDevHkFtgeAZ555Brt375aWh4eHY8WKFdL7n5iYKLU1SUxMlOYgAQ/e64sXL+Z5r6tXrw4ARc7fGj9+PF566SXp8a1bt/DSSy9hzpw5aNq0qbS8SpUqha5n5cqVOH/+PL788ss85zNKTU3F5cuXUb16dVSoUKHQ9ZisXr0a9evXR0hISLHaAw/e1+zsbKSnp8PNzQ1GoxEajQZbtmzJtwzeVCY/Z84cTJs2TVru5+eHy5cvmx2HRyUmJsLDw0PqpSnob764x4FsU7lIYnr16oVevXoV+HxWVhbef/99rFmzBklJSQgKCsKsWbOkE5JVrFhROu/D/v37851s9sUXX8Df3x9z584FADRs2BD79u3DJ598IiUxYWFhZq+ZMWMGFi1ahIMHD5b5JAYA+vbti8WLF+PAgQNo06aNRet49MusIKYvOUtkZGRACIHU1FSrJjGenp5wdXWFwWAoslt727ZtZo9Nfz/NmjXDf//7X5w9exaNGjWSnjcNHzRr1gzAgy90Ly8vXL9+Pc+6b9y4Ab1eX+gQx6pVq8xOTBgQEFBg24SEBMTFxeXbxlRFde/ePVSuXLnAdZisWbMGQogCJ5LmRwiBy5cvo3nz5tKyOnXqSOeYeTjZe9TcuXPN/nMz/Udoeh+PHj1qlrDcuHED165dw8iRI6VlISEhuHjxIq5fv272Hty4cQMAiky2GzVqZHYsTX/XISEhJTppYkJCAnJycvIdjly5ciVWrlyJDRs24Omnny5yXYcOHUJcXJxUcVVcf/75J/R6vZSc1KlTB0II+Pv7o169egW+7tFhZNPn8rHHHoOnp2e+E4YPHz4sHSfgwfu1ZMmSPH/zxT0OZKPU7AZSA/IZTnrllVdE27ZtxZ49e0RcXJz4+OOPhU6nExcuXMjz+vDw8HyHRDp06CAiIiLMli1btky4ubnlG0dubq5Ys2aN0Gq14syZM5bujl2Ji4sTFStWFI0aNRI3b97M9/mizhNz6dIlsW3btiJv+/btKzKeW7du5Vl279494evrK3x9fc2WX7lyxezcH49SamLvkCFDhFarFadOncrznKkLvTBXr14t8Dwxjz32mNl5YiIiIgQA8dtvv0nL/vrrL+Hm5iZ69+5d5LaKa+/evWLDhg1mt+nTpwsAYvz48WLDhg3S0FB6ero4e/Zsged5CQ4OFrVq1SpwEmZ+79HChQsFADFv3jxp2YoVK/KcR8Tk/v37Ii0trcj9atCggWjatKnZe/rBBx8IjUYjYmNjpWUbNmwQAMR7770nLTMYDKJ9+/bCw8NDGu4oLksn9p49ezbPcTDF1rt3b7Fhwwaz8zedPXs2zxCYydixYwUAERcXl+/z+R2HmJgY4ezsLPr16ycti4uLE46OjuLFF1/Mc0yNRmOeCe75GTVqlHBxcTEb2tu+fbsAIBYtWiQtS0xMFDqdTrRv395sInJkZKQAIA4fPlzktsj2lPsk5sqVK8LR0VFcv37drF3Xrl2lSoqHFZTEBAYGipkzZ5ot27x5swBgVlFy8uRJUbFiReHo6Cjc3d3F5s2b5e2Qndm4caPQ6/WiSpUqIiIiQixZskQsXLhQDBo0SGi1WjFy5EirxdKiRQvRr18/MWPGDLFkyRIxadIkUbNmTeHg4JBnrkanTp3Eozl/UlKSmD59upg+fbro2bOnACDefvttMX36dLFgwQKztrt375baVq9eXdSuXVt6/PCciJs3bwo/Pz9RoUIFERERIb788ksRFRUlnnvuOVGlSpVi7ZdpLsDIkSPFkiVLpLkAq1atMmt38+ZN4e3tLVxdXcWUKVPEvHnzRL169YSLi4uIiYkpyVtZYgXNiTEtnzJlSp7XnDp1qsiKHhcXFzFkyBAxd+5csXDhQvHCCy8IjUYjmjVrJtLT06V2BoNB9O7dW2g0GjFw4ECxYMECMX/+fDFq1Cjh4eEhjhw5UuQ+bNq0SWg0GtGlSxexePFiMXbsWOHg4CBGjBhh1s5oNIquXbsKjUYjRo4cKRYuXCi6d+9eYBJVFCVOdvcwFDAnBgXMs8nNzRU1atQwm/fzqCeeeEL07t1bfPTRR2Lx4sVi3LhxokKFCsLd3d0swRNCiKioKAFAtG3bVsyePVssWrRIjB8/XgQGBoqPP/64yPgTEhJE1apVRZ06dcRnn30mZs6cKapUqSKaNGmSJ0E0ndyve/fuYuHChWLkyJFCo9GIF154ocjtkG0q90nMzz//LACIihUrmt2cnJzyLeGUm8RkZWWJixcviqNHj4qJEyeKatWqlZueGJMLFy6IESNGiNq1awutVitcXV1Fu3btxIIFC0r8q1SO//u//xPt27cX1apVE05OTsLT01OEhYWJPXv25GmbXxJj+s8kv9ujJd6FlYY/+h/2rVu3xJgxY4Svr69wdnaWJqUuXry4WPtlMBjEzJkzhZ+fn9BqtaJx48bim2++ybftpUuXRP/+/YWbm5twcXERXbp0scovUkuSmIkTJwoA4uTJkwWu95VXXhGNGjUSrq6uwtnZWdStW1dMmDBBOrPyw7Kzs8WsWbNE48aNhU6nE1WqVBEhISFi2rRpZuXYhdmwYYNo1qyZ0Ol0ombNmuKDDz7Id8JxamqqiIiIEF5eXkKr1YomTZoUeEyKonYSs3XrVgFAfPbZZwWu89NPPxWtW7cWHh4ewsnJSXh7e4uXXnpJXLx4Md/233//vWjfvr30/dugQQMxZswYcf78+WLtw+nTp8WTTz4pKlSoICpXriwGDRqUb2+v0WgUCxYsEPXq1RPOzs7C19e3wGNG9kEjhMqnjrQyjUZjNu777bffYtCgQThz5kyeiWWVKlWCl5eX2bIhQ4YgKSkJP/74o9nyjh07okWLFmYnJFu+fDnGjRuH5OTkAuPp1q0b6tSpgy+//FLWfhEREZU35WJib2GaN28Og8GA27dvyzoVeps2bfDLL7+YLdu2bVuRE1iNRmOxTnNORERE5spFEpOWloa4uDjpcXx8PGJiYuDh4YF69eph0KBBGDx4MObOnYvmzZvjr7/+wo4dOxAcHIw+ffoAeHCtlOzsbNy9exepqanSFYtNs99HjRqF//u//8P48eMxbNgw/O9//8O6deuwefNmabuRkZHo1asXatWqhdTUVKxevRq7du3Cr7/+arX3goiIqMxQezzLGkzj7I/ewsPDhRAPxsYnT54sateuLZydnYW3t7fo37+/2di7n59fvut4dDvNmjUTWq1WBAQE5DnZ3bBhw6R5Cp6enqJr165mlSFERERUfDY7J8ZgMGDq1Kn45ptvcPPmTfj4+GDIkCH44IMPCj2vAxEREZUPNjucNGvWLCxatAhfffUVGjdujKNHj2Lo0KFwd3fH2LFj1Q6PiIiIVGazPTF9+/ZFjRo1sHTpUmnZs88+CxcXF+niXURERFR+2WxPTNu2bbF48WJcuHAB9erVwx9//IF9+/YVeK2T/BiNRty4cQOurq4cgiIiIrIT4p9Lv/j4+BR6XTWbTWImTpyIlJQUNGjQAI6OjjAYDJgxY0ah10zJysoyK1e+fv262TVHiIiIyH5cvXoVNWvWLPB5m01i1q1bh1WrVmH16tVo3LgxYmJiMG7cOPj4+BR4hd+oqKh8Lw549epVuLm5lXbIZGdOnDihdghkoczMTPTs2RMAsHXrVuj1epUjIks8fFFOooelpKTA19e30AvRAjY8J8bX1xcTJ07EmDFjpGUfffQRvvnmG5w7dy7f1zzaE2N6E5KTk5nEUB7Hjh1TOwSyUEZGhnRyyr1791r1auOknJCQELVDIBuVkpICd3f3Iv//ttmemPv37+cZB3N0dITRaCzwNTqdDjqdrrRDIyIiIhtgs0lMWFgYZsyYgVq1aqFx48Y4ceIE5s2bh2HDhqkdGhEREdkAm01iFixYgEmTJuG1117D7du34ePjg1dffRWTJ09WOzQiUpmjoyP69u0r3Sei8slm58QoobhjalQ+cU4Mkbo4J4YKUtz/vwsuviYiIiKyYTY7nEREVBAhBDIzMwEAer2eJ7MkKqfYE0NEdiczMxMdOnRAhw4dpGSGiMofJjFERERkl5jEEBERkV1iEkNERER2iUkMERER2SUmMURERGSXWGJNpJLb6bnQaDTwcHGAI0uEiYhKjEkMkUpe++VvCAD/DfNEFT1PnV8SDg4O6Nq1q3SfiMonJjFEKjAKAdP1PtgLU3I6nQ6zZs1SOwwiUhl/whCpwPjQFcscmMMQEVmESQyRCh5OYhyZxBARWYRJDJEKDA9dPN6Bw0kllpGRgZYtW6Jly5bIyMhQOxwiUgmTGCIVmA0n8VNIRGQRfn0SqcBo/Pc+58QQEVmGSQyRCowPDyepGAcRkT3j9yeRCgz/5DAOGkDDOTFERBZhEkOkAtOcGFYmERFZjkkMkQpM1UmsTCIishzP2EukAuNDw0lUcg4ODmjXrp10n4jKJyYxRCow/FOdxOEky+h0Onz66adqh0FEKuNPGCIVGKXhJJUDISKyY0xiiFQgDScxiyEishiTGCIVcE6MPBkZGWjfvj3at2/Pyw4QlWOcE0OkApZYy5eZmal2CESkMvbEEKmAJdZERPIxiSFSAXtiiIjkYxJDpAKDkdVJRERyMYkhUgGrk4iI5GMSQ6QCA4eTiIhkY3USkQpYYi2PRqNBixYtpPtEVD4xiSFSgZHVSbLo9XosXrxY7TCISGU2O5xUu3ZtaDSaPLcxY8aoHRqRbKxOIiKSz2Z7Yo4cOQKDwSA9Pn36NLp3747nnntOxaiIlGG6ACSHk4iILGezSYynp6fZ4+joaNSpUwedOnVSKSIi5ZiGkxyZxVgkIyMDYWFhAIBNmzbBxcVF5YiISA02O5z0sOzsbHzzzTcYNmwYJ/FRmWDgxF7ZkpKSkJSUpHYYRKQim+2JediPP/6IpKQkDBkypNB2WVlZyMrKkh6npKSUcmRElmF1EhGRfHbRE7N06VL06tULPj4+hbaLioqCu7u7dPP19bVShEQlw2snERHJZ/NJzJUrV7B9+3a88sorRbaNjIxEcnKydLt69aoVIiQqOfbEEBHJZ/PDScuXL0f16tXRp0+fItvqdDrodDorREUkj/Gf6iSWWBMRWc6me2KMRiOWL1+O8PBwODnZfL5FVGw82R0RkXw2nRls374dCQkJGDZsmNqhEClKOtmdTf+MsF0ajQaNGjWS7hNR+WTTScyTTz4J8c8vVqKyhCXW8uj1eqxcuVLtMIhIZfwdSKQC6WR37EUgIrIYkxgiFbAnhohIPiYxRCpgibU8mZmZCAsLQ1hYGDIzM9UOh4hUYtNzYojKKoOR1UlyCCGQmJgo3Sei8ok9MUQqYHUSEZF8/AolUgGHk4iI5GMSQ6QCVicREcnHJIZIBaxOIiKSj0kMkQo4nEREJB+rk4hUYKpO4nCSZTQaDQICAqT7RFQ+MYkhUgF7YuTR6/VYt26d2mEQkco4nESkAimJ4SeQiMhi/AolUoGpOoknuyMishyTGCIVmKqTHJnDWCQzMxMDBgzAgAEDeNkBonKMc2KIVMA5MfIIIfDnn39K94mofGJPDJEKeLI7IiL5mMQQqcBgfPAve2KIiCzHJIZIBaxOIiKSj1+hRCowSNVJKgdCRGTHmMQQqcAoVScxiyEishSrk4hUwOokeTQaDby9vaX7RFQ+MYkhUgGrk+TR6/XYtGmT2mEQkco4nESkAlYnERHJxySGSAXSnBh+AomILMavUCIVsDpJnszMTAwePBiDBw/mZQeIyjHOiSFSwb8Te5nFWEIIgdjYWOk+EZVP7IkhUoGB1UlERLIxiSFSAUusiYjkYxJDpAKjkSXWRERyMYkhUgF7YoiI5GMSQ6QCU3USS6yJiCzH6iQiFbA6Sb7KlSurHQIRqYxJDJEK/r0ApLpx2CsXFxds375d7TCISGU23Zl9/fp1vPTSS6hatSpcXFzQpEkTHD16VO2wiGRjiTURkXw22xNz7949tGvXDk888QS2bNkCT09PXLx4EVWqVFE7NCLZjNIZe5nFEBFZymaTmFmzZsHX1xfLly+Xlvn7+6sYEZFyjLwApCyZmZkYO3YsAOCzzz6DXq9XOSIiUoPNDif99NNPaNmyJZ577jlUr14dzZs3x5IlS9QOi0gRvACkPEIIHD9+HMePH+dlB4jKMZv9Cv3zzz+xaNEiBAYG4tdff8Xo0aMxduxYfPXVVwW+JisrCykpKWY3Iltk4HASEZFsNjucZDQa0bJlS8ycORMA0Lx5c5w+fRpffPEFwsPD831NVFQUpk2bZs0wiSzC6iQiIvlstifG29sbjRo1MlvWsGFDJCQkFPiayMhIJCcnS7erV6+WdphEFmF1EhGRfDbbE9OuXTucP3/ebNmFCxfg5+dX4Gt0Oh10Ol1ph0Yki/GhORwcTiIispzN9sS8+eabOHjwIGbOnIm4uDisXr0aixcvxpgxY9QOjUgWw0PzUDmcRERkOZtNYlq1aoUNGzZgzZo1CAoKwvTp0zF//nwMGjRI7dCIZDE+lMRwOMlyer2epdVE5ZzNDicBQN++fdG3b1+1wyBSlPGhLMaBWYxFXFxcsG/fPrXDICKV2WxPDFFZxZ4YIiJlMIkhsjLOiSEiUgaTGCIrY3WSfFlZWYiIiEBERASysrLUDoeIVGLTc2KIyiIDT3Qnm9FoxP79+6X7RFQ+sSeGyMqMPNEdEZEimMQQWZlpOMmRQ0lERLIwiSGyMsM/ox/siSEikodJDJGVScNJ/PQREcnCr1EiKzMNJ7EyiYhIHiYxRFZmZHUSEZEiWGJNZGUGVifJ5uLigqNHj6odBhGpjD0xRFb273CSyoEQEdk5JjFEVmaqTmKJNRGRPExiiKyMJ7uTLysrCxMmTMCECRN42QGicoxJDJGVGUzDScxiLGY0GrFjxw7s2LGDlx0gKseYxBBZGXtiiIiUwSSGyMpYYk1EpAwmMURWxuokIiJlMIkhsjJWJxERKYNJDJGVcU4MEZEymMQQWZmpOsmRnz4iIll42QEiK/u3J4ZdMZbS6/XYu3evdJ+IyicmMURWxuEk+TQaDVxcXNQOg4hUxg5tIiszsDqJiEgR7IkhsrJ/zxPDLMZS2dnZmDlzJgDgvffeg1arVTkiIlIDe2KIrMx0lnz2xFjOYDDg559/xs8//wyDwaB2OESkEiYxRFYm9cTw00dEJAu/Roms7N85MeyKISKSg0kMkZWxOomISBlMYoiszMALQBIRKYJJDJGVGTmcRESkCCYxRFbG6iQiImXwPDFEVsY5MfLp9Xps27ZNuk9E5ZNFPTHjx49HZmam0rGYmTp1KjQajdmtQYMGpbpNImv49wKQzGIspdFoUKVKFVSpUgUaDssRlVsWJTHz589HcnIyAGDIkCG4f/++okGZNG7cGImJidJt3759pbIdImtiTwwRkTIsSmJ8fHwQExMDAPj666+RlpamZEwSJycneHl5Sbdq1aqVynaIrInVSfJlZ2dj1qxZmDVrFrKzs9UOh4hUYlES8/bbbyMsLAwdOnQAAKxatQqHDx9GRkaGosFdvHgRPj4+CAgIwKBBg5CQkKDo+onUwOok+QwGA9avX4/169fzsgNE5ZhFScwbb7yBo0ePomfPnhBCYOHChWjbti3c3NzQsGFDDBw4ENHR0diyZYvFgYWGhmLFihXYunUrFi1ahPj4eHTo0AGpqakFviYrKwspKSlmNyJbw+EkIiJlWFydFBwcjODgYKxYsQIHDhxAxYoVcfLkScTExCAmJgYbN27EjBkzCk06CtOrVy+zbYWGhsLPzw/r1q3D8OHD831NVFQUpk2bZtH2iKzFwBJrIiJFyC6xvnjxonQ/NDQUoaGh0mPxT7e5EipXrox69eohLi6uwDaRkZF46623pMcpKSnw9fVVLAYiJRhZnUREpIhSPdmdkqWPaWlpuHTpEry9vQtso9Pp4ObmZnYjsjUcTiIiUobsJCY3NxczZsxAmzZt0KJFC4SHh0snoZLjnXfewe7du3H58mX8/vvv6N+/PxwdHfHCCy/IXjeRmoysTiIiUoTsJGbixIn4/PPP0bVrVzz99NPIyspC3759MXToUFnDSdeuXcMLL7yA+vXrY8CAAahatSoOHjwIT09PuSETqcrA6iQiIkXInhOzevVqrF27Fh07dpSWxcfHo2/fvpgzZw7effddi9a7du1auaER2SQOJ8mn0+nw008/SfeJqHyS3ROTnp6OmjVrmi3z9/fHggULsHjxYrmrJypzTNVJHE6ynIODA3x8fODj4wMHB17Hlqi8kv3pb9++Pb766qs8y/39/XHjxg25qycqc3iyOyIiZcgeTpo1axbatWuHe/fu4Y033kBgYCBycnKwYMECNGrUSIkYicoU02UH2IFguZycHHz++ecAgNdeew3Ozs4qR0REapD9NRoUFIRdu3bhwIEDqF+/PvR6PSpUqICvv/4a8+fPVyBEorKFc2Lky83Nxddff42vv/4aubm5aodDRCqR3RMDAM2bN8eRI0dw7tw5xMbGwtXVFaGhoTxPC1E+pJPdcTiJiEgWi5KYNm3aoHnz5mjWrBmaNWuG4OBg6PV6NGjQAA0aNFA6RqIyhT0xRETKsCiJ6dOnD06ePIm5c+fi0qVL0Gg0CAwMlJIa06169epKx0tk91idRESkDIuSmA8++EC6f/jwYTz99NMICgqCRqPBihUrcO7cOWg0GtSoUYMVSkSPYHUSEZEyZM+JGT16NBYuXIj+/ftLy3755ReMHDkS4eHhcldPVOaYqpMcWZ1ERCSL7K/Rs2fPolmzZmbLevfujc8//xy///673NUTlTmcE0NEpAzZSUyrVq3yPdldkyZNcPjwYbmrJypzOJwkn06nw7fffotvv/2Wlx0gKsdkDyfNmzcPXbp0wZUrV/Dmm28iKCgI2dnZmDt3LqpVq6ZEjERlCnti5HNwcECdOnXUDoOIVCY7iQkJCcGhQ4cwZswYNGvWDM7OzjAajXBycsLSpUuViJGoTJHmxDCJISKSRZGT3TVo0AA7duxAQkICYmJi4ODggJCQEHh7eyuxeqIyxWg0DSepHIgdy8nJwbJlywAAw4YN42UHiMop2UnMkSNHMHHiRPz111+oW7eudI6YnJwcJeIjKnOMUnUSsxhL5ebmYsmSJQCAwYMHM4khKqdkT+x9+eWX4ejoiJEjR8Lf3x+7d+/G0KFDUbt2bVStWlWJGInKFAPnxBARKUJ2T8zVq1exefPmPJPsrly5gpiYGLmrJypz/q1OUjkQIiI7JzuJadOmDa5fv54nifHz84Ofn5/c1ROVOf9O7GUWQ0Qkh+zhpDfffBMffvgh7t69q0Q8RGUeS6yJiJQhuycmLCwMGo0G9erVw1NPPSVd4bpJkybQarVKxEhUprA6iYhIGbKTmLi4OPzxxx/SbebMmbh8+TKcnZ1Rv359nDx5Uok4icqMf3timMUQEckhO4kJCAhAQECA2QUgU1JS8McffzCBIcoHLwApn1arlS53wh5fovLL4iRm8uTJeOqppxASEpLnOTc3N3To0AEdOnSQFRxRWcQ5MfI5OjqicePGaodBRCqz+LfgtWvX0KtXL9SsWROjR4/Gli1bkJ2drWRsRGWS4Z8Sa1YnERHJY3ESs2zZMty8eRNr1qyBq6srxo0bh2rVquHZZ5/FypUrWa1EVAD2xMiXk5ODlStXYuXKlTw7OFE5JmtU3sHBAR06dMDs2bNx/vx5HDp0CKGhofjyyy/h4+ODjh07Ys6cObh+/bpS8RLZNSHEv5cdYBJjsdzcXHz22Wf47LPPkJubq3Y4RKQSRacWNmzYEOPHj8f+/ftx9epVhIeHY+/evVizZo2SmyGyW8aH7rM6iYhIHkWuYp0fT09PDB8+HMOHDy+tTRDZHVMvDAA4sDqJiEgWRZKYnJwc3Lx5E/fv34enpyc8PDyUWC1RmWN8qCuGc2KIiOSx+LdgamoqFi1ahE6dOsHNzQ21a9dGw4YN4enpCT8/P4wYMQJHjhxRMlYiu2e6+CPA6iQiIrksSmLmzZuH2rVrY/ny5ejWrRt+/PFHxMTE4MKFCzhw4ACmTJmC3NxcPPnkk+jZsycuXryodNxEdsnw8HAScxgiIlksGk46cuQI9uzZU+DJplq3bo1hw4bhiy++wPLly7F3714EBgbKCpSoLDAyiSEiUoxFSUxxq410Oh1GjRplySaIyiTTie40YHWSHFqtFl988YV0n4jKJ1kTe69cuYLz588jODgYXl5eeZ6/ceMGfHx85GyCqEzhie6U4ejoiJYtW6odBhGpzOKJvWvWrEHdunXRs2dPBAQE4OuvvwYAJCQkIDo6GqGhoahVq5ZigUZHR0Oj0WDcuHGKrZPI2gz/VCfxRHdERPJZnMRMnz4db7zxBk6dOoXu3btj9OjRmDRpEurUqYMVK1agZcuWWL9+vSJBHjlyBF9++SWCg4MVWR+RWkzVSRxKkic3Nxfr1q3DunXreMZeonLM4uGkS5cuISIiAn5+fli4cCFq1aqF/fv34+TJk2jYsKFiAaalpWHQoEFYsmQJPvroI8XWS6QGaTiJJ7qTJScnB7NnzwYAhIWFwcmp1M7bSUQ2zOKv0pycHLi4uAAAatasCb1ejzlz5iiawADAmDFj0KdPH3Tr1q3ItllZWUhJSTG7EdkSzokhIlKOrN+Dq1evxrlz5wA8mGhXpUoVRYIyWbt2LY4fP46oqKhitY+KioK7u7t08/X1VTQeIrlM1Uk80R0RkXwWJzEdOnTAlClT0LhxY1SrVg2ZmZn49NNPsW7dOsTGxsoep7569SoiIiKwatUq6PX6Yr0mMjISycnJ0u3q1auyYiBSGntiiIiUY/FA8u7duwEAFy9exLFjx3D8+HEcP34cK1euRFJSErRaLerVq4eTJ09atP5jx47h9u3baNGihbTMYDBgz549+L//+z9kZWXB0dHR7DU6nQ46nc7SXSIqdaxOIiJSjuzZcIGBgQgMDMTAgQOlZfHx8Th69ChOnDhh8Xq7du2KU6dOmS0bOnQoGjRogAkTJuRJYIjsAauTiIiUUypT+v39/eHv74/nnnvO4nW4uroiKCjIbFnFihVRtWrVPMuJ7AWrk4iIlKN4EnPv3j389ttvuH79OgDAx8cHPXr0UHzSL5E9MnBOjCKcnZ0xf/586T4RlU+K/h5cunQp2rRpg0OHDsFoNMJoNOLQoUNo27Ytli5dKnv9u3btkr64iOyRkdVJinByckL79u3Rvn17niOGqBxT9NM/e/ZsHD9+HBUrVjRbPn36dLRo0QLDhw9XcnNEdofVSUREylG0J0aj0SA1NTXP8tTUVGj4y5OISYxCcnNzsWnTJmzatImXHSAqxxTtiZkzZw46deqEoKAgPPbYYwCAa9eu4cyZM5g7d66SmyKySwYjh5OUkJOTg2nTpgEAunXrxiElonJK0U9+37590atXLxw+fBg3btwA8GBib+vWrVkSTQT2xBARKcniJOaVV15BSEgIWrRogaZNm0pn1XV0dESbNm0UC5CoLDFVJzmyxJqISDaLk5iLFy9i/fr1SE1NhZOTE+rXry8lNSEhIWjWrFmeCb5E5d2/J7tTORAiojJA8csO/PTTT0hKSoKDgwPq1auH2NhYxYIlsnf/DicxiyEikstmLztAVBbxZHdERMqx2csOEJVFRlYnEREphnWJRFbE6iRlODs7Izo6WrpPROUTkxgiK2J1kjKcnJzQrVs3tcMgIpXxq5TIilidRESknFJNYhwcHNClSxccO3asNDdDZDcMrE5SRG5uLrZv347t27fzsgNE5VipDictW7YMly9fxpgxY3Dw4MHS3BSRXTDNiXFkDiNLTk4OJk6cCADYu3cvLztAVE7J/uSnpqbC1dU13+eGDBkCAJg6darczRCVCabqJA4nERHJJ3s4qUOHDrh586YSsRCVeTzZHRGRcmQnMc2bN0doaCjOnTtntjwmJga9e/eWu3qiMsXI6iQiIsXI/ipdvnw5hgwZgvbt22Pfvn24cOECBgwYgJCQEF65mugRBlYnEREpRpHZcNOmTYNOp0P37t1hMBjQtWtXHDhwAK1bt1Zi9URlBoeTiIiUI7sn5tatW4iIiMBHH32ERo0awdnZGUOGDGECQ5QPA6uTiIgUI7snxt/fH/Xr18f69evRp08fbN26Fc8//zwSEhLw7rvvKhEjUZnByw4ow9nZGVOmTJHuE1H5JDuJWbZsmdkVrHv27ImdO3eib9++uHz5MhYuXCh3E0RlhkEqsWYWI4eTkxPCwsLUDoOIVCZ7OOnhBMakRYsW+P333/G///1P7uqJyhT2xBARKafUTnNZu3Zt/P7776W1eiK7xBJrZeTm5kpnAX/88cd5xl6icqpUP/lVqlQpzdUT2Z1/LwDJrhg5cnJyMG7cOAC87ABRecbfg0RWxOokIiLlMIkhsiLOiSEiUk6pJjEODg7o0qULjh07VpqbIbIbpuokRw4nERHJVqpJzLJly9CxY0eMGTOmNDdDZDfYE0NEpJxSnQ03ZMgQAMDUqVNLczNEdsM0J8aBA7lERLJZ/FUaGxuLSZMmISkpScFwiMo2VicRESnH4p6YqKgopKWloXLlynmey8zMxOXLl9GgQQM5sRGVOUZWJynC2dkZ48ePl+4TUflkcRJz8OBBLF68ON/n9Ho9RowYgd69eyMyMtLi4IjKGs6JUYaTkxMGDBigdhhEpDKLh5OuXbuGunXrFvj8qFGj8NNPP1m6eixatAjBwcFwc3ODm5sb2rRpgy1btli8PiJbwOEkIiLlWJzEeHh4IDExscDnW7dujbi4OEtXj5o1ayI6OhrHjh3D0aNH0aVLFzz11FM4c+aMxeskUpvB+OBfDifJYzAYcPToURw9ehQGg0HtcIhIJRYnMR07dsSKFSsKXrGDAzIzMy1dPcLCwtC7d28EBgaiXr16mDFjBipVqiRdL4XIHnE4SRnZ2dkYNWoURo0ahezsbLXDISKVWDwn5p133sHjjz+OZs2aYeTIkXmeP3DgAAICAmQFZ2IwGLB+/Xqkp6ejTZs2BbbLyspCVlaW9DglJUWR7RMpxfDPcJIjsxgiItks7okJCQnB559/jtdeew3du3fHjz/+iISEBNy9excbN27EhAkT8OKLL8oK7tSpU6hUqRJ0Oh1GjRqFDRs2oFGjRgW2j4qKgru7u3Tz9fWVtX0ipbEnhohIObJOuTVixAjs2rULycnJeOaZZ+Dv7w9PT0/0798fTZo0wZtvvikruPr16yMmJgaHDh3C6NGjER4ejtjY2ALbR0ZGIjk5WbpdvXpV1vaJlMYkhohIObLP2Nu+fXscPnwY586dw/Hjx3H//n0EBQXh8ccflx2cVquVKqBCQkJw5MgRfPrpp/jyyy/zba/T6aDT6WRvl6i0sDqJiEg5FiUxCQkJqFWrltmyBg0aFHhyu+vXr+Oxxx6zZFNmjEaj2ZwXInvD6iQiIuVYNJzUqlUrvPrqqzhy5EiBbZKTk7FkyRIEBQXh+++/L/E2IiMjsWfPHly+fBmnTp1CZGQkdu3ahUGDBlkSMpFN4HASEZFyLOqJiY2NxYwZM9C9e3fo9XqEhITAx8cHer0e9+7dQ2xsLM6cOYMWLVpg9uzZ6N27d4m3cfv2bQwePBiJiYlwd3dHcHAwfv31V3Tv3t2SkIlsAquTlOHk5ISxY8dK94mofNII8c+3qgUyMjKwefNm7Nu3D1euXEFGRgaqVauG5s2bo0ePHggKClIy1hJLSUmBu7s7kpOT4ebmpmosZHuOHTtm9W2+vuUvJKYZ8NETHmhYTWv17RPZkpCQELVDIBtV3P+/Zf2EcXFxwX/+8x/85z//kbMaonLDwAtAEhEphv2wRFbE6iRlGAwGnDt3DsCDogJHR0eVIyIiNZR4Ym9GRgauX7+eZzmvaURUNOM/1UmcEiNPdnY2wsPDER4ezssOEJVjJUpivvvuOwQGBqJPnz4IDg7GoUOHpOdefvllxYMjKmtYnUREpJwSJTEfffQRjh07hpiYGCxfvhzDhw/H6tWrAQAy5gcTlRusTiIiUk6J5sTk5OSgRo0aAB7MKt+zZw/69++PuLg4aDjGT1Qk9sQQESmnRD0x1atXx8mTJ6XHHh4e2LZtG86ePWu2nIjyxySGiEg5JUpivv76a1SvXt1smVarxZo1a7B7925FAyMqi6ThJCYxRESylSiJqVmzJry8vMyWbd++HQDQrl075aIiKqP+7YlhFkNEJJdF1056WJ8+ffDWW2+xzJGoGIy8AKQinJycMGLECIwYMYKXHSAqx2QnMXv27MHPP/+Mli1b4vTp0/m2SUxMxLPPPit3U0R2TQiBf3IYzomRydnZGa+++ipeffVVODs7qx0OEalEdhITGhqK48ePo2XLlmjVqhXmzZsnPWc0GhEbG4vJkydj7969cjdFZNeMD52FwIFZDBGRbIr0w1aqVAlz585FhQoV8O6772LNmjVSApOVlQU/Pz9ERUUpsSkiu2WWxDCHkcVoNCI+Ph4A4O/vDwcH2b/HiMgOyU5i/vvf/+LDDz/E9evX4eLigtatWwMADh06hDFjxmD69OmoXLmy3M0Q2T3DQyeE5JwYebKysvD8888DAPbu3QsXFxeVIyIiNcj++fLee++hT58+iI2NRWpqKg4cOIADBw5g7ty5+O9//4u33noL9+/fVyJWIrtm3hPDLIaISC7ZSUznzp0xdepU1K9f3+ysvW+++SYOHz6Mo0eP5rnOElF5ZHgoiWFPDBGRfLKTmHXr1kmXInhUkyZNcOTIEfTt2xcdO3aUuykiu8Y5MUREyir1EyzodDrMnz8fffr0Ke1NEdk04z9ZjAPAa40RESnAalP6u3fvbq1NEdkkXjeJiEhZrEskshJTdRKrgYmIlMHzdRNZCa+bpBwnJye8/PLL0n0iKp/46SeyEg4nKcfZ2RkRERFqh0FEKmPHNpGVmEqsWV5NRKQM9sQQWYnRNCeGw0myGY1G3Lx5EwDg5eXFyw4QlVNMYoisxPDPJazZEyNfVlYW+vXrB4CXHSAqz/jzhchKOCeGiEhZTGKIrEQaTmIWQ0SkCCYxRFbCnhgiImUxiSGyElYnEREpi0kMkZWwOomISFlMYoishNVJRETKYok1kZVwToxyHB0d8dxzz0n3iah8YhJDZCWmC0A6MouRTavVYsKECWqHQUQqs9nhpKioKLRq1Qqurq6oXr06nn76aZw/f17tsIgsxp4YIiJl2WwSs3v3bowZMwYHDx7Etm3bkJOTgyeffBLp6elqh0ZkESYxyhFC4N69e7h37x7EPz1cRFT+2Oxw0tatW80er1ixAtWrV8exY8fQsWNHlaIishyrk5STmZmJ7t27A+BlB4jKM5tNYh6VnJwMAPDw8CiwTVZWFrKysqTHKSkppR4XUXGZqpPYE0NEpAybHU56mNFoxLhx49CuXTsEBQUV2C4qKgru7u7SzdfX14pREhXOyJPdEREpyi6SmDFjxuD06dNYu3Ztoe0iIyORnJws3a5evWqlCImKxuEkIiJl2fxw0uuvv46ff/4Ze/bsQc2aNQttq9PpoNPprBQZUclIlx2wi58ORES2z2aTGCEE3njjDWzYsAG7du2Cv7+/2iERycLqJCIiZdlsEjNmzBisXr0aGzduhKurK27evAkAcHd3ZyUC2SUDh5OIiBRls0nMokWLAACdO3c2W758+XIMGTLE+gERycSeGOU4Ojqib9++0n0iKp9sNonhCayorDHyApCK0Wq1mDp1qtphEJHKOMWQyEr+rU5SORAiojLCZntiiMqaf6uTmMXIJYRAZmYmAECv10PDeUZE5RJ7YoishHNilJOZmYkOHTqgQ4cOUjJDROUPkxgiKzFVJzmy14CISBFMYoishD0xRETKYhJDZCW8ACQRkbKYxBBZCauTiIiUxSSGyEqMrE4iIlIUkxgiK+GcGCIiZfE8MURWYuBwkmIcHBzQtWtX6T4RlU9MYoisRBpOYom1bDqdDrNmzVI7DCJSGX/CEFkJh5OIiJTFJIbISgxG08nuVA6EiKiMYBJDZCX/9sQwi5ErIyMDLVu2RMuWLZGRkaF2OESkEiYxRFZiugAk56ESESmDX6dEVsI5MUREymISQ2QlRl4AkohIUUxiiKyEPTFERMpiEkNkJaYLQLI6iYhIGUxiiKzk3wtAMoshIlICz9hLZCUG6QKQ6sZRFjg4OKBdu3bSfSIqn5jEEFkJ58QoR6fT4dNPP1U7DCJSGX/CEFkJh5OIiJTFJIbIStgTQ0SkLCYxRFZiqk5iEiNfRkYG2rdvj/bt2/OyA0TlGOfEEFkJT3anrMzMTLVDICKVsSeGyEoMHE4iIlIUkxgiKzGyxJqISFH8OiWyElYnEREpi0kMkZVIJ7tjDkNEpAgmMURWwhJrIiJlsTqJyEqMRg4nKUWj0aBFixbSfSIqn5jEEFkJe2KUo9frsXjxYrXDICKV2fRw0p49exAWFgYfHx9oNBr8+OOPaodEZDFeAJKISFk2/XWanp6Opk2bYuHChWqHQiQbq5OIiJRl08NJvXr1Qq9evdQOg0gRrE5STkZGBsLCwgAAmzZtgouLi8oREZEabDqJKamsrCxkZWVJj1NSUlSMhsgc58QoKykpSe0QiEhlNj2cVFJRUVFwd3eXbr6+vmqHRCRhdRIRkbLKVBITGRmJ5ORk6Xb16lW1QyKSGDmcRESkqDI1nKTT6aDT6dQOgyhf0gUgy9RPByIi9fDrlMgKjELgnxyGw0lERAqx6Z6YtLQ0xMXFSY/j4+MRExMDDw8P1KpVS8XIiErGNJQEcGIvEZFSbDqJOXr0KJ544gnp8VtvvQUACA8Px4oVK1SKiqjkHk5iOCdGPo1Gg0aNGkn3iah8sukkpnPnzhBCFN2QyMYZHvo7Zk+MfHq9HitXrlQ7DCJSGefEEFmBeU8MsxgiIiUwiSGyAs6JISJSHpMYIiswGjmcpKTMzEyEhYUhLCwMmZmZaodDRCqx6TkxRGWFdMkBcCKqEoQQSExMlO4TUfnEnhgiK+CJ7oiIlMevVCIrMArTdZNUDoSIqAxhEkNkBQbpuknMYoiIlMIkhsgKpDkxzGGIiBTDJIbICgz/ZDE8Wy8RkXJYnURkBf/2xDCLUYJGo0FAQIB0n4jKJyYxRFZgZHWSovR6PdatW6d2GESkMn6lElkB58QQESmPSQyRFRikEmtmMURESmESQ2QFRqnEWt04yorMzEwMGDAAAwYM4GUHiMoxzokhsgJTdRKHk5QhhMCff/4p3Sei8ok9MURWYOTJ7oiIFMckhsgKDJzYS0SkOCYxRFYg9cTwE0dEpBh+pRJZgZHVSUREimMSQ2QFPE8MEZHyWJ1EZAVMYpSl0Wjg7e0t3Sei8olJDJEV/HsBSP6HqwS9Xo9NmzapHQYRqYzDSURWwJ4YIiLlMYkhsgIDq5OIiBTHr1QiK2B1krIyMzMxePBgDB48mJcdICrHOCeGyAp4sjtlCSEQGxsr3Sei8ok9MURWwDkxRETKYxJDZAVGVicRESmOSQyRFbAnhohIeUxiiKyAc2KIiJTHJIbICkzVSY7MYoiIFMPqJCIrYE+M8ipXrqx2CESkMiYxRFZgmhPjyCRGES4uLti+fbvaYRCRymx+OGnhwoWoXbs29Ho9QkNDcfjwYbVDIiox07WTeLI7IiLl2HQS8+233+Ktt97ClClTcPz4cTRt2hQ9evTA7du31Q6NqERYnUREpDybHk6aN28eRowYgaFDhwIAvvjiC2zevBnLli3DxIkTVYvrdmomsnONqm2flHE73WC1baVlP/h7KWkSc+e+QZpPQ//KysrE5PFvAgA+nP0JdDq9yhGRJa7du692CKSAapV00Ds7qrJtm01isrOzcezYMURGRkrLHBwc0K1bNxw4cCDf12RlZSErK0t6nJKSUiqxRayJwYE/75TKuqlsK2kSE/m/O7iTwYT5UcbsTFyNOQ4AGLvlLzhomcTYpV92qh0BKWDNiMfRpk5VVbZts0nM33//DYPBgBo1apgtr1GjBs6dO5fva6KiojBt2rRSj83ZyQE6J5seiaNiEEbrJgd6Zwe08NaV6DXODhpo+aeWh/Gh90TrADjwPbJLGh64MkHNYXKbTWIsERkZibfeekt6nJKSAl9fX8W3s3JYa8XXSdZ37NgxtUMo0sLenmqHYJMyMjLQYe6D+yuergEXFxd1AyKLhISEqB0C2TmbTWKqVasGR0dH3Lp1y2z5rVu34OXlle9rdDoddLqS/dIlIiIi+2SzfXlarRYhISHYsWOHtMxoNGLHjh1o06aNipERERGRLbDZnhgAeOuttxAeHo6WLVuidevWmD9/PtLT06VqJSIiIiq/bDqJef755/HXX39h8uTJuHnzJpo1a4atW7fmmexLROWPXs+KJKLyTiOEKLNnoUhJSYG7uzuSk5Ph5uamdjhkY+xhYi9RWcaJvVSQ4v7/bbNzYoiIiIgKwySGiIiI7BKTGCKyO1lZWYiIiEBERITZWbqJqHyx6Ym9RET5MRqN2L9/v3SfiMon9sQQERGRXWISQ0RERHaJSQwRERHZJSYxREREZJeYxBAREZFdKtPVSaaTEaekpKgcCdmitLQ0tUMgC2VmZkr309PTYTAYVIyGLMXvZiqI6W+jqIsKlOnLDly7dg2+vr5qh0FEREQWuHr1KmrWrFng82U6iTEajbhx4wZcXV2h0WjUDkdRKSkp8PX1xdWrV8v8daHK074C5Wt/y9O+AuVrf7mvZZc19lcIgdTUVPj4+MDBoeCZL2V6OMnBwaHQDK4scHNzKxcfGqB87StQvva3PO0rUL72l/tadpX2/rq7uxfZhhN7iYiIyC4xiSEiIiK7xCTGTul0OkyZMgU6nU7tUEpdedpXoHztb3naV6B87S/3teyypf0t0xN7iYiIqOxiTwwRERHZJSYxREREZJeYxBAREZFdYhJDREREdolJjI26e/cuBg0aBDc3N1SuXBnDhw8v8lo/nTt3hkajMbuNGjXKrE1CQgL69OmDChUqoHr16nj33XeRm5tbmrtSLCXd37t37+KNN95A/fr14eLiglq1amHs2LFITk42a/fo+6HRaLB27drS3h0zCxcuRO3ataHX6xEaGorDhw8X2n79+vVo0KAB9Ho9mjRpgl9++cXseSEEJk+eDG9vb7i4uKBbt264ePFiae5CiZRkf5csWYIOHTqgSpUqqFKlCrp165an/ZAhQ/Icw549e5b2bhRLSfZ1xYoVefZDr9ebtSlLxza/7yONRoM+ffpIbWz12O7ZswdhYWHw8fGBRqPBjz/+WORrdu3ahRYtWkCn06Fu3bpYsWJFnjYl/S6whpLu6w8//IDu3bvD09MTbm5uaNOmDX799VezNlOnTs1zXBs0aFA6OyDIJvXs2VM0bdpUHDx4UOzdu1fUrVtXvPDCC4W+plOnTmLEiBEiMTFRuiUnJ0vP5+bmiqCgINGtWzdx4sQJ8csvv4hq1aqJyMjI0t6dIpV0f0+dOiWeeeYZ8dNPP4m4uDixY8cOERgYKJ599lmzdgDE8uXLzd6TjIyM0t4dydq1a4VWqxXLli0TZ86cESNGjBCVK1cWt27dyrf9/v37haOjo5g9e7aIjY0VH3zwgXB2dhanTp2S2kRHRwt3d3fx448/ij/++EP069dP+Pv7W3W/ClLS/X3xxRfFwoULxYkTJ8TZs2fFkCFDhLu7u7h27ZrUJjw8XPTs2dPsGN69e9dau1Sgku7r8uXLhZubm9l+3Lx506xNWTq2d+7cMdvX06dPC0dHR7F8+XKpja0e219++UW8//774ocffhAAxIYNGwpt/+eff4oKFSqIt956S8TGxooFCxYIR0dHsXXrVqlNSd8/aynpvkZERIhZs2aJw4cPiwsXLojIyEjh7Owsjh8/LrWZMmWKaNy4sdlx/euvv0olfiYxNig2NlYAEEeOHJGWbdmyRWg0GnH9+vUCX9epUycRERFR4PO//PKLcHBwMPviXLRokXBzcxNZWVmKxG4JS/f3UevWrRNarVbk5ORIy4rzoSxNrVu3FmPGjJEeGwwG4ePjI6KiovJtP2DAANGnTx+zZaGhoeLVV18VQghhNBqFl5eX+Pjjj6Xnk5KShE6nE2vWrCmFPSiZku7vo3Jzc4Wrq6v46quvpGXh4eHiqaeeUjpU2Uq6r8uXLxfu7u4Frq+sH9tPPvlEuLq6irS0NGmZrR7bhxXnO2T8+PGicePGZsuef/550aNHD+mx3PfPGiz9vmzUqJGYNm2a9HjKlCmiadOmygVWCA4n2aADBw6gcuXKaNmypbSsW7ducHBwwKFDhwp97apVq1CtWjUEBQUhMjIS9+/fN1tvkyZNUKNGDWlZjx49kJKSgjNnzii/I8UkZ38flpycDDc3Nzg5mV8SbMyYMahWrRpat26NZcuWFXlpd6VkZ2fj2LFj6Natm7TMwcEB3bp1w4EDB/J9zYEDB8zaAw+Okal9fHw8bt68adbG3d0doaGhBa7TWizZ30fdv38fOTk58PDwMFu+a9cuVK9eHfXr18fo0aNx584dRWMvKUv3NS0tDX5+fvD19cVTTz1l9rkr68d26dKlGDhwICpWrGi23NaOrSWK+twq8f7ZKqPRiNTU1Dyf2YsXL8LHxwcBAQEYNGgQEhISSmX7ZfoCkPbq5s2bqF69utkyJycneHh44ObNmwW+7sUXX4Sfnx98fHxw8uRJTJgwAefPn8cPP/wgrffhBAaA9Liw9ZY2S/f3YX///TemT5+OkSNHmi3/8MMP0aVLF1SoUAG//fYbXnvtNaSlpWHs2LGKxV9YTAaDId/3/Ny5c/m+pqBjZHofTP8W1kYtluzvoyZMmAAfHx+zL/uePXvimWeegb+/Py5duoT33nsPvXr1woEDB+Do6KjoPhSXJftav359LFu2DMHBwUhOTsacOXPQtm1bnDlzBjVr1izTx/bw4cM4ffo0li5darbcFo+tJQr63KakpCAjIwP37t2T/dmwVXPmzEFaWhoGDBggLQsNDcWKFStQv359JCYmYtq0aejQoQNOnz4NV1dXRbfPJMaKJk6ciFmzZhXa5uzZsxav/+H/wJs0aQJvb2907doVly5dQp06dSxer6VKe39NUlJS0KdPHzRq1AhTp041e27SpEnS/ebNmyM9PR0ff/yxVZIYKpno6GisXbsWu3btMpvwOnDgQOl+kyZNEBwcjDp16mDXrl3o2rWrGqFapE2bNmjTpo30uG3btmjYsCG+/PJLTJ8+XcXISt/SpUvRpEkTtG7d2mx5WTm25dXq1asxbdo0bNy40eyHaK9evaT7wcHBCA0NhZ+fH9atW4fhw4crGgOTGCt6++23MWTIkELbBAQEwMvLC7dv3zZbnpubi7t378LLy6vY2wsNDQUAxMXFoU6dOvDy8sozG/7WrVsAUKL1Fpc19jc1NRU9e/aEq6srNmzYAGdn50Lbh4aGYvr06cjKyir1635Uq1YNjo6O0ntscuvWrQL3y8vLq9D2pn9v3boFb29vszbNmjVTMPqSs2R/TebMmYPo6Ghs374dwcHBhbYNCAhAtWrVEBcXp9p/dHL21cTZ2RnNmzdHXFwcgLJ7bNPT07F27Vp8+OGHRW7HFo6tJQr63Lq5ucHFxQWOjo6y/15szdq1a/HKK69g/fr1eYbSHlW5cmXUq1dP+ltXEufEWJGnpycaNGhQ6E2r1aJNmzZISkrCsWPHpNf+73//g9FolBKT4oiJiQEA6QuxTZs2OHXqlFnCsG3bNri5uaFRo0bK7ORDSnt/U1JS8OSTT0Kr1eKnn37KU66an5iYGFSpUsUqFy7TarUICQnBjh07pGVGoxE7duww+0X+sDZt2pi1Bx4cI1N7f39/eHl5mbVJSUnBoUOHClyntViyvwAwe/ZsTJ8+HVu3bjWbF1WQa9eu4c6dO2b/0Vubpfv6MIPBgFOnTkn7URaPLfDglAFZWVl46aWXityOLRxbSxT1uVXi78WWrFmzBkOHDsWaNWvMSuYLkpaWhkuXLpXOcbXK9GEqsZ49e4rmzZuLQ4cOiX379onAwECzkuNr166J+vXri0OHDgkhhIiLixMffvihOHr0qIiPjxcbN24UAQEBomPHjtJrTCXWTz75pIiJiRFbt24Vnp6eNlNiXZL9TU5OFqGhoaJJkyYiLi7OrJQvNzdXCCHETz/9JJYsWSJOnTolLl68KD7//HNRoUIFMXnyZKvt19q1a4VOpxMrVqwQsbGxYuTIkaJy5cpShdjLL78sJk6cKLXfv3+/cHJyEnPmzBFnz54VU6ZMybfEunLlymLjxo3i5MmT4qmnnrKpMtyS7G90dLTQarXiu+++MzuGqampQgghUlNTxTvvvCMOHDgg4uPjxfbt20WLFi1EYGCgyMzMVGUfTUq6r9OmTRO//vqruHTpkjh27JgYOHCg0Ov14syZM1KbsnRsTdq3by+ef/75PMtt+dimpqaKEydOiBMnTggAYt68eeLEiRPiypUrQgghJk6cKF5++WWpvanE+t133xVnz54VCxcuzLfEurD3Ty0l3ddVq1YJJycnsXDhQrPPbFJSktTm7bffFrt27RLx8fFi//79olu3bqJatWri9u3bisfPJMZG3blzR7zwwguiUqVKws3NTQwdOlT6YhdCiPj4eAFA7Ny5UwghREJCgujYsaPw8PAQOp1O1K1bV7z77rtm54kRQojLly+LXr16CRcXF1GtWjXx9ttvm5Ukq6Wk+7tz504BIN9bfHy8EOJBmXazZs1EpUqVRMWKFUXTpk3FF198IQwGg1X3bcGCBaJWrVpCq9WK1q1bi4MHD0rPderUSYSHh5u1X7dunahXr57QarWicePGYvPmzWbPG41GMWnSJFGjRg2h0+lE165dxfnz562xK8VSkv318/PL9xhOmTJFCCHE/fv3xZNPPik8PT2Fs7Oz8PPzEyNGjFD9i9+kJPs6btw4qW2NGjVE7969zc6tIUTZOrZCCHHu3DkBQPz222951mXLx7ag7xfT/oWHh4tOnTrleU2zZs2EVqsVAQEBZufDMSns/VNLSfe1U6dOhbYX4kF5ube3t9BqteKxxx4Tzz//vIiLiyuV+DVCWKnelIiIiEhBnBNDREREdolJDBEREdklJjFERERkl5jEEBERkV1iEkNERER2iUkMERER2SUmMURERGSXmMQQERER9uzZg7CwMPj4+ECj0eDHH38s1e1NnToVGo3G7NagQYMSrYNJDBHZnZs3b+KNN95AQEAAdDodfH19ERYWluf6NURUfOnp6WjatCkWLlxotW02btwYiYmJ0m3fvn0lej2vYk1EduXy5cto164dKleujI8//hhNmjRBTk4Ofv31V4wZMwbnzp1TO0Qiu9SrVy/06tWrwOezsrLw/vvvY82aNUhKSkJQUBBmzZqFzp07W7xNJycnWVfyZhJDRHbltddeg0ajweHDh1GxYkVpeePGjTFs2DAVIyMq215//XXExsZi7dq18PHxwYYNG9CzZ0+cOnUKgYGBFq3z4sWL8PHxgV6vR5s2bRAVFYVatWoV+/W8dhIR2Y27d++iWrVqmDFjBiIjI9UOh6jM0mg02LBhA55++mkAQEJCAgICApCQkAAfHx+pXbdu3dC6dWvMnDmzxNvYsmUL0tLSUL9+fSQmJmLatGm4fv06Tp8+DVdX12Ktgz0xRGQ34uLiIIQo8eQ/IpLn1KlTMBgMqFevntnyrKwsVK1aFQBw7tw5NGzYsND1TJgwAdHR0QBgNnQVHByM0NBQ+Pn5Yd26dRg+fHix4mISQ0R2gx3HROpIS0uDo6Mjjh07BkdHR7PnKlWqBAAICAjA2bNnC12PKeHJT+XKlVGvXj3ExcUVOy4mMURkNwIDA6HRaDh5l8jKmjdvDoPBgNu3b6NDhw75ttFqtbJ6SdPS0nDp0iW8/PLLxX4NS6yJyG54eHigR48eWLhwIdLT0/M8n5SUZP2giMqItLQ0xMTEICYmBgAQHx+PmJgYJCQkoF69ehg0aBAGDx6MH374AfHx8Th8+DCioqKwefNmi7b3zjvvYPfu3bh8+TJ+//139O/fH46OjnjhhReKvQ5O7CUiu/Lnn3+iXbt28PDwwIcffojg4GDk5uZi27ZtWLRoUZHd2USUv127duGJJ57Iszw8PBwrVqxATk4OPvroI6xcuRLXr19HtWrV8Pjjj2PatGlo0qRJibc3cOBA7NmzB3fu3IGnpyfat2+PGTNmoE6dOsVeB5MYIrI7iYmJmDFjBn7++WckJibC09MTISEhePPNN2Wds4KI7AuTGCIiIrJLnBNDREREdolJDBEREdklJjFERERkl5jEEBERkV1iEkNERER2iUkMERER2SUmMURERGSXmMQQERGRXWISQ0RERHaJSQwRERHZJSYxREREZJeYxBAREZFd+n9d7IVItabm7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mi.draw_profile('R')\n", + "plt.ylabel('$\\chi^2(R, x, I_0, C)/ndof$')\n", + "plt.show()\n", + "\n", + "mi.draw_profile('C')\n", + "plt.ylabel('$\\chi^2(C, x, I_0 R)/ndof$')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "499ffb9a-00a7-4c06-ada4-1d3a41a7f1d4", + "metadata": {}, + "source": [ + "Das liegt daran, dass $R$ und $C$ vollständig korreliert sind. Reduziert `iminuit` $C$ um ein Faktor zwei, so wird dies dadurch kompensiert, dass das optimale Minimum verlangt, dass $R$ um einen Faktor zwei größer sein muss. Das heißt, es ist ohne weitere Information nicht möglich, $R$ und $C$ näher zu bestimmen, sondern lediglich das Produkt der beiden Größen.\n", + "\n", + "Deshalb müssen wir in unserer Fitfunktion $R$ und $C$ durch die Zeitkonstante $\\tau$ ersetzen und schreiben\n", + "\n", + "$$ I = I_0 \\exp\\{-t/\\tau\\}$$\n", + "\n", + "mit $\\tau = R \\cdot C$.\n", + "\n", + "Führen wir nun erneut den Fit durch, so erhalten wir ein fehlerfreies Ergebnis..." + ] + }, + { + "cell_type": "code", + "execution_count": 496, + "id": "847419a7-d77b-4207-8607-44af9d615ffc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 2.707 (χ²/ndof = 0.3) Nfcn = 97
EDM = 1.11e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 I0 1.07 0.05
1 tau 0.097 0.011
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
I0 tau
I0 0.00254 -0.22e-3 (-0.396)
tau -0.22e-3 (-0.396) 0.000116
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:48.103966\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 2.707 (χ²/ndof = 0.3) │ Nfcn = 97 │\n", + "│ EDM = 1.11e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ I0 │ 1.07 │ 0.05 │ │ │ │ │ │\n", + "│ 1 │ tau │ 0.097 │ 0.011 │ │ │ │ │ │\n", + "└───┴──────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌─────┬───────────────────┐\n", + "│ │ I0 tau │\n", + "├─────┼───────────────────┤\n", + "│ I0 │ 0.00254 -0.22e-3 │\n", + "│ tau │ -0.22e-3 0.000116 │\n", + "└─────┴───────────────────┘" + ] + }, + "execution_count": 496, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#from iminuit import Minuit, cost\n", + "\n", + "def discharge_current2(t, I0, tau):\n", + " return I0 * np.exp(-t/tau)\n", + "\n", + "ls = cost.LeastSquares(\n", + " data_frame['time'],\n", + " data_frame['current'], \n", + " data_frame['delta_current'], \n", + " discharge_current2\n", + ")\n", + "mi = Minuit(ls, I0=0.9, tau=0.3)\n", + "mi.migrad()\n", + "mi.hesse()" + ] + }, + { + "cell_type": "markdown", + "id": "a46c76ec-5b00-48f4-9a46-2ea083ca5dba", + "metadata": {}, + "source": [ + "... und die Werte und Fehler lassen sich über ..." + ] + }, + { + "cell_type": "code", + "execution_count": 497, + "id": "69f540a5-e89b-4c24-aa7e-b03eaedb28d1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0670397937137222" + ] + }, + "execution_count": 497, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi.values['I0']" + ] + }, + { + "cell_type": "markdown", + "id": "66733c05-692d-46e3-ae82-6f84d66ef28c", + "metadata": {}, + "source": [ + "... bzw. ..." + ] + }, + { + "cell_type": "code", + "execution_count": 498, + "id": "66e6da5b-ff32-4982-a3aa-5b9b93262073", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.050401508019580855" + ] + }, + "execution_count": 498, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi.errors['I0']" + ] + }, + { + "cell_type": "markdown", + "id": "c670cd3f-fcfb-4cfc-a8d4-eded75e9a669", + "metadata": {}, + "source": [ + "... für jeden Parameter auslesen. Dies lässt sich nun auch nutzen, um unsere Messwerte samt Fit in einem etwas schöneren Plot mit Achsenbeschriftungen darzustellen. Hierbei können wir ausnutzen, dass `iminuit` die Parameter in der Reihenfolge der Argumente unser definierten Fitfunktion speichert." + ] + }, + { + "cell_type": "code", + "execution_count": 499, + "id": "45fcf856-c58e-424d-8fd7-15037cb6698e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgZElEQVR4nO3deVhUZf8G8HtmYFhkE9kVRFTcBURF1HIjcUNLK1JzyzLNTKNSKIXMXjQrX01Ny1R8yy3f1MoFF9yyVNxwF0VBSAHFFGSHmfP7wx/zOrI4AzNzYLg/13UumDNn+Z4z5Nw95znPkQiCIICIiIjISEjFLoCIiIhIlxhuiIiIyKgw3BAREZFRYbghIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRUTsQswNKVSiTt37sDa2hoSiUTscoiIiEgDgiDg0aNHcHNzg1RaddtMvQs3d+7cgbu7u9hlEBERUTWkpaWhSZMmVS5T78KNtbU1gMcnx8bGRuRqiIiISBM5OTlwd3dXfY9Xpd6Fm7JLUTY2Ngw3REREdYwmXUrYoZiIiIiMCsMNERERGRWGGyIiIjIq9a7PDRERVUypVKK4uFjsMqgek8vlz7zNWxMMN0REhOLiYiQnJ0OpVIpdCtVjUqkUzZo1g1wur9F2GG6IiOo5QRCQnp4OmUwGd3d3nfyfM5G2ygbZTU9Ph4eHR40G2mW4ISKq50pLS5Gfnw83NzdYWlqKXQ7VY46Ojrhz5w5KS0thampa7e0wnhMR1XMKhQIAanwpgKimyv4Gy/4mq4vhhoiIAGg2OBqRPunqb5DhhoiIiIwKww0REREZFYYbIiIiMioMN0REVCNpaWno3bs32rZti44dO2LLli1il0T1HG8FJyKiGjExMcHixYvh6+uLjIwM+Pv7Y9CgQWjQoIHYpVE9xXCjI/nFpWgbuQcAcPmzYFjKeWqJqH5wdXWFq6srAMDFxQUODg74559/GG5INLwsRUREOnP69GkoFAq4u7uXe2/ChAmYPXu2CFXV3Pz589GlSxdYW1vDyckJL774IhITE6tcx9PTExKJpNw0derUZ+6vqnOlUCgwZ84cNGvWDBYWFmjevDnmzZsHQRCqdWyaWr58OTw9PWFubo6AgADEx8dXufyKFSvQsWNH2NjYwMbGBoGBgdi9e7deayzDcENERDrxzz//YOzYsfj+++/LvadQKLBjxw4MHTpUhMpq7vDhw5g6dSqOHz+Offv2oaSkBP3790deXl6l65w8eRLp6emqad++fQCAV155pcp9PetcffHFF1ixYgWWLVuGK1eu4IsvvsDChQuxdOnS6h/gM2zevBlhYWGIiorCmTNn4OPjg+DgYNy9e7fSdZo0aYIFCxbg9OnTOHXqFPr27Ythw4bh0qVLeqtTRahnsrOzBQBCdna2TrebV1QiNJ21Q2g6a4eQV1Si020TEelTQUGBcPnyZaGgoKDC919++WXBwcFB+O6771Tzjh8/Lpiamgp79uwRBEEQCgsLheeee074z3/+U+E2jhw5Iri6ugpKpVJISkoSAAi///670LdvX8HCwkLw9vYWjh8/rvuD05O7d+8KAITDhw9rvM706dOF5s2bC0qlssrlnjxXFRk8eLDwxhtvqM0bPny4MHr0aI1r0VbXrl2FqVOnql4rFArBzc1NmD9/vlbbadiwofDDDz9U+n5Vf4vafH+z5YaIiKr0zTffYMSIEfjss88AALm5uXj99dcxZcoU9O/fH4IgYPz48ejbty/GjBlT4TZ+++03hISEQCKR4Ny5c5BIJFi0aBHmzJmDc+fOwcPDA+Hh4Xo7hujoaFhZWVU5paamary97OxsAIC9vb1GyxcXF+Onn37CG2+88cxReJ88VxXp3r074uLicO3aNQDAuXPncPToUQwcOLDSbdbk+IuLi3H69GkEBQWp5kmlUgQFBeHYsWPPOnQAj1ujNm3ahLy8PAQGBmq0Tk2w1ysREVXJ1dUVM2bMwHfffYf79+/jo48+gpmZGb744gsAwJ9//onNmzejY8eO2L59OwDgxx9/RIcOHVTb+PXXX/Hvf/8bwOMvYzs7O2zevBmOjo4AgKFDh+K7777T2zFMnjwZr776apXLuLm5abQtpVKJGTNmoEePHmjfvr1G62zfvh0PHz7E+PHjn7nsk+eqIuHh4cjJyUHr1q0hk8mgUCjwr3/9C6NHj650nZocf1ZWFhQKBZydndXmOzs74+rVq1Vu88KFCwgMDERhYSGsrKywbds2tG3btsp1dIHhhoiInsnb2xuWlpaIjIzE+vXrER8fD3NzcwBAz549oVQqK133ypUruHPnDvr16wfgcbgZNmyYKtgAQHJyMlq0aFHh+uPHj8fLL7+MIUOGVLqPjz76CLt27cKoUaPwySeflHvf3t5e41aWZ5k6dSouXryIo0eParzO6tWrMXDgwGcGqKfPVUV+/vlnrF+/Hhs2bEC7du2QkJCAGTNmwM3NDePGjatwHV0evzZatWqFhIQEZGdn47///S/GjRuHw4cP6z3gMNwQEdEzSaVSdOjQAd9++y0WLlwIHx8fjdf97bff8MILL6jC0Llz5xAREaG2TEJCAp5//vlq1xcTE4PMzExIpRX3toiOjkZ0dHSV27h8+TI8PDyqXObdd9/Fjh07cOTIETRp0kSj2m7duoX9+/dj69atz1z26XNVkY8++gjh4eF47bXXAAAdOnTArVu3MH/+/ErDTU2O38HBATKZDJmZmWrzMzMz4eLiUuU25XK5KrT6+/vj5MmTWLJkiV5b6QCGGyIi0oDw/7cZd+rUCR988IFW6/7666+YNGkSgMd9VVJSUuDn56e2TEJCAt577z3V608//RQbN25E48aNYWZmppr/xRdf4Mcff4REIkF4eDhGjx6Nl156CQ8ePECnTp0QHR2NQYMGlauhppelBEHAtGnTsG3bNhw6dAjNmjXT6NgBYO3atXBycsLgwYOfueyT56oy+fn55UKcTCarsvWsJscvl8vh7++PuLg4vPjiiwAeX5qLi4vDu+++W+U2n6ZUKlFUVKTVOtWiVTdnI8C7pYiI1D3rbilBEIRFixYJAARfX1+ttp2ZmSmYmpoK9+7dEwTh8Z1AJiYmavtKSUkRAAjJycmCIAhCfHy80LlzZ6GwsFC4c+eOYGtrK/z+++9CfHy80KlTJ6GgoEC4f/++4OXlJdy+fVsQBEFo1KiRlketnSlTpgi2trbCoUOHhPT0dNWUn5+vWmbp0qVC37591dZTKBSCh4eHMGvWrGfu4+lzVZlx48YJjRs3Fnbs2CEkJycLW7duFRwcHISZM2dW7+A0sGnTJsHMzEyIiYkRLl++LEyaNEmws7MTMjIyVMs8ffzh4eHC4cOHheTkZOH8+fNCeHi4IJFIhL1791a6H13dLcWWGyIiqtKFCxcQERGBd955Bz/88ANKS0thYqLZ18fvv/+Orl27wsHBAcDjS1KtWrVSu+xy9uxZ2NnZwdPTE8DjDsovvfQSzMzM4Orqir59+6rmjxgxAubm5jA3N0e/fv1w8uRJDBs2TLcHXIEVK1YAAHr37q02f+3atapOwllZWbhx44ba+/v370dqaireeOONZ+7j6XNVmaVLl2LOnDl45513cPfuXbi5ueHtt99GZGSk5gekpdDQUNy7dw+RkZHIyMiAr68vYmNj1ToZP338d+/exdixY5Geng5bW1t07NgRe/bswQsvvKC3OstIBEHPQxrWMjk5ObC1tUV2djZsbGx0tt0nH79w4INe8HK00tm2iYj0qbCwEMnJyWjWrFm5vh6FhYXo0qULOnXqhMWLF8Pe3h4XLlzQ+C6hoUOHomfPnpg5c6bG9SxevBgFBQWqfjnDhw/HG2+8gaSkJOTn5+Pjjz8GAEyaNAmDBw/GsGHD4ODggKysLI33URtV51wZm6r+FrX5/uY4Nzryy+m/VdekgxYdxuaTmo+XQERUW4WHhyMvLw/Lli1Dw4YN0bRpUyxevBh37tzRaP2ePXti5MiRWu2zZ8+e2L59O4qLi5GRkYGDBw+q5m/duhVFRUV48OABDhw4gK5du2p9TLVVdc4VVYyXpXQgPbsAkb9eUg24pBSAj7dexPPejnC1tRC5OiKi6tm7dy+WL1+Ow4cPw9raGgAwe/ZshIeH4/79+9i2bdszt1GdVojOnTtj4MCB6NChAxo3boxu3bqp5r/yyivw9/eHRCLB3LlzVQ/sNAb1ucVG13hZSgf+upGFUatOlJu/8a1uCGzeSCf7ICLSl6ouBRAZEi9L1SLNHBpA+tQo2TKJBJ4OluIUREREVI8x3OiAq60F5g5tB0GpAABIAEQPb89LUkRERCJguNGREf5NcH/PMmRsiMB4x2SEdql6lEsiIiLSD4YbHZJZ2KAo7QIyblwRuxQiIqJ6i+FGh0ztGwMAEhMTRa6EiIio/mK40SETe3cAwPXr10SuhIiIqP5iuNEh00aPW27+TktDXl6eyNUQEenG+PHjVQ9MLLN8+XJ4enrC3NwcAQEBiI+P12sNR44cQUhICNzc3CCRSLB9+3aN1tOkztu3b+P1119Ho0aNYGFhgQ4dOuDUqVOq9z09PSGRSMpNU6dO1dXhaVWvtut8+umn5Wpv3bq1TvZdWzHc6JDMwgZSi8f33l+7xtYbIjJOmzdvRlhYGKKionDmzBn4+PggODgYd+/e1ds+8/Ly4OPjg+XLl+u0zgcPHqBHjx4wNTXF7t27cfnyZXz99ddo2LChapmTJ08iPT1dNe3btw8A8Morrzyzht69eyMmJkZn9VZ3nXbt2qkdw9GjR2u871pN82eCGgd9PxXcrHFbAYCwceNGnW6fiEhfnvVU8HHjxgnDhg1Tve7ataswdepU1WuFQiG4ubkJ8+fP13epgiAIAgBh27Ztz1xOkzpnzZol9OzZU6v9T58+XWjevLmgVCqfuWyvXr2EtWvXarTd6pxXTdaJiooSfHx8dL5vfdDVU8HZcqNjJuxUTERGrLi4GKdPn0ZQUJBqnlQqRVBQEI4dO1bpetHR0bCysqpySk3V3TP5NK3zt99+Uz3WwcnJCX5+fli1alWV2/3pp5/wxhtvqB65Y8h6q7vO9evX4ebmBi8vL4wePVrtXFf3M63N+GwpHSvrd3P16lWRKyEi0r2srCwoFAo4OzurzXd2dq7y373Jkyfj1VdfrXLbbm5uOqkR0LzOmzdvYsWKFQgLC8PHH3+MkydP4r333oNcLse4cePKbXf79u14+PAhxo8fX+F+o6OjER0drXpdUFCA48eP491331XNu3z5Mjw81MdCq8551XSdgIAAxMTEoFWrVkhPT8fcuXPx3HPP4eLFi7C2tq72Z1qbMdzomKl9EwBsuSEiepK9vT3s7e3FLqMcpVKJzp07qwKJn58fLl68iJUrV1YYblavXo2BAwdWGsSeDnGjR4/GiBEjMHz4cNU8XYY4TQwcOFD1e8eOHREQEICmTZvi559/xsSJEw1ai6Ew3OhYWbi5du0aBEHQabMlEZHYHBwcIJPJkJmZqTY/MzMTLi4ula73dItGRSpq0dB3na6urmjbtq3aMm3atMEvv/xSbpu3bt3C/v37sXXr1kr3+3SIs7CwgJOTE1q0aKGTemu6DgDY2dnB29sbSUlJNdpObcY+NzpiKTdByoLBSPn2DZiYmCAvLw+3b98WuywiIp2Sy+Xw9/dHXFycap5SqURcXBwCAwMrXW/y5MlISEioctJli4amdfbo0aNcS/u1a9fQtGnTcttcu3YtnJycMHjwYJ3VqW29NV0HAHJzc3Hjxg24urrWaDu1mh46O2vs8OHDwpAhQwRXV1eNe78fPHhQ8PPzE+RyudC8eXONe6GX0dfdUk/y9vYWAAj79u3T2z6IiHRF27ulNm3aJJiZmQkxMTHC5cuXhUmTJgl2dnZCRkaG3mp89OiRcPbsWeHs2bMCAGHRokXC2bNnhVu3bqmWWbp0qdC3b1+t6oyPjxdMTEyEf/3rX8L169eF9evXC5aWlsJPP/2ktn+FQiF4eHgIs2bNemad6enpVU6lpaUVrvusep8+Pk2P8YMPPhAOHTokJCcnC3/++acQFBQkODg4CHfv3tVqO4agq7ulRA03u3btEj755BNh69atGoWbmzdvCpaWlkJYWJhw+fJlYenSpYJMJhNiY2M13qchwk1ISIgAQFi2bJne9kFEpCvahhtBePxF6+HhIcjlcqFr167C8ePH9VrjwYMHBQDlpnHjxqmWiYqKEpo2bap1nb///rvQvn17wczMTGjdurXw/fffl1tmz549AgAhMTGxyjqjoqIqrPPJKTk5udL1q6q3ouPT5BhDQ0MFV1dXQS6XC40bNxZCQ0OFpKQkrbdjCLoKNxJBEAQDNhRVSiKRYNu2beVGwXzSrFmzsHPnTly8eFE177XXXsPDhw8RGxur0X5ycnJga2uL7Oxs2NjY1LTsCs2cORNffvklpk2bhm+++UYv+yAi0pXCwkIkJyejWbNmMDc3F7scqseq+lvU5vu7TvW5OXbsmNp9+AAQHBxc5X34RUVFyMnJUZv0rVWrVgB4OzgREZEY6lS4ycjIqPA+/JycHBQUFFS4zvz582Fra6ua3N3d9V5nWbjh7eBERESGV6fCTXVEREQgOztbNaWlpel9n2UPJEtNTUV+fr7e90dERET/U6fCjYuLS4X34dvY2MDCwqLCdczMzGBjY6M26ZuDg4NqnAM+QJOIiMiw6lS4CQwMVLsPHwD27dtXK+/D56UpIiIicYgabnJzc1WDNwFAcnIyEhISVA/0ioiIwNixY1XLT548GTdv3sTMmTNx9epVfPvtt/j555/x/vvvi1F+lRhuiIiIxCFquDl16hT8/Pzg5+cHAAgLC4Ofnx8iIyMBAOnp6WpPLm3WrBl27tyJffv2wcfHB19//TV++OEHBAcHi1J/Vcr63TDcEFFd17t3b8yYMUPsMjS2fPlyeHp6wtzcHAEBAYiPj6/xOo8ePcKMGTPQtGlTWFhYoHv37jh58qTaMp6enpBIJOWmqVOnin58mqx35MgRhISEwM3NDRKJBNu3b9fq/dpE1HDTu3dvCI8HElSbYmJiAAAxMTE4dOhQuXXOnj2LoqIi3Lhxo9Ins4qNt4MTERne5s2bERYWhqioKJw5cwY+Pj4IDg7G3bt3a7TOm2++iX379uHHH3/EhQsX0L9/fwQFBak9ZufkyZNIT09XTfv27QMAvPLKK8+su3fv3qrvPl0fn6br5eXlwcfHB8uXL69wG896v1bR6dCCdYAhRigWBEG4fPmyAECwsrISlEqlXvdFRFQTVY0KO27cuApH2N29e7fQo0cPwdbWVrC3txcGDx6sNupt06ZNhX//+99q2/Lx8RGioqL0eixdu3YVpk6dqnqtUCgENzc3Yf78+dVeJz8/X5DJZMKOHTvU1uvUqZPwySefVLrd6dOnC82bN9foO6BXr14aPU6oOsdXnfXwjKcGPOv96tLVCMV1qkNxXdK8eXPIZDLk5ubizp07YpdDRFQtS5YsQWBgIN566y1Vi4S7uzvy8vIQFhaGU6dOIS4uDlKpFC+99BKUSmWN9hcdHQ0rK6sqpye7KzypuLgYp0+fVhvsVSqVIigoqNLBXjVZp7S0FAqFotyIuRYWFjh69Gil2/3pp5/wxhtvQCKRaHUOKlOd46vJenWZidgFGCu5XA4vLy9cv34dV69eRePGjcUuiYhIa7a2tpDL5bC0tISLi4tq/ogRI9SWW7NmDRwdHXH58mW0b9++2vubPHkyXn311SqXqezp4VlZWVAoFBUO9lpZFwFN1rG2tkZgYCDmzZuHNm3awNnZGRs3bsSxY8fQokWLCre7fft2PHz4sNKuE9HR0YiOjla9LigowPHjx/Huu++q5l2+fBkeHh41Or6arFeXMdzoUatWrVThpl+/fmKXQ0SkM9evX0dkZCROnDiBrKwsVYtNampqjcKNvb29apyw2uTHH3/EG2+8gcaNG0Mmk6FTp04YOXIkTp8+XeHyq1evxsCBAysNYk+HuNGjR2PEiBEYPny4al5l69KzMdzoUbt27bBjxw5cunRJ7FKIiHQqJCQETZs2xapVq+Dm5galUon27dujuLgYwOPLHsJTz2UuKSl55nafbtGoyNMtGmUcHBwgk8kqHOz1yVan6qzTvHlzHD58GHl5ecjJyYGrqytCQ0Ph5eVVbpu3bt3C/v37sXXr1kqP4ekQZ2FhAScnp0pbgqp7fDVZry5jnxs9ateuHQAw3BBRnSaXy6FQKFSv79+/j8TERMyePRv9+vVDmzZt8ODBA7V1HB0dkZ6ernqdk5OD5OTkZ+5r8uTJqvHPKpsqa9GQy+Xw9/dXG+xVqVQiLi6u0sFetV2nQYMGcHV1xYMHD7Bnzx4MGzas3DJr166Fk5MTBg8e/Mzj1UZ1jq8m69VlbLnRo7Km2YsXL0IQBJ11KiMiMiRPT0+cOHECKSkpsLKygr29PRo1aoTvv/8erq6uSE1NRXh4uNo6ffv2RUxMDEJCQmBnZ4fIyEjIZLJn7quml6XCwsIwbtw4dO7cGV27dsXixYuRl5eHCRMmqJZZtmwZtm3bpvqy12SdPXv2QBAEtGrVCklJSfjoo4/QunVrtWWAx6Fh7dq1GDduHExMKv+Kzc3NRW5urur1pk2bADx+QHQZR0fHcuesOsen6Xq5ublISkpSvS4bWNfe3h4eHh7PfL9W0fl9XLWcoW4FF4THtw9KpVIBgJCenq73/RERVUdVt98KgiAkJiYK3bp1EywsLFS3gu/bt09o06aNYGZmJnTs2FE4dOiQ2u3B2dnZQmhoqGBjYyO4u7sLMTExBrkVXBAEYenSpYKHh4cgl8uFrl27CsePH1d7PyoqSmjatKlW62zevFnw8vIS5HK54OLiIkydOlV4+PBhuX3v2bNHACAkJiZWWWNUVFS5W+yfnpKTk3V2fJqsd/DgwQrrGDdunEbv64KubgWXCMJTF0WNXE5ODmxtbZGdnW2Qh2h6e3vj+vXr2Ldvn9pteEREtUVhYSGSk5PRrFmzcrc7ExlSVX+L2nx/s8+Nnj15aYqIiIj0j+FGz9ipmIiIyLAYbvSMLTdERESGxXCjZ0+23NSz7k1ERESiYLjRM29vb5iYmODRo0dIS0sTuxwiIiKjx3CjZ3K5HK1atQLAfjdERESGwHBjAGWXptjvhoiISP8YbgyAnYqJiIgMh+HGAHg7OBER6dunn34KZ2dnSCQSbN++HePHj8eLL74odlmiYLgxgLKWm8uXL0OpVIpcDRER6cL48eMhkUhUU6NGjTBgwACcP39eZ/v49NNP4evr+8zlrly5grlz5+K7775Deno6Bg4ciCVLliAmJka1TO/evTFjxgyd1VabMdwYQPPmzWFmZoaCggKNnopLRER1w4ABA5Ceno709HTExcXBxMQEQ4YMMXgdN27cAAAMGzYMLi4uMDMzg62tLezs7AxeS23AcGMAMpkMbdq0AcB+N0RExsTMzAwuLi5wcXGBr68vwsPDkZaWhnv37qmWSUtLw6uvvgo7OzvY29tj2LBhSElJUb1/6NAhdO3aFQ0aNICdnR169OiBW7duISYmBnPnzsW5c+dUrUNPtsSU+fTTTxESEgIAkEqlkEgkAKB2WWr8+PE4fPgwlixZotrWkzUYm8qfx0461b59eyQkJODSpUsYNmyY2OUQEdVagiAgPz9flH1bWlqqwoG2cnNz8dNPP6FFixZo1KgRAKCkpATBwcEIDAzEH3/8ARMTE3z++eeqy1dSqRQvvvgi3nrrLWzcuBHFxcWIj4+HRCJBaGgoLl68iNjYWOzfvx8AYGtrW26/H374ITw9PTFhwgSkp6dXWNuSJUtw7do1tG/fHp999hkAwNHRsVrHWRcw3BgIbwcnItJMfn4+rKysRNl3bm4uGjRooPHyO3bsUNWal5cHV1dX7NixA1Lp4wsjmzdvhlKpxA8//KAKTWvXroWdnR0OHTqEzp07Izs7G0OGDEHz5s0BQNXSDwBWVlYwMTGBi4tLpTVYWVmpLj9VtpytrS3kcjksLS2r3Jax4GUpA+Ht4ERExqdPnz5ISEhAQkIC4uPjERwcjIEDB+LWrVsAgHPnziEpKQnW1tawsrKClZUV7O3tUVhYiBs3bsDe3h7jx49HcHAwQkJCsGTJkkpbX0hzbLkxkLJwk5iYiJKSEpiamopcERFR7WRpaYnc3FzR9q2NBg0aoEWLFqrXP/zwA2xtbbFq1Sp8/vnnyM3Nhb+/P9avX19u3bLLQmvXrsV7772H2NhYbN68GbNnz8a+ffvQrVu3mh1MPcZwYyAeHh5o0KAB8vLykJSUpNbsSERE/yORSLS6NFSbSCQSSKVSFBQUAAA6deqEzZs3w8nJCTY2NpWu5+fnBz8/P0RERCAwMBAbNmxAt27dIJfLoVAodFKbLrdV2/GylIFIpVIO5kdEZGSKioqQkZGBjIwMXLlyBdOmTUNubq7q7qXRo0fDwcEBw4YNwx9//IHk5GQcOnQI7733Hv7++28kJycjIiICx44dw61bt7B3715cv35d9T/Anp6eSE5ORkJCArKyslBUVFTtWj09PXHixAmkpKQgKyvLqMddY7gxIHYqJiIyLrGxsXB1dYWrqysCAgJw8uRJbNmyBb179wbw+DLXkSNH4OHhgeHDh6NNmzaYOHEiCgsLYWNjA0tLS1y9ehUjRoyAt7c3Jk2ahKlTp+Ltt98GAIwYMQIDBgxAnz594OjoiI0bN1a71g8//BAymQxt27aFo6MjUlNTdXEKaiWJIAiC2EUYUk5ODmxtbZGdnV1lE6E+LFq0CB988AFefvllbNmyxaD7JiKqTGFhIZKTk9GsWTOYm5uLXQ7VY1X9LWrz/c2WGwNiyw0REZH+MdwYUNkdU9evX1d1NiMiIiLdYrgxIDc3Nzg4OEChULBTMRERkZ4w3BiQRCKBn58fAODs2bMiV0NERGScGG4MrOzR9QkJCaLWQUREZKwYbgyM4YaIiEi/GG4MrOyy1Llz5+rNSJFERESGxHBjYN7e3rCwsEBeXh5u3LghdjlERERGh+HGwGQyGTp06ACAl6aIiHQpv7gUnuE74Rm+E/nFpWKXQyJiuBFBWb8b3jFFRESkeww3Iijrd8OWGyKium38+PGQSCSQSCQwNTWFs7MzXnjhBaxZs0arB1PGxMTAzs5Of4XWMww3IuAdU0RExmPAgAFIT09HSkoKdu/ejT59+mD69OkYMmQISkt5eUwMDDci6NChAyQSCTIyMpCRkSF2OURERicju9Bg+zIzM4OLiwsaN26MTp064eOPP8avv/6K3bt3IyYmBsDjByd36NABDRo0gLu7O9555x3k5uYCAA4dOoQJEyYgOztb1Qr06aefAgB+/PFHdO7cGdbW1nBxccGoUaNw9+5dgx1bXcVwI4IGDRqgVatWANh6Q0RUHfnFpeWmDSdSVe8HLTqMH4+llFvGUPr27QsfHx9s3boVACCVSvHNN9/g0qVLWLduHQ4cOICZM2cCALp3747FixfDxsYG6enpSE9Px4cffggAKCkpwbx583Du3Dls374dKSkpGD9+vMGOo64yEbuA+srX1xdXr15FQkICBgwYIHY5RER1StvIPVW+rxSAOb9ewpxf1Z/jl7JgsD7LUtO6dWucP38eADBjxgzVfE9PT3z++eeYPHkyvv32W8jlctja2kIikcDFxUVtG2+88Ybqdy8vL3zzzTfo0qULcnNzYWVlZZDjqIvYciMS9rshIjJugiBAIpEAAPbv349+/fqhcePGsLa2xpgxY3D//n3k5+dXuY3Tp08jJCQEHh4esLa2Rq9evQAAqampVa5X37HlRiR8gCYRUfVd/ixY7XVGdiGCFh2GUvjfPKkE2B/WCy625gau7rErV66gWbNmSElJwZAhQzBlyhT861//gr29PY4ePYqJEyeiuLgYlpaWFa6fl5eH4OBgBAcHY/369XB0dERqaiqCg4NRXFxs4KOpW0RvuVm+fDk8PT1hbm6OgIAAxMfHV7n84sWL0apVK1hYWMDd3R3vv/8+CgsN13FMV3x8fAAA169fV3UqIyIizVjKTdQmL0crzB3aTvW+VALMH94BXo5WassZyoEDB3DhwgWMGDECp0+fhlKpxNdff41u3brB29sbd+7cUVteLpeXeyTP1atXcf/+fSxYsADPPfccWrduzc7EGhI13GzevBlhYWGIiorCmTNn4OPjg+Dg4Eo/vA0bNiA8PBxRUVG4cuUKVq9ejc2bN+Pjjz82cOU15+zsDFdXVwiCgAsXLohdDhFRnTfCv4nq9/1hvRDaxcMg+y0qKkJGRgZu376NM2fOIDo6GsOGDcOQIUMwduxYtGjRAiUlJVi6dClu3ryJH3/8EStXrlTbhqenJ3JzcxEXF4esrCzk5+fDw8MDcrlctd5vv/2GefPmGeSY6jpRw82iRYvw1ltvYcKECWjbti1WrlwJS0tLrFmzpsLl//rrL/To0QOjRo2Cp6cn+vfvj5EjRz6ztae24qUpIiL9MOSlqNjYWLi6usLT0xMDBgzAwYMH8c033+DXX3+FTCaDj48PFi1ahC+++ALt27fH+vXrMX/+fLVtdO/eHZMnT0ZoaCgcHR2xcOFCODo6IiYmBlu2bEHbtm2xYMECfPXVVwY7rrpMtD43xcXFOH36NCIiIlTzpFIpgoKCcOzYsQrX6d69O3766SfEx8eja9euuHnzJnbt2oUxY8ZUup+ioiIUFRWpXufk5OjuIGrI19cXu3btYqdiIqI6KiYmRjWWTVXef/99vP/++2rznv7uWrFiBVasWKE2b+TIkRg5cqTaPEEQQFUTLdxkZWVBoVDA2dlZbb6zszOuXr1a4TqjRo1CVlYWevbsCUEQUFpaismTJ1d5WWr+/PmYO3euTmvXFd4xRUREpHuidyjWxqFDhxAdHY1vv/0WZ86cwdatW7Fz584qr0FGREQgOztbNaWlpRmw4qqVXZa6cOECh+gmIqohS7kJUhYMRsqCwQbtPEy1j2ifvoODA2QyGTIzM9XmZ2ZmlhvEqMycOXMwZswYvPnmmwAeP8YgLy8PkyZNwieffAKptHxWMzMzg5mZme4PQAe8vLxgZWWF3NxcJCYmol27ds9eiYiIiKokWsuNXC6Hv78/4uLiVPOUSiXi4uIQGBhY4Tr5+fnlAoxMJgNQN69BSqVS1S3hvDRFRESkG6JelgoLC8OqVauwbt06XLlyBVOmTEFeXh4mTJgAABg7dqxah+OQkBCsWLECmzZtQnJyMvbt24c5c+YgJCREFXLqmrJLU2fOnBG5EiKq7+ri/ySScdHV36CoFyVDQ0Nx7949REZGIiMjA76+voiNjVV1Mk5NTVVrqZk9ezYkEglmz56N27dvw9HRESEhIfjXv/4l1iHUWOfOnQEAJ0+eFLkSIqqvyv7nsLi4GBYWFiJXQ/VZ2cjLNW2wkAj1LKrn5OTA1tYW2dnZsLGxEbscXLlyBW3btoWlpSWys7NhYsJOcERkWIIgIDU1FSUlJXBzc6uw/yKRvimVSty5cwempqbw8PBQPZerjDbf3/wmFVmrVq1gbW2NR48e4fLly+jYsaPYJRFRPSORSODq6ork5GTcunVL7HKoHpNKpRUGG20x3IhMKpWic+fOOHjwIE6ePMlwQ0SikMvlaNmyJR/ISKKSy+U6aTlkuKkFunbtioMHDyI+Ph4TJ04UuxwiqqekUinMzcV5gjaRLvHCai3QpUsXAOxUTEREpAsMN7VA165dAQDnz59HQUGByNUQERHVbQw3tUCTJk3g7OwMhULBJ4QTERHVEMNNLSCRSFStN7w0RUREVDMMN7VEWb+b+Ph4kSshIiKq2xhuagm23BAREekGw00tUdZyc/36dTx48EDkaoiIiOouhptawt7eHs2bNwcAnDp1SuRqiIiI6i6Gm1qk7NIU+90QERFVH8NNLcJOxURERDXHcFOLPNlyU88e1k5ERKQzDDe1iJ+fH2QyGTIyMnD79m2xyyEiIqqTGG5qEUtLS7Rv3x4AbwknIiKqLoabWoadiomIiGqG4aaWYadiIiKimmG4qWXKWm5OnToFpVIpcjVERER1D8NNLdOuXTtYWloiJycHV65cEbscIiKiOofhppYxMTFBQEAAAODPP/8UuRoiIqK6h+GmFurRowcAhhsiIqLqYLiphXr27AkAOHr0qMiVEBER1T0MN7VQt27dIJFIcPPmTaSnp4tdDhERUZ3CcFML2draomPHjgB4aYqIiEhbDDe1FPvdEBERVQ/DTS1VFm7Y74aIiEg7DDe1VFmn4rNnzyIvL0/kaoiIiOoOE00W+uabb7Te8IQJE2Btba31evSYh4cHmjRpgr///hvx8fHo06eP2CURERHVCRqFmxkzZqBJkyaQyWQabTQtLQ1DhgxhuKmhnj17YtOmTTh69CjDDRERkYY0CjfA42cdOTk5abQsQ41u9OjRA5s2bWKnYiIiIi1o1OcmKioKVlZWGm/0448/hr29fbWLosfK+t389ddfUCgUIldDRERUN0gEQRDELsKQcnJyYGtri+zsbNjY2IhdTpUUCgUaNmyIR48eISEhAT4+PmKXREREJAptvr91crdUTk4OVqxYgc6dO+tic/T/ZDIZunXrBoC3hBMREWmqRuHm4MGDGDNmDFxdXTFv3jzV06xJd8ouTbHfDRERkWY07lBc5vbt24iJicHatWvx8OFDPHjwABs2bMCrr74KiUSijxrrNY5UTEREpB2NW25++eUXDBo0CK1atUJCQgK+/vpr3LlzB1KpFB06dGCw0ZOAgADIZDKkpqYiLS1N7HKIiIhqPY3DTWhoKPz8/JCeno4tW7Zg2LBhkMvl+qyNAFhZWcHX1xcAW2+IiIg0oXG4mThxIpYvX44BAwZg5cqVePDggT7roieU9bv5448/RK6EiIio9tM43Hz33XdIT0/HpEmTsHHjRri6umLYsGEQBAFKpVKfNdZ7zz//PADg8OHDIldCRERU+2l1t5SFhQXGjRuHw4cP48KFC2jXrh2cnZ3Ro0cPjBo1Clu3btVXnfVar169IJFIcOnSJWRmZopdDhERUa1W7VvBW7ZsiejoaKSlpeGnn35Cfn4+Ro4cqcva6P81atRINYDfwYMHRa6GiIiodqvxIH5SqRQhISHYvn077+bRo759+wIADhw4IHIlREREtZvW49wAwJ07d3D06FHcvXtXrb+NRCLBtGnTdFYc/U/fvn2xaNEihhsiIqJn0PrZUjExMXj77bchl8vRqFEjtfFtJBIJbt68qfMidakuPVvqSTk5ObC3t4dCoUBKSgqaNm0qdklEREQGo9dnS82ZMweRkZHIzs5GSkoKkpOTVVNtDzZ1mY2NDbp06QKA/W6IiIiqonW4yc/Px2uvvQapVCfP3MTy5cvh6ekJc3NzBAQEID4+vsrlHz58iKlTp8LV1RVmZmbw9vbGrl27dFJLbdenTx8ADDdERERV0TqhTJw4EVu2bNHJzjdv3oywsDBERUXhzJkz8PHxQXBwMO7evVvh8sXFxXjhhReQkpKC//73v0hMTMSqVavQuHFjndRT2z3ZqVjLq4lERET1htZ9bhQKBYYMGYKCggJ06NABpqamau8vWrRI420FBASgS5cuWLZsGQBAqVTC3d0d06ZNQ3h4eLnlV65ciS+//BJXr14tt9/KFBUVoaioSPU6JycH7u7uda7PDfC41axhw4YoLi7GtWvX0LJlS7FLIiIiMgi99rmZP38+9uzZg8zMTFy4cAFnz55VTQkJCRpvp7i4GKdPn0ZQUND/ipFKERQUhGPHjlW4zm+//YbAwEBMnToVzs7OaN++PaKjo6FQKKqs19bWVjW5u7trXGNtY2lpicDAQAC8JZyIiKgyWt8K/vXXX2PNmjUYP358jXaclZUFhUIBZ2dntfnOzs64evVqhevcvHkTBw4cwOjRo7Fr1y4kJSXhnXfeQUlJCaKioipcJyIiAmFhYarXZS03dVXfvn1x+PBhHDhwAG+//bbY5RAREdU6WrfcmJmZoUePHvqo5ZmUSiWcnJzw/fffw9/fH6Ghofjkk0+wcuXKStcxMzODjY2N2lSXlfW7OXjwIJ/pRUREVAGtw8306dOxdOnSGu/YwcEBMpms3LOSMjMz4eLiUuE6rq6u8Pb2hkwmU81r06YNMjIyUFxcXOOa6oKuXbvC0tIS9+7dw6VLl8Quh4iIqNbROtzEx8dj3bp18PLyQkhICIYPH642aUoul8Pf3x9xcXGqeUqlEnFxcap+JU/r0aMHkpKS1Fosrl27BldXV8jlcm0PpU6Sy+Xo2bMnAN4STkREVBGtw42dnR2GDx+OXr16wcHBQa2zrq2trVbbCgsLw6pVq7Bu3TpcuXIFU6ZMQV5eHiZMmAAAGDt2LCIiIlTLT5kyBf/88w+mT5+Oa9euYefOnYiOjsbUqVO1PYw6jc+ZIiIiqpzWHYrXrl2rs52Hhobi3r17iIyMREZGBnx9fREbG6vqZJyamqo2WKC7uzv27NmD999/Hx07dkTjxo0xffp0zJo1S2c11QVl4ebQoUNQKBRql+mIiIjqO63Huanr6uqzpZ5UWloKBwcHZGdn48SJE+jatavYJREREemVzse56dSpEx48eKBxAT179sTt27c1Xp60Y2Jign79+gEAdu/eLXI1REREtYtGl6USEhJw7tw52Nvba7TRhIQEtVGBSfcGDhyIrVu3Yvfu3ZWO8UNERFQfadznpl+/fho/z0gikVS7INLMgAEDADy+ey0rKwsODg4iV0RERFQ7aBRukpOTtd5wkyZNtF6HNNekSRN06NABFy5cwN69ezFq1CixSyIiIqoVNAo3TZs21XcdVA0DBw7EhQsXsHv3boYbIiKi/6f1ODdUewwcOBAAsGfPHj6KgYiI6P8x3NRhPXr0gLW1Ne7du4fTp0+LXQ4REVGtwHBTh5mamiIoKAgAbwknIiIqw3BTx5VdmmK4ISIiekzrcOPl5YX79++Xm//w4UN4eXnppCjSXFm4OXHiRIWfCxERUX2jdbhJSUmBQqEoN7+oqIijEougSZMmaN++PQRBwN69e8Uuh4iISHQaD+L322+/qX7fs2eP2hPAFQoF4uLi4OnpqdPiSDMDBw7ExYsXsXv3bowcOVLscoiIiESl8YMzy57OLZFIyo1UbGpqCk9PT3z99dcYMmSI7qvUIWN4cObTDh48iL59+8LR0REZGRlqT1InIiIyBtp8f2vcclM2jkqzZs1w8uRJDvdfi/To0QNWVla4d+8ezpw5g86dO4tdEhERkWi0/l/85ORkBptaRi6X85ZwIiKi/6dxy82T4uLiEBcXh7t375YbGXfNmjU6KYy0M2jQIGzfvh07d+7EnDlzxC6HiIhINFq33MydOxf9+/dHXFwcsrKy8ODBA7WJxDFkyBBIJBKcOHGCd60REVG9pnXLzcqVKxETE4MxY8boox6qJldXV3Tr1g3Hjh3Dr7/+infeeUfskoiIiEShdctNcXExunfvro9aqIZeeuklAMC2bdtEroSIiEg8WoebN998Exs2bNBHLVRDZeHm0KFDvERIRET1ltaXpQoLC/H9999j//796NixI0xNTdXeX7Rokc6KI+20aNEC7du3x8WLF7Fjxw5eOiQionpJ63Bz/vx5+Pr6AgAuXryo9p5EItFJUVR9L730Ei5evIht27Yx3BARUb2k8QjFxsIYRyh+0tmzZ9GpUydYWFggKysLlpaWYpdERERUY9p8f1d7nP6kpCTs2bMHBQUFAFDukQwkDl9fXzRt2hQFBQV8kCYREdVLWoeb+/fvo1+/fvD29sagQYOQnp4OAJg4cSI++OADnRdI2pFIJLxrioiI6jWtw837778PU1NTpKamql3yCA0NRWxsrE6Lo+opCze///47SkpKRK6GiIjIsLQON3v37sUXX3yBJk2aqM1v2bIlbt26pbPCqPp69OgBR0dHPHjwAEeOHBG7HCIiIoPSOtzk5eVV2En1n3/+gZmZmU6KopqRyWQYOnQoAF6aIiKi+kfrcPPcc8/hP//5j+q1RCKBUqnEwoUL0adPH50WR9VXdmlq+/bt5R5uSkREZMy0Hudm4cKF6NevH06dOoXi4mLMnDkTly5dwj///IM///xTHzVSNfTr1w9WVla4ffs2Tp48iYCAALFLIiIiMgitW27at2+Pa9euoWfPnhg2bBjy8vIwfPhwnD17Fs2bN9dHjVQN5ubmGDJkCABg06ZNIldDRERkOFoN4ldSUoIBAwZg5cqVaNmypT7r0htjH8TvSb///juGDh0KV1dXpKWlQSaTiV0SERFRtehtED9TU1OcP3++RsWR4QQHB6Nhw4ZIT0/H4cOHxS6HiIjIILS+LPX6669j9erV+qiFdEwul+Pll18GAPznp5/gGb4TnuE7kV9cKnJlRERE+qN1h+LS0lKsWbMG+/fvh7+/Pxo0aKD2Pp8KXruMGjUKq1atwvatW2H75lBITEyfvRIREVEdpnW4uXjxIjp16gQAuHbtmtp7fCp47fPcc8+hcePGuH37NuTJp2HZspvYJREREemVVuFGoVBg7ty56NChAxo2bKivmkiHZDIZQkNDsWjRIuRdPsxwQ0RERk+rPjcymQz9+/fHw4cP9VQO6cOoUaMAAAVJJ6Asyhe5GiIiIv2q1jg3N2/e1EctpCedOnVCy5beEEqLkX/9uNjlEBER6ZXW4ebzzz/Hhx9+iB07diA9PR05OTlqE9U+EokEr4SGAgDyrvCWcCIiMm5aDeIHAFLp//LQkx2IBUGARCKBQqHQXXV6UJ8G8XtSwoVL8OvYHpBIkZL2N5o2dhW7JCIiIo1p8/2t9d1SBw8erHZhJB7vVq0gd2mB4owkbPvlv5jx3jSxSyIiItILrcNNr1699FEHGUCDNr1QnJGEzZs2MtwQEZHR0jrcHDlypMr3n3/++WoXQ/pl2eZ5PDi0FsePHUNiYiJatWoldklEREQ6p3W46d27d7l5T/a9qe19buozE+tGsAkYgbxLB7B69WosXLhQ7JKIiIh0Tuu7pR48eKA23b17F7GxsejSpQv27t1brSKWL18OT09PmJubIyAgAPHx8Rqtt2nTJkgkErz44ovV2q+xyy8uVU0bTqQCABr2GofGk9fix79uIjuvgM+ZIiIio6P13VKVOXz4MMLCwnD69Gmt1tu8eTPGjh2LlStXIiAgAIsXL8aWLVuQmJgIJyenStdLSUlBz5494eXlBXt7e2zfvl2j/dWnu6U8w3dW+p6gVKAw5SwsvDojZcFgA1ZFRESkPW2+v7VuuamMs7MzEhMTtV5v0aJFeOuttzBhwgS0bdsWK1euhKWlJdasWVPpOgqFAqNHj8bcuXPh5eVVk7LrLYlUhsK0i2KXQUREpHNa97k5f/682mtBEJCeno4FCxbA19dXq20VFxfj9OnTiIiIUM2TSqUICgrCsWPHKl3vs88+g5OTEyZOnIg//vijyn0UFRWhqKhI9bo+DTR4+bNgAEBGdiGCFh2G8ok2OkGpQMHlwzi94SuRqiMiItIPrVtufH194efnB19fX9XvgwYNQnFxMX744QettpWVlQWFQgFnZ2e1+c7OzsjIyKhwnaNHj2L16tVYtWqVRvuYP38+bG1tVZO7u7tWNdZllnITWMpN4OVohblD26nmSyVAo+S9KMm5h80bfhKxQiIiIt3TOtwkJyfj5s2bSE5ORnJyMm7duoX8/Hz89ddfaN26tT5qVHn06BHGjBmDVatWwcHBQaN1IiIikJ2drZrS0tL0WmNtNcK/ier3/WG9MCOkKwBg9erVUCqVYpVFRESkc1pflmratKnOdu7g4ACZTIbMzEy1+ZmZmXBxcSm3/I0bN5CSkoKQkBDVvLIvZhMTEyQmJqJ58+Zq65iZmcHMzExnNRsDF1tzvPzyy5g2bRqSk5Nx6NAh9O3bV+yyiIiIdELjlpsDBw6gbdu2FfZZyc7ORrt27Z7Z/+Vpcrkc/v7+iIuLU81TKpWIi4tDYGBgueVbt26NCxcuICEhQTUNHToUffr0QUJCQr265FRTlpaWGD16NABofTmRiIioNtM43CxevBhvvfVWhbdf2dra4u2338aiRYu0LiAsLAyrVq3CunXrcOXKFUyZMgV5eXmYMGECAGDs2LGqDsfm5uZo37692mRnZwdra2u0b98ecrlc6/3XZxMnTgQAbN26Ff/884/I1RAREemGxuHm3LlzGDBgQKXv9+/fX+sxbgAgNDQUX331FSIjI+Hr64uEhATExsaqOhmnpqYiPT1d6+3Ss3Xq1Am+vr4oKirCf/7zH7HLISIi0gmNB/EzNzfHxYsX0aJFiwrfT0pKQocOHVBQUKDTAnWtPg3i96T84lK0jdwD4PEt4pbyx92tvvvuO0yePBnNmzdHYmIiZDKZmGUSERFVSC+D+DVu3BgXL1Y+6Nv58+fh6uqqeZVUK7z++uto2LAhbty4gd27d4tdDhERUY1pHG4GDRqEOXPmoLCwsNx7BQUFiIqKwpAhQ3RaHOlfgwYN8OabbwIAlixZInI1RERENafxZanMzEx06tQJMpkM7777Llq1agUAuHr1KpYvXw6FQoEzZ86UG5CvtuFlKfXLUgBw69YteHl5QalU4tKlS2jbtq1YZRIREVVIL5elnJ2d8ddff6F9+/aIiIjASy+9hJdeegkff/wx2rdvj6NHj9b6YEMVa9q0qerJ6kuXLhW3GCIiohqq1lPBHzx4gKSkJAiCgJYtW6Jhw4b6qE0v2HJTvuUGePxU9969e8PS0hJ///13nfpMiYjI+Gnz/V2tcFOX1ddw8yyCIMDX1xfnz5/Hl19+iQ8//FDskoiIiFT0clmKjJtEIsH06dMBAMuWLYNCoRC5IiIiouphuCGVkSNHolGjRrh16xZ+++03scshIiKqFoYbUrGwsMDbb78NgLeFExFR3cVwQ2qmTJkCExMTHD58GCdOnBC7HCIiIq0x3JCaJk2a4PXXXwcAREdHi1wNERGR9hhuqJzw8HBIJBL89ttvuHDhgtjlEBERaYXhhspp1aoVXn75ZQDAggULRK6GiIhIOww3VKGIiAgAwKZNm5CUlCRyNURERJpjuKEK+fn5YdCgQVAqlVi4cKHY5RAREWmM4YYq9fHHHwMAYmJi8Pfff4tcDRERkWYYbqhSPXr0wPPPP4+SkhJ8/fXXYpdDRESkEYYbqtInn3wCAPjuu+9w7949kashIiJ6NoYbqtILL7wAf39/FBQUsPWGiIjqBIYbqpJEIkFkZCQA4JtvvkF6errIFREREVWN4YaeKSQkBIGBgSgoKMC8efPELoeIiKhKDDf0TBKJRDWY36pVq3Djxg2RKyIiIqocww1p5Pnnn8eAAQNQWlqqukxFRERUGzHckMbKHqS5YcMGnDt3TuRqiIiIKsZwQxrz8/PDa6+9BuB/t4gTERHVNgw3pJV58+bBxMQEO3fuxB9//CF2OUREROUw3JBWWrRogYkTJwJ4/HBNQRBEroiIiEgdww1pLTIyEhYWFvjzzz/x3//+V+xyiIiI1DDckNbc3Nwwa9YsAMAHH3yAvLw8kSsiIiL6H4YbqpaZM2eiadOmSEtLwxdffCF2OURERCoMN1QtFhYWWLRoEQBg4cKFuHnzpsgVERERPcZwQ9X20ksvISgoCEVFRfjggw/ELoeIiAgAww3VgEQiwZIlS2BiYoLt27dj7969YpdERETEcEM107ZtW0ybNg0A8N5776G4uFjkioiIqL5juKEai4qKgpOTExITE7FkyRKxyyEionqO4YZqzNbWVnXHVFRUFJKSkkSuiIiI6jOGG9KJcePGoV+/figoKMBbb70FpVIpdklERFRPMdyQTkgkEqxatQqWlpY4dOgQVq1aJXZJRERUTzHckM40a9YM0dHRAICPPvoIaWlpIldERET1EcMN6dS7776LwMBAPHr0CFOmTOGDNYmIyOAYbkinZDIZVq9eDblcjp07d2LDhg1il0RERPUMww3pXJs2bRAZGQkAmD59OtLT00WuiIiI6hOGG9KLmTNnws/PD/fv38e4ceN49xQRERkMww3phampKdavXw8LCwvs27dP9ZBNIiIifWO4Ib1p06aNasTijz/+GKdPnxa5IiIiqg8Ybkiv3nzzTQwfPhwlJSUYOXIkcnNzxS6JiIiMXK0IN8uXL4enpyfMzc0REBCA+Pj4SpddtWoVnnvuOTRs2BANGzZEUFBQlcuTuMoG92vSpAmuX7+uesgmERGRvogebjZv3oywsDBERUXhzJkz8PHxQXBwMO7evVvh8ocOHcLIkSNx8OBBHDt2DO7u7ujfvz9u375t4MpJU/b29li/fj2kUiliYmKwceNGsUsiIiIjJhFEHmUtICAAXbp0wbJlywAASqUS7u7umDZtGsLDw5+5vkKhQMOGDbFs2TKMHTv2mcvn5OTA1tYW2dnZsLGxqXH9pLnIyEjMmzcPDRo0wPHjx9G+fXuxSyIiojpCm+9vUVtuiouLcfr0aQQFBanmSaVSBAUF4dixYxptIz8/HyUlJbC3t6/w/aKiIuTk5KhNJI7IyEj069cPeXl5ePHFF/HgwQOxSyIiIiMkarjJysqCQqGAs7Oz2nxnZ2dkZGRotI1Zs2bBzc1NLSA9af78+bC1tVVN7u7uNa6bqsfExASbNm2Cp6cnbty4gZEjR0KhUIhdFhERGRnR+9zUxIIFC7Bp0yZs27YN5ubmFS4TERGB7Oxs1cSHOYrLwcEB27dvh4WFBfbs2YPZs2eLXRIRERkZUcONg4MDZDIZMjMz1eZnZmbCxcWlynW/+uorLFiwAHv37kXHjh0rXc7MzAw2NjZqE4nLx8cHa9asAfA4oG7ZskWj9fKLS+EZvhOe4TuRX1yqzxKJiKgOEzXcyOVy+Pv7Iy4uTjVPqVQiLi4OgYGBla63cOFCzJs3D7GxsejcubMhSiUde+211/Dhhx8CAMaPH4+zZ8+KXBERERkL0S9LhYWFYdWqVVi3bh2uXLmCKVOmIC8vDxMmTAAAjB07FhEREarlv/jiC8yZMwdr1qyBp6cnMjIykJGRwcHh6qD58+ejf//+yM/Px6BBg5CSkiJ2SUREZAREDzehoaH46quvEBkZCV9fXyQkJCA2NlbVyTg1NVXtqdIrVqxAcXExXn75Zbi6uqqmr776SqxDoGoyMTHBzz//jI4dOyIjIwMDBgzA/fv3xS6LiIjqONHHuTE0jnNT+9y+fRuBgYFIS0tD9+7dsX//flhYWJRbLr+4FG0j9wAALn8WDEu5iaFLJSIikdSZcW6IAKBx48aIjY2FnZ0d/vrrL4wePZq3iBMRUbUx3FCt0LZtW/z2228wMzPDtm3b8O6776KeNSoSEZGOMNxQrfHcc8/hp59+gkQiwcqVK/H+++8z4BARkdYYbqhWefnll/HDDz8AAJYsWYIPP/yQAYeIiLTCcEO1zhtvvIHvvvsOALBo0SKEh4cz4BARkcYYbqhWmjRpEr799lsAjwdtnD17NgMOERFphPfSUq01ZcoUlJaW4r333kN0dDQe5eVDMOsLiUSKjOxCeDlaiV0iERHVQmy5oVpt2rRpWLx4MQBg7cFLqvlBiw5j88lUkaoiIqLajIP4UZ3gOCwClq26QyL9Xx6XSSQ4Gt4HrrblB/wjIiLjwkH8yOg0aNNTLdgAgEIQkJKVL1JFRERUWzHcUJ1w4INekEqemqlUQpbPZ1EREZE6hhuqE7wcrTB3aDvVa0GpwP09SzGoT3ccPnxYxMqIiKi2YbihOmOEfxPV7xtfb4NWpv/g/v37CAoKwvfffy9iZUREVJsw3FCd5Nu6GY4cOYLQ0FCUlpbi7bffxnvvvYfS0lKxS3um/OJSeIbvhGf4TuQX1/56iYjqGoYbqrMsLS2xceNGzJs3DwCwdOlS9OnTB3///bfIlRERkZgYbqhOk0gkmD17NrZu3Qpra2scPXoUvr6+2LVrl9ilERGRSBhuyCi89NJLOHPmDDp16oT79+9j8ODBmDlzJkpKSsQujYiIDIzhhoxGixYt8Ndff2HatGkAgC+//BI9e/ZEYmKiyJXVfewnRER1CcMNGRUzMzN88803+OWXX2Bra4v4+Hj4+vri3//+NxQKhdjlERGRATDckFEaPnw4zp8/jxdeeAGFhYUICwtD7969kZSUJHZpRESkZww3ZLQ8PDywZ88efPfdd7CyssLRo0fRsWNHfPXVV+yLQ0RkxBhuyKhJJBJMmjQJFy5cQN++fVFQUICPPvoIfn5+OHLkiNjlERGRHjDcUL3g6emJffv2YfXq1XBwcMClS5fQq1cvjB07FpmZmWKXR0REOsRwQ3WGpdwEKQsGI2XBYFjKTbReXyqV4o033kBiYiLefvttSCQS/Pjjj/D29saCBQtQUFCgh6qJ6g/eVUe1BcMN1Tv29vZYuXIljh8/Dn9/f+Tk5CAiIgLe3t6IiYkx6F1VGdmFBtsXEVF9wXBD9VbXrl0RHx+PH3/8ER4eHvj7778xYcIE+Pn54ffff4cgCDrfZ35xKTacSFW9Dlp0GD8eS9H5foiI6jOGG6rXpFIpXn/9dSQmJuLLL7+EnZ0dLly4gKFDh8Lf3x/bt2+HUqnU2f7aRu7B5zuvqF4rBWDOr5eQns1LYkREusJwQwTA3NwcH374IW7cuIFZs2ahQYMGOHv2LF566SX4+flhy5Yter1clZKVr7dtExHVNww3RE+wt7fHggULkJKSgk8++QTW1tY4f/48Xn31VXh7e+Obb77Bo0ePqr39Ax/0glSiPk8qATwdLGtYueGwnxAR1XYMN0QVcHBwwOeff46UlBRERkbC3t4eN2/exPTp0+Hu7o6PPvoIt27d0nq7Xo5WmDu0neq1VALMH94BrrYWuixf59hPiIjqEoYboirY29tj7ty5SEtLw4oVK+Dt7Y3s7Gx89dVXaNasGQYPHoxff/0VpaWa3/Y6wr+J6vf9Yb0Q2sVDH6XrTHp2AfsJEVGdwnBDpAFLS0tMnjwZV65cwY4dOxAUFARBELBr1y68+OKL8PT0RGRkJG7cuKHVdl1szfVUse4kZ+VVOJ/9hIiotmK4IdKCVCrF4MGDsW/fPly7dg0zZ86Eo6Mjbt++jXnz5qFFixbo3r07VqxYgfv374tdrk40c2hQp/sJcWA5ovqH4Yaomlq2bIkvvvgCaWlp2LRpE4KDgyGVSnHs2DG88847cHV1RUhICNatW4cHDx6IXW61udpa1Ml+QkRlGHDrH4YbohoyMzNDaGgoYmNj8ffff2PRokXw8/NDSUkJduzYgfHjx8PJyQnBwcH4/vvvkZ6eLnbJWqtr/YRIfLyrjsTEcEOkQ66urnj//fdx5swZXLp0CXPnzkWHDh1QWlqKvXv34u2330YLTw+kr5uBh3+sx6mT8TodJNAQ6kI/ITI8jr5NtQnDDZGetG3bFpGRkTh//jwSExMRHR2NLl26AACKM5KQ/ddG9OrZA87Oznjttdfwww8/ICUlRdyiiaqJo29TbcJwQ2QA3t7eiIiIQHx8PG7cSkOjgdNh6d0d1tbWyMrKwubNm/HWW2+hWbNmaNGiBSZOnIh169bh5s2bennGFZGh8K46EoOJ2AUQ1TcuLi6w6vgCrDq+gITZfXAx4Qz279+P/fv34/jx47hx4wZu3LiBNWvWAAAaN26Mnj17IiAgAAEBAejUqRPMzXlpiGqXAx/0QtCiw1A+kcXr0l11ZFwYbohEJJfL0bNnT/Ts2ROffvopcnJy8Mcff+DIkSP4448/cOrUKdy+fRubN2/G5s2bAQCmpqbw8fFB586d0alTJ3Tq1Ant27eHmZmZyEdD9VnZ6Ntzfr0EgHfVkbgYbohqERsbGwwePBiDBw8GAOTn5+PEiRM4duwYjh8/jhMnTuDu3bs4deoUTp06pVrPxMQEbdu2RYcOHdSmJk2aQCKRVLY7Ip0a4d9EFW72h/WCl6OVyBVRfcVwQ2RglnITpCwYrNmylpbo06cP+vTpAwAQBAG3bt3CiRMncObMGZw9exZnzpzB/fv3cf78eZw/f15tfRsbG7Ru3RqtW7dGmzZt0Lp1a7Rs2RJeXl6wsOD/UdcF+cWlaBu5BwBw+bNgWMrrxj/bvKtOe3X1s66NeOaI6hCJRAJPT094enoiNDQUwOPAk5aWhnPnzuHChQs4f/48Lly4gMTEROTk5CA+Ph7x8fHlttOkSRNV0GnWrJna5OTkxBYfIqqzGG6I6jiJRAIPDw94eHggJCRENb+oqAg3btzAlStXcPXqVVy5cgWJiYm4fv06srOzkZaWhrS0NBw4cKDcNs3MzODu7q7arrOrGx6dfQiZdSOcPeuIFp5N4eDgAJlMZshDrbGM7EJeKiGqBxhuiIyUmZkZ2rZti7Zt26rNFwQB9+/fx/Xr13H9+nXcvHkTycnJqun27dsoKipCUlISkpKSym235y/zAAAymQxOTk5wcXFRTY6OjnByclJNDg4OaNSoERwcHNCgQQODtwZVNLDc3KHtMCbQ06B1UO3BgFs/MNwQ1TMSiQQODg5wcHBAYGBgufeLi4tx+/ZtpKWlITU1Fbdu3cLt27dx+/Zt3LlzB7dv30ZGRgYUCgXS09M1fpyEmZkZGjVqBHt7e9jb26Nhw4aqn3Z2dmqTjY0NbGxsYGtrCxsbG1hbW1frbrCy/gtlygaWC2rrzLt46oGy50hVFHBH+DdhnxYjVis+2eXLl+PLL79ERkYGfHx8sHTpUnTt2rXS5bds2YI5c+YgJSVF9fDCQYMGGbBiIuMll8tVfW8qU1painv37iEjIwPp6enIyMhARkYG7t27h3v37uHu3bu4e/cusrKykJWVhaKiIhQVFeHOnTu4c+dOteuytrZWTVZWVrCyskKDBg1UPxs0aABLS0vVz/ykf2DZoku5bR08eRFdPRvCwsIC5ubmMDMzg7m5OUxMasU/iaQjT4db4H8Bd86vlzTu2E91j+j/JW/evBlhYWFYuXIlAgICsHjxYgQHByMxMRFOTk7llv/rr78wcuRIzJ8/H0OGDMGGDRvw4osv4syZM2jfvr0IR0BU/5iYmMDV1RWurq7w8/OrcllBEJCfn68KOg8ePMCDBw/wzz//4J9//sHDhw/LTTk5OcjOzkZOTg7y8vIAPG5Run//Pu7fv69xnTLrRrDwWguJ9H+DsQtKBcYOHwjFo/LbkclkMDMzq3CSy+Wqn09Opqamqp+VTSYmJpX+LJtkMlm5nzKZDKWCBIVpFwGJDCfj7dDA3Ez1nkwmg1QqLff7kz/LpqdfPz1JJBJ2IiejIRFEHts9ICAAXbp0wbJlywAASqUS7u7umDZtGsLDw8stHxoairy8POzYsUM1r1u3bvD19cXKlSvLLV/2f4xlcnJy4O7ujuzsbNjY2OjhiIhIl0pLS/Ho0SM8evQIubm5ar/n5uYiLy8Pjx49Ql5eHvLz89V+FhQU4I55M9zzDHoccJRKCCc3oOBSHAoLC1FQUIDS0lKxD7HWKAs4ZWHnWT+f/l0ilSIrtxgA4GxrAenT7z8RoJ6ep8n7T84v+72ieWW/CwAUZtb4p/sMQPLE04YEJZxOLINpSW6F26rovOhymcrmKZQC/rrxOHT3aOEAmbTibWkSQnW1THW31bp1a3z55ZcabV9TOTk5sLW11ej7W9SWm+LiYpw+fRoRERGqeVKpFEFBQTh27FiF6xw7dgxhYWFq84KDg7F9+/YKl58/fz7mzp2rs5qJyLBMTEzQsGFDNGzYsFrrPzl2yIGP+sDLMUTtfYVCgaKiIhQWFqr9fHIqLi4u97OkpATFxcWqqex1SUmJ2lRaWqr2+5NTSUkJFAqF6rVCoVDNK5tKSkqRdDcHUCrR2NYMSuX/3lMqlWrLKpVKtXnaPnFeEAQIgqCTJ9Xfya3xJnTGKkcG++B3IZHKICgV+GfPMtw6v0/ssqoUlyJ2BTWjTQurPogabrKysqBQKODs7Kw239nZGVevXq1wnYyMjAqXz8jIqHD5iIgItTBU1nJDRPVPRQPLyWQyWFpawtKydj4DqaYDu5WFlSfDz5Mh6MlA8/Trsqns9ZPzy5Z78r384hIMX/4XAAFbJneDuYlM7X1NprKan/69omUqWvbJ4y57XVhcind/PgeJqTnmDvSCc/d3ALxT4baeXP/pedVZRpt5hSWlmPXLBQDAFyM6wOz/z191ti3mMgAq7FZiSKL3udG3suvlRET1kUQiUfXJMYQ7a/0Nsh9t5BeX4qOTcgDAmFdq78i/+cWlmHf1cZAdOar21lkXSJ+9iP6UDQKWmZmpNj8zMxMuLi4VruPi4qLV8kRExiIju1DsEshA+FnXjKjhRi6Xw9/fH3Fxcap5SqUScXFxFY6/AQCBgYFqywPAvn37Kl2eiKguyS8uVZueHqPlx2Mpau9T3fT056zJZ83PXHOit3mFhYVh3Lhx6Ny5M7p27YrFixcjLy8PEyZMAACMHTsWjRs3xvz58wEA06dPR69evfD1119j8ODB2LRpE06dOoXvv/9ezMMgItKJisZmKfPkGC1lOFZL3VTV5wxU/FmX4Wf+bKKHm9DQUNy7dw+RkZHIyMiAr68vYmNjVZ2GU1NTIX1ijIru3btjw4YNmD17Nj7++GO0bNkS27dv5xg3REREBKAWjHNjaNrcJ09EdV9N7zYytCcvO2RkFyJo0WEon/hXWioB9of1Ut35VduPpzaojX8DT19e0uSzLlMb6heDNt/fova5ISIidZZyE9Xk5WiFuUPbqd6TSoD5wzvAy9FKtQzVTU9+zpp+1vzMNcdwQ0RUi43wb6L6fX9YL4R28RCxGtInfta6w3BDRFRHVDQIIRknftY1w/YtIjJqlnIT3l1CVM+w5YaIiIiMCltuiIjIqLH1rv5hyw0REREZFYYbIiIiMioMN0RERGRUGG6IiIjIqDDcEBERkVFhuCEiIiKjwgdnEhERUa3HB2cSERFRvcVwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKgw3BAREZFRYbghIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKiYiF2AoQmCAADIyckRuRIiIiLSVNn3dtn3eFXqXbh59OgRAMDd3V3kSoiIiEhbjx49gq2tbZXLSARNIpARUSqVuHPnDqytrSGRSHS67ZycHLi7uyMtLQ02NjY63Tap47k2HJ5rw+G5Nhyea8PR1bkWBAGPHj2Cm5sbpNKqe9XUu5YbqVSKJk2a6HUfNjY2/I/FQHiuDYfn2nB4rg2H59pwdHGun9ViU4YdiomIiMioMNwQERGRUWG40SEzMzNERUXBzMxM7FKMHs+14fBcGw7PteHwXBuOGOe63nUoJiIiIuPGlhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG40dLy5cvh6ekJc3NzBAQEID4+vsrlt2zZgtatW8Pc3BwdOnTArl27DFRp3afNuV61ahWee+45NGzYEA0bNkRQUNAzPxv6H23/rsts2rQJEokEL774on4LNCLanuuHDx9i6tSpcHV1hZmZGby9vfnviIa0PdeLFy9Gq1atYGFhAXd3d7z//vsoLCw0ULV115EjRxASEgI3NzdIJBJs3779mescOnQInTp1gpmZGVq0aIGYmBjdFiWQxjZt2iTI5XJhzZo1wqVLl4S33npLsLOzEzIzMytc/s8//xRkMpmwcOFC4fLly8Ls2bMFU1NT4cKFCwauvO7R9lyPGjVKWL58uXD27FnhypUrwvjx4wVbW1vh77//NnDldY+257pMcnKy0LhxY+G5554Thg0bZphi6zhtz3VRUZHQuXNnYdCgQcLRo0eF5ORk4dChQ0JCQoKBK697tD3X69evF8zMzIT169cLycnJwp49ewRXV1fh/fffN3Dldc+uXbuETz75RNi6dasAQNi2bVuVy9+8eVOwtLQUwsLChMuXLwtLly4VZDKZEBsbq7OaGG600LVrV2Hq1Kmq1wqFQnBzcxPmz59f4fKvvvqqMHjwYLV5AQEBwttvv63XOo2Btuf6aaWlpYK1tbWwbt06fZVoNKpzrktLS4Xu3bsLP/zwgzBu3DiGGw1pe65XrFgheHl5CcXFxYYq0Whoe66nTp0q9O3bV21eWFiY0KNHD73WaWw0CTczZ84U2rVrpzYvNDRUCA4O1lkdvCyloeLiYpw+fRpBQUGqeVKpFEFBQTh27FiF6xw7dkxteQAIDg6udHl6rDrn+mn5+fkoKSmBvb29vso0CtU915999hmcnJwwceJEQ5RpFKpzrn/77TcEBgZi6tSpcHZ2Rvv27REdHQ2FQmGosuuk6pzr7t274/Tp06pLVzdv3sSuXbswaNAgg9Rcnxjiu7HePTizurKysqBQKODs7Kw239nZGVevXq1wnYyMjAqXz8jI0FudxqA65/pps2bNgpubW7n/gEhddc710aNHsXr1aiQkJBigQuNRnXN98+ZNHDhwAKNHj8auXbuQlJSEd955ByUlJYiKijJE2XVSdc71qFGjkJWVhZ49e0IQBJSWlmLy5Mn4+OOPDVFyvVLZd2NOTg4KCgpgYWFR432w5YaMzoIFC7Bp0yZs27YN5ubmYpdjVB49eoQxY8Zg1apVcHBwELsco6dUKuHk5ITvv/8e/v7+CA0NxSeffIKVK1eKXZrROXToEKKjo/Htt9/izJkz2Lp1K3bu3Il58+aJXRpVA1tuNOTg4ACZTIbMzEy1+ZmZmXBxcalwHRcXF62Wp8eqc67LfPXVV1iwYAH279+Pjh076rNMo6Dtub5x4wZSUlIQEhKimqdUKgEAJiYmSExMRPPmzfVbdB1Vnb9rV1dXmJqaQiaTqea1adMGGRkZKC4uhlwu12vNdVV1zvWcOXMwZswYvPnmmwCADh06IC8vD5MmTcInn3wCqZRtAbpS2XejjY2NTlptALbcaEwul8Pf3x9xcXGqeUqlEnFxcQgMDKxwncDAQLXlAWDfvn2VLk+PVedcA8DChQsxb948xMbGonPnzoYotc7T9ly3bt0aFy5cQEJCgmoaOnQo+vTpg4SEBLi7uxuy/DqlOn/XPXr0QFJSkipAAsC1a9fg6urKYFOF6pzr/Pz8cgGmLFQKfASjThnku1FnXZPrgU2bNglmZmZCTEyMcPnyZWHSpEmCnZ2dkJGRIQiCIIwZM0YIDw9XLf/nn38KJiYmwldffSVcuXJFiIqK4q3gGtL2XC9YsECQy+XCf//7XyE9PV01PXr0SKxDqDO0PddP491SmtP2XKempgrW1tbCu+++KyQmJgo7duwQnJychM8//1ysQ6gztD3XUVFRgrW1tbBx40bh5s2bwt69e4XmzZsLr776qliHUGc8evRIOHv2rHD27FkBgLBo0SLh7Nmzwq1btwRBEITw8HBhzJgxquXLbgX/6KOPhCtXrgjLly/nreBiW7p0qeDh4SHI5XKha9euwvHjx1Xv9erVSxg3bpza8j///LPg7e0tyOVyoV27dsLOnTsNXHHdpc25btq0qQCg3BQVFWX4wusgbf+un8Rwox1tz/Vff/0lBAQECGZmZoKXl5fwr3/9SygtLTVw1XWTNue6pKRE+PTTT4XmzZsL5ubmgru7u/DOO+8IDx48MHzhdczBgwcr/Pe37PyOGzdO6NWrV7l1fH19BblcLnh5eQlr167VaU0SQWB7GxERERkP9rkhIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKgw3BAREZFRYbghItGNHz8eL774osH3GxMTA4lEAolEghkzZmi0zvjx41XrbN++Xa/1EVH18KngRKRXEomkyvejoqKwZMkS0R5OaGNjg8TERDRo0ECj5ZcsWYIFCxbA1dVVz5URUXUx3BCRXqWnp6t+37x5MyIjI5GYmKiaZ2VlBSsrKzFKA/A4fLm4uGi8vK2tLWxtbfVYERHVFC9LEZFeubi4qCZbW1tVmCibrKysyl2W6t27N6ZNm4YZM2agYcOGcHZ2xqpVq5CXl4cJEybA2toaLVq0wO7du9X2dfHiRQwcOBBWVlZwdnbGmDFjkJWVpXXN3377LVq2bAlzc3M4Ozvj5ZdfrulpICIDYrgholpp3bp1cHBwQHx8PKZNm4YpU6bglVdeQffu3XHmzBn0798fY8aMQX5+PgDg4cOH6Nu3L/z8/HDq1CnExsYiMzMTr776qlb7PXXqFN577z189tlnSExMRGxsLJ5//nl9HCIR6QkvSxFRreTj44PZs2cDACIiIrBgwQI4ODjgrbfeAgBERkZixYoVOH/+PLp164Zly5bBz88P0dHRqm2sWbMG7u7uuHbtGry9vTXab2pqKho0aIAhQ4bA2toaTZs2hZ+fn+4PkIj0hi03RFQrdezYUfW7TCZDo0aN0KFDB9U8Z2dnAMDdu3cBAOfOncPBgwdVfXisrKzQunVrAMCNGzc03u8LL7yApk2bwsvLC2PGjMH69etVrUNEVDcw3BBRrWRqaqr2WiKRqM0ruwtLqVQCAHJzcxESEoKEhAS16fr161pdVrK2tsaZM2ewceNGuLq6IjIyEj4+Pnj48GHND4qIDIKXpYjIKHTq1Am//PILPD09YWJSs3/aTExMEBQUhKCgIERFRcHOzg4HDhzA8OHDdVQtEekTW26IyChMnToV//zzD0aOHImTJ0/ixo0b2LNnDyZMmACFQqHxdnbs2IFvvvkGCQkJuHXrFv7zn/9AqVSiVatWeqyeiHSJ4YaIjIKbmxv+/PNPKBQK9O/fHx06dMCMGTNgZ2cHqVTzf+rs7OywdetW9O3bF23atMHKlSuxceNGtGvXTo/VE5EuSQSxhgUlIhJZTEwMZsyYUa3+NBKJBNu2bRPlsRFEVDW23BBRvZadnQ0rKyvMmjVLo+UnT54s6ojKRPRsbLkhonrr0aNHyMzMBPD4cpSDg8Mz17l79y5ycnIAAK6urho/k4qIDIfhhoiIiIwKL0sRERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMio/B98F7WANTmb4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.errorbar(data_frame['time'], \n", + " data_frame['current'], \n", + " xerr=data_frame['delta_time'], \n", + " yerr=data_frame['delta_current'], \n", + " ls='', \n", + " marker='.',\n", + " label='Data'\n", + " )\n", + "x = np.arange(0, 1, 0.01)\n", + "plt.plot(x, \n", + " discharge_current2(x, *mi.values), # Sternchen operator zum entpacken der Werte\n", + " color='k',\n", + " label='Best fit'\n", + " )\n", + "fit_info = [\n", + " f\"$\\\\chi^2$/$n_\\\\mathrm{{dof}}$ = {mi.fval:.1f} / {mi.ndof:.0f} = {mi.fmin.reduced_chi2:.1f}\",\n", + "]\n", + "for p, v, e in zip(mi.parameters, mi.values, mi.errors):\n", + " fit_info.append(f\"{p} = ${v:.3f} \\pm {e:.3f}$\")\n", + "\n", + "plt.legend(title=\"\\n\".join(fit_info))\n", + "plt.ylabel('Current [mA]')\n", + "plt.xlabel('Time [s]')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1cd73609-8593-4725-a7c4-317d6a48a72f", + "metadata": {}, + "source": [ + "# Mathematisch motivierte Herleitung des $\\chi^2$-Fits:\n", + "\n", + "Nach diesen anfänglichen Beispielen wollen wir uns eine semi-mathematische Herleitung des $\\chi^2$-Fits angucken um etwas besser zu verstehen, warum diese Methode für uns in der Physik so wichtig ist. In unserem Grundpraktikum haben wir bereits gelernt, dass Messwerte durch Zufallszahlen $x_i$ repräsentiert werden und einer gewissen **Wahrscheinlichkeitsdichtefunktion (probability density function)** $f(x)$ unterliegen.\n", + "\n", + "
\n", + "\"{{\n", + "
\n", + "\n", + "\n", + "Eine **pdf** gibt an, mit welcher **Wahrscheinlichkeit ein Wert $x_i$** innerhalb eines **infinitesimalen Intervals $\\text{d}x_i$** zu finden ist. Des Weiteren gilt, dass die Gesamtwahrscheinlichkeit gegeben ist durch $\\int_S f(x) dx = 1$. \n", + "\n", + "Nun betrachten wir folgendes Beispiel: In unserem Labor messen wir genau drei mal die Raumtemperartur T. Auch hier gilt, dass unsere Messungen der einzelnen $T_i$ einer gewissen **Wahrscheinlichkeitsdichtefunktion** folgen. Betrachten Sie nun das folgende Bild; Welche **Wahrscheinlichkeitsdichtefunktion** passt besser zu den gezeigten Daten und **Warum?**\n", + "\n", + "
\n", + "\"{{\n", + "
\n", + "\n", + "Die rechte Verteilung spiegelt unsere Messdaten besser wider. Dies können wir auch mathematisch ausdrücken. Für $N$ voreinander unabhängige Zufallszahlen bzw. Messpunkte (in unserem Beispiel $N = 3$) ist die Gesamtwahrscheinlichkeit gegeben durch das Produkt der einzelnen Wahrscheinlichkeitsdichten $f(x_i, \\theta)$ multipliziert mit dem jeweiligen infinitesimalen Element $dx_i$\n", + "\n", + "$$\\prod_{i = 1}^{N} f(x_i,\\theta) \\ dx_i \\text{ für alle } x_i \\text{ in } [x_i, x_i + dx_i]$$\n", + "\n", + "wobei $x_i$ in unserem Beispiel den Messpunkten $T_i$ und $f(x_i,\\theta)$ unserer Gaussverteilung mit $\\theta = (\\mu, \\sigma)$ entspricht. Sofern unsere Werte gut von der jeweiligen **Wahrscheinlichkeitsdichtefunktion** repräsentiert werden, d.h. wir die richtigen Parameter $\\theta$ gewählt haben (wie im rechten oberen Plot), gilt \n", + "\n", + "$$ \\prod_{i = 1}^{N} f(x_i,\\theta) dx_i \\ \\ \\text{ist} \\ \\textbf{maximal.}$$\n", + "\n", + "Da die einzelnen $dx_i$ von unseren Parametern $\\theta$ unabhängig sind, gilt die gleiche Argumentation auch für \n", + "\n", + "$$ \\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N) = \\prod_{i = 1}^{N} f(x_i,\\theta)$$ \n", + "\n", + "wobei $\\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N)$ die sogenannte **\"likelihood\"** function darstellt.\n", + "\n", + "Wie kommen wir nun von der **likelihood function** auf unsere **Methode der kleinsten Quadrate** und das Fitten einer Funktion $\\lambda(x; \\ $**$\\phi$**$)$ an die gemessenen Punkte **$(x,y)$**? Dazu brauchen wir noch einen Zwischenschritt. Oftmals ist es einfacher, statt die **likelihood function** zu maximieren, die so genannte **log likelihood function**\n", + "\n", + "$$ \\log( \\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N)) = \\sum_{i = 1}^{N} \\log(f(x_i,\\theta))$$\n", + "\n", + "zu maximieren. Dies ist im Grunde das Gleiche, da der Logarithmus eine monoton-steigende Funktion ist. Auch in unserem Fall der **Methode der kleinsten Quadrate** benötigen wir die **log likelihood function**. \n", + "\n", + "Stellen Sie sich nun vor, wir haben eine Messung mit $N$ voneinander unabhängigen Messpunkten (x,y). Des Weiteren nehmen wir an, dass alle $x_i$ ohne Fehler sind und dass unsere $y_i$ gaußförmig um einen unbekannten wahren Wert $\\lambda_i$ (sprich $\\lambda_i$ entspricht dem Erwartungswert $\\mu_i$ unserer Gaußverteilung) mit einer bekannten Varianz $\\Delta y_i^2$ verteilt sind (Diese Annahme lässt sich mit dem zentralen Grenzwertsatz begründen, so lange der Fehler sich aus der Summe kleiner Fehler zusammensetzt). Die dazugehörige **likelihood function** ist dann gegeben durch:\n", + "\n", + "$$ \\mathcal{L}(y_1 ... y_N; \\lambda_1 ... \\lambda_N, \\Delta y_1 ... \\Delta y_N)) = \\prod_{i = 1}^{N}\\frac{1}{\\sqrt{2 \\pi \\Delta y_i^2}} \\cdot \\exp \\bigg( \\frac{ -(y_i - \\lambda_i)^2}{2 \\cdot \\Delta y_i^2}\\bigg)$$\n", + "\n", + "Beziehungsweise die **log likelihood function** mit $\\lambda_i = \\lambda(x_i; \\phi)$ ergibt sich zu\n", + "\n", + "$$ \\log(\\mathcal{L}(y, \\theta)) \\approx -\\frac{1}{2} \\sum_{i = 1}^{N}\\bigg( \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}\\bigg)$$\n", + "\n", + "wobei die konstanten Terme, welche nicht von unserer Funktion $\\lambda(x_i; \\phi)$ abhängen, vernachlässigt worden sind. Durch den Faktor $-\\frac{1}{2}$ ist das Maximieren dieser **log likelihood function** gleich dem Minimieren von\n", + "\n", + "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", + "\n", + "Diese Funktion ist unsere gesuchte **Methode der kleinsten Quadrate**. Mit ihrer Hilfe kann eine beliebige Funktion $\\lambda(x; \\phi)$, welche linear in ihren Parametern $\\phi$ ist, an unsere Messdaten $(x,y\\pm\\Delta y)$ gefittet werden. Dabei stellt der Fitprozess selbst lediglich ein Minimierungsproblem dar. Im Folgenden sind unsere Annahmen noch einmal grafisch in einem Beispiel dargestellt.\n", + "\n", + "
\n", + "\"{{\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "be4a8d21-29db-4866-9117-8746b80d5945", + "metadata": {}, + "source": [ + "Wie ein Algorithmus bei der Minimierung vorgeht, sprengt den Rahmen dieses Vorversuchs. Hier sei auf entsprechende Vorlesungen verwiesen. Aber um einen kleinen Einblick zu erhalten, kann man sich die Werte der Parameter und von $\\chi^2$ für jeden Schritt ausgeben lassen. Dazu wird der Parameter `verbose` auf 1 gesetzt.\n", + "\n", + "Man erkannt, dass für jeden Parameter zunächst separat geprüft wird, welche Änderung (größer oder kleiner) die Kostenfunktion minimiert. Danach beginnt die eigentliche Minimierung der Kostenfunktion durch den Algorithmus." + ] + }, + { + "cell_type": "code", + "execution_count": 500, + "id": "43bfd15e-7b68-4b70-bc06-0b23f89f7bff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(0.9, 10000.0, 1e-06) -> 99.20912665811522\n", + "(0.9000900000000001, 10000.0, 1e-06) -> 99.19412063461034\n", + "(0.89991, 10000.0, 1e-06) -> 99.22413838602546\n", + "(0.9002604809700815, 10000.0, 1e-06) -> 99.16571136645308\n", + "(0.8997395190299186, 10000.0, 1e-06) -> 99.25258973321158\n", + "(0.9, 10001.0, 1e-06) -> 99.2081333982375\n", + "(0.9, 9999.0, 1e-06) -> 99.21012010104333\n", + "(0.9, 10010.0, 1e-06) -> 99.19920228362008\n", + "(0.9, 9990.0, 1e-06) -> 99.21906933767059\n", + "(0.9, 10000.0, 1.0001e-06) -> 99.2081333982375\n", + "(0.9, 10000.0, 9.999e-07) -> 99.21012010104333\n", + "(0.9, 10000.0, 1.001e-06) -> 99.19920228362008\n", + "(0.9, 10000.0, 9.989999999999999e-07) -> 99.21906933767059\n", + "(1.1367992341436675, 15426.65629293471, 1.5426656292934658e-06) -> 71.48428998018905\n", + "(1.1639942960414291, 16049.877285679564, 1.6049877285679507e-06) -> 69.75101904460233\n", + "(1.308096945474447, 19352.234036123315, 1.9352234036123227e-06) -> 64.0373348681763\n", + "(1.377047580024234, 20932.354834379075, 2.093235483437897e-06) -> 65.47264288596953\n", + "(1.3083067929414927, 19352.234036123315, 1.9352234036123227e-06) -> 64.06897571595725\n", + "(1.3078870980074015, 19352.234036123315, 1.9352234036123227e-06) -> 64.00572838249478\n", + "(1.308096945474447, 19363.537683275055, 1.9352234036123227e-06) -> 63.99858990110189\n", + "(1.308096945474447, 19340.930388971574, 1.9352234036123227e-06) -> 64.0760877366588\n", + "(1.308096945474447, 19352.234036123315, 1.9365250134806992e-06) -> 63.99272090590841\n", + "(1.308096945474447, 19352.234036123315, 1.933921793743946e-06) -> 64.08195930724722\n", + "(1.308096945474447, 19352.234036123315, 1.9374628097120974e-06) -> 63.96058355345421\n", + "(1.308096945474447, 19352.234036123315, 1.932983997512548e-06) -> 64.11411719500667\n", + "(1.4518988196469205, 28189.753065444456, 2.8189750163700463e-06) -> 61.272614820982845\n", + "(1.385496103118641, 24108.893380587735, 2.4108891818768406e-06) -> 49.65617486041412\n", + "(1.385672043336562, 24108.893380587735, 2.4108891818768406e-06) -> 49.694760759553645\n", + "(1.3853201629007201, 24108.893380587735, 2.4108891818768406e-06) -> 49.61761439538809\n", + "(1.385496103118641, 24122.984567537602, 2.4108891818768406e-06) -> 49.6271750967005\n", + "(1.385496103118641, 24094.80219363787, 2.4108891818768406e-06) -> 49.6852350578246\n", + "(1.385496103118641, 24117.03763372327, 2.4108891818768406e-06) -> 49.63940655944544\n", + "(1.385496103118641, 24100.7491274522, 2.4108891818768406e-06) -> 49.67296334907033\n", + "(1.385496103118641, 24108.893380587735, 2.4128655527857186e-06) -> 49.61551806057589\n", + "(1.385496103118641, 24108.893380587735, 2.4089128109679626e-06) -> 49.69695054357015\n", + "(1.385496103118641, 24108.893380587735, 2.411780041418529e-06) -> 49.63783388084468\n", + "(1.385496103118641, 24108.893380587735, 2.409998322335152e-06) -> 49.67453999473487\n", + "(1.3346958218375284, 26342.987535930857, 2.6342989994964907e-06) -> 32.40412806990936\n", + "(1.218308580069807, 31461.464245752708, 3.146147591686242e-06) -> 14.072342058026457\n", + "(1.2041974408796614, 32082.043754269307, 3.2082056542278777e-06) -> 13.53676656364805\n", + "(1.1905385220654157, 32682.73552056781, 3.2682749389683696e-06) -> 13.309190968111414\n", + "(1.1906296495547257, 32682.73552056781, 3.2682749389683696e-06) -> 13.321746128711856\n", + "(1.1904473945761056, 32682.73552056781, 3.2682749389683696e-06) -> 13.296643836281426\n", + "(1.1905385220654157, 32687.064556715202, 3.2682749389683696e-06) -> 13.31564880356511\n", + "(1.1905385220654157, 32678.40648442042, 3.2682749389683696e-06) -> 13.302737182521517\n", + "(1.1905385220654157, 32682.73552056781, 3.2687484177659625e-06) -> 13.316254288012424\n", + "(1.1905385220654157, 32682.73552056781, 3.2678014601707767e-06) -> 13.30213249281902\n", + "(0.9801502312575129, 30448.619847559406, 3.0448628816425382e-06) -> 6.96972301330329\n", + "(1.0625849715773497, 31323.995300450377, 3.1324006189341594e-06) -> 2.723232319724203\n", + "(1.0626278234687758, 31323.995300450377, 3.1324006189341594e-06) -> 2.723145418857497\n", + "(1.0625421196859235, 31323.995300450377, 3.1324006189341594e-06) -> 2.723320943276277\n", + "(1.0625849715773497, 31326.53248355612, 3.1324006189341594e-06) -> 2.7233762521216955\n", + "(1.0625849715773497, 31321.458117344635, 3.1324006189341594e-06) -> 2.7230896436266336\n", + "(1.0625849715773497, 31323.995300450377, 3.132687245408039e-06) -> 2.7233950126392372\n", + "(1.0625849715773497, 31323.995300450377, 3.13211399246028e-06) -> 2.72307123013582\n", + "(1.0663872573694309, 31176.616934344333, 3.117662764856898e-06) -> 2.707996462603649\n", + "(1.0676346425311973, 31128.267705196715, 3.112827836211991e-06) -> 2.7070251240566323\n", + "(1.0676780500361664, 31128.267705196715, 3.112827836211991e-06) -> 2.70705000293859\n", + "(1.0675912350262282, 31128.267705196715, 3.112827836211991e-06) -> 2.707002005340193\n", + "(1.0676346425311973, 31130.901765918446, 3.112827836211991e-06) -> 2.707043830842127\n", + "(1.0676346425311973, 31125.633644474983, 3.112827836211991e-06) -> 2.7070077881609484\n", + "(1.0676346425311973, 31128.267705196715, 3.113128792280756e-06) -> 2.7070466092241365\n", + "(1.0676346425311973, 31128.267705196715, 3.112526880143226e-06) -> 2.7070054284929457\n", + "(1.067212269933915, 31118.34694378787, 3.1118357598238063e-06) -> 2.706823247817995\n", + "(1.067168761630552, 31117.325013151873, 3.1117335667347323e-06) -> 2.706821465977302\n", + "(1.0672122600973335, 31117.325013151873, 3.1117335667347323e-06) -> 2.7068223416968538\n", + "(1.0671252631637707, 31117.325013151873, 3.1117335667347323e-06) -> 2.706822357390249\n", + "(1.067168761630552, 31119.94657401041, 3.1117335667347323e-06) -> 2.706822163448656\n", + "(1.067168761630552, 31114.703452293335, 3.1117335667347323e-06) -> 2.7068221260943885\n", + "(1.067168761630552, 31117.325013151873, 3.112032662687679e-06) -> 2.7068223708425214\n", + "(1.067168761630552, 31117.325013151873, 3.1114344707817854e-06) -> 2.7068223282441966\n", + "(1.067168761630552, 31117.325013151873, 3.1117335667347323e-06) -> 2.706821465977302\n", + "(1.0672122600973335, 31117.325013151873, 3.1117335667347323e-06) -> 2.7068223416968538\n", + "(1.0671252631637707, 31117.325013151873, 3.1117335667347323e-06) -> 2.706822357390249\n", + "(1.067168761630552, 31119.94657401041, 3.1117335667347323e-06) -> 2.706822163448656\n", + "(1.067168761630552, 31114.703452293335, 3.1117335667347323e-06) -> 2.7068221260943885\n", + "(1.067168761630552, 31117.325013151873, 3.112032662687679e-06) -> 2.7068223708425214\n", + "(1.067168761630552, 31117.325013151873, 3.1114344707817854e-06) -> 2.7068223282441966\n", + "(1.0671774613239084, 31117.325013151873, 3.1117335667347323e-06) -> 2.706821499750613\n", + "(1.0671600619371957, 31117.325013151873, 3.1117335667347323e-06) -> 2.706821502889292\n", + "(1.067168761630552, 31117.84932532358, 3.1117335667347323e-06) -> 2.7068214968699196\n", + "(1.067168761630552, 31116.800700980166, 3.1117335667347323e-06) -> 2.7068214893882208\n", + "(1.067168761630552, 31117.325013151873, 3.1117933859253217e-06) -> 2.7068215055878295\n", + "(1.067168761630552, 31117.325013151873, 3.111673747544143e-06) -> 2.7068214970520583\n", + "(1.0672122600973335, 31119.94657401041, 3.1117335667347323e-06) -> 2.70682365283658\n", + "(1.0672122600973335, 31117.325013151873, 3.112032662687679e-06) -> 2.7068239467067996\n", + "(1.067168761630552, 31119.94657401041, 3.112032662687679e-06) -> 2.7068246172709194\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 2.707 (χ²/ndof = 0.4) Nfcn = 87
EDM = 2.18e-10 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance FORCED pos. def.
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 I0 1.07 0.05
1 R 0.03e6 0.05e6
2 C 3e-6 5e-6
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
I0 R C
I0 0.00253 -34.3309 (-0.014) -3.459e-9 (-0.014)
R -34.3309 (-0.014) 2.25e+09 -224.592785048e-3 (-0.997)
C -3.459e-9 (-0.014) -224.592785048e-3 (-0.997) 2.25e-11
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:48.677208\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 2.707 (χ²/ndof = 0.4) │ Nfcn = 87 │\n", + "│ EDM = 2.18e-10 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance FORCED pos. def. │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ I0 │ 1.07 │ 0.05 │ │ │ │ │ │\n", + "│ 1 │ R │ 0.03e6 │ 0.05e6 │ │ │ │ │ │\n", + "│ 2 │ C │ 3e-6 │ 5e-6 │ │ │ │ │ │\n", + "└───┴──────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌────┬───────────────────────────────────────────────────────┐\n", + "│ │ I0 R C │\n", + "├────┼───────────────────────────────────────────────────────┤\n", + "│ I0 │ 0.00253 -34.3309 -3.459e-9 │\n", + "│ R │ -34.3309 2.25e+09 -224.592785048e-3 │\n", + "│ C │ -3.459e-9 -224.592785048e-3 2.25e-11 │\n", + "└────┴───────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 500, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ls = cost.LeastSquares(data_frame['time'], data_frame['current'], data_frame['delta_current'], discharge_current, verbose=1)\n", + "\n", + "mi = Minuit(ls, I0=0.9, R=10*10**3, C=10**-6)\n", + "mi.migrad()" + ] + }, + { + "cell_type": "markdown", + "id": "c664e4f0-0226-4be0-91f4-7c28aee16a4a", + "metadata": {}, + "source": [ + "__Zur Erinnerung__: die Methode der kleinsten Quadrate berücksichtigt nur Fehler in `y` aber nicht in `x`. Hierfür sind komplexere Methoden notwendig, die wir hier nicht betrachten wollen.\n", + "Ebenfalls wichtig ist, die Statusmeldungen von `iminuit` zu prüfen, d.h. eine **gelbe** Box zeigt an, das man sich Gedanken über das Ergebnis machen sollte (in unserem Fall, dass die Variablen $R$ und $C$ korreliert sind) und eine , **violette** Box, dass der Fit nicht konvergiert ist und das Ergebnis nicht verwendet werden kann." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "jupyter", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Herleitung_Methode_der_kleinsten_Quadrate.ipynb b/Herleitung_Methode_der_kleinsten_Quadrate.ipynb deleted file mode 100644 index 4dc65fb..0000000 --- a/Herleitung_Methode_der_kleinsten_Quadrate.ipynb +++ /dev/null @@ -1,100 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "f3b16f1a-521e-4caf-828e-85251faf2c6c", - "metadata": {}, - "source": [ - "Dieses Dokument beinhaltet die Herleitung der Methode der kleinsten Quadrate, die im Kapitel 1 beim Fitten benutzt wird." - ] - }, - { - "cell_type": "markdown", - "id": "a144903b-e362-40de-8af0-7da7b39fe260", - "metadata": {}, - "source": [ - "### Methode der kleinsten Quadrate\n", - "\n", - "Im folgenden wolllen wir die **Methode der kleinsten Quadrate (Least Squares)** näher beleuchten. Diese Methode wird oft benutzt, um eine Funktion $\\lambda(x; \\ $**$\\phi$**$)$ mit den Funktionsparametern $\\mathbf{\\phi}$ an die gemessenen Punkte **$(x,y)$** anzupassen. Um jedoch die **Methode der kleinsten Quadrate** zu verstehen, wollen wir sie erst einmal anschaulich und mathematisch herleiten. Dabei stüzen wir uns im Folgenden auf eine Herleitung aus dem Buch **\"Statistical Data Analysis\"** von **Glen Cowan**.\n", - "\n", - "In unserem Grundpraktikum haben wir bereits gelernt, dass Messwerte durch Zufallszahlen $x_i$ representiert werden und einer gewissen **Wahrscheinlichkeitsdichtefunktion (probability density function)** $f(x)$ unterliegen.\n", - "\n", - "
\n", - "\"{{\n", - "
\n", - "\n", - "\n", - "Eine **pdf** gibt an, mit welcher **Wahrscheinlichkeit ein Wert $x_i$** innerhalb eines **infinitesimalen Intervals $\\text{d}x_i$** zu finden ist. Des Weitren gilt, dass die Gesamtwahrscheinlichkeit gegeben ist durch $\\int_S f(x) dx = 1$. \n", - "\n", - "Nun betrachten wir folgendes Beispiel: In unserem Labor messen wir genau drei mal die Raumtemperartur T. Auch hier gilt, dass unsere Messung der einzelnen $T_i$ einer gewissen **Wahrscheinlichkeitsdichtefunktion** folgen. Betrachten Sie nun das folgende Bild; Welche **Wahrscheinlichkeitsdichtefunktion** passt besser zu den gezeigten Daten und **Warum?**\n", - "\n", - "
\n", - "\"{{\n", - "
\n", - "\n", - "Die rechte Verteilung spiegelt unsere Messdaten besser wieder. Dies können wir auch mathematisch ausdrücken. Für $N$ voreinander unabhängige Zufallszahlen bzw. Messpunkte (in unserem Beispiel $N = 3$) ist die Gesamtwahrscheinlichkeit gegeben durch das Produkt der einzelnen Wahrscheinlichkeitsdichten $f(x_i, \\theta)$ multipliziert mit dem jeweiligen infinitesimalen element $dx_i$\n", - "\n", - "$$\\prod_{i = 1}^{N} f(x_i,\\theta) \\ dx_i \\text{ für alle } x_i \\text{ in } [x_i, x_i + dx_i]$$\n", - "\n", - "wobei $x_i$ in unserem Beispiel den Messpunkten $T_i$ und $f(x_i,\\theta)$ unserer Gausverteilung mit $\\theta = (\\mu, \\sigma)$ entspricht. Sprich sofern unsere Werte gut von der jeweiligen **Wahrscheinlichkeitsdichtefunktion** repräsentiert werden, d.h. wir die richtigen Parameter $\\theta$ gewählt haben (wie im rechten oberen Plot), gilt \n", - "\n", - "$$ \\prod_{i = 1}^{N} f(x_i,\\theta) dx_i$$ \n", - "\n", - "ist **maximal**. Da die einzelnen $dx_i$ von unseren Parametern $\\theta$ unabhängig sind, gilt die gleiche Argumentation auch für \n", - "\n", - "$$ \\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N) = \\prod_{i = 1}^{N} f(x_i,\\theta)$$ \n", - "\n", - "wobei $\\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N)$ die sogenannte **likely hood function** darstellt.\n", - "\n", - "Wie kommen wir nun von der **likely hood function** auf unsere **Methode der kleinsten Quadrate** und das Fitten einer Funktion $\\lambda(x; \\ $**$\\phi$**$)$ an die gemessenen Punkte **$(x,y)$**? Dazu brauche wir noch einen Zwischenschritt. Oftmals ist es einfacher, statt die **likely hood function** zu maximieren, die so genannte **log likely hood function**\n", - "\n", - "$$ \\log( \\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N)) = \\sum_{i = 1}^{N} \\log(f(x_i,\\theta))$$\n", - "\n", - "zu maximieren. Dies ist im Grunde das Gleiche, da der Logarithmus eine monoton-steigende Funktion ist. Auch in unserem Fall der **Methode der kleinsten Quadrate** benötigen wir die **log likely hood function**. \n", - "\n", - "Stellen Sie sich nun vor, wir haben eine Messung mit $N$ voneinander unabhängigen Messpunkten (x,y). Des Weiteren nehmen wir an, dass alle $x_i$ ohne Fehler sind und dass unsere $y_i$ gaußförmig um einen unbekannten Wahrenwert $\\lambda_i$ (sprich $\\lambda_i$ entspricht dem Erwartungswert $\\mu_i$ unserer Gaußverteilung) mit einer bekannten Varianz $\\Delta y_i^2$ verteilt sind (Diese Annahme lässt sich mit dem zentralen Grenzwertsatz begründen, so lange der Fehler sich aus der Summe kleiner Fehler zusammensetzt). Die dazugehörige **likely hood function** ist dann gegeben durch:\n", - "\n", - "$$ \\mathcal{L}(y_1 ... y_N; \\lambda_1 ... \\lambda_N, \\Delta y_1 ... \\Delta y_N)) = \\prod_{i = 1}^{N}\\frac{1}{\\sqrt{2 \\pi \\Delta y_i^2}} \\cdot \\exp \\bigg( \\frac{ -(y_i - \\lambda_i)^2}{2 \\cdot \\Delta y_i^2}\\bigg)$$\n", - "\n", - "Beziehungsweise die **log likely hood function** mit $\\lambda_i = \\lambda(x_i; \\phi)$ ergibt sich zu\n", - "\n", - "$$ \\log(\\mathcal{L}(y, \\theta)) \\approx -\\frac{1}{2} \\sum_{i = 1}^{N}\\bigg( \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}\\bigg)$$\n", - "\n", - "wobei die konstanten Terme, welche nicht von unserer Funktion $\\lambda(x_i; \\phi)$ abhängen, vernachlässigt worden sind. Durch den Faktor $-\\frac{1}{2}$ ist das Maximieren dieser **log likely hood function** gleich dem Minimieren von\n", - "\n", - "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", - "\n", - "Diese Funktion ist unsere gesuchte **Methode der kleinsten Quadrate**. Mit ihrer Hilfe kann eine beliebige Funktion $\\lambda(x; \\phi)$, welche liniear in ihren Parametern $\\phi$ ist, an unsere Messdaten $(x,y\\pm\\Delta y)$ gefittet werden. Dabei stellt der Fitprozess selbst lediglich ein Minimierungsproblem dar. Im Folgenden sind unsere Annahmen noch einmal grafisch in einem Beispiel dargestellt.\n", - "\n", - "
\n", - "\"{{\n", - "
\n", - "\n", - "Es gibt verschiedene Arten von Algorithmen um Minimierungsprobleme zu lösen. Wie diese genau aufgebaut sind, lernen Sie in anderen Progrmmierveranstaltungen wie zum Beispiel *Programmieren für Physiker* oder *Computer in der Wissenschaft*. Zum Glück haben uns bereits in Python andere Menschen diese Arbeit abgenommen und wir können aus dem Package `scipy.optimize` die Funktion `curve_fit` verwenden.\n", - "\n", - "Hierbei stellt `curve_fit` eine Methode dar, Fit-Funktionen nach der obigen vorgestellten Methode der *kleinsten Quadraten* zu bestimmen. Dies hat zur Folge, dass lediglich die y-Fehler der Messwerte für den Fit verwendet werden können." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/IminuitExample.ipynb b/IminuitExample.ipynb index ed5cf22..6c21fd4 100644 --- a/IminuitExample.ipynb +++ b/IminuitExample.ipynb @@ -7,30 +7,32 @@ "source": [ "# Keywords Script:\n", "\n", - "* Wiederholen sie die aus dem PGP1 bekannten Konzepte:\n", + "* Wiederholen Sie die aus dem PGP1 bekannten Konzepte:\n", " * Messunsicherheiten (Messfehler), statistische und systematische Unsicherheit\n", " * Korrelation und Antikorrelation\n", " * Gaussverteilung (Normalverteilung)\n", - " * Arthmetirsches Mittel und Standardabweichung\n", + " * Arithmetisches Mittel und Standardabweichung\n", " * Zentraler Grenzwertsatz\n", " * Wahrscheinlichkeitsverteilung\n", - "* Binominal-Verteilung (Not sure if needed)\n", + "* Binominal-Verteilung\n", "* Poisson-Verteilung\n", + "* Wahrscheinlichkeitsdichte-Funktion\n", + "* kumulative Wahrscheinlichkeits-Funktion\n", "\n", "\n", "# Aufgaben zur Vorbereitung:\n", "\n", "\n", - "* Verknüpfen des Zentralengrenzwertsatzs, der Normalverteilung und des arithmetrishen Mittels (in Python):\n", + "* Verknüpfen des Zentralengrenzwertsatzs, der Normalverteilung und des arithmetischen Mittels (in Python):\n", " 1. Nimm random nicht Gaußverteilung, e.g., exponential decay\n", " 2. Plotte Zerfallsverteilung.\n", " 3. Ziehe 2, 5, 10, 100 verschieden \"Messungen\"\n", - " 4. Berechne Mittelwert von \"gemessenen\" Werte und plote" + " 4. Berechne Mittelwert von \"gemessenen\" Werten und plotte" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 480, "id": "8f008534-a7a3-482e-9495-611866787c05", "metadata": {}, "outputs": [], @@ -45,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 481, "id": "36435872-d6c4-4e16-8814-82f90342d84d", "metadata": {}, "outputs": [], @@ -72,17 +74,9 @@ "# current_mes = current_truth + np.random.normal(0, sigma_current, len(current_truth))\n" ] }, - { - "cell_type": "markdown", - "id": "94c87544-8084-4994-8025-44e789b6d9f2", - "metadata": {}, - "source": [ - "TODO but relastic values not floats with infinit digits add header..." - ] - }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 482, "id": "e77a7824-f8fa-43b2-ad98-009e17c05c72", "metadata": {}, "outputs": [], @@ -97,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 483, "id": "54c27237-effd-4396-91d8-b6b4d43d589c", "metadata": {}, "outputs": [], @@ -107,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 484, "id": "f03f0f86-7452-4528-b0a1-7e4411dbc410", "metadata": {}, "outputs": [], @@ -126,7 +120,7 @@ "source": [ "# Methode der kleinsten Quadrate\n", "\n", - "Im folgenden wolllen wir die **Methode der kleinsten Quadrate (Least Squares)** näher beleuchten. Diese Methode wird oft benutzt, um eine Funktion $\\lambda(x; \\ $**$\\phi$**$)$ mit den Funktionsparametern $\\mathbf{\\phi}$ an die gemessenen Punkte **$(x,y)$** anzupassen. Um jedoch die **Methode der kleinsten Quadrate** zu verstehen, wollen wir sie erst einmal anschaulich und halb-mathematisch herleiten. Dabei stüzen wir uns im Folgenden auf eine Herleitung aus dem Buch **\"Statistical Data Analysis\"** von **Glen Cowan**." + "Im folgenden wollen wir die **Methode der kleinsten Quadrate (Least Squares)** näher beleuchten. Diese Methode wird oft benutzt, um eine Funktion $\\lambda(x; \\ $**$\\phi$**$)$ mit den Funktionsparametern $\\mathbf{\\phi}$ an die gemessenen Punkte **$(x,y)$** anzupassen. Um jedoch die **Methode der kleinsten Quadrate** zu verstehen, wollen wir sie erst einmal anschaulich und halb-mathematisch herleiten. Dabei stüzen wir uns im Folgenden auf eine Herleitung aus dem Buch **\"Statistical Data Analysis\"** von **Glen Cowan**." ] }, { @@ -140,7 +134,7 @@ "\"{{\n", "
\n", "\n", - "Beim fitten, zum Beispiel einer Geraden (lila) an eine Reihe von Messpunkten (schwarz), wollen wir den Abstand zwischen den einzelnen Messpunkten und der Geraden (orange) möglichst klein halten. Sprich die Summe über alle $\\Delta Y_i$ \n", + "Beim Fitten, zum Beispiel einer Geraden (lila) an eine Reihe von Messpunkten (schwarz), wollen wir den Abstand zwischen den einzelnen Messpunkten und der Geraden (orange) möglichst klein halten. Sprich die Summe über alle $\\Delta Y_i$ \n", "\n", "$$\\sum_i \\Delta Y_i $$\n", "\n", @@ -148,15 +142,15 @@ "\n", "$$ \\Delta Y_i = y_i – f(x_i, \\vec{\\theta})$$\n", "\n", - "gegeben ist und $f(x, \\vec{\\theta})$ unsere Fitfunktion repräsentiert. Hierbei Symbolisiert $\\vec{\\theta}$ die Parameter unserer Funktion. Sprich im Fall einer Geraden die Steigung $m$ und den Offset $y_0$ ($\\vec{\\theta}=(m, y_0)$). \n", + "gegeben ist und $f(x, \\vec{\\theta})$ unsere Fitfunktion repräsentiert. Hierbei symbolisiert $\\vec{\\theta}$ die Parameter unserer Funktion. Sprich im Fall einer Geraden die Steigung $m$ und den Offset $y_0$ ($\\vec{\\theta}=(m, y_0)$). \n", "\n", - "Darüber hinaus sollte die Richtung des Abstandes, sprich ob ein Messpunkt unterhalb oder oberhalb der Fitfunktion liegt keine Rolle spielen. Daher quadrieren wir das Ganze und erhalten somit\n", + "Darüber hinaus sollte die Richtung des Abstandes, sprich ob ein Messpunkt unterhalb oder oberhalb der Fitfunktion liegt, keine Rolle spielen. Daher quadrieren wir das Ganze und erhalten somit\n", "\n", "$$ LS = \\sum_i = (y_i – f(x_i, \\theta))^2$$\n", "\n", - "Dies ist die allgemeinste Form der Methode der kleinsten Quadrate. Sie besagt, dass die Funktion welche die Messpunkte am besten beschreibt, sprich die optimalen Werte für $\\vec{\\theta}$ aufweist, den Ausdruck LS minimiert. \n", + "Dies ist die allgemeinste Form der Methode der kleinsten Quadrate. Sie besagt, dass die Funktion, welche die Messpunkte am besten beschreibt, sprich die optimalen Werte für $\\vec{\\theta}$ aufweist, den Ausdruck LS minimiert. \n", "\n", - "Nun weisen unsere Messpunkte nicht nur Werte für X und Y aus, sondern sind noch zusätzlich durch einen Messunsicherheit (Messfehler) charakterisiert. Diese sollte wir natürlich bei der Überlegung unserer Parameter $\\vec{\\theta}$ berücksichtigen. Sprich Messwerte mit einer großen Unsicherheit sollten weniger stark berücksichtigt werden wie Messwerte mit einer kleinen Unsicherheit. Dies können wir gewährleisten sofern wir die Distanzen $\\Delta Y_i$ mit den jeweiligen Unsicherheiten $\\Delta y_i$ gewichten, sprich \n", + "Nun weisen unsere Messpunkte nicht nur Werte für X und Y aus, sondern sind noch zusätzlich durch einen Messunsicherheit (Messfehler) charakterisiert. Diese sollten wir natürlich bei der Bestimmung unserer Parameter $\\vec{\\theta}$ berücksichtigen. Sprich Messwerte mit einer großen Unsicherheit sollten weniger stark berücksichtigt werden wie Messwerte mit einer kleinen Unsicherheit. Dies können wir gewährleisten, sofern wir die Distanzen $\\Delta Y_i$ mit den jeweiligen Unsicherheiten $\\Delta y_i$ gewichten, sprich \n", "\n", "$$ \\chi^2 = \\sum_i =\\frac{(y_i – f(x_i, \\theta))^2}{\\Delta y_i^2}$$\n", "\n", @@ -168,16 +162,16 @@ "id": "1153a474-8afe-44ae-8511-b403a4ad861d", "metadata": {}, "source": [ - "Nun wollen wir uns erst einmal ein Beispiel angucken, wie dies in der Praxis aussieht. In der nachfolgenden Animation wird ein Ohm’schwer Widerstand an eine Reihe von Spannungs- und Strommessungen gefittet. Dies entspricht unserem obigen Geradenbeispiel. \n", + "Nun wollen wir uns erst einmal ein Beispiel anschauen, wie dies in der Praxis aussieht. In der nachfolgenden Animation wird ein Ohm’schwer Widerstand an eine Reihe von Spannungs- und Strommessungen gefittet. Dies entspricht unserem obigen Geradenbeispiel. \n", "
\n", "\"{{\n", "
\n", - "TODO: Update animation use only LS without uncertainties?\n", - "Wie die Animation zeigt, werden so lange verschiedene Widerstände ausprobiert, bis ein Wert gefunden wurde bei dem das $\\chi^2$ klein wird. Dieses variieren der Widerstandswerte passiert nicht zufällig, sondern basiert auf einem Algorithmus für ein Optimierungsverfahren. \n", "\n", - "Es gibt verschiedene Arten von Algorithmen um Minimierungsprobleme zu lösen. Wie diese genau aufgebaut sind, lernen Sie in anderen Progrmmierveranstaltungen wie zum Beispiel *Programmieren für Physiker* oder *Computer in der Wissenschaft*. Zum Glück haben uns bereits in Python andere Menschen diese Arbeit abgenommen. Im folgenden wollen wir uns das package `imnuit` etwas genauer angucken, welches bereits ein sehr umfangreiches und mächtiges Fittingtool darstellt. \n", + "Wie die Animation zeigt, werden so lange verschiedene Widerstände ausprobiert, bis ein Wert gefunden wurde, bei dem das $\\chi^2$ minimal wird. Dieses Variieren der Widerstandswerte passiert nicht zufällig, sondern basiert auf einem Algorithmus für Optimierungsverfahren. \n", "\n", - "[iminuit](https://iminuit.readthedocs.io/en/stable/tutorials.html) verfügt auch über eine exzellente Dokumentation, mit Hilfe dessen Sie auch komplexere Probleme lösen können." + "Es gibt verschiedene Arten von Algorithmen, um Minimierungsprobleme zu lösen. Wie diese genau aufgebaut sind, lernen Sie in anderen Programmierveranstaltungen, wie zum Beispiel *Programmieren für Physiker* oder *Computer in der Wissenschaft*. Zum Glück haben uns in Python bereits andere Menschen diese Arbeit abgenommen. Im folgenden wollen wir uns das package `iminuit` etwas genauer anschauen, welches bereits ein sehr umfangreiches und mächtiges Fittingtool darstellt. \n", + "\n", + "[iminuit](https://iminuit.readthedocs.io/en/stable/tutorials.html) verfügt auch über eine exzellente Dokumentation, mit Hilfe derer Sie auch komplexere Probleme lösen können." ] }, { @@ -189,7 +183,7 @@ "\n", "$$ I = I_0 \\exp\\{-t/RC\\}$$\n", "\n", - "gegeben. Die Messdaten befinden sich in einer CSV-Datei im Ordner `data`. Die CSV-Datei kann mit Hilfe des `pandas` package eingelesen werden. [pandas](https://pandas.pydata.org/) ist ähnlich wie `numpy` ein package welches eine Fülle an Funktionen zum Verarbeiten und Verwalten von Daten bereitstellt. Es gehört ähnlich wie auch `numpy`, `scipy` und `matplotlib` zu den Standardbibliotheken, welche sehr häufig in der Wissenschaft verwendet werden. Aufgrund der zeitlichen Limitierung des Versuchstages können wir leider nicht auf alle Funktionen von `pandas` eingehen und wollen uns im Folgenden lediglich auf die Basics beschränken. Für ihre zukünftigen Praktika lohnt es sich jedoch noch mehr über `pandas` in Ihrer Eigenstudienzeit zu lernen." + "gegeben. Die Messdaten befinden sich in einer CSV-Datei im Ordner `data`. Die CSV-Datei kann mit Hilfe des `pandas` package eingelesen werden. [pandas](https://pandas.pydata.org/) ist ähnlich wie `numpy` ein package welches eine Fülle an Funktionen zum Verarbeiten und Verwalten von Daten bereitstellt. Es gehört ähnlich wie auch `numpy`, `scipy` und `matplotlib` zu den Standardbibliotheken, welche sehr häufig in der Wissenschaft verwendet werden. Aufgrund der zeitlichen Limitierung des Versuchstages können wir leider nicht auf alle Funktionen von `pandas` eingehen und wollen uns im Folgenden lediglich auf die Grundlagen beschränken. Für ihre zukünftigen Praktika lohnt es sich jedoch, noch mehr über `pandas` in Ihrer Eigenstudienzeit zu lernen." ] }, { @@ -197,13 +191,12 @@ "id": "5215840a-1276-49c1-9181-274cd8a2b4bf", "metadata": {}, "source": [ - "CSV-Datein können Sie wie folgt eingelesen werden\n", - "TODO: Add dummy file with dummy header to show things..." + "CSV-Datein können wie folgt eingelesen werden" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 485, "id": "f8ef1be0-a42d-4a11-b674-c2ed099fefcb", "metadata": {}, "outputs": [], @@ -218,12 +211,12 @@ "id": "15800aa8-8a7f-4d59-ab06-3edc6bb1e443", "metadata": {}, "source": [ - "Dabei gibt pandas die Daten als so genannten DataFrames zurück. Dies sind Objekte welche ähnlich wie strukturierte `numpy.arrays` zu behandeln sind. DataFrames werden allgemein als Tabellen dargestellt." + "Dabei gibt pandas die Daten als so genannten DataFrames zurück. Dies sind Objekte, welche ähnlich wie strukturierte `numpy.arrays` zu behandeln sind. DataFrames werden allgemein als Tabellen dargestellt." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 486, "id": "f14ca80f-e0d7-4447-9335-b3744f7a028f", "metadata": {}, "outputs": [ @@ -354,7 +347,7 @@ "9 9 0.883672 -0.019052 0.05 0.016328" ] }, - "execution_count": 11, + "execution_count": 486, "metadata": {}, "output_type": "execute_result" } @@ -368,12 +361,12 @@ "id": "fc24d5fa-d3c0-4866-b18a-9dd07768a222", "metadata": {}, "source": [ - "Um die Daten aus einer Bestimmente Spalte zu bekommen können diese einfach mit dem Spaltennamen aufgerufen werden:" + "Um die Daten aus einer bestimmente Spalte zu bekommen, können diese einfach mit dem Spaltennamen aufgerufen werden:" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 487, "id": "93b7cbb1-1095-4a53-83d9-7b32f068daea", "metadata": {}, "outputs": [ @@ -393,7 +386,7 @@ "Name: time, dtype: float64" ] }, - "execution_count": 12, + "execution_count": 487, "metadata": {}, "output_type": "execute_result" } @@ -412,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 488, "id": "969d8afa-5d52-4e01-8b64-ddab090891b8", "metadata": {}, "outputs": [ @@ -432,7 +425,7 @@ "Name: current, dtype: float64" ] }, - "execution_count": 13, + "execution_count": 488, "metadata": {}, "output_type": "execute_result" } @@ -446,12 +439,12 @@ "id": "32249263-ec9f-44de-81b7-7a6c69e23332", "metadata": {}, "source": [ - "Einzelne Messwerte lassen sich mit Hilfe von `.loc` bestimemn." + "Einzelne Messwerte lassen sich mit Hilfe von `.loc` bestimmen." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 489, "id": "e4b44637-8e25-46c1-863d-3cd7604f52dd", "metadata": {}, "outputs": [ @@ -461,7 +454,7 @@ "0.0118852615051639" ] }, - "execution_count": 14, + "execution_count": 489, "metadata": {}, "output_type": "execute_result" } @@ -475,12 +468,12 @@ "id": "a2c0c04b-be37-482d-aabc-802bfa2965d2", "metadata": {}, "source": [ - "Sollten Sie eine Spalte an Messdaten in ein `numpy.array` umwandeln wollen so können Sie dies über" + "Sollten Sie eine Spalte von Messdaten in ein `numpy.array` umwandeln wollen, so können Sie dies wie folgt erreichen" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 490, "id": "f246f55e-5fc8-427c-990d-3e97799b5aeb", "metadata": {}, "outputs": [ @@ -491,7 +484,7 @@ " 0.01188526, -0.01882397, 0.04451315, 0.00688072, -0.01905164])" ] }, - "execution_count": 15, + "execution_count": 490, "metadata": {}, "output_type": "execute_result" } @@ -510,13 +503,13 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 491, "id": "e3898686-3926-48a0-be4c-4d460a1792f3", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAooUlEQVR4nO3dfXTU1Z3H8c/MkEyUkICNTEISifIgqDw/ZINSH5oSxaXl7NmVI12gWcQnyilku4UokiItoVQpXYgFKRzYc+qC7Vq3p7BBjXBaNXtQMCJVguGhPEgGqJKBQQnM/PYPl6kjAWaGmfkld96vc+aczJ37m/kOd8J8cuf+7jgsy7IEAABgCKfdBQAAAMQT4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCid7C4g2YLBoD7++GN16dJFDofD7nIAAEAELMvSqVOn1KNHDzmdl5+bSblw8/HHH6uwsNDuMgAAQAwOHTqkgoKCy/ZJuXDTpUsXSV/842RlZdlcDQAAiITP51NhYWHoffxyUi7cXPgoKisri3ADAEAHE8mSEhYUAwAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcBMnfr9fDodDDodDfr/f7nIAAEhZhBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhJgGOHDlidwkAAKQswk2crFu3LvRz//79tXr1ahurAQAgdTksy7LsLiKZfD6fsrOz1dLSoqysrLjc5+HDh9WzZ08Fg8FQm8vl0oEDB1RQUBCXxwAAIJVF8/7NzE0cfPTRR2HBRpICgYCamppsqggAgNRFuImDPn36yOkM/6d0uVzq3bu3TRUBAJC6CDdxUFBQoGXLloWuu1wurVy5ko+kAACwAWtu4sTv9yszM1OS1NjYqL59+8btvgEASHWsubFZfn6+3SUAAJCyCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCid7C7AFJ07d1aKfZMFAADtkq0zN3/84x81btw49ejRQw6HQy+//PIVj9m6dauGDh0qt9ut3r17a+3atQmvEwAAdBy2hhu/369BgwappqYmov779+/X/fffr7vvvlsNDQ2aOXOmHnroIW3evDnBlQIAgI7C1o+l7rvvPt13330R91+xYoVuvPFGPfvss5Kk/v3764033tDPf/5zlZWVJapMAADQgXSoBcX19fUqLS0NaysrK1N9ff0ljzl79qx8Pl/YBQAAmKtDhZvm5mZ5PJ6wNo/HI5/Pp88++6zNY6qrq5WdnR26FBYWJqNUAABgkw4VbmJRWVmplpaW0OXQoUN2lwQAABKoQ50KnpubK6/XG9bm9XqVlZWla665ps1j3G633G53MsoDAADtQIeauSkpKVFdXV1Y26uvvqqSkhKbKgIAAO2NreHm9OnTamhoUENDg6QvTvVuaGjQwYMHJX3xkdLkyZND/R999FHt27dPP/zhD7V7924999xzevHFFzVr1iw7ygcAAO2QreHmnXfe0ZAhQzRkyBBJUkVFhYYMGaJ58+ZJko4ePRoKOpJ04403auPGjXr11Vc1aNAgPfvss/rVr37FaeAAACDEYaXYdwb4fD5lZ2erpaVFWVlZdpcDAAAiEM37d4dacwMAAHAlhBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGsT3c1NTUqKioSBkZGSouLta2bdsu23/p0qW6+eabdc0116iwsFCzZs3S559/nqRqAQBAe2druNmwYYMqKipUVVWlHTt2aNCgQSorK9OxY8fa7P/CCy9ozpw5qqqq0ocffqjVq1drw4YNeuKJJ5JcOQAAaK9sDTdLlizRtGnTVF5erltuuUUrVqzQtddeqzVr1rTZ/6233tLtt9+uiRMnqqioSGPGjNGDDz54xdkeAACQOmwLN62trdq+fbtKS0v/VozTqdLSUtXX17d5zKhRo7R9+/ZQmNm3b582bdqksWPHXvJxzp49K5/PF3YBAADm6mTXA584cUKBQEAejyes3ePxaPfu3W0eM3HiRJ04cUJ33HGHLMvS+fPn9eijj172Y6nq6mrNnz8/rrUDAID2y/YFxdHYunWrFi5cqOeee047duzQSy+9pI0bN2rBggWXPKayslItLS2hy6FDh5JYMQAASDbbZm5ycnLkcrnk9XrD2r1er3Jzc9s85qmnntKkSZP00EMPSZIGDBggv9+vhx9+WE8++aSczouzmtvtltvtjv8TAAAA7ZJtMzfp6ekaNmyY6urqQm3BYFB1dXUqKSlp85gzZ85cFGBcLpckybKsxBULAAA6DNtmbiSpoqJCU6ZM0fDhwzVy5EgtXbpUfr9f5eXlkqTJkycrPz9f1dXVkqRx48ZpyZIlGjJkiIqLi9XU1KSnnnpK48aNC4UcAACQ2mwNNxMmTNDx48c1b948NTc3a/DgwaqtrQ0tMj548GDYTM3cuXPlcDg0d+5cHTlyRNdff73GjRunn/zkJ3Y9BQAA0M44rBT7PMfn8yk7O1stLS3KysqyuxwAABCBaN6/O9TZUgAAAFdCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYpVMknf793/896jsuLy9Xly5doj4OAADgajgsy7Ku1MnpdKqgoEAulyuiOz106JD27Nmjm2666aoLjDefz6fs7Gy1tLQoKyvL7nIAAEAEonn/jmjmRpLeeecdde/ePaK+zNgAAAC7RLTmpqqqSpmZmRHf6RNPPKHrrrsu5qIAAABiFdHHUibhYykAADqeaN6/OVsKAAAYJaJwM3ToUH366acR3+kdd9yhI0eORNS3pqZGRUVFysjIUHFxsbZt23bZ/idPntT06dOVl5cnt9utvn37atOmTRHXBgAAzBbRguKGhga99957Ea+jaWho0NmzZ6/Yb8OGDaqoqNCKFStUXFyspUuXqqysTI2NjW0uXm5tbdU3v/lNde/eXb/97W+Vn5+vv/zlL+ratWtEdQEAAPNFfCq4w+FQpMtzHA6HPvrooyueCl5cXKwRI0Zo+fLlkqRgMKjCwkLNmDFDc+bMuaj/ihUr9LOf/Uy7d+9WWlpaRLWcPXs2LGj5fD4VFhay5gYAgA4k7qeC79+/P+oiCgoKLnt7a2urtm/frsrKylCb0+lUaWmp6uvr2zzm97//vUpKSjR9+nT993//t66//npNnDhRs2fPvuQePNXV1Zo/f37U9QMAgI4ponDTs2fPuD/wiRMnFAgE5PF4wto9Ho92797d5jH79u3T66+/ru985zvatGmTmpqa9Pjjj+vcuXOqqqpq85jKykpVVFSErl+YuQEAAGaKeBO/9iAYDKp79+56/vnn5XK5NGzYMB05ckQ/+9nPLhlu3G633G53kisFAAB2sS3c5OTkyOVyyev1hrV7vV7l5ua2eUxeXp7S0tLCPoLq37+/mpub1draqvT09ITWDAAA2j/b9rlJT0/XsGHDVFdXF2oLBoOqq6tTSUlJm8fcfvvtampqUjAYDLXt2bNHeXl5BBsAACDJ5k38KioqtGrVKq1bt04ffvihHnvsMfn9fpWXl0uSJk+eHLbg+LHHHtMnn3yi73//+9qzZ482btyohQsXavr06XY9BQAA0M5E/bHUTTfdpLfffltf+9rXwtpPnjypoUOHat++fRHf14QJE3T8+HHNmzdPzc3NGjx4sGpra0OLjA8ePCin82/5q7CwUJs3b9asWbM0cOBA5efn6/vf/75mz54d7dMAAACGivq7pZxOp5qbmy/aZM/r9eqGG26IaPM+O/HdUgAAdDxx3+dG+mKPmQs2b96s7Ozs0PVAIKC6ujoVFRVFXy0AAEAcRRxuxo8fL+mL3YenTJkSdltaWpqKior07LPPxrU4AACAaEUcbi6coXTjjTfq7bffVk5OTsKKAgAAiFXUC4pj+SoGAACAZIlpE7+6ujrV1dXp2LFjYXvOSNKaNWviUhgAAEAsog438+fP19NPP63hw4crLy9PDocjEXUBAADEJOpws2LFCq1du1aTJk1KRD0AAABXJeodiltbWzVq1KhE1AIAAHDVog43Dz30kF544YVE1AIAAHDVov5Y6vPPP9fzzz+v1157TQMHDlRaWlrY7UuWLIlbcQAAANGKOtzs3LlTgwcPliTt2rUr7DYWFwMAALtFHW62bNmSiDoAAADiIuo1Nxc0NTVp8+bN+uyzzyRJUX7/JgAAQEJEHW7++te/6hvf+Ib69u2rsWPH6ujRo5KkqVOn6l//9V/jXiAAAEA0og43s2bNUlpamg4ePKhrr7021D5hwgTV1tbGtTgAAIBoRb3m5pVXXtHmzZtVUFAQ1t6nTx/95S9/iVthAAAAsYh65sbv94fN2FzwySefyO12x6UoAACAWEUdbkaPHq3/+I//CF13OBwKBoNavHix7r777rgWBwAAEK2oP5ZavHixvvGNb+idd95Ra2urfvjDH+rPf/6zPvnkE7355puJqBEAACBiUc/c3HbbbdqzZ4/uuOMOffvb35bf79c//MM/6N1331WvXr0SUSMAAEDEopq5OXfunO69916tWLFCTz75ZKJqAgAAiFlUMzdpaWnauXNnomoBAAC4alF/LPXP//zPWr16dSJqAQAAuGpRLyg+f/681qxZo9dee03Dhg1T586dw27nW8EBAICdog43u3bt0tChQyVJe/bsCbuNbwUHAAB2iyrcBAIBzZ8/XwMGDFC3bt0SVRMAAEDMolpz43K5NGbMGJ08eTJB5QAAAFydmPa52bdvXyJqAQAAuGpRh5sf//jH+sEPfqA//OEPOnr0qHw+X9gFAADATg7LsqxoDnA6/5aHvryA2LIsORwOBQKB+FWXAD6fT9nZ2WppaVFWVpbd5QAAgAhE8/4d9dlSW7ZsibkwAACARIs63Nx5552JqAMAACAuog43f/zjHy97+9e//vWYiwEAALhaUYebu+6666K2L6+9ae9rbvA3fr9fmZmZkqTTp09ftNs0AAAdUdRnS3366adhl2PHjqm2tlYjRozQK6+8kogaAQAAIhb1zE12dvZFbd/85jeVnp6uiooKbd++PS6FAQAAxCLqmZtL8Xg8amxsjNfdAQAAxCTqmZudO3eGXbcsS0ePHtWiRYs0ePDgeNUFAAAQk6jDzeDBg+VwOPTVvf/+7u/+TmvWrIlbYQAAALGIOtzs378/7LrT6dT111+vjIyMuBUFAAAQq6jDTc+ePRNRBwAAQFxEvKD49ddf1y233NLml2O2tLTo1ltv1Z/+9Ke4FgcAABCtiMPN0qVLNW3atDa/rCo7O1uPPPKIlixZEtfiAAAAohVxuHnvvfd07733XvL2MWPGsMcNAACwXcThxuv1Ki0t7ZK3d+rUScePH49LUUi+I0eO2F0CAABxEXG4yc/P165duy55+86dO5WXlxdTETU1NSoqKlJGRoaKi4u1bdu2iI5bv369HA6Hxo8fH9Pjprp169aFfu7fv79Wr15tYzUAAMRHxOFm7Nixeuqpp/T5559fdNtnn32mqqoq/f3f/33UBWzYsEEVFRWqqqrSjh07NGjQIJWVlenYsWOXPe7AgQP6wQ9+oNGjR0f9mJAOHz6sGTNmhK4Hg0E98sgjOnz4sI1VAQBw9RzWV3fjuwSv16uhQ4fK5XLpe9/7nm6++WZJ0u7du1VTU6NAIKAdO3bI4/FEVUBxcbFGjBih5cuXS/riTbawsFAzZszQnDlz2jwmEAjo61//uv7lX/5Ff/rTn3Ty5Em9/PLLET2ez+dTdna2Wlpa2lwcnSq2bNmie+65p832tr75HQAAO0Xz/h3xPjcej0dvvfWWHnvsMVVWVoZ2KHY4HCorK1NNTU3Uwaa1tVXbt29XZWVlqM3pdKq0tFT19fWXPO7pp59W9+7dNXXq1Cuefn727FmdPXs2dL2tU9lTUZ8+feR0OhUMBkNtLpdLvXv3trEqAACuXlSb+PXs2VObNm3Sp59+qqamJlmWpT59+qhbt24xPfiJEycUCAQuCkUej0e7d+9u85g33nhDq1evVkNDQ0SPUV1drfnz58dUn8kKCgq0bNkyTZ8+XdIXwWblypUqKCiwuTIAAK5OTN8K3q1bN40YMUIjR46MOdjE4tSpU5o0aZJWrVqlnJyciI6prKxUS0tL6HLo0KEEV9lxTJkyJfTzBx98oKlTp9pYDQAA8RH11y/EU05Ojlwul7xeb1i71+tVbm7uRf337t2rAwcOaNy4caG2Cx+rdOrUSY2NjerVq1fYMW63W263OwHVmyU/P9/uEgAAiIuYZm7iJT09XcOGDVNdXV2oLRgMqq6uTiUlJRf179evn95//301NDSELt/61rd09913q6GhQYWFhcksHwAAtEO2ztxIUkVFhaZMmaLhw4dr5MiRWrp0qfx+v8rLyyVJkydPVn5+vqqrq5WRkaHbbrst7PiuXbtK0kXtAAAgNdkebiZMmKDjx49r3rx5am5u1uDBg1VbWxtaZHzw4EE5nbZOMAEAgA4k4n1uTME+N3/j9/uVmZkpSTp9+rQ6d+5sc0UAALQtmvdvpkQAAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABjF9lPBYZ/OnTsrxU6WAwCkAGZuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKO0i3BTU1OjoqIiZWRkqLi4WNu2bbtk31WrVmn06NHq1q2bunXrptLS0sv2BwAAqcX2cLNhwwZVVFSoqqpKO3bs0KBBg1RWVqZjx4612X/r1q168MEHtWXLFtXX16uwsFBjxozRkSNHklw5AABojxyWZVl2FlBcXKwRI0Zo+fLlkqRgMKjCwkLNmDFDc+bMueLxgUBA3bp10/LlyzV58uQr9vf5fMrOzlZLS4uysrKuun4AAJB40bx/2zpz09raqu3bt6u0tDTU5nQ6VVpaqvr6+oju48yZMzp37pyuu+66Nm8/e/asfD5f2AUAAJjL1nBz4sQJBQIBeTyesHaPx6Pm5uaI7mP27Nnq0aNHWED6surqamVnZ4cuhYWFV103AABov2xfc3M1Fi1apPXr1+t3v/udMjIy2uxTWVmplpaW0OXQoUNJrhIAACRTJzsfPCcnRy6XS16vN6zd6/UqNzf3ssc+88wzWrRokV577TUNHDjwkv3cbrfcbndc6kXH4Pf7lZmZKUk6ffq0OnfubHNFAIBksnXmJj09XcOGDVNdXV2oLRgMqq6uTiUlJZc8bvHixVqwYIFqa2s1fPjwZJQKAAA6CFtnbiSpoqJCU6ZM0fDhwzVy5EgtXbpUfr9f5eXlkqTJkycrPz9f1dXVkqSf/vSnmjdvnl544QUVFRWF1uZkZmaG/loHAACpy/ZwM2HCBB0/flzz5s1Tc3OzBg8erNra2tAi44MHD8rp/NsE0y9/+Uu1trbqH//xH8Pup6qqSj/60Y+SWToAAGiHbN/nJtnY58Z8rLkBAPN0mH1uAAAA4o1wAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbGO3IkSN2lwAASDLCDYyzbt260M/9+/fX6tWrbawGAJBsbOIHoxw+fFg9e/ZUMBgMtblcLh04cEAFBQU2VgYAuBps4oeU9dFHH4UFG0kKBAJqamqyqSIAQLIRbmCUPn36hH0XmfTFzE3v3r1tqggAkGyEGxiloKBAy5YtC113uVxauXIlH0kBQAphzQ2M8+UvzmxsbFTfvn1trggAcLVYcwP8v/z8fLtLSAi/3y+HwyGHwyG/3293OQDQrhBuAACAUQg3AADAKIQbAABgFMINANuwdghAIhBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXAD43Tu3FmWZcmyLHXu3NnucgC0A5yZl1oIN0AHd+TIEbtLAIB2hXADdEDr1q0L/dy/f3+tXr3axmoAoH0h3AAdzOHDhzVjxozQ9WAwqEceeUSHDx+2sSoAaD8IN0AH89FHHykYDIa1BQIBNTU12VQRALQvhBugg+nTp4+czvBfXZfLpd69e9tUUXywdghAvBBugA6moKBAy5YtC113uVxauXKlCgoKbKwqNqwdApAIDsuyLLuLSCafz6fs7Gy1tLQoKyvL7nKAmPj9fmVmZkqSGhsb1bdvX5srit7hw4fVs2fPsI/YXC6XDhw40CGDGtq3L//OnD59mm0iOqBo3r+ZuQE6uPz8fLtLiAlrhwAkCuEGgC1MXTvEZnGA/Qg3AGxh0tohIF4Ix/FBuAFgmylTpoR+/uCDDzR16lQbq0Gq4Mw88xFuALQLHXXtEDoGzsxLLYQbAIDR2NU79RBuAABG48y81EO4AQAYzdQz83BphBsAgNE4My/1EG4AAMbjzLzUQrgBOqDOnTvLsixZlsU28kgKk/Zf4cy8xGkvrxPCDQAAMArhBgAShM3iAHsQbgAgjtgsDvFCOI4d4QaAbUxbO8RmcbhahOP4aBfhpqamRkVFRcrIyFBxcbG2bdt22f6/+c1v1K9fP2VkZGjAgAHatGlTkioFgEtjszhcDcJx/NgebjZs2KCKigpVVVVpx44dGjRokMrKynTs2LE2+7/11lt68MEHNXXqVL377rsaP368xo8fr127diW5cgAIx2ZxuBqE4/ixPdwsWbJE06ZNU3l5uW655RatWLFC1157rdasWdNm/1/84he699579W//9m/q37+/FixYoKFDh2r58uVt9j979qx8Pl/YBQASgc3icDUIx/Fja7hpbW3V9u3bVVpaGmpzOp0qLS1VfX19m8fU19eH9ZeksrKyS/avrq5WdnZ26FJYWBi/JwAAX8FmcYgV4Th+bA03J06cUCAQkMfjCWv3eDxqbm5u85jm5uao+ldWVqqlpSV0OXToUHyKB4ArYLM4RItwHB+d7C4g0dxut9xut91lAABsdOHMvI6EcBw7W2ducnJy5HK55PV6w9q9Xq9yc3PbPCY3Nzeq/gCA+GL/FUTCzteJreEmPT1dw4YNU11dXagtGAyqrq5OJSUlbR5TUlIS1l+SXn311Uv2BwBcPfZfQSTay+vEYdk8T7dhwwZNmTJFK1eu1MiRI7V06VK9+OKL2r17tzwejyZPnqz8/HxVV1dL+uJU8DvvvFOLFi3S/fffr/Xr12vhwoXasWOHbrvttis+ns/nU3Z2tlpaWpSVlZXopwcgxfj9fmVmZkqSTp8+bczmhD179gw7TdnlcunAgQMsdo2zjvz6SfTrJJr3b9vX3EyYMEHHjx/XvHnz1NzcrMGDB6u2tja0aPjgwYNhp8aNGjVKL7zwgubOnasnnnhCffr00csvvxxRsAEARO9y+68QbnBBe3qd2D5zk2zM3ABIpI78l/elMHOTPB359dOeZm5s38QPANC+sf8KItGeXifM3ABAHHXkv7wv58vPq7GxUX379rW5IjN19NdPIl8nzNwAABKG/VcQCTtfJ7YvKAYAk3TEzeIA0zBzAwAAjMLMDQAA7QQzf/HBzA0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFE4FRwAcEWcooxItJfXCTM3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKN0sruAZLMsS5Lk8/lsrgQAAETqwvv2hffxy0m5cHPq1ClJUmFhoc2VAACAaJ06dUrZ2dmX7eOwIolABgkGg/r444/VpUsXORyOuN2vz+dTYWGhDh06pKysrLjdL64eY9M+MS7tE+PSPjEuX8zYnDp1Sj169JDTeflVNSk3c+N0OlVQUJCw+8/KykrZF157x9i0T4xL+8S4tE+pPi5XmrG5gAXFAADAKIQbAABgFMJNnLjdblVVVcntdttdCr6CsWmfGJf2iXFpnxiX6KTcgmIAAGA2Zm4AAIBRCDcAAMAohBsAAGAUwg0AADAK4SYKNTU1KioqUkZGhoqLi7Vt27bL9v/Nb36jfv36KSMjQwMGDNCmTZuSVGnqiWZsVq1apdGjR6tbt27q1q2bSktLrziWiE20vzMXrF+/Xg6HQ+PHj09sgSkq2nE5efKkpk+frry8PLndbvXt25f/zxIg2nFZunSpbr75Zl1zzTUqLCzUrFmz9Pnnnyep2nbOQkTWr19vpaenW2vWrLH+/Oc/W9OmTbO6du1qeb3eNvu/+eablsvlshYvXmx98MEH1ty5c620tDTr/fffT3Ll5ot2bCZOnGjV1NRY7777rvXhhx9a3/3ud63s7Gzr8OHDSa7cbNGOywX79++38vPzrdGjR1vf/va3k1NsCol2XM6ePWsNHz7cGjt2rPXGG29Y+/fvt7Zu3Wo1NDQkuXKzRTsuv/71ry232239+te/tvbv329t3rzZysvLs2bNmpXkytsnwk2ERo4caU2fPj10PRAIWD169LCqq6vb7P/AAw9Y999/f1hbcXGx9cgjjyS0zlQU7dh81fnz560uXbpY69atS1SJKSmWcTl//rw1atQo61e/+pU1ZcoUwk0CRDsuv/zlL62bbrrJam1tTVaJKSnacZk+fbp1zz33hLVVVFRYt99+e0Lr7Cj4WCoCra2t2r59u0pLS0NtTqdTpaWlqq+vb/OY+vr6sP6SVFZWdsn+iE0sY/NVZ86c0blz53TdddclqsyUE+u4PP300+revbumTp2ajDJTTizj8vvf/14lJSWaPn26PB6PbrvtNi1cuFCBQCBZZRsvlnEZNWqUtm/fHvroat++fdq0aZPGjh2blJrbu5T74sxYnDhxQoFAQB6PJ6zd4/Fo9+7dbR7T3NzcZv/m5uaE1ZmKYhmbr5o9e7Z69OhxURhF7GIZlzfeeEOrV69WQ0NDEipMTbGMy759+/T666/rO9/5jjZt2qSmpiY9/vjjOnfunKqqqpJRtvFiGZeJEyfqxIkTuuOOO2RZls6fP69HH31UTzzxRDJKbveYuUFKW7RokdavX6/f/e53ysjIsLuclHXq1ClNmjRJq1atUk5Ojt3l4EuCwaC6d++u559/XsOGDdOECRP05JNPasWKFXaXltK2bt2qhQsX6rnnntOOHTv00ksvaePGjVqwYIHdpbULzNxEICcnRy6XS16vN6zd6/UqNze3zWNyc3Oj6o/YxDI2FzzzzDNatGiRXnvtNQ0cODCRZaacaMdl7969OnDggMaNGxdqCwaDkqROnTqpsbFRvXr1SmzRKSCW35e8vDylpaXJ5XKF2vr376/m5ma1trYqPT09oTWngljG5amnntKkSZP00EMPSZIGDBggv9+vhx9+WE8++aScztSeu0jtZx+h9PR0DRs2THV1daG2YDCouro6lZSUtHlMSUlJWH9JevXVVy/ZH7GJZWwkafHixVqwYIFqa2s1fPjwZJSaUqIdl379+un9999XQ0ND6PKtb31Ld999txoaGlRYWJjM8o0Vy+/L7bffrqamplDYlKQ9e/YoLy+PYBMnsYzLmTNnLgowFwKoxVdGcip4pNavX2+53W5r7dq11gcffGA9/PDDVteuXa3m5mbLsixr0qRJ1pw5c0L933zzTatTp07WM888Y3344YdWVVUVp4InSLRjs2jRIis9Pd367W9/ax09ejR0OXXqlF1PwUjRjstXcbZUYkQ7LgcPHrS6dOlife9737MaGxutP/zhD1b37t2tH//4x3Y9BSNFOy5VVVVWly5drP/8z/+09u3bZ73yyitWr169rAceeMCup9CuEG6isGzZMuuGG26w0tPTrZEjR1r/+7//G7rtzjvvtKZMmRLW/8UXX7T69u1rpaenW7feequ1cePGJFecOqIZm549e1qSLrpUVVUlv3DDRfs782WEm8SJdlzeeustq7i42HK73dZNN91k/eQnP7HOnz+f5KrNF824nDt3zvrRj35k9erVy8rIyLAKCwutxx9/3Pr000+TX3g75LAs5q8AAIA5WHMDAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAOg3fnud7+r8ePHJ/1x165dK4fDIYfDoZkzZ4ba77rrrlB7Q0ND0usCEB2+FRxAUjkcjsveXlVVpV/84he2fflfVlaWGhsb1blz51DbSy+9pL1792rkyJG21AQgOoQbAEl19OjR0M8bNmzQvHnz1NjYGGrLzMxUZmamHaVJ+iJ85ebmhrVdd9118vl8NlUEIFp8LAUgqXJzc0OX7OzsUJi4cMnMzLzoY6m77rpLM2bM0MyZM9WtWzd5PB6tWrVKfr9f5eXl6tKli3r37q3/+Z//CXusXbt26b777lNmZqY8Ho8mTZqkEydOJPkZA0g2wg2ADmHdunXKycnRtm3bNGPGDD322GP6p3/6J40aNUo7duzQmDFjNGnSJJ05c0aSdPLkSd1zzz0aMmSI3nnnHdXW1srr9eqBBx6w+ZkASDTCDYAOYdCgQZo7d6769OmjyspKZWRkKCcnR9OmTVOfPn00b948/fWvf9XOnTslScuXL9eQIUO0cOFC9evXT0OGDNGaNWu0ZcsW7dmzx+ZnAyCRWHMDoEMYOHBg6GeXy6Wvfe1rGjBgQKjN4/FIko4dOyZJeu+997Rly5Y21+/s3btXffv2TXDFAOxCuAHQIaSlpYVddzgcYW0XzsIKBoOSpNOnT2vcuHH66U9/etF95eXlJbBSAHYj3AAw0tChQ/Vf//VfKioqUqdO/FcHpBLW3AAw0vTp0/XJJ5/owQcf1Ntvv629e/dq8+bNKi8vVyAQsLs8AAlEuAFgpB49eujNN99UIBDQmDFjNGDAAM2cOVNdu3aV08l/fYDJHJZd24ACQDuzdu1azZw5UydPnrzotgMHDujGG2/Uu+++q8GDBye9NgCR488XAPiSlpYWZWZmavbs2aG2++67T7feequNVQGIBjM3APD/Tp06Ja/XK0nq2rWrcnJyJElHjhzRZ599Jkm64YYblJ6ebluNAK6McAMAAIzCx1IAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFH+D4JJ1k4ecslYAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAooUlEQVR4nO3dfXTU1Z3H8c/MkEyUkICNTEISifIgqDw/ZINSH5oSxaXl7NmVI12gWcQnyilku4UokiItoVQpXYgFKRzYc+qC7Vq3p7BBjXBaNXtQMCJVguGhPEgGqJKBQQnM/PYPl6kjAWaGmfkld96vc+aczJ37m/kOd8J8cuf+7jgsy7IEAABgCKfdBQAAAMQT4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCid7C4g2YLBoD7++GN16dJFDofD7nIAAEAELMvSqVOn1KNHDzmdl5+bSblw8/HHH6uwsNDuMgAAQAwOHTqkgoKCy/ZJuXDTpUsXSV/842RlZdlcDQAAiITP51NhYWHoffxyUi7cXPgoKisri3ADAEAHE8mSEhYUAwAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcBMnfr9fDodDDodDfr/f7nIAAEhZhBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhJgGOHDlidwkAAKQswk2crFu3LvRz//79tXr1ahurAQAgdTksy7LsLiKZfD6fsrOz1dLSoqysrLjc5+HDh9WzZ08Fg8FQm8vl0oEDB1RQUBCXxwAAIJVF8/7NzE0cfPTRR2HBRpICgYCamppsqggAgNRFuImDPn36yOkM/6d0uVzq3bu3TRUBAJC6CDdxUFBQoGXLloWuu1wurVy5ko+kAACwAWtu4sTv9yszM1OS1NjYqL59+8btvgEASHWsubFZfn6+3SUAAJCyCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCid7C7AFJ07d1aKfZMFAADtkq0zN3/84x81btw49ejRQw6HQy+//PIVj9m6dauGDh0qt9ut3r17a+3atQmvEwAAdBy2hhu/369BgwappqYmov779+/X/fffr7vvvlsNDQ2aOXOmHnroIW3evDnBlQIAgI7C1o+l7rvvPt13330R91+xYoVuvPFGPfvss5Kk/v3764033tDPf/5zlZWVJapMAADQgXSoBcX19fUqLS0NaysrK1N9ff0ljzl79qx8Pl/YBQAAmKtDhZvm5mZ5PJ6wNo/HI5/Pp88++6zNY6qrq5WdnR26FBYWJqNUAABgkw4VbmJRWVmplpaW0OXQoUN2lwQAABKoQ50KnpubK6/XG9bm9XqVlZWla665ps1j3G633G53MsoDAADtQIeauSkpKVFdXV1Y26uvvqqSkhKbKgIAAO2NreHm9OnTamhoUENDg6QvTvVuaGjQwYMHJX3xkdLkyZND/R999FHt27dPP/zhD7V7924999xzevHFFzVr1iw7ygcAAO2QreHmnXfe0ZAhQzRkyBBJUkVFhYYMGaJ58+ZJko4ePRoKOpJ04403auPGjXr11Vc1aNAgPfvss/rVr37FaeAAACDEYaXYdwb4fD5lZ2erpaVFWVlZdpcDAAAiEM37d4dacwMAAHAlhBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGsT3c1NTUqKioSBkZGSouLta2bdsu23/p0qW6+eabdc0116iwsFCzZs3S559/nqRqAQBAe2druNmwYYMqKipUVVWlHTt2aNCgQSorK9OxY8fa7P/CCy9ozpw5qqqq0ocffqjVq1drw4YNeuKJJ5JcOQAAaK9sDTdLlizRtGnTVF5erltuuUUrVqzQtddeqzVr1rTZ/6233tLtt9+uiRMnqqioSGPGjNGDDz54xdkeAACQOmwLN62trdq+fbtKS0v/VozTqdLSUtXX17d5zKhRo7R9+/ZQmNm3b582bdqksWPHXvJxzp49K5/PF3YBAADm6mTXA584cUKBQEAejyes3ePxaPfu3W0eM3HiRJ04cUJ33HGHLMvS+fPn9eijj172Y6nq6mrNnz8/rrUDAID2y/YFxdHYunWrFi5cqOeee047duzQSy+9pI0bN2rBggWXPKayslItLS2hy6FDh5JYMQAASDbbZm5ycnLkcrnk9XrD2r1er3Jzc9s85qmnntKkSZP00EMPSZIGDBggv9+vhx9+WE8++aSczouzmtvtltvtjv8TAAAA7ZJtMzfp6ekaNmyY6urqQm3BYFB1dXUqKSlp85gzZ85cFGBcLpckybKsxBULAAA6DNtmbiSpoqJCU6ZM0fDhwzVy5EgtXbpUfr9f5eXlkqTJkycrPz9f1dXVkqRx48ZpyZIlGjJkiIqLi9XU1KSnnnpK48aNC4UcAACQ2mwNNxMmTNDx48c1b948NTc3a/DgwaqtrQ0tMj548GDYTM3cuXPlcDg0d+5cHTlyRNdff73GjRunn/zkJ3Y9BQAA0M44rBT7PMfn8yk7O1stLS3KysqyuxwAABCBaN6/O9TZUgAAAFdCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYpVMknf793/896jsuLy9Xly5doj4OAADgajgsy7Ku1MnpdKqgoEAulyuiOz106JD27Nmjm2666aoLjDefz6fs7Gy1tLQoKyvL7nIAAEAEonn/jmjmRpLeeecdde/ePaK+zNgAAAC7RLTmpqqqSpmZmRHf6RNPPKHrrrsu5qIAAABiFdHHUibhYykAADqeaN6/OVsKAAAYJaJwM3ToUH366acR3+kdd9yhI0eORNS3pqZGRUVFysjIUHFxsbZt23bZ/idPntT06dOVl5cnt9utvn37atOmTRHXBgAAzBbRguKGhga99957Ea+jaWho0NmzZ6/Yb8OGDaqoqNCKFStUXFyspUuXqqysTI2NjW0uXm5tbdU3v/lNde/eXb/97W+Vn5+vv/zlL+ratWtEdQEAAPNFfCq4w+FQpMtzHA6HPvrooyueCl5cXKwRI0Zo+fLlkqRgMKjCwkLNmDFDc+bMuaj/ihUr9LOf/Uy7d+9WWlpaRLWcPXs2LGj5fD4VFhay5gYAgA4k7qeC79+/P+oiCgoKLnt7a2urtm/frsrKylCb0+lUaWmp6uvr2zzm97//vUpKSjR9+nT993//t66//npNnDhRs2fPvuQePNXV1Zo/f37U9QMAgI4ponDTs2fPuD/wiRMnFAgE5PF4wto9Ho92797d5jH79u3T66+/ru985zvatGmTmpqa9Pjjj+vcuXOqqqpq85jKykpVVFSErl+YuQEAAGaKeBO/9iAYDKp79+56/vnn5XK5NGzYMB05ckQ/+9nPLhlu3G633G53kisFAAB2sS3c5OTkyOVyyev1hrV7vV7l5ua2eUxeXp7S0tLCPoLq37+/mpub1draqvT09ITWDAAA2j/b9rlJT0/XsGHDVFdXF2oLBoOqq6tTSUlJm8fcfvvtampqUjAYDLXt2bNHeXl5BBsAACDJ5k38KioqtGrVKq1bt04ffvihHnvsMfn9fpWXl0uSJk+eHLbg+LHHHtMnn3yi73//+9qzZ482btyohQsXavr06XY9BQAA0M5E/bHUTTfdpLfffltf+9rXwtpPnjypoUOHat++fRHf14QJE3T8+HHNmzdPzc3NGjx4sGpra0OLjA8ePCin82/5q7CwUJs3b9asWbM0cOBA5efn6/vf/75mz54d7dMAAACGivq7pZxOp5qbmy/aZM/r9eqGG26IaPM+O/HdUgAAdDxx3+dG+mKPmQs2b96s7Ozs0PVAIKC6ujoVFRVFXy0AAEAcRRxuxo8fL+mL3YenTJkSdltaWpqKior07LPPxrU4AACAaEUcbi6coXTjjTfq7bffVk5OTsKKAgAAiFXUC4pj+SoGAACAZIlpE7+6ujrV1dXp2LFjYXvOSNKaNWviUhgAAEAsog438+fP19NPP63hw4crLy9PDocjEXUBAADEJOpws2LFCq1du1aTJk1KRD0AAABXJeodiltbWzVq1KhE1AIAAHDVog43Dz30kF544YVE1AIAAHDVov5Y6vPPP9fzzz+v1157TQMHDlRaWlrY7UuWLIlbcQAAANGKOtzs3LlTgwcPliTt2rUr7DYWFwMAALtFHW62bNmSiDoAAADiIuo1Nxc0NTVp8+bN+uyzzyRJUX7/JgAAQEJEHW7++te/6hvf+Ib69u2rsWPH6ujRo5KkqVOn6l//9V/jXiAAAEA0og43s2bNUlpamg4ePKhrr7021D5hwgTV1tbGtTgAAIBoRb3m5pVXXtHmzZtVUFAQ1t6nTx/95S9/iVthAAAAsYh65sbv94fN2FzwySefyO12x6UoAACAWEUdbkaPHq3/+I//CF13OBwKBoNavHix7r777rgWBwAAEK2oP5ZavHixvvGNb+idd95Ra2urfvjDH+rPf/6zPvnkE7355puJqBEAACBiUc/c3HbbbdqzZ4/uuOMOffvb35bf79c//MM/6N1331WvXr0SUSMAAEDEopq5OXfunO69916tWLFCTz75ZKJqAgAAiFlUMzdpaWnauXNnomoBAAC4alF/LPXP//zPWr16dSJqAQAAuGpRLyg+f/681qxZo9dee03Dhg1T586dw27nW8EBAICdog43u3bt0tChQyVJe/bsCbuNbwUHAAB2iyrcBAIBzZ8/XwMGDFC3bt0SVRMAAEDMolpz43K5NGbMGJ08eTJB5QAAAFydmPa52bdvXyJqAQAAuGpRh5sf//jH+sEPfqA//OEPOnr0qHw+X9gFAADATg7LsqxoDnA6/5aHvryA2LIsORwOBQKB+FWXAD6fT9nZ2WppaVFWVpbd5QAAgAhE8/4d9dlSW7ZsibkwAACARIs63Nx5552JqAMAACAuog43f/zjHy97+9e//vWYiwEAALhaUYebu+6666K2L6+9ae9rbvA3fr9fmZmZkqTTp09ftNs0AAAdUdRnS3366adhl2PHjqm2tlYjRozQK6+8kogaAQAAIhb1zE12dvZFbd/85jeVnp6uiooKbd++PS6FAQAAxCLqmZtL8Xg8amxsjNfdAQAAxCTqmZudO3eGXbcsS0ePHtWiRYs0ePDgeNUFAAAQk6jDzeDBg+VwOPTVvf/+7u/+TmvWrIlbYQAAALGIOtzs378/7LrT6dT111+vjIyMuBUFAAAQq6jDTc+ePRNRBwAAQFxEvKD49ddf1y233NLml2O2tLTo1ltv1Z/+9Ke4FgcAABCtiMPN0qVLNW3atDa/rCo7O1uPPPKIlixZEtfiAAAAohVxuHnvvfd07733XvL2MWPGsMcNAACwXcThxuv1Ki0t7ZK3d+rUScePH49LUUi+I0eO2F0CAABxEXG4yc/P165duy55+86dO5WXlxdTETU1NSoqKlJGRoaKi4u1bdu2iI5bv369HA6Hxo8fH9Pjprp169aFfu7fv79Wr15tYzUAAMRHxOFm7Nixeuqpp/T5559fdNtnn32mqqoq/f3f/33UBWzYsEEVFRWqqqrSjh07NGjQIJWVlenYsWOXPe7AgQP6wQ9+oNGjR0f9mJAOHz6sGTNmhK4Hg0E98sgjOnz4sI1VAQBw9RzWV3fjuwSv16uhQ4fK5XLpe9/7nm6++WZJ0u7du1VTU6NAIKAdO3bI4/FEVUBxcbFGjBih5cuXS/riTbawsFAzZszQnDlz2jwmEAjo61//uv7lX/5Ff/rTn3Ty5Em9/PLLET2ez+dTdna2Wlpa2lwcnSq2bNmie+65p832tr75HQAAO0Xz/h3xPjcej0dvvfWWHnvsMVVWVoZ2KHY4HCorK1NNTU3Uwaa1tVXbt29XZWVlqM3pdKq0tFT19fWXPO7pp59W9+7dNXXq1Cuefn727FmdPXs2dL2tU9lTUZ8+feR0OhUMBkNtLpdLvXv3trEqAACuXlSb+PXs2VObNm3Sp59+qqamJlmWpT59+qhbt24xPfiJEycUCAQuCkUej0e7d+9u85g33nhDq1evVkNDQ0SPUV1drfnz58dUn8kKCgq0bNkyTZ8+XdIXwWblypUqKCiwuTIAAK5OTN8K3q1bN40YMUIjR46MOdjE4tSpU5o0aZJWrVqlnJyciI6prKxUS0tL6HLo0KEEV9lxTJkyJfTzBx98oKlTp9pYDQAA8RH11y/EU05Ojlwul7xeb1i71+tVbm7uRf337t2rAwcOaNy4caG2Cx+rdOrUSY2NjerVq1fYMW63W263OwHVmyU/P9/uEgAAiIuYZm7iJT09XcOGDVNdXV2oLRgMqq6uTiUlJRf179evn95//301NDSELt/61rd09913q6GhQYWFhcksHwAAtEO2ztxIUkVFhaZMmaLhw4dr5MiRWrp0qfx+v8rLyyVJkydPVn5+vqqrq5WRkaHbbrst7PiuXbtK0kXtAAAgNdkebiZMmKDjx49r3rx5am5u1uDBg1VbWxtaZHzw4EE5nbZOMAEAgA4k4n1uTME+N3/j9/uVmZkpSTp9+rQ6d+5sc0UAALQtmvdvpkQAAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABjF9lPBYZ/OnTsrxU6WAwCkAGZuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKO0i3BTU1OjoqIiZWRkqLi4WNu2bbtk31WrVmn06NHq1q2bunXrptLS0sv2BwAAqcX2cLNhwwZVVFSoqqpKO3bs0KBBg1RWVqZjx4612X/r1q168MEHtWXLFtXX16uwsFBjxozRkSNHklw5AABojxyWZVl2FlBcXKwRI0Zo+fLlkqRgMKjCwkLNmDFDc+bMueLxgUBA3bp10/LlyzV58uQr9vf5fMrOzlZLS4uysrKuun4AAJB40bx/2zpz09raqu3bt6u0tDTU5nQ6VVpaqvr6+oju48yZMzp37pyuu+66Nm8/e/asfD5f2AUAAJjL1nBz4sQJBQIBeTyesHaPx6Pm5uaI7mP27Nnq0aNHWED6surqamVnZ4cuhYWFV103AABov2xfc3M1Fi1apPXr1+t3v/udMjIy2uxTWVmplpaW0OXQoUNJrhIAACRTJzsfPCcnRy6XS16vN6zd6/UqNzf3ssc+88wzWrRokV577TUNHDjwkv3cbrfcbndc6kXH4Pf7lZmZKUk6ffq0OnfubHNFAIBksnXmJj09XcOGDVNdXV2oLRgMqq6uTiUlJZc8bvHixVqwYIFqa2s1fPjwZJQKAAA6CFtnbiSpoqJCU6ZM0fDhwzVy5EgtXbpUfr9f5eXlkqTJkycrPz9f1dXVkqSf/vSnmjdvnl544QUVFRWF1uZkZmaG/loHAACpy/ZwM2HCBB0/flzz5s1Tc3OzBg8erNra2tAi44MHD8rp/NsE0y9/+Uu1trbqH//xH8Pup6qqSj/60Y+SWToAAGiHbN/nJtnY58Z8rLkBAPN0mH1uAAAA4o1wAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbGO3IkSN2lwAASDLCDYyzbt260M/9+/fX6tWrbawGAJBsbOIHoxw+fFg9e/ZUMBgMtblcLh04cEAFBQU2VgYAuBps4oeU9dFHH4UFG0kKBAJqamqyqSIAQLIRbmCUPn36hH0XmfTFzE3v3r1tqggAkGyEGxiloKBAy5YtC113uVxauXIlH0kBQAphzQ2M8+UvzmxsbFTfvn1trggAcLVYcwP8v/z8fLtLSAi/3y+HwyGHwyG/3293OQDQrhBuAACAUQg3AADAKIQbAABgFMINANuwdghAIhBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXAD43Tu3FmWZcmyLHXu3NnucgC0A5yZl1oIN0AHd+TIEbtLAIB2hXADdEDr1q0L/dy/f3+tXr3axmoAoH0h3AAdzOHDhzVjxozQ9WAwqEceeUSHDx+2sSoAaD8IN0AH89FHHykYDIa1BQIBNTU12VQRALQvhBugg+nTp4+czvBfXZfLpd69e9tUUXywdghAvBBugA6moKBAy5YtC113uVxauXKlCgoKbKwqNqwdApAIDsuyLLuLSCafz6fs7Gy1tLQoKyvL7nKAmPj9fmVmZkqSGhsb1bdvX5srit7hw4fVs2fPsI/YXC6XDhw40CGDGtq3L//OnD59mm0iOqBo3r+ZuQE6uPz8fLtLiAlrhwAkCuEGgC1MXTvEZnGA/Qg3AGxh0tohIF4Ix/FBuAFgmylTpoR+/uCDDzR16lQbq0Gq4Mw88xFuALQLHXXtEDoGzsxLLYQbAIDR2NU79RBuAABG48y81EO4AQAYzdQz83BphBsAgNE4My/1EG4AAMbjzLzUQrgBOqDOnTvLsixZlsU28kgKk/Zf4cy8xGkvrxPCDQAAMArhBgAShM3iAHsQbgAgjtgsDvFCOI4d4QaAbUxbO8RmcbhahOP4aBfhpqamRkVFRcrIyFBxcbG2bdt22f6/+c1v1K9fP2VkZGjAgAHatGlTkioFgEtjszhcDcJx/NgebjZs2KCKigpVVVVpx44dGjRokMrKynTs2LE2+7/11lt68MEHNXXqVL377rsaP368xo8fr127diW5cgAIx2ZxuBqE4/ixPdwsWbJE06ZNU3l5uW655RatWLFC1157rdasWdNm/1/84he699579W//9m/q37+/FixYoKFDh2r58uVt9j979qx8Pl/YBQASgc3icDUIx/Fja7hpbW3V9u3bVVpaGmpzOp0qLS1VfX19m8fU19eH9ZeksrKyS/avrq5WdnZ26FJYWBi/JwAAX8FmcYgV4Th+bA03J06cUCAQkMfjCWv3eDxqbm5u85jm5uao+ldWVqqlpSV0OXToUHyKB4ArYLM4RItwHB+d7C4g0dxut9xut91lAABsdOHMvI6EcBw7W2ducnJy5HK55PV6w9q9Xq9yc3PbPCY3Nzeq/gCA+GL/FUTCzteJreEmPT1dw4YNU11dXagtGAyqrq5OJSUlbR5TUlIS1l+SXn311Uv2BwBcPfZfQSTay+vEYdk8T7dhwwZNmTJFK1eu1MiRI7V06VK9+OKL2r17tzwejyZPnqz8/HxVV1dL+uJU8DvvvFOLFi3S/fffr/Xr12vhwoXasWOHbrvttis+ns/nU3Z2tlpaWpSVlZXopwcgxfj9fmVmZkqSTp8+bczmhD179gw7TdnlcunAgQMsdo2zjvz6SfTrJJr3b9vX3EyYMEHHjx/XvHnz1NzcrMGDB6u2tja0aPjgwYNhp8aNGjVKL7zwgubOnasnnnhCffr00csvvxxRsAEARO9y+68QbnBBe3qd2D5zk2zM3ABIpI78l/elMHOTPB359dOeZm5s38QPANC+sf8KItGeXifM3ABAHHXkv7wv58vPq7GxUX379rW5IjN19NdPIl8nzNwAABKG/VcQCTtfJ7YvKAYAk3TEzeIA0zBzAwAAjMLMDQAA7QQzf/HBzA0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFE4FRwAcEWcooxItJfXCTM3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKN0sruAZLMsS5Lk8/lsrgQAAETqwvv2hffxy0m5cHPq1ClJUmFhoc2VAACAaJ06dUrZ2dmX7eOwIolABgkGg/r444/VpUsXORyOuN2vz+dTYWGhDh06pKysrLjdL64eY9M+MS7tE+PSPjEuX8zYnDp1Sj169JDTeflVNSk3c+N0OlVQUJCw+8/KykrZF157x9i0T4xL+8S4tE+pPi5XmrG5gAXFAADAKIQbAABgFMJNnLjdblVVVcntdttdCr6CsWmfGJf2iXFpnxiX6KTcgmIAAGA2Zm4AAIBRCDcAAMAohBsAAGAUwg0AADAK4SYKNTU1KioqUkZGhoqLi7Vt27bL9v/Nb36jfv36KSMjQwMGDNCmTZuSVGnqiWZsVq1apdGjR6tbt27q1q2bSktLrziWiE20vzMXrF+/Xg6HQ+PHj09sgSkq2nE5efKkpk+frry8PLndbvXt25f/zxIg2nFZunSpbr75Zl1zzTUqLCzUrFmz9Pnnnyep2nbOQkTWr19vpaenW2vWrLH+/Oc/W9OmTbO6du1qeb3eNvu/+eablsvlshYvXmx98MEH1ty5c620tDTr/fffT3Ll5ot2bCZOnGjV1NRY7777rvXhhx9a3/3ud63s7Gzr8OHDSa7cbNGOywX79++38vPzrdGjR1vf/va3k1NsCol2XM6ePWsNHz7cGjt2rPXGG29Y+/fvt7Zu3Wo1NDQkuXKzRTsuv/71ry232239+te/tvbv329t3rzZysvLs2bNmpXkytsnwk2ERo4caU2fPj10PRAIWD169LCqq6vb7P/AAw9Y999/f1hbcXGx9cgjjyS0zlQU7dh81fnz560uXbpY69atS1SJKSmWcTl//rw1atQo61e/+pU1ZcoUwk0CRDsuv/zlL62bbrrJam1tTVaJKSnacZk+fbp1zz33hLVVVFRYt99+e0Lr7Cj4WCoCra2t2r59u0pLS0NtTqdTpaWlqq+vb/OY+vr6sP6SVFZWdsn+iE0sY/NVZ86c0blz53TdddclqsyUE+u4PP300+revbumTp2ajDJTTizj8vvf/14lJSWaPn26PB6PbrvtNi1cuFCBQCBZZRsvlnEZNWqUtm/fHvroat++fdq0aZPGjh2blJrbu5T74sxYnDhxQoFAQB6PJ6zd4/Fo9+7dbR7T3NzcZv/m5uaE1ZmKYhmbr5o9e7Z69OhxURhF7GIZlzfeeEOrV69WQ0NDEipMTbGMy759+/T666/rO9/5jjZt2qSmpiY9/vjjOnfunKqqqpJRtvFiGZeJEyfqxIkTuuOOO2RZls6fP69HH31UTzzxRDJKbveYuUFKW7RokdavX6/f/e53ysjIsLuclHXq1ClNmjRJq1atUk5Ojt3l4EuCwaC6d++u559/XsOGDdOECRP05JNPasWKFXaXltK2bt2qhQsX6rnnntOOHTv00ksvaePGjVqwYIHdpbULzNxEICcnRy6XS16vN6zd6/UqNze3zWNyc3Oj6o/YxDI2FzzzzDNatGiRXnvtNQ0cODCRZaacaMdl7969OnDggMaNGxdqCwaDkqROnTqpsbFRvXr1SmzRKSCW35e8vDylpaXJ5XKF2vr376/m5ma1trYqPT09oTWngljG5amnntKkSZP00EMPSZIGDBggv9+vhx9+WE8++aScztSeu0jtZx+h9PR0DRs2THV1daG2YDCouro6lZSUtHlMSUlJWH9JevXVVy/ZH7GJZWwkafHixVqwYIFqa2s1fPjwZJSaUqIdl379+un9999XQ0ND6PKtb31Ld999txoaGlRYWJjM8o0Vy+/L7bffrqamplDYlKQ9e/YoLy+PYBMnsYzLmTNnLgowFwKoxVdGcip4pNavX2+53W5r7dq11gcffGA9/PDDVteuXa3m5mbLsixr0qRJ1pw5c0L933zzTatTp07WM888Y3344YdWVVUVp4InSLRjs2jRIis9Pd367W9/ax09ejR0OXXqlF1PwUjRjstXcbZUYkQ7LgcPHrS6dOlife9737MaGxutP/zhD1b37t2tH//4x3Y9BSNFOy5VVVVWly5drP/8z/+09u3bZ73yyitWr169rAceeMCup9CuEG6isGzZMuuGG26w0tPTrZEjR1r/+7//G7rtzjvvtKZMmRLW/8UXX7T69u1rpaenW7feequ1cePGJFecOqIZm549e1qSLrpUVVUlv3DDRfs782WEm8SJdlzeeustq7i42HK73dZNN91k/eQnP7HOnz+f5KrNF824nDt3zvrRj35k9erVy8rIyLAKCwutxx9/3Pr000+TX3g75LAs5q8AAIA5WHMDAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAOg3fnud7+r8ePHJ/1x165dK4fDIYfDoZkzZ4ba77rrrlB7Q0ND0usCEB2+FRxAUjkcjsveXlVVpV/84he2fflfVlaWGhsb1blz51DbSy+9pL1792rkyJG21AQgOoQbAEl19OjR0M8bNmzQvHnz1NjYGGrLzMxUZmamHaVJ+iJ85ebmhrVdd9118vl8NlUEIFp8LAUgqXJzc0OX7OzsUJi4cMnMzLzoY6m77rpLM2bM0MyZM9WtWzd5PB6tWrVKfr9f5eXl6tKli3r37q3/+Z//CXusXbt26b777lNmZqY8Ho8mTZqkEydOJPkZA0g2wg2ADmHdunXKycnRtm3bNGPGDD322GP6p3/6J40aNUo7duzQmDFjNGnSJJ05c0aSdPLkSd1zzz0aMmSI3nnnHdXW1srr9eqBBx6w+ZkASDTCDYAOYdCgQZo7d6769OmjyspKZWRkKCcnR9OmTVOfPn00b948/fWvf9XOnTslScuXL9eQIUO0cOFC9evXT0OGDNGaNWu0ZcsW7dmzx+ZnAyCRWHMDoEMYOHBg6GeXy6Wvfe1rGjBgQKjN4/FIko4dOyZJeu+997Rly5Y21+/s3btXffv2TXDFAOxCuAHQIaSlpYVddzgcYW0XzsIKBoOSpNOnT2vcuHH66U9/etF95eXlJbBSAHYj3AAw0tChQ/Vf//VfKioqUqdO/FcHpBLW3AAw0vTp0/XJJ5/owQcf1Ntvv629e/dq8+bNKi8vVyAQsLs8AAlEuAFgpB49eujNN99UIBDQmDFjNGDAAM2cOVNdu3aV08l/fYDJHJZd24ACQDuzdu1azZw5UydPnrzotgMHDujGG2/Uu+++q8GDBye9NgCR488XAPiSlpYWZWZmavbs2aG2++67T7feequNVQGIBjM3APD/Tp06Ja/XK0nq2rWrcnJyJElHjhzRZ599Jkm64YYblJ6ebluNAK6McAMAAIzCx1IAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFH+D4JJ1k4ecslYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -551,11 +544,33 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 1, + "id": "520f4973", + "metadata": {}, + "outputs": [], + "source": [ + "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `iminuit` zu installieren!\n", + "# import sys\n", + "# import subprocess\n", + "# subprocess.check_call([\n", + "# sys.executable, \n", + "# '-m',\n", + "# 'pip',\n", + "# 'install',\n", + "# '--proxy',\n", + "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", + "# 'iminuit'\n", + "# ])" + ] + }, + { + "cell_type": "code", + "execution_count": 492, "id": "2ffe340b-cd0f-45ec-b5b8-42e7a0349d4c", "metadata": {}, "outputs": [], "source": [ + "\n", "from iminuit import Minuit, cost\n", "import numpy as np\n", "\n", @@ -568,16 +583,16 @@ "id": "ef87da8f-7af9-4e3f-af63-c28a2e1d9830", "metadata": {}, "source": [ - "Nun können wir den fit selbst durchführen. Hierzu muss zuerst mittels dem `cost` Modul eine sogenannte Kostenfunktion erstellt werden. Die Kostenfunktion ist im Grunde unsere $\\chi^2$ \n", + "Nun können wir den Fit selbst durchführen. Hierzu muss zuerst mittels dem `cost` Modul eine sogenannte Kostenfunktion erstellt werden. Die Kostenfunktion ist im Grunde unsere $\\chi^2$ Funktion\n", "\n", "$$ \\chi^2 = \\sum_i =\\frac{(y_i – f(x_i, \\theta))^2}{\\Delta y_i^2}$$\n", "\n", - "Funktion welche minimiert werden soll. Dies ist bereits bei `iminuit` für uns vordefiniert. Anschließend können wir die genutzt Kostenfunktion über `Minuit` minimieren lassen. Hierzu müssen wir zunächst geeignete Startwerte für den Minimierungsprozess vorgeben. Diese sollten im Idealfall nicht allzu weit von den wahren Werten entfernt liegen. Wir werden an einem späteren Beispiel noch einmal genauer zeigen, wie man hier vorgehen kann. Um den Minimierungsprozess zu starten muss noch am Ende `migrad()` aufgerufen werden." + "welche minimiert werden soll. Dies ist bereits bei `iminuit` für uns vordefiniert. Anschließend können wir die genutzt Kostenfunktion über `Minuit` minimieren lassen. Hierzu müssen wir zunächst geeignete Startwerte für den Minimierungsprozess vorgeben. Diese sollten im Idealfall nicht allzu weit von den wahren Werten entfernt liegen. Wir werden an einem späteren Beispiel noch einmal genauer zeigen, wie man hier vorgehen kann. Um den Minimierungsprozess zu starten muss noch am Ende `migrad()` aufgerufen werden." ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 493, "id": "bf36b7b9-fb20-47b7-8538-479026b48fb2", "metadata": {}, "outputs": [ @@ -586,30 +601,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", "
Migrad Migrad
FCN = 2.707 (χ²/ndof = 0.4) Nfcn = 87 FCN = 2.707 (χ²/ndof = 0.4) Nfcn = 103
EDM = 2.18e-10 (Goal: 0.0002) time = 0.5 sec EDM = 2.18e-10 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok APPROXIMATE NOT pos. def. FORCED Hesse ok Covariance FORCED pos. def.
\n", " \n", @@ -666,36 +678,540 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - "
I0 0.00253 -34.3309 (-0.014) -3.459e-9 (-0.014) -34.4329 (-0.014) -3.448e-9 (-0.014)
R -34.3309 (-0.014) -34.4329 (-0.014) 2.25e+09 -224.592785048e-3 (-0.997) -224.599380820e-3 (-0.997)
C -3.459e-9 (-0.014) -224.592785048e-3 (-0.997) -3.448e-9 (-0.014) -224.599380820e-3 (-0.997) 2.25e-11
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:45.613232\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 2.707 (χ²/ndof = 0.4) │ Nfcn = 87 │\n", - "│ EDM = 2.18e-10 (Goal: 0.0002) │ time = 0.5 sec │\n", + "│ FCN = 2.707 (χ²/ndof = 0.4) │ Nfcn = 103 │\n", + "│ EDM = 2.18e-10 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │APPROXIMATE│NOT pos. def.│ FORCED │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance FORCED pos. def. │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", @@ -706,25 +1222,15 @@ "┌────┬───────────────────────────────────────────────────────┐\n", "│ │ I0 R C │\n", "├────┼───────────────────────────────────────────────────────┤\n", - "│ I0 │ 0.00253 -34.3309 -3.459e-9 │\n", - "│ R │ -34.3309 2.25e+09 -224.592785048e-3 │\n", - "│ C │ -3.459e-9 -224.592785048e-3 2.25e-11 │\n", + "│ I0 │ 0.00253 -34.4329 -3.448e-9 │\n", + "│ R │ -34.4329 2.25e+09 -224.599380820e-3 │\n", + "│ C │ -3.448e-9 -224.599380820e-3 2.25e-11 │\n", "└────┴───────────────────────────────────────────────────────┘" ] }, - "execution_count": 18, + "execution_count": 493, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6eUlEQVR4nO3de3xU9Z3/8feZSTIJIQmBkJCQQASUqwKCpAHx1hRaLNVlaam6YtmqW4tdNL9tFRVptRVrlUIrlhaltbtabDG1bmFRpCIosSgYb9yEcAkhCQmXXCbkNnN+fyQZCCSQCZk5c3k9H84jmTPfM/MZz8C8+Z7v93sM0zRNAQAAWMRmdQEAACC8EUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJaKsLqAznC73Tpy5Iji4uJkGIbV5QAAgE4wTVPV1dVKS0uTzdZx/0dQhJEjR44oIyPD6jIAAEAXFBUVKT09vcPHgyKMxMXFSWp+M/Hx8RZXAwAAOqOqqkoZGRme7/GOBEUYaT01Ex8fTxgBACDIXGiIBQNYAQCApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFgqbMOI0+mUYRgyDENOp9PqcgAACFthG0YAAEBgIIwAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYK2zDicrk8v2/atKnNfQAA4D9hGUby8vI0YsQIz/1p06YpMzNTeXl5FlYFAEB4CrswkpeXp5kzZ6q4uLjN9uLiYs2cOZNAAgCAn4VVGHG5XJo3b55M0zznsdZt9913H6dsAADwo7AKI5s3b9bhw4c7fNw0TRUVFWnz5s1+rAoAgPAWVmGkpKSkW9sBAICLF1ZhJDU1tVvbAQCAixdWYWTy5MlKT0+XYRjtPm4YhjIyMjR58mQ/VwYAQPgKqzBit9u1dOlSSTonkLTeX7Jkiex2u99rAwAgXIVVGJGkGTNmaPXq1UpLS2uzPT09XatXr9aMGTMsqgwAgPBkmO3Ncw0wVVVVSkhIUGVlpeLj47vtORNT0tX7K99TRM9E7V35/xQbHdUtzw0AADr//R12PSOt7Ha73HXVir7kSjkGXKGDx+usLgkAgLAUtmGkVWPFIUnSnrJqiysBACA8EUYqDkqSdhNGAACwRNiHkYby5jDyBWEEAABLhH0YaT1NQ88IAADWIIy0nKYpOn5KtQ1NFlcDAED4Cfsw4j5VpT6xkZKkL8pqLK4GAIDwE/ZhRJKG9I2VxKkaAACs4HUY2bRpk6ZPn660tDQZhqHXXnvtgvts3LhRV155pRwOh4YMGaI//OEPXSi1e8XGxso0TZmmqeFpvSQxiBUAACt4HUacTqdGjx6tZcuWdar9/v37deONN+r6669XQUGB7rvvPt1555164403vC7WV4b2i5Mk7eY0DQAAfhfh7Q5f+9rX9LWvfa3T7ZcvX65LLrlEzzzzjCRp+PDhevfdd/XLX/5SU6dO9fblfeKylJ6SpD2l9IwAAOBvPh8zkp+fr5ycnDbbpk6dqvz8fF+/dKddmtLcM1JaVafKU40WVwMAQHjxeRgpLS1VSkpKm20pKSmqqqrSqVOn2t2nvr5eVVVVbW6+FB8dqbSEaEmMGwEAwN8CcjbNokWLlJCQ4LllZGT4/DVbe0eYUQMAgH/5PIz069dPZWVlbbaVlZUpPj5eMTEx7e4zf/58VVZWem5FRUW+LtMziJW1RgAA8C+vB7B6Kzs7W2vXrm2zbf369crOzu5wH4fDIYfD4evS2ristWeEQawAAPiV1z0jNTU1KigoUEFBgaTmqbsFBQU6dKj5Gi/z58/X7NmzPe2/973vqbCwUD/60Y+0a9cuPffcc/rzn/+s+++/v3veQTcZ2hJGdpVWyTRNi6sBACB8eB1GPvzwQ40dO1Zjx46VJOXm5mrs2LF69NFHJUklJSWeYCJJl1xyidasWaP169dr9OjReuaZZ/T8888HzLTeVpem9JTNkE7UNupodb3V5QAAEDYMMwi6AaqqqpSQkKDKykrFx8f77HVyFr+jvUdr9Ps5V+n6ock+ex0AAMJBZ7+/A3I2jVWGpzb/j9pZ4tupxAAA4DTCyBmGpzaPG9lZwiBWAAD8hTByBnpGAADwP8LIGUa0hJHC8hrVNbosrgYAgPBAGDlDcpxDvWOj5DalPazECgCAXxBGzmAYhoa1rMS6i3EjAAD4BWHkLK3jRnYwbgQAAL8gjJyFQawAAPgXYeQsp6f3siw8AAD+QBg5y5DknoqwGaqqa9KRyjqrywEAIOQRRs7iiLBrSHJPSdLOI5yqAQDA1wgj7WidUcO4EQAAfI8w0o7WQay7SpneCwCArxFG2sGMGgAA/Icw0o7WMLL/mFO1DU0WVwMAQGgjjLSjb5xDST0dMk1pN6dqAADwKcJIB1rXG2ElVgAAfIsw0oFR/RMkSZ8VE0YAAPAlwkgHRqU1h5HPj1RaXAkAAKGNMNKBy1t6RnaVVKuhyW1xNQAAhC7CSAcyescoPjpCDS63vjjKIFYAAHyFMNIBwzA840Y+Z9wIAAA+Qxg5j9Yw8mkx40YAAPAVwsh5jExrXvzsMwaxAgDgM4SR82gdxLqzpEpNLgaxAgDgC4SR88jsE6vYKLvqGt3aV+60uhwAAEISYeQ8bDZDI9NaFz/jVA0AAL5AGLkAz0qsjBsBAMAnCCMXMKp/yyBWekYAAPAJwsgFeNYaOVIlt9u0uBoAAEIPYeQCBvftqehIm2obXNp/jEGsAAB0N8LIBdhthkakcqoGAABfIYx0Qut6I4QRAAC6H2GkE0Z6wgjXqAEAoLsRRjrhzJ4RBrECANC9CCOdcGlyT8VE2lVd36TCCgaxAgDQnQgjnRBht3l6Rz4uOmltMQAAhBjCSCeNzmgJI4dPWlsIAAAhhjDSSaMzekmiZwQAgO5GGOmk0em9JEk7SqpU3+SythgAAEIIYaST0hNj1Cc2So0uUztLqq0uBwCAkEEY6STDMDhVAwCADxBGvNB6qoYwAgBA9yGMeKF1Rk0BM2oAAOg2hBEvtPaMFJY7VVnbaG0xAACECMKIFxJjozSwTw9J0ifFJ60tBgCAENGlMLJs2TJlZmYqOjpaWVlZ2rp163nbL1myREOHDlVMTIwyMjJ0//33q66urksFW41xIwAAdC+vw8grr7yi3NxcLVy4UNu3b9fo0aM1depUHT16tN32L7/8sh588EEtXLhQO3fu1AsvvKBXXnlFDz300EUXb4XWGTUFRZXWFgIAQIjwOowsXrxYd911l+bMmaMRI0Zo+fLl6tGjh1auXNlu+y1btmjSpEm69dZblZmZqSlTpuiWW265YG9KoBrTOoi16KRMkyv4AgBwsbwKIw0NDdq2bZtycnJOP4HNppycHOXn57e7z8SJE7Vt2zZP+CgsLNTatWs1bdq0Dl+nvr5eVVVVbW6BYmRaguw2QxU19SqpDM5TTQAABBKvwkhFRYVcLpdSUlLabE9JSVFpaWm7+9x666167LHHdPXVVysyMlKDBw/Wddddd97TNIsWLVJCQoLnlpGR4U2ZPhUdadewfnGSmntHAADAxfH5bJqNGzfqiSee0HPPPaft27crLy9Pa9as0eOPP97hPvPnz1dlZaXnVlRU5OsyvTKmZdzIR4dOWFsIAAAhIMKbxklJSbLb7SorK2uzvaysTP369Wt3nwULFuj222/XnXfeKUm6/PLL5XQ6dffdd+vhhx+WzXZuHnI4HHI4HN6U5lfjBibqpX8e0raDhBEAAC6WVz0jUVFRGjdunDZs2ODZ5na7tWHDBmVnZ7e7T21t7TmBw263S1LQDgAdNzBRkvRZcZXqGrmCLwAAF8OrnhFJys3N1R133KHx48drwoQJWrJkiZxOp+bMmSNJmj17tvr3769FixZJkqZPn67Fixdr7NixysrK0t69e7VgwQJNnz7dE0qCzYDePZTUM0oVNQ36/Eilxg3sbXVJAAAELa/DyKxZs1ReXq5HH31UpaWlGjNmjNatW+cZ1Hro0KE2PSGPPPKIDMPQI488ouLiYvXt21fTp0/Xz372s+57F35mGIauHJCoN3eUadvBE4QRAAAugmEGwbmSqqoqJSQkqLKyUvHx8VaXI0n67Tv7tOj/dmnqyBT99vbxVpcDAEDA6ez3N9em6aLWcSPbDrL4GQAAF4Mw0kWj+ico0t68+FnR8VNWlwMAQNAijHRRdKRdo/o3Lw2/7dBxi6sBACB4EUYuwnjPqRrWGwEAoKsIIxfhzHEjAACgawgjF+HKAc1hZHdplarrGi2uBgCA4EQYuQjJ8dHK6B0jtyl9XFRpdTkAAAQlwshFGjeAcSMAAFwMwshFah038uFBZtQAANAVhJGLdGVLGPno0Em53Cx+BgCAtwgjF2lYv3jFOSJUU9+knSVVVpcDAEDQIYxcJLvN0PjM5t6Rf+7nVA0AAN4ijHSDrEF9JEn/LDxmcSUAAAQfwkg3mHBJb0nSBweOy824EQAAvEIY6QaX909QTKRdJ2obtbe8xupyAAAIKoSRbhBpt3mm+HKqBgAA7xBGuknrqRoGsQIA4B3CSDdpDSNb9x+XaTJuBACAziKMdJMxGb0UZbfpaHW9DhyrtbocAACCBmGkm0RH2jUmo5ckaet+xo0AANBZhJFu5Bk3Usi4EQAAOosw0o2yBjGIFQAAbxFGutGVAxJltxkqPnlKh08wbgQAgM4gjHSjWEeERvVPkNQ8qwYAAFwYYaSbfanlVM2WfQxiBQCgMwgj3WzS4CRJ0pa9Faw3AgBAJxBGutn4zERF2g0dqaxjvREAADqBMNLNekRFaOyA5uvUvLe3wuJqAAAIfIQRH/CcqtlHGAEA4EIIIz4waUgfSVL+vmNyuxk3AgDA+RBGfGB0Ri/FRtl1orZRO0qqrC4HAICARhjxgUi7zbM0fD5TfAEAOC/CiI9MGtI8buQ9xo0AAHBehBEfmdgyiHXr/uNqaHJbXA0AAIGLMOIjw/rFqXdslGobXPr48EmrywEAIGARRnzEZjOUPbh5Vg3rjQAA0DHCiA+dXhqeQawAAHSEMOJDreuNbD90QjX1TRZXAwBAYCKM+NDAPrEa2KeHmtwmU3wBAOgAYcTHrr2sryTpnT1HLa4EAIDARBjxsWsubQ4jG3eXyzRZGh4AgLMRRnwse3AfRdoNHT5xSvsrnFaXAwBAwCGM+FisI0JXZTYvDf/OnnKLqwEAIPAQRvzg9LgRwggAAGcjjPjBtUObw8j7hcdU1+iyuBoAAAILYcQPhqbEKSXeobpGtz44cNzqcgAACChdCiPLli1TZmamoqOjlZWVpa1bt563/cmTJzV37lylpqbK4XDosssu09q1a7tUcDAyDOP0qZrdnKoBAOBMXoeRV155Rbm5uVq4cKG2b9+u0aNHa+rUqTp6tP11NBoaGvSVr3xFBw4c0OrVq7V7926tWLFC/fv3v+jig8k1jBsBAKBdEd7usHjxYt11112aM2eOJGn58uVas2aNVq5cqQcffPCc9itXrtTx48e1ZcsWRUZGSpIyMzMvruogdPWQJNkM6YujNSo+eUr9e8VYXRIAAAHBq56RhoYGbdu2TTk5OaefwGZTTk6O8vPz293n9ddfV3Z2tubOnauUlBSNGjVKTzzxhFyujgdy1tfXq6qqqs0t2PXqEaUxGb0kcaoGAIAzeRVGKioq5HK5lJKS0mZ7SkqKSktL292nsLBQq1evlsvl0tq1a7VgwQI988wz+ulPf9rh6yxatEgJCQmeW0ZGhjdlBqzrhyZLkjbsLLO4EgAAAofPZ9O43W4lJyfrd7/7ncaNG6dZs2bp4Ycf1vLlyzvcZ/78+aqsrPTcioqKfF2mX0wZ2U+StHlvhZxcxRcAAElejhlJSkqS3W5XWVnbf9mXlZWpX79+7e6TmpqqyMhI2e12z7bhw4ertLRUDQ0NioqKOmcfh8Mhh8PhTWlB4bKUnhrYp4cOHqvVpj3l+trlqVaXBACA5bzqGYmKitK4ceO0YcMGzza3260NGzYoOzu73X0mTZqkvXv3yu12e7bt2bNHqamp7QaRUGYYhqaMaD7F9eYOTtUAACB14TRNbm6uVqxYoRdffFE7d+7UPffcI6fT6ZldM3v2bM2fP9/T/p577tHx48c1b9487dmzR2vWrNETTzyhuXPndt+7CCJfGdHcg7RhZ5kaXe4LtAYAIPR5PbV31qxZKi8v16OPPqrS0lKNGTNG69at8wxqPXTokGy20xknIyNDb7zxhu6//35dccUV6t+/v+bNm6cHHnig+95FEBk3MFG9Y6N03NmgrfuPa9KQJKtLAgDAUoZpmqbVRVxIVVWVEhISVFlZqfj4eKvLuWg/Wv2x/vzhYd2RPVA/uWmU1eUAAOATnf3+5to0FpjScqrmzR1lCoIsCACATxFGLHD1pUmKibSrpLJOnxUH/4JuAABcDMKIBaIj7Z4L5725o/3F4gAACBeEEYtMGdkyxfdzpvgCAMIbYcQiNwxLlt1maHdZtQ4ec1pdDgAAliGMWKRXjyhlXdJbkrSeBdAAAGGMMGIhz2qsnKoBAIQxwoiFvtJy4bwPDx5XRU29xdUAAGANwoiF+veK0aj+8XKb0j92HrW6HAAALEEYsdjpBdCY4gsACE+EEYu1TvHd9EWFnPVNFlcDAID/EUYsNjQlTgN691BDk1ubvyi3uhwAAPyOMGIxwzCYVQMACGuEkQAwpWVWzYZdR9XocltcDQAA/kUYCQDjBiaqd2yUKk816oP9x60uBwAAvyKMBAC7zVDO8GRJ0trPSiyuBgAA/yKMBIivX5EmSVrzSYkamjhVAwAIH4SRADFxcB/1jXPoRG2jNu1hVg0AIHwQRgJEhN2mb4xu7h35a0GxxdUAAOA/hJEA8i9j+0tqvopvVV2jxdUAAOAfhJEAMjItXpcm91RDk1vrPmV5eABAeCCMBBDDMHRzS+/IXz/iVA0AIDwQRgLMTWOax428v/+Yjpw8ZXE1AAD4HmEkwKQn9tCES3rLNKXXPz5idTkAAPgcYSQAtQ5kfY1TNQCAMEAYCUDTLk9VlN2mXaXV2llSZXU5AAD4FGEkACXEROrLLcvDM5AVABDqCCMBqnVWzd8KiuVymxZXAwCA7xBGAtR1Q/sqISZSZVX1er/wmNXlAADgM4SRAOWIsOvGK1IlcaoGABDaCCMBrHVWzbrPSnWqwWVxNQAA+AZhJICNH5io9MQY1dQ36a2dZVaXAwCATxBGAphhGKw5AgAIeYSRAHfTmOYw8s6ech2rqbe4GgAAuh9hJMANSe6pK9IT1OQ29eqHB2QYhgzDkNPptLo0AAC6BWEkCMxoOVWzenuJxZUAAND9CCNB4F+uTFdMpF17jjrlSB9pdTkAAHQrwkgQSIiJ1M1j0yRJcWOnWVwNAADdizASJP7tSwMlST2GTpQttpe1xQAA0I0II0FiZFqCxqTHy7BHKu6KqVaXAwBAtyGMBJFbxjcPZO055qtqcrstrgYAgO5BGAkiU4b3lau2UhHxffXOHi6eBwAIDYSRIBIVYVPNx29Kkv704RGLqwEAoHsQRoKIy+VS1Yd/U83nb+vtd97RntJKq0sCAOCiEUaCRF5enkaMGCF37Ukd+/szKvvTQ7pq1FDl5eVZXRoAABelS2Fk2bJlyszMVHR0tLKysrR169ZO7bdq1SoZhqGbb765Ky8btvLy8jRz5kwVF7e9WF7VsTLNnDmTQAIACGpeh5FXXnlFubm5WrhwobZv367Ro0dr6tSpOnr06Hn3O3DggP7rv/5LkydP7nKx4cjlcmnevHkyTbPdx01Tuu++++RyufxcGQAA3cPrMLJ48WLdddddmjNnjkaMGKHly5erR48eWrlyZYf7uFwu3XbbbfrJT36iQYMGXVTB4Wbz5s06fPjweVqYKioq0ubNm/1WEwAA3cmrMNLQ0KBt27YpJyfn9BPYbMrJyVF+fn6H+z322GNKTk7Wd7/73a5XGqZKSjp3cbzOtgMAINBEeNO4oqJCLpdLKSkpbbanpKRo165d7e7z7rvv6oUXXlBBQUGnX6e+vl719fWe+1VVVd6UGVJSU1O7tR0AAIHGp7Npqqurdfvtt2vFihVKSkrq9H6LFi1SQkKC55aRkeHDKgPb5MmTlZ6eLsMwOmwTEZ+kEWMn+LEqAAC6j1dhJCkpSXa7XWVlZW22l5WVqV+/fue037dvnw4cOKDp06crIiJCERER+uMf/6jXX39dERER2rdvX7uvM3/+fFVWVnpuRUVF3pQZUux2u5YuXSpJ5wSS1vuJN9ytv2xnETQAQHDyKoxERUVp3Lhx2rBhg2eb2+3Whg0blJ2dfU77YcOG6dNPP1VBQYHn9o1vfEPXX3+9CgoKOuzxcDgcio+Pb3MLZzNmzNDq1auVlpbWZnt6err+66nfqcfQifr9ewdU18iMGgBA8PFqzIgk5ebm6o477tD48eM1YcIELVmyRE6nU3PmzJEkzZ49W/3799eiRYsUHR2tUaNGtdm/V69eknTOdpzfjBkzlJOTo4SEBEnS2rVrNWXKFLlMQ+/94m0dqazTXz4s0u3ZmdYWCgCAl7wOI7NmzVJ5ebkeffRRlZaWasyYMVq3bp1nUOuhQ4dks7Gwqy/Y7XbP79dcc43sdrvskv7j2sFa+PrnWv5Oob49YYAi7fz/BwAED8PsaDWtAFJVVaWEhARVVlaG9Skbp9Opnj17SpJqamoUGxsrSaprdOnqn/9DFTUNevqbozVzXLqVZQIAIKnz39/8EzoEREfa9d2rmxeTe27jXrncAZ8vAQDwIIyEiH/70gDFR0eosNypNz4vtbocAAA6jTASIuKiI/WdiZmSpGVv7+3wWjYAAAQawkgImTPpEvWIsuvzI1XauKfc6nIAAOgUwkgISYyN0q0TBkiSlv2D3hEAQHAgjISYu64ZpCi7TR8ePKGt+49bXQ4AABdEGAkisbGxMk1Tpml6pvWeLSU+WjPHN0/tffbtvf4sDwCALiGMhKDvXTNYdpuhzV9U6JPDJ60uBwCA8yKMhKABfXroG6Obr2OzjN4RAECAI4yEqO9fN1iS9MbnZfqirNriagAA6BhhJERdmhKnr47sJ0n61T/oHQEABC7CSAj7wZeHyDCk//34iD4uOml1OQAAtIswEsJGpiXoX8b0lyT9bO1O1h0BAAQkwkiI+39Th8oRYdPW/cf11s6jVpcDAMA5CCMhrn+vGP371ZdIkhb93041utwWVwQAQFuEkTBwz3WD1Ts2SoXlTq36oMjqcgAAaIMwEgbioyM178uXSpKWvrVHNfVNFlcEAMBphJEwcWvWAF2SFKuKmgb99p19VpcDAIAHYSRMRNpteuCrwyRJKzYXqrSyzuKKAABoRhgJI1NHpmj8wETVNbr1zJu7rS4HAABJhJGwYhiGHrpxuCRp9fbD2llSZXFFAAAQRsLOlQMSdeMVqTJN6Ym1O60uBwAAwkg4emDqMEXaDW3+okKb9pRbXQ4AIMwRRsLQgD49NDs7U5L0k//9XPVNLmsLAgCENcJImPrPGy5VUk+H9pU79dzbTPUFAFiHMBKmEnpE6sffGCFJem7jXn1RVm1xRQCAcEUYCWM3Xp6qLw9LVqPL1IN5n8rt5qq+AAD/I4yEMcMw9PjNoxQbZde2gyf00tZDVpcEAAhDhJEwl9YrRj+cOlSS9PP/28XKrAAAvyOMQLdnZ2pMRi/V1Dfp0b99ZnU5AIAwQxiB7DZDT/7r5YqwGXpzR5nWfVZidUkAgDBCGIEkaVi/eH3v2sGSpEf/9rkqTzVaXBEAIFwQRuBx7w1DNCgpVker6/XzdbusLgcAECYII/CIjrTriRmXS5Je/uchbd1/3OKKAADhgDCCNr40qI++fVWGJOmHqz9WdR2nawAAvkUYwTnmTxuu/r1idPBYrR7+62cyTRZDAwD4DmEE50iIidSvbhkju83Q6x8f0V+2Hba6JABACCOMoF3jBvZW7lcukyQt/Nvn2nuUa9cAAHyDMIIO3XPtYF09JEmnGl269+WPVNfosrokAEAIIoygQzabocWzRiupZ5R2lVbribU7rS4JABCCCCM4r+S4aD3zrTGSpD/mH9S6z0qtLQgAEHIII7igay/rq/+4dpAk6UerP9bhE7UWVwQACCWEEXTKf00ZqjEZvVRV16R5qwrU5HJbXRIAIEQQRtApkXabfn3LWMU5IrTt4Ak9s36P1SUBAEIEYQSdltG7hxb9a/Ny8b/ZuE+vfVRscUUAgFBAGIFXvn5Fmufqvj9a/Yk+PMD1awAAF6dLYWTZsmXKzMxUdHS0srKytHXr1g7brlixQpMnT1ZiYqISExOVk5Nz3vYIfD+aOlRTR6aoweXW3f+9TYeOMaAVANB1XoeRV155Rbm5uVq4cKG2b9+u0aNHa+rUqTp69Gi77Tdu3KhbbrlFb7/9tvLz85WRkaEpU6aouJgu/mBlsxn65awxGtU/XsedDfr3Fz9Q5SkuqAcA6BrD9PIqaFlZWbrqqqv07LPPSpLcbrcyMjL0gx/8QA8++OAF93e5XEpMTNSzzz6r2bNnd+o1q6qqlJCQoMrKSsXHx3tTLnyorKpONz37nkqr6jT50iSt/M5VirRz5g8A0Kyz399efXM0NDRo27ZtysnJOf0ENptycnKUn5/fqeeora1VY2Ojevfu3WGb+vp6VVVVtbkh8KTER+v5O8YrJtKuzV9U6Mevf84VfgEAXvMqjFRUVMjlciklJaXN9pSUFJWWdm5lzgceeEBpaWltAs3ZFi1apISEBM8tIyPDmzLhR6P6J2jpt8fIMKSX/nlIv3/vgNUlAQCCjF/71J988kmtWrVKf/3rXxUdHd1hu/nz56uystJzKyoq8mOV8NaUkf00/2vDJEk/XbNDG3aWWVwRACCYeBVGkpKSZLfbVVbW9sumrKxM/fr1O+++Tz/9tJ588km9+eabuuKKK87b1uFwKD4+vs0Nge2uyYP07asy5Dal77+0Xfn7jnV6X6fTKcMwZBiGnE6nD6sEAAQir8JIVFSUxo0bpw0bNni2ud1ubdiwQdnZ2R3u99RTT+nxxx/XunXrNH78+K5Xi4BlGIYev3mUbhiWrPomt7774gf6gDVIAACd4PVpmtzcXK1YsUIvvviidu7cqXvuuUdOp1Nz5syRJM2ePVvz58/3tP/5z3+uBQsWaOXKlcrMzFRpaalKS0tVU1PTfe8CASHSbtNzt12pyZcmqbbBpTm//0DbD52wuiwAQIDzOozMmjVLTz/9tB599FGNGTNGBQUFWrdunWdQ66FDh1RSUuJp/5vf/EYNDQ2aOXOmUlNTPbenn366+94FAkZ0pF0rZo/XxMF9VFPfpDtWbtUnh09aXRYAIIB5vc6IFVhnJPjUNjTpOys/0NYDx5UQE6mX78rSyLSEdts6nU717NlTklRTU6PY2Fh/lgoA8BGfrDMCdFaPqAitnHOVrhzQS5WnGvVvz/9Tu0urrS4LABCACCPwmZ6OCP3h3yfoivQEnaht1G3Pv6+9RwkkAIC2CCPwqfjoSP33v2dpRGq8KmoaNOu37+vjopNWlwUACCCEEfhcQo9I/c+dWRqZFq9jzgZ9+3fv6+1d7V9YEQAQfggj8IvesVFadfeXNPnSJJ1qdOnOP36oP3/QvLKuy+XytNu0aVOb+wCA0EcYgd/ERUfqhTuu0owr+8vlNvWjVz/Rvy98ViNGjPC0mTZtmjIzM5WXl2dhpQAAfyKMwK+iImx65pujNff6wardvUW/f+wHKi4ubtOmuLhYM2fOJJAAQJhgnRFYwuVyKTktQ8ePlrT7uGEYSk9P1/79+2W32/1cHQCgO7DOCALa5s2bOwwikmSapoqKirR582Y/VgUAsAJhBJY485IB3dEOABC8CCOwRGpqare2AwAEL8IILDF58mSlp6fLMIwO2/RITNGIsRP8WBUAwAqEEVjCbrdr6dKlknRuIGm5H3vtd3XTc/nafuiEv8sDAPgRYQSWmTFjhlavXq20tLQ22zPS0/Wr5/9HoyZ9RSWVdZr123y98O5+ud0BP/ELANAFTO2F5VqPryStXbtWU6ZMkd1uV3Vdox549ROt/bRUkvSlQb311L+O1oA+Pawst0ucTqd69uwpSaqpqVFsbKzFFQGA7zG1F0HjzHVErrnmGs/9uOhILbv1Sj1+00jFRNr1fuFxfXXpJv0x/wC9JAAQQggjCGiGYej27Eytu2+yJlzSW7UNLj36t8912/P/VNHxWqvLAwB0A8IIgsLAPrFaddeX9OPpIxQTaVd+4TFNXbJJ//3+QXpJ/MzpdMowDBmGIafTaXU5AEIAYQRBw2Yz9J1Jl7TpJVnw2mf69or39cnhk1aXBwDoIsIIgs7ZvSRb9x/XN559T3Nf3q4DFfxLHQCCDWEEQam1l2R97jWaMba/DENa80mJcha/o4V/+0wVNfVWlwgA6CTCCIJaemIPLZ41Rmt+MFnXDe2rJrepF/MP6tqn3tbSt76Qs77J6hIBABdAGEFIGJEWrz/MmaCX78rSFekJcja49Mu39ujaX7yt/84/oEaX2+oSAQAdIIwgpEwcnKS/zZ2kZ28dq4F9eqiipkEL/va5vrL4Ha35pERWrfHncrk8v2/atKnNfQDnYtZWeCGMwHKxsbEyTVOmaXbLyqSGYejrV6Rp/f3X6rGbRqpPbJQOHKvV3Je36+bntih/37FuqLrz8vLyNGLECM/9adOmKTMzU3l5eX6tAwACFcvBI+TV1DdpxaZCrdhcqNqG5h6J64f21Q+nDtOINN9+nvLy8jRz5sxzemRaLw64evVqzZgxw6c1dDeWtoc/8DkLDZ39/iaMIGyUV9frVxu+0J+2HlJTy0JpEzJ767YvDdBXR/WTI8J+gWfwjsvlUmZmpg4fPtzu44ZhKD09Xfv372+zJH6g6+haQkB3IoyEBq5NA5ylb5xDj988Sutzr9X00Wmy2wxtPXBc81YVKHvRP7To/3bq4LHuOze9efPmDoOIJJmmqaKiIm3evLnbXtPXOOUEwBcIIwg7lyTF6te3jNV7D9yg+3MuU2pCtI47G/Tbdwp17S826vYX/ql1n5Wq6SJn4JSUlHRrO6u1nnIqLi5us724uFgzZ84kkADoMk7TIOw1udx6e3e5XvrnQb2zp1ytfyJS4h2addUAffuqDKX1ivH6eTdu3Kjrr7/+gu3efvttXXfddV4/vz+F6iknBC5O04QGxowAXXDoWK3+9MEh/fmDIh1zNkiSbIb05eEpui1rgK65tK9sNqNTz9X6BV5cXNzulOJg+gIPpWCF4EAYCQ2MGQG6YECfHnrgq8OUP//L+vUtY/WlQb3lNqX1O8r0nd9/oGt+8bae/ccX2nu0+oJrltjtdi1dulTS6dkzrVrvL1myJOCDiBR6p5wABBbCCNCOqAibpo9O06q7s/VW7jWaMylT8dEROnzilJ5+c49yFm/S9U9v1E//vkP/LDzW4fiSGTNmaPXq1UpLS2uzPT09Paim9aampnZru0DC4lqBiYUCwwunaYBOOtXg0t8/OaK/f1Ki/H3H1HBGAOnVI1I3DE1WzogUXXNZX/V0RLTZN9inw4bSKaezcTog8OTl5ek///M/2wyWTk9P19KlS4MmwKMZY0YAH6qpb9KmPeV6a0eZ/rH7qE7WNnoei7LblD24j3JGpOgrw1PULyE6JL7wWmfTSGoTSIJ5ATeJMBJognGhQD5DHSOMAH7S5HJr28ETWr+jTOt3lungsdo2j1/eP0HXDEnUI3NuUsPR/aqprgrav6za+xdrRkaGlixZEnBfEJ3FF0ngCNZZW3yGOkYYASxgmqb2ldfozR1lemtHmT4qOqkz/4S56526eni6sgb11fjMRI3J6KXYs07pBLpgP+V0Nr5IAkewztriM9Sxzn5/B9ffgkCAMwxDQ5LjNCQ5Tt+/bojKq+v19q6j+r9Pi7Xh0yLZHLHaUnhCWwpPSGqeNjw8NV7jByZqXGZvjR+Y2KU1TfzpzOBxzTXXBHUQQWBh1lb4IowAPtQ3zqFvXZWhG0f0Vs87Jymy70Ate2WdPi1xatvBEyo+eUqfH6nS50eq9GL+QUlSWkK0J5iMG5ioYf3iFGFn4htCXyjP2sL5EUYAfzHdajy6X7de1d/TjVtSeUofHjihbQdP6MODx7WzpFpHKut05OMj+t+Pj0iSYiLtGtQ3VoP69tQlSbEa3DdWg5J66pK+sefM2gGC2eTJk5Wenn7BWVuTJ0+2oDr4En+TARZKTYjR9NExmj66eR0SZ32TPi46qQ8PntCHB0/oo4MnVF3f5Ok9OVtKvEOXJDUHlUFJsRrcEljSE2PoTUHQaV0ocObMmTIMo91ZW8GyUCC8QxgBAkisI0IThyRp4pAkSZLLberAMacKy50qLK/R/oqW3ytqVFHToLKqepVV1ev9wuNtnifSbmhgn1gNOiOotPau9I6NsuKtwc+CdVBl60KB7a0zEsyztgJVoHxOCCOAH8TGxl5w+fj22G2GBvftqcF9e0pKafNY5anGcwJKYblT+yucqm9ya+/RGu09WiOprM1+vXpENvemJPXUoL4tp3369tSA3j0UHRl+/+I8e6XPYJ8dFApmzJihnJyckJq1hfMjjABBKiEmUmMHJGrsgMQ2291uU0cqT3l6UwornJ7AUnzylE7WNuqjQyf10aGTbfazGVL/xBhdktRTKXEO9enpUFLPKPXpGaU+sQ7PT4fR/tL3wah13ZRW06ZNY6XPABFMs7YItBePdUaAMHKqwdUcTCpqtL/cqcKKlsBS7lR1fVOnn8dVVyO386SyxoxUcnxMc1BpDS8twaX194SYyE5f6difgnGlT28ESvd7VwVL/cG+dL2v/z+z6BmATjNNU+U19dpf7tTBY7Uqr6nXsZoGHXM2/6yoqdcxZ4OOOxvkcnv3V4bdZqh3bJT6xEYpqaej+feezb/3iW0OMbEOu2Ii7YqJsis6ouVnZPO2SLtxzlWPL1awrvTpjWD5Mu9IMNQfCoE2UMJIl07TLFu2TL/4xS9UWlqq0aNH69e//rUmTJjQYfu//OUvWrBggQ4cOKBLL71UP//5zzVt2rSuvDQAHzAMQ8lx0UqOi1bWoD4dtnO7TVWeatQxZ70qaho8gaX593MDTFVdk1xuU+XV9SqvrpdU7XVtNkOeoOJoCSoxLUHFEWnrMMRER9o891u3Nbe16ZOtWzoMIlJzOCsqKtLmzZsDaqVPBA6Xy6V58+a1OxbMNE0ZhqH77rtPN910U9AGWn/yOoy88sorys3N1fLly5WVlaUlS5Zo6tSp2r17t5KTk89pv2XLFt1yyy1atGiRvv71r+vll1/WzTffrO3bt2vUqFHd8iYA+IfNZigxNkqJsVEacu4f93M0NLl1oralZ6VNUGkJL87mn84Gl041uFTf1PzzVKNLrR0wblNyNrjkbOi+S8g7d2zqVLt5K9/W4B2RnrATfUYQim4JQtFnBKGYyNbwc0ZIirQrym6T3WZ4bjaj5XfDkM0mz7aIlse7uycI3W/z5s0E2m7kdRhZvHix7rrrLs2ZM0eStHz5cq1Zs0YrV67Ugw8+eE77pUuX6qtf/ap++MMfSpIef/xxrV+/Xs8++6yWL19+keUDCGRRETalxEcrJT7aq/1M01Sjy9SpRpfqGpsDSt0ZQaW+0a1Tjafv17W2a3SpruWxujMeO9Xo0qlGt+pbfi/rm6KKTtRR1hStyrMG+vqDYaglqDQHluawopYwY5PddsbjnlBzuq3dZkimWyn/9gvJ7dZ3/viRIiMiTgeis5/bZshuNIfNiLMCk81oG6IibGfuK8/vhiEZav7Z/B4MGS3vxWi93/K72jxmnNGm+b4MqaGhXrGjbpBM6fVPShUd7TjP87d9DrW5f0a7M57/nMd0Zn1nP+fp12313idfdOpYbvl0r+IHjdaZu58dNts+duZ2o93tZ+vMPh21OXWqVpFJA5p/b3TJqpNhXoWRhoYGbdu2TfPnz/dss9lsysnJUX5+frv75OfnKzc3t822qVOn6rXXXuvwderr61VfX++5X1V17mJPAEKXYRiKijAUFWFTQkxktz+/y3WNMt9cct6VPpP7penlBXPU4FKbHpvWwOMJSY1tQ09do/uc7Q1NbrlMUy538+1Cw25MU2oyTV2w4QVE9x8uSfrgYOVFPY9Vkm5s/u6Y/7ddFldyrrpDnYmz0q/yy/W74i0+rubipH33OUnSnrIaJfWyZlymV2GkoqJCLpdLKSlt1ztISUnRrl3tf1hKS0vbbV9aWtrh6yxatEg/+clPvCkNADqtMyt9Pvfsr3TD8H4+eX3TbA4kzcGkJaSYptzu04GlNby43Tr9+xmB5px9zNNt3W5TVTU1+tbNX5fcLj204Me6fMIkybCd8Tw6z2ue8dwtbd2mqSZXB/WaptT8n0zTbPnZ9n7z42bz9jN/b2mrNvdNNblcevPNNyUZ+nJOjux2e9v9znoOnfOcbetQm/tnPoc8x//cuk7X7jl2rT97T9DJtX1VX1ne4XF2JPTVpVdcJdlOr4Z8dvbtaArJmZ9Js832s9qd8ajZTp3n7tP2CVxNTTr88bty155Uwag6ZQ252ZoxLqYXiouLTUnmli1b2mz/4Q9/aE6YMKHdfSIjI82XX365zbZly5aZycnJHb5OXV2dWVlZ6bkVFRWZkszKykpvygWA83r11VfN/v37my1/Q5uSzIyMDPPVV1+1urSL0t77Sk9PD/r3FWheffVV0zAM0zCMNv+vW7cF+v9vf3xOKisrO/X97dXFK5KSkmS321VW1nZFx7KyMvXr1/6/IPr16+dVe0lyOByKj49vcwOA7jZjxgzt2LHDc3/t2rXav39/wE/HPJ/W6aZnrnshScXFxZo5c6by8vIsqiz0tC5dn5aW1mZ7enp6wE/rDbTPiVdhJCoqSuPGjdOGDRs829xutzZs2KDs7Ox298nOzm7TXpLWr1/fYXsA8KdgWunzQi403VSS7rvvvjYrhuLiBGOgDcTPideX9czNzdWKFSv04osvaufOnbrnnnvkdDo9s2tmz57dZoDrvHnztG7dOj3zzDPatWuXfvzjH+vDDz/Uvffe233vAgDg1XRTdJ9gC7SB+DnxemrvrFmzVF5erkcffVSlpaUaM2aM1q1b5xmkeujQIdnOGKwzceJEvfzyy3rkkUf00EMP6dJLL9Vrr73GGiMA0M1KSkq6tR1CUyB+Trq0Auu9997bYc/Gxo0bz9n2zW9+U9/85je78lIAgE5KTU3t1nYITYH4OfH6NA0AIDBNnjxZ6enpHa7gahiGMjIyNHnyZD9XhkASiJ8TwggAhIjW9VOkdlb5bLm/ZMmSgB/TAN8KxM8JYQQAQkgwTzeF/wTa58Qw25vbE2A6ewliAPBWMFyqvita/96UmqebTpkyhR4RHwnmz5CvPyed/f7u0gBWAAgVsbGx7a63EOyCbboprBEonxPCCAAAFyFUA60/MWYEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBSTO0FgBDEdFN0RqB8TugZAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFgqwuoCOsM0TUlSVVWVxZUAAIDOav3ebv0e70hQhJHq6mpJUkZGhsWVAAAAb1VXVyshIaHDxw3zQnElALjdbh05ckRxcXEyDKPbnreqqkoZGRkqKipSfHx8tz0vLg7HJTBxXAITxyUwcVyamaap6upqpaWlyWbreGRIUPSM2Gw2paen++z54+Pjw/rDEqg4LoGJ4xKYOC6BieOi8/aItGIAKwAAsBRhBAAAWCqsw4jD4dDChQvlcDisLgVn4LgEJo5LYOK4BCaOi3eCYgArAAAIXWHdMwIAAKxHGAEAAJYijAAAAEsRRgAAgKVCPowsW7ZMmZmZio6OVlZWlrZu3Xre9n/5y180bNgwRUdH6/LLL9fatWv9VGl48ea4rFixQpMnT1ZiYqISExOVk5NzweOIrvH2z0urVatWyTAM3Xzzzb4tMEx5e1xOnjypuXPnKjU1VQ6HQ5dddhl/l/mAt8dlyZIlGjp0qGJiYpSRkaH7779fdXV1fqo2wJkhbNWqVWZUVJS5cuVK8/PPPzfvuusus1evXmZZWVm77d977z3TbrebTz31lLljxw7zkUceMSMjI81PP/3Uz5WHNm+Py6233mouW7bM/Oijj8ydO3ea3/nOd8yEhATz8OHDfq48tHl7XFrt37/f7N+/vzl58mTzpptu8k+xYcTb41JfX2+OHz/enDZtmvnuu++a+/fvNzdu3GgWFBT4ufLQ5u1xeemll0yHw2G+9NJL5v79+8033njDTE1NNe+//34/Vx6YQjqMTJgwwZw7d67nvsvlMtPS0sxFixa12/5b3/qWeeONN7bZlpWVZf7Hf/yHT+sMN94el7M1NTWZcXFx5osvvuirEsNSV45LU1OTOXHiRPP5558377jjDsKID3h7XH7zm9+YgwYNMhsaGvxVYljy9rjMnTvXvOGGG9psy83NNSdNmuTTOoNFyJ6maWho0LZt25STk+PZZrPZlJOTo/z8/Hb3yc/Pb9NekqZOndphe3ivK8flbLW1tWpsbFTv3r19VWbY6epxeeyxx5ScnKzvfve7/igz7HTluLz++uvKzs7W3LlzlZKSolGjRumJJ56Qy+XyV9khryvHZeLEidq2bZvnVE5hYaHWrl2radOm+aXmQBcUF8rrioqKCrlcLqWkpLTZnpKSol27drW7T2lpabvtS0tLfVZnuOnKcTnbAw88oLS0tHOCI7quK8fl3Xff1QsvvKCCggI/VBieunJcCgsL9Y9//EO33Xab1q5dq7179+r73/++GhsbtXDhQn+UHfK6clxuvfVWVVRU6Oqrr5ZpmmpqatL3vvc9PfTQQ/4oOeCFbM8IQtOTTz6pVatW6a9//auio6OtLidsVVdX6/bbb9eKFSuUlJRkdTk4g9vtVnJysn73u99p3LhxmjVrlh5++GEtX77c6tLC2saNG/XEE0/oueee0/bt25WXl6c1a9bo8ccft7q0gBCyPSNJSUmy2+0qKytrs72srEz9+vVrd59+/fp51R7e68pxafX000/rySef1FtvvaUrrrjCl2WGHW+Py759+3TgwAFNnz7ds83tdkuSIiIitHv3bg0ePNi3RYeBrvx5SU1NVWRkpOx2u2fb8OHDVVpaqoaGBkVFRfm05nDQleOyYMEC3X777brzzjslSZdffrmcTqfuvvtuPfzww7LZwrtvIGTffVRUlMaNG6cNGzZ4trndbm3YsEHZ2dnt7pOdnd2mvSStX7++w/bwXleOiyQ99dRTevzxx7Vu3TqNHz/eH6WGFW+Py7Bhw/Tpp5+qoKDAc/vGN76h66+/XgUFBcrIyPBn+SGrK39eJk2apL1793rCoSTt2bNHqampBJFu0pXjUltbe07gaA2MJpeIC/2pvQ6Hw/zDH/5g7tixw7z77rvNXr16maWlpaZpmubtt99uPvjgg5727733nhkREWE+/fTT5s6dO82FCxcytdcHvD0uTz75pBkVFWWuXr3aLCkp8dyqq6utegshydvjcjZm0/iGt8fl0KFDZlxcnHnvvfeau3fvNv/+97+bycnJ5k9/+lOr3kJI8va4LFy40IyLizP/9Kc/mYWFheabb75pDh482PzWt75l1VsIKCEdRkzTNH/961+bAwYMMKOioswJEyaY77//vuexa6+91rzjjjvatP/zn/9sXnbZZWZUVJQ5cuRIc82aNX6uODx4c1wGDhxoSjrntnDhQv8XHuK8/fNyJsKI73h7XLZs2WJmZWWZDofDHDRokPmzn/3MbGpq8nPVoc+b49LY2Gj++Mc/NgcPHmxGR0ebGRkZ5ve//33zxIkT/i88ABmmSf8QAACwTsiOGQEAAMGBMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAAS/1/opl9JO8gpq8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -742,7 +1248,8 @@ " R=10*10**3, \n", " C=10**-6\n", " )\n", - "mi.migrad()" + "mi.migrad()\n", + "mi.hesse()" ] }, { @@ -750,19 +1257,19 @@ "id": "b5df2d60-8284-4757-96c8-7f26afc17942", "metadata": {}, "source": [ - "Wie ihr seht gibt euch minuit euch vier (Old iminuit version does not show plot... Check which version is used on jupyter hub.. ) verschiedene Objekte zurück. Für euch am wichtigsten ist die erste Tabelle, welche euch zeigt, ob euer Fit funktioniert hat. Im Allgemeinen gilt sind hier alle Felder grün hat euer Fit funktioniert, gelbe Felder können ein Problem andeuten müssen sie aber nicht und lila Felder bedeuten, dass etwas mit eurem Fit nicht in Ordnung ist. Die Bedeutungen der einzelnen Felder für unseren obigen Fit sind auch nochmal in der nachfolgenden Abbildung einzeln erklärt. Die Bedeutung der meisten Felder werden wir noch im laufe des Kurses kennen lernen. \n", + "Wie ihr seht gibt euch minuit euch vier verschiedene Objekte zurück. Für euch am wichtigsten ist die erste Tabelle, welche euch zeigt, ob euer Fit funktioniert hat. Im Allgemeinen gilt sind hier alle Felder grün hat euer Fit funktioniert, gelbe Felder können ein Problem andeuten müssen sie aber nicht und lila Felder bedeuten, dass etwas mit eurem Fit nicht in Ordnung ist. Die Bedeutungen der einzelnen Felder für unseren obigen Fit sind auch nochmal in der nachfolgenden Abbildung einzeln erklärt. Die Bedeutung der meisten Felder werden wir noch im laufe des Kurses kennen lernen. \n", "\n", "
\n", "\"{{Fit\n", "
\n", "\n", - "Wie wir unserer Tabelle entnehmen können gibt es also ein Problem mit unserem Fit um besser verstehen zu können was das Problem sein könnte wollen wir uns auch noch die anderen Outputs angucken.\n", + "Wie wir unserer Tabelle entnehmen können, gibt es also ein Problem mit unserem Fit. Um besser verstehen zu können, was das Problem sein könnte, wollen wir uns auch noch die anderen Outputs ansehen.\n", "\n", - "Die zweite Tabelle zeigt uns die bestimmten Werte für die Parameter in der Spalte `Value` und die deren Unsicherheiten in der Spalte `Hess error`. Hierbei fällt auf das für unseren obigen Fit die Unsicherheiten der Parameter $R$ und $C$ größer sind als die bestimmten Werte selbst. \n", + "Die zweite Tabelle zeigt uns die bestimmten Werte für die Parameter in der Spalte `Value` und deren Unsicherheiten in der Spalte `Hess error`. Hierbei fällt auf, dass für unseren obigen Fit die Unsicherheiten der Parameter $R$ und $C$ größer sind als die bestimmten Werte selbst. \n", "\n", - "Die dritte Tabelle ist die sogennnante **Kovarianzmatrix**. Die Kovarianzmatrix hat als Einträge auf ihrer **Hauptdiagonalen** die **Varianzen der entsprechenden Parameter** auf der **Nebendiagonalen** stehen die **Kovarianzen**. Die Werte in Klammern gibt die **Korrelation** zwischen den entspechenden Parameters an. Sind zwei Parameter stark **korreliert** wird das entsprechende Feld **blau** dargestellt, bei einer **antikorrelation** ist das Feld **rot**. \n", + "Die dritte Tabelle ist die sogennnante **Kovarianzmatrix**. Die Kovarianzmatrix hat als Einträge auf ihrer **Hauptdiagonalen** die **Varianzen der entsprechenden Parameter** auf der **Nebendiagonalen** stehen die **Kovarianzen**. Der Wert in Klammern gibt die **Korrelation** zwischen den entspechenden Parametern an. Sind zwei Parameter stark **korreliert**, wird das entsprechende Feld **blau** dargestellt, bei einer **Antikorrelation** ist das Feld **rot**. \n", "\n", - "Die letzte Ausgabe ist ein Plot unserer Messwerte zusammen mit der Fitfunktion basierend auf den Parametern des besten Fits." + "Die letzte Ausgabe ist ein Plot unserer Messwerte zusammen mit der Fitfunktion basierend auf den Parametern des besten Fits. (Nur für neuere Version von `iminuit`)" ] }, { @@ -770,14 +1277,14 @@ "id": "72665daa-1d74-41da-8b9a-1e4c427eed07", "metadata": {}, "source": [ - "Obwohl unser Fit unsere Messdaten gut Widerspiegelt scheint es ein Problem mit der Bestimmung einiger Parameter zu geben. Die große Unsicherheit in $R$ und $C$ deutet an, dass hier das Problem liegt. Um dies zu bestätigen können wir uns einmal das reduzierte $\\chi^2(x, I_0, R, C)$ als Funktion des entsprechenden Parameters von `iminuit` plotten lassen, während wir die anderen Parameter, so wie die x-Werte konstant lassen. \n", + "Obwohl underser Fit unsere Messdaten gut widerspiegelt, scheint es ein Problem mit der Bestimmung einiger Parameter zu geben. Die große Unsicherheit in $R$ und $C$ deutet an, dass hier das Problem liegt. Um dies zu bestätigen, können wir uns einmal das reduzierte $\\chi^2(x, I_0, R, C)$ als Funktion des entsprechenden Parameters von `iminuit` plotten lassen, während wir die anderen Parameter, so wie die x-Werte, konstant lassen. \n", "\n", "Für $I_0$ sieht das entsprechende Profil so aus:" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 494, "id": "d3230cb6-fbe3-4093-ba09-5271dc168a4d", "metadata": {}, "outputs": [ @@ -785,13 +1292,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/XENONnT/anaconda/envs/XENONnT_development/lib/python3.9/site-packages/iminuit/minuit.py:2353: IMinuitWarning: Specified nsigma bound, but error matrix is not accurate\n", + "c:\\Users\\Matthias\\.venv\\jupyter\\lib\\site-packages\\iminuit\\minuit.py:2579: IMinuitWarning: Specified nsigma bound, but error matrix is not accurate\n", " warnings.warn(\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHHCAYAAABQhTneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsj0lEQVR4nO3dd3hT9f4H8Hd2uvekpbRlFCirBcoqQ8oGwQGoqKAI6oUr4FVRf1dBvQoqKg5URBEnMhwoKgrIEspoKbNsCi0dlNI90qbJ9/dHaLRSRtu0J+P9ep4+lJOTk/fJSZpPzvkOmRBCgIiIiMhByKUOQERERNScWPwQERGRQ2HxQ0RERA6FxQ8RERE5FBY/RERE5FBY/BAREZFDYfFDREREDoXFDxERETkUFj9ERETkUFj8EBERkUNh8UMOZcWKFZDJZEhKSqq1vLCwENOnT4efnx9cXFwwaNAg7N+/v9nznThxAnPmzEGfPn2g1Wohk8lw7ty5em3j2LFjGD58OFxdXeHt7Y377rsPly5dqrXO/PnzIZPJrvmzc+dOC+4VUFlZiblz5yI4OBhOTk6Ii4vDxo0bb/r+mZmZmDBhAjw9PeHu7o6xY8fi7NmzV613rf1ZuHBhg7ZZUVGBqVOnIjo6Gh4eHnB1dUWXLl3w9ttvQ6/X1/+JsIBPPvkE7du3h1arRZs2bfDuu+/e9H1v9jgMHDiwzudx+PDhDd7mK6+8gl69esHPz8+cffbs2Ve9Nomag1LqAERSMxqNGDVqFA4ePIgnn3wSvr6+eP/99zFw4EAkJyejTZs2zZYlMTER77zzDjp06ID27dvjwIED9br/hQsX0L9/f3h4eOCVV15BaWkpFi1ahMOHD2Pv3r1Qq9UAgNtvvx2tW7e+6v7PPvssSktL0aNHD0vsjtmUKVOwdu1azJ49G23atMGKFSswcuRIbNmyBf369bvufUtLSzFo0CAUFRXh2WefhUqlwltvvYUBAwbgwIED8PHxqbX+kCFDcP/999da1q1btwZts6KiAkePHsXIkSPRqlUryOVy7Nq1C3PmzMGePXvw9ddfW+DZuXlLly7FI488gjvuuAOPP/44duzYgcceewzl5eWYO3fuDe9fn+MQEhKCBQsW1FoWHBzc4G0mJyeja9euuOuuu+Dm5oZjx45h2bJl+Pnnn3HgwAG4uLg08FkhagBB5EA+/fRTAUDs27fPvGzVqlUCgFizZo15WW5urvD09BR33313s+a7fPmyKC4uFkII8frrrwsAIi0t7abv/+ijjwonJydx/vx587KNGzcKAGLp0qXXvW96erqQyWRi2rRpDcp+LXv27BEAxOuvv25eVlFRISIjI0Xv3r1veP9XX31VABB79+41Lzt27JhQKBTimWeeqbUuADFjxgyLbrMuM2fOFABEdnb2Ddf9p8mTJ4sBAwbU+37l5eXCx8dHjBo1qtbySZMmCRcXF5Gfn3/d+9fnOAwYMEB07Njxhpkae2zXrl0rAIiVK1fecF0iS+JlL3J4a9euRUBAAG6//XbzMj8/P0yYMAHr1q1DZWVls2Xx9vaGm5tbg+//7bffYvTo0WjZsqV5WUJCAtq2bYvVq1df974rV66EEAKTJk1q8OPXZe3atVAoFJg+fbp5mVarxdSpU5GYmIiMjIwb3r9Hjx61zkZFRUVh8ODB19yniooK6HQ6i27z71q1agXAdLm0uWzZsgWXL1/Gv/71r1rLZ8yYgbKyMvz888/XvX9DjkN1dTVKS0stus2/k+J5JALY5ocIKSkpiImJgVxe++3Qs2dPlJeX4+TJk9e9f2lpKfLy8m74U1RU1JS7gczMTOTm5qJ79+5X3dazZ0+kpKRc9/5fffUVQkND0b9/f4vmSklJQdu2beHu7n5VJgDXvbRnNBpx6NCha+7TmTNnUFJSUmv5ihUr4OLiAicnJ3To0OGqS1MN2WZVVRXy8vKQkZGB77//HosWLUJYWFidlw6bSs3x+2fu2NhYyOXyGx7f+h6HkydPwsXFBW5ubggMDMRzzz13VTun+m5TCIG8vDzk5OSYL9kpFAoMHDjwutmJLI1tfsjhZWdn1/mBHxQUBADIyspCp06drnn/mTNn4rPPPrvh4wwYMABbt25tcM4byc7OBvBX7r8LCgpCfn4+KisrodForrr96NGjOHToEJ566inIZDKL57pWJsD0/F5LTeYb3b9du3YAgD59+mDChAkIDw9HVlYWlixZgkmTJqGoqAiPPvpog7YJAN999x3uvvtu8/+7d++O5cuXQ6lsvj+h2dnZUCgU8Pf3r7VcrVbDx8fnus9jzf1v9jhERkZi0KBB6NSpE8rKyrB27Vr873//w8mTJ7Fq1aoGbRMALl68WGv9kJAQfP3114iKirpudiJLY/FDDq+ioqLOgkCr1Zpvv56nnnoK99577w0fx8vLq2EBb1JNzhvtS123f/XVVwBg8Ute13vMm3l+b3afavyzl9qDDz6I2NhYPPvss5gyZQqcnJzqvU0AGDRoEDZu3IjCwkJs3rwZBw8eRFlZ2TVz1zAajcjPz6+1rLKyEnq9Hnl5ebWWe3h4QKVSXXNbFRUV5gbrdeW+0eu0Psfhk08+qbXOfffdh+nTp2PZsmWYM2cOevXqVe9tAqbLuhs3boROp0NKSgq+++67615WI2oqLH7I4Tk5OdXZrqemzYiTk9N179+hQwd06NChSbLVR03O+u6LEAJff/01oqOj0blz5xs+TkVFxVWX8AIDA6+bq6HPb0P3qYZarcbMmTPxyCOPIDk5Gf369WvQNgMCAhAQEAAAuPPOO/HKK69gyJAhOHXq1HX3PT09HeHh4XXe5ufnV+v/W7Zsue7lHycnJ1RVVdV5m06nu+HrtLGv8//85z9YtmwZNm3aZC5+6rtNtVqNhIQEAMDo0aMxePBg9O3bF/7+/hg9evR1H5/Iklj8kMMLCgoyXzL6u5pldXXv/buioqIbfusGTH/4vb29GxbyJtRcTrjWvnh7e9f5LX3nzp04f/78Vd2ar2XVqlV44IEHai0TQlw3V2ZmZp2ZgOs/vzWZG3N8QkNDAcB8BsYS27zzzjvxf//3f1i3bh0efvjha64XGBh41Zg3r7/+OnJycvDGG2/UWt6lS5frPmZQUBAMBgNyc3NrXfqqqqrC5cuXb5i5MccBuPp5tMQ2+/Tpg6CgIHz11VcsfqhZsfghh9e1a1fs2LEDRqOxVqPnPXv2wNnZGW3btr3u/WfNmmUVbX5atGgBPz+/qwZwBIC9e/eia9eudd7vq6++gkwmwz333HNTjzNs2LB6DVDYtWtXbNmyBcXFxbUaxu7Zs8d8+7XI5XJ06tSpzn3as2cPIiIibtg7rmbgwpozLZbYZk2xe6NG7Fqt1nymo8aXX36JysrKq5bfSM3zlJSUhJEjR5qXJyUlwWg0Xvd5rLl/Q48DcPXzaIltAqazRE3dGYDoKtL2tCdqXnWN8/PNN99cNc7PpUuXhKenp5g4ceINt3n06FGxcePGG/4kJSXVK+uNxvk5ffq0OH36dK1ljzzyiHBychLp6enmZZs2bRIAxAcffHDVNqqqqoSPj4+Ij4+vV7b62L1791Vjweh0OtG6dWsRFxdXa93z58+LY8eO1Vq2cOHCq47Z8ePHhUKhEHPnzjUvy83Nveqxi4uLRWRkpPD19RWVlZX13ualS5eE0Wi8ars14/xs3rz5Zp6CWhozzo+3t7cYPXp0reX33nuvcHZ2FpcvX66V+9ixY6KsrMy87GaPQ1FRkdDpdLUew2g0iokTJwoAIjk5ud7bLC0trZWlRs04P88991x9ngqiRmPxQw6lruKnurpa9OrVS7i6uooXXnhBLFmyRHTs2FG4ubmJ48ePN2u+wsJC8dJLL4mXXnpJDB8+XAAQ//nPf8RLL70k3n333VrrhoWFibCwsFrL0tPThY+Pj4iMjBTvvPOOeOWVV4SXl5fo1KnTVR9oQgjx008/CQDiww8/bMrdEuPHjxdKpVI8+eSTYunSpaJPnz5CqVSKbdu21VpvwIAB4p/fyWoKGH9/f/Haa6+Jt956S4SGhorg4OBaBc+8efNEly5dxH//+1/x0UcfiRdeeEGEhYUJmUwmvvzyywZt86233hLt2rUTc+fOFUuXLhWLFi0SQ4YMEQDEmDFjGvRcNLT4EUKIJUuWCADizjvvFMuWLRP333+/ACBefvnlWuvNmzdPABBbtmyptfxmjsOWLVtEYGCgmDNnjliyZIlYtGiR6Nu3rwAgpk+fflWmm9lmSkqK8PHxEf/617/EO++8I9577z0xZcoUoVQqRatWrUReXl6Dng+ihmLxQw6lruJHCCHy8/PF1KlThY+Pj3B2dhYDBgy4ap3mkJaWJgDU+fPPQqeu4kcIIY4cOSKGDh0qnJ2dhaenp5g0aZLIycmp8/HuuusuoVKpap01aAoVFRXiiSeeEIGBgUKj0YgePXqIDRs2XLVeXcWPEEJkZGSIO++8U7i7uwtXV1cxevRocerUqVrr/P7772LIkCEiMDBQqFQq4enpKYYOHXrNszM3s819+/aJ8ePHi5YtWwqNRiNcXFxETEyMePPNN4Ver2/Qc9GY4kcIIT766CPRrl07oVarRWRkpHjrrbeuOjt1reLnZo7D2bNnxfjx40WrVq2EVqsVzs7OIjY2Vnz44Yd1ngW7mW1eunRJTJ8+XURFRQkXFxehVqtFmzZtxOzZs8WlS5ca/FwQNZRMiOu0VCQiIiKyMxzhmYiIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIodj29hdFoRFZWFtzc3CCTyaSOQ0RERDdBCIGSkhIEBwfXmnbIUuy6+MnKyjJPxkdERES2JSMjAyEhIRbfrl0XPzWTE2ZkZNSadI8IAFJSUqSOQA2k0+kwfPhwAMCGDRug1WolTkQN0a1bN6kjkJUqLi5GaGjoDScZbii7Ln5qLnW5u7uz+KGruLq6Sh2BGkihUJh/d3FxgZOTk4RpqKH4d5lupKmarLDBMxERETkUFj9ERETkUOz6shcR2SeFQoHRo0ebfyciqg8WP0Rkc9RqNebPny91DCKyUbzsRURERA6FZ36IyOYIIaDT6QAAWq2Wg5gSUb3wzA8R2RydTof4+HjEx8ebiyAiopvF4oeIiIgcCosfIiIicigsfoiIiMihsPghIiIih8Lih4iIiBwKi58GMBgFdp+9DINRSB2FiIhIEidySnCppFLqGA3CcX7qSQiBEW9vx8mLpfh6Whz6RPpKHYnI4cjlcgwePNj8OxE1v+fXHcG+c/l4+65uGNMlWOo49cLip55kMhm6hXrh5MVSrD+UzeKHSAIajQavvvqq1DGIHNbFYh32nsuHEEBMmJfUceqNX5kaYHSXIADAhiM5qDYYJU5DRETUvH45nG0qfFp6ooWnk9Rx6o3FTwP0jvCBt4sa+WVVSDx7Weo4REREzWr9oWwAwOjOtnW5qwaLnwZQKuQYHh0IAFh/MFviNESOp6KiAt27d0f37t1RUVEhdRwih5JVWIHk8wWQyYBRnYOkjtMgLH4aaPSVA77haA6qqnnpi4iIHMMvh01f+nu08kaAu1biNA3D4qeB4sJ94OuqQVGFHjtP50kdh4iIqFn8ZL7kZZtnfQAWPw2mkMswspPp0tdPh7IkTkNERNT0MvLLcTCjEHIZMCKaxY9DqmnotfHoRVRWGyROQ0RE1LR+vnLJq1eED/zcNBKnaTgWP43QPcwLge5alFRWY/tJXvoiIiL7tv7KlQ5b7eVVg8VPI8jlMozsZDrtt56XvoiIyI6dyyvDkcxiKOQyc49nW8Xip5FqBjzclHoROj0vfRE1B7lcjr59+6Jv376c3oKomdR8ye8TaRrrzpZxeotG6hZqGt0ys7ACW47nYkQn220ARmQrNBoN3n77baljEDmUmoENx9j4JS+AZ34aTSaTmQd5Wn+YAx4SEZH9OZ1biuM5JVApZBjW0bYveQEsfiyiZqyDzccuoqyyWuI0RERElvXTQdMlr36tfeHhrJI4TeOx+LGATi08EObjDJ3eiE3HLkodh8juVVRUoF+/fujXrx+ntyBqYkII83h2t3a1/UteAIsfi5DJZLi1i+kFUVMdE1HT0ul00Ol0UscgsntHs4px9lIZNEo5hnSw/UteAIsfixlzpfjZdvISCsurJE5DRERkGTVnfQa394erxj76SbH4sZC2AW6ICnSD3iDw29EcqeMQERE1mtEosP6g/fTyqsHix4Jqzv78yEtfRERkB/anFyCzsAKuGiUGRflLHcdiWPxYUE1VnHjmMnJL2BaBiIhsW0071qEdAqBVKSROYzksfiyopY8zuoZ6wiiAXw5xzB8iIrJd1QajeSLTMXbSy6sGix8Lq7n09ROLH6ImI5PJEBMTg5iYGMhkMqnjENml3WfzkVdaBS9nFfq19pU6jkXZR7NtKzK6cxD+93Mqks8X4EJBOUK8nKWORGR3tFotPvroI6ljENm1Hw9mAgBGdAqCSmFf50rsa2+sQIC7Fr3CfQD8NQ8KERGRLamsNuDXI6aey/bUy6sGi58mYO71dYC9voiIyPZsP5mHEl01Atw16BnuLXUci2Px0wRGRAdCKZchNbsYp3NLpY5DZHcqKiqQkJCAhIQETm9B1ARqhmwZ3TkYCrn9tatj8dMEvFzUiG9jahzGMX+ImkZhYSEKCwuljkFkd8oqq7Ep1TRPZc2VDHvD4qeJjO3aAgDw44FMCCEkTkNERHRzNh27iAq9AWE+zugS4iF1nCbB4qeJDOkQACeVAucul+PQhSKp4xAREd2UH1JMvbzGdgm226EkWPw0EReNEkM6BAAAfjiQKXEaIiKiG7tcWontp/IAALdeuYJhj1j8NKGxV0bE/OlgNgxGXvoiIiLr9sth0+dVdAt3tPZ3lTpOk2Hx04T6t/WDl7MKeaWVSDxzWeo4RERE17XuyhAt4+z4rA/A4qdJqRRyjOwUBICXvogsSSaToUOHDujQoYPdtkkgam4Z+eVIOl8AmczUxd2esfhpYuO6marnDUdyoNMbJE5DZB+0Wi0+//xzfP7559BqtVLHIbILNUOz9I7wQaCHfb+vWPw0sdiWXmjh6YTSymr8cTxX6jhERER1qpmVYKydzeBeFxY/TUwul5kHiVrHS19ERGSFjmUX48TFEqgVcgyPDpI6TpNj8dMMxnUzFT9bjl9CUYVe4jREtk+n02HMmDEYM2YMdDqd1HGIbF5NQ+dBUX7wcFJJnKbpsfhpBlGB7mgX4IYqgxEbjnCmd6LGEkIgOzsb2dnZHEGdqJGMRoEfr1yZsPdeXjVY/DSTsd1qLn1xri8iIrIeSecLkFWkg5tGiUFR/lLHaRYsfprJrVfa/SSevYycIp6mJyIi61AzFMuw6EBoVQqJ0zQPFj/NJMTLGT1beUMINnwmIiLrUFltwM+HTM0xbuvmGJe8ABY/zapmzJ/vU1j8EBGR9Go64gS6a9ErwkfqOM2GxU8zGtUpCGqFHMdzSnAsu1jqOERE5OC+T7kAwDS2j0LuOKOls/hpRh7OKtxypTHZDzz7Q9RgMpkMERERiIiI4PQWRA1UWF6FLccvAQBui3GcS14Ai59mV/MC++FAJmd6J2ogrVaL1atXY/Xq1ZzegqiBfjmcgyqDEVGBbogKdJc6TrNi8dPMBrYzDSB1sbgSu89ypnciIpJGzSUvR2roXIPFTzPTKBUY1dk0dPh3+3npi4iIml9Gfjn2nTPN4D7WQQY2/DsWPxK43TzTezYqqjjTO1F96XQ6TJgwARMmTOD0FkQNUNPutE+k/c/gXhebKX4WLlwImUyG2bNnSx2l0WLDvBDq7YSyKgN+T82ROg6RzRFC4OzZszh79iyntyCqJyEEvr8y3txt3UIkTiMNmyh+9u3bh6VLl6Jz585SR7EImUyG266cZmSvLyIiak6HM4tw9lIZtCo5hnUMkDqOJKy++CktLcWkSZOwbNkyeHl5SR3HYmoGPNx+Kg+XSiolTkNERI6ipr3pkA6BcNPa/wzudbH64mfGjBkYNWoUEhISbrhuZWUliouLa/1Yqwg/V3QJ9YTBKPDTQU52SkRETU9vMGL9IdNnzu0O2MurhlUXP9988w3279+PBQsW3NT6CxYsgIeHh/knNDS0iRM2zm1dTZOdcroLIiJqDjtOXUJeaRV8XNTo18ZX6jiSsdriJyMjA7NmzcJXX31104OYPfPMMygqKjL/ZGRkNHHKxrm1awso5TIczizCyYslUschIiI7922y6cv22K4toFJYbQnQ5Kx2z5OTk5Gbm4uYmBgolUoolUps27YN77zzDpRKJQyGq7uIazQauLu71/qxZt4uagy6Mt3Ft/svSJyGyHbIZDIEBQUhKCiI01sQ3aSicj02HrsIALjdwaaz+Cel1AGuZfDgwTh8+HCtZQ888ACioqIwd+5cKBQKiZJZ1h0xIdiYehE/pGTiqWFRDjWxHFFDabVa/PTTT1LHILIp6w9noaraNJ1Fx2DrPjnQ1Ky2+HFzc0N0dHStZS4uLvDx8blquS0bFOUHT2fTdBc7T+ehf1s/qSMREZEdqunldXtMC4c/Y2q1l70chUapwJjOpobP3/HSFxERNYG0vDIkny+AXAaMc8DpLP7Jas/81GXr1q1SR2gSd8SG4Ivd57HhaA5KdHqHHXeB6GbpdDpMnz4dAPDRRx9xZneiG/j+ypfr+DZ+8Hfn+4VnfqxAlxAPRPi5QKc34tcjnO6C6EaEEEhNTUVqaiqntyC6AaNR4Nsrl7zuiHXM6Sz+icWPFZDJZLgjxvSC/DaZl76IiMhy9p7LR2ZhBdw0Sgzt4JjTWfwTix8rcVu3FpDJgD1p+cjIL5c6DhER2YmaL9WjOgdBq7KPntKNxeLHSgR7OqFPpA8AjvhMRESWUV5VjV8OZwMAbo/hJa8aLH6syO3dTC/M7/ZfYDsGIiJqtN+PXkRZlQGh3k7o0cp+JgdvLBY/VmR4dCCc1Qqcu1yO5PMFUschIiIbt/bKJa/bu4U4/Ng+f8fix4q4aJQYER0E4K8XLBHVzdPTE56enlLHILJamYUV2HkmDwBwJ3t51cLix8qM7256ga4/lI3yqmqJ0xBZJycnJ2zatAmbNm2Ck5OT1HGIrNJ3yRcgBNArwhuh3s5Sx7EqLH6sTM9W3mjp7YzSymr8dpRj/hARUf0JIbD2ysCGd8aGSpzG+rD4sTJy+V9j/qxJ4qUvIiKqv33nCnD+cjlc1AqM7BQodRyrw+LHCt0RaxrzZ9eZy7hQwDF/iP6pZnqL6dOnQ6fTSR2HyOqsTc4AYBrbx1ltUzNZNQsWP1YoxMvZPObPt8kc84fon4QQ2L9/P/bv389hIYj+obyqGj8fMo3tw0tedWPxY6VqWuav3Z8Bo5F/3ImI6Ob8cjgHZVUGtPJx5tg+18Dix0oN7xgEV40SGfkV2HsuX+o4RERkI2oued0Zy7F9roXFj5VyUiswurNpzB82fCYiopuRfrkcu8/mQybjdBbXw+LHitWM+fPrkWyUVXLMHyIiur5vr3Rv79faF8GeHAPrWlj8WLGYll6I8HVBeZUBP1+ZmI6IiKguRqMwzw7AEZ2vj8WPFZPJZLgjtmbMnwyJ0xBZF61WC61WK3UMIquRePYyMgsr4KZVYlhHju1zPSx+rNwdMSGQy0wDVp25VCp1HCKr4OTkhD///BN//vknp7cgumL1lS/Jt3YJhlalkDiNdWPxY+UCPbQY2M4fwF8vbCIior8rKtfj1yOmKZEm9uDYPjfC4scGTOhueiF/m5wJvcEocRoiIrI26w5moqraiKhAN3Rq4SF1HKvH4scGDG7vD19XNfJKK7H1xCWp4xBJrrKyErNmzcKsWbNQWVkpdRwiya3aZ7oyMLFHKMf2uQksfmyASiE3j9dQ8wIncmRGoxE7d+7Ezp07YTTybCg5tiOZRTiaVQy1Qo5xXVtIHccmsPixETWXvracyEVuMSdyJCIik5r2oEM6BsDLRS1xGtvA4sdGtPZ3RWyYFwxGgW/3c7JTIiICdHoDfkgxfSZM7M6GzjeLxY8NqXlhr0nK4EzWRESE347moFhXjRaeTujb2lfqODaDxY8NGdk5CM5qBc7mlWHfuQKp4xARkcRqLnndERsChZwNnW8Wix8b4qpRmic7ZcNnIiLHlpFfjp2nL0MmA8ZzOot6YfFjY2oGr/rlcDZKdHqJ0xARkVRqpj3qG+mLUG9nidPYFhY/NiampRda+7uiQm/AjwezpI5DJAknJyckJSUhKSmJ01uQQzIYBdZcmcR0Akd0rjcWPzZGJpPhrisv9JV70yVOQ0REUth2MhfZRTp4OaswtEOA1HFsDosfG3R7TAjUCjmOZBbjSGaR1HGIiKiZfb3HdMnr9pgQTmLaACx+bJC3ixrDogMB8OwPOabKykrMnTsXc+fO5fQW5HAuFuuw5UQuAODunrzk1RAsfmzU3Vcufa07kIXyqmqJ0xA1L6PRiM2bN2Pz5s2c3oIczpqkDBiMAt3DvNDa303qODaJxY+N6hXhgzAfZ5RWVmP9oWyp4xARUTMwGgVWXenldXfPlhKnsV0sfmyUXC4zd3vnpS8iIsew80weMvIr4KZVYmSnIKnj2CwWPzbsztgQKOUypKQX4kROidRxiIioiX2z13TW57ZuLeCkZkPnhmLxY8P83bRIaG/q4sizP0RE9i2vtBK/p+YAAO7qwUtejcHix8bddaWl//cpmdDpDRKnISKipvJt8gXoDQJdQj3RIdhd6jg2jcWPjYtv44cWnk4oqtBjw5EcqeMQEVETEEKY53S8myM6NxqLHxunkMswobvpjfA1L32Rg9BqtdixYwd27NgBrVYrdRyiJrcnLR9n88rgolZgTJdgqePYPBY/dmBij1Ao5DLsTcvH6Vw2fCb7J5PJ4OTkBCcnJ8hkMqnjEDW5r/aYvtze2rUFXDRKidPYPhY/diDQQ4vBUf4A/nqDEBGRfcgrrcSGI6bx3CbFsaGzJbD4sRP3XHlDfJt8gQ2fye5VVVVh/vz5mD9/PqqqqqSOQ9Sk1iT91dA5uoWH1HHsAosfO9G/jR9CvJxQrOOIz2T/DAYD1q9fj/Xr18NgYLFP9stoFOahTCZxRGeLYfFjJ+Rymfnsz1d7zkuchoiILOHP03lIzy+Hm1aJ0V04orOlsPixI+NjQ80jPqdmFUsdh4iIGqnmy+wdMSFwVrOhs6Ww+LEjfm4aDIsOBAB8vZdnf4iIbNnFYh02HcsF8Fe7TrKMBhU/Tz31FHQ6naWzkAXU9AT4fn8mSiurJU5DREQNtWpfBgxGgR6tvNA2wE3qOHalQcXP4sWLUVRUBACYMmUKysvLLRqKGq53hA8ifF1QVmXAjweypI5DREQNUG0w/tXQOS5M4jT2p0HFT3BwMA4cOAAA+OKLL1BaWmrJTNQIMlnths9CCIkTERFRfW09cQnZRTp4Oasw/EpzBrKcBhU///nPfzBmzBjEx8cDAL766ivs3bsXFRUVFg1HDXNHTAjUSjmOZhXj4IUiqeMQWZxWq8XGjRuxceNGTm9BdqmmofOdsSHQqhQSp7E/DSp+/v3vfyMpKQnDhw+HEAJLlixBnz594O7ujvbt2+Ouu+7CwoUL8euvv1o6L90ELxc1RncydYn8cjcbPpP9kclk8PLygpeXF6e3ILuTfrkcW09eAgDczbF9mkSDe3t17twZ//d//4fIyEjs3r0bJSUl+PPPPzF79mx4eXlh3bp1mDBhgiWzUj3c29t0jfing1koKOMIuEREtuKrvechBBDfxhcRfq5Sx7FLjR404NSpU+bf4+LiEBcXZ/4/25tIp1uoJzoGu+NoVjHWJl/AtP4RUkcispiqqiq89dZbAIA5c+ZArVZLnIjIMnR6A1bvywAA3NeLDZ2bSpOO88PT0dKRyWTmN86Xe87DaGQhSvbDYDBgzZo1WLNmDae3ILvy86FsFJTrEeyhxS1XJqwmy2t08VNdXY2XX34ZvXv3RkxMDCZPnoyNGzdaIhs10tiuLeCmVeL85XJsP3VJ6jhERHQDX1xpp3lPXEsoFRyHuKk0+pl9+umn8f7772Pw4MEYN24cKisrMXr0aDzwwAO87CUxJ7UC42NDAbDhMxGRtTt8oQgHMgqhUsgwsQcbOjelRrf5+frrr/HNN9+gf//+5mVpaWkYPXo0Fi1ahCeffLKxD0GNMKlXSyzfmYbNx3ORkV+OUG9nqSMREVEdar6kjogOgp+bRuI09q3RZ37KysoQEhJSa1l4eDjeffddfPTRR43dPDVSpJ8r+rX2hRDA11dGCyUiIutSVK7HuoOZAID7erOhc1NrdPHTr18/fPbZZ1ctDw8PR1ZWw6dX+OCDD9C5c2e4u7vD3d0dvXv35rhBDXTvlYbPq/ZloLKajUOJiKzNmuQM6PRGRAW6oXuYl9Rx7F6ji59XX30VixcvxmOPPWbu9q7X6/Huu++iQ4cODd5uSEgIFi5ciOTkZCQlJeGWW27B2LFjcfTo0cZGdjgJ7f0R5KFFflkVfj2cI3UcIiL6G6NR4Ks9pjPz9/UOY0/pZtDo4ic6Ohpbt25FYmIi2rVrB61WC2dnZ3zxxRdYvHhxg7c7ZswYjBw5Em3atEHbtm3x8ssvw9XVFbt3725sZIejVMhxz5VRQj9PPCdtGCIL0Gg0+PHHH/Hjjz9Co2HbCLJtf57OQ1peGVw1Sozr2kLqOA6h0Q2eAaBbt27Yt28fjh8/jtTUVLi5uSEuLg7u7u6W2Lx5TI+ysjL07t37mutVVlaisrLS/P/i4mKLPL49mNgzFO/8cQr70wtx+EIROoV4SB2JqMHkcjmCg4OljkFkETVfSu+IaQEXjUU+lukGGvQs9+7dG926dUPXrl3RtWtXdO7cGVqtFlFRUYiKirJYuMOHD6N3797Q6XRwdXXF999/f91LaQsWLMALL7xgsce3J/5uWozsFIR1B7KwYtc5vDGhi9SRiIgcXvrlcmw+ngsAuL9PK2nDOJAGXfYaNWoU8vLy8MYbb6BPnz5wc3NDhw4dcM899+C1117D77//jtzc3EaHa9euHQ4cOIA9e/bg0UcfxeTJk5GamnrN9Z955hkUFRWZfzIyMhqdwZ5MvvLG+ulQFi6XVl5/ZSIrptfr8fbbb+Ptt9+GXq+XOg5Rg32x+5x5Hq9IzuPVbGSikSMR7t27F+PGjUO/fv2gUqmQkpKC48ePQyaTISAgoFE9vv4pISEBkZGRWLp06U2tX1xcDA8PDxQVFVnsEpwtE0Jg7JKdOHShCE8Oa4cZg1pLHUlSycnJUkegBqqoqEB8fDwAYMeOHXBycpI4ETVEbGys1BEkVV5VjV6vbEaxrhqfTO6Owe0DpI5kNZr687vRDZ4fffRRLFmyBKtXr8ZXX32F1NRUrF+/HkFBQXjggQcskdHMaDTWatND9SOTyTC5dysApsG0qg1GaQMRETmw71MyUayrRpiPMwa14zxezanRxc+xY8fQtWvXWstGjhyJ999/H7t27Wrwdp955hls374d586dw+HDh/HMM89g69atmDRpUiMTO7bRXYLg46JGdpEOv6delDoOEZFDEkLgs13nAJhmb5fL2b29OTW6+OnRo0edgxx26tQJe/fubfB2c3Nzcf/996Ndu3YYPHgw9u3bh99++w1DhgxpTFyHp1EqcPeVbu8rrrzxiIioeSWevYyTF0vhpFJgfPdQqeM4nEb3qXvzzTdxyy234Pz585gzZw6io6NRVVWFN954A76+vg3e7ieffNLYaHQNk3q1xAfbzmBvWj6OZRejfRDbQxERNaeasz63x7SAh5NK2jAOqNFnfmJjY7Fnzx6kp6eja9eucHJygpubGz755BMsWLDAEhnJwoI8nDC8YyCAv96ARETUPC4UlGPjlWYHk9m9XRIWGU0pKioKmzdvRnp6Og4cOAC5XI7Y2FgEBQVZYvPUBCb3aYWfD2fjhwOZeHpEFDyd1VJHIiJyCF/uTodRAH0ifdA2wE3qOA6p0Wd+9u3bh8GDB6Nz586YPXs2Dhw4AKPRyLE3rFyPVl5oH+QOnd6Ib/ZxPCSyLRqNBqtWrcKqVas4vQXZFJ3egFX7TPN48ayPdBpd/Nx3331QKBSYPn06wsPDsW3bNjzwwANo1aoVfHx8LJGRmoBMJsMDV954n+86x27vZFPkcjkiIyMRGRkJubzRf8aIms33KZkoKNcjxMsJCRzXRzKNvuyVkZGBn3/+GZGRkbWWnz9/HgcOHGjs5qkJ3do1GAs3HEdWkQ6/Hb2IUZ15mZKIqKkIIfDpzjQAwJQ+raBg93bJNPorU+/evZGZmXnV8rCwMIwdO7axm6cmpFUpcG+cqdv78itvSCJboNfrsXTpUixdupSX2Mlm7Dxt6t7uolZgQg92b5dSo4ufOXPm4MUXX0R+fr4l8lAzu7dXGFQKGZLPF+BgRqHUcYhuSnV1NZYtW4Zly5ahurpa6jhEN6XmS+b47qFw17J7u5QaXfyMGTMGW7ZsQdu2bTF16lR8/PHHSE5ORlVVlSXyURPzd9diTOdgADCfjiUiIss6e6kUfxzPhUzGhs7WoNHFz+nTp7F27VrMnDkT+fn5eOWVV9CjRw+4ubmhc+fOlshITeyBvuEAgPWHsnGxWCdxGiIi+1Mzov7gKH+E+7pIG4Ya3+A5IiICERERuO2228zLiouLcfDgQRw6dKixm6dm0CnEAz1beWPvuXx8kXgeTwxrJ3UkIiK7UVSux5qkCwD++rJJ0mrwmZ/nn38eycnJdd7m7u6O+Ph4zJgxo8HBqHk92K8VAOCrPeeh0xukDUNEZEdWJaWjQm9AuwA39InkEDDWoMHFz4ULFzBixAiEhITg0Ucfxa+//sp2PjZsSIdAtPB0QkG5Hj+kXN17j4iI6q/aYMRnu84DMH3JlMnYvd0aNLj4Wb58OXJycrBy5Uq4ublh9uzZ8PX1xR133IHPP/+cvb9sjEIuw5QrjfCW70yDEELaQEREduD31IvILKyAt4saY7u2kDoOXdGoBs9yuRzx8fF47bXXcOLECezZswdxcXFYunQpgoOD0b9/fyxatKjOcYDI+kzoEQoXtQInL5Zi+6k8qeMQXZNarcZnn32Gzz77DGo156Uj6/XxjrMAgHt6toRWpZA4DdWw6Ljw7du3x1NPPYWdO3ciPT0dkydPxo4dO7By5UpLPgw1EQ8nlXngrZo3LJE1UigU6NixIzp27AiFgh8oZJ2Szxdgf3oh1Ao57u8TJnUc+huLzOqu1+uRk5OD8vJy+Pn5wdvbG/7+/pg6dSqmTp1qiYegZvJg33B8tuscdpzKw/GcYkQFuksdiYjIJtV8iRzbNRj+blqJ09DfNfjMT0lJCT744AMMGDAA7u7uaNWqFdq3bw8/Pz+EhYVh2rRp2LdvnyWzUjMI9XbG8OhAAMDHOzjoIVknvV6Pzz//HJ9//jmntyCrlH65HL8dzQEAPBQfIXEa+qcGFT9vvvkmWrVqhU8//RQJCQn44YcfcODAAZw8eRKJiYmYN28eqqurMXToUAwfPhynTp2ydG5qQjVv1HUHMpHLQQ/JClVXV+Odd97BO++8w+ktyCot35kGowD6t/VDu0A3qePQPzToste+ffuwfft2dOzYsc7be/bsiQcffBAffvghPv30U+zYsQNt2rRpVFBqPjEtvRAb5oXk8wX4LPEcnhwWJXUkIiKbUVSux+qkDADAtHgOamiNGlT83GwDZo1Gg0ceeaQhD0ESmxYfjuTzBfhydzpmDGoNZ7VFmocREdm9r/emo7zKgKhAN/Rr7St1HKpDg9v8pKam4rnnnkNhYaEF45C1GNIhEGE+ziiq0GNt8gWp4xAR2YSqaiNW7DK1l3woPoKDGlqpBhc/CxYswJEjR+Dp6XnVbTqdDsePH29MLpKYQi7Dg1fmoPnkzzQYjBz0kIjoRtYfysLF4kr4u2lwa5dgqePQNTS4+Nm9ezcee+yxOm/TarWYNm0aFixY0OBgJL3x3UPg4aTC+cvl2Jh6Ueo4RERWTQhh7iU7uU8rqJUWHUqPLKhRc3u1bt36mrc/8sgj+PHHHxu6ebICzmolJsW1BAAs46CHRETXtfP0ZaRmF8NJpTD/7STr1ODix9vbG9nZ2de8vWfPnjh9+nRDN09WYkqfVlAr5Eg+X4Ckc5yvjayDWq3Ghx9+iA8//JDTW5DVWLr9DABgYo9QeDrzdWnNGlz89O/fHytWrLj2huVy6HQcI8bW+btrcUesaTK+D7edkTgNkYlCoUD37t3RvXt3Tm9BVuFIZhF2nMqDQi7D1H7s3m7tGlz8PPHEE1i2bBk++uijOm9PTExERARHtbQHph4LwKZjuTh1sUTqOEREVuej7aamAaM7ByHU21niNHQjDS5+YmNj8f777+Nf//oXhgwZgh9++AHp6enIz8/HunXrMHfuXNxzzz2WzEoSifRzxdAOAQD+eoMTSam6uhqrV6/G6tWrOcIzSS4jvxzrD2UBAKb355d+W9CopujTpk3D1q1bUVRUhNtvvx3h4eHw8/PDbbfdhk6dOmHOnDmWykkSe3hAJADghwOZyCni5UySll6vx2uvvYbXXnuNc3uR5D7ecRZGAcS38UXHYA+p49BNaPSwvf369cPevXtx/Phx7N+/H+Xl5YiOjkavXr0skY+sRExLL/Rs5Y295/Lx6c40PDOyvdSRiIgkl19WhVVXprJ45MqXRLJ+FpuzICoqClFRnAPKnj08IAJ7z+Xjqz3pmHFLa7hrVVJHIiKS1OeJ56DTG9GphQf6RPpIHYduEkdgops2qJ0/2ga4orSyGl/vSZc6DhGRpCqqDPhs1zkApi+HnMrCdrD4oZsml8swvb/ptO7yP9NQWW2QOBERkXTWJGegoFyPlt7OGN4xUOo4VA8sfqhebu0SjCAPLXJLKvHd/kyp4xARSUJvMGLpNlPv14fiw6FU8OPUljTp0ZLL5bjllluQnJzclA9DzUitlOOheFNXzg+3nUG1wShxIiKi5vfTwSxkFlbA11WNCd1DpY5D9dSkxc/y5cvRv39/zJgxoykfhprZ3T1D4eVsmvD0lyM5UschB6RSqbB48WIsXrwYKhUb3lPzMhoF3t9qGvH+wX7h0Ko4yritadLiZ8qUKZg/fz52797dlA9DzcxZrcQDfU3Dt7+/5TSEEBInIkejVCrRr18/9OvXD0qlxTqtEt2Ujccu4nRuKdw0StzbK0zqONQAvEhJDTK5dyu4qBU4nlOCLSdypY5DRNQshBB4f4tp0u77+4RxyA8b1aji5/z58/j999+Rk1P3pY+srKzGbJ6smIezyvyNZ8mWMzz7Q82quroaP/30E3766SdOb0HNateZyzh4oQgapdx8BpxsT4OLn5UrV6J169YYPnw4IiIi8MUXXwAA0tPTsXDhQsTFxaFly5YWC0rWZ2q/cKiVciSfL8DetHyp45AD0ev1eOGFF/DCCy9wegtqVkuunPW5u2dL+LpqJE5DDdXg4uell17Cv//9bxw+fBhDhgzBo48+iueeew6RkZFYsWIFunfvjjVr1lgyK1kZf3ctxseGAIC58R8Rkb1KSS/ArjOXoZTLMI0TmNq0BrcUPHPmDGbNmoWwsDAsWbIELVu2xM6dO3Ho0CG0b895nxzFw/0jsXJvOradvIQjmUWIbsFJ/YjIPtV8yRvXrQVaeDpJnIYao8FnfvR6PZycTAc/JCQEWq0WixYtYuHjYFr6OOPWLsEAgPe3npY4DRFR0ziRU4KNqRchk3ECU3vQqAbPX3/9NY4fPw4AUCgU8PLyskgosi3/GtQaAPDrkRyculgicRoiIst770pbnxHRgWjt7ypxGmqsBhc/8fHxmDdvHjp27AhfX1/odDq8/fbbWL16NVJTU9kDw4G0DXDD8I6BEOKvPxBERPbidG4p1h8y9V6eOaiNxGnIEhrc5mfbtm0AgFOnTiE5ORn79+/H/v378fnnn6OwsBBqtRpt27bFoUOHLBaWrNfMW1pjw9Ec/HQwC7MT2iLc10XqSEREFmEazBVIaB+ADsHuUschC2j00Kht2rRBmzZtcNddd5mXpaWlISkpCSkpKY3dPNmI6BYeGBzlj83Hc7Fky2ksGt9F6khkx1QqFRYuXGj+naipnL9chnUHTWd9HhvcWuI0ZClNMi58eHg4wsPDMX78+KbYPFmpfw9ug83Hc/F9SiZmDW6DUG9nqSORnVIqlUhISJA6BjmA97ecgcEoMKCtHzqHeEodhyyE01uQxXQN9UR8G18Y/jbpHxGRrbpQUI5v918AwLM+9obFD1nUY4NNjQHXJmcgq7BC4jRkr6qrq7Fp0yZs2rSJnSuoyXy47QyqjQJ9In0QG+YtdRyyIBY/ZFE9WnmjV4Q39AaBpdt49oeahl6vx9NPP42nn36a01tQk8gp0mH1PtNZn3/fwh5e9qZJix+5XI5bbrkFycnJTfkwZGUeu/KHYuW+DFws1kmchoio/pZuP4MqgxE9WnmhVwTP+tibJi1+li9fjv79+2PGjBlN+TBkZXpH+iA2zAtV1UZ8wLY/RGRjLhbr8NWedACmS/kymUziRGRpjS5+SkquPaLvlClTMH/+fOzevbuxD0M2RCaTYXaC6ezP13vTkVPEsz9EZDs+2HoGVdVGxIZ5oV9rX6njUBNodPETHx+PnJwcS2QhO9KvtS+6m8/+cNRnIrINOUU6fL3XdNZnTkJbnvWxU40ufrp164a4uDjzHF81Dhw4gJEjRzZ282SjZDIZ5gxpCwBYuTeDZ3+IyCZ8sPU0qqpNbX36tvaROg41kUYXP59++immTJmCfv364c8//8TJkycxYcIExMbGQqFQWCIj2ag+kT7o2cobVQYjZ3wnIquXXVSBlXszAPCsj72zyAjPL7zwAjQaDYYMGQKDwYDBgwcjMTERPXv2tMTmyUbJZDLMHtIG9yzbg2/2ZuCRAZEI9nSSOhbZAZVKhXnz5pl/J7KED7aaenj1bOWN3pE862PPGn3m5+LFi5g1axb+97//oUOHDlCpVJgyZQoLHwIA9In0RVw4z/6QZSmVSowZMwZjxoyBUtkks/SQg8kqrMA3V876zB7CHl72rtHFT3h4OLZv3441a9YgOTkZ3377LaZPn47XX3/dEvnIDtS0/Vm1LwOZHPWZiKzQ+1tPo8pgRFy4N/pEsoeXvWt08bN8+XKkpKRg1KhRAIDhw4djy5YteOuttxo1vs+CBQvQo0cPuLm5wd/fH+PGjcOJEycaG5ck0CvCB70jfKA3CCzZwrM/1HjV1dX4888/8eeff3J6C2q0zMIKrNp3pa3PlS9rZN8aXfzcddddVy2LiYnBrl278McffzR4u9u2bcOMGTOwe/dubNy4EXq9HkOHDkVZWVlj4pJEav6grN6XgfTL5RKnIVun1+sxe/ZszJ49m9NbUKO9u/kU9AaB3hE+6BXBtj6OoMkulrdq1Qq7du1q8P03bNhQ6/8rVqyAv78/kpOT0b9//8bGo2bWM9wb8W18seNUHhZvPok3J3SVOhIREdLyyrAm2TSH1xPDeNbHUTTp9BZeXl4W21ZRUREAwNv72nOsVFZWori4uNYPWY8nhrYDAPyQkonTudceGZyIqLks3nQSBqPAoHZ+nLndgdjErO5GoxGzZ89G3759ER0dfc31FixYAA8PD/NPaGhoM6akG+kS6omhHQJgFMBbG09JHYeIHNyJnBL8eDALAPCfK1/OyDHYRPEzY8YMHDlyBN98881113vmmWdQVFRk/snIyGimhHSzHh/aFjIZ8PPhbBzJLJI6DhE5sDd+PwEhgJGdAhHdwkPqONSMmrT4kcvluOWWW5CcnNzgbcycORPr16/Hli1bEBISct11NRoN3N3da/2QdYkKdMeYzsEAgDc3npQ4DRE5qoMZhfg99SLkMuBx9vByOE1a/Cxfvhz9+/dvUJd3IQRmzpyJ77//Hn/88QfCw8ObICFJYc6QtlDIZfjjeC6SzxdIHYeIHNCi301Dp4zr1gKt/d0kTkPNrUmHRp0yZQoAYP78+fW+74wZM/D1119j3bp1cHNzM88c7+HhAScnTpFgy8J9XXBnTAhWJWVg0W8nsHJ6L6kjkY1RqVR46qmnzL8T1cees5ex41QelHIZZg/mWR9HZLVtfj744AMUFRVh4MCBCAoKMv+sWrVK6mhkAf8e3BoqhQyJZy/jz1N5UschG6NUKjFhwgRMmDCB01tQvQghzGd9JvQIRUsfZ4kTkRQs/lejoKAAv//+OzIzMwEAwcHBGDZsWL27vQshLB2NrEiIlzMmxYVhxa5zeO234+jbui/n0iGiJvfH8VzsO1cAjVKOf9/SWuo4JBGLnvn55JNP0Lt3b+zZswdGoxFGoxF79uxBnz598Mknn1jyocgOzLylNVzUChy6UIRfDudIHYdsiMFgQFJSEpKSkmAwGKSOQzbCYBR4bYPprM+Uvq0Q5MEmFI5KJix4iqVdu3bYv38/XFxcai0vLS1FTEwMTp5s3t49xcXF8PDwQFFREXt+Wam3Np7E25tPIdzXBb/P6Q+VovmuxDamFyJJq6KiAvHx8QCAHTt2sB2gjYqNjW3Wx/s2+QL+s+Yg3LVK7HjqFng4s72YtWrqz2+LftLIZDKUlFw9cm9JSQkvaVCdpvWPgI+LGml5ZVidxHGZiKhpVFYbzMNrPDqwNQsfB2fRNj+LFi3CgAEDEB0djRYtWgAALly4gKNHj+KNN96w5EORnXDVKDHzltZ44adUvL3pFG7vFgIntULqWERkZ77cnY7MwgoEuGswpU8rqeOQxCxa/IwePRojRozA3r17kZVlGjI8ODgYPXv2hELBDzSq2z1xLbF8Zxoy8iuwfGcaZgxiI0QispwSnR5LtpwGAMxOaMsvWNTw4uehhx5CbGwsYmJi0KVLF2i1WgCAQqFA7969LRaQ7J9GqcB/hrTD7FUH8OG2M5gU1xKezmqpYxGRnVi2/Szyy6oQ4eeC8bHXnymAHEODi59Tp05hzZo1KCkpgVKpRLt27czFUGxsLLp27XpVw2eia7m1SzCWbj+LY9nFWLLlNP5vVAepIxGRHbhUUomP/0wDADw5tB2UzdipgqxXg18F27ZtQ1FREU6cOIHPP/8cI0aMwIULFzB//nzEx8fDw8MDHTrwA4xujlwuw1PDTbMqf5Z4Hhn55RInIiJ7sHjTSZRXGdAl1BPDowOljkNWotFtftq0aYM2bdrgrrvuMi9LS0tDUlISUlJSGrt5ciAD2/qhT6QPdp25jEW/n8Dbd3WTOhJZKaVSiccee8z8O1FdTueW4Jt9pl6kz46IYq9jMmvQOD/p6elo2bLlTa+fmZlp7v3VnDjOj+05klmEMe/9CSGAH2f2RecQzyZ7LI7zQyStph7n56HP9mHTsVwM6RCAZfd3b9LHIsuyynF+evTogYcffhj79u275jpFRUVYtmwZoqOj8e233zY4IDmW6BYeuK2bqVB++edjnOaEiBpk15k8bDqWC4VchqdHREkdh6xMg84Xp6am4uWXX8aQIUOg1WoRGxuL4OBgaLVaFBQUIDU1FUePHkVMTAxee+01jBw50tK5yY49MbQdfj6UjT1p+eZvbUR/ZzAYcPz4cQBAVFQUh9KgWoxGgVd+OQYAuKdnS0T6uUqciKxNg878+Pj44M0330R2djbee+89tGnTBnl5eTh16hQAYNKkSUhOTkZiYiILH6q3YE8nPBQfDgBY8Osx6A1GiRORtamqqsLkyZMxefJkVFVVSR2HrMy6g5k4klkMV40SsxLaSB2HrFCjWgo6OTnhzjvvxJ133mmpPEQAgEcGROKbvRk4e6kM3+zLwH29wqSOREQ2QKc3YNFvNdNYRMLXVSNxIrJGHPCArJKbVoXZV76xLd54EiU6vcSJiMgWfLrzHDILKxDkocXUfuFSxyErVe/ip6KiApmZmVctP3r0qEUCEdW4q2dLRPi54HJZFd7fekbqOERk5fJKK/H+lWksnhjaDloV24JR3epV/KxduxZt2rTBqFGj0LlzZ+zZs8d823333WfxcOTYVAo5nh3RHgDwyY40DnxIRNf1xu8nUVJZjegW7uZeo0R1qVfx87///Q/Jyck4cOAAPv30U0ydOhVff/01ALBLMjWJwe39Ed/GF1UGo7n3BhHRP6VmFWPVvnQAwPOjO0Iu54CGdG31Kn70ej0CAkzdjmNjY7F9+3YsXboUL774IkfOpCYhk8nw31EdIJcBvx7Jwe6zl6WORERWRgiBF9cfhVEAozoHoWe4t9SRyMrVq/jx9/fHoUOHzP/39vbGxo0bcezYsVrLiSypXaAbJsWZenu9+FMqDEaeZXR0SqUS06ZNw7Rp0zi9BeG3oxex+2w+1Eo5nh7OAQ3pxupV/HzxxRfw9/evtUytVmPlypXYtm2bRYMR/d2cIW3hrlUiNbsYa5IypI5DElOpVHj44Yfx8MMPQ6VSSR2HJFRZbTBfEp8eH4FQb2eJE5EtqFfxExISgsDA2rPibtq0CQDQt29fy6Ui+gdvFzVmJbQFACz6/QS7vhMRAFPX9vT8cvi7afDowEip45CNaPQ4P6NGjcLjjz/OUVapyd3fOwwRfi7IK63Ce1e6s5JjMhqNOHPmDM6cOQOjkSOAO6pLJZV47w/T34KnhkfBRcNLoHRzGl38bN++HevXr0f37t1x5MiROtfJzs7GHXfc0diHIgenUsjx31Gmru/L/0xDWl6ZxIlIKpWVlZg4cSImTpyIyspKqeOQRF7bcBylldXoHOKB29m1neqh0cVPXFwc9u/fj+7du6NHjx548803zbcZjUakpqbi+eefx44dOxr7UEQY1M4fA9v5QW8QeOGnoxxigchBpaQXYE3yBQDAvDHs2k71Y5FzhK6urnjjjTfg7OyMJ598EitXrjQXPpWVlQgLC8OCBQss8VDk4GQyGeaN6Yhdp7dj64lL2HwsFwmc9Z3IoRiMAs+vM80qcGdsCGLDvCRORLam0Wd+Pv74Y7Rs2RK+vr5YsWIFevbsCaVSiZSUFDz00EPIz89HWloapk6daom8RAj3dTHP+v7C+qPQ6Q0SJyKi5rQ6KQOHM4vgplFiLru2UwM0uvh59tlnMWrUKKSmpqKkpASJiYlITEzEG2+8gY8//hiPP/44yss5LQFZ1sxbWiPIQ4uM/Ap8tP2s1HGIqJkUllfhtQ3HAQCzh7SFnxtnbaf6a3TxM3DgQMyfPx/t2rWrNcrznDlzsHfvXiQlJV01DxhRYzmrlXh2pKnx85ItpznvF5GDeOP3kygo16NtgCvu7x0mdRyyUY0uflavXm2e8uKfOnXqhH379mH06NHo379/Yx+KqJbRnYPQK8IbldVGvPwz5/0isndHMovw1Z7zAID5t3aEStHojzByUE3+ytFoNFi8eDHWr1/f1A9FDkYmk+GFW6OhkMuw4WgOtp+8JHUkaiZKpRL33Xcf7rvvPk5v4SCMRoH5P5rm7xrdOQh9In2ljkQ2rNnK5iFDhjTXQ5EDaRfohsm9WwEA5v3Ixs+OQqVSYdasWZg1axant3AQa/dfQNL5AjipFPi/K+N9ETUUzxmSzZszpA383TRIyyvDh9vOSB2HiCysoKwKC67M3zU7oQ2CPJwkTkS2jsUP2Tw3rQrPj+kAAHh/6xmO/OwAjEYjsrKykJWVxektHMDCX4+joFyPdgFueLBfuNRxyA6w+CG7MKpTEOLb+KKq2ojn1x3hyM92rrKyErfeeituvfVWTm9h55LO5WNVUgYA4OXbotnImSyCryKyCzKZDC+NjYZaKceOU3lYfyhb6khE1Eh6gxH/971pzsiJ3UPRvZW3xInIXrD4IbvRytcFMwa2BgC8uD4VxTq9xImIqDE+3ZmGExdL4OWswtMjOJIzWQ6LH7IrjwyMQISvCy6VVOLN309KHYeIGiizsAJvbTwFAHhmZHt4uaglTkT2hMUP2RWNUoGXxkUDAD5LPIcDGYXSBiKiehNCYN66I6jQG9CzlTfujAmROhLZGRY/ZHf6tvbFuK7BEAJ4+ttD0BvYG4jIlvxyOAebjuVCpZDhf7dFQy6X3fhORPXA4ofs0nOjO8DLWYXjOSWc+JTIhhSV6zHvx6MAgEcHtkbbADeJE5E9YvFDdsnHVWMe++ftzac49o+dUSgUGD9+PMaPHw+FQiF1HLKgV345hrzSSkT6uWDGoEip45CdYvFDdmtc1xbo39YPVdVGPPPdIY79Y0fUajXmzp2LuXPnQq1mQ1h7setMnnlMn4V3dIZGycKWmgaLH7JbMpkML4+LhpNKgd1n87H6yh9VIrI+Or0Bz353GABwb6+W6MExfagJsfghuxbq7Yz/DG0LAHj552PILdFJnIgsQQiBgoICFBQU8IyenXh78ymcu1yOAHcNnhrOMX2oabH4Ibs3pU8rdA7xQLGuGs//cJQflnZAp9NhyJAhGDJkCHQ6FrS27khmkbljwktjo+GuVUmciOwdix+ye0qFHAtv7wylXIYNR3Pw82FOfUFkLaqqjXhizUEYjAIjOwViaMdAqSORA2DxQw6hQ7A7ZgwyTX3x/LqjyCvlZJhE1mDJltM4nmOawuLFsdFSxyEHweKHHMaMQa0RFeiG/LIqzFt3VOo4RA4vNasYS7acBgC8ODYavq4aiRORo2DxQw5DrZRj0fguUMhl+PlwNnZlsK0IkVSqjQJPrDmIaqPA8I6BGN05SOpI5EBY/JBDiW7hgRkDTQOnLUspRlElp74gksL3x8uQml0ML2cVXhoXDZmMU1hQ82HxQw5n5i1tEBXohuJKIz7eXyx1HCKHc65Qj7WppQCAF8ZGw8+Nl7uoebH4IYejVsrx+p1dIJcBuy7osDOjQupIVE8KhQKjR4/G6NGjOb2FjdEbBd7bV4RqAQzrGIAxvNxFElBKHYBICp1CPHB7lAvWHivDR8nFiPJVw8eJH6K2Qq1WY/78+VLHoAZYfbQUaYXVcFPLeLmLJMMzP+SwxndwRYSnEqV6gff3FXHwQ6ImdjyvCj8cN00y/EisB/zdtBInIkfF4occllIuw2NxnlDLgQMXq/DbGV7+shVCCFRUVKCiooJFq42oqDbinb1FMAIYGKZFrxAWPiQdFj/k0ELdlZjU2Q0A8NmhYmSVVEuciG6GTqdDfHw84uPjOb2FjVhxoAQXywzwdZbjwW7uUschB8fihxzeyNbO6OSvRpUBeGdvEQxGnkkgsqSkLB02pVVABuDfPTzgouJHD0mLr0ByeHKZDDN7eMBZJcOpfD2+vdImgYgar6jSiA+STENKjG7rjGh/dmsn6bH4IQLg66zAtCun4tekluLE5SqJExHZPiEEluwrQmGlEaHuStwT7SZ1JCIAVl78bN++HWPGjEFwcDBkMhl++OEHqSORHYtvqUV8Sy2MAli8uwhleo7+TNQYv54uR3J2JVRyYHacB9QKdmsn62DVxU9ZWRm6dOmCJUuWSB2FHIBMJsO0GHf4uyiQW27A0uRi9iQiaqBzhXp8fqgEAHB/Zze08lRJnIjoL1Y9yOGIESMwYsQIqWOQA3FRyTEnzgP/tyUfOzN06BaowaBWTlLHIrIpldUCb+0pgt4IxAZpMKK1s9SRiGqx6uKnviorK1FZWWn+f3Ex522i+mvro8bEjq5YeaQUH+8vRjsfFYLd7OqtYvPkcjkGDx5s/p2sy4qDxbhQXA0vrRwzenhwFGeyOnb1V2PBggXw8PAw/4SGhkodiWzUbVEu6Oinhs4gsHhPIfTs/m5VNBoNXn31Vbz66qvQaNh7yJrsydTh97OmAUP/3dMDHhq7+pghO2FXr8pnnnkGRUVF5p+MjAypI5GNUshkmNXTA65qGc4UVOPLK20XiOjacsuqsWRfEQBgbDsXdAlgYUrWya6KH41GA3d391o/RA3l46zAzB4eAID1p8qxJ5MjCRNdi94o8EZiEcr0Am28Vbg72lXqSETXZFfFD5Gl9QjW4ta2psaa7+0rQk4pp7+wBhUVFejevTu6d++OigrOyWYNPj9YgtMFeriqZHi8lydUcrbzIetl1cVPaWkpDhw4gAMHDgAA0tLScODAAaSnp0sbjBzKpE5uaOejQrle4M3dhdAb2P6H6O8SL+jwy+lyAKZ2Pv4uCokTEV2fVRc/SUlJ6NatG7p16wYAePzxx9GtWzc8//zzEicjR6KUm77Jul1p/7PiINv/ENXIKa3G+39r59M9mLO1k/Wz6v67AwcO5CBzZBV8nRV4rKcnXv6zABvOlKODnwp9Qzn+Dzm2KoPAosRClFcLRPmocA/b+ZCNsOozP0TWJCZIg9uiXAAA7yeZxjEhcmSfpBQjrbAa7mrT2VEl2/mQjWDxQ1QPd3d0NY3/Uy3w6q4ClHP+L3JQG8+WY1NaBWQAZsV5wseZ7XzIdrD4IaoHhVyG//TygI+THFklBry7twhGXpolB3PychU+TjGNoH9PtCu6BnI8H7ItLH6I6slDq8CTfTyhlAN7syrx/fEyqSM5HLlcjr59+6Jv376c3qKZFeoMeD2xENVGIK7FX5eCiWyJVTd4JrJWbbzVmBbjjg+SirHySCkivFToxm+/zUaj0eDtt9+WOobDqTaahnvIrzCihZtpEFDO20W2iF+ZiBooIdwZQyKcIAAs3l3IARDJ7n1xqARHL+nhpJThqT5ecFbxI4RsE1+5RI0wtas72nirUKoXWLCzkA2gyW5tSivH+lN/DWQY4s4LB2S7WPwQNYJKIcNTfTzhrZXjQnE1Fu8pgoENoJtcRUUF+vXrh379+nF6i2aQeqkKy5JNDZwndHBBXAsOZEi2jcUPUSN5Oykwt68X1HIgObuSM8A3E51OB52Ok802tYtl1Xh9VwGqBdA7RIPxHTiQIdk+Fj9EFtDaW4WZPU0zwP94shx/nCuXOBFR41XojVj4ZyGKqwQiPJX4dw9PyNnAmewAix8iC+kb6oTxHUzdfpcmFeN4XpXEiYgaziAE3tpThPTianhp5Xi6rxc0ShY+ZB9Y/BBZ0IQOrujVQoNqAby6s4A9wMhmfXGoBMnZlVDJgbl9OYIz2RcWP0QWJJfJ8O+eHojwVKK4SuB/OwpQXMkeYGRbfjlVhp9Omi7dzujhgTbeaokTEVkWix8iC9Mq5Xg23gt+znJklxqwcGcBKg3sAUa2YW+mDssPmBrtT+rkiviWThInIrI8Fj9ETcBLq8D/xXvDRSXDict6zgFmYTKZDDExMYiJieEIwxZ0Kr8Kb+0phAAwJMIJt7Xj1BVkn1j8EDWRUHcl5vb1glIOJF7Q4Qt2gbcYrVaLjz76CB999BG0Wo45Ywk5pdV45c9CVBmAmEANpnVzZ2FJdovFD1ET6uinxswef3WBX3+Kk6CS9SmqNOLlK+3TIjyVeLy3BxRyFj5kv1j8EDWx+JZOmNTJNDDcpwdKsP08RyQm61GuN+LlHfnIKjXA11mOZ/t5wUnJjwayb3yFEzWD29q5YHQbZwDAu/uKkJzNkYkbo6KiAgkJCUhISOD0Fo1QZRB4dWchzhRUw10jx7z+3vByYpd2sn8sfoiagUwmw+QubhgQpoVRAIt2FSL1EgdBbIzCwkIUFhZKHcNmGYwCb+0uxJFLVXBSyvDfeC8Eu3GyUnIMLH6ImolcJsO/unuge5AGVUZgwc4CnCvUSx2LHJAQAh8mF2NvlmkQw6f7eiLSSyV1LKJmw+KHqBkp5TI83tsT7X1VKNcLvLS9AJklHAWamo8QAisOluCPcxWQA5jTyxPR/hqpYxE1KxY/RM1Mo5DhmX5eCPdUorDSiPlb85HNaTCoGQgh8OXhUqw/ZRq9+dHu7ohrwaECyPGw+CGSgItKjuf7e6OluxL5OlMBdLGMBRA1rW+OluKHE6bhFqbFuOOWcGeJExFJg8UPkUTcNXLMG+CFFm4K5FUYMX9rAS6VG6SORXZqTWop1h4zFT4PdHXD8EgWPuS4WPwQSchTq8ALA7wR5KpAbrkB87bm4zILoBuSyWTo0KEDOnTowFGIb8IPx0vxzdFSAMD9nd0wug2nrSDHxuKHSGJeTqYCKMBFgYtlBjy3NR+5ZSyArker1eLzzz/H559/zuktbmDtsVJ8cdhU+NwT7YqxnK+LiMUPkTXwcVZgfq0C6DIbQVOjCCHw9ZESrDxiKnzu6uiKO9q7SpyKyDqw+CGyEv4uCrw0yBvBrgrklRvx3JZ8XChmAUT1J4TAZ4dK8O2VNj73d3bD+A4sfIhqsPghsiI+TqYCqKW7EgU6I57bms+BEOug0+kwZswYjBkzBjodpwr5O6MQWJZSjJ9OmrqzT+3mxktdRP/A4ofIynhqFXhhoDciPJUorjRi3tZ8nLjMqTD+TgiB7OxsZGdnQwghdRyrUW0UWLKvCL+dqYAMpnF8RrZm4UP0Tyx+iKyQu0aO+QO80c5HhVK9wPxt+UjK4hkOujZdtRELdxZg63kd5DLgsZ4eSOA4PkR1YvFDZKVc1HI8398LMYEaVBmAV3cV4o+0cqljkRUqrjRi/rYCpORUQa0wzdXVP8xJ6lhEVovFD5EV0yrlmNvXEwOvzAa/JKkY3x0r5aUeMsstq8b//XEZp/L1cFXL8MIAb8QGsfs/0fWw+CGyckq5DDN7eOC2KFPbja+OlOLjlBIYjCyAHN3ZAj2e/SMfWaUG+DrL8fIgH7T1UUsdi8jqKaUOQEQ3JpPJcG8nN3hp5fj0QAk2nClHTmk1Hu/tCRcVv8M4ot0XdHhnbxEqDQIt3ZX4b38v+DgppI5FZBP4V5PIhoxq44In+3hCo5DhwMUqPPtHPnIccDBEmUyGiIgIREREONz0FkIIfHe8FK8nFqLSINA1QI3/3eLNwoeoHmTCjhsPFBcXw8PDA0VFRXB3d5c6DlmZ5ORkqSM02NkCPRb8WYB8nRHuahme6uuF9r683GHv9AaBD5OLsPW8qeffiNbOeKCLGxRy2ywAY2NjpY5AVqqpP7955ofIBkV4qbAwwQeRXkoUV5m6wv9+tpwNoe1YfoUB87blm7uyP9TNDQ91c7fZwodISix+iGyUj5MCLw30Qa8WGlQbgaXJxXg/qRhVBhZA9ubopSo8ufEyTlzWw1kpw7P9vDCCgxcSNRiLHyIbplHK8ERvT9zbyRVyAH+cq8B/t1xGbpl9twPS6XSYMGECJkyYYNfTWwghsP5kGeZvy0dhpREt3ZV4NcEH3QI1Ukcjsmns7UVk42QyGW6LckWElwqLdxfiTEE1ntx0GbPjPO32Q1IIgbNnz5p/t0cVeiM+SC7GzgxTcRffUotHYt2hVfI7K1Fj8V1EZCe6BGjw2hBftPZSobRK4H87CvDZwWLoOR6QzTmdr8cTmy5jZ4YOChkwtasbZvX0YOFDZCF8JxHZET9n06zwwyNNczr9eLIcz26+jKwS+74MZi+MQuCHE2V49o/LyCk1wNdJjhcHemNkGxeH69JP1JRY/BDZGbVChmkx7pjbxxOuahnOFlbjyY2X8Ucae4NZs4IKA/63owBfHCqBQQC9QzR4Y6gvojiEAZHFsc0PkZ3q2UKLSG8V3tlThCOXqrAkqRh7syrxcIw7vDggntUQQuDPDB0+TilGaZWARiHDg13dMDjciWd7iJoIix8iO+bjpMDzA7yw7ngZVh0txb6sShy7lIcHu7mjf0stP1wlVlBhwNL9xdiXVQkACPdUYnacJ0Lc+aeZqCnxHUZk5xQyGW5v74qYIA2W7CvC2cJqvLO3CDszdHgk1h3eNngWSCaTISgoyPy7rRFCYFu6Dp+mFKNUL6CUAeM7uGJclAuUHLSQqMlxegtyWLY8vUVDVRsF1p0ow+qjpagWgLNShonRrhgR6cyRgpvJheJqfJxSjMO5VQCASC8lZvTwQJiHSuJkzY/TW9C1NPXnN8/8EDkQpVyGO9q7okewBu8nFeNUvh6fHijBH2kVmBbjzvnBmpCu2og1qWVYf7IM1QJQya+c7WnnwsKTqJmx+CFyQC09VHj5Fm9sTqvAV4dLcL6oGv/dko+BYVrc28mNDaItSAiBxAuV+OxgMfIqjACA2CANHuzqhkBX/gkmkgLfeUQOSiGTYWiEM3q10OKrwyXYnFaBred1SLxQidFtnTGunQucVdY5GoZOp8P06dMBAB999BG0Wq3Eiep29FIVvjhUglP5egCAv7MCD3ZzQ49g68xL5ChY/BA5OHeNHI9298DgcCesOFiCE5f1+PZYGTaeKcedHVwxNNIZKiu7LCOEQGpqqvl3a5NepMeXh0uRnG3qxaVVyHBrO2eMi3KFRmFdzyWRI2LxQ0QAgLY+arw8yBt7syrx5eESZJUYsPxACdafLMe4KBcMauUENT+4ryu9SI/vjpdhZ7oORgByGZAQ7oQJHV3hpeWlRCJrweKHiMxkMhniWmjRPUiDzWkVWJVaitxyAz7aX4w1qaW4tZ0LhkY4cY6pfzidr8e3x0qx98p4PQDQq4UG93RyQws3/pklsjZ8VxLRVRRyGYZGOmNAmBM2pZVj3YkyXK4w4rODJfj+WCmGRjpjaKQzfBy4YbRBCKRkV+KX0+U4eNHUbV0GoFeIBrdHuSLCy/G6rhPZChY/RHRNGqUMo9q4YGikM7adq8D3x8uQU2bA2mNl+O54GeJaaDGitTM6+KpscrDBhiipMuKPtApsOFOO3DIDANPlrfiWWtwe5crRmYlsAN+lRHRDKrkMCRHOGNTKCXsyK/Hr6TKk5umReEGHxAs6hLorMTBMi/iWTvBxtr+zQQajwKHcKmw/X4HdF3SoMvVYh6tKhlvCnTC8tTMCXPjnlMhW8N1KRDdNIZehT6gWfUK1OFeox4Yz5dh+XoeM4mp8cbgUXx4uRbS/Gv3DtIgL1sJF3XRtgzw9PZts24CpF9nZwmpsP1+BPzN0KNQZzbe18lBiRBtnxIc6QaN0jDNeRPaE01uQw3LE6S2aQlmVEbsu6LDtfAWO5enNyxUyoL2vGt2DNegerEGQDQzoV2UQOJxbhaQsHZKzK3G54q+Cx00tQ99QJwwI06KNt+Nc5mtKnN6CrsXhp7dYsmQJXn/9deTk5KBLly5499130bNnT6ljEdEVLmo5hkQ4Y0iEM3LLqrE9XYcd6TpcKK7GkUtVOHKpCisOliDYTYFoPzXa+6rRwU8NXyu4PKY3CJwu0OPYpSqk5lUh9ZIelYa/vg9qFDLEBGkwIEyLroEaqxvviIgaxqqLn1WrVuHxxx/Hhx9+iLi4OCxevBjDhg3DiRMn4O/vL3U8IvoHfxcl7mzvijvbuyKntBpJWZVIyq5E6qUqZJUYkFVSgd/PVpjWdVagtbcKrTyVCPNQIsxTBV8neZOdUamsFsgorsa5Ij3OF1YjrVCPM/l6c/udGj5OctPZqiAtov3VHNuIyA5Z9WWvuLg49OjRA++99x4AwGg0IjQ0FP/+97/x9NNP3/D+vOxF18PLXs2nrMp45cyK6ezK2UI9jHX85XFWyuDnooCfswJ+Lgr4OivgqZXDRSWDs8r0r1Ypg76qEs8/NQcA8OJrb0Gu0qCsyohyvUCZ3oiyKoG8CgMulRmQV27ApXIDLpcbYbz6IeGhkaODnwrtfdXo6KdGmIeSl7SaCS970bU47GWvqqoqJCcn45lnnjEvk8vlSEhIQGJiYp33qaysRGXlX4OMFRcXN3lOIroxF7UcPYK15jmtKvRGnMzXI62wGucL9ThXVI3M4mqUVwucL6rG+aLq627PWKVDxoH9AIDHfr0Eufrm5spy18jRykOJME8lwjxUaOujQrCrgsUOkYOx2uInLy8PBoMBAQEBtZYHBATg+PHjdd5nwYIFeOGFF5ojHhE1gpNKji4BGnQJ0JiX6Y0COaWmszWXrpytuVRmQEmV6UxOud50Zqe82gjj3zqRqeWAWiWDs0oGF5Xc/K+3k/yvs0jOCgS6KuDJKSaICFZc/DTEM888g8cff9z8/+LiYoSGhkqYiIhulkouQ6i7EqE3MUhgRUUF4t8w/b5iXACcnJyaOB0R2ROrLX58fX2hUChw8eLFWssvXryIwMDAOu+j0Wig0WjqvI2IiIgIAKx2dkK1Wo3Y2Fhs3rzZvMxoNGLz5s3o3bu3hMmIiIjIllntmR8AePzxxzF58mR0794dPXv2xOLFi1FWVoYHHnhA6mhERERko6y6+Jk4cSIuXbqE559/Hjk5OejatSs2bNhwVSNoInI8Wu3N9fAiIvonqx7np7E4zg9dD8f5IZIWx/mha2nqz2+rbfNDRERE1BRY/BAREZFDYfFDRDansrISs2bNwqxZs2qN6k5EdDOsusEzEVFdjEYjdu7caf6diKg+eOaHiIiIHAqLHyIiInIoLH6IiIjIobD4ISIiIofC4oeIiIgcil339qoZvLq4uFjiJGSNSktLpY5ADaTT6cy/l5WVwWAwSJiGGop/m+laal4bTTUJhV1Pb3HhwgWEhoZKHYOIiIgaICMjAyEhIRbfrl0XP0ajEVlZWXBzc4NMJpM6Tp2Ki4sRGhqKjIwMu5x/jPtn27h/to37Z9scef+EECgpKUFwcDDkcsu30LHry15yubxJKsam4O7ubpcv7hrcP9vG/bNt3D/b5qj75+Hh0WSPyQbPRERE5FBY/BAREZFDYfEjMY1Gg3nz5kGj0UgdpUlw/2wb98+2cf9sG/ev6dh1g2ciIiKif+KZHyIiInIoLH6IiIjIobD4ISIiIofC4oeIiIgcCoufRlqyZAlatWoFrVaLuLg47N2795rr6vV6vPjii4iMjIRWq0WXLl2wYcOGWuu0atUKMpnsqp8ZM2aY1xk4cOBVtz/yyCMW37ft27djzJgxCA4Ohkwmww8//HDD+2zduhUxMTHQaDRo3bo1VqxYcdU6N3rOdDodZsyYAR8fH7i6uuKOO+7AxYsXLbRXf2mK/VuwYAF69OgBNzc3+Pv7Y9y4cThx4kStdWz5+M2fP/+q7FFRUbXWseXjZ8vvv+zsbNxzzz1o27Yt5HI5Zs+eXed6a9asQVRUFLRaLTp16oRffvml1u1CCDz//PMICgqCk5MTEhIScOrUKQvt1V+aYv+WLVuG+Ph4eHl5wcvLCwkJCVf9fZkyZcpVx2/48OEW3DOTpti/FStWXJVdq9XWWseWj19d7y2ZTIZRo0aZ17HU8WPx0wirVq3C448/jnnz5mH//v3o0qULhg0bhtzc3DrX/+9//4ulS5fi3XffRWpqKh555BHcdtttSElJMa+zb98+ZGdnm382btwIABg/fnytbU2bNq3Weq+99prF96+srAxdunTBkiVLbmr9tLQ0jBo1CoMGDcKBAwcwe/ZsPPTQQ/jtt9/M69zMczZnzhz89NNPWLNmDbZt24asrCzcfvvtNrF/27Ztw4wZM7B7925s3LgRer0eQ4cORVlZWa1t2erxA4COHTvWyv7nn3/Wut2Wj58tv/8qKyvh5+eH//73v+jSpUud6+zatQt33303pk6dipSUFIwbNw7jxo3DkSNHzOu89tpreOedd/Dhhx9iz549cHFxwbBhw2pNJmsJTbF/W7duxd13340tW7YgMTERoaGhGDp0KDIzM2utN3z48FrHb+XKlY3en39qiv0DTKMh/z37+fPna91uy8fvu+++q7VvR44cgUKhuOr9Z5HjJ6jBevbsKWbMmGH+v8FgEMHBwWLBggV1rh8UFCTee++9Wstuv/12MWnSpGs+xqxZs0RkZKQwGo3mZQMGDBCzZs1qXPh6AiC+//77667z1FNPiY4dO9ZaNnHiRDFs2DDz/2/0nBUWFgqVSiXWrFljXufYsWMCgEhMTLTAntTNUvv3T7m5uQKA2LZtm3mZLR+/efPmiS5dulxzG/Z2/Gzp/fd318o4YcIEMWrUqFrL4uLixMMPPyyEEMJoNIrAwEDx+uuvm28vLCwUGo1GrFy5skHZb4al9u+fqqurhZubm/jss8/MyyZPnizGjh1b/5CNYKn9+/TTT4WHh8c172dvx++tt94Sbm5uorS01LzMUsePZ34aqKqqCsnJyUhISDAvk8vlSEhIQGJiYp33qaysvOoUpZOT01XfnP/+GF9++SUefPDBqyZm/eqrr+Dr64vo6Gg888wzKC8vb+QeNV5iYmKt5wMAhg0bZn4+buY5S05Ohl6vr7VOVFQUWrZsec3ntbncaP/qUlRUBADw9vautdwWj1+NU6dOITg4GBEREZg0aRLS09PNt9nT8bO199/NuNFzkJaWhpycnFrreHh4IC4uTvLj1xDl5eXQ6/VXvf+2bt0Kf39/tGvXDo8++iguX74sUcL6Ky0tRVhYGEJDQzF27FgcPXrUfJu9Hb9PPvkEd911F1xcXGott8Txs+uJTZtSXl4eDAYDAgICai0PCAjA8ePH67zPsGHD8Oabb6J///6IjIzE5s2b8d1338FgMNS5/g8//IDCwkJMmTKl1vJ77rkHYWFhCA4OxqFDhzB37lycOHEC3333nUX2raFycnLqfD6Ki4tRUVGBgoKCGz5nOTk5UKvV8PT0vGqdnJycJs1/IzfaPycnp1q3GY1GzJ49G3379kV0dLR5ua0ePycnJ8TFxWHFihVo164dsrOz8cILLyA+Ph5HjhyBm5ubXR0/W3v/3YxrPQc1x6bm3+utY0vmzp2L4ODgWsXA8OHDcfvttyM8PBxnzpzBs88+ixEjRiAxMREKhULCtDfWrl07LF++HJ07d0ZRUREWLVqEPn364OjRowgJCbGr47d3714cOXIEn3zySa3lljp+LH6a0dtvv41p06YhKioKMpkMkZGReOCBB7B8+fI61//kk08wYsQIBAcH11o+ffp08++dOnVCUFAQBg8ejDNnziAyMrJJ94Fu3owZM3DkyJGrzuzZ8vEbMWKE+ffOnTsjLi4OYWFhWL16NaZOnSphMsvj+8+2LVy4EN988w22bt1a64z7XXfdZf69U6dO6Ny5MyIjI7F161YMHjxYiqg3rXfv3ujdu7f5/3369EH79u2xdOlSvPTSSxIms7xPPvkEnTp1Qs+ePWstt9Tx42WvBvL19YVCobiqF8vFixcRGBhY5338/Pzwww8/oKysDOfPn8fx48fh6uqKiIiIq9Y9f/48Nm3ahIceeuiGWeLi4gAAp0+fbsCeWE5gYGCdz4e7uzucnJxu6jkLDAxEVVUVCgsLr7mOVG60f383c+ZMrF+/Hlu2bEFISMh1t2srx68unp6eaNu2rTm7vRw/W3z/3YxrPQd/f//VLLvWOrZg0aJFWLhwIX7//Xd07tz5uutGRETA19fXJo7fP6lUKnTr1q3W+w+w/eNXVlaGb7755qa+UDX0+LH4aSC1Wo3Y2Fhs3rzZvMxoNGLz5s21KvO6aLVatGjRAtXV1fj2228xduzYq9b59NNP4e/vX6uL37UcOHAAABAUFFS/nbCw3r1713o+AGDjxo3m5+NmnrPY2FioVKpa65w4cQLp6ek3fF6b2o32DzB1M505cya+//57/PHHHwgPD7/hdm3l+NWltLQUZ86cMWe39eNXwxbffzfjRs9BeHg4AgMDa61TXFyMPXv2SH78btZrr72Gl156CRs2bED37t1vuP6FCxdw+fJlmzh+/2QwGHD48GFzdns4foBpOIbKykrce++9N1y3wcev0U2mHdg333wjNBqNWLFihUhNTRXTp08Xnp6eIicnRwghxH333Seefvpp8/q7d+8W3377rThz5ozYvn27uOWWW0R4eLgoKCiotV2DwSBatmwp5s6de9Vjnj59Wrz44osiKSlJpKWliXXr1omIiAjRv39/i+9fSUmJSElJESkpKQKAePPNN0VKSoo4f/68EEKIp59+Wtx3333m9c+ePSucnZ3Fk08+KY4dOyaWLFkiFAqF2LBhg3mdGz1nQgjxyCOPiJYtW4o//vhDJCUlid69e4vevXvbxP49+uijwsPDQ2zdulVkZ2ebf8rLy4UQtn/8/vOf/4itW7eKtLQ0sXPnTpGQkCB8fX1Fbm6ueR1bPn5C2O77TwhhXj82Nlbcc889IiUlRRw9etR8+86dO4VSqRSLFi0Sx44dE/PmzRMqlUocPnzYvM7ChQuFp6enWLdunTh06JAYO3asCA8PFxUVFVa/fwsXLhRqtVqsXbu21vuvpKTE/JhPPPGESExMFGlpaWLTpk0iJiZGtGnTRuh0OqvfvxdeeEH89ttv4syZMyI5OVncddddQqvVXvUc2Orxq9GvXz8xceLEOh/TUsePxU8jvfvuu6Jly5ZCrVaLnj17it27d5tvGzBggJg8ebL5/1u3bhXt27cXGo1G+Pj4iPvuu09kZmZetc3ffvtNABAnTpy46rb09HTRv39/4e3tLTQajWjdurV48sknRVFRkcX3bcuWLQLAVT81+zR58mQxYMCAq+7TtWtXoVarRUREhPj000+v2u71njMhhKioqBD/+te/hJeXl3B2dha33XabyM7Oton9q2t7AMzr2frxmzhxoggKChJqtVq0aNFCTJw4UZw+fbrWOrZ8/ISw7fdfXeuHhYXVWmf16tWibdu2Qq1Wi44dO4qff/651u1Go1E899xzIiAgQGg0GjF48OA6nwtr3L+wsLA615k3b54QQojy8nIxdOhQ4efnJ1QqlQgLCxPTpk2r9eXLmvdv9uzZ5r+dAQEBYuTIkWL//v21tmHLx08IIY4fPy4AiN9///2qx7Tk8ZNdCURERETkENjmh4iIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIoLH6IiIjIobD4ISIiIofC4oeIbMKUKVMwbtw48/+XLFmCVq1aQavVIi4uDnv37pUuHBHZFBY/RGRzVq1ahccffxzz5s3D/v370aVLFwwbNgy5ublSRyMiG8Dih4hszptvvolp06bhgQceQIcOHfDhhx/C2dkZy5cvlzoaEdkAFj9EZFOqqqqQnJyMhIQE8zK5XI6EhAQkJiZKmIyIbAWLHyKyKXl5eTAYDAgICKi1PCAgADk5ORKlIiJbwuKHiIiIHAqLHyKyKb6+vlAoFLh48WKt5RcvXkRgYKBEqYjIlrD4ISKbolarERsbi82bN5uXGY1GbN68Gb1795YwGRHZCqXUAYiI6uvxxx/H5MmT0b17d/Ts2ROLFy9GWVkZHnjgAamjEZENYPFDRDZn4sSJuHTpEp5//nnk5OSga9eu2LBhw1WNoImI6iITQgipQxARERE1F7b5ISIiIofC4oeIiIgcCosfIiIicigsfoiIiMihsPghIiIih8Lih4iIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIoLH6IiIjIofw/bg7kSn652k4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHHCAYAAABQhTneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsj0lEQVR4nO3dd3hT9f4H8Hd2uvekpbRlFCirBcoqQ8oGwQGoqKAI6oUr4FVRf1dBvQoqKg5URBEnMhwoKgrIEspoKbNsCi0dlNI90qbJ9/dHaLRSRtu0J+P9ep4+lJOTk/fJSZpPzvkOmRBCgIiIiMhByKUOQERERNScWPwQERGRQ2HxQ0RERA6FxQ8RERE5FBY/RERE5FBY/BAREZFDYfFDREREDoXFDxERETkUFj9ERETkUFj8EBERkUNh8UMOZcWKFZDJZEhKSqq1vLCwENOnT4efnx9cXFwwaNAg7N+/v9nznThxAnPmzEGfPn2g1Wohk8lw7ty5em3j2LFjGD58OFxdXeHt7Y377rsPly5dqrXO/PnzIZPJrvmzc+dOC+4VUFlZiblz5yI4OBhOTk6Ii4vDxo0bb/r+mZmZmDBhAjw9PeHu7o6xY8fi7NmzV613rf1ZuHBhg7ZZUVGBqVOnIjo6Gh4eHnB1dUWXLl3w9ttvQ6/X1/+JsIBPPvkE7du3h1arRZs2bfDuu+/e9H1v9jgMHDiwzudx+PDhDd7mK6+8gl69esHPz8+cffbs2Ve9Nomag1LqAERSMxqNGDVqFA4ePIgnn3wSvr6+eP/99zFw4EAkJyejTZs2zZYlMTER77zzDjp06ID27dvjwIED9br/hQsX0L9/f3h4eOCVV15BaWkpFi1ahMOHD2Pv3r1Qq9UAgNtvvx2tW7e+6v7PPvssSktL0aNHD0vsjtmUKVOwdu1azJ49G23atMGKFSswcuRIbNmyBf369bvufUtLSzFo0CAUFRXh2WefhUqlwltvvYUBAwbgwIED8PHxqbX+kCFDcP/999da1q1btwZts6KiAkePHsXIkSPRqlUryOVy7Nq1C3PmzMGePXvw9ddfW+DZuXlLly7FI488gjvuuAOPP/44duzYgcceewzl5eWYO3fuDe9fn+MQEhKCBQsW1FoWHBzc4G0mJyeja9euuOuuu+Dm5oZjx45h2bJl+Pnnn3HgwAG4uLg08FkhagBB5EA+/fRTAUDs27fPvGzVqlUCgFizZo15WW5urvD09BR33313s+a7fPmyKC4uFkII8frrrwsAIi0t7abv/+ijjwonJydx/vx587KNGzcKAGLp0qXXvW96erqQyWRi2rRpDcp+LXv27BEAxOuvv25eVlFRISIjI0Xv3r1veP9XX31VABB79+41Lzt27JhQKBTimWeeqbUuADFjxgyLbrMuM2fOFABEdnb2Ddf9p8mTJ4sBAwbU+37l5eXCx8dHjBo1qtbySZMmCRcXF5Gfn3/d+9fnOAwYMEB07Njxhpkae2zXrl0rAIiVK1fecF0iS+JlL3J4a9euRUBAAG6//XbzMj8/P0yYMAHr1q1DZWVls2Xx9vaGm5tbg+//7bffYvTo0WjZsqV5WUJCAtq2bYvVq1df974rV66EEAKTJk1q8OPXZe3atVAoFJg+fbp5mVarxdSpU5GYmIiMjIwb3r9Hjx61zkZFRUVh8ODB19yniooK6HQ6i27z71q1agXAdLm0uWzZsgWXL1/Gv/71r1rLZ8yYgbKyMvz888/XvX9DjkN1dTVKS0stus2/k+J5JALY5ocIKSkpiImJgVxe++3Qs2dPlJeX4+TJk9e9f2lpKfLy8m74U1RU1JS7gczMTOTm5qJ79+5X3dazZ0+kpKRc9/5fffUVQkND0b9/f4vmSklJQdu2beHu7n5VJgDXvbRnNBpx6NCha+7TmTNnUFJSUmv5ihUr4OLiAicnJ3To0OGqS1MN2WZVVRXy8vKQkZGB77//HosWLUJYWFidlw6bSs3x+2fu2NhYyOXyGx7f+h6HkydPwsXFBW5ubggMDMRzzz13VTun+m5TCIG8vDzk5OSYL9kpFAoMHDjwutmJLI1tfsjhZWdn1/mBHxQUBADIyspCp06drnn/mTNn4rPPPrvh4wwYMABbt25tcM4byc7OBvBX7r8LCgpCfn4+KisrodForrr96NGjOHToEJ566inIZDKL57pWJsD0/F5LTeYb3b9du3YAgD59+mDChAkIDw9HVlYWlixZgkmTJqGoqAiPPvpog7YJAN999x3uvvtu8/+7d++O5cuXQ6lsvj+h2dnZUCgU8Pf3r7VcrVbDx8fnus9jzf1v9jhERkZi0KBB6NSpE8rKyrB27Vr873//w8mTJ7Fq1aoGbRMALl68WGv9kJAQfP3114iKirpudiJLY/FDDq+ioqLOgkCr1Zpvv56nnnoK99577w0fx8vLq2EBb1JNzhvtS123f/XVVwBg8Ute13vMm3l+b3afavyzl9qDDz6I2NhYPPvss5gyZQqcnJzqvU0AGDRoEDZu3IjCwkJs3rwZBw8eRFlZ2TVz1zAajcjPz6+1rLKyEnq9Hnl5ebWWe3h4QKVSXXNbFRUV5gbrdeW+0eu0Psfhk08+qbXOfffdh+nTp2PZsmWYM2cOevXqVe9tAqbLuhs3boROp0NKSgq+++67615WI2oqLH7I4Tk5OdXZrqemzYiTk9N179+hQwd06NChSbLVR03O+u6LEAJff/01oqOj0blz5xs+TkVFxVWX8AIDA6+bq6HPb0P3qYZarcbMmTPxyCOPIDk5Gf369WvQNgMCAhAQEAAAuPPOO/HKK69gyJAhOHXq1HX3PT09HeHh4XXe5ufnV+v/W7Zsue7lHycnJ1RVVdV5m06nu+HrtLGv8//85z9YtmwZNm3aZC5+6rtNtVqNhIQEAMDo0aMxePBg9O3bF/7+/hg9evR1H5/Iklj8kMMLCgoyXzL6u5pldXXv/buioqIbfusGTH/4vb29GxbyJtRcTrjWvnh7e9f5LX3nzp04f/78Vd2ar2XVqlV44IEHai0TQlw3V2ZmZp2ZgOs/vzWZG3N8QkNDAcB8BsYS27zzzjvxf//3f1i3bh0efvjha64XGBh41Zg3r7/+OnJycvDGG2/UWt6lS5frPmZQUBAMBgNyc3NrXfqqqqrC5cuXb5i5MccBuPp5tMQ2+/Tpg6CgIHz11VcsfqhZsfghh9e1a1fs2LEDRqOxVqPnPXv2wNnZGW3btr3u/WfNmmUVbX5atGgBPz+/qwZwBIC9e/eia9eudd7vq6++gkwmwz333HNTjzNs2LB6DVDYtWtXbNmyBcXFxbUaxu7Zs8d8+7XI5XJ06tSpzn3as2cPIiIibtg7rmbgwpozLZbYZk2xe6NG7Fqt1nymo8aXX36JysrKq5bfSM3zlJSUhJEjR5qXJyUlwWg0Xvd5rLl/Q48DcPXzaIltAqazRE3dGYDoKtL2tCdqXnWN8/PNN99cNc7PpUuXhKenp5g4ceINt3n06FGxcePGG/4kJSXVK+uNxvk5ffq0OH36dK1ljzzyiHBychLp6enmZZs2bRIAxAcffHDVNqqqqoSPj4+Ij4+vV7b62L1791Vjweh0OtG6dWsRFxdXa93z58+LY8eO1Vq2cOHCq47Z8ePHhUKhEHPnzjUvy83Nveqxi4uLRWRkpPD19RWVlZX13ualS5eE0Wi8ars14/xs3rz5Zp6CWhozzo+3t7cYPXp0reX33nuvcHZ2FpcvX66V+9ixY6KsrMy87GaPQ1FRkdDpdLUew2g0iokTJwoAIjk5ud7bLC0trZWlRs04P88991x9ngqiRmPxQw6lruKnurpa9OrVS7i6uooXXnhBLFmyRHTs2FG4ubmJ48ePN2u+wsJC8dJLL4mXXnpJDB8+XAAQ//nPf8RLL70k3n333VrrhoWFibCwsFrL0tPThY+Pj4iMjBTvvPOOeOWVV4SXl5fo1KnTVR9oQgjx008/CQDiww8/bMrdEuPHjxdKpVI8+eSTYunSpaJPnz5CqVSKbdu21VpvwIAB4p/fyWoKGH9/f/Haa6+Jt956S4SGhorg4OBaBc+8efNEly5dxH//+1/x0UcfiRdeeEGEhYUJmUwmvvzyywZt86233hLt2rUTc+fOFUuXLhWLFi0SQ4YMEQDEmDFjGvRcNLT4EUKIJUuWCADizjvvFMuWLRP333+/ACBefvnlWuvNmzdPABBbtmyptfxmjsOWLVtEYGCgmDNnjliyZIlYtGiR6Nu3rwAgpk+fflWmm9lmSkqK8PHxEf/617/EO++8I9577z0xZcoUoVQqRatWrUReXl6Dng+ihmLxQw6lruJHCCHy8/PF1KlThY+Pj3B2dhYDBgy4ap3mkJaWJgDU+fPPQqeu4kcIIY4cOSKGDh0qnJ2dhaenp5g0aZLIycmp8/HuuusuoVKpap01aAoVFRXiiSeeEIGBgUKj0YgePXqIDRs2XLVeXcWPEEJkZGSIO++8U7i7uwtXV1cxevRocerUqVrr/P7772LIkCEiMDBQqFQq4enpKYYOHXrNszM3s819+/aJ8ePHi5YtWwqNRiNcXFxETEyMePPNN4Ver2/Qc9GY4kcIIT766CPRrl07oVarRWRkpHjrrbeuOjt1reLnZo7D2bNnxfjx40WrVq2EVqsVzs7OIjY2Vnz44Yd1ngW7mW1eunRJTJ8+XURFRQkXFxehVqtFmzZtxOzZs8WlS5ca/FwQNZRMiOu0VCQiIiKyMxzhmYiIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIodj29hdFoRFZWFtzc3CCTyaSOQ0RERDdBCIGSkhIEBwfXmnbIUuy6+MnKyjJPxkdERES2JSMjAyEhIRbfrl0XPzWTE2ZkZNSadI8IAFJSUqSOQA2k0+kwfPhwAMCGDRug1WolTkQN0a1bN6kjkJUqLi5GaGjoDScZbii7Ln5qLnW5u7uz+KGruLq6Sh2BGkihUJh/d3FxgZOTk4RpqKH4d5lupKmarLDBMxERETkUFj9ERETkUOz6shcR2SeFQoHRo0ebfyciqg8WP0Rkc9RqNebPny91DCKyUbzsRURERA6FZ36IyOYIIaDT6QAAWq2Wg5gSUb3wzA8R2RydTof4+HjEx8ebiyAiopvF4oeIiIgcCosfIiIicigsfoiIiMihsPghIiIih8Lih4iIiBwKi58GMBgFdp+9DINRSB2FiIhIEidySnCppFLqGA3CcX7qSQiBEW9vx8mLpfh6Whz6RPpKHYnI4cjlcgwePNj8OxE1v+fXHcG+c/l4+65uGNMlWOo49cLip55kMhm6hXrh5MVSrD+UzeKHSAIajQavvvqq1DGIHNbFYh32nsuHEEBMmJfUceqNX5kaYHSXIADAhiM5qDYYJU5DRETUvH45nG0qfFp6ooWnk9Rx6o3FTwP0jvCBt4sa+WVVSDx7Weo4REREzWr9oWwAwOjOtnW5qwaLnwZQKuQYHh0IAFh/MFviNESOp6KiAt27d0f37t1RUVEhdRwih5JVWIHk8wWQyYBRnYOkjtMgLH4aaPSVA77haA6qqnnpi4iIHMMvh01f+nu08kaAu1biNA3D4qeB4sJ94OuqQVGFHjtP50kdh4iIqFn8ZL7kZZtnfQAWPw2mkMswspPp0tdPh7IkTkNERNT0MvLLcTCjEHIZMCKaxY9DqmnotfHoRVRWGyROQ0RE1LR+vnLJq1eED/zcNBKnaTgWP43QPcwLge5alFRWY/tJXvoiIiL7tv7KlQ5b7eVVg8VPI8jlMozsZDrtt56XvoiIyI6dyyvDkcxiKOQyc49nW8Xip5FqBjzclHoROj0vfRE1B7lcjr59+6Jv376c3oKomdR8ye8TaRrrzpZxeotG6hZqGt0ys7ACW47nYkQn220ARmQrNBoN3n77baljEDmUmoENx9j4JS+AZ34aTSaTmQd5Wn+YAx4SEZH9OZ1biuM5JVApZBjW0bYveQEsfiyiZqyDzccuoqyyWuI0RERElvXTQdMlr36tfeHhrJI4TeOx+LGATi08EObjDJ3eiE3HLkodh8juVVRUoF+/fujXrx+ntyBqYkII83h2t3a1/UteAIsfi5DJZLi1i+kFUVMdE1HT0ul00Ol0UscgsntHs4px9lIZNEo5hnSw/UteAIsfixlzpfjZdvISCsurJE5DRERkGTVnfQa394erxj76SbH4sZC2AW6ICnSD3iDw29EcqeMQERE1mtEosP6g/fTyqsHix4Jqzv78yEtfRERkB/anFyCzsAKuGiUGRflLHcdiWPxYUE1VnHjmMnJL2BaBiIhsW0071qEdAqBVKSROYzksfiyopY8zuoZ6wiiAXw5xzB8iIrJd1QajeSLTMXbSy6sGix8Lq7n09ROLH6ImI5PJEBMTg5iYGMhkMqnjENml3WfzkVdaBS9nFfq19pU6jkXZR7NtKzK6cxD+93Mqks8X4EJBOUK8nKWORGR3tFotPvroI6ljENm1Hw9mAgBGdAqCSmFf50rsa2+sQIC7Fr3CfQD8NQ8KERGRLamsNuDXI6aey/bUy6sGi58mYO71dYC9voiIyPZsP5mHEl01Atw16BnuLXUci2Px0wRGRAdCKZchNbsYp3NLpY5DZHcqKiqQkJCAhIQETm9B1ARqhmwZ3TkYCrn9tatj8dMEvFzUiG9jahzGMX+ImkZhYSEKCwuljkFkd8oqq7Ep1TRPZc2VDHvD4qeJjO3aAgDw44FMCCEkTkNERHRzNh27iAq9AWE+zugS4iF1nCbB4qeJDOkQACeVAucul+PQhSKp4xAREd2UH1JMvbzGdgm226EkWPw0EReNEkM6BAAAfjiQKXEaIiKiG7tcWontp/IAALdeuYJhj1j8NKGxV0bE/OlgNgxGXvoiIiLr9sth0+dVdAt3tPZ3lTpOk2Hx04T6t/WDl7MKeaWVSDxzWeo4RERE17XuyhAt4+z4rA/A4qdJqRRyjOwUBICXvogsSSaToUOHDujQoYPdtkkgam4Z+eVIOl8AmczUxd2esfhpYuO6marnDUdyoNMbJE5DZB+0Wi0+//xzfP7559BqtVLHIbILNUOz9I7wQaCHfb+vWPw0sdiWXmjh6YTSymr8cTxX6jhERER1qpmVYKydzeBeFxY/TUwul5kHiVrHS19ERGSFjmUX48TFEqgVcgyPDpI6TpNj8dMMxnUzFT9bjl9CUYVe4jREtk+n02HMmDEYM2YMdDqd1HGIbF5NQ+dBUX7wcFJJnKbpsfhpBlGB7mgX4IYqgxEbjnCmd6LGEkIgOzsb2dnZHEGdqJGMRoEfr1yZsPdeXjVY/DSTsd1qLn1xri8iIrIeSecLkFWkg5tGiUFR/lLHaRYsfprJrVfa/SSevYycIp6mJyIi61AzFMuw6EBoVQqJ0zQPFj/NJMTLGT1beUMINnwmIiLrUFltwM+HTM0xbuvmGJe8ABY/zapmzJ/vU1j8EBGR9Go64gS6a9ErwkfqOM2GxU8zGtUpCGqFHMdzSnAsu1jqOERE5OC+T7kAwDS2j0LuOKOls/hpRh7OKtxypTHZDzz7Q9RgMpkMERERiIiI4PQWRA1UWF6FLccvAQBui3GcS14Ai59mV/MC++FAJmd6J2ogrVaL1atXY/Xq1ZzegqiBfjmcgyqDEVGBbogKdJc6TrNi8dPMBrYzDSB1sbgSu89ypnciIpJGzSUvR2roXIPFTzPTKBUY1dk0dPh3+3npi4iIml9Gfjn2nTPN4D7WQQY2/DsWPxK43TzTezYqqjjTO1F96XQ6TJgwARMmTOD0FkQNUNPutE+k/c/gXhebKX4WLlwImUyG2bNnSx2l0WLDvBDq7YSyKgN+T82ROg6RzRFC4OzZszh79iyntyCqJyEEvr8y3txt3UIkTiMNmyh+9u3bh6VLl6Jz585SR7EImUyG266cZmSvLyIiak6HM4tw9lIZtCo5hnUMkDqOJKy++CktLcWkSZOwbNkyeHl5SR3HYmoGPNx+Kg+XSiolTkNERI6ipr3pkA6BcNPa/wzudbH64mfGjBkYNWoUEhISbrhuZWUliouLa/1Yqwg/V3QJ9YTBKPDTQU52SkRETU9vMGL9IdNnzu0O2MurhlUXP9988w3279+PBQsW3NT6CxYsgIeHh/knNDS0iRM2zm1dTZOdcroLIiJqDjtOXUJeaRV8XNTo18ZX6jiSsdriJyMjA7NmzcJXX31104OYPfPMMygqKjL/ZGRkNHHKxrm1awso5TIczizCyYslUschIiI7922y6cv22K4toFJYbQnQ5Kx2z5OTk5Gbm4uYmBgolUoolUps27YN77zzDpRKJQyGq7uIazQauLu71/qxZt4uagy6Mt3Ft/svSJyGyHbIZDIEBQUhKCiI01sQ3aSicj02HrsIALjdwaaz+Cel1AGuZfDgwTh8+HCtZQ888ACioqIwd+5cKBQKiZJZ1h0xIdiYehE/pGTiqWFRDjWxHFFDabVa/PTTT1LHILIp6w9noaraNJ1Fx2DrPjnQ1Ky2+HFzc0N0dHStZS4uLvDx8blquS0bFOUHT2fTdBc7T+ehf1s/qSMREZEdqunldXtMC4c/Y2q1l70chUapwJjOpobP3/HSFxERNYG0vDIkny+AXAaMc8DpLP7Jas/81GXr1q1SR2gSd8SG4Ivd57HhaA5KdHqHHXeB6GbpdDpMnz4dAPDRRx9xZneiG/j+ypfr+DZ+8Hfn+4VnfqxAlxAPRPi5QKc34tcjnO6C6EaEEEhNTUVqaiqntyC6AaNR4Nsrl7zuiHXM6Sz+icWPFZDJZLgjxvSC/DaZl76IiMhy9p7LR2ZhBdw0Sgzt4JjTWfwTix8rcVu3FpDJgD1p+cjIL5c6DhER2YmaL9WjOgdBq7KPntKNxeLHSgR7OqFPpA8AjvhMRESWUV5VjV8OZwMAbo/hJa8aLH6syO3dTC/M7/ZfYDsGIiJqtN+PXkRZlQGh3k7o0cp+JgdvLBY/VmR4dCCc1Qqcu1yO5PMFUschIiIbt/bKJa/bu4U4/Ng+f8fix4q4aJQYER0E4K8XLBHVzdPTE56enlLHILJamYUV2HkmDwBwJ3t51cLix8qM7256ga4/lI3yqmqJ0xBZJycnJ2zatAmbNm2Ck5OT1HGIrNJ3yRcgBNArwhuh3s5Sx7EqLH6sTM9W3mjp7YzSymr8dpRj/hARUf0JIbD2ysCGd8aGSpzG+rD4sTJy+V9j/qxJ4qUvIiKqv33nCnD+cjlc1AqM7BQodRyrw+LHCt0RaxrzZ9eZy7hQwDF/iP6pZnqL6dOnQ6fTSR2HyOqsTc4AYBrbx1ltUzNZNQsWP1YoxMvZPObPt8kc84fon4QQ2L9/P/bv389hIYj+obyqGj8fMo3tw0tedWPxY6VqWuav3Z8Bo5F/3ImI6Ob8cjgHZVUGtPJx5tg+18Dix0oN7xgEV40SGfkV2HsuX+o4RERkI2oued0Zy7F9roXFj5VyUiswurNpzB82fCYiopuRfrkcu8/mQybjdBbXw+LHitWM+fPrkWyUVXLMHyIiur5vr3Rv79faF8GeHAPrWlj8WLGYll6I8HVBeZUBP1+ZmI6IiKguRqMwzw7AEZ2vj8WPFZPJZLgjtmbMnwyJ0xBZF61WC61WK3UMIquRePYyMgsr4KZVYlhHju1zPSx+rNwdMSGQy0wDVp25VCp1HCKr4OTkhD///BN//vknp7cgumL1lS/Jt3YJhlalkDiNdWPxY+UCPbQY2M4fwF8vbCIior8rKtfj1yOmKZEm9uDYPjfC4scGTOhueiF/m5wJvcEocRoiIrI26w5moqraiKhAN3Rq4SF1HKvH4scGDG7vD19XNfJKK7H1xCWp4xBJrrKyErNmzcKsWbNQWVkpdRwiya3aZ7oyMLFHKMf2uQksfmyASiE3j9dQ8wIncmRGoxE7d+7Ezp07YTTybCg5tiOZRTiaVQy1Qo5xXVtIHccmsPixETWXvracyEVuMSdyJCIik5r2oEM6BsDLRS1xGtvA4sdGtPZ3RWyYFwxGgW/3c7JTIiICdHoDfkgxfSZM7M6GzjeLxY8NqXlhr0nK4EzWRESE347moFhXjRaeTujb2lfqODaDxY8NGdk5CM5qBc7mlWHfuQKp4xARkcRqLnndERsChZwNnW8Wix8b4qpRmic7ZcNnIiLHlpFfjp2nL0MmA8ZzOot6YfFjY2oGr/rlcDZKdHqJ0xARkVRqpj3qG+mLUG9nidPYFhY/NiampRda+7uiQm/AjwezpI5DJAknJyckJSUhKSmJ01uQQzIYBdZcmcR0Akd0rjcWPzZGJpPhrisv9JV70yVOQ0REUth2MhfZRTp4OaswtEOA1HFsDosfG3R7TAjUCjmOZBbjSGaR1HGIiKiZfb3HdMnr9pgQTmLaACx+bJC3ixrDogMB8OwPOabKykrMnTsXc+fO5fQW5HAuFuuw5UQuAODunrzk1RAsfmzU3Vcufa07kIXyqmqJ0xA1L6PRiM2bN2Pz5s2c3oIczpqkDBiMAt3DvNDa303qODaJxY+N6hXhgzAfZ5RWVmP9oWyp4xARUTMwGgVWXenldXfPlhKnsV0sfmyUXC4zd3vnpS8iIsew80weMvIr4KZVYmSnIKnj2CwWPzbsztgQKOUypKQX4kROidRxiIioiX2z13TW57ZuLeCkZkPnhmLxY8P83bRIaG/q4sizP0RE9i2vtBK/p+YAAO7qwUtejcHix8bddaWl//cpmdDpDRKnISKipvJt8gXoDQJdQj3RIdhd6jg2jcWPjYtv44cWnk4oqtBjw5EcqeMQEVETEEKY53S8myM6NxqLHxunkMswobvpjfA1L32Rg9BqtdixYwd27NgBrVYrdRyiJrcnLR9n88rgolZgTJdgqePYPBY/dmBij1Ao5DLsTcvH6Vw2fCb7J5PJ4OTkBCcnJ8hkMqnjEDW5r/aYvtze2rUFXDRKidPYPhY/diDQQ4vBUf4A/nqDEBGRfcgrrcSGI6bx3CbFsaGzJbD4sRP3XHlDfJt8gQ2fye5VVVVh/vz5mD9/PqqqqqSOQ9Sk1iT91dA5uoWH1HHsAosfO9G/jR9CvJxQrOOIz2T/DAYD1q9fj/Xr18NgYLFP9stoFOahTCZxRGeLYfFjJ+Rymfnsz1d7zkuchoiILOHP03lIzy+Hm1aJ0V04orOlsPixI+NjQ80jPqdmFUsdh4iIGqnmy+wdMSFwVrOhs6Ww+LEjfm4aDIsOBAB8vZdnf4iIbNnFYh02HcsF8Fe7TrKMBhU/Tz31FHQ6naWzkAXU9AT4fn8mSiurJU5DREQNtWpfBgxGgR6tvNA2wE3qOHalQcXP4sWLUVRUBACYMmUKysvLLRqKGq53hA8ifF1QVmXAjweypI5DREQNUG0w/tXQOS5M4jT2p0HFT3BwMA4cOAAA+OKLL1BaWmrJTNQIMlnths9CCIkTERFRfW09cQnZRTp4Oasw/EpzBrKcBhU///nPfzBmzBjEx8cDAL766ivs3bsXFRUVFg1HDXNHTAjUSjmOZhXj4IUiqeMQWZxWq8XGjRuxceNGTm9BdqmmofOdsSHQqhQSp7E/DSp+/v3vfyMpKQnDhw+HEAJLlixBnz594O7ujvbt2+Ouu+7CwoUL8euvv1o6L90ELxc1RncydYn8cjcbPpP9kclk8PLygpeXF6e3ILuTfrkcW09eAgDczbF9mkSDe3t17twZ//d//4fIyEjs3r0bJSUl+PPPPzF79mx4eXlh3bp1mDBhgiWzUj3c29t0jfing1koKOMIuEREtuKrvechBBDfxhcRfq5Sx7FLjR404NSpU+bf4+LiEBcXZ/4/25tIp1uoJzoGu+NoVjHWJl/AtP4RUkcispiqqiq89dZbAIA5c+ZArVZLnIjIMnR6A1bvywAA3NeLDZ2bSpOO88PT0dKRyWTmN86Xe87DaGQhSvbDYDBgzZo1WLNmDae3ILvy86FsFJTrEeyhxS1XJqwmy2t08VNdXY2XX34ZvXv3RkxMDCZPnoyNGzdaIhs10tiuLeCmVeL85XJsP3VJ6jhERHQDX1xpp3lPXEsoFRyHuKk0+pl9+umn8f7772Pw4MEYN24cKisrMXr0aDzwwAO87CUxJ7UC42NDAbDhMxGRtTt8oQgHMgqhUsgwsQcbOjelRrf5+frrr/HNN9+gf//+5mVpaWkYPXo0Fi1ahCeffLKxD0GNMKlXSyzfmYbNx3ORkV+OUG9nqSMREVEdar6kjogOgp+bRuI09q3RZ37KysoQEhJSa1l4eDjeffddfPTRR43dPDVSpJ8r+rX2hRDA11dGCyUiIutSVK7HuoOZAID7erOhc1NrdPHTr18/fPbZZ1ctDw8PR1ZWw6dX+OCDD9C5c2e4u7vD3d0dvXv35rhBDXTvlYbPq/ZloLKajUOJiKzNmuQM6PRGRAW6oXuYl9Rx7F6ji59XX30VixcvxmOPPWbu9q7X6/Huu++iQ4cODd5uSEgIFi5ciOTkZCQlJeGWW27B2LFjcfTo0cZGdjgJ7f0R5KFFflkVfj2cI3UcIiL6G6NR4Ks9pjPz9/UOY0/pZtDo4ic6Ohpbt25FYmIi2rVrB61WC2dnZ3zxxRdYvHhxg7c7ZswYjBw5Em3atEHbtm3x8ssvw9XVFbt3725sZIejVMhxz5VRQj9PPCdtGCIL0Gg0+PHHH/Hjjz9Co2HbCLJtf57OQ1peGVw1Sozr2kLqOA6h0Q2eAaBbt27Yt28fjh8/jtTUVLi5uSEuLg7u7u6W2Lx5TI+ysjL07t37mutVVlaisrLS/P/i4mKLPL49mNgzFO/8cQr70wtx+EIROoV4SB2JqMHkcjmCg4OljkFkETVfSu+IaQEXjUU+lukGGvQs9+7dG926dUPXrl3RtWtXdO7cGVqtFlFRUYiKirJYuMOHD6N3797Q6XRwdXXF999/f91LaQsWLMALL7xgsce3J/5uWozsFIR1B7KwYtc5vDGhi9SRiIgcXvrlcmw+ngsAuL9PK2nDOJAGXfYaNWoU8vLy8MYbb6BPnz5wc3NDhw4dcM899+C1117D77//jtzc3EaHa9euHQ4cOIA9e/bg0UcfxeTJk5GamnrN9Z955hkUFRWZfzIyMhqdwZ5MvvLG+ulQFi6XVl5/ZSIrptfr8fbbb+Ptt9+GXq+XOg5Rg32x+5x5Hq9IzuPVbGSikSMR7t27F+PGjUO/fv2gUqmQkpKC48ePQyaTISAgoFE9vv4pISEBkZGRWLp06U2tX1xcDA8PDxQVFVnsEpwtE0Jg7JKdOHShCE8Oa4cZg1pLHUlSycnJUkegBqqoqEB8fDwAYMeOHXBycpI4ETVEbGys1BEkVV5VjV6vbEaxrhqfTO6Owe0DpI5kNZr687vRDZ4fffRRLFmyBKtXr8ZXX32F1NRUrF+/HkFBQXjggQcskdHMaDTWatND9SOTyTC5dysApsG0qg1GaQMRETmw71MyUayrRpiPMwa14zxezanRxc+xY8fQtWvXWstGjhyJ999/H7t27Wrwdp955hls374d586dw+HDh/HMM89g69atmDRpUiMTO7bRXYLg46JGdpEOv6delDoOEZFDEkLgs13nAJhmb5fL2b29OTW6+OnRo0edgxx26tQJe/fubfB2c3Nzcf/996Ndu3YYPHgw9u3bh99++w1DhgxpTFyHp1EqcPeVbu8rrrzxiIioeSWevYyTF0vhpFJgfPdQqeM4nEb3qXvzzTdxyy234Pz585gzZw6io6NRVVWFN954A76+vg3e7ieffNLYaHQNk3q1xAfbzmBvWj6OZRejfRDbQxERNaeasz63x7SAh5NK2jAOqNFnfmJjY7Fnzx6kp6eja9eucHJygpubGz755BMsWLDAEhnJwoI8nDC8YyCAv96ARETUPC4UlGPjlWYHk9m9XRIWGU0pKioKmzdvRnp6Og4cOAC5XI7Y2FgEBQVZYvPUBCb3aYWfD2fjhwOZeHpEFDyd1VJHIiJyCF/uTodRAH0ifdA2wE3qOA6p0Wd+9u3bh8GDB6Nz586YPXs2Dhw4AKPRyLE3rFyPVl5oH+QOnd6Ib/ZxPCSyLRqNBqtWrcKqVas4vQXZFJ3egFX7TPN48ayPdBpd/Nx3331QKBSYPn06wsPDsW3bNjzwwANo1aoVfHx8LJGRmoBMJsMDV954n+86x27vZFPkcjkiIyMRGRkJubzRf8aIms33KZkoKNcjxMsJCRzXRzKNvuyVkZGBn3/+GZGRkbWWnz9/HgcOHGjs5qkJ3do1GAs3HEdWkQ6/Hb2IUZ15mZKIqKkIIfDpzjQAwJQ+raBg93bJNPorU+/evZGZmXnV8rCwMIwdO7axm6cmpFUpcG+cqdv78itvSCJboNfrsXTpUixdupSX2Mlm7Dxt6t7uolZgQg92b5dSo4ufOXPm4MUXX0R+fr4l8lAzu7dXGFQKGZLPF+BgRqHUcYhuSnV1NZYtW4Zly5ahurpa6jhEN6XmS+b47qFw17J7u5QaXfyMGTMGW7ZsQdu2bTF16lR8/PHHSE5ORlVVlSXyURPzd9diTOdgADCfjiUiIss6e6kUfxzPhUzGhs7WoNHFz+nTp7F27VrMnDkT+fn5eOWVV9CjRw+4ubmhc+fOlshITeyBvuEAgPWHsnGxWCdxGiIi+1Mzov7gKH+E+7pIG4Ya3+A5IiICERERuO2228zLiouLcfDgQRw6dKixm6dm0CnEAz1beWPvuXx8kXgeTwxrJ3UkIiK7UVSux5qkCwD++rJJ0mrwmZ/nn38eycnJdd7m7u6O+Ph4zJgxo8HBqHk92K8VAOCrPeeh0xukDUNEZEdWJaWjQm9AuwA39InkEDDWoMHFz4ULFzBixAiEhITg0Ucfxa+//sp2PjZsSIdAtPB0QkG5Hj+kXN17j4iI6q/aYMRnu84DMH3JlMnYvd0aNLj4Wb58OXJycrBy5Uq4ublh9uzZ8PX1xR133IHPP/+cvb9sjEIuw5QrjfCW70yDEELaQEREduD31IvILKyAt4saY7u2kDoOXdGoBs9yuRzx8fF47bXXcOLECezZswdxcXFYunQpgoOD0b9/fyxatKjOcYDI+kzoEQoXtQInL5Zi+6k8qeMQXZNarcZnn32Gzz77DGo156Uj6/XxjrMAgHt6toRWpZA4DdWw6Ljw7du3x1NPPYWdO3ciPT0dkydPxo4dO7By5UpLPgw1EQ8nlXngrZo3LJE1UigU6NixIzp27AiFgh8oZJ2Szxdgf3oh1Ao57u8TJnUc+huLzOqu1+uRk5OD8vJy+Pn5wdvbG/7+/pg6dSqmTp1qiYegZvJg33B8tuscdpzKw/GcYkQFuksdiYjIJtV8iRzbNRj+blqJ09DfNfjMT0lJCT744AMMGDAA7u7uaNWqFdq3bw8/Pz+EhYVh2rRp2LdvnyWzUjMI9XbG8OhAAMDHOzjoIVknvV6Pzz//HJ9//jmntyCrlH65HL8dzQEAPBQfIXEa+qcGFT9vvvkmWrVqhU8//RQJCQn44YcfcODAAZw8eRKJiYmYN28eqqurMXToUAwfPhynTp2ydG5qQjVv1HUHMpHLQQ/JClVXV+Odd97BO++8w+ktyCot35kGowD6t/VDu0A3qePQPzToste+ffuwfft2dOzYsc7be/bsiQcffBAffvghPv30U+zYsQNt2rRpVFBqPjEtvRAb5oXk8wX4LPEcnhwWJXUkIiKbUVSux+qkDADAtHgOamiNGlT83GwDZo1Gg0ceeaQhD0ESmxYfjuTzBfhydzpmDGoNZ7VFmocREdm9r/emo7zKgKhAN/Rr7St1HKpDg9v8pKam4rnnnkNhYaEF45C1GNIhEGE+ziiq0GNt8gWp4xAR2YSqaiNW7DK1l3woPoKDGlqpBhc/CxYswJEjR+Dp6XnVbTqdDsePH29MLpKYQi7Dg1fmoPnkzzQYjBz0kIjoRtYfysLF4kr4u2lwa5dgqePQNTS4+Nm9ezcee+yxOm/TarWYNm0aFixY0OBgJL3x3UPg4aTC+cvl2Jh6Ueo4RERWTQhh7iU7uU8rqJUWHUqPLKhRc3u1bt36mrc/8sgj+PHHHxu6ebICzmolJsW1BAAs46CHRETXtfP0ZaRmF8NJpTD/7STr1ODix9vbG9nZ2de8vWfPnjh9+nRDN09WYkqfVlAr5Eg+X4Ckc5yvjayDWq3Ghx9+iA8//JDTW5DVWLr9DABgYo9QeDrzdWnNGlz89O/fHytWrLj2huVy6HQcI8bW+btrcUesaTK+D7edkTgNkYlCoUD37t3RvXt3Tm9BVuFIZhF2nMqDQi7D1H7s3m7tGlz8PPHEE1i2bBk++uijOm9PTExERARHtbQHph4LwKZjuTh1sUTqOEREVuej7aamAaM7ByHU21niNHQjDS5+YmNj8f777+Nf//oXhgwZgh9++AHp6enIz8/HunXrMHfuXNxzzz2WzEoSifRzxdAOAQD+eoMTSam6uhqrV6/G6tWrOcIzSS4jvxzrD2UBAKb355d+W9CopujTpk3D1q1bUVRUhNtvvx3h4eHw8/PDbbfdhk6dOmHOnDmWykkSe3hAJADghwOZyCni5UySll6vx2uvvYbXXnuNc3uR5D7ecRZGAcS38UXHYA+p49BNaPSwvf369cPevXtx/Phx7N+/H+Xl5YiOjkavXr0skY+sRExLL/Rs5Y295/Lx6c40PDOyvdSRiIgkl19WhVVXprJ45MqXRLJ+FpuzICoqClFRnAPKnj08IAJ7z+Xjqz3pmHFLa7hrVVJHIiKS1OeJ56DTG9GphQf6RPpIHYduEkdgops2qJ0/2ga4orSyGl/vSZc6DhGRpCqqDPhs1zkApi+HnMrCdrD4oZsml8swvb/ptO7yP9NQWW2QOBERkXTWJGegoFyPlt7OGN4xUOo4VA8sfqhebu0SjCAPLXJLKvHd/kyp4xARSUJvMGLpNlPv14fiw6FU8OPUljTp0ZLL5bjllluQnJzclA9DzUitlOOheFNXzg+3nUG1wShxIiKi5vfTwSxkFlbA11WNCd1DpY5D9dSkxc/y5cvRv39/zJgxoykfhprZ3T1D4eVsmvD0lyM5UschB6RSqbB48WIsXrwYKhUb3lPzMhoF3t9qGvH+wX7h0Ko4yritadLiZ8qUKZg/fz52797dlA9DzcxZrcQDfU3Dt7+/5TSEEBInIkejVCrRr18/9OvXD0qlxTqtEt2Ujccu4nRuKdw0StzbK0zqONQAvEhJDTK5dyu4qBU4nlOCLSdypY5DRNQshBB4f4tp0u77+4RxyA8b1aji5/z58/j999+Rk1P3pY+srKzGbJ6smIezyvyNZ8mWMzz7Q82quroaP/30E3766SdOb0HNateZyzh4oQgapdx8BpxsT4OLn5UrV6J169YYPnw4IiIi8MUXXwAA0tPTsXDhQsTFxaFly5YWC0rWZ2q/cKiVciSfL8DetHyp45AD0ev1eOGFF/DCCy9wegtqVkuunPW5u2dL+LpqJE5DDdXg4uell17Cv//9bxw+fBhDhgzBo48+iueeew6RkZFYsWIFunfvjjVr1lgyK1kZf3ctxseGAIC58R8Rkb1KSS/ArjOXoZTLMI0TmNq0BrcUPHPmDGbNmoWwsDAsWbIELVu2xM6dO3Ho0CG0b895nxzFw/0jsXJvOradvIQjmUWIbsFJ/YjIPtV8yRvXrQVaeDpJnIYao8FnfvR6PZycTAc/JCQEWq0WixYtYuHjYFr6OOPWLsEAgPe3npY4DRFR0ziRU4KNqRchk3ECU3vQqAbPX3/9NY4fPw4AUCgU8PLyskgosi3/GtQaAPDrkRyculgicRoiIst770pbnxHRgWjt7ypxGmqsBhc/8fHxmDdvHjp27AhfX1/odDq8/fbbWL16NVJTU9kDw4G0DXDD8I6BEOKvPxBERPbidG4p1h8y9V6eOaiNxGnIEhrc5mfbtm0AgFOnTiE5ORn79+/H/v378fnnn6OwsBBqtRpt27bFoUOHLBaWrNfMW1pjw9Ec/HQwC7MT2iLc10XqSEREFmEazBVIaB+ADsHuUschC2j00Kht2rRBmzZtcNddd5mXpaWlISkpCSkpKY3dPNmI6BYeGBzlj83Hc7Fky2ksGt9F6khkx1QqFRYuXGj+naipnL9chnUHTWd9HhvcWuI0ZClNMi58eHg4wsPDMX78+KbYPFmpfw9ug83Hc/F9SiZmDW6DUG9nqSORnVIqlUhISJA6BjmA97ecgcEoMKCtHzqHeEodhyyE01uQxXQN9UR8G18Y/jbpHxGRrbpQUI5v918AwLM+9obFD1nUY4NNjQHXJmcgq7BC4jRkr6qrq7Fp0yZs2rSJnSuoyXy47QyqjQJ9In0QG+YtdRyyIBY/ZFE9WnmjV4Q39AaBpdt49oeahl6vx9NPP42nn36a01tQk8gp0mH1PtNZn3/fwh5e9qZJix+5XI5bbrkFycnJTfkwZGUeu/KHYuW+DFws1kmchoio/pZuP4MqgxE9WnmhVwTP+tibJi1+li9fjv79+2PGjBlN+TBkZXpH+iA2zAtV1UZ8wLY/RGRjLhbr8NWedACmS/kymUziRGRpjS5+SkquPaLvlClTMH/+fOzevbuxD0M2RCaTYXaC6ezP13vTkVPEsz9EZDs+2HoGVdVGxIZ5oV9rX6njUBNodPETHx+PnJwcS2QhO9KvtS+6m8/+cNRnIrINOUU6fL3XdNZnTkJbnvWxU40ufrp164a4uDjzHF81Dhw4gJEjRzZ282SjZDIZ5gxpCwBYuTeDZ3+IyCZ8sPU0qqpNbX36tvaROg41kUYXP59++immTJmCfv364c8//8TJkycxYcIExMbGQqFQWCIj2ag+kT7o2cobVQYjZ3wnIquXXVSBlXszAPCsj72zyAjPL7zwAjQaDYYMGQKDwYDBgwcjMTERPXv2tMTmyUbJZDLMHtIG9yzbg2/2ZuCRAZEI9nSSOhbZAZVKhXnz5pl/J7KED7aaenj1bOWN3pE862PPGn3m5+LFi5g1axb+97//oUOHDlCpVJgyZQoLHwIA9In0RVw4z/6QZSmVSowZMwZjxoyBUtkks/SQg8kqrMA3V876zB7CHl72rtHFT3h4OLZv3441a9YgOTkZ3377LaZPn47XX3/dEvnIDtS0/Vm1LwOZHPWZiKzQ+1tPo8pgRFy4N/pEsoeXvWt08bN8+XKkpKRg1KhRAIDhw4djy5YteOuttxo1vs+CBQvQo0cPuLm5wd/fH+PGjcOJEycaG5ck0CvCB70jfKA3CCzZwrM/1HjV1dX4888/8eeff3J6C2q0zMIKrNp3pa3PlS9rZN8aXfzcddddVy2LiYnBrl278McffzR4u9u2bcOMGTOwe/dubNy4EXq9HkOHDkVZWVlj4pJEav6grN6XgfTL5RKnIVun1+sxe/ZszJ49m9NbUKO9u/kU9AaB3hE+6BXBtj6OoMkulrdq1Qq7du1q8P03bNhQ6/8rVqyAv78/kpOT0b9//8bGo2bWM9wb8W18seNUHhZvPok3J3SVOhIREdLyyrAm2TSH1xPDeNbHUTTp9BZeXl4W21ZRUREAwNv72nOsVFZWori4uNYPWY8nhrYDAPyQkonTudceGZyIqLks3nQSBqPAoHZ+nLndgdjErO5GoxGzZ89G3759ER0dfc31FixYAA8PD/NPaGhoM6akG+kS6omhHQJgFMBbG09JHYeIHNyJnBL8eDALAPCfK1/OyDHYRPEzY8YMHDlyBN98881113vmmWdQVFRk/snIyGimhHSzHh/aFjIZ8PPhbBzJLJI6DhE5sDd+PwEhgJGdAhHdwkPqONSMmrT4kcvluOWWW5CcnNzgbcycORPr16/Hli1bEBISct11NRoN3N3da/2QdYkKdMeYzsEAgDc3npQ4DRE5qoMZhfg99SLkMuBx9vByOE1a/Cxfvhz9+/dvUJd3IQRmzpyJ77//Hn/88QfCw8ObICFJYc6QtlDIZfjjeC6SzxdIHYeIHNCi301Dp4zr1gKt/d0kTkPNrUmHRp0yZQoAYP78+fW+74wZM/D1119j3bp1cHNzM88c7+HhAScnTpFgy8J9XXBnTAhWJWVg0W8nsHJ6L6kjkY1RqVR46qmnzL8T1cees5ex41QelHIZZg/mWR9HZLVtfj744AMUFRVh4MCBCAoKMv+sWrVK6mhkAf8e3BoqhQyJZy/jz1N5UschG6NUKjFhwgRMmDCB01tQvQghzGd9JvQIRUsfZ4kTkRQs/lejoKAAv//+OzIzMwEAwcHBGDZsWL27vQshLB2NrEiIlzMmxYVhxa5zeO234+jbui/n0iGiJvfH8VzsO1cAjVKOf9/SWuo4JBGLnvn55JNP0Lt3b+zZswdGoxFGoxF79uxBnz598Mknn1jyocgOzLylNVzUChy6UIRfDudIHYdsiMFgQFJSEpKSkmAwGKSOQzbCYBR4bYPprM+Uvq0Q5MEmFI5KJix4iqVdu3bYv38/XFxcai0vLS1FTEwMTp5s3t49xcXF8PDwQFFREXt+Wam3Np7E25tPIdzXBb/P6Q+VovmuxDamFyJJq6KiAvHx8QCAHTt2sB2gjYqNjW3Wx/s2+QL+s+Yg3LVK7HjqFng4s72YtWrqz2+LftLIZDKUlFw9cm9JSQkvaVCdpvWPgI+LGml5ZVidxHGZiKhpVFYbzMNrPDqwNQsfB2fRNj+LFi3CgAEDEB0djRYtWgAALly4gKNHj+KNN96w5EORnXDVKDHzltZ44adUvL3pFG7vFgIntULqWERkZ77cnY7MwgoEuGswpU8rqeOQxCxa/IwePRojRozA3r17kZVlGjI8ODgYPXv2hELBDzSq2z1xLbF8Zxoy8iuwfGcaZgxiI0QispwSnR5LtpwGAMxOaMsvWNTw4uehhx5CbGwsYmJi0KVLF2i1WgCAQqFA7969LRaQ7J9GqcB/hrTD7FUH8OG2M5gU1xKezmqpYxGRnVi2/Szyy6oQ4eeC8bHXnymAHEODi59Tp05hzZo1KCkpgVKpRLt27czFUGxsLLp27XpVw2eia7m1SzCWbj+LY9nFWLLlNP5vVAepIxGRHbhUUomP/0wDADw5tB2UzdipgqxXg18F27ZtQ1FREU6cOIHPP/8cI0aMwIULFzB//nzEx8fDw8MDHTrwA4xujlwuw1PDTbMqf5Z4Hhn55RInIiJ7sHjTSZRXGdAl1BPDowOljkNWotFtftq0aYM2bdrgrrvuMi9LS0tDUlISUlJSGrt5ciAD2/qhT6QPdp25jEW/n8Dbd3WTOhJZKaVSiccee8z8O1FdTueW4Jt9pl6kz46IYq9jMmvQOD/p6elo2bLlTa+fmZlp7v3VnDjOj+05klmEMe/9CSGAH2f2RecQzyZ7LI7zQyStph7n56HP9mHTsVwM6RCAZfd3b9LHIsuyynF+evTogYcffhj79u275jpFRUVYtmwZoqOj8e233zY4IDmW6BYeuK2bqVB++edjnOaEiBpk15k8bDqWC4VchqdHREkdh6xMg84Xp6am4uWXX8aQIUOg1WoRGxuL4OBgaLVaFBQUIDU1FUePHkVMTAxee+01jBw50tK5yY49MbQdfj6UjT1p+eZvbUR/ZzAYcPz4cQBAVFQUh9KgWoxGgVd+OQYAuKdnS0T6uUqciKxNg878+Pj44M0330R2djbee+89tGnTBnl5eTh16hQAYNKkSUhOTkZiYiILH6q3YE8nPBQfDgBY8Osx6A1GiRORtamqqsLkyZMxefJkVFVVSR2HrMy6g5k4klkMV40SsxLaSB2HrFCjWgo6OTnhzjvvxJ133mmpPEQAgEcGROKbvRk4e6kM3+zLwH29wqSOREQ2QKc3YNFvNdNYRMLXVSNxIrJGHPCArJKbVoXZV76xLd54EiU6vcSJiMgWfLrzHDILKxDkocXUfuFSxyErVe/ip6KiApmZmVctP3r0qEUCEdW4q2dLRPi54HJZFd7fekbqOERk5fJKK/H+lWksnhjaDloV24JR3epV/KxduxZt2rTBqFGj0LlzZ+zZs8d823333WfxcOTYVAo5nh3RHgDwyY40DnxIRNf1xu8nUVJZjegW7uZeo0R1qVfx87///Q/Jyck4cOAAPv30U0ydOhVff/01ALBLMjWJwe39Ed/GF1UGo7n3BhHRP6VmFWPVvnQAwPOjO0Iu54CGdG31Kn70ej0CAkzdjmNjY7F9+3YsXboUL774IkfOpCYhk8nw31EdIJcBvx7Jwe6zl6WORERWRgiBF9cfhVEAozoHoWe4t9SRyMrVq/jx9/fHoUOHzP/39vbGxo0bcezYsVrLiSypXaAbJsWZenu9+FMqDEaeZXR0SqUS06ZNw7Rp0zi9BeG3oxex+2w+1Eo5nh7OAQ3pxupV/HzxxRfw9/evtUytVmPlypXYtm2bRYMR/d2cIW3hrlUiNbsYa5IypI5DElOpVHj44Yfx8MMPQ6VSSR2HJFRZbTBfEp8eH4FQb2eJE5EtqFfxExISgsDA2rPibtq0CQDQt29fy6Ui+gdvFzVmJbQFACz6/QS7vhMRAFPX9vT8cvi7afDowEip45CNaPQ4P6NGjcLjjz/OUVapyd3fOwwRfi7IK63Ce1e6s5JjMhqNOHPmDM6cOQOjkSOAO6pLJZV47w/T34KnhkfBRcNLoHRzGl38bN++HevXr0f37t1x5MiROtfJzs7GHXfc0diHIgenUsjx31Gmru/L/0xDWl6ZxIlIKpWVlZg4cSImTpyIyspKqeOQRF7bcBylldXoHOKB29m1neqh0cVPXFwc9u/fj+7du6NHjx548803zbcZjUakpqbi+eefx44dOxr7UEQY1M4fA9v5QW8QeOGnoxxigchBpaQXYE3yBQDAvDHs2k71Y5FzhK6urnjjjTfg7OyMJ598EitXrjQXPpWVlQgLC8OCBQss8VDk4GQyGeaN6Yhdp7dj64lL2HwsFwmc9Z3IoRiMAs+vM80qcGdsCGLDvCRORLam0Wd+Pv74Y7Rs2RK+vr5YsWIFevbsCaVSiZSUFDz00EPIz89HWloapk6daom8RAj3dTHP+v7C+qPQ6Q0SJyKi5rQ6KQOHM4vgplFiLru2UwM0uvh59tlnMWrUKKSmpqKkpASJiYlITEzEG2+8gY8//hiPP/44yss5LQFZ1sxbWiPIQ4uM/Ap8tP2s1HGIqJkUllfhtQ3HAQCzh7SFnxtnbaf6a3TxM3DgQMyfPx/t2rWrNcrznDlzsHfvXiQlJV01DxhRYzmrlXh2pKnx85ItpznvF5GDeOP3kygo16NtgCvu7x0mdRyyUY0uflavXm2e8uKfOnXqhH379mH06NHo379/Yx+KqJbRnYPQK8IbldVGvPwz5/0isndHMovw1Z7zAID5t3aEStHojzByUE3+ytFoNFi8eDHWr1/f1A9FDkYmk+GFW6OhkMuw4WgOtp+8JHUkaiZKpRL33Xcf7rvvPk5v4SCMRoH5P5rm7xrdOQh9In2ljkQ2rNnK5iFDhjTXQ5EDaRfohsm9WwEA5v3Ixs+OQqVSYdasWZg1axant3AQa/dfQNL5AjipFPi/K+N9ETUUzxmSzZszpA383TRIyyvDh9vOSB2HiCysoKwKC67M3zU7oQ2CPJwkTkS2jsUP2Tw3rQrPj+kAAHh/6xmO/OwAjEYjsrKykJWVxektHMDCX4+joFyPdgFueLBfuNRxyA6w+CG7MKpTEOLb+KKq2ojn1x3hyM92rrKyErfeeituvfVWTm9h55LO5WNVUgYA4OXbotnImSyCryKyCzKZDC+NjYZaKceOU3lYfyhb6khE1Eh6gxH/971pzsiJ3UPRvZW3xInIXrD4IbvRytcFMwa2BgC8uD4VxTq9xImIqDE+3ZmGExdL4OWswtMjOJIzWQ6LH7IrjwyMQISvCy6VVOLN309KHYeIGiizsAJvbTwFAHhmZHt4uaglTkT2hMUP2RWNUoGXxkUDAD5LPIcDGYXSBiKiehNCYN66I6jQG9CzlTfujAmROhLZGRY/ZHf6tvbFuK7BEAJ4+ttD0BvYG4jIlvxyOAebjuVCpZDhf7dFQy6X3fhORPXA4ofs0nOjO8DLWYXjOSWc+JTIhhSV6zHvx6MAgEcHtkbbADeJE5E9YvFDdsnHVWMe++ftzac49o+dUSgUGD9+PMaPHw+FQiF1HLKgV345hrzSSkT6uWDGoEip45CdYvFDdmtc1xbo39YPVdVGPPPdIY79Y0fUajXmzp2LuXPnQq1mQ1h7setMnnlMn4V3dIZGycKWmgaLH7JbMpkML4+LhpNKgd1n87H6yh9VIrI+Or0Bz353GABwb6+W6MExfagJsfghuxbq7Yz/DG0LAHj552PILdFJnIgsQQiBgoICFBQU8IyenXh78ymcu1yOAHcNnhrOMX2oabH4Ibs3pU8rdA7xQLGuGs//cJQflnZAp9NhyJAhGDJkCHQ6FrS27khmkbljwktjo+GuVUmciOwdix+ye0qFHAtv7wylXIYNR3Pw82FOfUFkLaqqjXhizUEYjAIjOwViaMdAqSORA2DxQw6hQ7A7ZgwyTX3x/LqjyCvlZJhE1mDJltM4nmOawuLFsdFSxyEHweKHHMaMQa0RFeiG/LIqzFt3VOo4RA4vNasYS7acBgC8ODYavq4aiRORo2DxQw5DrZRj0fguUMhl+PlwNnZlsK0IkVSqjQJPrDmIaqPA8I6BGN05SOpI5EBY/JBDiW7hgRkDTQOnLUspRlElp74gksL3x8uQml0ML2cVXhoXDZmMU1hQ82HxQw5n5i1tEBXohuJKIz7eXyx1HCKHc65Qj7WppQCAF8ZGw8+Nl7uoebH4IYejVsrx+p1dIJcBuy7osDOjQupIVE8KhQKjR4/G6NGjOb2FjdEbBd7bV4RqAQzrGIAxvNxFElBKHYBICp1CPHB7lAvWHivDR8nFiPJVw8eJH6K2Qq1WY/78+VLHoAZYfbQUaYXVcFPLeLmLJMMzP+SwxndwRYSnEqV6gff3FXHwQ6ImdjyvCj8cN00y/EisB/zdtBInIkfF4occllIuw2NxnlDLgQMXq/DbGV7+shVCCFRUVKCiooJFq42oqDbinb1FMAIYGKZFrxAWPiQdFj/k0ELdlZjU2Q0A8NmhYmSVVEuciG6GTqdDfHw84uPjOb2FjVhxoAQXywzwdZbjwW7uUschB8fihxzeyNbO6OSvRpUBeGdvEQxGnkkgsqSkLB02pVVABuDfPTzgouJHD0mLr0ByeHKZDDN7eMBZJcOpfD2+vdImgYgar6jSiA+STENKjG7rjGh/dmsn6bH4IQLg66zAtCun4tekluLE5SqJExHZPiEEluwrQmGlEaHuStwT7SZ1JCIAVl78bN++HWPGjEFwcDBkMhl++OEHqSORHYtvqUV8Sy2MAli8uwhleo7+TNQYv54uR3J2JVRyYHacB9QKdmsn62DVxU9ZWRm6dOmCJUuWSB2FHIBMJsO0GHf4uyiQW27A0uRi9iQiaqBzhXp8fqgEAHB/Zze08lRJnIjoL1Y9yOGIESMwYsQIqWOQA3FRyTEnzgP/tyUfOzN06BaowaBWTlLHIrIpldUCb+0pgt4IxAZpMKK1s9SRiGqx6uKnviorK1FZWWn+f3Ex522i+mvro8bEjq5YeaQUH+8vRjsfFYLd7OqtYvPkcjkGDx5s/p2sy4qDxbhQXA0vrRwzenhwFGeyOnb1V2PBggXw8PAw/4SGhkodiWzUbVEu6Oinhs4gsHhPIfTs/m5VNBoNXn31Vbz66qvQaNh7yJrsydTh97OmAUP/3dMDHhq7+pghO2FXr8pnnnkGRUVF5p+MjAypI5GNUshkmNXTA65qGc4UVOPLK20XiOjacsuqsWRfEQBgbDsXdAlgYUrWya6KH41GA3d391o/RA3l46zAzB4eAID1p8qxJ5MjCRNdi94o8EZiEcr0Am28Vbg72lXqSETXZFfFD5Gl9QjW4ta2psaa7+0rQk4pp7+wBhUVFejevTu6d++OigrOyWYNPj9YgtMFeriqZHi8lydUcrbzIetl1cVPaWkpDhw4gAMHDgAA0tLScODAAaSnp0sbjBzKpE5uaOejQrle4M3dhdAb2P6H6O8SL+jwy+lyAKZ2Pv4uCokTEV2fVRc/SUlJ6NatG7p16wYAePzxx9GtWzc8//zzEicjR6KUm77Jul1p/7PiINv/ENXIKa3G+39r59M9mLO1k/Wz6v67AwcO5CBzZBV8nRV4rKcnXv6zABvOlKODnwp9Qzn+Dzm2KoPAosRClFcLRPmocA/b+ZCNsOozP0TWJCZIg9uiXAAA7yeZxjEhcmSfpBQjrbAa7mrT2VEl2/mQjWDxQ1QPd3d0NY3/Uy3w6q4ClHP+L3JQG8+WY1NaBWQAZsV5wseZ7XzIdrD4IaoHhVyG//TygI+THFklBry7twhGXpolB3PychU+TjGNoH9PtCu6BnI8H7ItLH6I6slDq8CTfTyhlAN7syrx/fEyqSM5HLlcjr59+6Jv376c3qKZFeoMeD2xENVGIK7FX5eCiWyJVTd4JrJWbbzVmBbjjg+SirHySCkivFToxm+/zUaj0eDtt9+WOobDqTaahnvIrzCihZtpEFDO20W2iF+ZiBooIdwZQyKcIAAs3l3IARDJ7n1xqARHL+nhpJThqT5ecFbxI4RsE1+5RI0wtas72nirUKoXWLCzkA2gyW5tSivH+lN/DWQY4s4LB2S7WPwQNYJKIcNTfTzhrZXjQnE1Fu8pgoENoJtcRUUF+vXrh379+nF6i2aQeqkKy5JNDZwndHBBXAsOZEi2jcUPUSN5Oykwt68X1HIgObuSM8A3E51OB52Ok802tYtl1Xh9VwGqBdA7RIPxHTiQIdk+Fj9EFtDaW4WZPU0zwP94shx/nCuXOBFR41XojVj4ZyGKqwQiPJX4dw9PyNnAmewAix8iC+kb6oTxHUzdfpcmFeN4XpXEiYgaziAE3tpThPTianhp5Xi6rxc0ShY+ZB9Y/BBZ0IQOrujVQoNqAby6s4A9wMhmfXGoBMnZlVDJgbl9OYIz2RcWP0QWJJfJ8O+eHojwVKK4SuB/OwpQXMkeYGRbfjlVhp9Omi7dzujhgTbeaokTEVkWix8iC9Mq5Xg23gt+znJklxqwcGcBKg3sAUa2YW+mDssPmBrtT+rkiviWThInIrI8Fj9ETcBLq8D/xXvDRSXDict6zgFmYTKZDDExMYiJieEIwxZ0Kr8Kb+0phAAwJMIJt7Xj1BVkn1j8EDWRUHcl5vb1glIOJF7Q4Qt2gbcYrVaLjz76CB999BG0Wo45Ywk5pdV45c9CVBmAmEANpnVzZ2FJdovFD1ET6uinxswef3WBX3+Kk6CS9SmqNOLlK+3TIjyVeLy3BxRyFj5kv1j8EDWx+JZOmNTJNDDcpwdKsP08RyQm61GuN+LlHfnIKjXA11mOZ/t5wUnJjwayb3yFEzWD29q5YHQbZwDAu/uKkJzNkYkbo6KiAgkJCUhISOD0Fo1QZRB4dWchzhRUw10jx7z+3vByYpd2sn8sfoiagUwmw+QubhgQpoVRAIt2FSL1EgdBbIzCwkIUFhZKHcNmGYwCb+0uxJFLVXBSyvDfeC8Eu3GyUnIMLH6ImolcJsO/unuge5AGVUZgwc4CnCvUSx2LHJAQAh8mF2NvlmkQw6f7eiLSSyV1LKJmw+KHqBkp5TI83tsT7X1VKNcLvLS9AJklHAWamo8QAisOluCPcxWQA5jTyxPR/hqpYxE1KxY/RM1Mo5DhmX5eCPdUorDSiPlb85HNaTCoGQgh8OXhUqw/ZRq9+dHu7ohrwaECyPGw+CGSgItKjuf7e6OluxL5OlMBdLGMBRA1rW+OluKHE6bhFqbFuOOWcGeJExFJg8UPkUTcNXLMG+CFFm4K5FUYMX9rAS6VG6SORXZqTWop1h4zFT4PdHXD8EgWPuS4WPwQSchTq8ALA7wR5KpAbrkB87bm4zILoBuSyWTo0KEDOnTowFGIb8IPx0vxzdFSAMD9nd0wug2nrSDHxuKHSGJeTqYCKMBFgYtlBjy3NR+5ZSyArker1eLzzz/H559/zuktbmDtsVJ8cdhU+NwT7YqxnK+LiMUPkTXwcVZgfq0C6DIbQVOjCCHw9ZESrDxiKnzu6uiKO9q7SpyKyDqw+CGyEv4uCrw0yBvBrgrklRvx3JZ8XChmAUT1J4TAZ4dK8O2VNj73d3bD+A4sfIhqsPghsiI+TqYCqKW7EgU6I57bms+BEOug0+kwZswYjBkzBjodpwr5O6MQWJZSjJ9OmrqzT+3mxktdRP/A4ofIynhqFXhhoDciPJUorjRi3tZ8nLjMqTD+TgiB7OxsZGdnQwghdRyrUW0UWLKvCL+dqYAMpnF8RrZm4UP0Tyx+iKyQu0aO+QO80c5HhVK9wPxt+UjK4hkOujZdtRELdxZg63kd5DLgsZ4eSOA4PkR1YvFDZKVc1HI8398LMYEaVBmAV3cV4o+0cqljkRUqrjRi/rYCpORUQa0wzdXVP8xJ6lhEVovFD5EV0yrlmNvXEwOvzAa/JKkY3x0r5aUeMsstq8b//XEZp/L1cFXL8MIAb8QGsfs/0fWw+CGyckq5DDN7eOC2KFPbja+OlOLjlBIYjCyAHN3ZAj2e/SMfWaUG+DrL8fIgH7T1UUsdi8jqKaUOQEQ3JpPJcG8nN3hp5fj0QAk2nClHTmk1Hu/tCRcVv8M4ot0XdHhnbxEqDQIt3ZX4b38v+DgppI5FZBP4V5PIhoxq44In+3hCo5DhwMUqPPtHPnIccDBEmUyGiIgIREREONz0FkIIfHe8FK8nFqLSINA1QI3/3eLNwoeoHmTCjhsPFBcXw8PDA0VFRXB3d5c6DlmZ5ORkqSM02NkCPRb8WYB8nRHuahme6uuF9r683GHv9AaBD5OLsPW8qeffiNbOeKCLGxRy2ywAY2NjpY5AVqqpP7955ofIBkV4qbAwwQeRXkoUV5m6wv9+tpwNoe1YfoUB87blm7uyP9TNDQ91c7fZwodISix+iGyUj5MCLw30Qa8WGlQbgaXJxXg/qRhVBhZA9ubopSo8ufEyTlzWw1kpw7P9vDCCgxcSNRiLHyIbplHK8ERvT9zbyRVyAH+cq8B/t1xGbpl9twPS6XSYMGECJkyYYNfTWwghsP5kGeZvy0dhpREt3ZV4NcEH3QI1Ukcjsmns7UVk42QyGW6LckWElwqLdxfiTEE1ntx0GbPjPO32Q1IIgbNnz5p/t0cVeiM+SC7GzgxTcRffUotHYt2hVfI7K1Fj8V1EZCe6BGjw2hBftPZSobRK4H87CvDZwWLoOR6QzTmdr8cTmy5jZ4YOChkwtasbZvX0YOFDZCF8JxHZET9n06zwwyNNczr9eLIcz26+jKwS+74MZi+MQuCHE2V49o/LyCk1wNdJjhcHemNkGxeH69JP1JRY/BDZGbVChmkx7pjbxxOuahnOFlbjyY2X8Ucae4NZs4IKA/63owBfHCqBQQC9QzR4Y6gvojiEAZHFsc0PkZ3q2UKLSG8V3tlThCOXqrAkqRh7syrxcIw7vDggntUQQuDPDB0+TilGaZWARiHDg13dMDjciWd7iJoIix8iO+bjpMDzA7yw7ngZVh0txb6sShy7lIcHu7mjf0stP1wlVlBhwNL9xdiXVQkACPdUYnacJ0Lc+aeZqCnxHUZk5xQyGW5v74qYIA2W7CvC2cJqvLO3CDszdHgk1h3eNngWSCaTISgoyPy7rRFCYFu6Dp+mFKNUL6CUAeM7uGJclAuUHLSQqMlxegtyWLY8vUVDVRsF1p0ow+qjpagWgLNShonRrhgR6cyRgpvJheJqfJxSjMO5VQCASC8lZvTwQJiHSuJkzY/TW9C1NPXnN8/8EDkQpVyGO9q7okewBu8nFeNUvh6fHijBH2kVmBbjzvnBmpCu2og1qWVYf7IM1QJQya+c7WnnwsKTqJmx+CFyQC09VHj5Fm9sTqvAV4dLcL6oGv/dko+BYVrc28mNDaItSAiBxAuV+OxgMfIqjACA2CANHuzqhkBX/gkmkgLfeUQOSiGTYWiEM3q10OKrwyXYnFaBred1SLxQidFtnTGunQucVdY5GoZOp8P06dMBAB999BG0Wq3Eiep29FIVvjhUglP5egCAv7MCD3ZzQ49g68xL5ChY/BA5OHeNHI9298DgcCesOFiCE5f1+PZYGTaeKcedHVwxNNIZKiu7LCOEQGpqqvl3a5NepMeXh0uRnG3qxaVVyHBrO2eMi3KFRmFdzyWRI2LxQ0QAgLY+arw8yBt7syrx5eESZJUYsPxACdafLMe4KBcMauUENT+4ryu9SI/vjpdhZ7oORgByGZAQ7oQJHV3hpeWlRCJrweKHiMxkMhniWmjRPUiDzWkVWJVaitxyAz7aX4w1qaW4tZ0LhkY4cY6pfzidr8e3x0qx98p4PQDQq4UG93RyQws3/pklsjZ8VxLRVRRyGYZGOmNAmBM2pZVj3YkyXK4w4rODJfj+WCmGRjpjaKQzfBy4YbRBCKRkV+KX0+U4eNHUbV0GoFeIBrdHuSLCy/G6rhPZChY/RHRNGqUMo9q4YGikM7adq8D3x8uQU2bA2mNl+O54GeJaaDGitTM6+KpscrDBhiipMuKPtApsOFOO3DIDANPlrfiWWtwe5crRmYlsAN+lRHRDKrkMCRHOGNTKCXsyK/Hr6TKk5umReEGHxAs6hLorMTBMi/iWTvBxtr+zQQajwKHcKmw/X4HdF3SoMvVYh6tKhlvCnTC8tTMCXPjnlMhW8N1KRDdNIZehT6gWfUK1OFeox4Yz5dh+XoeM4mp8cbgUXx4uRbS/Gv3DtIgL1sJF3XRtgzw9PZts24CpF9nZwmpsP1+BPzN0KNQZzbe18lBiRBtnxIc6QaN0jDNeRPaE01uQw3LE6S2aQlmVEbsu6LDtfAWO5enNyxUyoL2vGt2DNegerEGQDQzoV2UQOJxbhaQsHZKzK3G54q+Cx00tQ99QJwwI06KNt+Nc5mtKnN6CrsXhp7dYsmQJXn/9deTk5KBLly5499130bNnT6ljEdEVLmo5hkQ4Y0iEM3LLqrE9XYcd6TpcKK7GkUtVOHKpCisOliDYTYFoPzXa+6rRwU8NXyu4PKY3CJwu0OPYpSqk5lUh9ZIelYa/vg9qFDLEBGkwIEyLroEaqxvviIgaxqqLn1WrVuHxxx/Hhx9+iLi4OCxevBjDhg3DiRMn4O/vL3U8IvoHfxcl7mzvijvbuyKntBpJWZVIyq5E6qUqZJUYkFVSgd/PVpjWdVagtbcKrTyVCPNQIsxTBV8neZOdUamsFsgorsa5Ij3OF1YjrVCPM/l6c/udGj5OctPZqiAtov3VHNuIyA5Z9WWvuLg49OjRA++99x4AwGg0IjQ0FP/+97/x9NNP3/D+vOxF18PLXs2nrMp45cyK6ezK2UI9jHX85XFWyuDnooCfswJ+Lgr4OivgqZXDRSWDs8r0r1Ypg76qEs8/NQcA8OJrb0Gu0qCsyohyvUCZ3oiyKoG8CgMulRmQV27ApXIDLpcbYbz6IeGhkaODnwrtfdXo6KdGmIeSl7SaCS970bU47GWvqqoqJCcn45lnnjEvk8vlSEhIQGJiYp33qaysRGXlX4OMFRcXN3lOIroxF7UcPYK15jmtKvRGnMzXI62wGucL9ThXVI3M4mqUVwucL6rG+aLq627PWKVDxoH9AIDHfr0Eufrm5spy18jRykOJME8lwjxUaOujQrCrgsUOkYOx2uInLy8PBoMBAQEBtZYHBATg+PHjdd5nwYIFeOGFF5ojHhE1gpNKji4BGnQJ0JiX6Y0COaWmszWXrpytuVRmQEmV6UxOud50Zqe82gjj3zqRqeWAWiWDs0oGF5Xc/K+3k/yvs0jOCgS6KuDJKSaICFZc/DTEM888g8cff9z8/+LiYoSGhkqYiIhulkouQ6i7EqE3MUhgRUUF4t8w/b5iXACcnJyaOB0R2ROrLX58fX2hUChw8eLFWssvXryIwMDAOu+j0Wig0WjqvI2IiIgIAKx2dkK1Wo3Y2Fhs3rzZvMxoNGLz5s3o3bu3hMmIiIjIllntmR8AePzxxzF58mR0794dPXv2xOLFi1FWVoYHHnhA6mhERERko6y6+Jk4cSIuXbqE559/Hjk5OejatSs2bNhwVSNoInI8Wu3N9fAiIvonqx7np7E4zg9dD8f5IZIWx/mha2nqz2+rbfNDRERE1BRY/BAREZFDYfFDRDansrISs2bNwqxZs2qN6k5EdDOsusEzEVFdjEYjdu7caf6diKg+eOaHiIiIHAqLHyIiInIoLH6IiIjIobD4ISIiIofC4oeIiIgcil339qoZvLq4uFjiJGSNSktLpY5ADaTT6cy/l5WVwWAwSJiGGop/m+laal4bTTUJhV1Pb3HhwgWEhoZKHYOIiIgaICMjAyEhIRbfrl0XP0ajEVlZWXBzc4NMJpM6Tp2Ki4sRGhqKjIwMu5x/jPtn27h/to37Z9scef+EECgpKUFwcDDkcsu30LHry15yubxJKsam4O7ubpcv7hrcP9vG/bNt3D/b5qj75+Hh0WSPyQbPRERE5FBY/BAREZFDYfEjMY1Gg3nz5kGj0UgdpUlw/2wb98+2cf9sG/ev6dh1g2ciIiKif+KZHyIiInIoLH6IiIjIobD4ISIiIofC4oeIiIgcCoufRlqyZAlatWoFrVaLuLg47N2795rr6vV6vPjii4iMjIRWq0WXLl2wYcOGWuu0atUKMpnsqp8ZM2aY1xk4cOBVtz/yyCMW37ft27djzJgxCA4Ohkwmww8//HDD+2zduhUxMTHQaDRo3bo1VqxYcdU6N3rOdDodZsyYAR8fH7i6uuKOO+7AxYsXLbRXf2mK/VuwYAF69OgBNzc3+Pv7Y9y4cThx4kStdWz5+M2fP/+q7FFRUbXWseXjZ8vvv+zsbNxzzz1o27Yt5HI5Zs+eXed6a9asQVRUFLRaLTp16oRffvml1u1CCDz//PMICgqCk5MTEhIScOrUKQvt1V+aYv+WLVuG+Ph4eHl5wcvLCwkJCVf9fZkyZcpVx2/48OEW3DOTpti/FStWXJVdq9XWWseWj19d7y2ZTIZRo0aZ17HU8WPx0wirVq3C448/jnnz5mH//v3o0qULhg0bhtzc3DrX/+9//4ulS5fi3XffRWpqKh555BHcdtttSElJMa+zb98+ZGdnm382btwIABg/fnytbU2bNq3Weq+99prF96+srAxdunTBkiVLbmr9tLQ0jBo1CoMGDcKBAwcwe/ZsPPTQQ/jtt9/M69zMczZnzhz89NNPWLNmDbZt24asrCzcfvvtNrF/27Ztw4wZM7B7925s3LgRer0eQ4cORVlZWa1t2erxA4COHTvWyv7nn3/Wut2Wj58tv/8qKyvh5+eH//73v+jSpUud6+zatQt33303pk6dipSUFIwbNw7jxo3DkSNHzOu89tpreOedd/Dhhx9iz549cHFxwbBhw2pNJmsJTbF/W7duxd13340tW7YgMTERoaGhGDp0KDIzM2utN3z48FrHb+XKlY3en39qiv0DTKMh/z37+fPna91uy8fvu+++q7VvR44cgUKhuOr9Z5HjJ6jBevbsKWbMmGH+v8FgEMHBwWLBggV1rh8UFCTee++9Wstuv/12MWnSpGs+xqxZs0RkZKQwGo3mZQMGDBCzZs1qXPh6AiC+//77667z1FNPiY4dO9ZaNnHiRDFs2DDz/2/0nBUWFgqVSiXWrFljXufYsWMCgEhMTLTAntTNUvv3T7m5uQKA2LZtm3mZLR+/efPmiS5dulxzG/Z2/Gzp/fd318o4YcIEMWrUqFrL4uLixMMPPyyEEMJoNIrAwEDx+uuvm28vLCwUGo1GrFy5skHZb4al9u+fqqurhZubm/jss8/MyyZPnizGjh1b/5CNYKn9+/TTT4WHh8c172dvx++tt94Sbm5uorS01LzMUsePZ34aqKqqCsnJyUhISDAvk8vlSEhIQGJiYp33qaysvOoUpZOT01XfnP/+GF9++SUefPDBqyZm/eqrr+Dr64vo6Gg888wzKC8vb+QeNV5iYmKt5wMAhg0bZn4+buY5S05Ohl6vr7VOVFQUWrZsec3ntbncaP/qUlRUBADw9vautdwWj1+NU6dOITg4GBEREZg0aRLS09PNt9nT8bO199/NuNFzkJaWhpycnFrreHh4IC4uTvLj1xDl5eXQ6/VXvf+2bt0Kf39/tGvXDo8++iguX74sUcL6Ky0tRVhYGEJDQzF27FgcPXrUfJu9Hb9PPvkEd911F1xcXGott8Txs+uJTZtSXl4eDAYDAgICai0PCAjA8ePH67zPsGHD8Oabb6J///6IjIzE5s2b8d1338FgMNS5/g8//IDCwkJMmTKl1vJ77rkHYWFhCA4OxqFDhzB37lycOHEC3333nUX2raFycnLqfD6Ki4tRUVGBgoKCGz5nOTk5UKvV8PT0vGqdnJycJs1/IzfaPycnp1q3GY1GzJ49G3379kV0dLR5ua0ePycnJ8TFxWHFihVo164dsrOz8cILLyA+Ph5HjhyBm5ubXR0/W3v/3YxrPQc1x6bm3+utY0vmzp2L4ODgWsXA8OHDcfvttyM8PBxnzpzBs88+ixEjRiAxMREKhULCtDfWrl07LF++HJ07d0ZRUREWLVqEPn364OjRowgJCbGr47d3714cOXIEn3zySa3lljp+LH6a0dtvv41p06YhKioKMpkMkZGReOCBB7B8+fI61//kk08wYsQIBAcH11o+ffp08++dOnVCUFAQBg8ejDNnziAyMrJJ94Fu3owZM3DkyJGrzuzZ8vEbMWKE+ffOnTsjLi4OYWFhWL16NaZOnSphMsvj+8+2LVy4EN988w22bt1a64z7XXfdZf69U6dO6Ny5MyIjI7F161YMHjxYiqg3rXfv3ujdu7f5/3369EH79u2xdOlSvPTSSxIms7xPPvkEnTp1Qs+ePWstt9Tx42WvBvL19YVCobiqF8vFixcRGBhY5338/Pzwww8/oKysDOfPn8fx48fh6uqKiIiIq9Y9f/48Nm3ahIceeuiGWeLi4gAAp0+fbsCeWE5gYGCdz4e7uzucnJxu6jkLDAxEVVUVCgsLr7mOVG60f383c+ZMrF+/Hlu2bEFISMh1t2srx68unp6eaNu2rTm7vRw/W3z/3YxrPQd/f//VLLvWOrZg0aJFWLhwIX7//Xd07tz5uutGRETA19fXJo7fP6lUKnTr1q3W+w+w/eNXVlaGb7755qa+UDX0+LH4aSC1Wo3Y2Fhs3rzZvMxoNGLz5s21KvO6aLVatGjRAtXV1fj2228xduzYq9b59NNP4e/vX6uL37UcOHAAABAUFFS/nbCw3r1713o+AGDjxo3m5+NmnrPY2FioVKpa65w4cQLp6ek3fF6b2o32DzB1M505cya+//57/PHHHwgPD7/hdm3l+NWltLQUZ86cMWe39eNXwxbffzfjRs9BeHg4AgMDa61TXFyMPXv2SH78btZrr72Gl156CRs2bED37t1vuP6FCxdw+fJlmzh+/2QwGHD48GFzdns4foBpOIbKykrce++9N1y3wcev0U2mHdg333wjNBqNWLFihUhNTRXTp08Xnp6eIicnRwghxH333Seefvpp8/q7d+8W3377rThz5ozYvn27uOWWW0R4eLgoKCiotV2DwSBatmwp5s6de9Vjnj59Wrz44osiKSlJpKWliXXr1omIiAjRv39/i+9fSUmJSElJESkpKQKAePPNN0VKSoo4f/68EEKIp59+Wtx3333m9c+ePSucnZ3Fk08+KY4dOyaWLFkiFAqF2LBhg3mdGz1nQgjxyCOPiJYtW4o//vhDJCUlid69e4vevXvbxP49+uijwsPDQ2zdulVkZ2ebf8rLy4UQtn/8/vOf/4itW7eKtLQ0sXPnTpGQkCB8fX1Fbm6ueR1bPn5C2O77TwhhXj82Nlbcc889IiUlRRw9etR8+86dO4VSqRSLFi0Sx44dE/PmzRMqlUocPnzYvM7ChQuFp6enWLdunTh06JAYO3asCA8PFxUVFVa/fwsXLhRqtVqsXbu21vuvpKTE/JhPPPGESExMFGlpaWLTpk0iJiZGtGnTRuh0OqvfvxdeeEH89ttv4syZMyI5OVncddddQqvVXvUc2Orxq9GvXz8xceLEOh/TUsePxU8jvfvuu6Jly5ZCrVaLnj17it27d5tvGzBggJg8ebL5/1u3bhXt27cXGo1G+Pj4iPvuu09kZmZetc3ffvtNABAnTpy46rb09HTRv39/4e3tLTQajWjdurV48sknRVFRkcX3bcuWLQLAVT81+zR58mQxYMCAq+7TtWtXoVarRUREhPj000+v2u71njMhhKioqBD/+te/hJeXl3B2dha33XabyM7Oton9q2t7AMzr2frxmzhxoggKChJqtVq0aNFCTJw4UZw+fbrWOrZ8/ISw7fdfXeuHhYXVWmf16tWibdu2Qq1Wi44dO4qff/651u1Go1E899xzIiAgQGg0GjF48OA6nwtr3L+wsLA615k3b54QQojy8nIxdOhQ4efnJ1QqlQgLCxPTpk2r9eXLmvdv9uzZ5r+dAQEBYuTIkWL//v21tmHLx08IIY4fPy4AiN9///2qx7Tk8ZNdCURERETkENjmh4iIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIoLH6IiIjIobD4ISIiIofC4oeIbMKUKVMwbtw48/+XLFmCVq1aQavVIi4uDnv37pUuHBHZFBY/RGRzVq1ahccffxzz5s3D/v370aVLFwwbNgy5ublSRyMiG8Dih4hszptvvolp06bhgQceQIcOHfDhhx/C2dkZy5cvlzoaEdkAFj9EZFOqqqqQnJyMhIQE8zK5XI6EhAQkJiZKmIyIbAWLHyKyKXl5eTAYDAgICKi1PCAgADk5ORKlIiJbwuKHiIiIHAqLHyKyKb6+vlAoFLh48WKt5RcvXkRgYKBEqYjIlrD4ISKbolarERsbi82bN5uXGY1GbN68Gb1795YwGRHZCqXUAYiI6uvxxx/H5MmT0b17d/Ts2ROLFy9GWVkZHnjgAamjEZENYPFDRDZn4sSJuHTpEp5//nnk5OSga9eu2LBhw1WNoImI6iITQgipQxARERE1F7b5ISIiIofC4oeIiIgcCosfIiIicigsfoiIiMihsPghIiIih8Lih4iIiBwKix8iIiJyKCx+iIiIyKGw+CEiIiKHwuKHiIiIHAqLHyIiInIoLH6IiIjIofw/bg7kSn652k4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -816,13 +1323,13 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 495, "id": "af339c6e-f0e7-40cd-a2cf-61aaaa4df1e4", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSIElEQVR4nO3deXgT1foH8G+StkmhC0sptFJKKTtlLVDLKlIopaB4FdCLUhZZtAoIP5Z6RRaFArJ5FRFQKCC7CnoVVEAQULYWKkIBAdkXUaAL0KRtcn5/aIbGLrTJNJOk38/z5CGZnJl5JynTt+ecd0YlhBAgIiIiclJqpQMgIiIisgWTGSIiInJqTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmyGpJSUlQqVTSw83NDY888ggGDRqEq1ev2j2eEydOoG/fvqhTpw4qVKgAPz8/dOrUCf/73/9KtP7169cxadIkdOnSBd7e3lCpVNi9e3ehbb/77jsMHToUYWFh0Gg0qF27tnwHYoWPP/4YjRo1gk6nQ7169fDee+89dJ1u3bpBpVLhlVdeKdPYcnNz0bhxY6hUKsydO/eh7Xfv3m3xc/XPx4wZM6S2//wZzP+4ceNGWR5WoX766Sd06NABFSpUQI0aNTBq1CjcvXu32HVmzJgBlUqFsLAwO0VZtGHDhkGlUqFXr14lal/c99StWzep3YULF4pst379+rI6nCJdvXoV/fr1Q6VKleDj44Mnn3wSv/32W7Hr7Nu3T4r5zz//tFOkVFJuSgdAzm/69OkICQmBXq/HgQMHkJSUhH379uH48ePQ6XR2i+PixYvIyspCXFwcAgMDcf/+fXz22Wd44oknsGTJEgwfPrzY9U+fPo3Zs2ejXr16aNq0Kfbv319k27Vr12LDhg1o1aoVAgMD5T6UUlmyZAlGjhyJp59+GmPHjsXevXsxatQo3L9/HxMnTix0nc8//7zY45PTe++9h0uXLpW4faNGjbB69eoCy1evXo3vvvsO3bt3L/Ce+Wcwv0qVKpU6Vlukpqaia9euaNSoEebPn48rV65g7ty5OHPmDLZt21boOleuXMHMmTNRsWJFu8ZamOTkZCQlJZXq/2xh31NycjLefffdQr+n5557Dj179rRYFhkZWfpgbXD37l106dIFGRkZeP311+Hu7o4FCxagc+fOSE1NRdWqVQusYzKZ8Oqrr6JixYq4d++eXeOlEhJEVlqxYoUAIA4fPmyxfOLEiQKA2LBhg0KRPZCXlyeaN28uGjRo8NC2mZmZ4tatW0IIITZt2iQAiF27dhXa9urVqyInJ0cIIURsbKwIDg6WK2SJ+fMtzv3790XVqlVFbGysxfIBAwaIihUritu3bxdYJzs7W9SuXVtMnz5dABDx8fGyxp3f77//Lnx9faV9vfPOO1Zvq27duqJevXoWy4r6GZTT+fPni/1ZMIuJiREBAQEiIyNDWrZs2TIBQHz77beFrtO/f3/x+OOPi86dO4smTZpYHSMAsWLFCqvXN5lMIjIyUgwZMkQEBwcX+HkqjaFDhwqVSiUuX74sLTN/hrZ8/yURHBwspkyZUmyb2bNnCwDi0KFD0rKTJ08KjUYjEhISCl1n8eLFomrVqmL06NECgPjjjz/kDJtkwGEmkl3Hjh0BAOfOnVM4EkCj0SAoKAjp6ekPbevt7Y0qVaqUaLuBgYFwd3cvUdv09HSMGTMGQUFB0Gq1qFu3LmbPng2TyVSi9Yuza9cu3Lp1Cy+//LLF8vj4eNy7dw9ff/11gXXmzJkDk8mE//u//7N5/w8zadIkNGjQAM8//7xN2zl06BDOnj2LAQMGFNkmKysLRqOxyPdNJhMWLlyIJk2aQKfToXr16hgxYgTu3LljU2wAkJmZie3bt+P555+Hj4+PtHzgwIHw8vLCxo0bC6yzZ88efPrpp1i4cKHN+7fV6tWrcfz4cYshPGsYDAZ89tln6Ny5M2rWrFlom3v37iEnJ6fY7Wzbtg0dO3ZExYoV4e3tjdjYWJw4ccKm2Mw+/fRTtGnTBm3atJGWNWzYEF27di30e7p9+zbeeOMNTJ8+3e69fVRyTGZIdhcuXAAAVK5c+aFtDQYD/vzzzxI9SurevXv4888/ce7cOSxYsADbtm1D165drT0cm9y/fx+dO3fGJ598goEDB+K///0v2rdvj4SEBIwdO9bm7R89ehQA0Lp1a4vl4eHhUKvV0vtmly5dwqxZszB79mx4enravP/iHDp0CCtXrsTChQuhUqls2taaNWsAoMhkpkuXLvDx8UGFChXwxBNP4MyZMwXajBgxAuPHj0f79u3x7rvvYvDgwVizZg2io6ORm5trU3y//PIL8vLyCnwPHh4eaNGiRYHvwWg04tVXX8WLL76Ipk2b2rRvW2VlZWHixIl4/fXXUaNGDZu2tXXrVqSnpxf5PU2bNg1eXl7Q6XRo06YNvvvuuwJtVq9ejdjYWHh5eWH27NmYPHky0tLS0KFDB+ncYi2TyYRjx44V+J4AoG3btjh37hyysrIslk+ePBk1atTAiBEjbNo3lS3OmSGbZWRk4M8//4Rer8fBgwcxbdo0aLXaEk0iXLduHQYPHlyi/QghStRu3LhxWLJkCQBArVbjX//6F95///0SrSu3+fPn49y5czh69Cjq1asH4K9fqoGBgXjnnXcwbtw4BAUFWb3969evQ6PRwN/f32K5h4cHqlatimvXrlksHzduHFq2bIlnn33W6n2WhBACr776Kvr374/IyEibfgkZjUZs2LABbdu2Rd26dS3eq1ChAgYNGiQlMykpKZg/fz7atWuHI0eOSJ/tvn378NFHH2HNmjX497//La3fpUsX9OjRA5s2bbJYXlrXr18HAAQEBBR4LyAgAHv37rVY9uGHH+LixYvYsWOH1fuUy/Tp0+Hp6YnXXnvN5m2tWbMGWq0WzzzzjMVytVqN7t2746mnnsIjjzyC3377DfPnz0dMTAy+/PJLxMbGAvhrPsuoUaPw4osvYunSpdL6cXFxaNCgAWbOnGmxvLRu374Ng8FQ5PcEANeuXUODBg0AAMeOHcOSJUuwdetWaDQaq/dLZY/JDNksKirK4nXt2rXxySefFNnNnF90dDS2b98uazxjxozBM888g2vXrmHjxo0wGo0P7dYuK5s2bULHjh1RuXJli96lqKgozJo1C3v27JH+ir1z547FMIm5CuafvVIVKlRAhQoVAADZ2dnw8PAodN86nQ7Z2dnS6127duGzzz7DwYMH5Tm4YiQlJeGXX37Bp59+avO2du7cid9//x2vv/56gff69euHfv36Sa/79OmD6OhodOrUCTNmzMCHH34I4K/vwdfXF926dbP4PMPDw+Hl5YVdu3ZJyczdu3eh1+ulNuZhKHPSbubu7g5fX18AkD5nrVZbIMZ/fg+3bt3Cm2++icmTJ6NatWql/jzu37+P+/fvF1h+9+5di/g0Gs1De0d//fVXvPvuu1i3bl2hsZdGZmYmvv76a/Ts2bPAcEytWrXw7bffWix74YUX0LhxY4wbN05KZrZv34709HQ899xzBY4lIiICu3btkpYZDIYCvSgmkwn3798v8H/Gz88PwMO/p/xtAGDUqFGIiYkpdDIzORilJ+3Yww8//CB69eolAgICBACxefPmUq2fnZ0t4uLiRFhYmNBoNOLJJ58stN2uXbtEy5YthYeHhwgNDS0wIe+DDz4QTZs2Fd7e3sLb21s8+uijYuvWrdYdlAMwT75ctGiR2L59u/j0009Fz549hZeXl9i9e7fS4Um6desm2rRpI0wmU4nXedgE4PyKmwDs6ekpABT5mD9/vtQ2ODi42LbmR/4JjvHx8UKj0RS672rVqolnn31WCCFEbm6uCAsLEwMHDrRogxJOAL5165a4fv269EhPTy+ybUZGhqhevbp48803pWW2TAAdOHCg0Gg04saNGyVe59FHHxWhoaHS65iYmGI/0yeeeEJqGxcXV6LvoXPnztI65p+XPXv2FIilb9++okaNGtLrkSNHirp16wqDwSAtK80E4ClTppQovpJMSu/Ro4fFcQghrJ4AvHz5cgFAfPrppyVeZ9KkSQKANFnYPDm3qIePj4+0rvn8U5KH2R9//CEAiOnTpxeIZdGiRQKAOHXqlBBCiPXr1wt3d3dx+vRpqY35s+cEYMdTLnpm7t27h+bNm2PIkCH417/+Ver1jUYjPD09MWrUKHz22WeFtjl//jxiY2MxcuRIrFmzBjt37sSLL76IgIAAREdHAwBq1qyJWbNmoV69ehBCYOXKlXjyySdx9OhRNGnSxKZjVFLbtm2lMeg+ffqgQ4cO+Pe//43Tp0/Dy8ur2HWzs7ORkZFRov1YO57/zDPPYMSIEfj111+l7mN7MZlM6NatGyZMmFDo+/Xr15eer1mzxuKvwu+++w7vvPNOgZ6rOnXqSM8DAgJgNBpx8+ZNi6GmnJwc3Lp1SyobX7VqFU6fPo0lS5YUGPLJysrChQsX4O/vL/X4/NO//vUv/PDDD9LruLg4JCUlFdp27ty5yMnJQf/+/aV9XblyBcBfvRwXLlxAYGBgkT1K+WVnZ2Pz5s2IiopC9erVH9reLCgoCKdPn5Zem0wm+Pv7S3Nv/il/D8mECRMsJiz//vvveP755zF37lw0b95cWp6/18M8RGEebsrv+vXr0vdw5swZLF26FAsXLrQYAtTr9cjNzcWFCxfg4+NT7ET0gQMHokOHDhbLunXrhvHjx1v0IDxsTtT333+Pb775Bp9//rnFz0ReXh6ys7Nx4cIFVKlSxWJCc3HWrFkDX1/fEl+jBoA0DHj79m3UrFlTmhS/evXqQv+/u7k9+JVVWK/u888/j+7du2PgwIGF7q9KlSrQarVFfk8ApO9q/Pjx6Nu3Lzw8PKTPx1xIcPnyZeTk5Ch+WQbKR+lsyt5QSM+MXq8X48aNE4GBgaJChQqibdu2Rf5FHhcXV2jPzIQJEwr8ZdW/f38RHR1dbDyVK1cWH330UWkOwWEUVRa7a9cuAUAkJiaWeBsleVhr4cKFAoA4ePBgideRq2emcePGIjIyssT7za8kpdlfffWVACC+/vpri+U//vijACBWrVolhCjZX/PF9VgmJyeL7du3S48TJ04U2bYkPRtHjx4t0Wewfv16i+MoqfDwcFG/fn3p9csvvyw0Go24f/9+qbYjRMlKs9PT04Wbm5sYP368xXKDwSC8vLzEkCFDhBAP/m8U9xg9enSpY4QVpdkl+b+3YMGCEm3r2rVrQq1WS8dZUuPGjRMAxLVr14QQQmzcuFEARZeyP0xJSrNbt24t2rRpU2B5t27dRJ06daTXD/tsmjdvblWMVDbKRc/Mw7zyyitIS0vD+vXrERgYiM2bN6NHjx745ZdfpEmbD7N///4Cc0eio6MxZsyYQtsbjUZs2rQJ9+7ds/tFo8raY489hrZt22LhwoUYM2ZMsRfhknPOzD97J4C/rj67atUqeHp6onHjxtLy69evIyMjA6GhoSUusbZGv379MHXqVHz77bdSD51Zeno6vLy8LP7aLK3HH38cVapUweLFiy0uRrZ48WJUqFBBmovw7LPPokWLFgXWf+qpp9CzZ08MGzYMERERRe4nPDy8xDGNGjUKffr0sVh28+ZNjBgxAoMGDcKTTz4pXeAuNzcX586dg6+vb6GTMteuXYsKFSrgqaeeKnRff/zxR4F5J1u3bkVKSgpGjRolLevXrx8++OADvPXWW5g5c6ZF+7y8PNy9e9emsltfX19ERUXhk08+weTJk+Ht7Q3grx6Gu3fvom/fvgCAsLAwbN68ucD6b7zxBrKysvDuu+8iNDTU6jhK4/HHHy80luHDhyM4OBj/+c9/LCqtzJdaKCy+9evXw2QyFVnFVNj3dPXqVSxfvhzNmjWTvvvo6Gj4+Phg5syZ6NKlS4H/m4Vtp7SeeeYZTJo0CcnJyVKP8unTp/H9999bXK6gsM9m/fr12LBhA1atWlWiOYFkR0pnU/aGf/wFevHiRaHRaMTVq1ct2nXt2rXQCygV1TNTr149MXPmTItlX3/9tQBg8dfgsWPHRMWKFYVGoxG+vr4F/qJ2JsVdsMzcs7F48WK7xdOnTx/x+OOPi6lTp4ply5aJt956SzRs2FAAEPPmzbNoa+49OH/+vMXyt956S7z11lvi2WefFQDEkCFDpGX5/fzzz9LyBg0aiEqVKkmvv/zyS6ndvXv3RKtWrYSbm5t48cUXxeLFi8XcuXNFXFycqFixYrFj7yXpmRHiwVj/M888I5YtWyYGDhwoAIgZM2Y8dF2UcM6MrYqaM2NeHhcXV2CdW7duCXd3d2neT2Hq1q0r+vbtK2bPni0+/PBDMXz4cOHm5iaCgoIKzLEZMWKEACBiYmLEggULxPvvvy9Gjx4tAgMDxaZNmx4a+8N66VJSUoRWqxUtW7YUixcvFv/5z3+ETqcT3bt3L3Y9IUo3Z6YwsKJnpihFzZkJDg4usgcyPDxcBAYGCqPRWOj7gwYNEh07dhRTp04VS5cuFa+//rqoWrWq8PDwKPC5rlmzRqjVahEWFibefvttsWTJEvGf//xHtGjR4qE/qyXpmcnMzBShoaHC399fzJkzRyxYsEAEBQWJwMBAcfPmzWLX5ZwZx1XukxlzN33FihUtHm5ubqJfv34F1rc1mTEYDOLMmTMiOTlZTJo0Sfj5+RXbZe/IiktmjEajCA0NFaGhoSIvL88u8axbt05ERUWJ6tWrCzc3N1G5cmURFRUlvvjiiwJti0pmUMJhruK66P/5izkrK0skJCSIunXrCg8PD+Hn5yfatWsn5s6dK11FuDAlTWaEEGLp0qWiQYMG0uTzBQsWlGjCsyMnMx9++KEAYJEc/pP5l5yvr69wd3cXtWrVEi+99FKRk4WXLl0qwsPDhaenp/D29hZNmzYVEyZMkIY5iou9JEOOe/fuFe3atRM6nU5Uq1ZNxMfHi8zMzIeu58zJzKlTpwQAMXbs2CK3uXbtWtGpUydRrVo14ebmJvz8/MRTTz0lUlJSCm2/a9cuER0dLXx9fYVOpxOhoaFi0KBBIjk5+aGxPyyZEUKIy5cvi2eeeUb4+PgILy8v0atXL3HmzJmHrsdkxnGphCjhxTtchEqlwubNm6Vu8A0bNmDAgAE4ceJEgesIeHl5FZiENmjQIKSnp2PLli0Wyzt16oRWrVpZXM1zxYoVGDNmTLETXKOiohAaGipdF4WIiIhKp9zPmWnZsqVUDWK+DL81IiMjsXXrVotl27dvf+h8GJPJBIPBYPV+iYiIyrtykczcvXsXZ8+elV6fP38eqampqFKlCurXr48BAwZg4MCBmDdvHlq2bIk//vgDO3fuRLNmzaQJlGlpacjJycHt27eRlZWF1NRUAJAmVY4cORLvv/8+JkyYgCFDhuD777/Hxo0bLe6Nk5CQgJiYGNSqVQtZWVlYu3Ytdu/eXeBiUkRERFQKSo9z2UNR5ZDmcfqcnBzx5ptvitq1awt3d3cREBAgnnrqKXHs2DFpG0Vd0Oyf+2nRooXw8PAQderUKTCGbb4jrYeHh6hWrZro2rWr+O6778r68ImIiFxauZszQ0RERK6Fd80mIiIip8ZkhoiIiJyaS08ANplMuHbtGry9vaFSqZQOh4iIiEpACIGsrCwEBgZCrX54v4tLJzPXrl2TbmRGREREzuXy5cslunWESycz5vujXL58ucR3fqXy4+jRo0qHQFbS6/Xo0aMHAOCbb74p9v5f5LhatmypdAjkoDIzMxEUFCT9Hn8Yl05mzENLPj4+TGaoAC8vL6VDICvlv1p3xYoV4enpqWA0ZC2el+lhSjpFhBOAiYiIyKkxmSEiIiKn5tLDTETkmjQaDXr16iU9J6LyjckMETkdDw8PTJ06VekwiMhBcJiJiIiInBp7ZojI6QghoNfrAQA6nY4XxSQq59gzQ0ROR6/Xo2PHjujYsaOU1BBR+cVkhoiIiJwakxkiIiJyakxmiIiIyKkxmSEiIiKn5rDJjNFoxOTJkxESEgJPT0+EhobirbfeghBC6dCIiIjIgThsafbs2bOxePFirFy5Ek2aNEFycjIGDx4MX19fjBo1SunwiGx2814eVCoVqniqoWFpMRGR1Rw2mfnpp5/w5JNPIjY2FgBQu3ZtrFu3DocOHVI4MiJ5vLz1TwgAH/Wuhso6XpK/NNRqNbp27So9J6LyzWGTmXbt2mHp0qX49ddfUb9+ffz888/Yt28f5s+fX+Q6BoMBBoNBep2ZmWmPUIlKzSQEzAOm7JUpPa1Wi9mzZysdBhE5CIdNZiZNmoTMzEw0bNgQGo0GRqMRM2bMwIABA4pcJzExEdOmTbNjlETWMeWb+qVmLkNEZBOH7Z/duHEj1qxZg7Vr1+LIkSNYuXIl5s6di5UrVxa5TkJCAjIyMqTH5cuX7RgxUcnlT2Y0TGaIiGzisD0z48ePx6RJk/Dss88CAJo2bYqLFy8iMTERcXFxha6j1Wqh1WrtGSaRVYz5qvLUHGYqtezsbHTs2BEAsHfvXnh6eiocEREpyWF7Zu7fv19gYp9Go4HJZFIoIiL5WAwzOez/QiIi5+CwPTO9e/fGjBkzUKtWLTRp0gRHjx7F/PnzMWTIEKVDI7JZ/pycc2aIiGzjsMnMe++9h8mTJ+Pll1/GzZs3ERgYiBEjRuDNN99UOjQim5nyDzMpGAcRkStw2GTG29sbCxcuxMKFC5UOhUh2xr9zGbUKUHHODBGRTfhHIZECzHNmWMlERGQ7JjNECjBXM7GSiYjIdg47zETkykz5hpmo9NRqNdq3by89J6LyjckMkQKMf1czcZjJOlqtFu+++67SYRCRg+CfNEQKMEnDTAoHQkTkApjMEClAGmZiNkNEZDMmM0QK4JwZ22RnZ6NDhw7o0KEDsrOzlQ6HiBTGOTNECmBptu30er3SIRCRg2DPDJECWJpNRCQfJjNECmDPDBGRfJjMECnAaGI1ExGRXJjMECmA1UxERPJhMkOkACOHmYiIZMNqJiIFsDTbNiqVCq1atZKeE1H5xmSGSAEmVjPZRKfTYenSpUqHQUQOgsNMRApgNRMRkXyYzBApwHyjSQ4zERHZjskMkQLMw0waZjNWyc7ORlRUFKKiong7AyLinBkiJRg5Adhm6enpSodARA6CPTNECmA1ExGRfJjMECmA92YiIpIPkxkiBbBnhohIPkxmiBRg+ruaiaXZRES2YzJDpABeNI+ISD6sZiJSgHTRPP45YRWVSoXGjRtLz4mofGMyQ6QAlmbbRqfTYdWqVUqHQUQOgn8XEilAumgeexWIiGzGZIZIAeyZISKSD5MZIgWwNNs2er0evXv3Ru/evaHX65UOh4gUxjkzRAowmljNZAshBK5fvy49J6LyzWF7ZmrXrg2VSlXgER8fr3RoRDZjNRMRkXwctmfm8OHDMBqN0uvjx4+jW7du6Nu3r4JREcmDw0xERPJx2GSmWrVqFq9nzZqF0NBQdO7cWaGIiOTDaiYiIvk4RSd3Tk4OPvnkEwwZMoQXyCKXwGomIiL5OGzPTH5btmxBeno6Bg0aVGw7g8EAg8Egvc7MzCzjyIisw2EmIiL5OEXPzMcff4yYmBgEBgYW2y4xMRG+vr7SIygoyE4REpWOuZqJw0zWUalUqFOnDurUqcPeWiJy/J6ZixcvYseOHfj8888f2jYhIQFjx46VXmdmZjKhIYfEnhnb6HQ6bNy4UekwiMhBOHwys2LFCvj7+yM2NvahbbVaLbRarR2iIrKNlMw4Rd8oEZFjc+hTqclkwooVKxAXFwc3N4fPu4hKzFzNxIvmERHZzqGTmR07duDSpUsYMmSI0qEQycpczaRhLmMVvV6Pfv36oV+/frydARE59jBT9+7dealyckmcM2MbIQR+++036TkRlW8O3TND5Kp40TwiIvkwmSFSgNH017/smSEish2TGSIFsJqJiEg+PJUSKcAoVTMpHAgRkQtgMkOkAJNUzcRshojIVg5dzUTkqljNZBuVSoWAgADpORGVb0xmiBTAaibb6HQ6/O9//1M6DCJyEBxmIlIAq5mIiOTDZIZIAdKcGf4PJCKyGU+lRApgNZNt9Ho9Bg4ciIEDB/J2BkTEOTNESngwAZjZjDWEEEhLS5OeE1H5xp4ZIgUYWc1ERCQbJjNECmBpNhGRfJjMECnAZGJpNhGRXJjMECmAPTNERPJhMkOkAHM1E0uziYhsx2omIgWwmsl2lSpVUjoEInIQTGaIFPDgRpPKxuGsPD09sWPHDqXDICIHwU5uIgWwNJuISD5MZogUYJKuAMxshojIVkxmiBRg4o0mbaLX6zF8+HAMHz6ctzMgIs6ZIVICbzRpGyEEjhw5Ij0novKNp1IiBRg5zEREJBsmM0QKYDUTEZF8mMwQKYDVTERE8mEyQ2RnpnxzPDjMRERkOyYzRHZmzDdflcNMRES2YzUTkZ2Z8iUzHGaynk6nUzoEInIQTGaI7MyUL5tRM5uxiqenJ/bt26d0GETkIDjMRGRn7JkhIpIXkxkiO+OcGSIieTl0MnP16lU8//zzqFq1Kjw9PdG0aVMkJycrHRaRTVjNZDuDwYDRo0dj9OjRMBgMSodDRApz2Dkzd+7cQfv27dGlSxds27YN1apVw5kzZ1C5cmWlQyOyiZEXzLOZyWTCjz/+KD0novLNYZOZ2bNnIygoCCtWrJCWhYSEKBgRkTxMvGAeEZGsHHaY6csvv0Tr1q3Rt29f+Pv7o2XLlli2bJnSYRHZzDzMpOEQExGRLBw2mfntt9+wePFi1KtXD99++y1eeukljBo1CitXrixyHYPBgMzMTIsHkaMx/j0qwp4ZIiJ5OOwwk8lkQuvWrTFz5kwAQMuWLXH8+HF8+OGHiIuLK3SdxMRETJs2zZ5hEpWaNMzksH9KEBE5F4c9nQYEBKBx48YWyxo1aoRLly4VuU5CQgIyMjKkx+XLl8s6TKJSMw8zsZKJiEgeDtsz0759e5w+fdpi2a+//org4OAi19FqtdBqtWUdGpFNTKxmIiKSlcMmM6+99hratWuHmTNnol+/fjh06BCWLl2KpUuXKh0akU2MrGaymaenJ685RUQShx1matOmDTZv3ox169YhLCwMb731FhYuXIgBAwYoHRqRTR4MMykcCBGRi3DYnhkA6NWrF3r16qV0GESyMlczsTSbiEgeDtszQ+SqeNE82xkMBkycOBETJ07k7QyIiMkMkb0ZzcNMzGasZjKZsHPnTuzcuZO3MyAiJjNE9saeGSIieTGZIbIzlmYTEcmLyQyRnbGaiYhIXkxmiOyM1UxERPJiMkNkZ5wzQ0QkLyYzRHZmrmbS8H8fEZEsHPqieUSu6EHPDLtmrKXT6bB3717pORGVb0xmiOyMw0y2U6lU8PT0VDoMInIQ7OgmsjMjq5mIiGTFnhkiO3twnRlmM9bKycnBzJkzAQCvv/46PDw8FI6IiJTEnhkiOzNffZ89M9YzGo346quv8NVXX8FoNCodDhEpjMkMkZ1JPTP830dEJAueTons7MGcGXbNEBHJgckMkZ2xmomISF5WJTMTJkyAXq+XOxaicsHIG00SEcnKqmRm4cKFyMjIAAAMGjQI9+/flzUoIldm4jATEZGsrEpmAgMDkZqaCgBYvXo17t69K2dMRC6N1UxERPKy6joz48aNQ+/evREREQEAWLNmDdq3b4+mTZvyqpxED8E5M7bT6XTYvn279JyIyjeremZeffVVJCcno0ePHhBCYNGiRWjXrh18fHzQqFEjPPvss5g1axa2bdsmd7xETu/BjSaZzVhLpVKhcuXKqFy5MlQcriMq96y+AnCzZs3QrFkzJCUlYf/+/ahYsSKOHTuG1NRUpKam4osvvsCMGTOQlZUlZ7xETo89M0RE8rL5dgZnzpyRnkdEREhDTwAg/v4LlIgeYDWT7XJycrBgwQIAwGuvvcbbGRCVc2V6nRl2/xIVxGom2xmNRmzatAmbNm3i7QyIyPZkJi8vDzNmzEBkZCRatWqFuLg4aWIeERXEYSYiInnZnMxMmjQJH3zwAbp27Yo+ffrAYDCgV69eGDx4MIeZiAphZGk2EZGsbJ4zs3btWqxfvx6dOnWSlp0/fx69evXC3LlzMX78eFt3QeRSTKxmIiKSlc09M/fu3UPNmjUtloWEhOC9997D0qVLbd08kcvhMBMRkbxsTmY6dOiAlStXFlgeEhKCa9eu2bp5IpdjYjUTEZGsbB5mmj17Ntq3b487d+7g1VdfRb169ZCbm4v33nsPjRs3liNGIpdiZDUTEZGsbE5mwsLCsHv3bgwfPhzvv/8+PDw8YDQaUalSJWzZskWGEIlcC4eZbKfVavHll19Kz4mofLM5mQGAli1b4vDhwzh16hTS0tLg7e2NiIgI+Pj4WL3NqVOnYtq0aRbLGjRogFOnTtkaLpGizNVMHGaynlqtRmBgoNJhEJGDsCqZiYyMRMuWLdGiRQu0aNECzZo1g06nQ8OGDdGwYUPZgmvSpAl27NjxIFg3WXIvIkXxonlERPKyKjuIjY3FsWPHMG/ePJw7dw4qlQr16tWTkhvzw9/f37bg3NxQo0YNm7ZB5GjMtzNQl+n1t11bbm4uPvjgAwDAyy+/DHd3d4UjIiIlWZXMvPHGG9LzQ4cOoU+fPggLC4NKpUJSUhJOnToFlUqF6tWr21TRdObMGQQGBkKn0yEyMhKJiYmoVauW1dsjcgScM2O7vLw8rF69GgAwfPhwJjNE5ZzN4zYvvfQSFi1ahKeeekpatnXrVgwfPhxxcXFWbzciIgJJSUlo0KABrl+/jmnTpqFjx444fvw4vL29C13HYDDAYDBIrzMzM63eP1FZkS6ax2EmIiJZ2NzRffLkSbRo0cJiWc+ePfHBBx/gp59+snq7MTEx6Nu3L5o1a4bo6Ghs3boV6enp2LhxY5HrJCYmwtfXV3oEBQVZvX+issKeGSIiedmczLRp06bQi+Y1bdoUhw4dsnXzkkqVKqF+/fo4e/ZskW0SEhKQkZEhPS5fvizb/onkwmomIiJ52ZzMzJ8/HwsWLMDgwYNx7NgxmEwm6PV6zJs3D35+fnLECAC4e/cuzp07h4CAgCLbaLVa+Pj4WDyIHA2rmYiI5GXznJnw8HAcPHgQ8fHxaNGiBdzd3WEymeDm5oaPP/7Y6u3+3//9H3r37o3g4GBcu3YNU6ZMgUajwXPPPWdryESKMlczaVjNREQkC1ku3NKwYUPs3LkTly5dQmpqKtRqNcLDw4vtRXmYK1eu4LnnnsOtW7dQrVo1dOjQAQcOHEC1atXkCJlIMZwzQ0QkL5uTmcOHD2PSpEn4448/ULduXekaM7m5uTZtd/369baGRuSQOMxkO61Wiw0bNkjPiah8s7mj+4UXXoBGo8Hw4cMREhKCH374AYMHD0bt2rVRtWpVOWIkcinsmbGdWq1GaGgoQkNDoebVB4nKPZt7Zi5fvoyvv/4aoaGhFssvXryI1NRUWzdP5HKkOTNMZoiIZGFzMhMZGYmrV68WSGaCg4MRHBxs6+aJXI7JZB5mUjgQJ5abm4vly5cDAIYMGcIrABOVczb3z7722muYPn06bt++LUc8RC7PJFUzMZuxVl5eHpYtW4Zly5YhLy9P6XCISGE298z07t0bKpUK9evXx5NPPindUbtp06bw8PCQI0Yil2LknBkiIlnZnMycPXsWP//8s/SYOXMmLly4AHd3dzRo0ADHjh2TI04il/GgmknhQIiIXITNyUydOnVQp04dixtNZmZm4ueff2YiQ1SIBxOAmc0QEcnB6jkzb775JlJSUgp9z8fHBx07dkR8fLzVgRG5KpZmExHJy+pk5sqVK4iJiUHNmjXx0ksvYdu2bcjJyZEzNiKXxGomIiJ5WZ3MLF++HDdu3MC6devg7e2NMWPGwM/PD08//TRWrVrF6iaiIjzomWE2Q0QkB5tKs9VqNTp27Ig5c+bg9OnTOHjwICIiIrBkyRIEBgaiU6dOmDt3Lq5evSpXvEROjzeatJ2HhwdWrlyJlStXsmqSiOS50aRZo0aN0KhRI0yYMAE3b97E//73P3z55ZcA/roLNhFxzowcNBoNmjRponQYROQgZElmcnNzcePGDdy/fx/VqlVDlSpV4O/vj6FDh2Lo0KFy7ILIZRj/Ls1mNRMRkTys7ujOysrC4sWL0blzZ/j4+KB27dpo1KgRqlWrhuDgYAwbNgyHDx+WM1Yil8CeGdvl5uZi1apVWLVqFXJzc5UOh4gUZlUyM3/+fNSuXRsrVqxAVFQUtmzZgtTUVPz666/Yv38/pkyZgry8PHTv3h09evTAmTNn5I6byCkJIR7czoDJjNXy8vLw3//+F//97395OwMism6Y6fDhw9izZ0+RY9Zt27bFkCFD8OGHH2LFihXYu3cv6tWrZ1OgRK7AlO85q5mIiORhVTKzbt26ErXTarUYOXKkNbsgcknmXhkAULOaiYhIFlafTtPS0jB58mSkp6fLGA6RazPl65rhnBkiInlYncwkJibi+PHjqFSpUoH39Ho9Tp06ZUtcRC7JfJNJgNVMRERysTqZOXDgAEaNGlXoezqdDsOGDUNiYqLVgRG5ImP+YSbmMkREsrDp3kx169Yt8v2RI0dKF8wjor+YmMwQEcnO6ovmValSBdevX0dQUFCh77dt2xZnz561OjAiV2S+YJ4KrGayhYeHBz788EPpORGVb1YnM506dUJSUhLatm1b6PtqtRp6vd7qwIhcES+YJw+NRoPWrVsrHQYROQirh5n+7//+D8uWLcPSpUsLfX///v2oU6eO1YERuSLj39VMvGAeEZF8rE5mwsPD8cEHH+Dll19Gt27dsGXLFly6dAm3b9/GF198gYkTJ+Lf//63nLESOT1zNROHmGyTl5eHjRs3YuPGjbwCMBHZdqPJYcOGoVGjRhg7diz+9a9/QfX3CVoIge7du+O1116TJUgiVyENM/GCeTbJzc3FnDlzAAC9e/eGm5ss98wlIidl8xmgQ4cOOHToEE6dOoUjR47g/v37CAsLw6OPPipHfEQuhXNmiIjkJ9ufMw0bNkTDhg3l2hyRSzJXM/GCeURE8mFnN5EdsWeGiEh+TGaI7IjVTERE8mMyQ2RHrGYiIpJfmSYzarUajz/+OFJSUmze1qxZs6BSqTBmzBjbAyNSCKuZiIjkV6b1jMuXL8eFCxcQHx+PAwcOWL2dw4cPY8mSJWjWrJmM0RHZn5FzZmTh7u6OhQsXSs+JqHwr02Rm0KBBAICpU6davY27d+9iwIABWLZsGd5++215AiNSiInVTLJwc3NDhw4dlA6DiByEw3d2x8fHIzY2FlFRUQ9tazAYkJmZafEgciSsZiIikp/sPTN37tzBd999h6tXrwIAAgMDER0djcqVK5d6W+vXr8eRI0dw+PDhErVPTEzEtGnTSr0fInthMiOPvLw8bNu2DQAQExPDKwATlXOy9sx8/PHHiIyMxMGDB2EymWAymXDw4EG0a9cOH3/8cam2dfnyZYwePRpr1qyBTqcr0ToJCQnIyMiQHpcvX7bmMIjKjNHEYSY55ObmYtq0aZg2bRpyc3OVDoeIFCbrnzNz5szBkSNHULFiRYvlb731Flq1aoWhQ4eWeFspKSm4efMmWrVqJS0zGo3Ys2cP3n//fRgMBmg0Got1tFottFqtbQdBVIbYM0NEJD9ZkxmVSoWsrKwCyUxWVpZ0E8qS6tq1K3755ReLZYMHD0bDhg0xceLEAokMkTMwVzNpHH62GhGR85A1mZk7dy46d+6MsLAwPPLIIwCAK1eu4MSJE5g3b16ptuXt7Y2wsDCLZRUrVkTVqlULLCdyFg8umqdwIERELkTWZKZXr16IiYnBoUOHcO3aNQB/TQBu27Yte1KIkH+YidkMEZFcrE5mXnzxRYSHh6NVq1Zo3ry5NElXo9EgMjJStgDz2717d5lsl8heeNE8IiL5WZ3MnDlzBps2bUJWVhbc3NzQoEEDKbkJDw9HixYtCsydISrvTKxmIiKSndXJzA8//ADgr6QmJSUFR44cwZEjR/Dll18iPT0darUa9evXR1pammzBEjk7VjPJw93dHbNmzZKeE1H5ZvOcmXr16qFevXp49tlnpWXnz59HcnIyjh49auvmiVwKq5nk4ebmVqKrghNR+VAml80MCQlBSEgI+vbtWxabJ3JarGYiIpIfrwFOZEdGVjPJIi8vTyoIeOyxx3g7A6JyjmcAIjsyz5nRMJexSW5uLiZNmgQA2Lt3L5MZonKOI/dEdmSuZuIwExGRfMo0mVGr1Xj88ceRkpJSlrshchq8aB4RkfzKNJlZvnw5OnXqhPj4+LLcDZHTMLGaiYhIdjYPNGdlZcHb27vQ9wYNGgQAmDp1qq27IXIJRlYzERHJzua/Dzt27IgbN27IEQuRy+MwExGR/GxOZlq2bImIiAicOnXKYnlqaip69uxp6+aJXIqR1UxERLKzOZlZsWIFBg0ahA4dOmDfvn349ddf0a9fP4SHh/NO2UT/wNsZyMPd3R1TpkzBlClTeDsDIpLnOjPTpk2DVqtFt27dYDQa0bVrV+zfvx9t27aVY/NELsMolWYzm7GFm5sbevfurXQYROQgbO6Z+f333zF69Gi8/fbbaNy4Mdzd3TFo0CAmMkSFYM8MEZH8bO6ZCQkJQYMGDbBp0ybExsbim2++Qf/+/XHp0iWMHz9ejhiJXAZLs+WRl5eHAwcOAAAeffRRXgGYqJyz+QywfPlyiztm9+jRA7t27UKvXr1w4cIFLFq0yNZdELmMBzeaZNeMLXJzczFmzBgAvJ0BEckwzJQ/kTFr1aoVfvrpJ3z//fe2bp7IpbCaiYhIfmXW2V27dm389NNPZbV5IqfEOTNERPIr05H7ypUrl+XmiZyOuZpJw2EmIiLZcBoikR2xZ4aISH5MZojsyDxnRs3/eUREsinTU6parcbjjz+OlJSUstwNkdNgNRMRkfzKtJ5x+fLluHDhAuLj46VrQhCVZyZWM8nC3d0dEyZMkJ4TUflWpsnMoEGDAABTp04ty90QOQ3OmZGHm5sb+vXrp3QYROQgOHJPZEccZiIikp9NyczFixfx3Xff4caNG4W+f+3aNVs2T+RyjKa//uUwk22MRiOSk5ORnJwMo9GodDhEpDCrk5l169ahbt266NGjB+rUqYPVq1cDAC5duoRZs2YhIiICtWrVki1QIlfAYSZ55OTkYOTIkRg5ciRycnKUDoeIFGZ1MvPWW2/h1VdfxS+//IJu3brhpZdewuTJkxEaGoqkpCS0bt0amzZtkjNWIqdn/HuYScNshohINlZPAD537hxGjx6N4OBgLFq0CLVq1cKPP/6IY8eOoVGjRnLGSOQy2DNDRCQ/q3tmcnNz4enpCQCoWbMmdDod5s6dy0SGqBhMZoiI5GfTBOC1a9fi1KlTAACNRiPrvZgWL16MZs2awcfHBz4+PoiMjMS2bdtk2z6REljNREQkP6uTmY4dO2LKlClo0qQJ/Pz8oNfr8e6772Ljxo1IS0tDXl6eTYHVrFkTs2bNQkpKCpKTk/H444/jySefxIkTJ2zaLpGSWM1ERCQ/q+fM/PDDDwCAM2fOICUlBUeOHMGRI0ewatUqpKenw8PDA/Xr18exY8es2n7v3r0tXs+YMQOLFy/GgQMH0KRJE2vDJlIUh5mIiORn8xWA69Wrh3r16uHZZ5+Vlp0/fx7Jyck4evSorZsH8Nc1JTZt2oR79+4hMjKyyHYGgwEGg0F6nZmZKcv+ieTCaiZ5uLm5YdSoUdJzIirfrDoLXLp0qdhryISEhCAkJAR9+/YFAFy9ehWPPPJIqffzyy+/IDIyEnq9Hl5eXti8eTMaN25cZPvExERMmzat1Pshshf2zMjD3d0dAwcOVDoMInIQVs2ZadOmDUaMGIHDhw8X2SYjIwPLli1DWFgYPvvsM6uCa9CgAVJTU3Hw4EG89NJLiIuLQ1paWpHtExISkJGRIT0uX75s1X6JyoqRN5okIpKdVT0zaWlpmDFjBrp16wadTofw8HAEBgZCp9Phzp07SEtLw4kTJ9CqVSvMmTMHPXv2tCo4Dw8P1K1bFwAQHh6Ow4cP491338WSJUsKba/VaqHVaq3aF5E9sJpJHkajUaqkbNiwITQajcIREZGSrEpmqlativnz52PGjBn4+uuvsW/fPly8eBHZ2dnw8/PDgAEDEB0djbCwMFmDNZlMFnNiiJyN6e9qJg4z2SYnJwdxcXEAgL1790rXvCKi8smmmXOenp545pln8Mwzz8gVjyQhIQExMTGoVasWsrKysHbtWuzevRvffvut7PsishfOmSEikp/DlgHcvHkTAwcOxPXr1+Hr64tmzZrh22+/Rbdu3ZQOjchqrGYiIpJfqZOZ7Oxs3L59u0B10okTJ2S9/svHH38s27aIHAV7ZoiI5FeqaqZPP/0U9erVQ2xsLJo1a4aDBw9K773wwguyB0fkapjMEBHJr1TJzNtvv42UlBSkpqZixYoVGDp0KNauXQsAEH93nxNR0aRhJiYzRESyKdUwU25uLqpXrw7gr1LpPXv24KmnnsLZs2ehYqkp0UM96Jnh/xciIrmUKpnx9/fHsWPH0KxZMwBAlSpVsH37dsTFxVl9Dyai8sTEG03Kws3NDcOGDZOeE1H5VqqzwOrVqwucODw8PLBu3Tq88sorsgZG5GqEEPg7l+GcGRu5u7tjxIgRSodBRA6iVHNmatasiRo1algs27FjBwCgffv28kVF5IJM+aaVqZnNEBHJxqp7M+UXGxuLsWPHIicnR454iFyWRTLDXMYmJpMJ586dw7lz52Ayj90RUbllczKzZ88efPXVV2jdujWOHz9eaJvr16/j6aeftnVXRE7NmK/ij3NmbGMwGNC/f3/079+ftzghItuTmYiICBw5cgStW7dGmzZtMH/+fOk9k8mEtLQ0vPnmm9i7d6+tuyJyapY9M8xmiIjkIksZgJeXF+bNm4cKFSpg/PjxWLdunZTIGAwGBAcHIzExUY5dETktY75khj0zRETysbln5qOPPkKtWrXg5+eHpKQktG3bFm5ubjh69ChefPFF3L59G+fPn8fQoUPliJfIaXHODBFR2bA5mXn99dcRGxuLtLQ0ZGVlYf/+/di/fz/mzZuHjz76CGPHjsX9+/fliJXIqZn+zmbUAC8ySUQkI5uTmcceewxTp05FgwYNLE7Qr732Gg4dOoTk5OQC93EiKo94XyYiorJhczKzceNG6RYH/9S0aVMcPnwYvXr1QqdOnWzdFZFTM1czqW3+X0dERPmV+XXAtVotFi5ciNjY2LLeFZFD432Z5OPm5oYXXnhBek5E5ZvdzgLdunWz166IHBKHmeTj7u6O0aNHKx0GETkIdngT2Ym5NJtl2URE8mL/LJGdmMxzZjjMZDOTyYQbN24AAGrUqAE1JyIRlWtMZojsxPj3LYTYM2M7g8GAJ554AgCwd+9eeHp6KhwRESmJf84Q2QnnzBARlQ0mM0R2Ig0zMZshIpIVkxkiO2HPDBFR2WAyQ2QnrGYiIiobTGaI7ITVTEREZYPJDJGdsJqJiKhssDSbyE44Z0Y+Go0Gffv2lZ4TUfnGZIbITsw3mtQwm7GZh4cHJk6cqHQYROQgOMxEZCfsmSEiKhvsmSGyEyYz8hFCID09HQBQqVIlqDipmqhcYzJDZCesZpKPXq9Ht27dAPB2BkTEYSYiuzFXM7FnhohIXg6bzCQmJqJNmzbw9vaGv78/+vTpg9OnTysdFpHVTLxoHhFRmXDYZOaHH35AfHw8Dhw4gO3btyM3Nxfdu3fHvXv3lA6NyCocZiIiKhsOO2fmm2++sXidlJQEf39/pKSkoFOnTgpFRWQ96XYGDvsnBBGRc3LYZOafMjIyAABVqlQpso3BYIDBYJBeZ2ZmlnlcRCXFaiYiorLhFH8jmkwmjBkzBu3bt0dYWFiR7RITE+Hr6ys9goKC7BglUfGMHGYiIioTTtEzEx8fj+PHj2Pfvn3FtktISMDYsWOl15mZmUxoyGGwZ0Y+Go0GvXr1kp4TUfnm8MnMK6+8gq+++gp79uxBzZo1i22r1Wqh1WrtFBlR6Zh4o0nZeHh4YOrUqUqHQUQOwmGTGSEEXn31VWzevBm7d+9GSEiI0iER2eRBNZPCgRARuRiHTWbi4+Oxdu1afPHFF/D29saNGzcAAL6+vrzaJzmlB9VMzGZsJYSAXq8HAOh0Ot7OgKicc9gJwIsXL0ZGRgYee+wxBAQESI8NGzYoHRqRVThnRj56vR4dO3ZEx44dpaSGiMovh+2ZEX93yRO5CnM1k4a9CEREsnLYnhkiV8OeGSKissFkhshOeKNJIqKywWSGyE5YzUREVDaYzBDZiYnVTEREZYLJDJGdcM4MEVHZcNhqJiJXY+Qwk2zUajW6du0qPSei8o3JDJGdSMNMLM22mVarxezZs5UOg4gcBP+kIbITDjMREZUNJjNEdmI0mS+ap3AgREQuhskMkZ086JlhNmOr7OxstG7dGq1bt0Z2drbS4RCRwpjMENmJ+UaTnK9KRCQvnlaJ7IRzZoiIygaTGSI7MfFGk0REZYLJDJGdsGeGiKhsMJkhshPzjSZZzUREJC8mM0R28uBGk8xmiIjkxCsAE9mJUbrRpLJxuAK1Wo327dtLz4mofGMyQ2QnnDMjH61Wi3fffVfpMIjIQfBPGiI74TATEVHZYDJDZCfsmSEiKhtMZojsxFzNxGTGdtnZ2ejQoQM6dOjA2xkQEefMENkLL5onL71er3QIROQg2DNDZCdGDjMREZUJJjNEdmJiaTYRUZngaZXITljNRERUNpjMENmJdNE85jJERLJiMkNkJyzNJiIqG6xmIrITk4nDTHJRqVRo1aqV9JyIyjcmM0R2wp4Z+eh0OixdulTpMIjIQXCYichOeKNJIqKywdMqkZ2wmomIqGw4dDKzZ88e9O7dG4GBgVCpVNiyZYvSIRFZjdVM8snOzkZUVBSioqJ4OwMicuxk5t69e2jevDkWLVqkdChENuOcGXmlp6cjPT1d6TCIyAE49ATgmJgYxMTEKB0GkSxYzUREVDYcOpkpLYPBAIPBIL3OzMxUMBoiSyYOMxERlQmHHmYqrcTERPj6+kqPoKAgpUMikkg3mnSp/3VERMpzqdNqQkICMjIypMfly5eVDokIwF+VTH/nMhxmIiKSmUsNM2m1Wmi1WqXDICrAPMQEcAIwEZHcXCqZIXJU+ZMZzpmxnUqlQuPGjaXnRFS+OXQyc/fuXZw9e1Z6ff78eaSmpqJKlSqoVauWgpERlY5RPMhm2DNjO51Oh1WrVikdBhE5CIdOZpKTk9GlSxfp9dixYwEAcXFxSEpKUigqotKz7JlhNkNEJCeHTmYee+wxiHx/0RI5K86ZISIqOy5VzUTkqEwmDjPJSa/Xo3fv3ujduzf0er3S4RCRwhy6Z4bIVUi3MgAnrMpBCIHr169Lz4mofGPPDJEd8IJ5RERlh6dWIjswCfN9mRQOhIjIBTGZIbIDo3RfJmYzRERyYzJDZAfSnBnmMkREsmMyQ2QHxr+zGV79l4hIfqxmIrKDBz0zzGbkoFKpUKdOHek5EZVvTGaI7MDEaiZZ6XQ6bNy4UekwiMhB8NRKZAecM0NEVHaYzBDZgVEqzWY2Q0QkNyYzRHZgkkqzlY3DVej1evTr1w/9+vXj7QyIiHNmiOzBXM3EYSZ5CCHw22+/Sc+JqHxjzwyRHZh40TwiojLDZIbIDoycAExEVGaYzBDZgdQzw/9xRESy46mVyA5MrGYiIiozTGaI7IDXmSEiKjusZiKyAyYz8lKpVAgICJCeE1H5xmSGyA4e3GiSv3jloNPp8L///U/pMIjIQXCYicgO2DNDRFR2mMwQ2YGR1UxERGWGp1YiO2A1k7z0ej0GDhyIgQMH8nYGRMQ5M0T2wIvmyUsIgbS0NOk5EZVv7JkhsgPOmSEiKjtMZojswMRqJiKiMsNkhsgO2DNDRFR2mMwQ2QHnzBARlR0mM0R2YK5m0jCbISKSHauZiOyAPTPyq1SpktIhEJGDYDJDZAfmOTMaJjOy8PT0xI4dO5QOg4gchMMPMy1atAi1a9eGTqdDREQEDh06pHRIRKVmvjcTL5pHRCQ/h05mNmzYgLFjx2LKlCk4cuQImjdvjujoaNy8eVPp0IhKhdVMRERlx6GHmebPn49hw4Zh8ODBAIAPP/wQX3/9NZYvX45JkyYpFtfNLD1y8kyK7Z/kcfOe0W77upvz189LaZOZW/eN0nwbesBg0OPNCa8BAKbPWQCtVqdwRGSNK3fuKx0CycDPSwudu0bRGBw2mcnJyUFKSgoSEhKkZWq1GlFRUdi/f3+h6xgMBhgMBul1ZmZmmcQ2el0q9v92q0y2Ta6ttMlMwve3cCubifM/mXL0uJx6BAAwatsfUHswmXFKW3cpHQHJYN2wRxEZWlXRGBw2mfnzzz9hNBpRvXp1i+XVq1fHqVOnCl0nMTER06ZNK/PY3N3U0Lo59AgdlYAw2TdJ0Lmr0SpAW6p13NUqePBHrQBTvs/EQw2o+Rk5JRW/OJfgCMPnDpvMWCMhIQFjx46VXmdmZiIoKEj2/awa0lb2bZL9paSkKB3CQy3qWU3pEBxSdnY2Os7763lSn+rw9PRUNiCySnh4uNIhkItw2GTGz88PGo0Gv//+u8Xy33//HTVq1Ch0Ha1WC622dH/5EhERkXNz2D4+Dw8PhIeHY+fOndIyk8mEnTt3IjIyUsHIiIiIyJE4bM8MAIwdOxZxcXFo3bo12rZti4ULF+LevXtSdRMRERGRQycz/fv3xx9//IE333wTN27cQIsWLfDNN98UmBRMROWPTscKJiL6i0oI4bJXscjMzISvry8yMjLg4+OjdDjkYJxhAjCRK+MEYCpKaX9/O+ycGSIiIqKSYDJDRERETo3JDBE5HYPBgNGjR2P06NEWV/0movLJoScAExEVxmQy4ccff5SeE1H5xp4ZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyai5dzWS+uHFmZqbCkZAjunv3rtIhkJX0er30/N69ezAajQpGQ9biuZmKYv7ZKOlNClz6dgZXrlxBUFCQ0mEQERGRFS5fvoyaNWs+tJ1LJzMmkwnXrl2Dt7c3VCqV0uHIKjMzE0FBQbh8+bLL33eqPB0rUL6OtzwdK1C+jpfH6rrscbxCCGRlZSEwMBBq9cNnxLj0MJNarS5RRufMfHx8ysV/HqB8HStQvo63PB0rUL6Ol8fqusr6eH19fUvclhOAiYiIyKkxmSEiIiKnxmTGSWm1WkyZMgVarVbpUMpceTpWoHwdb3k6VqB8HS+P1XU54vG69ARgIiIicn3smSEiIiKnxmSGiIiInBqTGSIiInJqTGaIiIjIqTGZUVjt2rWhUqksHrNmzbJoc+zYMXTs2BE6nQ5BQUGYM2dOge1s2rQJDRs2hE6nQ9OmTbF161aL94UQePPNNxEQEABPT09ERUXhzJkzFm1u376NAQMGwMfHB5UqVcLQoUNlu3/RhQsXMHToUISEhMDT0xOhoaGYMmUKcnJyLNr887NQqVQ4cOCAUx2rLRYtWoTatWtDp9MhIiIChw4dUjokC4mJiWjTpg28vb3h7++PPn364PTp0xZtHnvssQLf4ciRIy3aXLp0CbGxsahQoQL8/f0xfvx45OXlWbTZvXs3WrVqBa1Wi7p16yIpKalAPGX9eU2dOrXAsTRs2FB6X6/XIz4+HlWrVoWXlxeefvpp/P777055rIWdi1QqFeLj4wE4//e6Z88e9O7dG4GBgVCpVNiyZYvF+3KdN+x1vrb2WHNzczFx4kQ0bdoUFStWRGBgIAYOHIhr165ZbMORfjeViCBFBQcHi+nTp4vr169Lj7t370rvZ2RkiOrVq4sBAwaI48ePi3Xr1glPT0+xZMkSqc2PP/4oNBqNmDNnjkhLSxNvvPGGcHd3F7/88ovUZtasWcLX11ds2bJF/Pzzz+KJJ54QISEhIjs7W2rTo0cP0bx5c3HgwAGxd+9eUbduXfHcc8/Jcpzbtm0TgwYNEt9++604d+6c+OKLL4S/v78YN26c1Ob8+fMCgNixY4fF55GTk+NUx2qt9evXCw8PD7F8+XJx4sQJMWzYMFGpUiXx+++/KxpXftHR0WLFihXi+PHjIjU1VfTs2VPUqlXL4me2c+fOYtiwYRbfYUZGhvR+Xl6eCAsLE1FRUeLo0aNi69atws/PTyQkJEhtfvvtN1GhQgUxduxYkZaWJt577z2h0WjEN998I7Wxx+c1ZcoU0aRJE4tj+eOPP6T3R44cKYKCgsTOnTtFcnKyePTRR0W7du2c8lhv3rxpcZzbt28XAMSuXbuEEM7/vW7dulX85z//EZ9//rkAIDZv3mzxvhznDXuer6091vT0dBEVFSU2bNggTp06Jfbv3y/atm0rwsPDLbbhSL+bSoLJjMKCg4PFggULinz/gw8+EJUrVxYGg0FaNnHiRNGgQQPpdb9+/URsbKzFehEREWLEiBFCCCFMJpOoUaOGeOedd6T309PThVarFevWrRNCCJGWliYAiMOHD0tttm3bJlQqlbh69apNx1iUOXPmiJCQEOm1OZk5evRokes467GWRNu2bUV8fLz02mg0isDAQJGYmKhYTA9z8+ZNAUD88MMP0rLOnTuL0aNHF7nO1q1bhVqtFjdu3JCWLV68WPj4+Eg/5xMmTBBNmjSxWK9///4iOjpaem2Pz2vKlCmiefPmhb6Xnp4u3N3dxaZNm6RlJ0+eFADE/v37hRDOdaz/NHr0aBEaGipMJpMQwrW+13/+gpfrvGGv87Utx1qYQ4cOCQDi4sWL0jJH+d1UUhxmcgCzZs1C1apV0bJlS7zzzjsW3bL79+9Hp06d4OHhIS2Ljo7G6dOncefOHalNVFSUxTajo6Oxf/9+AMD58+dx48YNiza+vr6IiIiQ2uzfvx+VKlVC69atpTZRUVFQq9U4ePCg/AcNICMjA1WqVCmw/IknnoC/vz86dOiAL7/80uI9Zz3Wh8nJyUFKSopF3Gq1GlFRUVLcjigjIwMACnyPa9asgZ+fH8LCwpCQkID79+9L7+3fvx9NmzZF9erVpWXR0dHIzMzEiRMnpDbFfc/2/LzOnDmDwMBA1KlTBwMGDMClS5cAACkpKcjNzbWIoWHDhqhVq5bFz5ozHatZTk4OPvnkEwwZMsTiJr2u9L3mJ9d5w17na7llZGRApVKhUqVKFssd4XdTSbn0jSadwahRo9CqVStUqVIFP/30ExISEnD9+nXMnz8fAHDjxg2EhIRYrGM+Wdy4cQOVK1fGjRs3LE4g5jY3btyQ2uVfr6g2/v7+Fu+7ubmhSpUqUhs5nT17Fu+99x7mzp0rLfPy8sK8efPQvn17qNVqfPbZZ+jTpw+2bNmCJ554QorT2Y61JP78808YjcZC4z516pQiMT2MyWTCmDFj0L59e4SFhUnL//3vfyM4OBiBgYE4duwYJk6ciNOnT+Pzzz8HUPR3aH6vuDaZmZnIzs7GnTt37PJ5RUREICkpCQ0aNMD169cxbdo0dOzYEcePH8eNGzfg4eFR4BfAP3/WnOVY89uyZQvS09MxaNAgaZkrfa//JNd5w17naznp9XpMnDgRzz33nMVNIx3ld1NJMZkpA5MmTcLs2bOLbXPy5Ek0bNgQY8eOlZY1a9YMHh4eGDFiBBITEx3qUtFFKc2xml29ehU9evRA3759MWzYMGm5n5+fxefRpk0bXLt2De+8846UzJDjiI+Px/Hjx7Fv3z6L5cOHD5eeN23aFAEBAejatSvOnTuH0NBQe4dpk5iYGOl5s2bNEBERgeDgYGzcuBGenp4KRla2Pv74Y8TExCAwMFBa5krfK/0lNzcX/fr1gxACixcvtnjP2X43cZipDIwbNw4nT54s9lGnTp1C142IiEBeXh4uXLgAAKhRo0aB6gjz6xo1ahTbJv/7+dcrqs3Nmzct3s/Ly8Pt27elNnIc67Vr19ClSxe0a9cOS5cuLXK7+T+Ps2fPSq+VPNay5OfnB41GU2zcjuSVV17BV199hV27dqFmzZrFto2IiAAA6Xu05Wfax8cHnp6ein1elSpVQv369XH27FnUqFEDOTk5SE9PLzIGZzzWixcvYseOHXjxxReLbedK36tc5w17na/lYE5kLl68iO3bt1v0yhRGqd9NJcVkpgxUq1YNDRs2LPaRf5wxv9TUVKjVaqk7MzIyEnv27EFubq7UZvv27WjQoAEqV64stdm5c6fFdrZv347IyEgAQEhICGrUqGHRJjMzEwcPHpTaREZGIj09HSkpKVKb77//HiaTSTpp2XqsV69exWOPPYbw8HCsWLECavXDf/xSU1MREBAgvVbyWMuSh4cHwsPDLeI2mUzYuXOnFLcjEELglVdewebNm/H9998X6GYuTGpqKgBI32NkZCR++eUXi18M5pNp48aNpTbFfc9KfV53797FuXPnEBAQgPDwcLi7u1vEcPr0aVy6dMniZ83ZjnXFihXw9/dHbGxsse1c6XuV67xhr/O1rcyJzJkzZ7Bjxw5UrVr1oeso9bupxEo1XZhk9dNPP4kFCxaI1NRUce7cOfHJJ5+IatWqiYEDB0pt0tPTRfXq1cULL7wgjh8/LtavXy8qVKhQoPzNzc1NzJ07V5w8eVJMmTKl0PK3SpUqiS+++EIcO3ZMPPnkk4WWHbZs2VIcPHhQ7Nu3T9SrV0+2cuUrV66IunXriq5du4orV65YlPuZJSUlibVr14qTJ0+KkydPihkzZgi1Wi2WL1/uVMdqrfXr1wutViuSkpJEWlqaGD58uKhUqZJFdYjSXnrpJeHr6yt2795t8R3ev39fCCHE2bNnxfTp00VycrI4f/68+OKLL0SdOnVEp06dpG2YS3i7d+8uUlNTxTfffCOqVatWaAnv+PHjxcmTJ8WiRYsKLeEt689r3LhxYvfu3eL8+fPixx9/FFFRUcLPz0/cvHlTCPFXaXatWrXE999/L5KTk0VkZKSIjIx0ymMV4q/KoVq1aomJEydaLHeF7zUrK0scPXpUHD16VAAQ8+fPF0ePHpUqeOQ4b9jzfG3tsebk5IgnnnhC1KxZU6Smplr8PzZXJjna76aSYDKjoJSUFBERESF8fX2FTqcTjRo1EjNnzhR6vd6i3c8//yw6dOggtFqteOSRR8SsWbMKbGvjxo2ifv36wsPDQzRp0kR8/fXXFu+bTCYxefJkUb16daHVakXXrl3F6dOnLdrcunVLPPfcc8LLy0v4+PiIwYMHi6ysLFmOdcWKFQJAoQ+zpKQk0ahRI1GhQgXh4+Mj2rZta1H26izHaov33ntP1KpVS3h4eIi2bduKAwcOKB2ShaK+wxUrVgghhLh06ZLo1KmTqFKlitBqtaJu3bpi/PjxFtcjEUKICxcuiJiYGOHp6Sn8/PzEuHHjRG5urkWbXbt2iRYtWggPDw9Rp04daR/5lfXn1b9/fxEQECA8PDzEI488Ivr37y/Onj0rvZ+dnS1efvllUblyZVGhQgXx1FNPWSToznSsQgjx7bffCgAF/r+4wve6a9euQn924+LihBDynTfsdb629ljNl8Ao7GG+ppCj/W4qCZUQQpSuL4eIiIjIcXDODBERETk1JjNERETk1JjMEBERkVNjMkNEREROjckMEREROTUmM0REROTUmMwQERGRU2MyQ0RERE6NyQwROY1BgwZBpVJBpVLB3d0dISEhmDBhAvR6vdKhEZGC3JQOgIioNHr06IEVK1YgNzcXKSkpiIuLg0qlwuzZs5UOjYgUwp4ZInIqWq0WNWrUQFBQEPr06YOoqChs375d6bCISEFMZojIaR0/fhw//fQTPDw8lA6FiBTEYSYicipfffUVvLy8kJeXB4PBALVajffff1/psIhIQUxmiMipdOnSBYsXL8a9e/ewYMECuLm54emnn1Y6LCJSEIeZiMipVKxYEXXr1kXz5s2xfPlyHDx4EB9//LHSYRGRgpjMEJHTUqvVeP311/HGG28gOztb6XCISCFMZojIqfXt2xcajQaLFi1SOhQiUgiTGSJyam5ubnjllVcwZ84c3Lt3T+lwiEgBKiGEUDoIIiIiImuxZ4aIiIicGpMZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSEiIiKnxmSGiIiInBqTGSIiInJqTGaIiIjIqTGZISIiIqf2/zeg0ZmOgv6zAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSF0lEQVR4nO3deVxUVRsH8N/MADMogguikIiIuOKKQuSWiSmipZVaWUKaS1Fq+rpQufYqam69ZaamkOaSVtqmlZqmlhsomaKm5r5kqSwqM8DMef+ouTKxCDOXuTPw+34+8/HOnXPvPHcGLw/nnOdelRBCgIiIiMhJqZUOgIiIiMgWTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSGrJSUlQaVSSQ8XFxc88MADiI2NxeXLl+0ez7Fjx9CvXz/Ur18flSpVgre3Nzp16oSvvvqqRNtfvXoVEydORJcuXVClShWoVCrs3Lmz0Lbff/89hgwZgpCQEGg0GtSrV0++A7HC8uXL0aRJE+h0OgQHB+Pdd9+97zbdunWDSqXCK6+8Uqax5ebmomnTplCpVJg7d+592+/cudPi5+rfjxkzZkht//0zmP9x7dq1sjysQv3888/o0KEDKlWqhNq1a2PkyJG4fft2sdvMmDEDKpUKISEhdoqyaEOHDoVKpUKvXr1K1L6476lbt25Su3PnzhXZbt26dWV1OEW6fPky+vfvj6pVq8LT0xOPP/44fv/992K32bNnjxTzX3/9ZadIqaRclA6AnN/06dMRGBgIvV6Pffv2ISkpCXv27MHRo0eh0+nsFsf58+eRlZWFmJgY+Pn54e7du/jss8/w2GOPYcmSJRg2bFix2588eRKzZ89GcHAwmjdvjr179xbZds2aNfjkk0/Qpk0b+Pn5yX0opbJkyRKMGDECTz75JMaMGYPdu3dj5MiRuHv3LiZMmFDoNp9//nmxxyend999FxcuXChx+yZNmmDVqlUF1q9atQrff/89Hn300QKvmX8G86tatWqpY7VFamoqunbtiiZNmmD+/Pm4dOkS5s6di1OnTmHLli2FbnPp0iXMnDkTlStXtmushUlOTkZSUlKp/s8W9j0lJyfjnXfeKfR7euaZZ9CzZ0+LdREREaUP1ga3b99Gly5dkJGRgddffx2urq5YsGABOnfujNTUVNSoUaPANiaTCa+++ioqV66MO3fu2DVeKiFBZKXExEQBQBw8eNBi/YQJEwQA8cknnygU2T15eXmiZcuWolGjRvdtm5mZKW7cuCGEEGLDhg0CgNixY0ehbS9fvixycnKEEEJER0eLgIAAuUKWmD/f4ty9e1fUqFFDREdHW6wfOHCgqFy5srh582aBbbKzs0W9evXE9OnTBQARFxcna9z5/fHHH8LLy0t6r7ffftvqfTVo0EAEBwdbrCvqZ1BOZ8+eLfZnwSwqKkr4+vqKjIwMad2yZcsEAPHdd98Vus2AAQPEI488Ijp37iyaNWtmdYwARGJiotXbm0wmERERIQYPHiwCAgIK/DyVxpAhQ4RKpRIXL16U1pk/Q1u+/5IICAgQU6ZMKbbN7NmzBQBx4MABad3x48eFRqMR8fHxhW6zePFiUaNGDTFq1CgBQPz5559yhk0y4DATya5jx44AgDNnzigcCaDRaODv74/09PT7tq1SpQqqV69eov36+fnB1dW1RG3T09MxevRo+Pv7Q6vVokGDBpg9ezZMJlOJti/Ojh07cOPGDbz88ssW6+Pi4nDnzh188803BbaZM2cOTCYT/vOf/9j8/vczceJENGrUCM8995xN+zlw4ABOnz6NgQMHFtkmKysLRqOxyNdNJhMWLlyIZs2aQafToVatWhg+fDhu3bplU2wAkJmZia1bt+K5556Dp6entH7QoEHw8PDA+vXrC2yza9cufPrpp1i4cKHN72+rVatW4ejRoxZDeNYwGAz47LPP0LlzZ9SpU6fQNnfu3EFOTk6x+9myZQs6duyIypUro0qVKoiOjsaxY8dsis3s008/Rbt27dCuXTtpXePGjdG1a9dCv6ebN2/izTffxPTp0+3e20clx2SGZHfu3DkAQLVq1e7b1mAw4K+//irRo6Tu3LmDv/76C2fOnMGCBQuwZcsWdO3a1drDscndu3fRuXNnfPzxxxg0aBD+97//oX379oiPj8eYMWNs3v/hw4cBAG3btrVYHxoaCrVaLb1uduHCBcyaNQuzZ8+Gu7u7ze9fnAMHDuCjjz7CwoULoVKpbNrX6tWrAaDIZKZLly7w9PREpUqV8Nhjj+HUqVMF2gwfPhzjxo1D+/bt8c477+CFF17A6tWr0b17d+Tm5toU36+//oq8vLwC34ObmxtatWpV4HswGo149dVX8eKLL6J58+Y2vbetsrKyMGHCBLz++uuoXbu2TfvavHkz0tPTi/yepk2bBg8PD+h0OrRr1w7ff/99gTarVq1CdHQ0PDw8MHv2bEyaNAlpaWno0KGDdG6xlslkwpEjRwp8TwAQFhaGM2fOICsry2L9pEmTULt2bQwfPtym96ayxTkzZLOMjAz89ddf0Ov12L9/P6ZNmwatVluiSYRr167FCy+8UKL3EUKUqN3YsWOxZMkSAIBarcYTTzyB9957r0Tbym3+/Pk4c+YMDh8+jODgYAB//1L18/PD22+/jbFjx8Lf39/q/V+9ehUajQY+Pj4W693c3FCjRg1cuXLFYv3YsWPRunVrPP3001a/Z0kIIfDqq69iwIABiIiIsOmXkNFoxCeffIKwsDA0aNDA4rVKlSohNjZWSmZSUlIwf/58PPTQQzh06JD02e7ZswcffvghVq9ejWeffVbavkuXLujRowc2bNhgsb60rl69CgDw9fUt8Jqvry92795tse6DDz7A+fPnsW3bNqvfUy7Tp0+Hu7s7XnvtNZv3tXr1ami1Wjz11FMW69VqNR599FH07dsXDzzwAH7//XfMnz8fUVFR+PLLLxEdHQ3g7/ksI0eOxIsvvoilS5dK28fExKBRo0aYOXOmxfrSunnzJgwGQ5HfEwBcuXIFjRo1AgAcOXIES5YswebNm6HRaKx+Xyp7TGbIZpGRkRbP69Wrh48//rjIbub8unfvjq1bt8oaz+jRo/HUU0/hypUrWL9+PYxG4327tcvKhg0b0LFjR1SrVs2idykyMhKzZs3Crl27pL9ib926ZTFMYq6C+XevVKVKlVCpUiUAQHZ2Ntzc3Ap9b51Oh+zsbOn5jh078Nlnn2H//v3yHFwxkpKS8Ouvv+LTTz+1eV/bt2/HH3/8gddff73Aa/3790f//v2l53369EH37t3RqVMnzJgxAx988AGAv78HLy8vdOvWzeLzDA0NhYeHB3bs2CElM7dv34Zer5famIehzEm7maurK7y8vABA+py1Wm2BGP/9Pdy4cQOTJ0/GpEmTULNmzVJ/Hnfv3sXdu3cLrL99+7ZFfBqN5r69o7/99hveeecdrF27ttDYSyMzMxPffPMNevbsWWA4pm7duvjuu+8s1j3//PNo2rQpxo4dKyUzW7duRXp6Op555pkCxxIeHo4dO3ZI6wwGQ4FeFJPJhLt37xb4P+Pt7Q3g/t9T/jYAMHLkSERFRRU6mZkcjNKTduzhxx9/FL169RK+vr4CgNi4cWOpts/OzhYxMTEiJCREaDQa8fjjjxfabseOHaJ169bCzc1NBAUFFZiQ9/7774vmzZuLKlWqiCpVqogHH3xQbN682bqDcgDmyZeLFi0SW7duFZ9++qno2bOn8PDwEDt37lQ6PEm3bt1Eu3bthMlkKvE295sAnF9xE4Dd3d0FgCIf8+fPl9oGBAQU29b8yD/BMS4uTmg0mkLfu2bNmuLpp58WQgiRm5srQkJCxKBBgyzaoIQTgG/cuCGuXr0qPdLT04tsm5GRIWrVqiUmT54srbNlAuigQYOERqMR165dK/E2Dz74oAgKCpKeR0VFFfuZPvbYY1LbmJiYEn0PnTt3lrYx/7zs2rWrQCz9+vUTtWvXlp6PGDFCNGjQQBgMBmldaSYAT5kypUTxlWRSeo8ePSyOQwhh9QTgFStWCADi008/LfE2EydOFACkycLmyblFPTw9PaVtzeefkjzM/vzzTwFATJ8+vUAsixYtEgDEiRMnhBBCrFu3Tri6uoqTJ09KbcyfPScAO54K0TNz584dtGzZEoMHD8YTTzxR6u2NRiPc3d0xcuRIfPbZZ4W2OXv2LKKjozFixAisXr0a27dvx4svvghfX190794dAFCnTh3MmjULwcHBEELgo48+wuOPP47Dhw+jWbNmNh2jksLCwqQx6D59+qBDhw549tlncfLkSXh4eBS7bXZ2NjIyMkr0PtaO5z/11FMYPnw4fvvtN6n72F5MJhO6deuG8ePHF/p6w4YNpeXVq1db/FX4/fff4+233y7Qc1W/fn1p2dfXF0ajEdevX7cYasrJycGNGzeksvGVK1fi5MmTWLJkSYEhn6ysLJw7dw4+Pj5Sj8+/PfHEE/jxxx+l5zExMUhKSiq07dy5c5GTk4MBAwZI73Xp0iUAf/dynDt3Dn5+fkX2KOWXnZ2NjRs3IjIyErVq1bpvezN/f3+cPHlSem4ymeDj4yPNvfm3/D0k48ePt5iw/Mcff+C5557D3Llz0bJlS2l9/l4P8xCFebgpv6tXr0rfw6lTp7B06VIsXLjQYghQr9cjNzcX586dg6enZ7ET0QcNGoQOHTpYrOvWrRvGjRtn0YNwvzlRP/zwA7799lt8/vnnFj8TeXl5yM7Oxrlz51C9enWLCc3FWb16Nby8vEp8jRoA0jDgzZs3UadOHWlS/KpVqwr9/+7icu9XVmG9us899xweffRRDBo0qND3q169OrRabZHfEwDpuxo3bhz69esHNzc36fMxFxJcvHgROTk5il+WgfJROpuyNxTSM6PX68XYsWOFn5+fqFSpkggLCyvyL/KYmJhCe2bGjx9f4C+rAQMGiO7duxcbT7Vq1cSHH35YmkNwGEWVxe7YsUMAEAkJCSXeR0ke1lq4cKEAIPbv31/ibeTqmWnatKmIiIgo8fvmV5LS7K+//loAEN98843F+p9++kkAECtXrhRClOyv+eJ6LJOTk8XWrVulx7Fjx4psW5KejcOHD5foM1i3bp3FcZRUaGioaNiwofT85ZdfFhqNRty9e7dU+xGiZKXZ6enpwsXFRYwbN85ivcFgEB4eHmLw4MFCiHv/N4p7jBo1qtQxworS7JL831uwYEGJ9nXlyhWhVqul4yypsWPHCgDiypUrQggh1q9fL4CiS9nvpySl2W3bthXt2rUrsL5bt26ifv360vP7fTYtW7a0KkYqGxWiZ+Z+XnnlFaSlpWHdunXw8/PDxo0b0aNHD/z666/SpM372bt3b4G5I927d8fo0aMLbW80GrFhwwbcuXPH7heNKmsPP/wwwsLCsHDhQowePbrYi3DJOWfm370TwN9Xn125ciXc3d3RtGlTaf3Vq1eRkZGBoKCgEpdYW6N///6YOnUqvvvuO6mHziw9PR0eHh4Wf22W1iOPPILq1atj8eLFFhcjW7x4MSpVqiTNRXj66afRqlWrAtv37dsXPXv2xNChQxEeHl7k+4SGhpY4ppEjR6JPnz4W665fv47hw4cjNjYWjz/+uHSBu9zcXJw5cwZeXl6FTspcs2YNKlWqhL59+xb6Xn/++WeBeSebN29GSkoKRo4cKa3r378/3n//fbz11luYOXOmRfu8vDzcvn3bprJbLy8vREZG4uOPP8akSZNQpUoVAH/3MNy+fRv9+vUDAISEhGDjxo0Ftn/zzTeRlZWFd955B0FBQVbHURqPPPJIobEMGzYMAQEBeOONNywqrcyXWigsvnXr1sFkMhVZxVTY93T58mWsWLECLVq0kL777t27w9PTEzNnzkSXLl0K/N8sbD+l9dRTT2HixIlITk6WepRPnjyJH374weJyBYV9NuvWrcMnn3yClStXlmhOINmR0tmUveFff4GeP39eaDQacfnyZYt2Xbt2LfQCSkX1zAQHB4uZM2darPvmm28EAIu/Bo8cOSIqV64sNBqN8PLyKvAXtTMp7oJl5p6NxYsX2y2ePn36iEceeURMnTpVLFu2TLz11luicePGAoCYN2+eRVtz78HZs2ct1r/11lvirbfeEk8//bQAIAYPHiyty++XX36R1jdq1EhUrVpVev7ll19K7e7cuSPatGkjXFxcxIsvvigWL14s5s6dK2JiYkTlypWLHXsvSc+MEPfG+p966imxbNkyMWjQIAFAzJgx477booRzZmxV1JwZ8/qYmJgC29y4cUO4urpK834K06BBA9GvXz8xe/Zs8cEHH4hhw4YJFxcX4e/vX2COzfDhwwUAERUVJRYsWCDee+89MWrUKOHn5yc2bNhw39jv10uXkpIitFqtaN26tVi8eLF44403hE6nE48++mix2wlRujkzhYEVPTNFKWrOTEBAQJE9kKGhocLPz08YjcZCX4+NjRUdO3YUU6dOFUuXLhWvv/66qFGjhnBzcyvwua5evVqo1WoREhIi/vvf/4olS5aIN954Q7Rq1eq+P6sl6ZnJzMwUQUFBwsfHR8yZM0csWLBA+Pv7Cz8/P3H9+vVit+WcGcdV4ZMZczd95cqVLR4uLi6if//+Bba3NZkxGAzi1KlTIjk5WUycOFF4e3sX22XvyIpLZoxGowgKChJBQUEiLy/PLvGsXbtWREZGilq1agkXFxdRrVo1ERkZKb744osCbYtKZlDCYa7iuuj//Ys5KytLxMfHiwYNGgg3Nzfh7e0tHnroITF37lzpKsKFKWkyI4QQS5cuFY0aNZImny9YsKBEE54dOZn54IMPBACL5PDfzL/kvLy8hKurq6hbt6546aWXipwsvHTpUhEaGirc3d1FlSpVRPPmzcX48eOlYY7iYi/JkOPu3bvFQw89JHQ6nahZs6aIi4sTmZmZ993OmZOZEydOCABizJgxRe5zzZo1olOnTqJmzZrCxcVFeHt7i759+4qUlJRC2+/YsUN0795deHl5CZ1OJ4KCgkRsbKxITk6+b+z3S2aEEOLixYviqaeeEp6ensLDw0P06tVLnDp16r7bMZlxXCohSnjxjnJCpVJh48aNUjf4J598goEDB+LYsWMFriPg4eFRYBJabGws0tPTsWnTJov1nTp1Qps2bSyu5pmYmIjRo0cXO8E1MjISQUFB0nVRiIiIqHQq/JyZ1q1bS9Ug5svwWyMiIgKbN2+2WLd169b7zocxmUwwGAxWvy8REVFFVyGSmdu3b+P06dPS87NnzyI1NRXVq1dHw4YNMXDgQAwaNAjz5s1D69at8eeff2L79u1o0aKFNIEyLS0NOTk5uHnzJrKyspCamgoA0qTKESNG4L333sP48eMxePBg/PDDD1i/fr3FvXHi4+MRFRWFunXrIisrC2vWrMHOnTsLXEyKiIiISkHpcS57KKoc0jxOn5OTIyZPnizq1asnXF1dha+vr+jbt684cuSItI+iLmj27/dp1aqVcHNzE/Xr1y8whm2+I62bm5uoWbOm6Nq1q/j+++/L+vCJiIjKtQo3Z4aIiIjKF4e9a7bRaMSkSZMQGBgId3d3BAUF4a233irxzQaJiIioYnDYOTOzZ8/G4sWL8dFHH6FZs2ZITk7GCy+8AC8vL4uLYREREVHF5rDDTL169UKtWrWwfPlyad2TTz4Jd3d3fPzxxyXah8lkwpUrV1ClShWoVKqyCpWIiIhkJIRAVlYW/Pz8oFbffxDJYXtmHnroISxduhS//fYbGjZsiF9++QV79uzB/Pnzi9zGYDBYlDlfvnzZ4hL2RERE5DwuXrxYoltHOGwyM3HiRGRmZqJx48bQaDQwGo2YMWNGkff+AICEhARMmzatwPqLFy+W+M6vVHEcPnxY6RDISnq9Hj169AAAfPvtt8Xe/4scV+vWrZUOgRxUZmYm/P39pfuc3Y/DJjPr16/H6tWrsWbNGjRr1gypqakYPXo0/Pz8EBMTU+g28fHxGDNmjPTc/GF4enoymaECPDw8lA6BrJT/at2VK1eGu7u7gtGQtXhepvsp6RQRh01mxo0bh4kTJ+Lpp58GADRv3hznz59HQkJCkcmMVquFVqu1Z5hERESkMIctzb57926BST8ajQYmk0mhiIiIiMgROWzPTO/evTFjxgzUrVsXzZo1w+HDhzF//nwMHjxY6dCISGEajQa9evWSlomoYnPY0uysrCxMmjQJGzduxPXr1+Hn54dnnnkGkydPhpubW4n2kZmZCS8vL2RkZHBslgpISUlROgSiCi00NFTpEMhBlfb3t8MmM3JgMkPFYTJDpCwmM1SU0v7+dthhJiKiogghoNfrAQA6nY4XxSSq4Bx2AjARUVH0ej06duyIjh07SkkNEVVcTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipsTSbSCHX7+RBpVKhursaGpYWExFZjckMkUJe3vwXBIAPe9dENR0vyV8aarUaXbt2lZaJqGJjMkOkAJMQMF96m70ypafVajF79mylwyAiB8E/aYgUYMp3ExE1cxkiIpswmSFSQP5kRsNkhojIJkxmiBRgzHd/VzWHmUotOzsbbdu2Rdu2bZGdna10OESkMCYzRAqwGGbi/0IiIpvwNEqkAJPp3jLnzBAR2YbJDJECTPmHmRSMg4ioPOB5lEgBxn9yGbUKUHHODBGRTZjMECnAPGeGlUxERLZjMkOkAHM1EyuZiIhsxysAEynAlG+YiUpPrVajffv20jIRVWxMZogUYPynmonDTNbRarV45513lA6DiBwE/6QhUoBJGmZSOBAionKAyQyRAqRhJmYzREQ2YzJDpADOmbFNdnY2OnTogA4dOvB2BkTEOTNESmBptu30er3SIRCRg2DPDJECWJpNRCQfJjNECmDPDBGRfJjMECnAaGI1ExGRXJjMECmA1UxERPJhMkOkACOHmYiIZMNqJiIFsDTbNiqVCm3atJGWiahiYzJDpAATq5lsotPpsHTpUqXDICIHwWEmIgWwmomISD4Om8zUq1cPKpWqwCMuLk7p0IhsZr7RJIeZiIhs57DDTAcPHoTRaJSeHz16FN26dUO/fv0UjIpIHuZhJg2zGatkZ2ejd+/eAICvvvoK7u7uCkdEREpy2GSmZs2aFs9nzZqFoKAgdO7cWaGIiORj5ARgm6WnpysdAhE5CIdNZvLLycnBxx9/jDFjxhRbuWAwGGAwGKTnmZmZ9giPqNRYzUREJB+HnTOT36ZNm5Ceno7Y2Nhi2yUkJMDLy0t6+Pv72ydAolLivZmIiOTjFMnM8uXLERUVBT8/v2LbxcfHIyMjQ3pcvHjRThESlQ57ZoiI5OPww0znz5/Htm3b8Pnnn9+3rVarhVartUNURLYx/VPNxNJsIiLbOXzPTGJiInx8fBAdHa10KESy4UXziIjk49A9MyaTCYmJiYiJiYGLi0OHSlQq0kXzHP7PCcekUqnQtGlTaZmIKjaHzhC2bduGCxcuYPDgwUqHQiQrlmbbRqfTYeXKlUqHQUQOwqGTmUcffRTin+54ovJEumgeexWIiGzGTm4iBbBnhohIPkxmiBTA0mzb6PV69O7dG71794Zer1c6HCJSmEMPMxGVV0YTq5lsIYTA1atXpWUiqtjYM0OkAFYzERHJh6dSIgVwmImISD5MZogUwGomIiL5MJkhUgCrmYiI5MNkhkgBHGYiIpIPq5mIFGCuZuIwk3VUKhXq168vLRNRxcZkhkgB7JmxjU6nw/r165UOg4gcBIeZiBQgJTP8H0hEZDOeSokUYK5m4kXziIhsx2SGSAHmaiYNcxmr6PV69O/fH/379+ftDIiIc2aIlMA5M7YRQuD333+XlomoYmPPDJECeNE8IiL5MJkhUoDR9Pe/7JkhIrIdkxkiBbCaiYhIPjyVEinAKFUzKRwIEVE5wGSGSAEmqZqJ2QwRka1YzUSkAFYz2UalUsHX11daJqKKjckMkQJYzWQbnU6Hr776SukwiMhBcJiJSAGsZiIikg+TGSIFSHNm+D+QiMhmPJUSKYDVTLbR6/UYNGgQBg0axNsZEBHnzBAp4d4EYGYz1hBCIC0tTVomooqNPTNECjCymomISDZMZogUwNJsIiL5MJkhUoDJxNJsIiK5MJkhUgB7ZoiI5MNkhkgB5momlmYTEdmO1UxECmA1k+2qVq2qdAhE5CCYzBAp4N6NJpWNw1m5u7tj27ZtSodBRA6CndxECmBpNhGRfBw6mbl8+TKee+451KhRA+7u7mjevDmSk5OVDovIZibpCsDMZoiIbOWww0y3bt1C+/bt0aVLF2zZsgU1a9bEqVOnUK1aNaVDI7KZiTeatIler8fIkSMBAP/73/+g0+kUjoiIlOSwyczs2bPh7++PxMREaV1gYKCCERHJhzeatI0QAocOHZKWiahic9hT6Zdffom2bduiX79+8PHxQevWrbFs2bJitzEYDMjMzLR4EDkiI4eZiIhk47DJzO+//47FixcjODgY3333HV566SWMHDkSH330UZHbJCQkwMvLS3r4+/vbMWKikmM1ExGRfBw2mTGZTGjTpg1mzpyJ1q1bY9iwYRg6dCg++OCDIreJj49HRkaG9Lh48aIdIyYqOVYzERHJx2GTGV9fXzRt2tRiXZMmTXDhwoUit9FqtfD09LR4EDkaU745HhxmIiKyncMmM+3bt8fJkyct1v32228ICAhQKCIieRjzzVflMBMRke0cNpl57bXXsG/fPsycOROnT5/GmjVrsHTpUsTFxSkdGpFNTPmSGQ4zWU+n07Ekm4gAOHBpdrt27bBx40bEx8dj+vTpCAwMxMKFCzFw4EClQyOyiSlfNqNmNmMVd3d37NmzR+kwiMhBOGwyAwC9evVCr169lA6DSFbsmSEikpfDDjMRlVecM0NEJC8mM0R2xmom2xkMBowaNQqjRo2CwWBQOhwiUphDDzMRlUdGXjDPZiaTCT/99JO0TEQVG3tmiOzMxAvmERHJiskMkZ2Zh5k0HGIiIpIFkxkiOzP+MyrCnhkiInkwmSGyM2mYif/7iIhkwdMpkZ2Zh5lYyUREJA8mM0R2ZmI1ExGRrFiaTWRnRlYz2czd3R3JyclKh0FEDoI9M0R2dm+YSeFAiIjKCSYzRHZmrmZiaTYRkTyYzBDZGS+aZzuDwYAJEyZgwoQJvJ0BETGZIbI3o3mYidmM1UwmE7Zv347t27fzdgZExGSGyN7YM0NEJC8mM0R2xtJsIiJ5MZkhsjNWMxERyYvJDJGdsZqJiEheTGaI7IxzZoiI5MVkhsjOzNVMGv7vIyKSBW9nQGRn93pm2DVjLZ1Oh927d0vLRFSxMZkhsjMOM9lOpVLB3d1d6TCIyEGwo5vIzoysZiIikhV7Zojs7N51ZpjNWCsnJwczZ84EALz++utwc3NTOCIiUhJ7ZojszHz1ffbMWM9oNOLrr7/G119/DaPRqHQ4RKQwJjNEdib1zPB/HxGRLHg6JbKze3Nm2DVDRCQHJjNEdsZqJiIieVmVzIwfPx56vV7uWIgqBCNvNElEJCurkpmFCxciIyMDABAbG4u7d+/KGhRReWbiMBMRkaysSmb8/PyQmpoKAFi1ahVu374tZ0xE5RqrmYiI5GXVdWbGjh2L3r17Izw8HACwevVqtG/fHs2bN+dVOYnug3NmbKfT6bB161ZpmYgqNqt6Zl599VUkJyejR48eEEJg0aJFeOihh+Dp6YkmTZrg6aefxqxZs7Blyxa54yVyevduNMlsxloqlQrVqlVDtWrVoOJwHVGFZ3U1U4sWLfDGG28gKCgI+/btQ1ZWFvbs2YPRo0ejWrVq+OKLL9C/f3+rA5s6dSpUKpXFo3Hjxlbvj8hRsGeGiEheNt/O4NSpU9JyeHi4NPQEAOKfv0Ct1axZM2zbtk167uLCuy+Q82M1k+1ycnKwYMECAMBrr73G2xkQVXBlmh3Y2v3r4uKC2rVryxQNkWNgNZPtjEYjNmzYAAAYOXKkwtEQkdJsvmheXl4eZsyYgYiICLRp0wYxMTHSxDxbnTp1Cn5+fqhfvz4GDhyICxcuFNveYDAgMzPT4kHkaDjMREQkL5uTmYkTJ+L9999H165d0adPHxgMBvTq1QsvvPCCTcNM4eHhSEpKwrfffovFixfj7Nmz6NixI7KysorcJiEhAV5eXtLD39/f6vcnKitGlmYTEcnK5mGmNWvWYN26dejUqZO07uzZs+jVqxfmzp2LcePGWbXfqKgoablFixYIDw9HQEAA1q9fjyFDhhS6TXx8PMaMGSM9z8zMZEJDDsfEaiYiIlnZ3DNz584d1KlTx2JdYGAg3n33XSxdutTW3UuqVq2Khg0b4vTp00W20Wq18PT0tHgQORoOMxERycvmZKZDhw746KOPCqwPDAzElStXbN295Pbt2zhz5gx8fX1l2yeREkysZiIikpXNw0yzZ89G+/btcevWLbz66qsIDg5Gbm4u3n33XTRt2tTq/f7nP/9B7969ERAQgCtXrmDKlCnQaDR45plnbA2ZSFFGVjMREcnK5mQmJCQEO3fuxLBhw/Dee+/Bzc0NRqMRVatWxaZNm6ze76VLl/DMM8/gxo0bqFmzJjp06IB9+/ahZs2atoZMpCgOM9lOq9Xiyy+/lJaJqGKT5TozrVu3xsGDB3HixAmkpaWhSpUqCA8Pt2nOyrp16+QIjcjhmKuZOMxkPbVaDT8/P6XDICIHYVUyExERgdatW6NVq1Zo1aoVWrRoAZ1Oh8aNG/OWA0T3wYvmERHJy6pkJjo6GkeOHMG8efNw5swZqFQqBAcHS8mN+eHj4yN3vEROz3w7A7XN0+8rrtzcXLz//vsAgJdffhmurq4KR0RESrIqmXnzzTel5QMHDqBPnz4ICQmBSqVCUlISTpw4AZVKhVq1asla0URUHnDOjO3y8vKwatUqAMCwYcOYzBBVcDbPmXnppZewaNEi9O3bV1q3efNmDBs2DDExMbbunqjckS6ax2EmIiJZ2NzRffz4cbRq1cpiXc+ePfH+++/j559/tnX3ROUOe2aIiORlczLTrl27Qi+a17x5cxw4cMDW3ROVO6xmIiKSl83DTPPnz8cjjzyC8+fP47XXXkNISAhycnIwb948eHt7yxEjUbnCaiYiInnZnMyEhoZi//79iIuLQ6tWreDq6gqTyQQXFxcsX75cjhiJyhVzNZOG1UxERLKQ5aJ5jRs3xvbt23HhwgWkpqZCrVYjNDSU91EiKgTnzBARycvmZObgwYOYOHEi/vzzTzRo0EC6xkxubq4c8RGVOxxmsp1Wq8Unn3wiLRNRxWZzR/fzzz8PjUaDYcOGITAwED/++CNeeOEF1KtXDzVq1JAjRqJyhT0ztlOr1QgKCkJQUBDUvPogUYVnc8/MxYsX8c033yAoKMhi/fnz55Gammrr7onKHWnODJMZIiJZ2JzMRERE4PLlywWSmYCAAAQEBNi6e6Jyx2QyDzMpHIgTy83NxYoVKwAAgwcP5hWAiSo4m/tnX3vtNUyfPh03b96UIx6ics8kVTMxm7FWXl4eli1bhmXLliEvL0/pcIhIYTb3zPTu3RsqlQoNGzbE448/Lt1Ru3nz5nBzc5MjRqJyxcg5M0REsrI5mTl9+jR++eUX6TFz5kycO3cOrq6uaNSoEY4cOSJHnETlxr1qJoUDISIqJ2xOZurXr4/69etb3GgyMzMTv/zyCxMZokLcmwDMbIaISA5Wz5mZPHkyUlJSCn3N09MTHTt2RFxcnNWBEZVXLM0mIpKX1cnMpUuXEBUVhTp16uCll17Cli1bkJOTI2dsROUSq5mIiORldTKzYsUKXLt2DWvXrkWVKlUwevRoeHt748knn8TKlStZ3URUhHs9M8xmiIjkYFNptlqtRseOHTFnzhycPHkS+/fvR3h4OJYsWQI/Pz906tQJc+fOxeXLl+WKl8jp8UaTtnNzc8NHH32Ejz76iFWTRCTPjSbNmjRpgiZNmmD8+PG4fv06vvrqK3z55ZcAgP/85z9yvhWR0+KcGdtpNBo0a9ZM6TCIyEHIkszk5ubi2rVruHv3LmrWrInq1avDx8cHQ4YMwZAhQ+R4C6Jyw/hPaTarmYiI5GF1R3dWVhYWL16Mzp07w9PTE/Xq1UOTJk1Qs2ZNBAQEYOjQoTh48KCcsRKVC+yZsV1ubi5WrlyJlStXIjc3V+lwiEhhViUz8+fPR7169ZCYmIjIyEhs2rQJqamp+O2337B3715MmTIFeXl5ePTRR9GjRw+cOnVK7riJnJIQ4t7tDJjMWC0vLw//+9//8L///Y+3MyAi64aZDh48iF27dhU5Zh0WFobBgwfjgw8+QGJiInbv3o3g4GCbAiUqD0z5llnNREQkD6uSmbVr15aonVarxYgRI6x5C6JyydwrAwBqVjMREcnC6tNpWloaJk2ahPT0dBnDISrfTPm6ZjhnhohIHlYnMwkJCTh69CiqVq1a4DW9Xo8TJ07YEhdRuWS+ySTAaiYiIrlYnczs27cPI0eOLPQ1nU6HoUOHIiEhwerAiMojY/5hJuYyRESysOneTA0aNCjy9REjRkgXzCOiv5mYzBARyc7qi+ZVr14dV69ehb+/f6Gvh4WF4fTp01YHRlQemS+YpwKrmWzh5uaGDz74QFomoorN6mSmU6dOSEpKQlhYWKGvq9Vq6PV6qwMjKo94wTx5aDQatG3bVukwiMhBWD3M9J///AfLli3D0qVLC3197969qF+/vtWB/dusWbOgUqkwevRo2fZJZG/Gf6qZeME8IiL5WJ3MhIaG4v3338fLL7+Mbt26YdOmTbhw4QJu3ryJL774AhMmTMCzzz4rS5AHDx7EkiVL0KJFC1n2R6QUczUTh5hsk5eXh/Xr12P9+vW8AjARWZ/MAMDQoUOxc+dOZGRk4IknnkBgYCBq1qyJvn37onnz5njttddsDvD27dsYOHAgli1bhmrVqtm8PyIlScNMvGCeTXJzczFnzhzMmTOH92YiItvvmt2hQwccOHAAJ06cwKFDh3D37l2EhITgwQcflCM+xMXFITo6GpGRkfjvf/9bbFuDwQCDwSA9z8zMlCUGIrlwzgwRkfxsTmbMGjdujMaNG8u1OwDAunXrcOjQoRLffTshIQHTpk2TNQYiOZmrmXjBPCIi+ThsZ/fFixcxatQorF69GjqdrkTbxMfHIyMjQ3pcvHixjKMkKh32zBARyU+2nhm5paSk4Pr162jTpo20zmg0YteuXXjvvfdgMBig0WgsttFqtdBqtfYOlajEWM1ERCQ/h01munbtil9//dVi3QsvvIDGjRtjwoQJBRIZImfAaiYiIvmVaTKjVqvx8MMP4+2330ZoaGiptq1SpQpCQkIs1lWuXBk1atQosJ7IWbCaiYhIfmWazKxYsQLnzp1DXFwc9u3bV5ZvReQUjJwzIwtXV1csXLhQWiaiiq1Mk5nY2FgAwNSpU2XZ386dO2XZD5FSTKxmkoWLiws6dOigdBhE5CDY2U1kR6xmIiKSn+w9M7du3cL333+Py5cvAwD8/PzQvXt3Xr2XCExm5JKXl4ctW7YAAKKiouDi4rC1DERkB7L2zCxfvhwRERHYv38/TCYTTCYT9u/fj4ceegjLly+X862InJLRxGEmOeTm5mLatGmYNm0ab2dARPL2zMyZMweHDh1C5cqVLda/9dZbaNOmDYYMGSLn2xE5HfbMEBHJT9aeGZVKhaysrALrs7KyoOJfokRSNZOGs9WIiGQja8/M3Llz0blzZ4SEhOCBBx4AAFy6dAnHjh3DvHnz5HwrIqd076J5CgdCRFSOyJrM9OrVC1FRUThw4ACuXLkC4O8JwGFhYbxiLxHyDzMxmyEikovVycyLL76I0NBQtGnTBi1btpRuBqnRaBARESFbgETlCS+aR0QkP6uTmVOnTmHDhg3IysqCi4sLGjVqJCU3oaGhaNWqVYGJwEQVnYnVTEREsrM6mfnxxx8B/J3UpKSk4NChQzh06BC+/PJLpKenQ61Wo2HDhkhLS5MtWCJnx2omebi6umLWrFnSMhFVbDbPmQkODkZwcDCefvppad3Zs2eRnJyMw4cP27p7onKF1UzycHFxQWRkpNJhEJGDKJPLZgYGBiIwMBD9+vUri90TOS1WMxERyY/XACeyIyOrmWSRl5cn3Xj24Ycf5u0MiCo4ngGI7Mg8Z0bDXMYmubm5mDhxIgBg9+7dTGaIKjiO3BPZkbmaicNMRETyKdNkRq1W45FHHkFKSkpZvg2R0+BF84iI5FemycyKFSvQqVMnxMXFleXbEDkNE6uZiIhkZ/NAc1ZWFqpUqVLoa7GxsQCAqVOn2vo2ROWCkdVMRESys/nvw44dO+LatWtyxEJU7nGYiYhIfjYnM61bt0Z4eDhOnDhhsT41NRU9e/a0dfdE5YqR1UxERLKzOZlJTExEbGwsOnTogD179uC3335D//79ERoayjtlE/0Lb2cgD1dXV0yZMgVTpkzh7QyISJ7rzEybNg1arRbdunWD0WhE165dsXfvXoSFhcmxe6JywyiVZjObsYWLiwt69+6tdBhE5CBs7pn5448/MGrUKPz3v/9F06ZN4erqitjYWCYyRIVgzwwRkfxs7pkJDAxEo0aNsGHDBkRHR+Pbb7/FgAEDcOHCBYwbN06OGInKDZZmyyMvLw/79u0DADz44IO8AjBRBWfzGWDFihUWd8zu0aMHduzYgV69euHcuXNYtGiRrW9BVG7cu9Eku2ZskZubi9GjRwPg7QyISIZhpvyJjFmbNm3w888/44cffrB190TlCquZiIjkV2ad3fXq1cPPP/9cVrsnckqcM0NEJL8yHbmvVq1aWe6eyOmYq5k0HGYiIpINpyES2RF7ZoiI5MdkhsiOzHNm1PyfR0QkmzI9parVajzyyCNISUkpy7chchqsZiIikl+Z1jOuWLEC586dQ1xcnHRNCKKKzMRqJlm4urpi/Pjx0jIRVWxlmszExsYCAKZOnVqWb0PkNDhnRh4uLi7o37+/0mEQkYNw2JH7xYsXo0WLFvD09ISnpyciIiKwZcsWpcMisgmHmYiI5GdTMnP+/Hl8//33uHbtWqGvX7lyxep916lTB7NmzUJKSgqSk5PxyCOP4PHHH8exY8es3ieR0oymv//lMJNtjEYjkpOTkZycDKPRqHQ4RKQwq5OZtWvXokGDBujRowfq16+PVatWAQAuXLiAWbNmITw8HHXr1rU6sN69e6Nnz54IDg5Gw4YNMWPGDHh4eHDuDTk1DjPJIycnByNGjMCIESOQk5OjdDhEpDCrk5m33noLr776Kn799Vd069YNL730EiZNmoSgoCAkJSWhbdu22LBhgyxBGo1GrFu3Dnfu3EFERESR7QwGAzIzMy0eRI7E+M8wk4bZDBGRbKyeAHzmzBmMGjUKAQEBWLRoEerWrYuffvoJR44cQZMmTWQJ7tdff0VERAT0ej08PDywceNGNG3atMj2CQkJmDZtmizvTVQW2DNDRCQ/q3tmcnNz4e7uDuDv+S06nQ5z586VLZEBgEaNGiE1NRX79+/HSy+9hJiYGKSlpRXZPj4+HhkZGdLj4sWLssVCJAcmM0RE8rNpAvCaNWtw4sQJAIBGo5H9Xkxubm5o0KABQkNDkZCQgJYtW+Kdd94psr1Wq5Wqn8wPIkfCaiYiIvlZncx07NgRU6ZMQbNmzeDt7Q29Xo933nkH69evR1paGvLy8uSMEwBgMplgMBhk3y+RvbCaiYhIflbPmfnxxx8BAKdOnUJKSgoOHTqEQ4cOYeXKlUhPT4ebmxsaNmyII0eOWLX/+Ph4REVFoW7dusjKysKaNWuwc+dOfPfdd9aGTKQ4DjMREcnP5isABwcHIzg4GE8//bS07uzZs0hOTsbhw4et3u/169cxaNAgXL16FV5eXmjRogW+++47dOvWzdaQiRTDaiZ5uLi4YOTIkdIyEVVsVp0FLly4UOw1ZAIDAxEYGIh+/foBAC5fvowHHnigVO+xfPlya0IjcmjsmZGHq6srBg0apHQYROQgrJoz065dOwwfPhwHDx4ssk1GRgaWLVuGkJAQfPbZZ1YHSFSeGHmjSSIi2VnVM5OWloYZM2agW7du0Ol0CA0NhZ+fH3Q6HW7duoW0tDQcO3YMbdq0wZw5c9CzZ0+54yZySqxmkofRaJQqKRs3bgyNRqNwRESkJKuSmRo1amD+/PmYMWMGvvnmG+zZswfnz59HdnY2vL29MXDgQHTv3h0hISFyx0vk1Ez/VDNxmMk2OTk5iImJAQDs3r1buuYVEVVMNs2cc3d3x1NPPYWnnnpKrniIyjXOmSEikp9NF80jotJhNRMRkfxKncxkZ2fj8uXLBdYfO3ZMloCIyjP2zBARya9Uycynn36K4OBgREdHo0WLFti/f7/02vPPPy97cETlDZMZIiL5lSqZ+e9//4uUlBSkpqYiMTERQ4YMwZo1awAA4p/ucyIqmjTMxGSGiEg2pZoAnJubi1q1agEAQkNDsWvXLvTt2xenT5+GiqWmRPd1r2eG/1+IiORSqmTGx8cHR44cQYsWLQAA1atXx9atWxETE2P1PZiIKhITbzQpCxcXFwwdOlRaJqKKrVRngVWrVhU4cbi5uWHt2rV45ZVXZA2MqLwRQuCfXIZzZmzk6uqK4cOHKx0GETmIUs2ZqVOnDmrXrm2xbtu2bQCA9u3byxcVUTlkyjetTM1shohINjZfZyY6OhpjxoxBTk6OHPEQlVsWyQxzGZuYTCacOXMGZ86cgck8dkdEFZbNycyuXbvw9ddfo23btjh69Gihba5evYonn3zS1rcicmrGfBV/nDNjG4PBgAEDBmDAgAEwGAxKh0NECrM5mQkPD8ehQ4fQtm1btGvXDvPnz5deM5lMSEtLw+TJk7F7925b34rIqVn2zDCbISKSiyxlAB4eHpg3bx4qVaqEcePGYe3atVIiYzAYEBAQgISEBDneishpGfMlM+yZISKSj809Mx9++CHq1q0Lb29vJCUlISwsDC4uLjh8+DBefPFF3Lx5E2fPnsWQIUPkiJfIaXHODBFR2bA5mXn99dcRHR2NtLQ0ZGVlYe/evdi7dy/mzZuHDz/8EGPGjMHdu3fliJXIqZn+yWbUAC8ySUQkI5uTmYcffhhTp05Fo0aNLE7Qr732Gg4cOIDk5OQC93Eiqoh4XyYiorJhczKzfv166RYH/9a8eXMcPHgQvXr1QqdOnWx9KyKnZq5mUtv8v46IiPIr8+uAa7VaLFy4ENHR0WX9VkQOjfdlko+Liwuef/55aZmIKja7nQW6detmr7cickgcZpKPq6srRo0apXQYROQg2OFNZCfm0myWZRMRyYv9s0R2YjLPmeEwk81MJhOuXbsGAKhduzbUnIhEVKExmSGyE+M/txBiz4ztDAYDHnvsMQDA7t274e7urnBERKQk/jlDZCecM0NEVDaYzBDZiTTMxGyGiEhWTGaI7IQ9M0REZYPJDJGdsJqJiKhsMJkhshNWMxERlQ0mM0R2wmomIqKywdJsIjvhnBn5aDQa9OvXT1omooqNyQyRnZhvNKlhNmMzNzc3TJgwQekwiMhBOOwwU0JCAtq1a4cqVarAx8cHffr0wcmTJ5UOi8hq7JkhIiobDpvM/Pjjj4iLi8O+ffuwdetW5Obm4tFHH8WdO3eUDo3IKkxm5COEwK1bt3Dr1i2If3q8iKjicthhpm+//dbieVJSEnx8fJCSkoJOnTopFBWR9VjNJB+9Xo9u3boB4O0MiMiBk5l/y8jIAABUr169yDYGgwEGg0F6npmZWeZxEZWUuZqJPTNERPJy2GGm/EwmE0aPHo327dsjJCSkyHYJCQnw8vKSHv7+/naMkqh4Jl40j4ioTDhFMhMXF4ejR49i3bp1xbaLj49HRkaG9Lh48aKdIiS6Pw4zERGVDYcfZnrllVfw9ddfY9euXahTp06xbbVaLbRarZ0iIyod6XYGTvEnBBGR83DYZEYIgVdffRUbN27Ezp07ERgYqHRIRDZhNRMRUdlw2GQmLi4Oa9aswRdffIEqVarg2rVrAAAvLy9WLpBTMnKYiYioTDhsMrN48WIAwMMPP2yxPjExEbGxsfYPiMhG7JmRj0ajQa9evaRlIqrYHDaZ4YWwqLwx8UaTsnFzc8PUqVOVDoOIHASnIhLZyb1qJoUDISIqZxy2Z4aovLlXzcRsxlZCCOj1egCATqeDivOQiCo09swQ2QnnzMhHr9ejY8eO6Nixo5TUEFHFxWSGyE7M1Uwa9iIQEcmKyQyRnbBnhoiobDCZIbIT3miSiKhsMJkhshNWMxERlQ0mM0R2YmI1ExFRmWAyQ2QnnDNDRFQ2eJ0ZIjsxcphJNmq1Gl27dpWWiahiYzJDZCfSMBNLs22m1Woxe/ZspcMgIgfBP2mI7ITDTEREZYPJDJGdGE3mi+YpHAgRUTnDZIbITu71zDCbsVV2djbatm2Ltm3bIjs7W+lwiEhhTGaI7MR8o0nOVyUikhdPq0R2wjkzRERlg8kMkZ2YeKNJIqIywWSGyE7YM0NEVDaYzBDZiflGk6xmIiKSF5MZIju5d6NJZjNERHLiFYCJ7MQo3WhS2TjKA7Vajfbt20vLRFSxMZkhshPOmZGPVqvFO++8o3QYROQg+CcNkZ1wmImIqGwwmSGyE/bMEBGVDSYzRHZirmZiMmO77OxsdOjQAR06dODtDIiIc2aI7IUXzZOXXq9XOgQichDsmSGyEyOHmYiIygSTGSI7MbE0m4ioTPC0SmQnrGYiIiobTGaI7ES6aB5zGSIiWTGZIbITlmYTEZUNVjMR2YnJxGEmuahUKrRp00ZaJqKKjckMkZ2wZ0Y+Op0OS5cuVToMInIQDj3MtGvXLvTu3Rt+fn5QqVTYtGmT0iERWY03miQiKhsOfVq9c+cOWrZsiUWLFikdCpHNWM1ERFQ2HHqYKSoqClFRUUqHQSQLVjPJJzs7G7179wYAfPXVV3B3d1c4IiJSkkMnM6VlMBhgMBik55mZmQpGQ2SJc2bklZ6ernQIROQgHHqYqbQSEhLg5eUlPfz9/ZUOiUjCaiYiorJRrpKZ+Ph4ZGRkSI+LFy8qHRKRxMRhJiKiMlGuhpm0Wi20Wq3SYRAVSrrRZLn6E4KISHk8rRLZgUkI/JPLcJiJiEhmDt0zc/v2bZw+fVp6fvbsWaSmpqJ69eqoW7eugpERlY55iAngBGAiIrk5dDKTnJyMLl26SM/HjBkDAIiJiUFSUpJCURGVXv5khnNmbKdSqdC0aVNpmYgqNodOZh5++GEIIe7fkMjBGfP9HLNnxnY6nQ4rV65UOgwichCcM0NkB5Y9M8xmiIjkxGSGyA44Z4aIqOwwmSGyA5OJw0xy0uv16N27N3r37g29Xq90OESkMIeeM0NUXki3MgAnrMpBCIGrV69Ky0RUsbFnhsgOeME8IqKyw1MrkR2YhPm+TAoHQkRUDjGZIbIDo3RfJmYzRERyYzJDZAfSnBnmMkREsmMyQ2QHxn+yGV79l4hIfqxmIrKDez0zzGbkoFKpUL9+fWmZiCo2JjNEdmBiNZOsdDod1q9fr3QYROQgeGolsgPOmSEiKjtMZojswCiVZjObISKSG5MZIjswSaXZysZRXuj1evTv3x/9+/fn7QyIiHNmiOzBXM3EYSZ5CCHw+++/S8tEVLGxZ4bIDky8aB4RUZlhMkNkB0ZOACYiKjNMZojsQOqZ4f84IiLZ8dRKZAcmVjMREZUZJjNEdsDrzBARlR1WMxHZAZMZealUKvj6+krLRFSxMZkhsoN7N5rkL1456HQ6fPXVV0qHQUQOgsNMRHbAnhkiorLDZIbIDoysZiIiKjM8tRLZAauZ5KXX6zFo0CAMGjSItzMgIs6ZIbIHXjRPXkIIpKWlSctEVLGxZ4bIDjhnhoio7DCZIbIDE6uZiIjKDJMZIjtgzwwRUdlhMkNkB5wzQ0RUdpjMENmBuZpJw2yGiEh2rGYisgP2zMivatWqSodARA6CyQyRHZjnzGiYzMjC3d0d27ZtUzoMInIQDj/MtGjRItSrVw86nQ7h4eE4cOCA0iERlZr53ky8aB4RkfwcOpn55JNPMGbMGEyZMgWHDh1Cy5Yt0b17d1y/fl3p0IhKhdVMRERlx6GHmebPn4+hQ4fihRdeAAB88MEH+Oabb7BixQpMnDhRsbiuZ+mRk2dS7P1JHtfvGO32Xrdz/v55KW0yc+OuUZpvQ/cYDHpMHv8aAGD6nAXQanUKR0TWuHTrrtIhkAy8PbTQuWoUjcFhk5mcnBykpKQgPj5eWqdWqxEZGYm9e/cWuo3BYIDBYJCeZ2Zmlklso9amYu/vN8pk31S+lTaZif/hBm5kM3H+N1OOHhdTDwEARm75E2o3JjNOafMOpSMgGawd+iAigmooGoPDJjN//fUXjEYjatWqZbG+Vq1aOHHiRKHbJCQkYNq0aWUem6uLGloXhx6hoxIQJvsmCTpXNdr4aku1jataBTf+qBVgyveZuKkBNT8jp6TiF1cuOMLwucMmM9aIj4/HmDFjpOeZmZnw9/eX/X1WDg6TfZ9kfykpKUqHcF+LetZUOgSHlJ2djY7z/l5O6lML7u7uygZEVgkNDVU6BConHDaZ8fb2hkajwR9//GGx/o8//kDt2rUL3Uar1UKrLd1fvkREROTcHLaPz83NDaGhodi+fbu0zmQyYfv27YiIiFAwMiIiInIkDtszAwBjxoxBTEwM2rZti7CwMCxcuBB37tyRqpuIiIiIHDqZGTBgAP78809MnjwZ165dQ6tWrfDtt98WmBRMRBWPTscKJiL6m0oIUW6vYpGZmQkvLy9kZGTA09NT6XDIwTjDBGCi8owTgKkopf397bBzZoiIiIhKgskMEREROTUmM0TkdAwGA0aNGoVRo0ZZXPWbiComh54ATERUGJPJhJ9++klaJqKKjT0zRERE5NSYzBAREZFTYzJDRERETo3JDBERETk1JjNERETk1Mp1NZP54saZmZkKR0KO6Pbt20qHQFbS6/XS8p07d2A0GhWMhqzFczMVxfyzUdKbFJTr2xlcunQJ/v7+SodBREREVrh48SLq1Klz33blOpkxmUy4cuUKqlSpApVKpXQ4ssrMzIS/vz8uXrxY7u87VZGOFahYx1uRjhWoWMfLYy2/7HG8QghkZWXBz88PavX9Z8SU62EmtVpdoozOmXl6elaI/zxAxTpWoGIdb0U6VqBiHS+Ptfwq6+P18vIqcVtOACYiIiKnxmSGiIiInBqTGSel1WoxZcoUaLVapUMpcxXpWIGKdbwV6ViBinW8PNbyyxGPt1xPACYiIqLyjz0zRERE5NSYzBAREZFTYzJDRERETo3JDBERETk1JjMKq1evHlQqlcVj1qxZFm2OHDmCjh07QqfTwd/fH3PmzCmwnw0bNqBx48bQ6XRo3rw5Nm/ebPG6EAKTJ0+Gr68v3N3dERkZiVOnTlm0uXnzJgYOHAhPT09UrVoVQ4YMke3+RefOncOQIUMQGBgId3d3BAUFYcqUKcjJybFo8+/PQqVSYd++fU51rLZYtGgR6tWrB51Oh/DwcBw4cEDpkCwkJCSgXbt2qFKlCnx8fNCnTx+cPHnSos3DDz9c4DscMWKERZsLFy4gOjoalSpVgo+PD8aNG4e8vDyLNjt37kSbNm2g1WrRoEEDJCUlFYinrD+vqVOnFjiWxo0bS6/r9XrExcWhRo0a8PDwwJNPPok//vjDKY+1sHORSqVCXFwcAOf/Xnft2oXevXvDz88PKpUKmzZtsnhdrvOGvc7X1h5rbm4uJkyYgObNm6Ny5crw8/PDoEGDcOXKFYt9ONLvphIRpKiAgAAxffp0cfXqVelx+/Zt6fWMjAxRq1YtMXDgQHH06FGxdu1a4e7uLpYsWSK1+emnn4RGoxFz5swRaWlp4s033xSurq7i119/ldrMmjVLeHl5iU2bNolffvlFPPbYYyIwMFBkZ2dLbXr06CFatmwp9u3bJ3bv3i0aNGggnnnmGVmOc8uWLSI2NlZ899134syZM+KLL74QPj4+YuzYsVKbs2fPCgBi27ZtFp9HTk6OUx2rtdatWyfc3NzEihUrxLFjx8TQoUNF1apVxR9//KFoXPl1795dJCYmiqNHj4rU1FTRs2dPUbduXYuf2c6dO4uhQ4dafIcZGRnS63l5eSIkJERERkaKw4cPi82bNwtvb28RHx8vtfn9999FpUqVxJgxY0RaWpp49913hUajEd9++63Uxh6f15QpU0SzZs0sjuXPP/+UXh8xYoTw9/cX27dvF8nJyeLBBx8UDz30kFMe6/Xr1y2Oc+vWrQKA2LFjhxDC+b/XzZs3izfeeEN8/vnnAoDYuHGjxetynDfseb629ljT09NFZGSk+OSTT8SJEyfE3r17RVhYmAgNDbXYhyP9bioJJjMKCwgIEAsWLCjy9ffff19Uq1ZNGAwGad2ECRNEo0aNpOf9+/cX0dHRFtuFh4eL4cOHCyGEMJlMonbt2uLtt9+WXk9PTxdarVasXbtWCCFEWlqaACAOHjwotdmyZYtQqVTi8uXLNh1jUebMmSMCAwOl5+Zk5vDhw0Vu46zHWhJhYWEiLi5Oem40GoWfn59ISEhQLKb7uX79ugAgfvzxR2ld586dxahRo4rcZvPmzUKtVotr165J6xYvXiw8PT2ln/Px48eLZs2aWWw3YMAA0b17d+m5PT6vKVOmiJYtWxb6Wnp6unB1dRUbNmyQ1h0/flwAEHv37hVCONex/tuoUaNEUFCQMJlMQojy9b3++xe8XOcNe52vbTnWwhw4cEAAEOfPn5fWOcrvppLiMJMDmDVrFmrUqIHWrVvj7bfftuiW3bt3Lzp16gQ3NzdpXffu3XHy5EncunVLahMZGWmxz+7du2Pv3r0AgLNnz+LatWsWbby8vBAeHi612bt3L6pWrYq2bdtKbSIjI6FWq7F//375DxpARkYGqlevXmD9Y489Bh8fH3To0AFffvmlxWvOeqz3k5OTg5SUFIu41Wo1IiMjpbgdUUZGBgAU+B5Xr14Nb29vhISEID4+Hnfv3pVe27t3L5o3b45atWpJ67p3747MzEwcO3ZMalPc92zPz+vUqVPw8/ND/fr1MXDgQFy4cAEAkJKSgtzcXIsYGjdujLp161r8rDnTsZrl5OTg448/xuDBgy1u0luevtf85Dpv2Ot8LbeMjAyoVCpUrVrVYr0j/G4qqXJ9o0lnMHLkSLRp0wbVq1fHzz//jPj4eFy9ehXz588HAFy7dg2BgYEW25hPFteuXUO1atVw7do1ixOIuc21a9ekdvm3K6qNj4+PxesuLi6oXr261EZOp0+fxrvvvou5c+dK6zw8PDBv3jy0b98earUan332Gfr06YNNmzbhsccek+J0tmMtib/++gtGo7HQuE+cOKFITPdjMpkwevRotG/fHiEhIdL6Z599FgEBAfDz88ORI0cwYcIEnDx5Ep9//jmAor9D82vFtcnMzER2djZu3bpll88rPDwcSUlJaNSoEa5evYpp06ahY8eOOHr0KK5duwY3N7cCvwD+/bPmLMea36ZNm5Ceno7Y2FhpXXn6Xv9NrvOGvc7XctLr9ZgwYQKeeeYZi5tGOsrvppJiMlMGJk6ciNmzZxfb5vjx42jcuDHGjBkjrWvRogXc3NwwfPhwJCQkONSlootSmmM1u3z5Mnr06IF+/fph6NCh0npvb2+Lz6Ndu3a4cuUK3n77bSmZIccRFxeHo0ePYs+ePRbrhw0bJi03b94cvr6+6Nq1K86cOYOgoCB7h2mTqKgoablFixYIDw9HQEAA1q9fD3d3dwUjK1vLly9HVFQU/Pz8pHXl6Xulv+Xm5qJ///4QQmDx4sUWrznb7yYOM5WBsWPH4vjx48U+6tevX+i24eHhyMvLw7lz5wAAtWvXLlAdYX5eu3btYtvkfz3/dkW1uX79usXreXl5uHnzptRGjmO9cuUKunTpgoceeghLly4tcr/5P4/Tp09Lz5U81rLk7e0NjUZTbNyO5JVXXsHXX3+NHTt2oE6dOsW2DQ8PBwDpe7TlZ9rT0xPu7u6KfV5Vq1ZFw4YNcfr0adSuXRs5OTlIT08vMgZnPNbz589j27ZtePHFF4ttV56+V7nOG/Y6X8vBnMicP38eW7duteiVKYxSv5tKislMGahZsyYaN25c7CP/OGN+qampUKvVUndmREQEdu3ahdzcXKnN1q1b0ahRI1SrVk1qs337dov9bN26FREREQCAwMBA1K5d26JNZmYm9u/fL7WJiIhAeno6UlJSpDY//PADTCaTdNKy9VgvX76Mhx9+GKGhoUhMTIRaff8fv9TUVPj6+krPlTzWsuTm5obQ0FCLuE0mE7Zv3y7F7QiEEHjllVewceNG/PDDDwW6mQuTmpoKANL3GBERgV9//dXiF4P5ZNq0aVOpTXHfs1Kf1+3bt3HmzBn4+voiNDQUrq6uFjGcPHkSFy5csPhZc7ZjTUxMhI+PD6Kjo4ttV56+V7nOG/Y6X9vKnMicOnUK27ZtQ40aNe67jVK/m0qsVNOFSVY///yzWLBggUhNTRVnzpwRH3/8sahZs6YYNGiQ1CY9PV3UqlVLPP/88+Lo0aNi3bp1olKlSgXK31xcXMTcuXPF8ePHxZQpUwotf6tatar44osvxJEjR8Tjjz9eaNlh69atxf79+8WePXtEcHCwbOXKly5dEg0aNBBdu3YVly5dsij3M0tKShJr1qwRx48fF8ePHxczZswQarVarFixwqmO1Vrr1q0TWq1WJCUlibS0NDFs2DBRtWpVi+oQpb300kvCy8tL7Ny50+I7vHv3rhBCiNOnT4vp06eL5ORkcfbsWfHFF1+I+vXri06dOkn7MJfwPvrooyI1NVV8++23ombNmoWW8I4bN04cP35cLFq0qNAS3rL+vMaOHSt27twpzp49K3766ScRGRkpvL29xfXr14UQf5dm161bV/zwww8iOTlZREREiIiICKc8ViH+rhyqW7eumDBhgsX68vC9ZmVlicOHD4vDhw8LAGL+/Pni8OHDUgWPHOcNe56vrT3WnJwc8dhjj4k6deqI1NRUi//H5sokR/vdVBJMZhSUkpIiwsPDhZeXl9DpdKJJkyZi5syZQq/XW7T75ZdfRIcOHYRWqxUPPPCAmDVrVoF9rV+/XjRs2FC4ubmJZs2aiW+++cbidZPJJCZNmiRq1aoltFqt6Nq1qzh58qRFmxs3bohnnnlGeHh4CE9PT/HCCy+IrKwsWY41MTFRACj0YZaUlCSaNGkiKlWqJDw9PUVYWJhF2auzHKst3n33XVG3bl3h5uYmwsLCxL59+5QOyUJR32FiYqIQQogLFy6ITp06ierVqwutVisaNGggxo0bZ3E9EiGEOHfunIiKihLu7u7C29tbjB07VuTm5lq02bFjh2jVqpVwc3MT9evXl94jv7L+vAYMGCB8fX2Fm5ubeOCBB8SAAQPE6dOnpdezs7PFyy+/LKpVqyYqVaok+vbta5GgO9OxCiHEd999JwAU+P9SHr7XHTt2FPqzGxMTI4SQ77xhr/O1tcdqvgRGYQ/zNYUc7XdTSaiEEKJ0fTlEREREjoNzZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSEiIiKnxmSGiIiInBqTGSIiInJqTGaIyGnExsZCpVJBpVLB1dUVgYGBGD9+PPR6vdKhEZGCXJQOgIioNHr06IHExETk5uYiJSUFMTExUKlUmD17ttKhEZFC2DNDRE5Fq9Widu3a8Pf3R58+fRAZGYmtW7cqHRYRKYjJDBE5raNHj+Lnn3+Gm5ub0qEQkYI4zERETuXrr7+Gh4cH8vLyYDAYoFar8d577ykdFhEpiMkMETmVLl26YPHixbhz5w4WLFgAFxcXPPnkk0qHRUQK4jATETmVypUro0GDBmjZsiVWrFiB/fv3Y/ny5UqHRUQKYjJDRE5LrVbj9ddfx5tvvons7GylwyEihTCZISKn1q9fP2g0GixatEjpUIhIIUxmiMipubi44JVXXsGcOXNw584dpcMhIgWohBBC6SCIiIiIrMWeGSIiInJqTGaIiIjIqTGZISIiIqfGZIaIiIicGpMZIiIicmpMZoiIiMipMZkhIiIip8ZkhoiIiJwakxkiIiJyakxmiIiIyKkxmSEiIiKnxmSGiIiInNr/Afq445k50L5zAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -832,7 +1339,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU10lEQVR4nO3dd3gUVdsG8HvTdgMkgUAgiYSQQOgJJUAMXQhSA5ZPRFFCEURRUJQSfelCAgKivIiCVKUIKqJSFHjp0iFSQgsCoYQikErq7vn+wB1Y0ncmO7vJ/buuvdidPTvzzE52efac88xohBACRERERDbGTu0AiIiIiMzBJIaIiIhsEpMYIiIisklMYoiIiMgmMYkhIiIim8QkhoiIiGwSkxgiIiKySUxiiIiIyCYxiSEiIiKbxCSGiIiIbBKTGLK4ixcv4s0334S/vz90Oh1cXV3RunVrfP7550hPT7dYHLt370avXr3g4+MDnU4HT09PdO3aFfv27SvS68+dO4f3338frVq1gk6ng0ajweXLl/Ns+/333+O1115DQEAANBoNOnTooNyOPMFgMGDmzJnw8/ODTqdDUFAQVq9enW/bBQsWoEmTJnB2dkblypXRsWNH/PXXXyUWX2JiIqpWrQqNRoMffvih0PbLli2DRqPJ97Zy5Uqp7aRJk/Jso9PpSmRffvnlFzRr1gw6nQ41atTAxIkTkZOTk2fbbdu2oWPHjnBzc4OLiwuCg4Px/fffl0hcRdW5c2doNBq88847hba9fPlygcdhyJAhUtudO3fm2+7AgQOK78eZM2fQtWtXVKhQAe7u7nj99ddx586dPNtevHgRr776KqpWrQpnZ2cEBATg448/VjwmsgwHtQOgsmXjxo146aWXoNVq0b9/fzRq1AhZWVnYu3cvRo8ejdOnT2PhwoUWieX8+fOws7PDsGHD4Onpifv37+O7775Du3btsHHjRnTt2rXA1+/fvx9ffPEFGjRogPr16yMmJibftgsWLMDRo0fRokUL3L17V+E9MfXxxx8jOjoaQ4YMQYsWLbBhwwa8+uqr0Gg06Nu3r0nbQYMGYeXKlejfvz/eeecdpKWl4fjx47h9+3aJxTdhwgQ8ePCgyO3btWuHb7/9Ntfyzz77DH/99Rc6deqU67kFCxagQoUK0mN7e3vzgi3A5s2b8dxzz6FDhw6YN28eTp48iU8++QS3b9/GggULTNouXboUgwcPRufOnTF9+nTY29vj3LlzuHr1quJxFdVPP/2E/fv3F7m9h4dHnsdhy5YtWLlyJZ599tlcz40YMQItWrQwWVa7du3iB1uAa9euoV27dnBzc8P06dORmpqKWbNm4eTJkzh06BCcnJyktjExMejQoQOeeuopfPDBB6hcuTLi4+NVPQ4kkyCykL///ltUqFBB1KtXT9y4cSPX8xcuXBBz585VIbJH0tLSRLVq1USXLl0KbXv37l2RnJwshBDi008/FQDEpUuX8mwbHx8v9Hq9EEKIhg0bivbt2ysVsolr164JR0dHMXz4cGmZwWAQbdu2FdWrVxc5OTnS8u+//14AED/99FOJxJKXkydPCgcHBzFlyhQBQKxbt86s9Tx48EC4uLiIzp07myyfOHGiACDu3LmjRLgFatCggWjcuLHIzs6Wln388cdCo9GIM2fOSMsuXboknJ2dxYgRIxTZ7qVLlwQAsWPHDrPXkZ6eLmrWrCkdh8f/XoqrU6dOwtXVVaSnp0vLduzYIev4Fsdbb70lnJ2dxZUrV6RlW7duFQDE119/LS3T6/WiUaNGIiQkRDx48KDE4yLL4HASWczMmTORmpqKxYsXw8vLK9fztWvXxsiRI1WI7JFy5crBw8MDiYmJhbZ1d3eHi4tLkdbr4+MDO7uifdyuX7+OQYMGoVq1atBqtWjYsCGWLFlSpNdu2LAB2dnZePvtt6VlGo0Gb731Fq5du2byy3vOnDlo2bIlnn/+eRgMBqSlpRVpG3KMHDkSzz//PNq2bStrPb/++itSUlLQr1+/PJ8XQiA5ORlCiHzXkZmZiYkTJ6J27drQarXw8fHBmDFjkJmZWej2Y2NjERsbi6FDh8LB4VGH9ttvvw0hhMkw2VdffQW9Xo8pU6YAAFJTUwuMyxJmzpwJg8GADz/8UNZ6EhISsGPHDrzwwgv5DtmlpKTkO8Rm9N133yE4OBjOzs5wd3dH3759i9w78uOPP6Jnz56oUaOGtCwsLAx16tTB2rVrpWV//PEHTp06hYkTJ8LZ2RkPHjyAXq8v0jbIejGJIYv59ddf4e/vj1atWpm9jgcPHuCff/4p9Hb//v0irzM5ORn//PMPzp49i48++ginTp3Kc4jCEm7duoWnn34a27ZtwzvvvIPPP/8ctWvXxuDBgzF37txCX3/8+HGUL18e9evXN1nesmVL6Xng4T4fOnQILVq0wEcffQQ3NzdUqFAB/v7+Jl/8Slq3bh3+/PNPzJw5U/a6Vq5cCWdnZ7zwwgt5Pu/v7y/NPXnttddw69Ytk+cNBgN69eqFWbNmITw8HPPmzcNzzz2Hzz77DC+//HKh2ze+j82bNzdZ7u3tjerVq0vPAw/nwtSrVw+bNm1C9erV4eLigsqVK2P8+PEwGAzF3XXZ4uPjER0djRkzZsDZ2VnWutasWQODwZBvMjlw4EC4urpCp9PhmWeewZEjR3K1mTZtGvr374+AgADMmTMH7733HrZv34527doV+mPi+vXruH37dq7jADz8m3/yOACAVqtF8+bNUb58eZQrVw59+/bFvXv3irHXZFXU7QiisiIpKUkAEL1795a1HuNwQWE3X1/fIq+zS5cu0uucnJzEm2++adI1XhSFDSc9rqDhpMGDBwsvLy/xzz//mCzv27evcHNzK7QbvEePHsLf3z/X8rS0NAFAjBs3TgghxLFjxwQAUblyZVGtWjXx5ZdfipUrV4qWLVsKjUYjNm/eXOh+FMeDBw9EjRo1RGRkpBBC3nDD3bt3hZOTk+jTp0+u5+bOnSveeecdsXLlSvHDDz+IkSNHCgcHBxEQECCSkpKkdt9++62ws7MTe/bsMXn9V199JQCIffv2FRiD8XjHx8fneq5Fixbi6aeflh67urqKSpUqCa1WK8aPHy9++OEH8eqrr5ocj+KQO5z0f//3f6JVq1bSY8gYTgoODhZeXl7SUKnRvn37xIsvvigWL14sNmzYIKKiokTlypWFTqcTx44dk9pdvnxZ2Nvbi2nTppm83jjs+OTyJx0+fFgAECtWrMj13OjRowUAkZGRIYQQolevXtLffL9+/cQPP/wgxo8fLxwcHESrVq2EwWAw6z0gdXFiL1lEcnIyABR5+CU//fv3R5s2bQptV5xfmNHR0fjggw9w9epVLF++HFlZWYV2f5cEIQR+/PFH9OnTB0II/PPPP9JzXbp0wZo1a3Ds2DG0bt0633Wkp6dDq9XmWm7s6jdWf6WmpgIA7t69iwMHDiAkJAQA0KtXL/j5+eGTTz4pdGJzcURHRyM7OxsfffSR7HX98MMPyMrKyvPX/5PDkS+++CJatmyJfv364csvv8S4ceMAPOwVql+/PurVq2fyPnfs2BEAsGPHjgJ7DI3vY37vtfHvHXj4XhsMBkRHR2Ps2LFSXPfu3cPnn3+Ojz76qMDPRWpqKjIyMqTHxl7GpKQkk9gdHR3h5uaW73qM+/Xjjz/i4MGDBbYrivPnz+Po0aN4//33cw2VtmrVyuT969WrF/7v//4PQUFBiIyMxJYtWwA8nFxsMBjQp08fk33x9PREQEAAduzYUeDfTGHHwdhGq9VKf/MtWrTAd999B+DhcShXrhwiIyOxfft2hIWFmfNWkJrUzqIsYdeuXaJnz57Cy8tLABDr168v1uvT09NFRESEaNSokbC3t8+3N2HHjh2iadOmwsnJSdSqVUssXbrU5Pkvv/xSBAYGChcXF+Hi4iKefvppsWnTJvN2ysYo1RNT0jIzM0XDhg3Fiy++WKzXKdETc+vWrUJ7mIyTcBMSEkxuxh6aovbEGH/B+vn55Wo7cOBA4ejoaDJh9Um3b9822X5KSkq+bY0TW5csWSItk9MT065dO+Hu7i6ysrKK/BpPT0/RqVMn6XH9+vULfJ+Nk3Dv3r1rsp+JiYlCiOL1xJQvX14AMJl4KoQQy5cvFwDErl27Cow9IiKiSL2PhU0Wz87OFo0aNRL9+/c3WQ4ze2ImTJggAIgjR44U+TV9+/YVTk5O0gTzt956q8B9CgoKEkIIkZKSYnIcbt++LYQoXk9Mjx49BACxfPlyk3ZXrlwRAMTkyZOL/R6Q+spET0xaWhoaN26MQYMG5TuGXhC9Xg9nZ2eMGDECP/74Y55tLl26hB49emDYsGFYuXIltm/fjjfeeANeXl7o0qULAKB69eqIjo5GQEAAhBBYvnw5evfujePHj6Nhw4ay9tHaubq6wtvbG6dOnZK1ntTUVOkXVUHs7e3h4eFR7PU7OTmhV69eiI6ORnp6uuw5A8VhnB/x2muvISIiIs82QUFBAJBrYvTSpUsxYMAAeHl5YceOHRBCQKPRSM8nJCQAeDhn4/F/q1WrlmsbVatWRXZ2NtLS0vL9Zd+iRQtcuXJFejxx4kRMmjQpz7YTJkzAU089hQ4dOkjn0bl58yYA4M6dO7h8+TJq1KhRpInP8fHx2LNnD4YOHQpHR8dC2xv5+PiYzHswGAwIDAzEnDlz8m0PAC+88AJ27dolLY+IiMCyZcuk9z8hIUFqa5SQkCDNQQIevtcXLlzI9V5XrVoVAAqdvzVmzBi89tpr0uNbt27htddew6xZs9C4cWNpeaVKlQpcz4oVK3Du3Dl8/fXXuc5nlJKSgsuXL6Nq1aooV65cgesxWrVqFerWrYvg4OAitQcevq9ZWVlIS0uDq6srDAYDNBoNNm/enGcZvLFMftasWZg8ebK03NfXF5cvXzY5Dk9KSEiAu7u71EuT3998UY8DWacykcR069YN3bp1y/f5zMxMfPzxx1i9ejUSExPRqFEjzJgxQzohWfny5aXzPuzbty/PyWZfffUV/Pz8MHv2bABA/fr1sXfvXnz22WdSEhMeHm7ymmnTpmHBggU4cOBAqU9iAKBnz55YuHAh9u/fj9DQULPW8eSXWX6MX3LmSE9PhxACKSkpFk1iPDw84OLiAr1eX2i39tatW00eG/9+mjRpgm+++QZnzpxBgwYNpOeNwwdNmjQB8PAL3dPTE9evX8+17hs3bkCn0xU4xLFy5UqTExP6+/vn2zY+Ph5xcXF5tjFWUd2/fx8VK1bMdx1Gq1evhhAi34mkeRFC4PLly2jatKm0rFatWtI5Zh5P9p40e/Zsk//cjP8RGt/HI0eOmCQsN27cwLVr1zB06FBpWXBwMC5cuIDr16+bvAc3btwAgEKT7QYNGpgcS+PfdXBwcLFOmhgfH4/s7Ow8hyNXrFiBFStWYP369XjuuecKXdfBgwcRFxcnVVwV1d9//w2dTiclJ7Vq1YIQAn5+fqhTp06+r3tyGNn4uXzqqafg4eGR54ThQ4cOSccJePh+LVq0KNfffFGPA1kpNbuB1IA8hpPeeOMN0apVK7F7924RFxcnPv30U6HVasX58+dzvT4iIiLPIZG2bduKkSNHmixbsmSJcHV1zTOOnJwcsXr1auHk5CROnz5t7u7YlLi4OFG+fHnRoEEDcfPmzTyfL+w8MRcvXhRbt24t9LZ3795C47l161auZffv3xc+Pj7Cx8fHZPmVK1dMzv3xJKUm9g4YMEA4OTmJkydP5nrO2IVekKtXr+Z7npinnnrK5DwxI0eOFADEH3/8IS27c+eOcHV1Fd27dy90W0W1Z88esX79epPb1KlTBQAxZswYsX79emloKC0tTZw5cybf87wEBQWJGjVq5DsJM6/3aP78+QKAmDNnjrRs2bJluc4jYvTgwQORmppa6H7Vq1dPNG7c2OQ9/c9//iM0Go2IjY2Vlq1fv14AEB999JG0TK/XizZt2gh3d3dpuKOozJ3Ye+bMmVzHwRhb9+7dxfr1603O33TmzJlcQ2BGI0aMEABEXFxcns/ndRxiYmKEo6Oj6NWrl7QsLi5O2Nvbi1dffTXXMTUYDLkmuOdl2LBhwtnZ2WRob9u2bQKAWLBggbQsISFBaLVa0aZNG5OJyJGRkQKAOHToUKHbIutT5pOYK1euCHt7e3H9+nWTdp06dZIqKR6XXxITEBAgpk+fbrJs48aNAoBJRcmJEydE+fLlhb29vXBzcxMbN26Ut0M2ZsOGDUKn04lKlSqJkSNHikWLFon58+eLfv36CScnJzF06FCLxdKsWTPRq1cvMW3aNLFo0SIxfvx4Ub16dWFnZ5drrkb79u3Fkzl/YmKimDp1qpg6daro2rWrACA++OADMXXqVDFv3jyTtrt27ZLaVq1aVdSsWVN6/PiciJs3bwpfX19Rrlw5MXLkSPH111+LqKgo8dJLL4lKlSoVab+McwGGDh0qFi1aJM0FWLlypUm7mzdvCi8vL+Hi4iImTpwo5syZI+rUqSOcnZ1FTExMcd7KYstvToxx+cSJE3O95uTJk4VW9Dg7O4sBAwaI2bNni/nz54tXXnlFaDQa0aRJE5GWlia10+v1onv37kKj0Yi+ffuKefPmiblz54phw4YJd3d3cfjw4UL34ddffxUajUZ07NhRLFy4UIwYMULY2dmJIUOGmLQzGAyiU6dOQqPRiKFDh4r58+eLzp0755tEFUaJk909DvnMiUE+82xycnJEtWrVTOb9POmZZ54R3bt3F5988olYuHCheO+990S5cuWEm5ubSYInhBBRUVECgGjVqpWYOXOmWLBggRgzZowICAgQn376aaHxx8fHi8qVK4tatWqJL774QkyfPl1UqlRJBAYG5koQjSf369y5s5g/f74YOnSo0Gg04pVXXil0O2SdynwS89tvvwkAonz58iY3BweHPEs45SYxmZmZ4sKFC+LIkSNi3LhxokqVKmWmJ8bo/PnzYsiQIaJmzZrCyclJuLi4iNatW4t58+YV+1epHP/9739FmzZtRJUqVYSDg4Pw8PAQ4eHhYvfu3bna5pXEGP8zyev2ZIl3QaXhT/6HfevWLTF8+HDh4+MjHB0dpUmpCxcuLNJ+6fV6MX36dOHr6yucnJxEw4YNxXfffZdn24sXL4rnn39euLq6CmdnZ9GxY0eL/CI1J4kZN26cACBOnDiR73rfeOMN0aBBA+Hi4iIcHR1F7dq1xdixY6UzKz8uKytLzJgxQzRs2FBotVpRqVIlERwcLCZPnmxSjl2Q9evXiyZNmgitViuqV68u/vOf/+Q54TglJUWMHDlSeHp6CicnJxEYGJjvMSmM2knMli1bBADxxRdf5LvOzz//XLRs2VK4u7sLBwcH4eXlJV577TVx4cKFPNv/+OOPok2bNtL3b7169cTw4cPFuXPnirQPp06dEs8++6woV66cqFixoujXr1+evb0Gg0HMmzdP1KlTRzg6OgofH598jxnZBo0QKp860sI0Go3JuO/333+Pfv364fTp07kmllWoUAGenp4mywYMGIDExET8/PPPJsvbtWuHZs2amZyQbOnSpXjvvfeQlJSUbzxhYWGoVasWvv76a1n7RUREVNaUiYm9BWnatCn0ej1u374t61TooaGh2LRpk8myrVu3FjqB1WAwFOk050RERGSqTCQxqampiIuLkx5funQJMTExcHd3R506ddCvXz/0798fs2fPRtOmTXHnzh1s374dQUFB6NGjB4CH10rJysrCvXv3kJKSIl2x2Dj7fdiwYfjvf/+LMWPGYNCgQfjf//6HtWvXYuPGjdJ2IyMj0a1bN9SoUQMpKSlYtWoVdu7cid9//91i7wUREVGpofZ4liUYx9mfvEVERAghHo6NT5gwQdSsWVM4OjoKLy8v8fzzz5uMvfv6+ua5jie306RJE+Hk5CT8/f1znexu0KBB0jwFDw8P0alTJ5PKECIiIiq6MjcnhoiIiEoHXsWaiIiIbBKTGCIiIrJJpXpir8FgwI0bN+Di4lLgqcWJiIjIeoh/L/3i7e1d4HXVSnUSc+PGjVwXZyMiIiLbcPXqVVSvXj3f50t1EmO8gN3Vq1fh6uqqcjRkbY4fP652CGSmjIwMdO3aFQCwZcsW6HQ6lSMiczx+UU6ixyUnJ8PHx6fAC9ECpTyJMQ4hubq6MomhXIxX0iXb8/jZtcuXL2/Rq42Tcvi9TIUpbCoIJ/YSERGRTWISQ0RERDapVA8nEVHpZG9vj549e0r3iahsYhJDRDbHyckJkyZNUjsMIlIZh5OIiIjIJrEnhohsjhACGRkZAACdTseTWRKVUeyJISKbk5GRgbZt26Jt27ZSMkNEZQ+TGCIiIrJJTGKIiIjIJlltEqPX6zF+/Hj4+fnB2dkZtWrVwtSpUyGEUDs0IiIisgJWO7F3xowZWLBgAZYvX46GDRviyJEjGDhwINzc3DBixAi1wyMiIiKVWW0S8+eff6J3797o0aMHAKBmzZpYvXo1Dh06pHJkREREZA2sdjipVatW2L59O86fPw8A+Ouvv7B3715069Yt39dkZmYiOTnZ5EZkrW6n5eDOAz30HCIlIjKL1fbEjBs3DsnJyahXrx7s7e2h1+sxbdo09OvXL9/XREVFYfLkyRaMksh8b2/6BwLAN+EeqKTjqfOLw87ODp06dZLuE1HZZLVJzNq1a7Fy5UqsWrUKDRs2RExMDN577z14e3sjIiIiz9dERkZi1KhR0uPk5GT4+PhYKmSiIjMIAWP/iz1P1FZsWq0WM2bMUDsMIlKZ1SYxo0ePxrhx49C3b18AQGBgIK5cuYKoqKh8kxitVgutVmvJMInMYnhsBMmOOQwRkVmsth/2wYMHubqJ7e3tYTAYVIqISDmPJzH2TGKIiMxitT0x4eHhmDZtGmrUqIGGDRvi+PHjmDNnDgYNGqR2aESyPT6Z147DScWWnp6Otm3bAgD27NkDZ2dnlSMiIjVYbRIzb948jB8/Hm+//TZu374Nb29vvPnmm5gwYYLaoRHJZjKcZLX9oURE1s1qkxgXFxfMnTsXc+fOVTsUIsU9PirKOTFERObhb0AiFRgeH05SMQ4iIlvG708iFej/zWHsNICGc2KIiMzCJIZIBcY5MaxMIiIyH5MYIhUYq5NYmUREZD6rndhLVJoZHhtOouKzs7ND69atpftEVDYxiSFSgf7f6iQOJ5lHq9Xi888/VzsMIlIZf8IQqcAgDSepHAgRkQ1jEkOkAmk4iVkMEZHZmMQQqYBzYuRJT09HmzZt0KZNG6Snp6sdDhGphHNiiFTAEmv5MjIy1A6BiFTGnhgiFbDEmohIPiYxRCpgTwwRkXxMYohUoDewOomISC4mMUQqYHUSEZF8TGKIVKDncBIRkWysTiJSAUus5dFoNGjWrJl0n4jKJiYxRCowsDpJFp1Oh4ULF6odBhGpjMNJRCpgdRIRkXxMYohUYLwAJIeTiIjMxySGSAXG4SR7ZjFmSU9PR1hYGMLCwnjZAaIyjHNiiFSg58Re2RITE9UOgYhUxp4YIhWwOomISD4mMUQq4LWTiIjkYxJDpAL2xBARycckhkgFhn+rk1hiTURkPiYxRCrgye6IiORjdRKRCqST3fFnhFk0Gg0aNGgg3SeisolJDJEKWGItj06nw4oVK9QOg4hUxt+BRCqQTnbHXgQiIrMxiSFSAXtiiIjkYxJDpAKWWMuTkZGB8PBwhIeHIyMjQ+1wiEglVpvE1KxZExqNJtdt+PDhaodGJJvewOokOYQQSEhIQEJCAsS/Q3NEVPZY7cTew4cPQ6/XS49PnTqFzp0746WXXlIxKiJlsDqJiEg+q01iPDw8TB5HR0ejVq1aaN++vUoRESmHw0lERPJZbRLzuKysLHz33XcYNWpUgeeEyMzMRGZmpvQ4OTnZEuERFRurk4iI5LOJzuyff/4ZiYmJGDBgQIHtoqKi4ObmJt18fHwsEyBRMbE6iYhIPptIYhYvXoxu3brB29u7wHaRkZFISkqSblevXrVQhETFw+EkIiL5rH446cqVK9i2bRt++umnQttqtVpotVoLREUkj7E6icNJ5tFoNPD395fuE1HZZPVJzNKlS1G1alX06NFD7VCIFMOeGHl0Oh3Wrl2rdhhEpDKrHk4yGAxYunQpIiIi4OBg9fkWUZFJSYxVfwKJiKybVX+Fbtu2DfHx8Rg0aJDaoRApylidxJPdERGZz6q7N5599lmejZNKJWN1kj1zGLNkZGSgf//+AIAVK1ZAp9OpHBERqcGqkxii0opzYuQRQuDvv/+W7hNR2WTVw0lEpRVPdkdEJB+TGCIV6A0P/2VPDBGR+ZjEEKmA1UlERPLxK5RIBXqpOknlQIiIbBiTGCIVGKTqJGYxRETmYnUSkQpYnSSPRqOBl5eXdJ+IyiYmMUQqYHWSPDqdDr/++qvaYRCRyjicRKQCVicREcnHJIZIBdKcGH4CiYjMxq9QIhWwOkke42UH+vfvj4yMDLXDISKVcE4MkQoeTexlFmMOIQRiY2Ol+0RUNrEnhkgFelYnERHJxiSGSAUssSYiko9JDJEKDAaWWBMRycUkhkgF7IkhIpKPSQyRCozVSSyxJiIyH6uTiFTA6iT5KlasqHYIRKQyJjFEKnh0AUh147BVzs7O2LZtm9phEJHK2JlNpAKWWBMRycckhkgFBumMvcxiiIjMxSSGSAUGXgBSloyMDAwdOhRDhw7lZQeIyjDOiSFSAS8AKY8QAseOHZPuE1HZxK9QIhXoOZxERCQbkxgiFbA6iYhIPiYxRCpgdRIRkXxMYogszPDYHA4OJxERmY9JDJGF6R+bh8rhJCIi87E6icjCDI8lMRxOMp9Op1M7BCJSGZMYIgszPJbF2DGLMYuzszP27t2rdhhEpDIOJxFZGHtiiIiUYdVJzPXr1/Haa6+hcuXKcHZ2RmBgII4cOaJ2WESycE4MEZEyrHY46f79+2jdujWeeeYZbN68GR4eHrhw4QIqVaqkdmhEsrA6Sb7MzEyMGTMGADBz5kxotVqVIyIiNVhtEjNjxgz4+Phg6dKl0jI/Pz8VIyJShp4nupPNYDBg37590n0iKpusdjjpl19+QfPmzfHSSy+hatWqaNq0KRYtWlTgazIzM5GcnGxyI7I2Bp7ojohIEVabxPz9999YsGABAgIC8Pvvv+Ott97CiBEjsHz58nxfExUVBTc3N+nm4+NjwYiJisY4nGTPoSQiIlmsNokxGAxo1qwZpk+fjqZNm2Lo0KEYMmQIvvrqq3xfExkZiaSkJOl29epVC0ZMVDT6f0c/2BNDRCSP1SYxXl5eaNCggcmy+vXrIz4+Pt/XaLVauLq6mtyIrI00nGS1nz4iIttgtV+jrVu3xrlz50yWnT9/Hr6+vipFRKQM43ASK5OIiOSx2iTm/fffx4EDBzB9+nTExcVh1apVWLhwIYYPH652aESyGFidRESkCKstsW7RogXWr1+PyMhITJkyBX5+fpg7dy769eundmhEsuhZnSSbs7MzT3xJRNabxABAz5490bNnT7XDIFLUo+EklQMhIrJxVjucRFRaGauTWGJNRCQPkxgiC+PJ7uTLzMzE2LFjMXbsWGRmZqodDhGphEkMkYXpjcNJzGLMZjAYsH37dmzfvp2XHSAqw5jEEFkYe2KIiJTBJIbIwlhiTUSkDCYxRBbG6iQiImUwiSGyMFYnEREpg0kMkYVxTgwRkTKYxBBZmLE6yZ6fPiIiWaz6jL1EpdGjnhh2xZhLp9Nhz5490n0iKpuYxBBZGIeT5NNoNHB2dlY7DCJSGTu0iSxMz+okIiJFsCeGyMIenSeGWYy5srKyMH36dADARx99BCcnJ5UjIiI1sCeGyMKMZ8lnT4z59Ho9fvvtN/z222/Q6/Vqh0NEKmESQ2RhUk8MP31ERLLwa5TIwh7NiWFXDBGRHExiiCyM1UlERMpgEkNkYXpeAJKISBFMYogszMDhJCIiRTCJIbIwVicRESmD54khsjDOiZFPp9Nh69at0n0iKpvM6okZM2YMMjIylI6FqEx4dAFIZjHm0mg0qFSpEipVqgQNh+WIyiyzkpi5c+ciKSkJADBgwAA8ePBA0aCISjP2xBARKcOsJMbb2xsxMTEAgG+//RapqalKxkRUqrE6Sb6srCzMmDEDM2bMQFZWltrhEJFKzEpiPvjgA4SHh6Nt27YAgJUrV+LQoUNIT09XNDii0ojVSfLp9XqsW7cO69at42UHiMows5KYd999F0eOHEHXrl0hhMD8+fPRqlUruLq6on79+ujbty+io6OxefNmpeMlsnkcTiIiUobZ1UlBQUEICgrCsmXLsH//fpQvXx4nTpxATEwMYmJisGHDBkybNg0pKSlKxktk8/QssSYiUoTsEusLFy5I90NCQhASEiI9Fv92mxPRIwZWJxERKaJET3bH0kei3DicRESkDNlJTE5ODqZNm4bQ0FA0a9YMERER0kmoiCg3A6uTiIgUITuJGTduHL788kt06tQJzz33HDIzM9GzZ08MHDiQw0lEedCzOomISBGy58SsWrUKa9asQbt27aRlly5dQs+ePTFr1iyMHj3arPVOmjQJkydPNllWt25dnD17Vla8RGrjcJJ8Wq0Wv/zyi3SfiMom2T0xaWlpqF69uskyPz8/zJs3DwsXLpS17oYNGyIhIUG67d27V9b6iKyBsTqJw0nms7Ozg7e3N7y9vWFnx+vYEpVVsj/9bdq0wfLly3Mt9/Pzw40bN2St28HBAZ6entKtSpUqstZHZA14sjsiImXIHk6aMWMGWrdujfv37+Pdd99FQEAAsrOzMW/ePDRo0EDWui9cuABvb2/odDqEhoYiKioKNWrUyLd9ZmYmMjMzpcfJycmytk9UEoyXHWAHgvmys7Px5ZdfAgDefvttODo6qhwREalB9tdoo0aNsHPnTuzfvx9169aFTqdDuXLl8O2332Lu3LlmrzckJATLli3Dli1bsGDBAly6dAlt27Yt8OR5UVFRcHNzk24+Pj5mb5+opHBOjHw5OTn49ttv8e233yInJ0ftcIhIJbJ7YgCgadOmOHz4MM6ePYvY2Fi4uLggJCQErq6uZq+zW7du0v2goCCEhITA19cXa9euxeDBg/N8TWRkJEaNGiU9Tk5OZiJDVkc62R2Hk4iIZDEriQkNDUXTpk3RpEkTNGnSBEFBQdDpdKhXrx7q1aundIwAgIoVK6JOnTqIi4vLt41Wq2WlAlk99sQQESnDrCSmR48eOHHiBGbPno2LFy9Co9EgICBASmqMt6pVqyoWaGpqKi5evIjXX39dsXUSqYHVSUREyjArifnPf/4j3T906BCee+45NGrUCBqNBsuWLcPZs2eh0WhQrVo1syuUPvzwQ4SHh8PX1xc3btzAxIkTYW9vj1deecWs9RFZC1YnEREpQ/acmLfeegvz58/H888/Ly3btGkThg4dioiICLPXe+3aNbzyyiu4e/cuPDw80KZNGxw4cAAeHh5yQyZSlbE6yZ7VSUREsshOYs6cOYMmTZqYLOvevTu+/PJLfPbZZ2avd82aNTIjI7JOnBNDRKQM2b8FW7RokefJ7gIDA3Ho0CG5qycqdTicJJ9Wq8X333+P77//npP5icow2T0xc+bMQceOHXHlyhW8//77aNSoEbKysjB79myeYZcoD+yJkc/Ozg61atVSOwwiUpnsJCY4OBgHDx7E8OHD0aRJEzg6OsJgMMDBwQGLFy9WIkaiUkWaE8MkhohIFkVOdlevXj1s374d8fHxiImJgZ2dHYKDg+Hl5aXE6olKFYPBOJykciA2LDs7G0uWLAEADBo0iJcdICqjZCcxhw8fxrhx43Dnzh3Url1bOkdMdna2EvERlToGqTqJWYy5cnJysGjRIgBA//79mcQQlVGyJ/a+/vrrsLe3x9ChQ+Hn54ddu3Zh4MCBqFmzJipXrqxEjESlip5zYoiIFCG7J+bq1avYuHFjrkl2V65cQUxMjNzVE5U6j6qTVA6EiMjGyU5iQkNDcf369VxJjK+vL3x9feWunqjUeTSxl1kMEZEcsoeT3n//fUyZMgX37t1TIh6iUo8l1kREypDdExMeHg6NRoM6deqgd+/e0hWuAwMD4eTkpESMRKUKq5OIiJQhO4mJi4vDX3/9Jd2mT5+Oy5cvw9HREXXr1sWJEyeUiJOo1HjUE8MshohIDtlJjL+/P/z9/U0uAJmcnIy//vqLCQxRHngBSPmcnJyky52wx5eo7DI7iZkwYQJ69+6N4ODgXM+5urqibdu2aNu2razgiEojzomRz97eHg0bNlQ7DCJSmdm/Ba9du4Zu3bqhevXqeOutt7B582ZkZWUpGRtRqaT/t8Sa1UlERPKYncQsWbIEN2/exOrVq+Hi4oL33nsPVapUwYsvvogVK1awWokoH+yJkS87OxsrVqzAihUreHZwojJM1qi8nZ0d2rZti5kzZ+LcuXM4ePAgQkJC8PXXX8Pb2xvt2rXDrFmzcP36daXiJbJpQohHlx1gEmO2nJwcfPHFF/jiiy+Qk5OjdjhEpBJFpxbWr18fY8aMwb59+3D16lVERERgz549WL16tZKbIbJZhsfuszqJiEgeRa5inRcPDw8MHjwYgwcPLqlNENkcYy8MANixOomISBZFkpjs7GzcvHkTDx48gIeHB9zd3ZVYLVGpY3isK4ZzYoiI5DH7t2BKSgoWLFiA9u3bw9XVFTVr1kT9+vXh4eEBX19fDBkyBIcPH1YyViKbZ7z4I8DqJCIiucxKYubMmYOaNWti6dKlCAsLw88//4yYmBicP38e+/fvx8SJE5GTk4Nnn30WXbt2xYULF5SOm8gm6R8fTmIOQ0Qki1nDSYcPH8bu3bvzPdlUy5YtMWjQIHz11VdYunQp9uzZg4CAAFmBEpUGBiYxRESKMSuJKWq1kVarxbBhw8zZBFGpZDzRnQasTpLDyckJX331lXSfiMomWRN7r1y5gnPnziEoKAienp65nr9x4wa8vb3lbIKoVOGJ7pRhb2+P5s2bqx0GEanM7Im9q1evRu3atdG1a1f4+/vj22+/BQDEx8cjOjoaISEhqFGjhmKBEpUG+n+rk3iiOyIi+cxOYqZOnYp3330XJ0+eROfOnfHWW29h/PjxqFWrFpYtW4bmzZtj3bp1SsZKZPOM1UkcSpInJycHa9euxdq1a3nGXqIyzOzhpIsXL2LkyJHw9fXF/PnzUaNGDezbtw8nTpxA/fr1lYyRqNSQhpN4ojtZsrOzMXPmTABAeHg4HBxK7LydRGTFzP4qzc7OhrOzMwCgevXq0Ol0mDVrFhMYogJwTgwRkXJk/R5ctWoVzp49C+DhRLtKlSopEhRRaWWsTuKJ7oiI5DM7iWnbti0mTpyIhg0bokqVKsjIyMDnn3+OtWvXIjY2luPURHlgTwwRkXLMHkjetWsXAODChQs4evQojh07hmPHjmHFihVITEyEk5MT6tSpgxMnTigWLJGtY3USEZFyZM+GCwgIQEBAAPr27Sstu3TpEo4cOYLjx4/LXb0kOjoakZGRGDlyJObOnavYeoksidVJRETKKZEp/X5+fvDz88NLL72kyPoOHz6Mr7/+GkFBQYqsj0gtrE4iIlKO4knM/fv38ccff+D69esAAG9vb3Tp0sXsSb+pqano168fFi1ahE8++UTJUIksTs85MYpwdHSUemQdHR3VDYaIVKPo78HFixcjNDQUBw8ehMFggMFgwMGDB9GqVSssXrzYrHUOHz4cPXr0QFhYmJKhEqnCwOokRTg4OKBNmzZo06YNzxFDVIYp+umfOXMmjh07hvLly5ssnzp1Kpo1a4bBgwcXa31r1qzBsWPHcPjw4SK1z8zMRGZmpvQ4OTm5WNsjKmmsTiIiUo6iPTEajQYpKSm5lqekpEBTzF+eV69exciRI7Fy5UrodLoivSYqKgpubm7SzcfHp1jbJCppTGKUkZOTg19//RW//vorT+dAVIYp2hMza9YstG/fHo0aNcJTTz0FALh27RpOnz6N2bNnF2tdR48exe3bt9GsWTNpmV6vx+7du/Hf//4XmZmZsLe3N3lNZGQkRo0aJT1OTk5mIkNWRW/gcJISsrOzMXnyZABAWFgYh5SIyihFP/k9e/ZEt27dcOjQIdy4cQPAw4m9LVu2zJVwFKZTp044efKkybKBAweiXr16GDt2bJ7r02q10Gq15u8AUQljTwwRkXLMTmLeeOMNBAcHo1mzZmjcuLE05GNvb4/Q0FDZgbm4uKBRo0Ymy8qXL4/KlSvnWk5kK4zVSfYssSYiks3sJObChQtYt24dUlJS4ODggLp160pJTXBwMJo0aZJrgi9RWffoZHcqB0JEVAooftmBX375BYmJibCzs0OdOnUQGxurWLA7d+5UbF1Eang0nMQshohILpu57ABRacCT3RERKccmLjtAVFoYWJ1ERKQY1iUSWRCrk5Th6OiI6Oho6T4RlU1MYogsiNVJynBwcOClSIhI2TP2ElHBWJ1ERKScEk1i7Ozs0LFjRxw9erQkN0NkM/SsTlJETk4Otm3bhm3btvGyA0RlWIkOJy1ZsgSXL1/G8OHDceDAgZLcFJFNMM6JsWcOI0t2djbGjRsHANizZw8vO0BURsn+5KekpMDFxSXP5wYMGAAAmDRpktzNEJUKxuokDicREcknezipbdu2uHnzphKxEJV6PNkdEZFyZCcxTZs2RUhICM6ePWuyPCYmBt27d5e7eqJSxcDqJCIixcj+Kl26dCkGDBiANm3aYO/evTh//jz69OmD4ODgYl+5mqi007M6iYhIMYrMhps8eTK0Wi06d+4MvV6PTp06Yf/+/WjZsqUSqycqNTicRESkHNk9Mbdu3cLIkSPxySefoEGDBnB0dMSAAQOYwBDlQc/qJCIixcjuifHz80PdunWxbt069OjRA1u2bMHLL7+M+Ph4jB49WokYiUoNXnZAGY6Ojpg4caJ0n4jKJtlJzJIlS0yuYN21a1fs2LEDPXv2xOXLlzF//ny5myAqNfRSiTWzGDkcHBwQHh6udhhEpDLZw0mPJzBGzZo1w59//on//e9/cldPVKqwJ4aISDkldprLmjVr4s8//yyp1RPZJJZYKyMnJ0c6C/jTTz/NM/YSlVEl+smvVKlSSa6eyOY8ugAku2LkyM7OxnvvvQeAlx0gKsv4e5DIglidRESkHCYxRBbEOTFERMop0STGzs4OHTt2xNGjR0tyM0Q2w1idZM/hJCIi2Uo0iVmyZAnatWuH4cOHl+RmiGwGe2KIiJRTorPhBgwYAACYNGlSSW6GyGYY58TYcSCXiEg2s79KY2NjMX78eCQmJioYDlHpxuokIiLlmN0TExUVhdTUVFSsWDHXcxkZGbh8+TLq1asnJzaiUsfA6iRFODo6YsyYMdJ9IiqbzE5iDhw4gIULF+b5nE6nw5AhQ9C9e3dERkaaHRxRacM5McpwcHBAnz591A6DiFRm9nDStWvXULt27XyfHzZsGH755RdzV09UKnE4iYhIOWYnMe7u7khISMj3+ZYtWyIuLs7c1ROVSnrDw385nCSPXq/HkSNHcOTIEej1erXDISKVmJ3EtGvXDsuWLct/xXZ2yMjIMHf1RKUSh5OUkZWVhWHDhmHYsGHIyspSOxwiUonZScyHH36IRYsW5TsvZv/+/fD39zc7MKLSSP/vcJI9sxgiItnMTmKCg4Px5Zdf4u2330bnzp3x888/Iz4+Hvfu3cOGDRswduxYvPrqq0rGSmTz2BNDRKQcWafcGjJkCHbu3ImkpCS88MIL8PPzg4eHB55//nkEBgbi/fffN3vdCxYsQFBQEFxdXeHq6orQ0FBs3rxZTrhEqmMSQ0SkHNln7G3Tpg0OHTqEs2fP4tixY3jw4AEaNWqEp59+WtZ6q1evjujoaAQEBEAIgeXLl6N37944fvw4GjZsKDdsIlWwOomISDlmJTHx8fGoUaOGybJ69erle3K769ev46mnnirWNsLDw00eT5s2DQsWLMCBAweYxJDNYnUSEZFyzBpOatGiBd58800cPnw43zZJSUlYtGgRGjVqhB9//NHsAIGH5ZRr1qxBWloaQkNDZa2LSE0cTiIiUo5ZPTGxsbGYNm0aOnfuDJ1Oh+DgYHh7e0On0+H+/fuIjY3F6dOn0axZM8ycORPdu3c3K7iTJ08iNDQUGRkZqFChAtavX48GDRrk2z4zMxOZmZnS4+TkZLO2S1RSWJ2kDAcHB4wYMUK6T0Rlk0aIf79VzZCeno6NGzdi7969uHLlCtLT01GlShU0bdoUXbp0QaNGjWQFl5WVhfj4eCQlJeGHH37AN998g127duWbyEyaNAmTJ0/OtTwpKQmurq6yYqHS5+jRoxbf5jub7yAhVY9PnnFH/SpOFt8+kTUJDg5WOwSyUsnJyXBzcyv0/29ZSYylhYWFoVatWvj666/zfD6vnhgfHx8mMZQnNZKYtzbdwe00PaI6uqNOZSYxVLYxiaH8FDWJsal+WIPBYJKkPEmr1UKr1VowIqLiYXWSMvR6Pc6ePQvgYVGBvb29yhERkRqKncSkp6fj3r17uaqNTp8+rWjVUGRkJLp164YaNWogJSUFq1atws6dO/H7778rtg0iSzP8W53EKTHyZGVlISIiAgCwZ88eODs7qxwREamhWNVJP/zwAwICAtCjRw8EBQXh4MGD0nOvv/66ooHdvn0b/fv3R926ddGpUyccPnwYv//+Ozp37qzodogsidVJRETKKVZPzCeffIKjR4+iWrVqOHr0KCIiIvDRRx/h1VdfhdJTaxYvXqzo+oisAauTiIiUU6wkJjs7G9WqVQPwcELW7t278fzzzyMuLg4ajvETFYo9MUREyinWcFLVqlVx4sQJ6bG7uzu2bt2KM2fOmCwnorwxiSEiUk6xkphvv/0WVatWNVnm5OSE1atXY9euXYoGRlQaScNJTGKIiGQrVhJTvXp1eHp6mizbtm0bAKB169bKRUVUSj3qiWEWQ0Qkl1nXTnpcjx49MGrUKGRlZSkRD1GpZuAFIBXh4OCAIUOGYMiQIbzsAFEZJjuJ2b17N3777Tc0b94cp06dyrNNQkICXnzxRbmbIrJpQgj8m8NwToxMjo6OePPNN/Hmm2/C0dFR7XCISCWyk5iQkBAcO3YMzZs3R4sWLTBnzhzpOYPBgNjYWEyYMAF79uyRuykim2Z47CwEdsxiiIhkU6QftkKFCpg9ezbKlSuH0aNHY/Xq1VICk5mZCV9fX0RFRSmxKSKbZZLEMIeRxWAw4NKlSwAAPz8/2NnJ/j1GRDZIdhLzzTffYMqUKbh+/TqcnZ3RsmVLAMDBgwcxfPhwTJ06FRUrVpS7GSKbp3/shJCcEyNPZmYmXn75ZQC87ABRWSb758tHH32EHj16IDY2FikpKdi/fz/279+P2bNn45tvvsGoUaPw4MEDJWIlsmmmPTHMYoiI5JKdxHTo0AGTJk1C3bp1Tc7a+/777+PQoUM4cuRIrussEZVF+seSGPbEEBHJJzuJWbt2rXQpgicFBgbi8OHD6NmzJ9q1ayd3U0Q2jXNiiIiUVeInWNBqtZg7dy569OhR0psismqGf7MYO4DXGiMiUoDFpvR37tzZUpsiskq8bhIRkbJYl0hkIcbqJFYDExEpg+frJrIQXjdJOQ4ODnj99del+0RUNvHTT2QhHE5SjqOjI0aOHKl2GESkMnZsE1mIscSa5dVERMpgTwyRhRiMc2I4nCSbwWDAzZs3AQCenp687ABRGcUkhshC9P9ewpo9MfJlZmaiV69eAHjZAaKyjD9fiCyEc2KIiJTFJIbIQqThJGYxRESKYBJDZCHsiSEiUhaTGCILYXUSEZGymMQQWQirk4iIlMUkhshCWJ1ERKQsllgTWQjnxCjH3t4eL730knSfiMomJjFEFmK8AKQ9sxjZnJycMHbsWLXDICKVcTiJyELYE0NEpCz2xBBZCJMY5QghkJiYCACoWLEiNJwsTVQmMYkhshBWJyknIyMDnTt3BsDLDhCVZVY7nBQVFYUWLVrAxcUFVatWxXPPPYdz586pHRaR2YzVSeyJISJShtUmMbt27cLw4cNx4MABbN26FdnZ2Xj22WeRlpamdmhEZjHwZHdERIqy2uGkLVu2mDxetmwZqlatiqNHj6Jdu3YqRUVkPg4nEREpy2p7Yp6UlJQEAHB3d1c5EiLzSJcdsJlPHRGRdbPanpjHGQwGvPfee2jdujUaNWqUb7vMzExkZmZKj5OTky0RHlGRsDqJiEhZNvGbcPjw4Th16hTWrFlTYLuoqCi4ublJNx8fHwtFSFQ4PYeTiIgUZfVJzDvvvIPffvsNO3bsQPXq1QtsGxkZiaSkJOl29epVC0VJVDj2xCjH3t4ePXv2RM+ePXnZAaIyzGqHk4QQePfdd7F+/Xrs3LkTfn5+hb5Gq9VCq9VaIDqi4jPwApCKcXJywqRJk9QOg4hUZrVJzPDhw7Fq1Sps2LABLi4uuHnzJgDAzc2NJ7Yim/SoOknlQIiISgmrHU5asGABkpKS0KFDB3h5eUm377//Xu3QiMzyqDqJWYxcQgikp6cjPT0d4t/kkIjKHqvtieEXE5U2nBOjnIyMDLRt2xYALztAVJZZbU8MUWljrE6yZ3USEZEimMQQWQh7YoiIlMUkhshCeAFIIiJlMYkhshBWJxERKYtJDJGFGFidRESkKCYxRBbCOTFERMqy2hJrotJGz+EkxdjZ2aFTp07SfSIqm5jEEFmINJzEEmvZtFotZsyYoXYYRKQy/oQhshAOJxERKYtJDJGF6A3Gk92pHAgRUSnBJIbIQh71xDCLkSs9PR3NmzdH8+bNkZ6ernY4RKQSJjFEFmK8ACTnoRIRKYNfp0QWwjkxRETKYhJDZCEGXgCSiEhRTGKILIQ9MUREymISQ2QhxgtAsjqJiEgZTGKILOTRBSCZxRARKYFn7CWyEL10AUh14ygN7Ozs0Lp1a+k+EZVNTGKILIRzYpSj1Wrx+eefqx0GEamMP2GILITDSUREymISQ2Qh7IkhIlIWkxgiCzFWJzGJkS89PR1t2rRBmzZteNkBojKMc2KILIQnu1NWRkaG2iEQkcrYE0NkIXoOJxERKYpJDJGFGFhiTUSkKH6dElkIq5OIiJTFJIbIQqST3TGHISJSBJMYIgthiTURkbJYnURkIQYDh5OUotFo0KxZM+k+EZVNTGKILIQ9McrR6XRYuHCh2mEQkco4nERkIbwAJBGRsvh1SmQhrE4iIlKWVScxu3fvRnh4OLy9vaHRaPDzzz+rHRKR2VidpJz09HSEhYUhLCyMlx0gKsOsOolJS0tD48aNMX/+fLVDIZKNc2KUlZiYiMTERLXDICIVWfXE3m7duqFbt25qh0GkCFYnEREpy6qTmOLKzMxEZmam9Dg5OVnFaIhMGTicRESkKKseTiquqKgouLm5STcfHx+1QyKSSBeALFWfOiIi9ZSqr9PIyEgkJSVJt6tXr6odEhGAh5VJ/+YwHE4iIlJIqRpO0mq10Gq1aodBlItxKAngxF4iIqWUqiSGyFo9nsRwTox8Go0GDRo0kO4TUdlk1UlMamoq4uLipMeXLl1CTEwM3N3dUaNGDRUjIyoevXiUxbAnRj6dTocVK1aoHQYRqcyqk5gjR47gmWeekR6PGjUKABAREYFly5apFBVR8Zn2xDCLISJSglUnMR06dIB47Bcska3inBgiIuWVquokImtlMHA4SUkZGRkIDw9HeHg4MjIy1A6HiFRi1T0xRKWFdMkBcCKqEoQQSEhIkO4TUdnEnhgiC+CJ7oiIlMevVCILMAjjdZNUDoSIqBRhEkNkAXrpuknMYoiIlMIkhsgCpDkxzGGIiBTDJIbIAvT/ZjE8Wy8RkXJYnURkAY96YpjFKEGj0cDf31+6T0RlE5MYIgswsDpJUTqdDmvXrlU7DCJSGb9SiSyAc2KIiJTHJIbIAvRSiTWzGCIipTCJIbIAg1RirW4cpUVGRgb69OmDPn368LIDRGUY58QQWYCxOonDScoQQuDvv/+W7hNR2cSeGCILMPBkd0REimMSQ2QBek7sJSJSHJMYIguQemL4iSMiUgy/UokswMDqJCIixTGJIbIAnieGiEh5rE4isgAmMcrSaDTw8vKS7hNR2cQkhsgCHl0Akv/hKkGn0+HXX39VOwwiUhmHk4gsgD0xRETKYxJDZAF6VicRESmOX6lEFsDqJGVlZGSgf//+6N+/Py87QFSGcU4MkQXwZHfKEkIgNjZWuk9EZRN7YogsgHNiiIiUxySGyAIMrE4iIlIckxgiC2BPDBGR8pjEEFkA58QQESmPSQyRBRirk+yZxRARKYbVSUQWwJ4Y5VWsWFHtEIhIZUxiiCzAOCfGnkmMIpydnbFt2za1wyAilVn9cNL8+fNRs2ZN6HQ6hISE4NChQ2qHRFRsxmsn8WR3RETKseok5vvvv8eoUaMwceJEHDt2DI0bN0aXLl1w+/ZttUMjKhZWJxERKc+qh5PmzJmDIUOGYODAgQCAr776Chs3bsSSJUswbtw41eK6nZKBrByDatsnZdxO01tsW6lZD/9eipvE3H2gl+bT0COZmRmYMOZ9AMCUmZ9Bq9WpHBGZ49r9B2qHQAqoUkELnaO9Ktu22iQmKysLR48eRWRkpLTMzs4OYWFh2L9/f56vyczMRGZmpvQ4OTm5RGIbuToG+/++WyLrptKtuElM5P/u4m46E+YnGbIycDXmGABgxOY7sHNiEmOTNu1QOwJSwOohTyO0VmVVtm21Scw///wDvV6PatWqmSyvVq0azp49m+droqKiMHny5BKPzdHBDloHqx6JoyIQBssmBzpHOzTz0hbrNY52GjjxTy0Xw2PviZMdYMf3yCZpeOBKBTWHya02iTFHZGQkRo0aJT1OTk6Gj4+P4ttZMail4uskyzt69KjaIRRqfncPtUOwSunp6Wg7++H9Zc9Vg7Ozs7oBkVmCg4PVDoFsnNUmMVWqVIG9vT1u3bplsvzWrVvw9PTM8zVarRZabfF+6RIREZFtstq+PCcnJwQHB2P79u3SMoPBgO3btyM0NFTFyIiIiMgaWG1PDACMGjUKERERaN68OVq2bIm5c+ciLS1NqlYiIiKissuqk5iXX34Zd+7cwYQJE3Dz5k00adIEW7ZsyTXZl4jKHp2OFUlEZZ1GCFFqz0KRnJwMNzc3JCUlwdXVVe1wyMrYwsReotKME3spP0X9/9tq58QQERERFYRJDBEREdkkJjFEZHMyMzMxcuRIjBw50uQs3URUtlj1xF4iorwYDAbs27dPuk9EZRN7YoiIiMgmMYkhIiIim8QkhoiIiGwSkxgiIiKySUxiiIiIyCaV6uok48mIk5OTVY6ErFFqaqraIZCZMjIypPtpaWnQ6/UqRkPm4ncz5cf4t1HYRQVK9WUHrl27Bh8fH7XDICIiIjNcvXoV1atXz/f5Up3EGAwG3LhxAy4uLtBoNGqHo6jk5GT4+Pjg6tWrpf66UGVpX4Gytb9laV+BsrW/3NfSyxL7K4RASkoKvL29YWeX/8yXUj2cZGdnV2AGVxq4urqWiQ8NULb2FShb+1uW9hUoW/vLfS29Snp/3dzcCm3Dib1ERERkk5jEEBERkU1iEmOjtFotJk6cCK1Wq3YoJa4s7StQtva3LO0rULb2l/taelnT/pbqib1ERERUerEnhoiIiGwSkxgiIiKySUxiiIiIyCYxiSEiIiKbxCTGSt27dw/9+vWDq6srKlasiMGDBxd6rZ8OHTpAo9GY3IYNG2bSJj4+Hj169EC5cuVQtWpVjB49Gjk5OSW5K0VS3P29d+8e3n33XdStWxfOzs6oUaMGRowYgaSkJJN2T74fGo0Ga9asKendMTF//nzUrFkTOp0OISEhOHToUIHt161bh3r16kGn0yEwMBCbNm0yeV4IgQkTJsDLywvOzs4ICwvDhQsXSnIXiqU4+7to0SK0bdsWlSpVQqVKlRAWFpar/YABA3Idw65du5b0bhRJcfZ12bJlufZDp9OZtClNxzav7yONRoMePXpIbaz12O7evRvh4eHw9vaGRqPBzz//XOhrdu7ciWbNmkGr1aJ27dpYtmxZrjbF/S6whOLu608//YTOnTvDw8MDrq6uCA0Nxe+//27SZtKkSbmOa7169UpmBwRZpa5du4rGjRuLAwcOiD179ojatWuLV155pcDXtG/fXgwZMkQkJCRIt6SkJOn5nJwc0ahRIxEWFiaOHz8uNm3aJKpUqSIiIyNLencKVdz9PXnypHjhhRfEL7/8IuLi4sT27dtFQECAePHFF03aARBLly41eU/S09NLencka9asEU5OTmLJkiXi9OnTYsiQIaJixYri1q1bebbft2+fsLe3FzNnzhSxsbHiP//5j3B0dBQnT56U2kRHRws3Nzfx888/i7/++kv06tVL+Pn5WXS/8lPc/X311VfF/PnzxfHjx8WZM2fEgAEDhJubm7h27ZrUJiIiQnTt2tXkGN67d89Su5Sv4u7r0qVLhaurq8l+3Lx506RNaTq2d+/eNdnXU6dOCXt7e7F06VKpjbUe202bNomPP/5Y/PTTTwKAWL9+fYHt//77b1GuXDkxatQoERsbK+bNmyfs7e3Fli1bpDbFff8spbj7OnLkSDFjxgxx6NAhcf78eREZGSkcHR3FsWPHpDYTJ04UDRs2NDmud+7cKZH4mcRYodjYWAFAHD58WFq2efNmodFoxPXr1/N9Xfv27cXIkSPzfX7Tpk3Czs7O5ItzwYIFwtXVVWRmZioSuznM3d8nrV27Vjg5OYns7GxpWVE+lCWpZcuWYvjw4dJjvV4vvL29RVRUVJ7t+/TpI3r06GGyLCQkRLz55ptCCCEMBoPw9PQUn376qfR8YmKi0Gq1YvXq1SWwB8VT3P19Uk5OjnBxcRHLly+XlkVERIjevXsrHapsxd3XpUuXCjc3t3zXV9qP7WeffSZcXFxEamqqtMxaj+3jivIdMmbMGNGwYUOTZS+//LLo0qWL9Fju+2cJ5n5fNmjQQEyePFl6PHHiRNG4cWPlAisAh5Os0P79+1GxYkU0b95cWhYWFgY7OzscPHiwwNeuXLkSVapUQaNGjRAZGYkHDx6YrDcwMBDVqlWTlnXp0gXJyck4ffq08jtSRHL293FJSUlwdXWFg4PpJcGGDx+OKlWqoGXLlliyZEmhl3ZXSlZWFo4ePYqwsDBpmZ2dHcLCwrB///48X7N//36T9sDDY2Rsf+nSJdy8edOkjZubG0JCQvJdp6WYs79PevDgAbKzs+Hu7m6yfOfOnahatSrq1q2Lt956C3fv3lU09uIyd19TU1Ph6+sLHx8f9O7d2+RzV9qP7eLFi9G3b1+UL1/eZLm1HVtzFPa5VeL9s1YGgwEpKSm5PrMXLlyAt7c3/P390a9fP8THx5fI9kv1BSBt1c2bN1G1alWTZQ4ODnB3d8fNmzfzfd2rr74KX19feHt748SJExg7dizOnTuHn376SVrv4wkMAOlxQestaebu7+P++ecfTJ06FUOHDjVZPmXKFHTs2BHlypXDH3/8gbfffhupqakYMWKEYvEXFJNer8/zPT979myer8nvGBnfB+O/BbVRizn7+6SxY8fC29vb5Mu+a9eueOGFF+Dn54eLFy/io48+Qrdu3bB//37Y29srug9FZc6+1q1bF0uWLEFQUBCSkpIwa9YstGrVCqdPn0b16tVL9bE9dOgQTp06hcWLF5sst8Zja478PrfJyclIT0/H/fv3ZX82rNWsWbOQmpqKPn36SMtCQkKwbNky1K1bFwkJCZg8eTLatm2LU6dOwcXFRdHtM4mxoHHjxmHGjBkFtjlz5ozZ63/8P/DAwEB4eXmhU6dOuHjxImrVqmX2es1V0vtrlJycjB49eqBBgwaYNGmSyXPjx4+X7jdt2hRpaWn49NNPLZLEUPFER0djzZo12Llzp8mE1759+0r3AwMDERQUhFq1amHnzp3o1KmTGqGaJTQ0FKGhodLjVq1aoX79+vj6668xdepUFSMreYsXL0ZgYCBatmxpsry0HNuyatWqVZg8eTI2bNhg8kO0W7du0v2goCCEhITA19cXa9euxeDBgxWNgUmMBX3wwQcYMGBAgW38/f3h6emJ27dvmyzPycnBvXv34OnpWeTthYSEAADi4uJQq1YteHp65poNf+vWLQAo1nqLyhL7m5KSgq5du8LFxQXr16+Ho6Njge1DQkIwdepUZGZmlvh1P6pUqQJ7e3vpPTa6detWvvvl6elZYHvjv7du3YKXl5dJmyZNmigYffGZs79Gs2bNQnR0NLZt24agoKAC2/r7+6NKlSqIi4tT7T86Oftq5OjoiKZNmyIuLg5A6T22aWlpWLNmDaZMmVLodqzh2Jojv8+tq6srnJ2dYW9vL/vvxdqsWbMGb7zxBtatW5drKO1JFStWRJ06daS/dSVxTowFeXh4oF69egXenJycEBoaisTERBw9elR67f/+9z8YDAYpMSmKmJgYAJC+EENDQ3Hy5EmThGHr1q1wdXVFgwYNlNnJx5T0/iYnJ+PZZ5+Fk5MTfvnll1zlqnmJiYlBpUqVLHLhMicnJwQHB2P79u3SMoPBgO3bt5v8In9caGioSXvg4TEytvfz84Onp6dJm+TkZBw8eDDfdVqKOfsLADNnzsTUqVOxZcsWk3lR+bl27Rru3r1r8h+9pZm7r4/T6/U4efKktB+l8dgCD08ZkJmZiddee63Q7VjDsTVHYZ9bJf5erMnq1asxcOBArF692qRkPj+pqam4ePFiyRxXi0wfpmLr2rWraNq0qTh48KDYu3evCAgIMCk5vnbtmqhbt644ePCgEEKIuLg4MWXKFHHkyBFx6dIlsWHDBuHv7y/atWsnvcZYYv3ss8+KmJgYsWXLFuHh4WE1JdbF2d+kpCQREhIiAgMDRVxcnEkpX05OjhBCiF9++UUsWrRInDx5Uly4cEF8+eWXoly5cmLChAkW2681a9YIrVYrli1bJmJjY8XQoUNFxYoVpQqx119/XYwbN05qv2/fPuHg4CBmzZolzpw5IyZOnJhniXXFihXFhg0bxIkTJ0Tv3r2tqgy3OPsbHR0tnJycxA8//GByDFNSUoQQQqSkpIgPP/xQ7N+/X1y6dEls27ZNNGvWTAQEBIiMjAxV9tGouPs6efJk8fvvv4uLFy+Ko0ePir59+wqdTidOnz4ttSlNx9aoTZs24uWXX8613JqPbUpKijh+/Lg4fvy4ACDmzJkjjh8/Lq5cuSKEEGLcuHHi9ddfl9obS6xHjx4tzpw5I+bPn59niXVB759airuvK1euFA4ODmL+/Pkmn9nExESpzQcffCB27twpLl26JPbt2yfCwsJElSpVxO3btxWPn0mMlbp796545ZVXRIUKFYSrq6sYOHCg9MUuhBCXLl0SAMSOHTuEEELEx8eLdu3aCXd3d6HVakXt2rXF6NGjTc4TI4QQly9fFt26dRPOzs6iSpUq4oMPPjApSVZLcfd3x44dAkCet0uXLgkhHpZpN2nSRFSoUEGUL19eNG7cWHz11VdCr9dbdN/mzZsnatSoIZycnETLli3FgQMHpOfat28vIiIiTNqvXbtW1KlTRzg5OYmGDRuKjRs3mjxvMBjE+PHjRbVq1YRWqxWdOnUS586ds8SuFElx9tfX1zfPYzhx4kQhhBAPHjwQzz77rPDw8BCOjo7C19dXDBkyRPUvfqPi7Ot7770nta1WrZro3r27ybk1hChdx1YIIc6ePSsAiD/++CPXuqz52Ob3/WLcv4iICNG+fftcr2nSpIlwcnIS/v7+JufDMSro/VNLcfe1ffv2BbYX4mF5uZeXl3BychJPPfWUePnll0VcXFyJxK8RwkL1pkREREQK4pwYIiIisklMYoiIiMgmMYkhIiIim8QkhoiIiGwSkxgiIiKySUxiiIiIyCYxiSEiIiKbxCSGiIiIsHv3boSHh8Pb2xsajQY///xziW5v0qRJ0Gg0Jrd69eoVax1MYojI5ty8eRPvvvsu/P39odVq4ePjg/Dw8FzXryGioktLS0Pjxo0xf/58i22zYcOGSEhIkG579+4t1ut5FWsisimXL19G69atUbFiRXz66acIDAxEdnY2fv/9dwwfPhxnz55VO0Qim9StWzd069Yt3+czMzPx8ccfY/Xq1UhMTESjRo0wY8YMdOjQwextOjg4yLqSN5MYIrIpb7/9NjQaDQ4dOoTy5ctLyxs2bIhBgwapGBlR6fbOO+8gNjYWa9asgbe3N9avX4+uXbvi5MmTCAgIMGudFy5cgLe3N3Q6HUJDQxEVFYUaNWoU+fW8dhIR2Yx79+6hSpUqmDZtGiIjI9UOh6jU0mg0WL9+PZ577jkAQHx8PPz9/REfHw9vb2+pXVhYGFq2bInp06cXexubN29Gamoq6tati4SEBEyePBnXr1/HqVOn4OLiUqR1sCeGiGxGXFwchBDFnvxHRPKcPHkSer0ederUMVmemZmJypUrAwDOnj2L+vXrF7iesWPHIjo6GgBMhq6CgoIQEhICX19frF27FoMHDy5SXExiiMhmsOOYSB2pqamwt7fH0aNHYW9vb/JchQoVAAD+/v44c+ZMgesxJjx5qVixIurUqYO4uLgix8UkhohsRkBAADQaDSfvEllY06ZNodfrcfv2bbRt2zbPNk5OTrJ6SVNTU3Hx4kW8/vrrRX4NS6yJyGa4u7ujS5cumD9/PtLS0nI9n5iYaPmgiEqJ1NRUxMTEICYmBgBw6dIlxMTEID4+HnXq1EG/fv3Qv39//PTTT7h06RIOHTqEqKgobNy40aztffjhh9i1axcuX76MP//8E88//zzs7e3xyiuvFHkdnNhLRDbl77//RuvWreHu7o4pU6YgKCgIOTk52Lp1KxYsWFBodzYR5W3nzp145plnci2PiIjAsmXLkJ2djU8++QQrVqzA9evXUaVKFTz99NOYPHkyAgMDi729vn37Yvfu3bh79y48PDzQpk0bTJs2DbVq1SryOpjEEJHNSUhIwLRp0/Dbb78hISEBHh4eCA4Oxvvvvy/rnBVEZFuYxBAREZFN4pwYIiIisklMYoiIiMgmMYkhIiIim8QkhoiIiGwSkxgiIiKySUxiiIiIyCYxiSEiIiKbxCSGiIiIbBKTGCIiIrJJTGKIiIjIJjGJISIiIpvEJIaIiIhs0v8Dr+psAQp/Z6gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUsklEQVR4nO3deXgTVdsG8DtdkhRoC4VCWymlhbKWshSo7Mgia1H0FVGUsgiCKMUNqMomQgsConyIwssiyiKoiIigwMsuO1SWshULZSmgQFe6Juf7AzMSumemmaS9f9eVi2RyMvNMpglPzjnPjEYIIUBERERkZxzUDoCIiIjIEkxiiIiIyC4xiSEiIiK7xCSGiIiI7BKTGCIiIrJLTGKIiIjILjGJISIiIrvEJIaIiIjsEpMYIiIisktMYoiIiMguMYkhq7t06RJeffVVBAQEQK/Xw83NDe3atcOnn36KjIwMq8WxZ88e9OvXD76+vtDr9fDy8kLPnj2xf//+Yr3+/PnzePPNN9G2bVvo9XpoNBpcvnw537bffvstXnrpJQQGBkKj0aBz587K7cgjjEYjZs+eDX9/f+j1egQHB2PNmjUFtl20aBGaNWsGFxcXVK1aFV26dMEff/xRavElJSWhevXq0Gg0+O6774psv2LFCmg0mgJvq1atktpOnTo13zZ6vb5U9uWnn35CixYtoNfrUatWLUyZMgW5ubn5tt2+fTu6dOkCd3d3uLq6IiQkBN9++22pxFVc3bt3h0ajweuvv15k28uXLxd6HEaMGCG13bVrV4HtDh48qPh+nD17Fj179kSlSpXg4eGBl19+GX/99Ve+bS9duoQXX3wR1atXh4uLCwIDA/H+++8rHhNZh5PaAVD5snnzZjz33HPQ6XQYPHgwgoKCkJ2djX379uHdd9/FmTNnsHjxYqvEcuHCBTg4OGDUqFHw8vLCvXv38M0336Bjx47YvHkzevbsWejrDxw4gM8++wyNGjVCw4YNERMTU2DbRYsW4dixY2jVqhXu3Lmj8J6Ye//99xEdHY0RI0agVatW2LhxI1588UVoNBoMHDjQrO2wYcOwatUqDB48GK+//jrS09Nx4sQJ3L59u9Timzx5Mu7fv1/s9h07dsTXX3+dZ/knn3yCP/74A127ds3z3KJFi1CpUiXpsaOjo2XBFmLLli14+umn0blzZyxYsACnTp3CRx99hNu3b2PRokVmbZcvX47hw4eje/fumDlzJhwdHXH+/HlcvXpV8biK64cffsCBAweK3d7T0zPf47B161asWrUKTz75ZJ7nxo4di1atWpktq1u3bsmDLcS1a9fQsWNHuLu7Y+bMmUhLS8OcOXNw6tQpHD58GFqtVmobExODzp0747HHHsPbb7+NqlWrIiEhQdXjQDIJIiv5888/RaVKlUSDBg3EjRs38jx/8eJFMX/+fBUi+1d6erqoUaOG6NGjR5Ft79y5I1JSUoQQQnz88ccCgIiPj8+3bUJCgjAYDEIIIRo3biw6deqkVMhmrl27JpydncWYMWOkZUajUXTo0EHUrFlT5ObmSsu//fZbAUD88MMPpRJLfk6dOiWcnJzEhx9+KACI9evXW7Se+/fvC1dXV9G9e3ez5VOmTBEAxF9//aVEuIVq1KiRaNq0qcjJyZGWvf/++0Kj0YizZ89Ky+Lj44WLi4sYO3asItuNj48XAMTOnTstXkdGRoaoXbu2dBwe/nspqa5duwo3NzeRkZEhLdu5c6es41sSo0ePFi4uLuLKlSvSsm3btgkA4ssvv5SWGQwGERQUJEJDQ8X9+/dLPS6yDg4nkdXMnj0baWlpWLp0Kby9vfM8X7duXURERKgQ2b8qVKgAT09PJCUlFdnWw8MDrq6uxVqvr68vHByK93G7fv06hg0bhho1akCn06Fx48ZYtmxZsV67ceNG5OTk4LXXXpOWaTQajB49GteuXTP75T1v3jy0bt0a/fv3h9FoRHp6erG2IUdERAT69++PDh06yFrPpk2bkJqaikGDBuX7vBACKSkpEEIUuI6srCxMmTIFdevWhU6ng6+vL8aPH4+srKwitx8bG4vY2FiMHDkSTk7/dmi/9tprEEKYDZN98cUXMBgM+PDDDwEAaWlphcZlDbNnz4bRaMQ777wjaz2JiYnYuXMnnnnmmQKH7FJTUwscYjP55ptvEBISAhcXF3h4eGDgwIHF7h35/vvv0bdvX9SqVUta1q1bN9SrVw/r1q2Tlv322284ffo0pkyZAhcXF9y/fx8Gg6FY2yDbxSSGrGbTpk0ICAhA27ZtLV7H/fv38ffffxd5u3fvXrHXmZKSgr///hvnzp3De++9h9OnT+c7RGENt27dwuOPP47t27fj9ddfx6effoq6deti+PDhmD9/fpGvP3HiBCpWrIiGDRuaLW/durX0PPBgnw8fPoxWrVrhvffeg7u7OypVqoSAgACzL34lrV+/Hr///jtmz54te12rVq2Ci4sLnnnmmXyfDwgIkOaevPTSS7h165bZ80ajEf369cOcOXMQFhaGBQsW4Omnn8Ynn3yC559/vsjtm97Hli1bmi338fFBzZo1peeBB3NhGjRogF9++QU1a9aEq6srqlatikmTJsFoNJZ012VLSEhAdHQ0Zs2aBRcXF1nrWrt2LYxGY4HJ5NChQ+Hm5ga9Xo8nnngCR48ezdNmxowZGDx4MAIDAzFv3jyMGzcOO3bsQMeOHYv8MXH9+nXcvn07z3EAHvzNP3ocAECn06Fly5aoWLEiKlSogIEDB+Lu3bsl2GuyKep2BFF5kZycLACIp556StZ6TMMFRd38/PyKvc4ePXpIr9NqteLVV1816xovjqKGkx5W2HDS8OHDhbe3t/j777/Nlg8cOFC4u7sX2Q3ep08fERAQkGd5enq6ACAmTpwohBDi+PHjAoCoWrWqqFGjhvj888/FqlWrROvWrYVGoxFbtmwpcj9K4v79+6JWrVoiMjJSCCFvuOHOnTtCq9WKAQMG5Hlu/vz54vXXXxerVq0S3333nYiIiBBOTk4iMDBQJCcnS+2+/vpr4eDgIPbu3Wv2+i+++EIAEPv37y80BtPxTkhIyPNcq1atxOOPPy49dnNzE1WqVBE6nU5MmjRJfPfdd+LFF180Ox4lIXc46T//+Y9o27at9BgyhpNCQkKEt7e3NFRqsn//fvHss8+KpUuXio0bN4qoqChRtWpVodfrxfHjx6V2ly9fFo6OjmLGjBlmrzcNOz66/FFHjhwRAMTKlSvzPPfuu+8KACIzM1MIIUS/fv2kv/lBgwaJ7777TkyaNEk4OTmJtm3bCqPRaNF7QOrixF6yipSUFAAo9vBLQQYPHoz27dsX2a4kvzCjo6Px9ttv4+rVq/jqq6+QnZ1dZPd3aRBC4Pvvv8eAAQMghMDff/8tPdejRw+sXbsWx48fR7t27QpcR0ZGBnQ6XZ7lpq5+U/VXWloaAODOnTs4ePAgQkNDAQD9+vWDv78/PvrooyInNpdEdHQ0cnJy8N5778le13fffYfs7Ox8f/0/Ohz57LPPonXr1hg0aBA+//xzTJw4EcCDXqGGDRuiQYMGZu9zly5dAAA7d+4stMfQ9D4W9F6b/t6BB++10WhEdHQ0JkyYIMV19+5dfPrpp3jvvfcK/VykpaUhMzNTemzqZUxOTjaL3dnZGe7u7gWux7Rf33//PQ4dOlRou+K4cOECjh07hjfffDPPUGnbtm3N3r9+/frhP//5D4KDgxEZGYmtW7cCeDC52Gg0YsCAAWb74uXlhcDAQOzcubPQv5mijoOpjU6nk/7mW7VqhW+++QbAg+NQoUIFREZGYseOHejWrZslbwWpSe0syhp2794t+vbtK7y9vQUAsWHDhhK9PiMjQ4SHh4ugoCDh6OhYYG/Czp07RfPmzYVWqxV16tQRy5cvN3v+888/F02aNBGurq7C1dVVPP744+KXX36xbKfsjFI9MaUtKytLNG7cWDz77LMlep0SPTG3bt0qsofJNAk3MTHR7GbqoSluT4zpF6y/v3+etkOHDhXOzs5mE1Yfdfv2bbPtp6amFtjWNLF12bJl0jI5PTEdO3YUHh4eIjs7u9iv8fLyEl27dpUeN2zYsND32TQJ986dO2b7mZSUJIQoWU9MxYoVBQCziadCCPHVV18JAGL37t2Fxh4eHl6s3seiJovn5OSIoKAgMXjwYLPlsLAnZvLkyQKAOHr0aLFfM3DgQKHVaqUJ5qNHjy50n4KDg4UQQqSmppodh9u3bwshStYT06dPHwFAfPXVV2btrly5IgCIadOmlfg9IPWVi56Y9PR0NG3aFMOGDStwDL0wBoMBLi4uGDt2LL7//vt828THx6NPnz4YNWoUVq1ahR07duCVV16Bt7c3evToAQCoWbMmoqOjERgYCCEEvvrqKzz11FM4ceIEGjduLGsfbZ2bmxt8fHxw+vRpWetJS0uTflEVxtHREZ6eniVev1arRb9+/RAdHY2MjAzZcwZKwjQ/4qWXXkJ4eHi+bYKDgwEgz8To5cuXY8iQIfD29sbOnTshhIBGo5GeT0xMBPBgzsbD/9aoUSPPNqpXr46cnBykp6cX+Mu+VatWuHLlivR4ypQpmDp1ar5tJ0+ejMceewydO3eWzqNz8+ZNAMBff/2Fy5cvo1atWsWa+JyQkIC9e/di5MiRcHZ2LrK9ia+vr9m8B6PRiCZNmmDevHkFtgeAZ555Brt375aWh4eHY8WKFdL7n5iYKLU1SUxMlOYgAQ/e64sXL+Z5r6tXrw4ARc7fGj9+PF566SXp8a1bt/DSSy9hzpw5aNq0qbS8SpUqha5n5cqVOH/+PL788ss85zNKTU3F5cuXUb16dVSoUKHQ9ZisXr0a9evXR0hISLHaAw/e1+zsbKSnp8PNzQ1GoxEajQZbtmzJtwzeVCY/Z84cTJs2TVru5+eHy5cvmx2HRyUmJsLDw0PqpSnob764x4FsU7lIYnr16oVevXoV+HxWVhbef/99rFmzBklJSQgKCsKsWbOkE5JVrFhROu/D/v37851s9sUXX8Df3x9z584FADRs2BD79u3DJ598IiUxYWFhZq+ZMWMGFi1ahIMHD5b5JAYA+vbti8WLF+PAgQNo06aNRet49MusIKYvOUtkZGRACIHU1FSrJjGenp5wdXWFwWAoslt727ZtZo9Nfz/NmjXDf//7X5w9exaNGjWSnjcNHzRr1gzAgy90Ly8vXL9+Pc+6b9y4Ab1eX+gQx6pVq8xOTBgQEFBg24SEBMTFxeXbxlRFde/ePVSuXLnAdZisWbMGQogCJ5LmRwiBy5cvo3nz5tKyOnXqSOeYeTjZe9TcuXPN/nMz/Udoeh+PHj1qlrDcuHED165dw8iRI6VlISEhuHjxIq5fv272Hty4cQMAiky2GzVqZHYsTX/XISEhJTppYkJCAnJycvIdjly5ciVWrlyJDRs24Omnny5yXYcOHUJcXJxUcVVcf/75J/R6vZSc1KlTB0II+Pv7o169egW+7tFhZNPn8rHHHoOnp2e+E4YPHz4sHSfgwfu1ZMmSPH/zxT0OZKPU7AZSA/IZTnrllVdE27ZtxZ49e0RcXJz4+OOPhU6nExcuXMjz+vDw8HyHRDp06CAiIiLMli1btky4ubnlG0dubq5Ys2aN0Gq14syZM5bujl2Ji4sTFStWFI0aNRI3b97M9/mizhNz6dIlsW3btiJv+/btKzKeW7du5Vl279494evrK3x9fc2WX7lyxezcH49SamLvkCFDhFarFadOncrznKkLvTBXr14t8Dwxjz32mNl5YiIiIgQA8dtvv0nL/vrrL+Hm5iZ69+5d5LaKa+/evWLDhg1mt+nTpwsAYvz48WLDhg3S0FB6ero4e/Zsged5CQ4OFrVq1SpwEmZ+79HChQsFADFv3jxp2YoVK/KcR8Tk/v37Ii0trcj9atCggWjatKnZe/rBBx8IjUYjYmNjpWUbNmwQAMR7770nLTMYDKJ9+/bCw8NDGu4oLksn9p49ezbPcTDF1rt3b7Fhwwaz8zedPXs2zxCYydixYwUAERcXl+/z+R2HmJgY4ezsLPr16ycti4uLE46OjuLFF1/Mc0yNRmOeCe75GTVqlHBxcTEb2tu+fbsAIBYtWiQtS0xMFDqdTrRv395sInJkZKQAIA4fPlzktsj2lPsk5sqVK8LR0VFcv37drF3Xrl2lSoqHFZTEBAYGipkzZ5ot27x5swBgVlFy8uRJUbFiReHo6Cjc3d3F5s2b5e2Qndm4caPQ6/WiSpUqIiIiQixZskQsXLhQDBo0SGi1WjFy5EirxdKiRQvRr18/MWPGDLFkyRIxadIkUbNmTeHg4JBnrkanTp3Eozl/UlKSmD59upg+fbro2bOnACDefvttMX36dLFgwQKztrt375baVq9eXdSuXVt6/PCciJs3bwo/Pz9RoUIFERERIb788ksRFRUlnnvuOVGlSpVi7ZdpLsDIkSPFkiVLpLkAq1atMmt38+ZN4e3tLVxdXcWUKVPEvHnzRL169YSLi4uIiYkpyVtZYgXNiTEtnzJlSp7XnDp1qsiKHhcXFzFkyBAxd+5csXDhQvHCCy8IjUYjmjVrJtLT06V2BoNB9O7dW2g0GjFw4ECxYMECMX/+fDFq1Cjh4eEhjhw5UuQ+bNq0SWg0GtGlSxexePFiMXbsWOHg4CBGjBhh1s5oNIquXbsKjUYjRo4cKRYuXCi6d+9eYBJVFCVOdvcwFDAnBgXMs8nNzRU1atQwm/fzqCeeeEL07t1bfPTRR2Lx4sVi3LhxokKFCsLd3d0swRNCiKioKAFAtG3bVsyePVssWrRIjB8/XgQGBoqPP/64yPgTEhJE1apVRZ06dcRnn30mZs6cKapUqSKaNGmSJ0E0ndyve/fuYuHChWLkyJFCo9GIF154ocjtkG0q90nMzz//LACIihUrmt2cnJzyLeGUm8RkZWWJixcviqNHj4qJEyeKatWqlZueGJMLFy6IESNGiNq1awutVitcXV1Fu3btxIIFC0r8q1SO//u//xPt27cX1apVE05OTsLT01OEhYWJPXv25GmbXxJj+s8kv9ujJd6FlYY/+h/2rVu3xJgxY4Svr69wdnaWJqUuXry4WPtlMBjEzJkzhZ+fn9BqtaJx48bim2++ybftpUuXRP/+/YWbm5twcXERXbp0scovUkuSmIkTJwoA4uTJkwWu95VXXhGNGjUSrq6uwtnZWdStW1dMmDBBOrPyw7Kzs8WsWbNE48aNhU6nE1WqVBEhISFi2rRpZuXYhdmwYYNo1qyZ0Ol0ombNmuKDDz7Id8JxamqqiIiIEF5eXkKr1YomTZoUeEyKonYSs3XrVgFAfPbZZwWu89NPPxWtW7cWHh4ewsnJSXh7e4uXXnpJXLx4Md/233//vWjfvr30/dugQQMxZswYcf78+WLtw+nTp8WTTz4pKlSoICpXriwGDRqUb2+v0WgUCxYsEPXq1RPOzs7C19e3wGNG9kEjhMqnjrQyjUZjNu777bffYtCgQThz5kyeiWWVKlWCl5eX2bIhQ4YgKSkJP/74o9nyjh07okWLFmYnJFu+fDnGjRuH5OTkAuPp1q0b6tSpgy+//FLWfhEREZU35WJib2GaN28Og8GA27dvyzoVeps2bfDLL7+YLdu2bVuRE1iNRmOxTnNORERE5spFEpOWloa4uDjpcXx8PGJiYuDh4YF69eph0KBBGDx4MObOnYvmzZvjr7/+wo4dOxAcHIw+ffoAeHCtlOzsbNy9exepqanSFYtNs99HjRqF//u//8P48eMxbNgw/O9//8O6deuwefNmabuRkZHo1asXatWqhdTUVKxevRq7du3Cr7/+arX3goiIqMxQezzLGkzj7I/ewsPDhRAPxsYnT54sateuLZydnYW3t7fo37+/2di7n59fvut4dDvNmjUTWq1WBAQE5DnZ3bBhw6R5Cp6enqJr165mlSFERERUfDY7J8ZgMGDq1Kn45ptvcPPmTfj4+GDIkCH44IMPCj2vAxEREZUPNjucNGvWLCxatAhfffUVGjdujKNHj2Lo0KFwd3fH2LFj1Q6PiIiIVGazPTF9+/ZFjRo1sHTpUmnZs88+CxcXF+niXURERFR+2WxPTNu2bbF48WJcuHAB9erVwx9//IF9+/YVeK2T/BiNRty4cQOurq4cgiIiIrIT4p9Lv/j4+BR6XTWbTWImTpyIlJQUNGjQAI6OjjAYDJgxY0ah10zJysoyK1e+fv262TVHiIiIyH5cvXoVNWvWLPB5m01i1q1bh1WrVmH16tVo3LgxYmJiMG7cOPj4+BR4hd+oqKh8Lw549epVuLm5lXbIZGdOnDihdghkoczMTPTs2RMAsHXrVuj1epUjIks8fFFOooelpKTA19e30AvRAjY8J8bX1xcTJ07EmDFjpGUfffQRvvnmG5w7dy7f1zzaE2N6E5KTk5nEUB7Hjh1TOwSyUEZGhnRyyr1791r1auOknJCQELVDIBuVkpICd3f3Iv//ttmemPv37+cZB3N0dITRaCzwNTqdDjqdrrRDIyIiIhtgs0lMWFgYZsyYgVq1aqFx48Y4ceIE5s2bh2HDhqkdGhEREdkAm01iFixYgEmTJuG1117D7du34ePjg1dffRWTJ09WOzQiUpmjoyP69u0r3Sei8slm58QoobhjalQ+cU4Mkbo4J4YKUtz/vwsuviYiIiKyYTY7nEREVBAhBDIzMwEAer2eJ7MkKqfYE0NEdiczMxMdOnRAhw4dpGSGiMofJjFERERkl5jEEBERkV1iEkNERER2iUkMERER2SUmMURERGSXWGJNpJLb6bnQaDTwcHGAI0uEiYhKjEkMkUpe++VvCAD/DfNEFT1PnV8SDg4O6Nq1q3SfiMonJjFEKjAKAdP1PtgLU3I6nQ6zZs1SOwwiUhl/whCpwPjQFcscmMMQEVmESQyRCh5OYhyZxBARWYRJDJEKDA9dPN6Bw0kllpGRgZYtW6Jly5bIyMhQOxwiUgmTGCIVmA0n8VNIRGQRfn0SqcBo/Pc+58QQEVmGSQyRCowPDyepGAcRkT3j9yeRCgz/5DAOGkDDOTFERBZhEkOkAtOcGFYmERFZjkkMkQpM1UmsTCIishzP2EukAuNDw0lUcg4ODmjXrp10n4jKJyYxRCow/FOdxOEky+h0Onz66adqh0FEKuNPGCIVGKXhJJUDISKyY0xiiFQgDScxiyEishiTGCIVcE6MPBkZGWjfvj3at2/Pyw4QlWOcE0OkApZYy5eZmal2CESkMvbEEKmAJdZERPIxiSFSAXtiiIjkYxJDpAKDkdVJRERyMYkhUgGrk4iI5GMSQ6QCA4eTiIhkY3USkQpYYi2PRqNBixYtpPtEVD4xiSFSgZHVSbLo9XosXrxY7TCISGU2O5xUu3ZtaDSaPLcxY8aoHRqRbKxOIiKSz2Z7Yo4cOQKDwSA9Pn36NLp3747nnntOxaiIlGG6ACSHk4iILGezSYynp6fZ4+joaNSpUwedOnVSKSIi5ZiGkxyZxVgkIyMDYWFhAIBNmzbBxcVF5YiISA02O5z0sOzsbHzzzTcYNmwYJ/FRmWDgxF7ZkpKSkJSUpHYYRKQim+2JediPP/6IpKQkDBkypNB2WVlZyMrKkh6npKSUcmRElmF1EhGRfHbRE7N06VL06tULPj4+hbaLioqCu7u7dPP19bVShEQlw2snERHJZ/NJzJUrV7B9+3a88sorRbaNjIxEcnKydLt69aoVIiQqOfbEEBHJZ/PDScuXL0f16tXRp0+fItvqdDrodDorREUkj/Gf6iSWWBMRWc6me2KMRiOWL1+O8PBwODnZfL5FVGw82R0RkXw2nRls374dCQkJGDZsmNqhEClKOtmdTf+MsF0ajQaNGjWS7hNR+WTTScyTTz4J8c8vVqKyhCXW8uj1eqxcuVLtMIhIZfwdSKQC6WR37EUgIrIYkxgiFbAnhohIPiYxRCpgibU8mZmZCAsLQ1hYGDIzM9UOh4hUYtNzYojKKoOR1UlyCCGQmJgo3Sei8ok9MUQqYHUSEZF8/AolUgGHk4iI5GMSQ6QCVicREcnHJIZIBaxOIiKSj0kMkQo4nEREJB+rk4hUYKpO4nCSZTQaDQICAqT7RFQ+MYkhUgF7YuTR6/VYt26d2mEQkco4nESkAimJ4SeQiMhi/AolUoGpOoknuyMishyTGCIVmKqTHJnDWCQzMxMDBgzAgAEDeNkBonKMc2KIVMA5MfIIIfDnn39K94mofGJPDJEKeLI7IiL5mMQQqcBgfPAve2KIiCzHJIZIBaxOIiKSj1+hRCowSNVJKgdCRGTHmMQQqcAoVScxiyEishSrk4hUwOokeTQaDby9vaX7RFQ+MYkhUgGrk+TR6/XYtGmT2mEQkco4nESkAlYnERHJxySGSAXSnBh+AomILMavUCIVsDpJnszMTAwePBiDBw/mZQeIyjHOiSFSwb8Te5nFWEIIgdjYWOk+EZVP7IkhUoGB1UlERLIxiSFSAUusiYjkYxJDpAKjkSXWRERyMYkhUgF7YoiI5GMSQ6QCU3USS6yJiCzH6iQiFbA6Sb7KlSurHQIRqYxJDJEK/r0ApLpx2CsXFxds375d7TCISGU23Zl9/fp1vPTSS6hatSpcXFzQpEkTHD16VO2wiGRjiTURkXw22xNz7949tGvXDk888QS2bNkCT09PXLx4EVWqVFE7NCLZjNIZe5nFEBFZymaTmFmzZsHX1xfLly+Xlvn7+6sYEZFyjLwApCyZmZkYO3YsAOCzzz6DXq9XOSIiUoPNDif99NNPaNmyJZ577jlUr14dzZs3x5IlS9QOi0gRvACkPEIIHD9+HMePH+dlB4jKMZv9Cv3zzz+xaNEiBAYG4tdff8Xo0aMxduxYfPXVVwW+JisrCykpKWY3Iltk4HASEZFsNjucZDQa0bJlS8ycORMA0Lx5c5w+fRpffPEFwsPD831NVFQUpk2bZs0wiSzC6iQiIvlstifG29sbjRo1MlvWsGFDJCQkFPiayMhIJCcnS7erV6+WdphEFmF1EhGRfDbbE9OuXTucP3/ebNmFCxfg5+dX4Gt0Oh10Ol1ph0Yki/GhORwcTiIispzN9sS8+eabOHjwIGbOnIm4uDisXr0aixcvxpgxY9QOjUgWw0PzUDmcRERkOZtNYlq1aoUNGzZgzZo1CAoKwvTp0zF//nwMGjRI7dCIZDE+lMRwOMlyer2epdVE5ZzNDicBQN++fdG3b1+1wyBSlPGhLMaBWYxFXFxcsG/fPrXDICKV2WxPDFFZxZ4YIiJlMIkhsjLOiSEiUgaTGCIrY3WSfFlZWYiIiEBERASysrLUDoeIVGLTc2KIyiIDT3Qnm9FoxP79+6X7RFQ+sSeGyMqMPNEdEZEimMQQWZlpOMmRQ0lERLIwiSGyMsM/ox/siSEikodJDJGVScNJ/PQREcnCr1EiKzMNJ7EyiYhIHiYxRFZmZHUSEZEiWGJNZGUGVifJ5uLigqNHj6odBhGpjD0xRFb273CSyoEQEdk5JjFEVmaqTmKJNRGRPExiiKyMJ7uTLysrCxMmTMCECRN42QGicoxJDJGVGUzDScxiLGY0GrFjxw7s2LGDlx0gKseYxBBZGXtiiIiUwSSGyMpYYk1EpAwmMURWxuokIiJlMIkhsjJWJxERKYNJDJGVcU4MEZEymMQQWZmpOsmRnz4iIll42QEiK/u3J4ZdMZbS6/XYu3evdJ+IyicmMURWxuEk+TQaDVxcXNQOg4hUxg5tIiszsDqJiEgR7IkhsrJ/zxPDLMZS2dnZmDlzJgDgvffeg1arVTkiIlIDe2KIrMx0lnz2xFjOYDDg559/xs8//wyDwaB2OESkEiYxRFYm9cTw00dEJAu/Roms7N85MeyKISKSg0kMkZWxOomISBlMYoiszMALQBIRKYJJDJGVGTmcRESkCCYxRFbG6iQiImXwPDFEVsY5MfLp9Xps27ZNuk9E5ZNFPTHjx49HZmam0rGYmTp1KjQajdmtQYMGpbpNImv49wKQzGIspdFoUKVKFVSpUgUaDssRlVsWJTHz589HcnIyAGDIkCG4f/++okGZNG7cGImJidJt3759pbIdImtiTwwRkTIsSmJ8fHwQExMDAPj666+RlpamZEwSJycneHl5Sbdq1aqVynaIrInVSfJlZ2dj1qxZmDVrFrKzs9UOh4hUYlES8/bbbyMsLAwdOnQAAKxatQqHDx9GRkaGosFdvHgRPj4+CAgIwKBBg5CQkKDo+onUwOok+QwGA9avX4/169fzsgNE5ZhFScwbb7yBo0ePomfPnhBCYOHChWjbti3c3NzQsGFDDBw4ENHR0diyZYvFgYWGhmLFihXYunUrFi1ahPj4eHTo0AGpqakFviYrKwspKSlmNyJbw+EkIiJlWFydFBwcjODgYKxYsQIHDhxAxYoVcfLkScTExCAmJgYbN27EjBkzCk06CtOrVy+zbYWGhsLPzw/r1q3D8OHD831NVFQUpk2bZtH2iKzFwBJrIiJFyC6xvnjxonQ/NDQUoaGh0mPxT7e5EipXrox69eohLi6uwDaRkZF46623pMcpKSnw9fVVLAYiJRhZnUREpIhSPdmdkqWPaWlpuHTpEry9vQtso9Pp4ObmZnYjsjUcTiIiUobsJCY3NxczZsxAmzZt0KJFC4SHh0snoZLjnXfewe7du3H58mX8/vvv6N+/PxwdHfHCCy/IXjeRmoysTiIiUoTsJGbixIn4/PPP0bVrVzz99NPIyspC3759MXToUFnDSdeuXcMLL7yA+vXrY8CAAahatSoOHjwIT09PuSETqcrA6iQiIkXInhOzevVqrF27Fh07dpSWxcfHo2/fvpgzZw7effddi9a7du1auaER2SQOJ8mn0+nw008/SfeJqHyS3ROTnp6OmjVrmi3z9/fHggULsHjxYrmrJypzTNVJHE6ynIODA3x8fODj4wMHB17Hlqi8kv3pb9++Pb766qs8y/39/XHjxg25qycqc3iyOyIiZcgeTpo1axbatWuHe/fu4Y033kBgYCBycnKwYMECNGrUSIkYicoU02UH2IFguZycHHz++ecAgNdeew3Ozs4qR0REapD9NRoUFIRdu3bhwIEDqF+/PvR6PSpUqICvv/4a8+fPVyBEorKFc2Lky83Nxddff42vv/4aubm5aodDRCqR3RMDAM2bN8eRI0dw7tw5xMbGwtXVFaGhoTxPC1E+pJPdcTiJiEgWi5KYNm3aoHnz5mjWrBmaNWuG4OBg6PV6NGjQAA0aNFA6RqIyhT0xRETKsCiJ6dOnD06ePIm5c+fi0qVL0Gg0CAwMlJIa06169epKx0tk91idRESkDIuSmA8++EC6f/jwYTz99NMICgqCRqPBihUrcO7cOWg0GtSoUYMVSkSPYHUSEZEyZM+JGT16NBYuXIj+/ftLy3755ReMHDkS4eHhcldPVOaYqpMcWZ1ERCSL7K/Rs2fPolmzZmbLevfujc8//xy///673NUTlTmcE0NEpAzZSUyrVq3yPdldkyZNcPjwYbmrJypzOJwkn06nw7fffotvv/2Wlx0gKsdkDyfNmzcPXbp0wZUrV/Dmm28iKCgI2dnZmDt3LqpVq6ZEjERlCnti5HNwcECdOnXUDoOIVCY7iQkJCcGhQ4cwZswYNGvWDM7OzjAajXBycsLSpUuViJGoTJHmxDCJISKSRZGT3TVo0AA7duxAQkICYmJi4ODggJCQEHh7eyuxeqIyxWg0DSepHIgdy8nJwbJlywAAw4YN42UHiMop2UnMkSNHMHHiRPz111+oW7eudI6YnJwcJeIjKnOMUnUSsxhL5ebmYsmSJQCAwYMHM4khKqdkT+x9+eWX4ejoiJEjR8Lf3x+7d+/G0KFDUbt2bVStWlWJGInKFAPnxBARKUJ2T8zVq1exefPmPJPsrly5gpiYGLmrJypz/q1OUjkQIiI7JzuJadOmDa5fv54nifHz84Ofn5/c1ROVOf9O7GUWQ0Qkh+zhpDfffBMffvgh7t69q0Q8RGUeS6yJiJQhuycmLCwMGo0G9erVw1NPPSVd4bpJkybQarVKxEhUprA6iYhIGbKTmLi4OPzxxx/SbebMmbh8+TKcnZ1Rv359nDx5Uok4icqMf3timMUQEckhO4kJCAhAQECA2QUgU1JS8McffzCBIcoHLwApn1arlS53wh5fovLL4iRm8uTJeOqppxASEpLnOTc3N3To0AEdOnSQFRxRWcQ5MfI5OjqicePGaodBRCqz+LfgtWvX0KtXL9SsWROjR4/Gli1bkJ2drWRsRGWS4Z8Sa1YnERHJY3ESs2zZMty8eRNr1qyBq6srxo0bh2rVquHZZ5/FypUrWa1EVAD2xMiXk5ODlStXYuXKlTw7OFE5JmtU3sHBAR06dMDs2bNx/vx5HDp0CKGhofjyyy/h4+ODjh07Ys6cObh+/bpS8RLZNSHEv5cdYBJjsdzcXHz22Wf47LPPkJubq3Y4RKQSRacWNmzYEOPHj8f+/ftx9epVhIeHY+/evVizZo2SmyGyW8aH7rM6iYhIHkWuYp0fT09PDB8+HMOHDy+tTRDZHVMvDAA4sDqJiEgWRZKYnJwc3Lx5E/fv34enpyc8PDyUWC1RmWN8qCuGc2KIiOSx+LdgamoqFi1ahE6dOsHNzQ21a9dGw4YN4enpCT8/P4wYMQJHjhxRMlYiu2e6+CPA6iQiIrksSmLmzZuH2rVrY/ny5ejWrRt+/PFHxMTE4MKFCzhw4ACmTJmC3NxcPPnkk+jZsycuXryodNxEdsnw8HAScxgiIlksGk46cuQI9uzZU+DJplq3bo1hw4bhiy++wPLly7F3714EBgbKCpSoLDAyiSEiUoxFSUxxq410Oh1GjRplySaIyiTTie40YHWSHFqtFl988YV0n4jKJ1kTe69cuYLz588jODgYXl5eeZ6/ceMGfHx85GyCqEzhie6U4ejoiJYtW6odBhGpzOKJvWvWrEHdunXRs2dPBAQE4OuvvwYAJCQkIDo6GqGhoahVq5ZigUZHR0Oj0WDcuHGKrZPI2gz/VCfxRHdERPJZnMRMnz4db7zxBk6dOoXu3btj9OjRmDRpEurUqYMVK1agZcuWWL9+vSJBHjlyBF9++SWCg4MVWR+RWkzVSRxKkic3Nxfr1q3DunXreMZeonLM4uGkS5cuISIiAn5+fli4cCFq1aqF/fv34+TJk2jYsKFiAaalpWHQoEFYsmQJPvroI8XWS6QGaTiJJ7qTJScnB7NnzwYAhIWFwcmp1M7bSUQ2zOKv0pycHLi4uAAAatasCb1ejzlz5iiawADAmDFj0KdPH3Tr1q3ItllZWUhJSTG7EdkSzokhIlKOrN+Dq1evxrlz5wA8mGhXpUoVRYIyWbt2LY4fP46oqKhitY+KioK7u7t08/X1VTQeIrlM1Uk80R0RkXwWJzEdOnTAlClT0LhxY1SrVg2ZmZn49NNPsW7dOsTGxsoep7569SoiIiKwatUq6PX6Yr0mMjISycnJ0u3q1auyYiBSGntiiIiUY/FA8u7duwEAFy9exLFjx3D8+HEcP34cK1euRFJSErRaLerVq4eTJ09atP5jx47h9u3baNGihbTMYDBgz549+L//+z9kZWXB0dHR7DU6nQ46nc7SXSIqdaxOIiJSjuzZcIGBgQgMDMTAgQOlZfHx8Th69ChOnDhh8Xq7du2KU6dOmS0bOnQoGjRogAkTJuRJYIjsAauTiIiUUypT+v39/eHv74/nnnvO4nW4uroiKCjIbFnFihVRtWrVPMuJ7AWrk4iIlKN4EnPv3j389ttvuH79OgDAx8cHPXr0UHzSL5E9MnBOjCKcnZ0xf/586T4RlU+K/h5cunQp2rRpg0OHDsFoNMJoNOLQoUNo27Ytli5dKnv9u3btkr64iOyRkdVJinByckL79u3Rvn17niOGqBxT9NM/e/ZsHD9+HBUrVjRbPn36dLRo0QLDhw9XcnNEdofVSUREylG0J0aj0SA1NTXP8tTUVGj4y5OISYxCcnNzsWnTJmzatImXHSAqxxTtiZkzZw46deqEoKAgPPbYYwCAa9eu4cyZM5g7d66SmyKySwYjh5OUkJOTg2nTpgEAunXrxiElonJK0U9+37590atXLxw+fBg3btwA8GBib+vWrVkSTQT2xBARKcniJOaVV15BSEgIWrRogaZNm0pn1XV0dESbNm0UC5CoLDFVJzmyxJqISDaLk5iLFy9i/fr1SE1NhZOTE+rXry8lNSEhIWjWrFmeCb5E5d2/J7tTORAiojJA8csO/PTTT0hKSoKDgwPq1auH2NhYxYIlsnf/DicxiyEikstmLztAVBbxZHdERMqx2csOEJVFRlYnEREphnWJRFbE6iRlODs7Izo6WrpPROUTkxgiK2J1kjKcnJzQrVs3tcMgIpXxq5TIilidRESknFJNYhwcHNClSxccO3asNDdDZDcMrE5SRG5uLrZv347t27fzsgNE5VipDictW7YMly9fxpgxY3Dw4MHS3BSRXTDNiXFkDiNLTk4OJk6cCADYu3cvLztAVE7J/uSnpqbC1dU13+eGDBkCAJg6darczRCVCabqJA4nERHJJ3s4qUOHDrh586YSsRCVeTzZHRGRcmQnMc2bN0doaCjOnTtntjwmJga9e/eWu3qiMsXI6iQiIsXI/ipdvnw5hgwZgvbt22Pfvn24cOECBgwYgJCQEF65mugRBlYnEREpRpHZcNOmTYNOp0P37t1hMBjQtWtXHDhwAK1bt1Zi9URlBoeTiIiUI7sn5tatW4iIiMBHH32ERo0awdnZGUOGDGECQ5QPA6uTiIgUI7snxt/fH/Xr18f69evRp08fbN26Fc8//zwSEhLw7rvvKhEjUZnByw4ow9nZGVOmTJHuE1H5JDuJWbZsmdkVrHv27ImdO3eib9++uHz5MhYuXCh3E0RlhkEqsWYWI4eTkxPCwsLUDoOIVCZ7OOnhBMakRYsW+P333/G///1P7uqJyhT2xBARKafUTnNZu3Zt/P7776W1eiK7xBJrZeTm5kpnAX/88cd5xl6icqpUP/lVqlQpzdUT2Z1/LwDJrhg5cnJyMG7cOAC87ABRecbfg0RWxOokIiLlMIkhsiLOiSEiUk6pJjEODg7o0qULjh07VpqbIbIbpuokRw4nERHJVqpJzLJly9CxY0eMGTOmNDdDZDfYE0NEpJxSnQ03ZMgQAMDUqVNLczNEdsM0J8aBA7lERLJZ/FUaGxuLSZMmISkpScFwiMo2VicRESnH4p6YqKgopKWloXLlynmey8zMxOXLl9GgQQM5sRGVOUZWJynC2dkZ48ePl+4TUflkcRJz8OBBLF68ON/n9Ho9RowYgd69eyMyMtLi4IjKGs6JUYaTkxMGDBigdhhEpDKLh5OuXbuGunXrFvj8qFGj8NNPP1m6eixatAjBwcFwc3ODm5sb2rRpgy1btli8PiJbwOEkIiLlWJzEeHh4IDExscDnW7dujbi4OEtXj5o1ayI6OhrHjh3D0aNH0aVLFzz11FM4c+aMxeskUpvB+OBfDifJYzAYcPToURw9ehQGg0HtcIhIJRYnMR07dsSKFSsKXrGDAzIzMy1dPcLCwtC7d28EBgaiXr16mDFjBipVqiRdL4XIHnE4SRnZ2dkYNWoURo0ahezsbLXDISKVWDwn5p133sHjjz+OZs2aYeTIkXmeP3DgAAICAmQFZ2IwGLB+/Xqkp6ejTZs2BbbLyspCVlaW9DglJUWR7RMpxfDPcJIjsxgiItks7okJCQnB559/jtdeew3du3fHjz/+iISEBNy9excbN27EhAkT8OKLL8oK7tSpU6hUqRJ0Oh1GjRqFDRs2oFGjRgW2j4qKgru7u3Tz9fWVtX0ipbEnhohIObJOuTVixAjs2rULycnJeOaZZ+Dv7w9PT0/0798fTZo0wZtvvikruPr16yMmJgaHDh3C6NGjER4ejtjY2ALbR0ZGIjk5WbpdvXpV1vaJlMYkhohIObLP2Nu+fXscPnwY586dw/Hjx3H//n0EBQXh8ccflx2cVquVKqBCQkJw5MgRfPrpp/jyyy/zba/T6aDT6WRvl6i0sDqJiEg5FiUxCQkJqFWrltmyBg0aFHhyu+vXr+Oxxx6zZFNmjEaj2ZwXInvD6iQiIuVYNJzUqlUrvPrqqzhy5EiBbZKTk7FkyRIEBQXh+++/L/E2IiMjsWfPHly+fBmnTp1CZGQkdu3ahUGDBlkSMpFN4HASEZFyLOqJiY2NxYwZM9C9e3fo9XqEhITAx8cHer0e9+7dQ2xsLM6cOYMWLVpg9uzZ6N27d4m3cfv2bQwePBiJiYlwd3dHcHAwfv31V3Tv3t2SkIlsAquTlOHk5ISxY8dK94mofNII8c+3qgUyMjKwefNm7Nu3D1euXEFGRgaqVauG5s2bo0ePHggKClIy1hJLSUmBu7s7kpOT4ebmpmosZHuOHTtm9W2+vuUvJKYZ8NETHmhYTWv17RPZkpCQELVDIBtV3P+/Zf2EcXFxwX/+8x/85z//kbMaonLDwAtAEhEphv2wRFbE6iRlGAwGnDt3DsCDogJHR0eVIyIiNZR4Ym9GRgauX7+eZzmvaURUNOM/1UmcEiNPdnY2wsPDER4ezssOEJVjJUpivvvuOwQGBqJPnz4IDg7GoUOHpOdefvllxYMjKmtYnUREpJwSJTEfffQRjh07hpiYGCxfvhzDhw/H6tWrAQAy5gcTlRusTiIiUk6J5sTk5OSgRo0aAB7MKt+zZw/69++PuLg4aDjGT1Qk9sQQESmnRD0x1atXx8mTJ6XHHh4e2LZtG86ePWu2nIjyxySGiEg5JUpivv76a1SvXt1smVarxZo1a7B7925FAyMqi6ThJCYxRESylSiJqVmzJry8vMyWbd++HQDQrl075aIiKqP+7YlhFkNEJJdF1056WJ8+ffDWW2+xzJGoGIy8AKQinJycMGLECIwYMYKXHSAqx2QnMXv27MHPP/+Mli1b4vTp0/m2SUxMxLPPPit3U0R2TQiBf3IYzomRydnZGa+++ipeffVVODs7qx0OEalEdhITGhqK48ePo2XLlmjVqhXmzZsnPWc0GhEbG4vJkydj7969cjdFZNeMD52FwIFZDBGRbIr0w1aqVAlz585FhQoV8O6772LNmjVSApOVlQU/Pz9ERUUpsSkiu2WWxDCHkcVoNCI+Ph4A4O/vDwcH2b/HiMgOyU5i/vvf/+LDDz/E9evX4eLigtatWwMADh06hDFjxmD69OmoXLmy3M0Q2T3DQyeE5JwYebKysvD8888DAPbu3QsXFxeVIyIiNcj++fLee++hT58+iI2NRWpqKg4cOIADBw5g7ty5+O9//4u33noL9+/fVyJWIrtm3hPDLIaISC7ZSUznzp0xdepU1K9f3+ysvW+++SYOHz6Mo0eP5rnOElF5ZHgoiWFPDBGRfLKTmHXr1kmXInhUkyZNcOTIEfTt2xcdO3aUuykiu8Y5MUREyir1EyzodDrMnz8fffr0Ke1NEdk04z9ZjAPAa40RESnAalP6u3fvbq1NEdkkXjeJiEhZrEskshJTdRKrgYmIlMHzdRNZCa+bpBwnJye8/PLL0n0iKp/46SeyEg4nKcfZ2RkRERFqh0FEKmPHNpGVmEqsWV5NRKQM9sQQWYnRNCeGw0myGY1G3Lx5EwDg5eXFyw4QlVNMYoisxPDPJazZEyNfVlYW+vXrB4CXHSAqz/jzhchKOCeGiEhZTGKIrEQaTmIWQ0SkCCYxRFbCnhgiImUxiSGyElYnEREpi0kMkZWwOomISFlMYoishNVJRETKYok1kZVwToxyHB0d8dxzz0n3iah8YhJDZCWmC0A6MouRTavVYsKECWqHQUQqs9nhpKioKLRq1Qqurq6oXr06nn76aZw/f17tsIgsxp4YIiJl2WwSs3v3bowZMwYHDx7Etm3bkJOTgyeffBLp6elqh0ZkESYxyhFC4N69e7h37x7EPz1cRFT+2Oxw0tatW80er1ixAtWrV8exY8fQsWNHlaIishyrk5STmZmJ7t27A+BlB4jKM5tNYh6VnJwMAPDw8CiwTVZWFrKysqTHKSkppR4XUXGZqpPYE0NEpAybHU56mNFoxLhx49CuXTsEBQUV2C4qKgru7u7SzdfX14pREhXOyJPdEREpyi6SmDFjxuD06dNYu3Ztoe0iIyORnJws3a5evWqlCImKxuEkIiJl2fxw0uuvv46ff/4Ze/bsQc2aNQttq9PpoNPprBQZUclIlx2wi58ORES2z2aTGCEE3njjDWzYsAG7du2Cv7+/2iERycLqJCIiZdlsEjNmzBisXr0aGzduhKurK27evAkAcHd3ZyUC2SUDh5OIiBRls0nMokWLAACdO3c2W758+XIMGTLE+gERycSeGOU4Ojqib9++0n0iKp9sNonhCayorDHyApCK0Wq1mDp1qtphEJHKOMWQyEr+rU5SORAiojLCZntiiMqaf6uTmMXIJYRAZmYmAECv10PDeUZE5RJ7YoishHNilJOZmYkOHTqgQ4cOUjJDROUPkxgiKzFVJzmy14CISBFMYoishD0xRETKYhJDZCW8ACQRkbKYxBBZCauTiIiUxSSGyEqMrE4iIlIUkxgiK+GcGCIiZfE8MURWYuBwkmIcHBzQtWtX6T4RlU9MYoisRBpOYom1bDqdDrNmzVI7DCJSGX/CEFkJh5OIiJTFJIbISgxG08nuVA6EiKiMYBJDZCX/9sQwi5ErIyMDLVu2RMuWLZGRkaF2OESkEiYxRFZiugAk56ESESmDX6dEVsI5MUREymISQ2QlRl4AkohIUUxiiKyEPTFERMpiEkNkJaYLQLI6iYhIGUxiiKzk3wtAMoshIlICz9hLZCUG6QKQ6sZRFjg4OKBdu3bSfSIqn5jEEFkJ58QoR6fT4dNPP1U7DCJSGX/CEFkJh5OIiJTFJIbIStgTQ0SkLCYxRFZiqk5iEiNfRkYG2rdvj/bt2/OyA0TlGOfEEFkJT3anrMzMTLVDICKVsSeGyEoMHE4iIlIUkxgiKzGyxJqISFH8OiWyElYnEREpi0kMkZVIJ7tjDkNEpAgmMURWwhJrIiJlsTqJyEqMRg4nKUWj0aBFixbSfSIqn5jEEFkJe2KUo9frsXjxYrXDICKV2fRw0p49exAWFgYfHx9oNBr8+OOPaodEZDFeAJKISFk2/XWanp6Opk2bYuHChWqHQiQbq5OIiJRl08NJvXr1Qq9evdQOg0gRrE5STkZGBsLCwgAAmzZtgouLi8oREZEabDqJKamsrCxkZWVJj1NSUlSMhsgc58QoKykpSe0QiEhlNj2cVFJRUVFwd3eXbr6+vmqHRCRhdRIRkbLKVBITGRmJ5ORk6Xb16lW1QyKSGDmcRESkqDI1nKTT6aDT6dQOgyhf0gUgy9RPByIi9fDrlMgKjELgnxyGw0lERAqx6Z6YtLQ0xMXFSY/j4+MRExMDDw8P1KpVS8XIiErGNJQEcGIvEZFSbDqJOXr0KJ544gnp8VtvvQUACA8Px4oVK1SKiqjkHk5iOCdGPo1Gg0aNGkn3iah8sukkpnPnzhBCFN2QyMYZHvo7Zk+MfHq9HitXrlQ7DCJSGefEEFmBeU8MsxgiIiUwiSGyAs6JISJSHpMYIiswGjmcpKTMzEyEhYUhLCwMmZmZaodDRCqx6TkxRGWFdMkBcCKqEoQQSExMlO4TUfnEnhgiK+CJ7oiIlMevVCIrMArTdZNUDoSIqAxhEkNkBQbpuknMYoiIlMIkhsgKpDkxzGGIiBTDJIbICgz/ZDE8Wy8RkXJYnURkBf/2xDCLUYJGo0FAQIB0n4jKJyYxRFZgZHWSovR6PdatW6d2GESkMn6lElkB58QQESmPSQyRFRikEmtmMURESmESQ2QFRqnEWt04yorMzEwMGDAAAwYM4GUHiMoxzokhsgJTdRKHk5QhhMCff/4p3Sei8ok9MURWYOTJ7oiIFMckhsgKDJzYS0SkOCYxRFYg9cTwE0dEpBh+pRJZgZHVSUREimMSQ2QFPE8MEZHyWJ1EZAVMYpSl0Wjg7e0t3Sei8olJDJEV/HsBSP6HqwS9Xo9NmzapHQYRqYzDSURWwJ4YIiLlMYkhsgIDq5OIiBTHr1QiK2B1krIyMzMxePBgDB48mJcdICrHOCeGyAp4sjtlCSEQGxsr3Sei8ok9MURWwDkxRETKYxJDZAVGVicRESmOSQyRFbAnhohIeUxiiKyAc2KIiJTHJIbICkzVSY7MYoiIFMPqJCIrYE+M8ipXrqx2CESkMiYxRFZgmhPjyCRGES4uLti+fbvaYRCRymx+OGnhwoWoXbs29Ho9QkNDcfjwYbVDIiox07WTeLI7IiLl2HQS8+233+Ktt97ClClTcPz4cTRt2hQ9evTA7du31Q6NqERYnUREpDybHk6aN28eRowYgaFDhwIAvvjiC2zevBnLli3DxIkTVYvrdmomsnONqm2flHE73WC1baVlP/h7KWkSc+e+QZpPQ//KysrE5PFvAgA+nP0JdDq9yhGRJa7du692CKSAapV00Ds7qrJtm01isrOzcezYMURGRkrLHBwc0K1bNxw4cCDf12RlZSErK0t6nJKSUiqxRayJwYE/75TKuqlsK2kSE/m/O7iTwYT5UcbsTFyNOQ4AGLvlLzhomcTYpV92qh0BKWDNiMfRpk5VVbZts0nM33//DYPBgBo1apgtr1GjBs6dO5fva6KiojBt2rRSj83ZyQE6J5seiaNiEEbrJgd6Zwe08NaV6DXODhpo+aeWh/Gh90TrADjwPbJLGh64MkHNYXKbTWIsERkZibfeekt6nJKSAl9fX8W3s3JYa8XXSdZ37NgxtUMo0sLenmqHYJMyMjLQYe6D+yuergEXFxd1AyKLhISEqB0C2TmbTWKqVasGR0dH3Lp1y2z5rVu34OXlle9rdDoddLqS/dIlIiIi+2SzfXlarRYhISHYsWOHtMxoNGLHjh1o06aNipERERGRLbDZnhgAeOuttxAeHo6WLVuidevWmD9/PtLT06VqJSIiIiq/bDqJef755/HXX39h8uTJuHnzJpo1a4atW7fmmexLROWPXs+KJKLyTiOEKLNnoUhJSYG7uzuSk5Ph5uamdjhkY+xhYi9RWcaJvVSQ4v7/bbNzYoiIiIgKwySGiIiI7BKTGCKyO1lZWYiIiEBERITZWbqJqHyx6Ym9RET5MRqN2L9/v3SfiMon9sQQERGRXWISQ0RERHaJSQwRERHZJSYxREREZJeYxBAREZFdKtPVSaaTEaekpKgcCdmitLQ0tUMgC2VmZkr309PTYTAYVIyGLMXvZiqI6W+jqIsKlOnLDly7dg2+vr5qh0FEREQWuHr1KmrWrFng82U6iTEajbhx4wZcXV2h0WjUDkdRKSkp8PX1xdWrV8v8daHK074C5Wt/y9O+AuVrf7mvZZc19lcIgdTUVPj4+MDBoeCZL2V6OMnBwaHQDK4scHNzKxcfGqB87StQvva3PO0rUL72l/tadpX2/rq7uxfZhhN7iYiIyC4xiSEiIiK7xCTGTul0OkyZMgU6nU7tUEpdedpXoHztb3naV6B87S/3teyypf0t0xN7iYiIqOxiTwwRERHZJSYxREREZJeYxBAREZFdYhJDREREdolJjI26e/cuBg0aBDc3N1SuXBnDhw8v8lo/nTt3hkajMbuNGjXKrE1CQgL69OmDChUqoHr16nj33XeRm5tbmrtSLCXd37t37+KNN95A/fr14eLiglq1amHs2LFITk42a/fo+6HRaLB27drS3h0zCxcuRO3ataHX6xEaGorDhw8X2n79+vVo0KAB9Ho9mjRpgl9++cXseSEEJk+eDG9vb7i4uKBbt264ePFiae5CiZRkf5csWYIOHTqgSpUqqFKlCrp165an/ZAhQ/Icw549e5b2bhRLSfZ1xYoVefZDr9ebtSlLxza/7yONRoM+ffpIbWz12O7ZswdhYWHw8fGBRqPBjz/+WORrdu3ahRYtWkCn06Fu3bpYsWJFnjYl/S6whpLu6w8//IDu3bvD09MTbm5uaNOmDX799VezNlOnTs1zXBs0aFA6OyDIJvXs2VM0bdpUHDx4UOzdu1fUrVtXvPDCC4W+plOnTmLEiBEiMTFRuiUnJ0vP5+bmiqCgINGtWzdx4sQJ8csvv4hq1aqJyMjI0t6dIpV0f0+dOiWeeeYZ8dNPP4m4uDixY8cOERgYKJ599lmzdgDE8uXLzd6TjIyM0t4dydq1a4VWqxXLli0TZ86cESNGjBCVK1cWt27dyrf9/v37haOjo5g9e7aIjY0VH3zwgXB2dhanTp2S2kRHRwt3d3fx448/ij/++EP069dP+Pv7W3W/ClLS/X3xxRfFwoULxYkTJ8TZs2fFkCFDhLu7u7h27ZrUJjw8XPTs2dPsGN69e9dau1Sgku7r8uXLhZubm9l+3Lx506xNWTq2d+7cMdvX06dPC0dHR7F8+XKpja0e219++UW8//774ocffhAAxIYNGwpt/+eff4oKFSqIt956S8TGxooFCxYIR0dHsXXrVqlNSd8/aynpvkZERIhZs2aJw4cPiwsXLojIyEjh7Owsjh8/LrWZMmWKaNy4sdlx/euvv0olfiYxNig2NlYAEEeOHJGWbdmyRWg0GnH9+vUCX9epUycRERFR4PO//PKLcHBwMPviXLRokXBzcxNZWVmKxG4JS/f3UevWrRNarVbk5ORIy4rzoSxNrVu3FmPGjJEeGwwG4ePjI6KiovJtP2DAANGnTx+zZaGhoeLVV18VQghhNBqFl5eX+Pjjj6Xnk5KShE6nE2vWrCmFPSiZku7vo3Jzc4Wrq6v46quvpGXh4eHiqaeeUjpU2Uq6r8uXLxfu7u4Frq+sH9tPPvlEuLq6irS0NGmZrR7bhxXnO2T8+PGicePGZsuef/550aNHD+mx3PfPGiz9vmzUqJGYNm2a9HjKlCmiadOmygVWCA4n2aADBw6gcuXKaNmypbSsW7ducHBwwKFDhwp97apVq1CtWjUEBQUhMjIS9+/fN1tvkyZNUKNGDWlZjx49kJKSgjNnzii/I8UkZ38flpycDDc3Nzg5mV8SbMyYMahWrRpat26NZcuWFXlpd6VkZ2fj2LFj6Natm7TMwcEB3bp1w4EDB/J9zYEDB8zaAw+Okal9fHw8bt68adbG3d0doaGhBa7TWizZ30fdv38fOTk58PDwMFu+a9cuVK9eHfXr18fo0aNx584dRWMvKUv3NS0tDX5+fvD19cVTTz1l9rkr68d26dKlGDhwICpWrGi23NaOrSWK+twq8f7ZKqPRiNTU1Dyf2YsXL8LHxwcBAQEYNGgQEhISSmX7ZfoCkPbq5s2bqF69utkyJycneHh44ObNmwW+7sUXX4Sfnx98fHxw8uRJTJgwAefPn8cPP/wgrffhBAaA9Liw9ZY2S/f3YX///TemT5+OkSNHmi3/8MMP0aVLF1SoUAG//fYbXnvtNaSlpWHs2LGKxV9YTAaDId/3/Ny5c/m+pqBjZHofTP8W1kYtluzvoyZMmAAfHx+zL/uePXvimWeegb+/Py5duoT33nsPvXr1woEDB+Do6KjoPhSXJftav359LFu2DMHBwUhOTsacOXPQtm1bnDlzBjVr1izTx/bw4cM4ffo0li5darbcFo+tJQr63KakpCAjIwP37t2T/dmwVXPmzEFaWhoGDBggLQsNDcWKFStQv359JCYmYtq0aejQoQNOnz4NV1dXRbfPJMaKJk6ciFmzZhXa5uzZsxav/+H/wJs0aQJvb2907doVly5dQp06dSxer6VKe39NUlJS0KdPHzRq1AhTp041e27SpEnS/ebNmyM9PR0ff/yxVZIYKpno6GisXbsWu3btMpvwOnDgQOl+kyZNEBwcjDp16mDXrl3o2rWrGqFapE2bNmjTpo30uG3btmjYsCG+/PJLTJ8+XcXISt/SpUvRpEkTtG7d2mx5WTm25dXq1asxbdo0bNy40eyHaK9evaT7wcHBCA0NhZ+fH9atW4fhw4crGgOTGCt6++23MWTIkELbBAQEwMvLC7dv3zZbnpubi7t378LLy6vY2wsNDQUAxMXFoU6dOvDy8sozG/7WrVsAUKL1Fpc19jc1NRU9e/aEq6srNmzYAGdn50Lbh4aGYvr06cjKyir1635Uq1YNjo6O0ntscuvWrQL3y8vLq9D2pn9v3boFb29vszbNmjVTMPqSs2R/TebMmYPo6Ghs374dwcHBhbYNCAhAtWrVEBcXp9p/dHL21cTZ2RnNmzdHXFwcgLJ7bNPT07F27Vp8+OGHRW7HFo6tJQr63Lq5ucHFxQWOjo6y/15szdq1a/HKK69g/fr1eYbSHlW5cmXUq1dP+ltXEufEWJGnpycaNGhQ6E2r1aJNmzZISkrCsWPHpNf+73//g9FolBKT4oiJiQEA6QuxTZs2OHXqlFnCsG3bNri5uaFRo0bK7ORDSnt/U1JS8OSTT0Kr1eKnn37KU66an5iYGFSpUsUqFy7TarUICQnBjh07pGVGoxE7duww+0X+sDZt2pi1Bx4cI1N7f39/eHl5mbVJSUnBoUOHClyntViyvwAwe/ZsTJ8+HVu3bjWbF1WQa9eu4c6dO2b/0Vubpfv6MIPBgFOnTkn7URaPLfDglAFZWVl46aWXityOLRxbSxT1uVXi78WWrFmzBkOHDsWaNWvMSuYLkpaWhkuXLpXOcbXK9GEqsZ49e4rmzZuLQ4cOiX379onAwECzkuNr166J+vXri0OHDgkhhIiLixMffvihOHr0qIiPjxcbN24UAQEBomPHjtJrTCXWTz75pIiJiRFbt24Vnp6eNlNiXZL9TU5OFqGhoaJJkyYiLi7OrJQvNzdXCCHETz/9JJYsWSJOnTolLl68KD7//HNRoUIFMXnyZKvt19q1a4VOpxMrVqwQsbGxYuTIkaJy5cpShdjLL78sJk6cKLXfv3+/cHJyEnPmzBFnz54VU6ZMybfEunLlymLjxo3i5MmT4qmnnrKpMtyS7G90dLTQarXiu+++MzuGqampQgghUlNTxTvvvCMOHDgg4uPjxfbt20WLFi1EYGCgyMzMVGUfTUq6r9OmTRO//vqruHTpkjh27JgYOHCg0Ov14syZM1KbsnRsTdq3by+ef/75PMtt+dimpqaKEydOiBMnTggAYt68eeLEiRPiypUrQgghJk6cKF5++WWpvanE+t133xVnz54VCxcuzLfEurD3Ty0l3ddVq1YJJycnsXDhQrPPbFJSktTm7bffFrt27RLx8fFi//79olu3bqJatWri9u3bisfPJMZG3blzR7zwwguiUqVKws3NTQwdOlT6YhdCiPj4eAFA7Ny5UwghREJCgujYsaPw8PAQOp1O1K1bV7z77rtm54kRQojLly+LXr16CRcXF1GtWjXx9ttvm5Ukq6Wk+7tz504BIN9bfHy8EOJBmXazZs1EpUqVRMWKFUXTpk3FF198IQwGg1X3bcGCBaJWrVpCq9WK1q1bi4MHD0rPderUSYSHh5u1X7dunahXr57QarWicePGYvPmzWbPG41GMWnSJFGjRg2h0+lE165dxfnz562xK8VSkv318/PL9xhOmTJFCCHE/fv3xZNPPik8PT2Fs7Oz8PPzEyNGjFD9i9+kJPs6btw4qW2NGjVE7969zc6tIUTZOrZCCHHu3DkBQPz222951mXLx7ag7xfT/oWHh4tOnTrleU2zZs2EVqsVAQEBZufDMSns/VNLSfe1U6dOhbYX4kF5ube3t9BqteKxxx4Tzz//vIiLiyuV+DVCWKnelIiIiEhBnBNDREREdolJDBEREdklJjFERERkl5jEEBERkV1iEkNERER2iUkMERER2SUmMURERGSXmMQQERER9uzZg7CwMPj4+ECj0eDHH38s1e1NnToVGo3G7NagQYMSrYNJDBHZnZs3b+KNN95AQEAAdDodfH19ERYWluf6NURUfOnp6WjatCkWLlxotW02btwYiYmJ0m3fvn0lej2vYk1EduXy5cto164dKleujI8//hhNmjRBTk4Ofv31V4wZMwbnzp1TO0Qiu9SrVy/06tWrwOezsrLw/vvvY82aNUhKSkJQUBBmzZqFzp07W7xNJycnWVfyZhJDRHbltddeg0ajweHDh1GxYkVpeePGjTFs2DAVIyMq215//XXExsZi7dq18PHxwYYNG9CzZ0+cOnUKgYGBFq3z4sWL8PHxgV6vR5s2bRAVFYVatWoV+/W8dhIR2Y27d++iWrVqmDFjBiIjI9UOh6jM0mg02LBhA55++mkAQEJCAgICApCQkAAfHx+pXbdu3dC6dWvMnDmzxNvYsmUL0tLSUL9+fSQmJmLatGm4fv06Tp8+DVdX12Ktgz0xRGQ34uLiIIQo8eQ/IpLn1KlTMBgMqFevntnyrKwsVK1aFQBw7tw5NGzYsND1TJgwAdHR0QBgNnQVHByM0NBQ+Pn5Yd26dRg+fHix4mISQ0R2gx3HROpIS0uDo6Mjjh07BkdHR7PnKlWqBAAICAjA2bNnC12PKeHJT+XKlVGvXj3ExcUVOy4mMURkNwIDA6HRaDh5l8jKmjdvDoPBgNu3b6NDhw75ttFqtbJ6SdPS0nDp0iW8/PLLxX4NS6yJyG54eHigR48eWLhwIdLT0/M8n5SUZP2giMqItLQ0xMTEICYmBgAQHx+PmJgYJCQkoF69ehg0aBAGDx6MH374AfHx8Th8+DCioqKwefNmi7b3zjvvYPfu3bh8+TJ+//139O/fH46OjnjhhReKvQ5O7CUiu/Lnn3+iXbt28PDwwIcffojg4GDk5uZi27ZtWLRoUZHd2USUv127duGJJ57Iszw8PBwrVqxATk4OPvroI6xcuRLXr19HtWrV8Pjjj2PatGlo0qRJibc3cOBA7NmzB3fu3IGnpyfat2+PGTNmoE6dOsVeB5MYIrI7iYmJmDFjBn7++WckJibC09MTISEhePPNN2Wds4KI7AuTGCIiIrJLnBNDREREdolJDBEREdklJjFERERkl5jEEBERkV1iEkNERER2iUkMERER2SUmMURERGSXmMQQERGRXWISQ0RERHaJSQwRERHZJSYxREREZJeYxBAREZFd+n9d7IVItabm7AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -856,20 +1363,20 @@ "id": "499ffb9a-00a7-4c06-ada4-1d3a41a7f1d4", "metadata": {}, "source": [ - "Das liegt daran, dass $R$ und $C$ vollständig korreliert sind. Reduziert `iminuit` $C$ um ein Faktor zwei so wird dies dadurch kompenziert, dass das optimale Minimum verlangt, dass $R$ um einen Faktor zwei größer sein muss. Sprich es ist ohne weitere Infromation nicht möglich $R$ und $C$ näher zu bestimmen lediglich das Produkt der beiden Größen.\n", + "Das liegt daran, dass $R$ und $C$ vollständig korreliert sind. Reduziert `iminuit` $C$ um ein Faktor zwei, so wird dies dadurch kompensiert, dass das optimale Minimum verlangt, dass $R$ um einen Faktor zwei größer sein muss. Das heißt, es ist ohne weitere Information nicht möglich, $R$ und $C$ näher zu bestimmen, sondern lediglich das Produkt der beiden Größen.\n", "\n", - "Sprich wir müssen in unser Fitfunktion $R$ und $C$ durch die Zerfallszeit $\\tau$ ersetzen und schreiben\n", + "Deshalb müssen wir in unserer Fitfunktion $R$ und $C$ durch die Zeitkonstante $\\tau$ ersetzen und schreiben\n", "\n", "$$ I = I_0 \\exp\\{-t/\\tau\\}$$\n", "\n", "mit $\\tau = R \\cdot C$.\n", "\n", - "Fürhen wir nun erneut den Fit durch erhalten wir ein richtiges Ergebniss..." + "Führen wir nun erneut den Fit durch, so erhalten wir ein fehlerfreies Ergebnis..." ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 496, "id": "847419a7-d77b-4207-8607-44af9d615ffc", "metadata": {}, "outputs": [ @@ -878,30 +1385,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 2.707 (χ²/ndof = 0.3) Nfcn = 87 FCN = 2.707 (χ²/ndof = 0.3) Nfcn = 97
EDM = 1.11e-05 (Goal: 0.0002) EDM = 1.11e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -953,21 +1457,525 @@ " \n", " \n", " \n", - "
-0.22e-3 (-0.396) 0.000116
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:48.103966\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 2.707 (χ²/ndof = 0.3) │ Nfcn = 87 │\n", + "│ FCN = 2.707 (χ²/ndof = 0.3) │ Nfcn = 97 │\n", "│ EDM = 1.11e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", @@ -982,23 +1990,13 @@ "└─────┴───────────────────┘" ] }, - "execution_count": 21, + "execution_count": 496, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6QElEQVR4nO3de3xU9Z3/8feZSWYCCQmBkJCQQATlJggIghHx1hQqrdVlaam2YqmX1mIXZbeteIFWW7FWLaxi2VJZ7bZWWoyuP2FRm0oBiUXAtCg3IQFCIIFwyWVCbjPn90fIkIEEMiEzZy6v58N5JHPme2Y+4xmYN+d7OYZpmqYAAAAsYrO6AAAAEN0IIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAAS8VYXUBHeDweHTp0SD169JBhGFaXAwAAOsA0TVVXVysjI0M2W/vnP8IijBw6dEhZWVlWlwEAADqhpKREmZmZ7T4eFmGkR48ekprfTGJiosXVAACAjqiqqlJWVpb3e7w9YRFGWrpmEhMTCSMAAISZCw2xYAArAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEtFbRhxuVwyDEOGYcjlclldDgAAUStqwwgAAAgNhBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFJRG0bcbrf393Xr1vncBwAAwROVYSQvL0/Dhw/33p86daqys7OVl5dnYVUAAESnqAsjeXl5mj59ukpLS322l5aWavr06QQSAACCLKrCiNvt1pw5c2Sa5jmPtWx78MEH6bIBACCIoiqMrF+/XgcPHmz3cdM0VVJSovXr1wexKgAAoltUhZHDhw93aTsAAHDxoiqMpKend2k7AABw8aIqjEyaNEmZmZkyDKPNxw3DUFZWliZNmhTkygAAiF5RFUbsdrsWL14sSecEkpb7ixYtkt1uD3ptAABEq6gKI5I0bdo0rVy5UhkZGT7bMzMztXLlSk2bNs2iygAAiE6G2dY81xBTVVWlpKQkVVZWKjExscueMzktS72++F3FJiRrz3//u7o7HV3y3AAAoOPf31F3ZqSF3W6Xp65K3QaOlaP/Fdp/vM7qkgAAiEpRG0ZaNFTslyTtLq+2uBIAAKJT1IeRxqMHJBFGAACwCmHk9JmRXWU1FlcCAEB0ivow0tJN8/kRzowAAGCFqA8jjUebw8iB47WqbWiyuBoAAKJP1IcRz6kq9eoeK9OU9hyhqwYAgGCL+jAiSZemxkuSdpcTRgAACDa/w8i6det0yy23KCMjQ4Zh6K233rrgPmvXrtWVV14pp9OpSy+9VK+88konSu1a8fHxMk1TpmlqeEZPScyoAQDACn6HEZfLpVGjRmnJkiUdal9cXKwvf/nLuvHGG1VYWKgHH3xQ99xzj959912/iw2Uy9ISJEm7yggjAAAEW4y/O9x88826+eabO9x+6dKluuSSS/Tcc89JkoYNG6YNGzboV7/6laZMmeLvywfEkLQekqTPOTMCAEDQBXzMSEFBgXJzc322TZkyRQUFBYF+6Q677HQYOVRZp6q6RourAQAgugQ8jJSVlSktLc1nW1pamqqqqnTq1Kk296mvr1dVVZXPLZCSusWqb2KcJM6OAAAQbCE5m2bhwoVKSkry3rKysgL+moP7Np8dYUYNAADBFfAw0rdvX5WXl/tsKy8vV2Jiorp169bmPvPmzVNlZaX3VlJSEugyNYRBrAAAWMLvAaz+ysnJ0erVq322vf/++8rJyWl3H6fTKafTGejSfLSMG2F6LwAAweX3mZGamhoVFhaqsLBQUvPU3cLCQh040Hz123nz5mnmzJne9t/73vdUVFSkH/3oR9q5c6deeukl/elPf9JDDz3UNe+giww93U2zq6xapmlaXA0AANHD7zCyefNmjRkzRmPGjJEkzZ07V2PGjNH8+fMlSYcPH/YGE0m65JJLtGrVKr3//vsaNWqUnnvuOf32t78NmWm9LQan9ZDNkI65GnS0ut7qcgAAiBqGGQanAaqqqpSUlKTKykolJiYG7HW+8Nxa7T3q0iuzrtINQ1ID9joAAESDjn5/h+RsGqsMS2/+H7XjMONGAAAIFsJIK2fCSGDXNQEAAGcQRloZThgBACDoCCOttJwZKapwqa7RbXE1AABEB8JIK2mJTvXsHiu3x9SeI6zECgBAMBBGWjEMQ8P6Np8d2U5XDQAAQUEYOQuDWAEACC7CyFmGpTevxEoYAQAgOAgjZ2m91kgYrAcHAEDYI4yc5bK0BMXYDFWeatThyjqrywEAIOIRRs7ijLFrUJ8ESXTVAAAQDISRNgxl3AgAAEFDGGmDd9xIGdeoAQAg0AgjbWB6LwAAwUMYaUPL9N59FS6damBZeAAAAokw0obUHnFKSXDIY0q7yumqAQAgkAgj7WjpqvnsUKXFlQAAENkII+24PCNJkvTZIcaNAAAQSISRdozsdzqMlHJmBACAQCKMtGNEvzPTexvdHourAQAgchFG2tG/V3f1iItRQ5NHn5fXWF0OAAARizDSDsMwNOL0uJFPGcQKAEDAEEbOo6Wr5lPGjQAAEDCEkfMYcXoQK2EEAIDAIYycR0sY2X64Sk0MYgUAICAII+dxSe94xTvsqmv0qKjCZXU5AABEJMLIedhshnfxM7pqAAAIDMLIBVx+ehDrNsIIAAABQRi5gJbpvZ+Vsiw8AACBQBi5gJGZLdeoqZTHY1pcDQAAkYcwcgEDU+IVF2uTq8Gt4mMMYgUAoKsRRi4gxm7T8HQWPwMAIFAIIx3Qst7IZ4cYNwIAQFcjjHRAyyDWbQc5MwIAQFcjjHRA62XhGcQKAEDXIox0wOC0BMXF2lRd38QgVgAAuhhhpANi7DaNPH125B8lJ60tBgCACEMY6aBRmT0lSYWEEQAAuhRhpINGZfWUxJkRAAC6GmGkg0afDiPbD1epvsltbTEAAEQQwkgHZSZ3U694hxrdpnYcrra6HAAAIgZhpIMMw9CoTAaxAgDQ1QgjfmDcCAAAXY8w4oeWMFJ48KSldQAAEEkII35omd5bdNSlylON1hYDAECEIIz4oVe8Q/17dZfEdWoAAOgqnQojS5YsUXZ2tuLi4jRhwgRt2rTpvO0XLVqkIUOGqFu3bsrKytJDDz2kurq6ThVsNe+4EbpqAADoEn6HkRUrVmju3LlasGCBtm7dqlGjRmnKlCk6cuRIm+1fe+01Pfzww1qwYIF27Nihl19+WStWrNAjjzxy0cVboWVGDSuxAgDQNfwOI88//7zuvfdezZo1S8OHD9fSpUvVvXt3LV++vM32Gzdu1MSJE3XHHXcoOztbkydP1u23337BsymhqmXxs8KSkzJNruALAMDF8iuMNDQ0aMuWLcrNzT3zBDabcnNzVVBQ0OY+11xzjbZs2eINH0VFRVq9erWmTp3a7uvU19erqqrK5xYqLs9Ikt1m6Gh1vcqqwrOrCQCAUOJXGKmoqJDb7VZaWprP9rS0NJWVlbW5zx133KEnnnhC1157rWJjYzVo0CDdcMMN5+2mWbhwoZKSkry3rKwsf8oMqG4Ou4ak9ZAkFR44aW0xAABEgIDPplm7dq2eeuopvfTSS9q6davy8vK0atUqPfnkk+3uM2/ePFVWVnpvJSUlgS7TL2P695QkbT1wwtpCAACIADH+NE5JSZHdbld5ebnP9vLycvXt27fNfR5//HHdeeeduueeeyRJI0eOlMvl0n333adHH31UNtu5ecjpdMrpdPpTWlCNHZCsP/z9gLbsJ4wAAHCx/Doz4nA4NHbsWOXn53u3eTwe5efnKycnp819amtrzwkcdrtdksJ2AOjYAcmSpE9Lq1TXyBV8AQC4GH6dGZGkuXPn6q677tK4ceM0fvx4LVq0SC6XS7NmzZIkzZw5U/369dPChQslSbfccouef/55jRkzRhMmTNCePXv0+OOP65ZbbvGGknDTv1d3pSQ4VFHToM8OVWrsgF5WlwQAQNjyO4zMmDFDR48e1fz581VWVqbRo0drzZo13kGtBw4c8DkT8thjj8kwDD322GMqLS1Vnz59dMstt+jnP/95172LIDMMQ1f2T9Z728u1Zf8JwggAABfBMMOgr6SqqkpJSUmqrKxUYmKi1eVIkv7rb3u18P92asrlafqvO8dZXQ4AACGno9/fXJumk1rGjWzZz+JnAABcDMJIJ43ol6RYu6GKmnqVHD9ldTkAAIQtwkgnxcXaNaJf83Vqthw4bnE1AACEL8LIRRjbv6WrhvVGAADoLMLIRWg9bgQAAHQOYeQitISRXWVVqq5rtLgaAADCE2HkIqQmximrVzd5TOkfJZVWlwMAQFgijFwkxo0AAHBxCCMXqaWrZvN+ZtQAANAZhJGLdOXpMPLJgZNye1j8DAAAfxFGLtLQvonq4YxRTX2TdhyusrocAADCDmHkItlthsZlN58d+XsxXTUAAPiLMNIFJgzsLUn6e9ExiysBACD8EEa6wPhLekmSPt53XB7GjQAA4BfCSBcY2S9J3WLtOlHbqM+P1FhdDgAAYYUw0gVi7TbvFN9NxXTVAADgD8JIF2npqmEQKwAA/iGMdJHWYcQ0GTcCAEBHEUa6yOisnnLYbTpaXa99x2qtLgcAgLBBGOkicbF2jc7qKYlxIwAA+IMw0oW8XTVFjBsBAKCjCCNdaMJABrECAOAvwkgXurJ/suw2Q6UnT+ngCcaNAADQEYSRLhTvjNHIfkmSpE2cHQEAoEMII12spatm414GsQIA0BGEkS42cVCKJGnjngrWGwEAoAMII13squxecthtOlRZx3ojAAB0AGGki3Vz2DWmf09J0od7KqwtBgCAMEAYCYCJl57uqtlLGAEA4EIIIwEw8dLekqSCvcfk8TBuBACA8yGMBMAVmT0V77DrRG2jth+usrocAABCGmEkAGLtNu/S8HTVAABwfoSRAGkZN/LhHtYbAQDgfAgjAXLN6fVGNhUfV0OTx+JqAAAIXYSRABnat4d6xTt0qtGtwpKTVpcDAEDIIowEiM1mKGdQ86wa1hsBAKB9hJEA8i4NzyBWAADaRRgJoGtPD2L95MBJVdc1WlwNAAChiTASQP17d9eA3t3V5DFVwFV8AQBoE2EkwK4f3EeS9LfdRy2uBACA0EQYCbDWYcQ0WRoeAICzEUYC7OqBveWw23TwxCkVVbisLgcAgJBDGAmweGeMrrokWZK0jq4aAADOQRgJAsaNAADQPsJIEFw/OFWS9FHRMdU1ui2uBgCA0EIYCYLBaQnqmxinukaPNhUft7ocAABCSqfCyJIlS5Sdna24uDhNmDBBmzZtOm/7kydPavbs2UpPT5fT6dTgwYO1evXqThUcjgzD0HWDmxdAo6sGAABffoeRFStWaO7cuVqwYIG2bt2qUaNGacqUKTpy5Eib7RsaGvTFL35R+/bt08qVK7Vr1y4tW7ZM/fr1u+jiw0lLVw1hBAAAXzH+7vD888/r3nvv1axZsyRJS5cu1apVq7R8+XI9/PDD57Rfvny5jh8/ro0bNyo2NlaSlJ2dfXFVh6FrL02RzZD2HKnRwRO1ykzubnVJAACEBL/OjDQ0NGjLli3Kzc098wQ2m3Jzc1VQUNDmPm+//bZycnI0e/ZspaWlacSIEXrqqafkdrc/kLO+vl5VVVU+t3CX1D1WY/o3T/Hl7AgAAGf4FUYqKirkdruVlpbmsz0tLU1lZWVt7lNUVKSVK1fK7XZr9erVevzxx/Xcc8/pZz/7Wbuvs3DhQiUlJXlvWVlZ/pQZsm4c0jzFN39H211aAABEo4DPpvF4PEpNTdVvfvMbjR07VjNmzNCjjz6qpUuXtrvPvHnzVFlZ6b2VlJQEusygmHx5X0nShj0VqqlvsrgaAABCg19jRlJSUmS321VeXu6zvby8XH379m1zn/T0dMXGxsput3u3DRs2TGVlZWpoaJDD4ThnH6fTKafT6U9pYeGy1ARl9+6ufcdqtW73UU0dmW51SQAAWM6vMyMOh0Njx45Vfn6+d5vH41F+fr5ycnLa3GfixInas2ePPB6Pd9vu3buVnp7eZhCJZIZh6IvDm7u43vus7W4tAACijd/dNHPnztWyZcv06quvaseOHbr//vvlcrm8s2tmzpypefPmedvff//9On78uObMmaPdu3dr1apVeuqppzR79uyuexdhpKWrJn/nETW6PRdoDQBA5PN7au+MGTN09OhRzZ8/X2VlZRo9erTWrFnjHdR64MAB2WxnMk5WVpbeffddPfTQQ7riiivUr18/zZkzRz/+8Y+77l2EkSv7J6t3vEPHXA36e9FxXXtZitUlAQBgKcM0TdPqIi6kqqpKSUlJqqysVGJiotXlXLQfr/ynVmwu0cycAXri1hFWlwMAQEB09Puba9NYYPLlLeNGyhUGWRAAgIAijFhg4qUp6u6wq6yqTttKK60uBwAASxFGLBAXa9f1g5sXQHvvs/ILtAYAILIRRizi7arZzhRfAEB0I4xY5KYhabLbDO0ur9G+CpfV5QAAYBnCiEWSusfq6oG9JEnvb6erBgAQvQgjFpo8vHkBNLpqAADRjDBioZal4TfvP6GKmnqLqwEAwBqEEQtl9Oymkf2SZJpS/g66agAA0YkwYrHJw88sgAYAQDQijFis5cJ56/dUyFXfZHE1AAAEH2HEYoPTEjSgd3c1NHm0bvdRq8sBACDoCCMWMwzjTFcNU3wBAFGIMBICWrpq8neUq9HtsbgaAACCizASAq7sn6ze8Q5V1TVpU/Fxq8sBACCoCCMhwG4zlDusuatm1bbDFlcDAEBwEUZCxFdGpUuSVv3zsBqa6KoBAEQPwkiIuGZQilJ7OFV5qlFrdx2xuhwAAIKGMBIi7DZDt47OkCS9VVhqcTUAAAQPYSSE3DamnyTpLzuOqPJUo8XVAAAQHISREDI8PVGD0xLU0OTRmk8ZyAoAiA6EkRBiGIb37EjeVrpqAADRgTASYm4b3RxG/l58XKUnT1lcDQAAgUcYCTEZPbvp6oG9JEn/y0BWAEAUIIyEoH853VXz5tZSmaZpcTUAAAQWYSQEfWlEuhwxNn1+pEbbD1dZXQ4AAAFFGAlBSd1ilTssVZL01id01QAAIhthJET9y5hMSdL/Fh6S20NXDQAgchFGQtT1g/uoZ/dYHamu18a9FVaXAwBAwBBGQpQjxqavXNF88bw36aoBAEQwwkgIa5lV8+6nZaptaLK4GgAAAoMwEsKu7J+s/r26y9Xg1vvby60uBwCAgCCMhLDWy8MzqwYAEKkIIyHuttEZkqR1n1foaHW9xdUAAND1CCMhbmCfBI3K6im3x9QbH++TYRgyDEMul8vq0gAA6BKEkTDwr1c2d9X8eeshiysBAKDrEUbCwG1j+qm7w669FbVyZo2wuhwAALoUYSQMJMbFegey9rjyyxZXAwBA1yKMhIlvTRggSep+WY7sCb0srgYAgK5DGAkTwzMSNSYrUYY9RglXTLa6HAAAugxhJIzcPq65qyZh9M1qdHssrgYAgK5BGAkjXxzaR27XCcX06K0Pdh+zuhwAALoEYSSMOGJsqvnHe5Kk1zezIisAIDIQRsKI2+1W1ea3VfPZB/rbunXadfik1SUBAHDRCCNhIi8vT8OHD5fnVKWOvfOcyv/4iMaPHKq8vDyrSwMA4KJ0KowsWbJE2dnZiouL04QJE7Rp06YO7ff66683X/zttts687JRKy8vT9OnT1dpqW/XTNWxck2fPp1AAgAIa36HkRUrVmju3LlasGCBtm7dqlGjRmnKlCk6cuTIeffbt2+f/uM//kOTJk3qdLHRyO12a86cOTJNs83HTVN68MEH5Xa7g1wZAABdw+8w8vzzz+vee+/VrFmzNHz4cC1dulTdu3fX8uXL293H7Xbrm9/8pn76059q4MCBF1VwtFm/fr0OHjx4nhamSkpKtH79+qDVBABAV/IrjDQ0NGjLli3Kzc098wQ2m3Jzc1VQUNDufk888YRSU1N19913d77SKHX48OEubQcAQKiJ8adxRUWF3G630tLSfLanpaVp586dbe6zYcMGvfzyyyosLOzw69TX16u+vt57v6qqyp8yI0p6enqXtgMAINQEdDZNdXW17rzzTi1btkwpKSkd3m/hwoVKSkry3rKysgJYZWibNGmSMjMzZRhGu21iElM0dPT4IFYFAEDX8SuMpKSkyG63q7y83Gd7eXm5+vbte077vXv3at++fbrlllsUExOjmJgY/e53v9Pbb7+tmJgY7d27t83XmTdvniorK723kpISf8qMKHa7XYsXL5akcwJJy/3km+7Tn7ewCBoAIDz5FUYcDofGjh2r/Px87zaPx6P8/Hzl5OSc037o0KHatm2bCgsLvbevfvWruvHGG1VYWNjuGQ+n06nExESfWzSbNm2aVq5cqYyMDJ/tmZmZ+tEvf6PuQ67RKxv36VQDM2oAAOHHrzEjkjR37lzdddddGjdunMaPH69FixbJ5XJp1qxZkqSZM2eqX79+WrhwoeLi4jRixAif/Xv27ClJ52zH+U2bNk25ublKSkqSJK1evVqTJ0+WR4Y+fHatDp44pRUfH9C3J15icaUAAPjH7zAyY8YMHT16VPPnz1dZWZlGjx6tNWvWeAe1HjhwQDYbC7sGgt1u9/5+3XXXyW63yy7pu9cP0uNvfarfrCvSHRMGyBHD/38AQPgwzPZW0wohVVVVSkpKUmVlZVR32bhcLiUkJEiSampqFB8fL0mqa3Rr0jMf6Gh1vZ751yv09auid8AvACB0dPT7m39CR4C4WLvundTcPfPrv+2V2xPy+RIAAC/CSIS4Y8IAJXWLVXGFS6u3sQAaACB8EEYiRIIzRrMmZkuSlnywp91r2QAAEGoIIxHk29dkK95h186yav115/kvXAgAQKggjESQnt0d+tbVAyRJL3J2BAAQJggjEebuSZfIEWPTJwdOqqDomNXlAABwQYSRMBIfHy/TNGWapnda79lSe8Rpxrjmqb1LPtgTzPIAAOgUwkgE+u71AxVjM/ThnmP65MAJq8sBAOC8CCMRKDO5u24d3U+StOSDti9GCABAqCCMRKj7bxgkw5D+sqNcO8uqrC4HAIB2EUYi1KWpCbp5RF9J0n/mf25xNQAAtI8wEsF+cNNlMgxp9bYybdnP2BEAQGgijESwYemJmn5lpiTpqdU7WHcEABCSCCMR7t8nD1FcrE1b9p/Qu5+VWV0OAADnIIxEuL5Jcbrn2oGSpKf/b6camjwWVwQAgC/CSBT43g2DlJLg0L5jtXrt7/utLgcAAB+EkSiQ4IzRnNzBkqTF+Z+rqq7R4ooAADiDMBIlvnFVlgb1ideJ2kb9ei0LoQEAQgdhJErE2m16+OZhkqSXNxSr9OQpiysCAKAZYSSK5A5L1fhLeqmhyaPn3t1ldTkAAEgijEQVwzD06NTmsyNvFpbq09JKiysCAIAwEnVGZfXUV0dlyDRZCA0AEBoII1Hoh1OGyGG3aePeY1q766jV5QAAohxhJApl9equb0/MliQ98c521TW6rS0IABDVCCNR6oGbLlVqD6eKK1x64a9c1RcAYB3CSJRKjIvVE7deLkn6r78VacfhKosrAgBEK8JIFPvSiHRNHp6mJo+ph/O2ye1hMCsAIPgII1HuiVtHqIczRv8oOanfFeyzuhwAQBQijES5vklx+tHNQyVJv3x3FyuzAgCCjjACfXN8f40bkKzaBrfmv/Upa48AAIKKMALZbIYWThupWLuh/J1HtGrbYatLAgBEEcIIJEmXpfXQ92+4VJL0k7e3q7K20eKKAADRgjACr+/fOEiXpiaooqZeT63eYXU5AIAoQRiBlzPGroXTRkqSVmwuUcHeYxZXBACIBoQR+Lgqu5e+OaG/JOmHK/+hylN01wAAAoswgnM8fPNQZfXqpoMnTumRvG3MrgEABBRhBOfoERerF26/UjE2Q6u2HdbrH5dYXRIAIIIRRtCm0Vk99aMvDZEk/eTtz7S7vNriigAAkYowgnbdc+1AXT+4j+qbPHrgta061eC2uiQAQAQijKBdNpuh574+Sn16OLW7vEZPvLPd6pIAABGIMILzSklwatGM0TIM6Y+bDuidfx6yuiQAQIQhjOCCJl6aou/fMEiSNO+NbSo5XmtxRQCASEIYQYc8mDtYYwckq7q+ST/44ydqdHusLgkAECEII+iQWLtNi78xWolxMSosOaln1uy0uiQAQIQgjKDDMpO765npV0iSlq0v1p83s/4IAODiEUbgly+NSNcPbmq+uu8jb27TR0VcvwYAcHE6FUaWLFmi7OxsxcXFacKECdq0aVO7bZctW6ZJkyYpOTlZycnJys3NPW97hL6Hcgfry1ekq9Ft6nu/36LiCpfVJQEAwpjfYWTFihWaO3euFixYoK1bt2rUqFGaMmWKjhw50mb7tWvX6vbbb9cHH3yggoICZWVlafLkySotLb3o4mENm83Qc18bpVFZPXWytlF3v/KxTtY2WF0WACBMGaafV0GbMGGCrrrqKr344ouSJI/Ho6ysLP3gBz/Qww8/fMH93W63kpOT9eKLL2rmzJkdes2qqiolJSWpsrJSiYmJ/pSLADpSXad/WbJRpSdPKWdgb736nfFyxNDzBwBo1tHvb7++ORoaGrRlyxbl5uaeeQKbTbm5uSooKOjQc9TW1qqxsVG9evVqt019fb2qqqp8bgg9qT3i9Nu7xineYVdB0TE9/tanXOEXAOA3v8JIRUWF3G630tLSfLanpaWprKysQ8/x4x//WBkZGT6B5mwLFy5UUlKS95aVleVPmQiiYemJeuGOMbIZ0orNJVq2vsjqkgAAYSao59Sffvppvf7663rzzTcVFxfXbrt58+apsrLSeyspYQppKLtpaJoe+/JwSdLC/9updz/rWDAFAEDyM4ykpKTIbrervLzcZ3t5ebn69u173n2fffZZPf3003rvvfd0xRVXnLet0+lUYmKizw2hbdbEbH3r6v4yTekHf/xEGz6v6PC+LpdLhmHIMAy5XMzMAYBo41cYcTgcGjt2rPLz873bPB6P8vPzlZOT0+5+zzzzjJ588kmtWbNG48aN63y1CFmGYegnt1yuycPT1NDk0T2/+1gFe1mDBABwYX5308ydO1fLli3Tq6++qh07duj++++Xy+XSrFmzJEkzZ87UvHnzvO1/8Ytf6PHHH9fy5cuVnZ2tsrIylZWVqaampuveBUJCjN2mF+4Yo5uGpqqu0aO7X/1YH+87bnVZAIAQ53cYmTFjhp599lnNnz9fo0ePVmFhodasWeMd1HrgwAEdPnzY2/7Xv/61GhoaNH36dKWnp3tvzz77bNe9C4QMZ4xdL33zSk26LEW1DW7N+u+P9cmBE1aXBQAIYX6vM2IF1hkJP6ca3PrOKx+roOiYesTF6LV7rtbIzKQ227pcLiUkJEiSampqFB8fH8xSAQABEpB1RoCO6uaw6+Vvj9P47F6qrmvSt17+u7YfYr0YAMC5CCMImO6OGC2fdZWu7N9Tlaca9a2X/65dZdVWlwUACDGEEQRUgjNGr3xnvK7ITNJxV4O+8ZsCbWUMCQCgFcIIAi4xLlb/850JGpWZpBO1jbpj2Ud6f3v5hXcEAEQFwgiCIql7rF6792rdOKSP6ho9+u7/bNYf/r5fUvPFE1usW7fO5z4AIPIRRhA08c4YLZs5TjPGZcljSo+++am+Pf8FDR8+3Ntm6tSpys7OVl5enoWVAgCCiTCCoIqx2/T0v47UnC9cptpdG/Xqk/+m0tJSnzalpaWaPn06gQQAogTrjMASbrdbqRlZOn7kcJuPG4ahzMxMFRcXy263B7k6AEBXYJ0RhLT169e3G0QkyTRNlZSUaP369UGsCgBgBcIILNH6kgFd0Q4AEL4II7BEenp6l7YDAIQvwggsMWnSJGVmZsowjHbbdEtO1ZDRVwWxKgCAFQgjsITdbtfixYsl6dxAcvp+wvX36NYlBdpUfDzY5QEAgogwAstMmzZNK1euVEZGhs/2rMxMvbj89xo1abKOVNfr9mUfaenf9srtCfmJXwCATmBqLyzXcnwlafXq1Zo8ebLsdrtc9U2al7dNb//jkCRp3IBk/fJro3RJSryV5XaKy+VSQkKCJKmmpkbx8eH3HgDAX0ztRdhovY7Idddd570f74zR4m+M1sJpIxXvsGvz/hO6efE6vbyhWB7OkgBAxCCMIKQZhqHbx/fXuw9dp4mX9lZdo0dPvrNdM35ToH0VLqvLAwB0AcIIwkJmcnf9/u4J+tltIxTvsOvjfSf0pcXrtJyzJEHncrlkGIYMw5DLRSAEcPEIIwgbhmHoW1cP0JoHr9M1g5rPkjzxznZ97b8KtGX/CavLAwB0EmEEYSerV3f94Z7msyTdHXZt2X9C//rrjfre/2zR3qM1VpcHAPATYQRhqeUsSf6/X6+vj8uUzZDWfFamyb9ap0fe3KYjVXVWlwgA6CDCCMJaelI3PTN9lNY8eJ1yh6XK7TH12t8P6PpfrtVz7+1SdV2j1SUCAC6AMIKIMDith35711X603dzNKZ/T51qdOuFv+7R9b9cq//+sFgNTR6rSwQAtIMwgogy/pJeyrv/Gi391pUamBKv464G/fT/bdcXnl+r/y0stWzmjdvt9v6+bt06n/sAzsWsrehCGIHl4uPjZZqmTNPskpVJDcPQl0ak672HrtPP/2WE+vRwquT4Kc15vVBfXbJBGz6v6IKqOy4vL0/Dhw/33p86daqys7OVl5cX1DoAIFSxHDwiXm1Dk5ZvKNbSvxWppr5JkjTpshT9aMpQjcxMCuhr5+Xlafr06Tr7j1nLxQFXrlypadOmBbSGrsbS9ggGPmeRoaPf34QRRI1jNfV68YM9+v1H+9Xobv7YX9m/p7519QBNHZmuuFj7BZ7BP263W9nZ2Tp48GCbjxuGoczMTBUXF/ssiR/q2ruWENCVCCORgWvTAGfpneDUglsuV/7cG3Tb6AzF2AxtPXBSc//0D129MF8/e2e7irpwnZL169e3G0QkyTRNlZSUaP369V32moFGlxOAQCCMIOr0791di74xRhvn3aQfThmifj276WRto367oVg3Pfc33bHsI63edliN7oubgXP48OEubWe1li6n0tJSn+2lpaWaPn06gQRAp9FNg6jn9phat/uofv/Rfv111xG1/Ino08OpGeOy9I3xWcpM7u73865du1Y33njjBdt98MEHuuGGG/x+/mCK1C4nhC66aSIDY0aATjh4olYrPi7R6x+X6Gh1vSTJMKQbh6TqW1f31/WDU2W3GR16rpYv8NLS0nMGsDY/b/h8gUdSsEJ4IIxEBsaMAJ2Qmdxd/z55iDY+fJN+/c0rNfHS3jJN6a87j+g7r2zWdc98oMV/+Vy7yqrbDBit2e12LV68WNKZ2TMtWu4vWrQo5IOIFHldTgBCC2EEaEOs3aabR6brD/dcrb/++/W6d9Il6tk9VqUnT+lXf9mtKYvW6bpffqCf/r/PtHFvRbvjS6ZNm6aVK1cqIyPDZ3tmZmZYTetNT0/v0nahhMW1QhMLBUYXummADqprdOv/Pj2sd/5xWBv2VKi+1RLziXExunFoqnKHpen6IX2UGBfrs2+4T4eNpC6ns9EdEHry8vL0b//2bz6DpTMzM7V48eKwCfBoxpgRIIBqG5q0/vMK/WV7uf6684iOuRq8j8XaDV09sLdyh6Upd3ia+vXsFhFfeC2zaST5BJJwXsBNIoyEmnBcKJDPUPsII0CQuD2mPjlwQu/vKNf728tVdNT3VP/w9ERdf2my5t8zTQ3le1VTXRW2f1m19S/WrKwsLVq0KOS+IDqKL5LQEa6ztvgMtY8wAlhk79Ea5e8o11+2H9Hm/cfV+tp8noZTumZIusYP7KNxA5I1pn9P9TirSyfUhXuX09n4Igkd4Tpri89Q+zr6/R0TxJqAqDCoT4IG9UnQfdcN0rGaen2w66jW/LNU7/1zv2zOeH1UfFIfFZ+U1DxteEhaD43LTta4Ab00dkCyMpO7nTP7JpS0Dh7XXXddWAcRhBZmbUUvwggQQL0TnJo+NlM3D01Wwt3XKDalv5aufFfbDtdq8/7jKjl+SjvLqrWzrFq//+iAJCkt0ekNJuOykzUsPVGxdia+IfJF8qwtnB/dNEAQtHcat7yqTlv2n9DmfSe0Zf9xfXaoSk0e3z+SzhibLkmJ16A+CRrYJ16XpMRr4Onfz561Y+V7CVeR9n7CWbjO2uIz1D66aYAwkJYYp6kj0zV1ZPO/9E41uFVYclJb9h/X5v0ntGX/CVXXNXnPnpwtJcGpgX3iNahPvAamJJwOKvHK6tWdsykIOy0LBU6fPl2GYbQ5aytcFgqEfwgjQAjp5rArZ1Bv5QzqLUnyeEztP16roqM1KjrqUlFFy0+XjlbXq6Km+bap+LjP88TYDPXv3V0DUxI06KyzKb3jHSE9JgVdI1z/td6yUGBb64yE86ytUBUqnxPCCBAE8fHxF1w+vi02m6FLUprDxBeG+T5WVdeo4tMBpfioS3srXCo66lJxRY3qGj3NoeWoS3/Z4btfYlyMN5gM6nPmbEp273jFxUbfvzjPXukz3GcHRYJp06YpNzc3omZt4fwII0CYSoyL1aisnhqV1dNnu8dj6nBVnYqO1qj4dEDZe/rMyqHKU6qqa1JhyUkVlpz02c8wpH49u+mSlHilJcapd4JDKfFO9U5wqHeCU73jHeqd4FCc2l76Phy1rJvSYurUqaz0GSLCadYWgfbiMYAViCJ1jW4VV7hOh5TmgLL39O/VdU0dfh5PXY3ctZUaP2qYUhO7qXeCUynxp0NLgkO9451KOR1ienaLla2DVzoOpnBc6dMfoXL6vbPCpf5wX7o+0P+fWfQMQIeZpqljrgYVHXVp3zGXKmrqdaymQcdq6nXM1aCKVr+7Pf79lWEzpF7ecOJQr/jmsywprc64JDhjFOewq1ts8y2u5afDJofd1uVjXMJ1pU9/hMuXeXvCof5ICLShEkY61U2zZMkS/fKXv1RZWZlGjRqlF154QePHj2+3/Z///Gc9/vjj2rdvny677DL94he/0NSpUzvz0gACwDAMpSQ4lZLg1PhLerXbzuMxVVXX6BNOjtXUN993tQSYBlWc/r3yVKM8prwDbTtXm3xCSlysTd0cre+3DjG2dkLNmce7xdq17eON7QYRqTmclZSUaP369SG10idCh9vt1pw5c9ocC2aapgzD0IMPPqhbb701bANtMPkdRlasWKG5c+dq6dKlmjBhghYtWqQpU6Zo165dSk1NPaf9xo0bdfvtt2vhwoX6yle+otdee0233Xabtm7dqhEjRnTJmwAQHDaboZ7dHerZ3aFLUxMu2L6hyaMTtc0BpSWsVLQKMc3BpUG19U061ehWXaNHdY1unWp0e8/AmKZU2+BWbUPXXULetX1dh9rNWf6BBm2PbTfUtGyLi7G3Cki2MwHJ0RyIHHab7DZDNpuhGJshm2HIbjNkNwzZbGp+zGdb6HVrwdf69esJtF3I7zDy/PPP695779WsWbMkSUuXLtWqVau0fPlyPfzww+e0X7x4sb70pS/phz/8oSTpySef1Pvvv68XX3xRS5cuvcjyAYQyR4xNaYlxSkuM83vfRrenOaA0uL1B5VSjW6ca3KprOrPdJ8Q0uL1hpnn76f0aWt93qzw1TRUdqKG8KU6VB076XfvFMgx5Q4n9dEixGc2hxSe42HwDjPenTZJpqu+3npXpcevbv/tEsTExPvs2/zwThGJsZ72ez2u3tLU1/zzn9QwZp+s2ZKilV80wWm8/ff/07zLO3af1/YaGesWP+IIkU//7jzLFxTkv8Py+zyGf+63anW6rth5T6/rOfs4zAdEwpA3//LxDx/LDf+5R4sBRZ/b1Oc5Gm9tbXuPMY0ab2/1t31abU6dqFZvSv/n3Rres6gzzK4w0NDRoy5YtmjdvnnebzWZTbm6uCgoK2tynoKBAc+fO9dk2ZcoUvfXWW+2+Tn19verrz5zSraqq8qdMABEg1m5TrN0WkFVm3e7rlP3uovOu9JnaN0N/fHyWGjzyhpjmUOM5c9/70+MNQq3DUP3pANXQ5JHbYzbfTPOC425MU2oyTcnP8Tlnc/YbKkn6eH/lRT2PVVK+/JAk6ZG3d1pcybnqDnQkzkovfHRUyw5tDHA1Fyfj7pckSbvLa5TS05pxmX6FkYqKCrndbqWlpflsT0tL086dbX9YysrK2mxfVlbW7ussXLhQP/3pT/0pDQA6rCMrfb704n/qxmF9A1aDp1Uw8Zz+2TqweDw6/dM3xLTcPD77yvt7k6d5n6qaGn39tq9I7iY9Mv+nGjl+ogybTU3uVvu0ev6W52vZ3/vY6bZt13jmdzX/J9M0T//0vd/8uNm8vfXvp9vK576pJrdb7733niRDX8jNld1u993vrOfQOc/pW4d87rd+DnmP/7l1nam9RcuvZq/xOrm6j+orj7Z7jJ1JfXTZFVdJtjOrIZ+dfdubQtL6M2n6bD+rXatHzTbqPHcf3ydwNzXp4D82yFN7UoUj6jTh0tusGeNi+qG0tNSUZG7cuNFn+w9/+ENz/Pjxbe4TGxtrvvbaaz7blixZYqamprb7OnV1dWZlZaX3VlJSYkoyKysr/SkXAM7rjTfeMPv162ee/hvalGRmZWWZb7zxhtWlXZS23ldmZmbYv69Q88Ybb5iGYZiGYfj8v27ZFur/v4PxOamsrOzQ97dfF69ISUmR3W5XeXm5z/by8nL17dv2vyD69u3rV3tJcjqdSkxM9LkBQFebNm2atm/f7r2/evVqFRcXh/x0zPNpmW7aet0LSSotLdX06dOVl5dnUWWRp2Xp+oyMDJ/tmZmZIT+tN9Q+J36FEYfDobFjxyo/P9+7zePxKD8/Xzk5OW3uk5OT49Nekt5///122wNAMIXTSp8XcqHpppL04IMP+qwYiosTjoE2FD8nfl/Wc+7cuVq2bJleffVV7dixQ/fff79cLpd3ds3MmTN9BrjOmTNHa9as0XPPPaedO3fqJz/5iTZv3qwHHnig694FAMCv6aboOuEWaEPxc+L31N4ZM2bo6NGjmj9/vsrKyjR69GitWbPGO0j1wIEDsrUarHPNNdfotdde02OPPaZHHnlEl112md566y3WGAGALnb48OEubYfIFIqfk06twPrAAw+0e2Zj7dq152z72te+pq997WudeSkAQAelp6d3aTtEplD8nPjdTQMACE2TJk1SZmZmu9fyMQxDWVlZmjRpUpArQygJxc8JYQQAIkTL+imSzvmiabm/aNGikB/TgMAKxc8JYQQAIkg4TzdF8ITa58Qw25rbE2I6egliAPBXOFyqvjNa/t6UmqebTp48mTMiARLOn6FAf046+v3dqQGsABAp4uPj21xvIdyF23RTWCNUPieEEQAALkKkBtpgYswIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClmNoLABGI6aboiFD5nHBmBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGCpGKsL6AjTNCVJVVVVFlcCAAA6quV7u+V7vD1hEUaqq6slSVlZWRZXAgAA/FVdXa2kpKR2HzfMC8WVEODxeHTo0CH16NFDhmF02fNWVVUpKytLJSUlSkxM7LLnxcXhuIQmjkto4riEJo5LM9M0VV1drYyMDNls7Y8MCYszIzabTZmZmQF7/sTExKj+sIQqjkto4riEJo5LaOK46LxnRFowgBUAAFiKMAIAACwV1WHE6XRqwYIFcjqdVpeCVjguoYnjEpo4LqGJ4+KfsBjACgAAIldUnxkBAADWI4wAAABLEUYAAIClCCMAAMBSER9GlixZouzsbMXFxWnChAnatGnTedv/+c9/1tChQxUXF6eRI0dq9erVQao0uvhzXJYtW6ZJkyYpOTlZycnJys3NveBxROf4++elxeuvvy7DMHTbbbcFtsAo5e9xOXnypGbPnq309HQ5nU4NHjyYv8sCwN/jsmjRIg0ZMkTdunVTVlaWHnroIdXV1QWp2hBnRrDXX3/ddDgc5vLly83PPvvMvPfee82ePXua5eXlbbb/8MMPTbvdbj7zzDPm9u3bzccee8yMjY01t23bFuTKI5u/x+WOO+4wlyxZYn7yySfmjh07zG9/+9tmUlKSefDgwSBXHtn8PS4tiouLzX79+pmTJk0yb7311uAUG0X8PS719fXmuHHjzKlTp5obNmwwi4uLzbVr15qFhYVBrjyy+Xtc/vCHP5hOp9P8wx/+YBYXF5vvvvuumZ6ebj700ENBrjw0RXQYGT9+vDl79mzvfbfbbWZkZJgLFy5ss/3Xv/5188tf/rLPtgkTJpjf/e53A1pntPH3uJytqanJ7NGjh/nqq68GqsSo1Jnj0tTUZF5zzTXmb3/7W/Ouu+4ijASAv8fl17/+tTlw4ECzoaEhWCVGJX+Py+zZs82bbrrJZ9vcuXPNiRMnBrTOcBGx3TQNDQ3asmWLcnNzvdtsNptyc3NVUFDQ5j4FBQU+7SVpypQp7baH/zpzXM5WW1urxsZG9erVK1BlRp3OHpcnnnhCqampuvvuu4NRZtTpzHF5++23lZOTo9mzZystLU0jRozQU089JbfbHayyI15njss111yjLVu2eLtyioqKtHr1ak2dOjUoNYe6sLhQXmdUVFTI7XYrLS3NZ3taWpp27tzZ5j5lZWVtti8rKwtYndGmM8flbD/+8Y+VkZFxTnBE53XmuGzYsEEvv/yyCgsLg1BhdOrMcSkqKtJf//pXffOb39Tq1au1Z88eff/731djY6MWLFgQjLIjXmeOyx133KGKigpde+21Mk1TTU1N+t73vqdHHnkkGCWHvIg9M4LI9PTTT+v111/Xm2++qbi4OKvLiVrV1dW68847tWzZMqWkpFhdDlrxeDxKTU3Vb37zG40dO1YzZszQo48+qqVLl1pdWlRbu3atnnrqKb300kvaunWr8vLytGrVKj355JNWlxYSIvbMSEpKiux2u8rLy322l5eXq2/fvm3u07dvX7/aw3+dOS4tnn32WT399NP6y1/+oiuuuCKQZUYdf4/L3r17tW/fPt1yyy3ebR6PR5IUExOjXbt2adCgQYEtOgp05s9Lenq6YmNjZbfbvduGDRumsrIyNTQ0yOFwBLTmaNCZ4/L444/rzjvv1D333CNJGjlypFwul+677z49+uijstmi+9xAxL57h8OhsWPHKj8/37vN4/EoPz9fOTk5be6Tk5Pj016S3n///Xbbw3+dOS6S9Mwzz+jJJ5/UmjVrNG7cuGCUGlX8PS5Dhw7Vtm3bVFhY6L199atf1Y033qjCwkJlZWUFs/yI1Zk/LxMnTtSePXu84VCSdu/erfT0dIJIF+nMcamtrT0ncLQERpNLxEX+1F6n02m+8sor5vbt28377rvP7Nmzp1lWVmaapmneeeed5sMPP+xt/+GHH5oxMTHms88+a+7YscNcsGABU3sDwN/j8vTTT5sOh8NcuXKlefjwYe+turraqrcQkfw9LmdjNk1g+HtcDhw4YPbo0cN84IEHzF27dpnvvPOOmZqaav7sZz+z6i1EJH+Py4IFC8wePXqYf/zjH82ioiLzvffeMwcNGmR+/etft+othJSIDiOmaZovvPCC2b9/f9PhcJjjx483P/roI+9j119/vXnXXXf5tP/Tn/5kDh482HQ4HObll19urlq1KsgVRwd/jsuAAQNMSefcFixYEPzCI5y/f15aI4wEjr/HZePGjeaECRNMp9NpDhw40Pz5z39uNjU1BbnqyOfPcWlsbDR/8pOfmIMGDTLj4uLMrKws8/vf/7554sSJ4BceggzT5PwQAACwTsSOGQEAAOGBMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAAS/1/femhE/HbWVMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "from iminuit import Minuit, cost\n", + "#from iminuit import Minuit, cost\n", "\n", "def discharge_current2(t, I0, tau):\n", " return I0 * np.exp(-t/tau)\n", @@ -1010,7 +2008,8 @@ " discharge_current2\n", ")\n", "mi = Minuit(ls, I0=0.9, tau=0.3)\n", - "mi.migrad()" + "mi.migrad()\n", + "mi.hesse()" ] }, { @@ -1023,7 +2022,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 497, "id": "69f540a5-e89b-4c24-aa7e-b03eaedb28d1", "metadata": {}, "outputs": [ @@ -1033,7 +2032,7 @@ "1.0670397937137222" ] }, - "execution_count": 22, + "execution_count": 497, "metadata": {}, "output_type": "execute_result" } @@ -1052,17 +2051,17 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 498, "id": "66e6da5b-ff32-4982-a3aa-5b9b93262073", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.050402330240634355" + "0.050401508019580855" ] }, - "execution_count": 23, + "execution_count": 498, "metadata": {}, "output_type": "execute_result" } @@ -1081,13 +2080,13 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 499, "id": "45fcf856-c58e-424d-8fd7-15037cb6698e", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMtklEQVR4nO3deVhUZf8G8PvMwAwMq4gsCoq4Kyq4EWq5ROKaZv0iLbes1MxU3hYxxcxeNTPfNE3LNK3c8s2sXHDBpUzSFHELURQUkUFxAQRkmTm/P3yZnESdgZk5M8P9ua5zwZw558x3zhhz9zzPeY4giqIIIiIiIjshk7oAIiIiIlNiuCEiIiK7wnBDREREdoXhhoiIiOwKww0RERHZFYYbIiIisisMN0RERGRXHKQuwNK0Wi2uXLkCNzc3CIIgdTlERERkAFEUUVBQgLp160Ime3jbTI0LN1euXEFgYKDUZRAREVEVZGZmIiAg4KHb1Lhw4+bmBuDuyXF3d5e4GiIiIjJEfn4+AgMDdd/jD1Pjwk1FV5S7uzvDDRERkY0xZEgJBxQTERGRXWG4ISIiIrvCcENERER2pcaNuSEiInoQjUaDsrIyqcuosRQKxSMv8zYEww0REdV4oihCrVbj1q1bUpdSo8lkMjRs2BAKhaJax2G4ISKiGq8i2Pj4+EClUnGSVwlUTLKbnZ2N+vXrV+szYLghIqIaTaPR6IJN7dq1pS6nRqtTpw6uXLmC8vJyODo6Vvk4HFBMREQ1WsUYG5VKJXElVNEdpdFoqnUchhsiIiIYNjkcmZepPgOGGyIiIrIrDDdERERkVxhuiIiIqNref/99+Pr6QhAEbN68GSNHjsSgQYMkqYXhhoiIyAaNHDkSgiDoltq1a6N37944ceKEyV7j/fffR2ho6CO3S0lJwcyZM/HFF18gOzsbffr0wcKFC7Fq1SrdNt27d8ekSZNMVtvDMNwQERHZqN69eyM7OxvZ2dlISEiAg4MD+vfvb/E6zp8/DwAYOHAg/Pz8oFQq4eHhAU9PT4vXAjDcmExRaTmCpmxF0JStKCotl7ocIiKqIlEUUVhYKMkiiqJRtSqVSvj5+cHPzw+hoaGYMmUKMjMzce3aNd02mZmZeP755+Hp6QkvLy8MHDgQGRkZuuf37duHTp06wcXFBZ6enujSpQsuXryIVatWYebMmTh+/LiudejelpgK77//PgYMGADg7gzDFVc83dstNXLkSOzfvx8LFy7UHeveGkyNk/gRERHdo6ioCK6urpK89u3bt+Hi4lLlfb/77js0btxYNxlhWVkZoqKiEBERgd9++w0ODg748MMPdd1XMpkMgwYNwquvvop169ahtLQUhw8fhiAIiI6OxqlTpxAfH4/du3cDADw8PO573bfeegtBQUEYNWoUsrOzK61t4cKFOHv2LEJCQvDBBx8AuDthn7kw3BAREdmoLVu26IJYYWEh/P39sWXLFt3NJzds2ACtVouvvvpK16Ly9ddfw9PTE/v27UOHDh2Ql5eH/v37o1GjRgCAFi1a6I7v6uoKBwcH+Pn5PbAGV1dXXffTg7bz8PCAQqGASqV66LFMheGGiIjoHiqVCrdv35bstY3Ro0cPLF26FABw8+ZNfP755+jTpw8OHz6MBg0a4Pjx40hLS4Obm5vefnfu3MH58+fRq1cvjBw5ElFRUXjqqacQGRmJ559/Hv7+/iZ7T1JguCEiIrqHIAhV7hqyNBcXFzRu3Fj3+KuvvoKHhweWL1+ODz/8ELdv30b79u2xZs2a+/at6Bb6+uuv8eabbyI+Ph4bNmzAtGnTsGvXLjz22GMWex+mxnBDRERkJwRBgEwmQ3FxMQCgXbt22LBhA3x8fODu7v7A/cLCwhAWFobY2FhERERg7dq1eOyxx6BQKKp9n6cKpjzWo/BqKSIiIhtVUlICtVoNtVqNlJQUTJgwAbdv39ZdvfTiiy/C29sbAwcOxG+//Yb09HTs27cPb775Ji5fvoz09HTExsYiMTERFy9exM6dO3Hu3DnduJugoCCkp6cjOTkZubm5KCkpqXKtQUFBOHToEDIyMpCbmwutVmuSc1AZhhsiIiIbFR8fD39/f/j7+yM8PBx//vknNm7ciO7duwO4O4bn119/Rf369TF48GC0aNECo0ePxp07d+Du7g6VSoUzZ87g2WefRdOmTfHaa69h/PjxGDNmDADg2WefRe/evdGjRw/UqVMH69atq3Ktb731FuRyOVq2bIk6derg0qVLpjgFlRJEYy+qt3H5+fnw8PBAXl7eQ5vojFVUWo6WcTsAAH99EAWVgj1+RES24M6dO0hPT0fDhg3h5OQkdTk12sM+C2O+v9lyQ0RERHaF4YaIiIjsCsONGajz7khdAhERUY3FcGMiPxy9rLsnSOSC/djwp/kGShEREdGDMdyYQHZeMeJ+Oq2b2lorAlM3nUJ2XrHElREREdU8DDcmkJ5biH9ecqYRRWTkFklSDxERUU3GcGMCDb1dIBP018kFAUHext0jhIiIiKqP4cYE/D2cMfPpVhC1d6eVFgDMHhwCfw9naQsjIiKLKSotR9CUrQiashVFpeVSl1OjMdyYyLPtA3B9x2Ko18ZiZJ10RHesL3VJRERENRLDjQnJnd1RknkS6vMpUpdCREQ1wMiRIyEIAgRBgKOjI3x9ffHUU09h5cqVRt27adWqVfD09DRfoRbGcGNCjl71AACpqakSV0JERDVF7969kZ2djYyMDGzfvh09evTAxIkT0b9/f5SX18zuMYYbE3LwCgQAnDt3VuJKiIhISpaczFWpVMLPzw/16tVDu3btMHXqVPz000/Yvn07Vq1aBQBYsGABWrduDRcXFwQGBuL111/H7du3AQD79u3DqFGjkJeXp2sFev/99wEA3377LTp06AA3Nzf4+flh6NChuHr1qsXeW1Ux3JiQY+27LTeXMzNRWFgocTVERGQuRaXl9y1rD/09eWvkgv34NjHjvm0spWfPnmjbti02bdoEAJDJZFi0aBFOnz6N1atXY8+ePXjnnXcAAJ07d8ann34Kd3d3ZGdnIzs7G2+99RYAoKysDLNmzcLx48exefNmZGRkYOTIkRZ7H1XFW1ebkNzZHTJnd2iL83H27FmEhYVJXRIREZlBy7gdD31eKwLTfzqN6T+d1lufMbefOcvS07x5c5w4cQIAMGnSJN36oKAgfPjhhxg7diw+//xzKBQKeHh4QBAE+Pn56R3j5Zdf1v0eHByMRYsWoWPHjrh9+zZcXV0t8j6qgi03JuboFQCA426IiEhaoijqZs7fvXs3nnzySdSrVw9ubm4YNmwYrl+/jqKih082e/ToUQwYMAD169eHm5sbunXrBgC4dMm6bzHElhsTc/Cqh5KsvxhuiIjs2F8fROk9VufdQeSC/dDeM129TAB2x3SDn4eThau7KyUlBQ0bNkRGRgb69++PcePG4d///je8vLxw4MABjB49GqWlpVCpKp9wtrCwEFFRUYiKisKaNWtQp04dXLp0CVFRUSgtLbXwuzEOw42JVYy7OXPmjMSVEBGRuagU+l+fwXVcMfPpVrpuKJkAzBncGsF1pOm62bNnD06ePInJkyfj6NGj0Gq1+OSTTyCT3e2w+f777/W2VygU0Gg0euvOnDmD69evY+7cuQgMvHvBzJEjRyzzBqqJ3VImxm4pIqKa6dn2Abrfd8d0s9hkriUlJVCr1cjKykJSUhJmz56NgQMHon///hg+fDgaN26MsrIyfPbZZ7hw4QK+/fZbLFu2TO8YQUFBuH37NhISEpCbm4uioiLUr18fCoVCt9/PP/+MWbNmWeQ9VRfDjYlVhJuzZ89CFP95O00iIqoJLNkVFR8fD39/fwQFBaF3797Yu3cvFi1ahJ9++glyuRxt27bFggUL8NFHHyEkJARr1qzBnDlz9I7RuXNnjB07FtHR0ahTpw7mzZuHOnXqYNWqVdi4cSNatmyJuXPnYv78+RZ7X9UhiDXsGzg/Px8eHh7Iy8uDu7u7yY9fVlYGlUqF8vJyZGZmIiAg4NE7ERGRZO7cuYP09HQ0bNgQTk5VDyVFpeW6q6j++iDqvq4rerSHfRbGfH9L2nLz66+/YsCAAahbty4EQcDmzZsfuc++ffvQrl07KJVKNG7cWDdBkbVwdHREcHAwAI67ISIikoKk4aawsBBt27bFkiVLDNo+PT0d/fr1Q48ePZCcnIxJkybhlVdewY4dD59vwNKaNWsGgONuiIhqEpXCARlz+yFjbj+22khM0rPfp08f9OnTx+Dtly1bhoYNG+KTTz4BALRo0QIHDhzAf/7zH0RFRT1ib8tp3rw5fvnlF4YbIiIiCdjUgOLExERERkbqrYuKikJiYuID9ykpKUF+fr7eYm4VLTfsliIiIrI8mwo3arUavr6+eut8fX2Rn5+P4uLiSveZM2cOPDw8dEvFtfrmxG4pIiLbU8Our7FKpvoMbCrcVEVsbCzy8vJ0S2Zmptlfs3nz5gDuTk/9qKmtiYhIWo6OjgDAv9dWoGLmY7lcXq3j2NSIJz8/P+Tk5Oity8nJgbu7O5ydnSvdR6lUQqlUWqI8HW9vb3h5eeHGjRs4e/YsQkNDLfr6RERkOLlcDk9PT1y9ehUAoFKpdPdkIsvRarW4du0aVCoVHByqF09sKtxERERg27Zteut27dqFiIgIiSp6sGbNmiExMRGpqakMN0REVq7ibtgVAYekIZPJUL9+/WqHS0nDze3bt5GWlqZ7nJ6ejuTkZHh5eaF+/fqIjY1FVlYWvvnmGwDA2LFjsXjxYrzzzjt4+eWXsWfPHnz//ffYunWrVG/hge4NN0REZN0EQYC/vz98fHxQVlYmdTk1lkKh0N3/qjokDTdHjhxBjx49dI9jYmIAACNGjMCqVauQnZ2td1v1hg0bYuvWrZg8eTIWLlyIgIAAfPXVV1Z1GXiFinE3DDdERLZDLpdXe7wHSU/ScNO9e/eHjoyubPbh7t2749ixY2asyjR4OTgREZE07P5qKalUhBveQJOIiMiyGG7MpFGjRpDL5bh9+zauXLkidTlEREQ1BsONmSgUCt5Ak4iISAIMN2bEcTdERESWx3BjRq1atQIAnD59WuJKiIiIag6GGzNiuCEiIrI8hhszCgkJAQCcOnWKV0wRERFZCMONGTVv3hwymQw3bty4755YREREZB4MN2bk7OyMRo0aAbjbekNERETmx3BjZvd2TREREZH5MdyYGQcVExERWRbDjZmx5YaIiMiyGG7M7N6WG14xRUREZH4MN2bWtGlTODg4oKCgAJmZmVKXQ0REZPcYbsxMoVDobsPAcTdERETmx3BjARVdUxx3Q0REZH4MNxbAQcVERESWw3BjAbwcnIiIyHIYbiygouXmr7/+glarlbgaIiIi+8ZwYwGNGjWCUqlEcXEx0tPTpS6HiIjIrjHcWIBcLkeLFi0AcNwNERGRuTHcWEhF1xTH3RAREZkXw42F8HJwIiIiy2C4sRBeDk5ERGQZDDcWUhFuUlNTUVZWJnE1RERE9ovhxkLq168PFxcXlJaWIi0tTepyiIiI7BbDjYXIZDJO5kdERGQBDDcWxEHFRERE5sdwY0G8HJyIiMj8GG4siC03RERE5sdwY0EVLTfnzp1DcXGxxNUQERHZJ4YbC6pbty68vb2h0WjYNUVERGQmDDcWJAgCwsLCAADHjh2TuBoiIiL7xHBjYaGhoQCA5ORkSesgIiKyVww3FsZwQ0REZF4MNxZW0S11/PhxaDQaiashIiKyPww3Fta0aVM4OzujsLAQ58+fl7ocIiIiu8NwY2FyuRytW7cGwK4pIiIic2C4kUDFuBteMUVERGR6DDcSqBh3w5YbIiIi02O4kQCvmCIiIjIfhhsJtG7dGoIgQK1WQ61WS10OERGRXWG4kYCLiwuaNWsGgK03REREpsZwIxF2TREREZkHw41EGG6IiIjMg+FGIryBJhERkXlIHm6WLFmCoKAgODk5ITw8HIcPH37o9p9++imaNWsGZ2dnBAYGYvLkybhz546FqjWdtm3bAgDOnTuH27dvS1wNERGR/ZA03GzYsAExMTGYMWMGkpKS0LZtW0RFReHq1auVbr927VpMmTIFM2bMQEpKClasWIENGzZg6tSpFq68+nx9feHv7w9RFHHy5EmpyyEiIrIbkoabBQsW4NVXX8WoUaPQsmVLLFu2DCqVCitXrqx0+4MHD6JLly4YOnQogoKC0KtXLwwZMuSRrT3Wil1TREREpidZuCktLcXRo0cRGRn5dzEyGSIjI5GYmFjpPp07d8bRo0d1YebChQvYtm0b+vbt+8DXKSkpQX5+vt5iLTiomIiIyPQcpHrh3NxcaDQa+Pr66q339fXFmTNnKt1n6NChyM3NRdeuXSGKIsrLyzF27NiHdkvNmTMHM2fONGntpsJwQ0REZHqSDyg2xr59+zB79mx8/vnnSEpKwqZNm7B161bMmjXrgfvExsYiLy9Pt2RmZlqw4oer6JY6efIkysvLJa6GiIjIPkjWcuPt7Q25XI6cnBy99Tk5OfDz86t0n+nTp2PYsGF45ZVXANy9jUFhYSFee+01vPfee5DJ7s9qSqUSSqXS9G/ABIKDg+Hq6orbt28jNTUVrVq1krokIiIimydZy41CoUD79u2RkJCgW6fVapGQkICIiIhK9ykqKrovwMjlcgCAKIrmK9ZMZDKZ7pJwdk0RERGZhqTdUjExMVi+fDlWr16NlJQUjBs3DoWFhRg1ahQAYPjw4YiNjdVtP2DAACxduhTr169Heno6du3ahenTp2PAgAG6kGNrKrqmkpKSJK6EiIjIPkjWLQUA0dHRuHbtGuLi4qBWqxEaGor4+HjdIONLly7ptdRMmzYNgiBg2rRpyMrKQp06dTBgwAD8+9//luotVFuHDh0AAH/++afElRAREdkHQbTF/pxqyM/Ph4eHB/Ly8uDu7i51OUhJSUHLli2hUqmQl5cHBwdJ8yYREZFVMub726aulrJHzZo1g5ubG4qKivDXX39JXQ4REZHNY7iRmEwmY9cUERGRCTHcWIFOnToBgM3eRoKIiMiaMNxYgY4dOwJgyw0REZEpMNxYgYqWmxMnTqC4uFjiaoiIiGwbw40VCAgIgK+vLzQaDe8QTkREVE0MN1ZAEARd6w27poiIiKqH4cZKVIy74aBiIiKi6mG4sRJsuSEiIjINhhsrUdFyc+7cOdy8eVPiaoiIiGwXw42V8PLyQqNGjQAAR44ckbgaIiIi28VwY0U4mR8REVH1MdxYEQ4qJiIiqj6GGytyb8tNDbtZOxERkckw3FiRsLAwyOVyqNVqZGVlSV0OERGRTWK4sSIqlQohISEAeEk4ERFRVTHcWBkOKiYiIqoehhsrw0HFRERE1cNwY2UqWm6OHDkCrVYrcTVERES2h+HGyrRq1QoqlQr5+flISUmRuhwiIiKbw3BjZRwcHBAeHg4A+P333yWuhoiIyPYw3FihLl26AGC4ISIiqgqGGyvUtWtXAMCBAwckroSIiMj2MNxYocceewyCIODChQvIzs6WuhwiIiKbwnBjhTw8PNCmTRsA7JoiIiIyFsONleK4GyIioqphuLFSFeGG426IiIiMw3BjpSoGFR87dgyFhYUSV0NERGQ7HAzZaNGiRUYfeNSoUXBzczN6P7qrfv36CAgIwOXLl3H48GH06NFD6pKIiIhsgkHhZtKkSQgICIBcLjfooJmZmejfvz/DTTV17doV69evx4EDBxhuiIiIDGRQuAHu3uvIx8fHoG0ZakyjS5cuWL9+PQcVExERGcGgMTczZsyAq6urwQedOnUqvLy8qlwU3VUx7ubgwYPQaDQSV0NERGQbBFEURamLsKT8/Hx4eHggLy8P7u7uUpfzUBqNBrVq1UJBQQGSk5PRtm1bqUsiIiKShDHf3ya5Wio/Px9Lly5Fhw4dTHE4+h+5XI7HHnsMAC8JJyIiMlS1ws3evXsxbNgw+Pv7Y9asWbq7WZPpVHRNcdwNERGRYQweUFwhKysLq1atwtdff41bt27h5s2bWLt2LZ5//nkIgmCOGms0zlRMRERkHINbbn744Qf07dsXzZo1Q3JyMj755BNcuXIFMpkMrVu3ZrAxk/DwcMjlcly6dAmZmZlSl0NERGT1DA430dHRCAsLQ3Z2NjZu3IiBAwdCoVCYszYC4OrqitDQUABsvSEiIjKEweFm9OjRWLJkCXr37o1ly5bh5s2b5qyL7lEx7ua3336TuBIiIiLrZ3C4+eKLL5CdnY3XXnsN69atg7+/PwYOHAhRFKHVas1ZY433xBNPAAD2798vcSVERETWz6irpZydnTFixAjs378fJ0+eRKtWreDr64suXbpg6NCh2LRpk7nqrNG6desGQRBw+vRp5OTkSF0OERGRVavypeBNmjTB7NmzkZmZie+++w5FRUUYMmSIKWuj/6ldu7ZuAr+9e/dKXA0REZF1q/YkfjKZDAMGDMDmzZt5NY8Z9ezZEwCwZ88eiSshIiKybkbPcwMAV65cwYEDB3D16lW98TaCIGDChAkmK47+1rNnTyxYsIDhhoiI6BGMvrfUqlWrMGbMGCgUCtSuXVtvfhtBEHDhwgWTF2lKtnRvqXvl5+fDy8sLGo0GGRkZaNCggdQlERERWYxZ7y01ffp0xMXFIS8vDxkZGUhPT9ct1h5sbJm7uzs6duwIgONuiIiIHsbocFNUVIQXXngBMplJ7rmJJUuWICgoCE5OTggPD8fhw4cfuv2tW7cwfvx4+Pv7Q6lUomnTpti2bZtJarF2PXr0AMBwQ0RE9DBGJ5TRo0dj48aNJnnxDRs2ICYmBjNmzEBSUhLatm2LqKgoXL16tdLtS0tL8dRTTyEjIwP//e9/kZqaiuXLl6NevXomqcfa3Tuo2MjeRCIiohrD6DE3Go0G/fv3R3FxMVq3bg1HR0e95xcsWGDwscLDw9GxY0csXrwYAKDVahEYGIgJEyZgypQp922/bNkyfPzxxzhz5sx9r/sgJSUlKCkp0T3Oz89HYGCgzY25Ae62mtWqVQulpaU4e/YsmjRpInVJREREFmHWMTdz5szBjh07kJOTg5MnT+LYsWO6JTk52eDjlJaW4ujRo4iMjPy7GJkMkZGRSExMrHSfn3/+GRERERg/fjx8fX0REhKC2bNnQ6PRPLReDw8P3RIYGGhwjdZGpVIhIiICAC8JJyIiehCjLwX/5JNPsHLlSowcObJaL5ybmwuNRgNfX1+99b6+vjhz5kyl+1y4cAF79uzBiy++iG3btiEtLQ2vv/46ysrKMGPGjEr3iY2NRUxMjO5xRcuNrerZsyf279+PPXv2YMyYMVKXQ0REZHWMbrlRKpXo0qWLOWp5JK1WCx8fH3z55Zdo3749oqOj8d5772HZsmUP3EepVMLd3V1vsWUV42727t3Le3oRERFVwuhwM3HiRHz22WfVfmFvb2/I5fL77pWUk5MDPz+/Svfx9/dH06ZNIZfLdetatGgBtVqN0tLSatdkCzp16gSVSoVr167h9OnTUpdDRERkdYwON4cPH8bq1asRHByMAQMGYPDgwXqLoRQKBdq3b4+EhATdOq1Wi4SEBN24kn/q0qUL0tLS9Foszp49C39/fygUCmPfik1SKBTo2rUrAF4STkREVBmjw42npycGDx6Mbt26wdvbW2+wroeHh1HHiomJwfLly7F69WqkpKRg3LhxKCwsxKhRowAAw4cPR2xsrG77cePG4caNG5g4cSLOnj2LrVu3Yvbs2Rg/fryxb8Om8T5TRERED2b0gOKvv/7aZC8eHR2Na9euIS4uDmq1GqGhoYiPj9cNMr506ZLeZIGBgYHYsWMHJk+ejDZt2qBevXqYOHEi3n33XZPVZAsqws2+ffug0Wj0uumIiIhqOqPnubF1tnpvqXuVl5fD29sbeXl5OHToEDp16iR1SURERGZl8nlu2rVrh5s3bxpcQNeuXZGVlWXw9mQcBwcHPPnkkwCA7du3S1wNERGRdTGoWyo5ORnHjx+Hl5eXQQdNTk7WmxWYTK9Pnz7YtGkTtm/f/sA5foiIiGoig8fcPPnkkwbfz0gQhCoXRIbp3bs3gLtXr+Xm5sLb21viioiIiKyDQeEmPT3d6AMHBAQYvQ8ZLiAgAK1bt8bJkyexc+dODB06VOqSiIiIrIJB4aZBgwbmroOqoE+fPjh58iS2b9/OcENERPQ/Rs9zQ9ajT58+AIAdO3bwVgxERET/w3Bjw7p06QI3Nzdcu3YNR48elbocIiIiq8BwY8McHR0RGRkJgJeEExERVWC4sXEVXVMMN0RERHcZHW6Cg4Nx/fr1+9bfunULwcHBJimKDFcRbg4dOlTp50JERFTTGB1uMjIyoNFo7ltfUlLCWYklEBAQgJCQEIiiiJ07d0pdDhERkeQMnsTv559/1v2+Y8cOvTuAazQaJCQkICgoyKTFkWH69OmDU6dOYfv27RgyZIjU5RAREUnK4BtnVtydWxCE+2YqdnR0RFBQED755BP079/f9FWakD3cOPOf9u7di549e6JOnTpQq9V6d1InIiKyB8Z8fxvcclMxj0rDhg3x559/crp/K9KlSxe4urri2rVrSEpKQocOHaQuiYiISDJG/y9+eno6g42VUSgUvCSciIjofwxuublXQkICEhIScPXq1ftmxl25cqVJCiPj9O3bF5s3b8bWrVsxffp0qcshIiKSjNEtNzNnzkSvXr2QkJCA3Nxc3Lx5U28hafTv3x+CIODQoUO8ao2IiGo0o1tuli1bhlWrVmHYsGHmqIeqyN/fH4899hgSExPx008/4fXXX5e6JCIiIkkY3XJTWlqKzp07m6MWqqZnnnkGAPDjjz9KXAkREZF0jA43r7zyCtauXWuOWqiaKsLNvn372EVIREQ1ltHdUnfu3MGXX36J3bt3o02bNnB0dNR7fsGCBSYrjozTuHFjhISE4NSpU9iyZQu7DomIqEYyOtycOHECoaGhAIBTp07pPScIgkmKoqp75plncOrUKfz4448MN0REVCMZPEOxvbDHGYrvdezYMbRr1w7Ozs7Izc2FSqWSuiQiIqJqM+b7u8rz9KelpWHHjh0oLi4GgPtuyUDSCA0NRYMGDVBcXMwbaRIRUY1kdLi5fv06nnzySTRt2hR9+/ZFdnY2AGD06NH417/+ZfICyTiCIPCqKSIiqtGMDjeTJ0+Go6MjLl26pNflER0djfj4eJMWR1VTEW5++eUXlJWVSVwNERGRZRkdbnbu3ImPPvoIAQEBeuubNGmCixcvmqwwqrouXbqgTp06uHnzJn799VepyyEiIrIoo8NNYWFhpYNUb9y4AaVSaZKiqHrkcjmefvppAOyaIiKimsfocPP444/jm2++0T0WBAFarRbz5s1Djx49TFocVV1F19TmzZvvu7kpERGRPTN6npt58+bhySefxJEjR1BaWop33nkHp0+fxo0bN/D777+bo0aqgieffBKurq7IysrCn3/+ifDwcKlLIiIisgijW25CQkJw9uxZdO3aFQMHDkRhYSEGDx6MY8eOoVGjRuaokarAyckJ/fv3BwCsX79e4mqIiIgsx6hJ/MrKytC7d28sW7YMTZo0MWddZmPvk/jd65dffsHTTz8Nf39/ZGZmQi6XS10SERFRlZhtEj9HR0ecOHGiWsWR5URFRaFWrVrIzs7G/v37pS6HiIjIIozulnrppZewYsUKc9RCJqZQKPDcc88BAL757jsETdmKoClbUVRaLnFlRERE5mP0gOLy8nKsXLkSu3fvRvv27eHi4qL3PO8Kbl2GDh2K5cuXY/OmTfB45WkIDo6P3omIiMiGGR1uTp06hXbt2gEAzp49q/cc7wpufR5//HHUq1cPWVlZUKQfharJY1KXREREZFZGhRuNRoOZM2eidevWqFWrlrlqIhOSy+WIjo7GggULUPjXfoYbIiKye0aNuZHL5ejVqxdu3bplpnLIHIYOHQoAKE47BG1JkcTVEBERmVeV5rm5cOGCOWohM2nXrh2aNGkKsbwURef+kLocIiIiszI63Hz44Yd46623sGXLFmRnZyM/P19vIesjCAL+LzoaAFCYwkvCiYjIvhk1iR8AyGR/56F7BxCLoghBEKDRaExXnRnUpEn87pV88jTC2oQAggwZmZfRoJ6/1CUREREZzJjvb6Ovltq7d2+VCyPpNG3WDAq/xihVp+HHH/6LSW9OkLokIiIiszA63HTr1s0cdZAFuLTohlJ1GjasX8dwQ0REdsvocPPrr78+9PknnniiysWQealaPIGb+77GH4mJSE1NRbNmzaQuiYiIyOSMDjfdu3e/b929Y2+sfcxNTebgVhvu4c+i8PQerFixAvPmzZO6JCIiIpMz+mqpmzdv6i1Xr15FfHw8OnbsiJ07d1apiCVLliAoKAhOTk4IDw/H4cOHDdpv/fr1EAQBgwYNqtLr2rui0nLdsvbQJQBArW4jUG/s1/j24AXkFRbzPlNERGR3jL5a6kH279+PmJgYHD161Kj9NmzYgOHDh2PZsmUIDw/Hp59+io0bNyI1NRU+Pj4P3C8jIwNdu3ZFcHAwvLy8sHnzZoNeryZdLRU0ZesDnxO1GtzJOAbn4A7ImNvPglUREREZz5jvb6Nbbh7E19cXqampRu+3YMECvPrqqxg1ahRatmyJZcuWQaVSYeXKlQ/cR6PR4MUXX8TMmTMRHBxcnbJrLEEmx53MU1KXQUREZHJGj7k5ceKE3mNRFJGdnY25c+ciNDTUqGOVlpbi6NGjiI2N1a2TyWSIjIxEYmLiA/f74IMP4OPjg9GjR+O333576GuUlJSgpKRE97gmTTT41wdRAAB13h1ELtgP7T1tdKJWg+K/9uPo2vkSVUdERGQeRrfchIaGIiwsDKGhobrf+/bti9LSUnz11VdGHSs3NxcajQa+vr566319faFWqyvd58CBA1ixYgWWL19u0GvMmTMHHh4euiUwMNCoGm2ZSuEAlcIBwXVcMfPpVrr1MgGonb4TZfnXsGHtdxJWSEREZHpGh5v09HRcuHAB6enpSE9Px8WLF1FUVISDBw+iefPm5qhRp6CgAMOGDcPy5cvh7e1t0D6xsbHIy8vTLZmZmWat0Vo92z5A9/vumG6YNKATAGDFihXQarVSlUVERGRyRndLNWjQwGQv7u3tDblcjpycHL31OTk58PPzu2/78+fPIyMjAwMGDNCtq/hidnBwQGpqKho1aqS3j1KphFKpNFnN9sDPwwnPPfccJkyYgPT0dOzbtw89e/aUuiwiIiKTMLjlZs+ePWjZsmWlY1by8vLQqlWrR45/+SeFQoH27dsjISFBt06r1SIhIQERERH3bd+8eXOcPHkSycnJuuXpp59Gjx49kJycXKO6nKpLpVLhxRdfBACjuxOJiIismcHh5tNPP8Wrr75a6eVXHh4eGDNmDBYsWGB0ATExMVi+fDlWr16NlJQUjBs3DoWFhRg1ahQAYPjw4boBx05OTggJCdFbPD094ebmhpCQECgUCqNfvyYbPXo0AGDTpk24ceOGxNUQERGZhsHh5vjx4+jdu/cDn+/Vq5fRc9wAQHR0NObPn4+4uDiEhoYiOTkZ8fHxukHGly5dQnZ2ttHHpUdr164dQkNDUVJSgm+++UbqcoiIiEzC4En8nJyccOrUKTRu3LjS59PS0tC6dWsUFxebtEBTq0mT+N2rqLQcLeN2ALh7ibhKcXe41RdffIGxY8eiUaNGSE1NhVwul7JMIiKiSpllEr969erh1KkHT/p24sQJ+Pv7G14lWYWXXnoJtWrVwvnz57F9+3apyyEiIqo2g8NN3759MX36dNy5c+e+54qLizFjxgz079/fpMWR+bm4uOCVV14BACxcuFDiaoiIiKrP4G6pnJwctGvXDnK5HG+88QaaNWsGADhz5gyWLFkCjUaDpKSk+ybkszbsltLvlgKAixcvIjg4GFqtFqdPn0bLli2lKpOIiKhSZumW8vX1xcGDBxESEoLY2Fg888wzeOaZZzB16lSEhITgwIEDVh9sqHINGjTQ3Vn9s88+k7YYIiKiaqrSXcFv3ryJtLQ0iKKIJk2aoFatWuaozSzYcnN/yw1w967u3bt3h0qlwuXLl23qMyUiIvtnzPd3lcKNLaup4eZRRFFEaGgoTpw4gY8//hhvvfWW1CURERHpmKVbiuybIAiYOHEiAGDx4sXQaDQSV0RERFQ1DDekM2TIENSuXRsXL17Ezz//LHU5REREVcJwQzrOzs4YM2YMAF4WTkREtovhhvSMGzcODg4O2L9/Pw4dOiR1OUREREZjuCE9AQEBeOmllwAAs2fPlrgaIiIi4zHc0H2mTJkCQRDw888/4+TJk1KXQ0REZBSGG7pPs2bN8NxzzwEA5s6dK3E1RERExmG4oUrFxsYCANavX4+0tDSJqyEiIjIcww1VKiwsDH379oVWq8W8efOkLoeIiMhgDDf0QFOnTgUArFq1CpcvX5a4GiIiIsMw3NADdenSBU888QTKysrwySefSF0OERGRQRhu6KHee+89AMAXX3yBa9euSVwNERHRozHc0EM99dRTaN++PYqLi9l6Q0RENoHhhh5KEATExcUBABYtWoTs7GyJKyIiIno4hht6pAEDBiAiIgLFxcWYNWuW1OUQERE9FMMNPZIgCLrJ/JYvX47z589LXBEREdGDMdyQQZ544gn07t0b5eXlum4qIiIia8RwQwaruJHm2rVrcfz4cYmrISIiqhzDDRksLCwML7zwAoC/LxEnIiKyNgw3ZJRZs2bBwcEBW7duxW+//SZ1OURERPdhuCGjNG7cGKNHjwZw9+aaoihKXBEREZE+hhsyWlxcHJydnfH777/jv//9r9TlEBER6WG4IaPVrVsX7777LgDgX//6FwoLCyWuiIiI6G8MN1Ql77zzDho0aIDMzEx89NFHUpdDRESkw3BDVeLs7IwFCxYAAObNm4cLFy5IXBEREdFdDDdUZc888wwiIyNRUlKCf/3rX1KXQ0REBIDhhqpBEAQsXLgQDg4O2Lx5M3bu3Cl1SURERAw3VD0tW7bEhAkTAABvvvkmSktLJa6IiIhqOoYbqrYZM2bAx8cHqampWLhwodTlEBFRDcdwQ9Xm4eGhu2JqxowZSEtLk7giIiKqyRhuyCRGjBiBJ598EsXFxXj11Veh1WqlLomIiGoohhsyCUEQsHz5cqhUKuzbtw/Lly+XuiQiIqqhGG7IZBo2bIjZs2cDAN5++21kZmZKXBEREdVEDDdkUm+88QYiIiJQUFCAcePG8caaRERkcQw3ZFJyuRwrVqyAQqHA1q1bsXbtWqlLIiKiGobhhkyuRYsWiIuLAwBMnDgR2dnZEldEREQ1CcMNmcU777yDsLAwXL9+HSNGjODVU0REZDEMN2QWjo6OWLNmDZydnbFr1y7dTTaJiIjMjeGGzKZFixa6GYunTp2Ko0ePSlwRERHVBAw3ZFavvPIKBg8ejLKyMgwZMgS3b9+WuiQiIrJzVhFulixZgqCgIDg5OSE8PByHDx9+4LbLly/H448/jlq1aqFWrVqIjIx86PYkrYrJ/QICAnDu3DndTTaJiIjMRfJws2HDBsTExGDGjBlISkpC27ZtERUVhatXr1a6/b59+zBkyBDs3bsXiYmJCAwMRK9evZCVlWXhyslQXl5eWLNmDWQyGVatWoV169ZJXRIREdkxQZR4lrXw8HB07NgRixcvBgBotVoEBgZiwoQJmDJlyiP312g0qFWrFhYvXozhw4c/cvv8/Hx4eHggLy8P7u7u1a6fDBcXF4dZs2bBxcUFf/zxB0JCQqQuiYiIbIQx39+SttyUlpbi6NGjiIyM1K2TyWSIjIxEYmKiQccoKipCWVkZvLy8Kn2+pKQE+fn5egtJIy4uDk8++SQKCwsxaNAg3Lx5U+qSiIjIDkkabnJzc6HRaODr66u33tfXF2q12qBjvPvuu6hbt65eQLrXnDlz4OHhoVsCAwOrXTdVjYODA9avX4+goCCcP38eQ4YMgUajkbosIiKyM5KPuamOuXPnYv369fjxxx/h5ORU6TaxsbHIy8vTLbyZo7S8vb2xefNmODs7Y8eOHZg2bZrUJRERkZ2RNNx4e3tDLpcjJydHb31OTg78/Pweuu/8+fMxd+5c7Ny5E23atHngdkqlEu7u7noLSatt27ZYuXIlgLsBdePGjQbtV1RajqApWxE0ZSuKSsvNWSIREdkwScONQqFA+/btkZCQoFun1WqRkJCAiIiIB+43b948zJo1C/Hx8ejQoYMlSiUTe+GFF/DWW28BAEaOHIljx45JXBEREdkLybulYmJisHz5cqxevRopKSkYN24cCgsLMWrUKADA8OHDERsbq9v+o48+wvTp07Fy5UoEBQVBrVZDrVZzcjgbNGfOHPTq1QtFRUXo27cvMjIypC6JiIjsgOThJjo6GvPnz0dcXBxCQ0ORnJyM+Ph43SDjS5cu6d1VeunSpSgtLcVzzz0Hf39/3TJ//nyp3gJVkYODA77//nu0adMGarUavXv3xvXr16Uui4iIbJzk89xYGue5sT5ZWVmIiIhAZmYmOnfujN27d8PZ2fm+7YpKy9EybgcA4K8PoqBSOFi6VCIikojNzHNDBAD16tVDfHw8PD09cfDgQbz44ou8RJyIiKqM4YasQsuWLfHzzz9DqVTixx9/xBtvvIEa1qhIREQmwnBDVuPxxx/Hd999B0EQsGzZMkyePJkBh4iIjMZwQ1blueeew1dffQUAWLhwId566y0GHCIiMgrDDVmdl19+GV988QUAYMGCBZgyZQoDDhERGYzhhqzSa6+9hs8//xzA3Ukbp02bxoBDREQG4bW0ZLXGjRuH8vJyvPnmm5g9ezYKCosgKntCEGRQ591BcB1XqUskIiIrxJYbsmoTJkzAp59+CgD4eu9p3frIBfux4c9LElVFRETWjJP4kU2oMzAWqmadIcj+zuNyQcCBKT3g73H/hH9ERGRfOIkf2R2XFl31gg0AaEQRGblFElVERETWiuGGbMKef3WDTPjHSq0W8iLei4qIiPQx3JBNCK7jiplPt9I9FrUaXN/xGfr26Iz9+/dLWBkREVkbhhuyGc+2D9D9vu6lFmjmeAPXr19HZGQkvvzySwkrIyIia8JwQzYptHlD/Prrr4iOjkZ5eTnGjBmDN998E+Xl5VKX9khFpeUImrIVQVO2oqjU+uslIrI1DDdks1QqFdatW4dZs2YBAD777DP06NEDly9flrgyIiKSEsMN2TRBEDBt2jRs2rQJbm5uOHDgAEJDQ7Ft2zapSyMiIokw3JBdeOaZZ5CUlIR27drh+vXr6NevH9555x2UlZVJXRoREVkYww3ZjcaNG+PgwYOYMGECAODjjz9G165dkZqaKnFlto/jhIjIljDckF1RKpVYtGgRfvjhB3h4eODw4cMIDQ3Ff/7zH2g0GqnLIyIiC2C4Ibs0ePBgnDhxAk899RTu3LmDmJgYdO/eHWlpaVKXRkREZsZwQ3arfv362LFjB7744gu4urriwIEDaNOmDebPn8+xOEREdozhhuyaIAh47bXXcPLkSfTs2RPFxcV4++23ERYWhl9//VXq8oiIyAwYbqhGCAoKwq5du7BixQp4e3vj9OnT6NatG4YPH46cnBypyyMiIhNiuCGboVI4IGNuP2TM7QeVwsHo/WUyGV5++WWkpqZizJgxEAQB3377LZo2bYq5c+eiuLjYDFUT1Ry8qo6sBcMN1TheXl5YtmwZ/vjjD7Rv3x75+fmIjY1F06ZNsWrVKoteVaXOu2Ox1yIiqikYbqjG6tSpEw4fPoxvv/0W9evXx+XLlzFq1CiEhYXhl19+gSiKJn/NotJyrD10Sfc4csF+fJuYYfLXISKqyRhuqEaTyWR46aWXkJqaio8//hienp44efIknn76abRv3x6bN2+GVqs12eu1jNuBD7em6B5rRWD6T6eRnccuMSIiU2G4IQLg5OSEt956C+fPn8e7774LFxcXHDt2DM888wzCwsKwceNGs3ZXZeQWme3YREQ1DcMN0T28vLwwd+5cZGRk4L333oObmxtOnDiB559/Hk2bNsWiRYtQUFBQ5ePv+Vc3yAT9dTIBCPJWVbNyy+E4ISKydgw3RJXw9vbGhx9+iIyMDMTFxcHLywsXLlzAxIkTERgYiLfffhsXL140+rjBdVwx8+lWuscyAZgzuDX8PZxNWb7JcZwQEdkShhuih/Dy8sLMmTORmZmJpUuXomnTpsjLy8P8+fPRsGFD9OvXDz/99BPKyw2/7PXZ9gG633fHdEN0x/rmKN1ksvOKOU6IiGwKww2RAVQqFcaOHYuUlBRs2bIFkZGREEUR27Ztw6BBgxAUFIS4uDicP3/eqOP6eTiZqWLTSc8trHQ9xwkRkbViuCEygkwmQ79+/bBr1y6cPXsW77zzDurUqYOsrCzMmjULjRs3RufOnbF06VJcv35d6nJNoqG3i02PE+LEckQ1D8MNURU1adIEH330ETIzM7F+/XpERUVBJpMhMTERr7/+Ovz9/TFgwACsXr0aN2/elLrcKvP3cLbJcUJEFRhwax6GG6JqUiqViI6ORnx8PC5fvowFCxYgLCwMZWVl2LJlC0aOHAkfHx9ERUXhyy+/RHZ2ttQlG83WxgmR9HhVHUmJ4YbIhPz9/TF58mQkJSXh9OnTmDlzJlq3bo3y8nLs3LkTY8aMQeOg+shePQm3fluDI38eNukkgZZgC+OEyPI4+zZZE4YbIjNp2bIl4uLicOLECaSmpmL27Nno2LEjAKBUnYa8g+vQrWsX+Pr64oUXXsBXX32FjIwMaYsmqiLOvk3WhOGGyAKaNm2K2NhYHD58GOcvZqJ2n4lQNe0MNzc35ObmYsOGDXj11VfRsGFDNG7cGKNHj8bq1atx4cIFs9zjishSeFUdScFB6gKIaho/Pz+4tnkKrm2eQvK0HjiVnITdu3dj9+7d+OOPP3D+/HmcP38eK1euBADUq1cPXbt2RXh4OMLDw9GuXTs4ObFriKzLnn91Q+SC/dDek8Vt6ao6si8MN0QSUigU6Nq1K7p27Yr3338f+fn5+O233/Drr7/it99+w5EjR5CVlYUNGzZgw4YNAABHR0e0bdsWHTp0QLt27dCuXTuEhIRAqVRK/G6oJquYfXv6T6cB8Ko6khbDDZEVcXd3R79+/dCvXz8AQFFREQ4dOoTExET88ccfOHToEK5evYojR47gyJEjuv0cHBzQsmVLtG7dWm8JCAiAIAgPejkik3q2fYAu3OyO6YbgOq4SV0Q1FcMNkYWpFA7ImNvPsG1VKvTo0QM9evQAAIiiiIsXL+LQoUNISkrCsWPHkJSUhOvXr+PEiRM4ceKE3v7u7u5o3rw5mjdvjhYtWqB58+Zo0qQJgoOD4ezM/6O2BUWl5WgZtwMA8NcHUVApbOPPNq+qM56tftbWiGeOyIYIgoCgoCAEBQUhOjoawN3Ak5mZiePHj+PkyZM4ceIETp48idTUVOTn5+Pw4cM4fPjwfccJCAjQBZ2GDRvqLT4+PmzxISKbxXBDZOMEQUD9+vVRv359DBgwQLe+pKQE58+fR0pKCs6cOYOUlBSkpqbi3LlzyMvLQ2ZmJjIzM7Fnz577jqlUKhEYGKg7rq9/XRQcuwW5W20cO1YHjYMawNvbG3K53JJvtdrUeXfYVUJUAzDcENkppVKJli1bomXLlnrrRVHE9evXce7cOZw7dw4XLlxAenq6bsnKykJJSQnS0tKQlpZ233G7/jALACCXy+Hj4wM/Pz/dUqdOHfj4+OgWb29v1K5dG97e3nBxcbF4a1BlE8vNfLoVhkUEWbQOsh4MuDUDww1RDSMIAry9veHt7Y2IiIj7ni8tLUVWVhYyMzNx6dIlXLx4EVlZWcjKysKVK1eQlZUFtVoNjUaD7Oxsg28noVQqUbt2bXh5ecHLywu1atXS/fT09NRb3N3d4e7uDg8PD7i7u8PNza1KV4NVjF+oUDGxXGRLX17FUwNU3EeqsoD7bPsAjmmxY1bxyS5ZsgQff/wx1Go12rZti88++wydOnV64PYbN27E9OnTkZGRobt5Yd++fS1YMZH9UigUurE3D1JeXo5r165BrVYjOzsbarUaarUa165dw7Vr13D16lVcvXoVubm5yM3NRUlJCUpKSnDlyhVcuXKlynW5ubnpFldXV7i6usLFxUX308XFBSqVSvezKO0GVI073nesvX+eQqegWnB2doaTkxOUSiWcnJzg4GAVfxLJRP4ZboG/A+70n04bPLCfbI/k/yVv2LABMTExWLZsGcLDw/Hpp58iKioKqamp8PHxuW/7gwcPYsiQIZgzZw769++PtWvXYtCgQUhKSkJISIgE74Co5nFwcIC/vz/8/f0RFhb20G1FUURRUZEu6Ny8eRM3b97EjRs3cOPGDdy6deu+JT8/H3l5ecjPz0dhYSGAuy1K169fx/Xr1w2uU+5WG87BX0OQ/T0Zu6jVYPjgPtAU3H8cuVwOpVJZ6aJQKHQ/710cHR11Px+0ODg4PPBnxSKXy+/7KZfLUS4KuJN5ChDk+POwJ1yclLrn5HI5ZDLZfb/f+7Ni+efjfy6CIHAQOdkNQZR4bvfw8HB07NgRixcvBgBotVoEBgZiwoQJmDJlyn3bR0dHo7CwEFu2bNGte+yxxxAaGoply5bdt33F/zFWyM/PR2BgIPLy8uDu7m6Gd0REplReXo6CggIUFBTg9u3ber/fvn0bhYWFKCgoQGFhIYqKivR+FhcX44pTQ1wLirwbcLRaiH+uRfHpBNy5cwfFxcUoLy+X+i1ajYqAUxF2HvXzn78LMhlyb5cCAHw9nCH75/P3BKh/rjPk+XvXV/xe2bqK30UAGqUbbnSeBAj33G1I1MLn0GI4lt2u9FiVnRdTbvOgdRqtiIPn74buLo29IZdVfixDQqiptqnqsZo3b46PP/7YoOMbKj8/Hx4eHgZ9f0vaclNaWoqjR48iNjZWt04mkyEyMhKJiYmV7pOYmIiYmBi9dVFRUdi8eXOl28+ZMwczZ840Wc1EZFkODg6oVasWatWqVaX97507ZM/bPRBcZ4De8xqNBiUlJbhz547ez3uX0tLS+36WlZWhtLRUt1Q8Lisr01vKy8v1fr93KSsrg0aj0T3WaDS6dRVLWVk50q7mA1ot6nkoodX+/ZxWq9XbVqvV6q0z9o7zoihCFEWT3Kn+yu1qH8JkXPPl8Ip6A4JMDlGrwY0di3HxxC6py3qohAypK6geY1pYzUHScJObmwuNRgNfX1+99b6+vjhz5kyl+6jV6kq3V6vVlW4fGxurF4YqWm6IqOapbGI5uVwOlUoFlco674FU3YndKsLKveHn3hB0b6D55+OKpeLxvesrtrv3uaLSMgxechCAiI1jH4OTg1zveUOWipr/+Xtl21S27b3vu+LxndJyvPH9cQiOTpjZJxi+nV8H8Hqlx7p3/3+uq8o2xqy7U1aOd384CQD46NnWUP7v/FXl2FJuA6DSYSWWJPmYG3Or6C8nIqqJBEHQjcmxhCtft7fI6xijqLQcb/+pAAAM+z/rnfm3qLQcs87cDbJDhlpvnbZA9uhNzKdiErCcnBy99Tk5OfDz86t0Hz8/P6O2JyKyF+q8O1KXQBbCz7p6JA03CoUC7du3R0JCgm6dVqtFQkJCpfNvAEBERITe9gCwa9euB25PRGRLikrL9ZZ/ztHybWKG3vNkm/75ORvyWfMzN5zkbV4xMTEYMWIEOnTogE6dOuHTTz9FYWEhRo0aBQAYPnw46tWrhzlz5gAAJk6ciG7duuGTTz5Bv379sH79ehw5cgRffvmllG+DiMgkKpubpcK9c7RU4FwttulhnzNQ+WddgZ/5o0kebqKjo3Ht2jXExcVBrVYjNDQU8fHxukHDly5dguyeOSo6d+6MtWvXYtq0aZg6dSqaNGmCzZs3c44bIiIiAmAF89xYmjHXyROR7avu1UaWdm+3gzrvDiIX7If2nr/SMgHYHdNNd+WXtb8fa2CN/wb+2b1kyGddwRrql4Ix39+SjrkhIiJ9KoWDbgmu44qZT7fSPScTgDmDWyO4jqtuG7JN937Ohn7W/MwNx3BDRGTFnm0foPt9d0w3RHesL2E1ZE78rE2H4YaIyEZUNgkh2Sd+1tXD9i0ismsqhQOvLiGqYdhyQ0RERHaFLTdERGTX2HpX87DlhoiIiOwKww0RERHZFYYbIiIisisMN0RERGRXGG6IiIjIrjDcEBERkV3hjTOJiIjI6vHGmURERFRjMdwQERGRXWG4ISIiIrvCcENERER2heGGiIiI7ArDDREREdkVhhsiIiKyKww3REREZFcYboiIiMiuMNwQERGRXWG4ISIiIrvCcENERER2heGGiIiI7ArDDREREdkVhhsiIiKyKw5SF2BpoigCAPLz8yWuhIiIiAxV8b1d8T3+MDUu3BQUFAAAAgMDJa6EiIiIjFVQUAAPD4+HbiOIhkQgO6LVanHlyhW4ublBEASTHjs/Px+BgYHIzMyEu7u7SY9N+niuLYfn2nJ4ri2H59pyTHWuRVFEQUEB6tatC5ns4aNqalzLjUwmQ0BAgFlfw93dnf+xWAjPteXwXFsOz7Xl8FxbjinO9aNabCpwQDERERHZFYYbIiIisisMNyakVCoxY8YMKJVKqUuxezzXlsNzbTk815bDc205UpzrGjegmIiIiOwbW26IiIjIrjDcEBERkV1huCEiIiK7wnBDREREdoXhxkhLlixBUFAQnJycEB4ejsOHDz90+40bN6J58+ZwcnJC69atsW3bNgtVavuMOdfLly/H448/jlq1aqFWrVqIjIx85GdDfzP233WF9evXQxAEDBo0yLwF2hFjz/WtW7cwfvx4+Pv7Q6lUomnTpvw7YiBjz/Wnn36KZs2awdnZGYGBgZg8eTLu3LljoWpt16+//ooBAwagbt26EAQBmzdvfuQ++/btQ7t27aBUKtG4cWOsWrXKtEWJZLD169eLCoVCXLlypXj69Gnx1VdfFT09PcWcnJxKt//9999FuVwuzps3T/zrr7/EadOmiY6OjuLJkyctXLntMfZcDx06VFyyZIl47NgxMSUlRRw5cqTo4eEhXr582cKV2x5jz3WF9PR0sV69euLjjz8uDhw40DLF2jhjz3VJSYnYoUMHsW/fvuKBAwfE9PR0cd++fWJycrKFK7c9xp7rNWvWiEqlUlyzZo2Ynp4u7tixQ/T39xcnT55s4cptz7Zt28T33ntP3LRpkwhA/PHHHx+6/YULF0SVSiXGxMSIf/31l/jZZ5+JcrlcjI+PN1lNDDdG6NSpkzh+/HjdY41GI9atW1ecM2dOpds///zzYr9+/fTWhYeHi2PGjDFrnfbA2HP9T+Xl5aKbm5u4evVqc5VoN6pyrsvLy8XOnTuLX331lThixAiGGwMZe66XLl0qBgcHi6WlpZYq0W4Ye67Hjx8v9uzZU29dTEyM2KVLF7PWaW8MCTfvvPOO2KpVK7110dHRYlRUlMnqYLeUgUpLS3H06FFERkbq1slkMkRGRiIxMbHSfRITE/W2B4CoqKgHbk93VeVc/1NRURHKysrg5eVlrjLtQlXP9QcffAAfHx+MHj3aEmXahaqc659//hkREREYP348fH19ERISgtmzZ0Oj0ViqbJtUlXPduXNnHD16VNd1deHCBWzbtg19+/a1SM01iSW+G2vcjTOrKjc3FxqNBr6+vnrrfX19cebMmUr3UavVlW6vVqvNVqc9qMq5/qd3330XdevWve8/INJXlXN94MABrFixAsnJyRao0H5U5VxfuHABe/bswYsvvoht27YhLS0Nr7/+OsrKyjBjxgxLlG2TqnKuhw4ditzcXHTt2hWiKKK8vBxjx47F1KlTLVFyjfKg78b8/HwUFxfD2dm52q/BlhuyO3PnzsX69evx448/wsnJSepy7EpBQQGGDRuG5cuXw9vbW+py7J5Wq4WPjw++/PJLtG/fHtHR0XjvvfewbNkyqUuzO/v27cPs2bPx+eefIykpCZs2bcLWrVsxa9YsqUujKmDLjYG8vb0hl8uRk5Ojtz4nJwd+fn6V7uPn52fU9nRXVc51hfnz52Pu3LnYvXs32rRpY84y7YKx5/r8+fPIyMjAgAEDdOu0Wi0AwMHBAampqWjUqJF5i7ZRVfl37e/vD0dHR8jlct26Fi1aQK1Wo7S0FAqFwqw126qqnOvp06dj2LBheOWVVwAArVu3RmFhIV577TW89957kMnYFmAqD/pudHd3N0mrDcCWG4MpFAq0b98eCQkJunVarRYJCQmIiIiodJ+IiAi97QFg165dD9ye7qrKuQaAefPmYdasWYiPj0eHDh0sUarNM/ZcN2/eHCdPnkRycrJuefrpp9GjRw8kJycjMDDQkuXblKr8u+7SpQvS0tJ0ARIAzp49C39/fwabh6jKuS4qKrovwFSESpG3YDQpi3w3mmxocg2wfv16UalUiqtWrRL/+usv8bXXXhM9PT1FtVotiqIoDhs2TJwyZYpu+99//110cHAQ58+fL6akpIgzZszgpeAGMvZcz507V1QoFOJ///tfMTs7W7cUFBRI9RZshrHn+p94tZThjD3Xly5dEt3c3MQ33nhDTE1NFbds2SL6+PiIH374oVRvwWYYe65nzJghurm5ievWrRMvXLgg7ty5U2zUqJH4/PPPS/UWbEZBQYF47Ngx8dixYyIAccGCBeKxY8fEixcviqIoilOmTBGHDRum277iUvC3335bTElJEZcsWcJLwaX22WefifXr1xcVCoXYqVMn8Y8//tA9161bN3HEiBF623///fdi06ZNRYVCIbZq1UrcunWrhSu2Xcac6wYNGogA7ltmzJhh+cJtkLH/ru/FcGMcY8/1wYMHxfDwcFGpVIrBwcHiv//9b7G8vNzCVdsmY851WVmZ+P7774uNGjUSnZycxMDAQPH1118Xb968afnCbczevXsr/ftbcX5HjBghduvW7b59QkNDRYVCIQYHB4tff/21SWsSRJHtbURERGQ/OOaGiIiI7ArDDREREdkVhhsiIiKyKww3REREZFcYboiIiMiuMNwQERGRXWG4ISIiIrvCcENERER2heGGiCQ3cuRIDBo0yOKvu2rVKgiCAEEQMGnSJIP2GTlypG6fzZs3m7U+Iqoa3hWciMxKEISHPj9jxgwsXLhQspsTuru7IzU1FS4uLgZtv3DhQsydOxf+/v5mroyIqorhhojMKjs7W/f7hg0bEBcXh9TUVN06V1dXuLq6SlEagLvhy8/Pz+DtPTw84OHhYcaKiKi62C1FRGbl5+enWzw8PHRhomJxdXW9r1uqe/fumDBhAiZNmoRatWrB19cXy5cvR2FhIUaNGgU3Nzc0btwY27dv13utU6dOoU+fPnB1dYWvry+GDRuG3Nxco2v+/PPP0aRJEzg5OcHX1xfPPfdcdU8DEVkQww0RWaXVq1fD29sbhw8fxoQJEzBu3Dj83//9Hzp37oykpCT06tULw4YNQ1FREQDg1q1b6NmzJ8LCwnDkyBHEx8cjJycHzz//vFGve+TIEbz55pv44IMPkJqaivj4eDzxxBPmeItEZCbsliIiq9S2bVtMmzYNABAbG4u5c+fC29sbr776KgAgLi4OS5cuxYkTJ/DYY49h8eLFCAsLw+zZs3XHWLlyJQIDA3H27Fk0bdrUoNe9dOkSXFxc0L9/f7i5uaFBgwYICwsz/RskIrNhyw0RWaU2bdrofpfL5ahduzZat26tW+fr6wsAuHr1KgDg+PHj2Lt3r24Mj6urK5o3bw4AOH/+vMGv+9RTT6FBgwYIDg7GsGHDsGbNGl3rEBHZBoYbIrJKjo6Oeo8FQdBbV3EVllarBQDcvn0bAwYMQHJyst5y7tw5o7qV3NzckJSUhHXr1sHf3x9xcXFo27Ytbt26Vf03RUQWwW4pIrIL7dq1ww8//ICgoCA4OFTvT5uDgwMiIyMRGRmJGTNmwNPTE3v27MHgwYNNVC0RmRNbbojILowfPx43btzAkCFD8Oeff+L8+fPYsWMHRo0aBY1GY/BxtmzZgkWLFiE5ORkXL17EN998A61Wi2bNmpmxeiIyJYYbIrILdevWxe+//w6NRoNevXqhdevWmDRpEjw9PSGTGf6nztPTE5s2bULPnj3RokULLFu2DOvWrUOrVq3MWD0RmZIgSjUtKBGRxFatWoVJkyZVaTyNIAj48ccfJbltBBE9HFtuiKhGy8vLg6urK959912Dth87dqykMyoT0aOx5YaIaqyCggLk5OQAuNsd5e3t/ch9rl69ivz8fACAv7+/wfekIiLLYbghIiIiu8JuKSIiIrIrDDdERERkVxhuiIiIyK4w3BAREZFdYbghIiIiu8JwQ0RERHaF4YaIiIjsCsMNERER2ZX/B5xNVSGnTeOEAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgZElEQVR4nO3deVhUZf8G8HtmYFhkE9kVRFTcBURF1HIjcUNLK1JzyzLNTKNSKIXMXjQrX01Ny1R8yy3f1MoFF9yyVNxwF0VBSAHFFGSHmfP7wx/zOrI4AzNzYLg/13UumDNn+Z4z5Nw95znPkQiCIICIiIjISEjFLoCIiIhIlxhuiIiIyKgw3BAREZFRYbghIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRUTsQswNKVSiTt37sDa2hoSiUTscoiIiEgDgiDg0aNHcHNzg1RaddtMvQs3d+7cgbu7u9hlEBERUTWkpaWhSZMmVS5T78KNtbU1gMcnx8bGRuRqiIiISBM5OTlwd3dXfY9Xpd6Fm7JLUTY2Ngw3REREdYwmXUrYoZiIiIiMCsMNERERGRWGGyIiIjIq9a7PDRERVUypVKK4uFjsMqgek8vlz7zNWxMMN0REhOLiYiQnJ0OpVIpdCtVjUqkUzZo1g1wur9F2GG6IiOo5QRCQnp4OmUwGd3d3nfyfM5G2ygbZTU9Ph4eHR40G2mW4ISKq50pLS5Gfnw83NzdYWlqKXQ7VY46Ojrhz5w5KS0thampa7e0wnhMR1XMKhQIAanwpgKimyv4Gy/4mq4vhhoiIAGg2OBqRPunqb5DhhoiIiIwKww0REREZFYYbIiIiMioMN0REVCNpaWno3bs32rZti44dO2LLli1il0T1HG8FJyKiGjExMcHixYvh6+uLjIwM+Pv7Y9CgQWjQoIHYpVE9xXCjI/nFpWgbuQcAcPmzYFjKeWqJqH5wdXWFq6srAMDFxQUODg74559/GG5INLwsRUREOnP69GkoFAq4u7uXe2/ChAmYPXu2CFXV3Pz589GlSxdYW1vDyckJL774IhITE6tcx9PTExKJpNw0derUZ+6vqnOlUCgwZ84cNGvWDBYWFmjevDnmzZsHQRCqdWyaWr58OTw9PWFubo6AgADEx8dXufyKFSvQsWNH2NjYwMbGBoGBgdi9e7deayzDcENERDrxzz//YOzYsfj+++/LvadQKLBjxw4MHTpUhMpq7vDhw5g6dSqOHz+Offv2oaSkBP3790deXl6l65w8eRLp6emqad++fQCAV155pcp9PetcffHFF1ixYgWWLVuGK1eu4IsvvsDChQuxdOnS6h/gM2zevBlhYWGIiorCmTNn4OPjg+DgYNy9e7fSdZo0aYIFCxbg9OnTOHXqFPr27Ythw4bh0qVLeqtTRahnsrOzBQBCdna2TrebV1QiNJ21Q2g6a4eQV1Si020TEelTQUGBcPnyZaGgoKDC919++WXBwcFB+O6771Tzjh8/Lpiamgp79uwRBEEQCgsLheeee074z3/+U+E2jhw5Iri6ugpKpVJISkoSAAi///670LdvX8HCwkLw9vYWjh8/rvuD05O7d+8KAITDhw9rvM706dOF5s2bC0qlssrlnjxXFRk8eLDwxhtvqM0bPny4MHr0aI1r0VbXrl2FqVOnql4rFArBzc1NmD9/vlbbadiwofDDDz9U+n5Vf4vafH+z5YaIiKr0zTffYMSIEfjss88AALm5uXj99dcxZcoU9O/fH4IgYPz48ejbty/GjBlT4TZ+++03hISEQCKR4Ny5c5BIJFi0aBHmzJmDc+fOwcPDA+Hh4Xo7hujoaFhZWVU5paamary97OxsAIC9vb1GyxcXF+Onn37CG2+88cxReJ88VxXp3r074uLicO3aNQDAuXPncPToUQwcOLDSbdbk+IuLi3H69GkEBQWp5kmlUgQFBeHYsWPPOnQAj1ujNm3ahLy8PAQGBmq0Tk2w1ysREVXJ1dUVM2bMwHfffYf79+/jo48+gpmZGb744gsAwJ9//onNmzejY8eO2L59OwDgxx9/RIcOHVTb+PXXX/Hvf/8bwOMvYzs7O2zevBmOjo4AgKFDh+K7777T2zFMnjwZr776apXLuLm5abQtpVKJGTNmoEePHmjfvr1G62zfvh0PHz7E+PHjn7nsk+eqIuHh4cjJyUHr1q0hk8mgUCjwr3/9C6NHj650nZocf1ZWFhQKBZydndXmOzs74+rVq1Vu88KFCwgMDERhYSGsrKywbds2tG3btsp1dIHhhoiInsnb2xuWlpaIjIzE+vXrER8fD3NzcwBAz549oVQqK133ypUruHPnDvr16wfgcbgZNmyYKtgAQHJyMlq0aFHh+uPHj8fLL7+MIUOGVLqPjz76CLt27cKoUaPwySeflHvf3t5e41aWZ5k6dSouXryIo0eParzO6tWrMXDgwGcGqKfPVUV+/vlnrF+/Hhs2bEC7du2QkJCAGTNmwM3NDePGjatwHV0evzZatWqFhIQEZGdn47///S/GjRuHw4cP6z3gMNwQEdEzSaVSdOjQAd9++y0WLlwIHx8fjdf97bff8MILL6jC0Llz5xAREaG2TEJCAp5//vlq1xcTE4PMzExIpRX3toiOjkZ0dHSV27h8+TI8PDyqXObdd9/Fjh07cOTIETRp0kSj2m7duoX9+/dj69atz1z26XNVkY8++gjh4eF47bXXAAAdOnTArVu3MH/+/ErDTU2O38HBATKZDJmZmWrzMzMz4eLiUuU25XK5KrT6+/vj5MmTWLJkiV5b6QCGGyIi0oDw/7cZd+rUCR988IFW6/7666+YNGkSgMd9VVJSUuDn56e2TEJCAt577z3V608//RQbN25E48aNYWZmppr/xRdf4Mcff4REIkF4eDhGjx6Nl156CQ8ePECnTp0QHR2NQYMGlauhppelBEHAtGnTsG3bNhw6dAjNmjXT6NgBYO3atXBycsLgwYOfueyT56oy+fn55UKcTCarsvWsJscvl8vh7++PuLg4vPjiiwAeX5qLi4vDu+++W+U2n6ZUKlFUVKTVOtWiVTdnI8C7pYiI1D3rbilBEIRFixYJAARfX1+ttp2ZmSmYmpoK9+7dEwTh8Z1AJiYmavtKSUkRAAjJycmCIAhCfHy80LlzZ6GwsFC4c+eOYGtrK/z+++9CfHy80KlTJ6GgoEC4f/++4OXlJdy+fVsQBEFo1KiRlketnSlTpgi2trbCoUOHhPT0dNWUn5+vWmbp0qVC37591dZTKBSCh4eHMGvWrGfu4+lzVZlx48YJjRs3Fnbs2CEkJycLW7duFRwcHISZM2dW7+A0sGnTJsHMzEyIiYkRLl++LEyaNEmws7MTMjIyVMs8ffzh4eHC4cOHheTkZOH8+fNCeHi4IJFIhL1791a6H13dLcWWGyIiqtKFCxcQERGBd955Bz/88ANKS0thYqLZ18fvv/+Orl27wsHBAcDjS1KtWrVSu+xy9uxZ2NnZwdPTE8DjDsovvfQSzMzM4Orqir59+6rmjxgxAubm5jA3N0e/fv1w8uRJDBs2TLcHXIEVK1YAAHr37q02f+3atapOwllZWbhx44ba+/v370dqaireeOONZ+7j6XNVmaVLl2LOnDl45513cPfuXbi5ueHtt99GZGSk5gekpdDQUNy7dw+RkZHIyMiAr68vYmNj1ToZP338d+/exdixY5Geng5bW1t07NgRe/bswQsvvKC3OstIBEHPQxrWMjk5ObC1tUV2djZsbGx0tt0nH79w4INe8HK00tm2iYj0qbCwEMnJyWjWrFm5vh6FhYXo0qULOnXqhMWLF8Pe3h4XLlzQ+C6hoUOHomfPnpg5c6bG9SxevBgFBQWqfjnDhw/HG2+8gaSkJOTn5+Pjjz8GAEyaNAmDBw/GsGHD4ODggKysLI33URtV51wZm6r+FrX5/uY4Nzryy+m/VdekgxYdxuaTmo+XQERUW4WHhyMvLw/Lli1Dw4YN0bRpUyxevBh37tzRaP2ePXti5MiRWu2zZ8+e2L59O4qLi5GRkYGDBw+q5m/duhVFRUV48OABDhw4gK5du2p9TLVVdc4VVYyXpXQgPbsAkb9eUg24pBSAj7dexPPejnC1tRC5OiKi6tm7dy+WL1+Ow4cPw9raGgAwe/ZshIeH4/79+9i2bdszt1GdVojOnTtj4MCB6NChAxo3boxu3bqp5r/yyivw9/eHRCLB3LlzVQ/sNAb1ucVG13hZSgf+upGFUatOlJu/8a1uCGzeSCf7ICLSl6ouBRAZEi9L1SLNHBpA+tQo2TKJBJ4OluIUREREVI8x3OiAq60F5g5tB0GpAABIAEQPb89LUkRERCJguNGREf5NcH/PMmRsiMB4x2SEdql6lEsiIiLSD4YbHZJZ2KAo7QIyblwRuxQiIqJ6i+FGh0ztGwMAEhMTRa6EiIio/mK40SETe3cAwPXr10SuhIiIqP5iuNEh00aPW27+TktDXl6eyNUQEenG+PHjVQ9MLLN8+XJ4enrC3NwcAQEBiI+P12sNR44cQUhICNzc3CCRSLB9+3aN1tOkztu3b+P1119Ho0aNYGFhgQ4dOuDUqVOq9z09PSGRSMpNU6dO1dXhaVWvtut8+umn5Wpv3bq1TvZdWzHc6JDMwgZSi8f33l+7xtYbIjJOmzdvRlhYGKKionDmzBn4+PggODgYd+/e1ds+8/Ly4OPjg+XLl+u0zgcPHqBHjx4wNTXF7t27cfnyZXz99ddo2LChapmTJ08iPT1dNe3btw8A8Morrzyzht69eyMmJkZn9VZ3nXbt2qkdw9GjR2u871pN82eCGgd9PxXcrHFbAYCwceNGnW6fiEhfnvVU8HHjxgnDhg1Tve7ataswdepU1WuFQiG4ubkJ8+fP13epgiAIAgBh27Ztz1xOkzpnzZol9OzZU6v9T58+XWjevLmgVCqfuWyvXr2EtWvXarTd6pxXTdaJiooSfHx8dL5vfdDVU8HZcqNjJuxUTERGrLi4GKdPn0ZQUJBqnlQqRVBQEI4dO1bpetHR0bCysqpySk3V3TP5NK3zt99+Uz3WwcnJCX5+fli1alWV2/3pp5/wxhtvqB65Y8h6q7vO9evX4ebmBi8vL4wePVrtXFf3M63N+GwpHSvrd3P16lWRKyEi0r2srCwoFAo4OzurzXd2dq7y373Jkyfj1VdfrXLbbm5uOqkR0LzOmzdvYsWKFQgLC8PHH3+MkydP4r333oNcLse4cePKbXf79u14+PAhxo8fX+F+o6OjER0drXpdUFCA48eP491331XNu3z5Mjw81MdCq8551XSdgIAAxMTEoFWrVkhPT8fcuXPx3HPP4eLFi7C2tq72Z1qbMdzomKl9EwBsuSEiepK9vT3s7e3FLqMcpVKJzp07qwKJn58fLl68iJUrV1YYblavXo2BAwdWGsSeDnGjR4/GiBEjMHz4cNU8XYY4TQwcOFD1e8eOHREQEICmTZvi559/xsSJEw1ai6Ew3OhYWbi5du0aBEHQabMlEZHYHBwcIJPJkJmZqTY/MzMTLi4ula73dItGRSpq0dB3na6urmjbtq3aMm3atMEvv/xSbpu3bt3C/v37sXXr1kr3+3SIs7CwgJOTE1q0aKGTemu6DgDY2dnB29sbSUlJNdpObcY+NzpiKTdByoLBSPn2DZiYmCAvLw+3b98WuywiIp2Sy+Xw9/dHXFycap5SqURcXBwCAwMrXW/y5MlISEioctJli4amdfbo0aNcS/u1a9fQtGnTcttcu3YtnJycMHjwYJ3VqW29NV0HAHJzc3Hjxg24urrWaDu1mh46O2vs8OHDwpAhQwRXV1eNe78fPHhQ8PPzE+RyudC8eXONe6GX0dfdUk/y9vYWAAj79u3T2z6IiHRF27ulNm3aJJiZmQkxMTHC5cuXhUmTJgl2dnZCRkaG3mp89OiRcPbsWeHs2bMCAGHRokXC2bNnhVu3bqmWWbp0qdC3b1+t6oyPjxdMTEyEf/3rX8L169eF9evXC5aWlsJPP/2ktn+FQiF4eHgIs2bNemad6enpVU6lpaUVrvusep8+Pk2P8YMPPhAOHTokJCcnC3/++acQFBQkODg4CHfv3tVqO4agq7ulRA03u3btEj755BNh69atGoWbmzdvCpaWlkJYWJhw+fJlYenSpYJMJhNiY2M13qchwk1ISIgAQFi2bJne9kFEpCvahhtBePxF6+HhIcjlcqFr167C8ePH9VrjwYMHBQDlpnHjxqmWiYqKEpo2bap1nb///rvQvn17wczMTGjdurXw/fffl1tmz549AgAhMTGxyjqjoqIqrPPJKTk5udL1q6q3ouPT5BhDQ0MFV1dXQS6XC40bNxZCQ0OFpKQkrbdjCLoKNxJBEAQDNhRVSiKRYNu2beVGwXzSrFmzsHPnTly8eFE177XXXsPDhw8RGxur0X5ycnJga2uL7Oxs2NjY1LTsCs2cORNffvklpk2bhm+++UYv+yAi0pXCwkIkJyejWbNmMDc3F7scqseq+lvU5vu7TvW5OXbsmNp9+AAQHBxc5X34RUVFyMnJUZv0rVWrVgB4OzgREZEY6lS4ycjIqPA+/JycHBQUFFS4zvz582Fra6ua3N3d9V5nWbjh7eBERESGV6fCTXVEREQgOztbNaWlpel9n2UPJEtNTUV+fr7e90dERET/U6fCjYuLS4X34dvY2MDCwqLCdczMzGBjY6M26ZuDg4NqnAM+QJOIiMiw6lS4CQwMVLsPHwD27dtXK+/D56UpIiIicYgabnJzc1WDNwFAcnIyEhISVA/0ioiIwNixY1XLT548GTdv3sTMmTNx9epVfPvtt/j555/x/vvvi1F+lRhuiIiIxCFquDl16hT8/Pzg5+cHAAgLC4Ofnx8iIyMBAOnp6WpPLm3WrBl27tyJffv2wcfHB19//TV++OEHBAcHi1J/Vcr63TDcEFFd17t3b8yYMUPsMjS2fPlyeHp6wtzcHAEBAYiPj6/xOo8ePcKMGTPQtGlTWFhYoHv37jh58qTaMp6enpBIJOWmqVOnin58mqx35MgRhISEwM3NDRKJBNu3b9fq/dpE1HDTu3dvCI8HElSbYmJiAAAxMTE4dOhQuXXOnj2LoqIi3Lhxo9Ins4qNt4MTERne5s2bERYWhqioKJw5cwY+Pj4IDg7G3bt3a7TOm2++iX379uHHH3/EhQsX0L9/fwQFBak9ZufkyZNIT09XTfv27QMAvPLKK8+su3fv3qrvPl0fn6br5eXlwcfHB8uXL69wG896v1bR6dCCdYAhRigWBEG4fPmyAECwsrISlEqlXvdFRFQTVY0KO27cuApH2N29e7fQo0cPwdbWVrC3txcGDx6sNupt06ZNhX//+99q2/Lx8RGioqL0eixdu3YVpk6dqnqtUCgENzc3Yf78+dVeJz8/X5DJZMKOHTvU1uvUqZPwySefVLrd6dOnC82bN9foO6BXr14aPU6oOsdXnfXwjKcGPOv96tLVCMV1qkNxXdK8eXPIZDLk5ubizp07YpdDRFQtS5YsQWBgIN566y1Vi4S7uzvy8vIQFhaGU6dOIS4uDlKpFC+99BKUSmWN9hcdHQ0rK6sqpye7KzypuLgYp0+fVhvsVSqVIigoqNLBXjVZp7S0FAqFotyIuRYWFjh69Gil2/3pp5/wxhtvQCKRaHUOKlOd46vJenWZidgFGCu5XA4vLy9cv34dV69eRePGjcUuiYhIa7a2tpDL5bC0tISLi4tq/ogRI9SWW7NmDRwdHXH58mW0b9++2vubPHkyXn311SqXqezp4VlZWVAoFBUO9lpZFwFN1rG2tkZgYCDmzZuHNm3awNnZGRs3bsSxY8fQokWLCre7fft2PHz4sNKuE9HR0YiOjla9LigowPHjx/Huu++q5l2+fBkeHh41Or6arFeXMdzoUatWrVThpl+/fmKXQ0SkM9evX0dkZCROnDiBrKwsVYtNampqjcKNvb29apyw2uTHH3/EG2+8gcaNG0Mmk6FTp04YOXIkTp8+XeHyq1evxsCBAysNYk+HuNGjR2PEiBEYPny4al5l69KzMdzoUbt27bBjxw5cunRJ7FKIiHQqJCQETZs2xapVq+Dm5galUon27dujuLgYwOPLHsJTz2UuKSl55nafbtGoyNMtGmUcHBwgk8kqHOz1yVan6qzTvHlzHD58GHl5ecjJyYGrqytCQ0Ph5eVVbpu3bt3C/v37sXXr1kqP4ekQZ2FhAScnp0pbgqp7fDVZry5jnxs9ateuHQAw3BBRnSaXy6FQKFSv79+/j8TERMyePRv9+vVDmzZt8ODBA7V1HB0dkZ6ernqdk5OD5OTkZ+5r8uTJqvHPKpsqa9GQy+Xw9/dXG+xVqVQiLi6u0sFetV2nQYMGcHV1xYMHD7Bnzx4MGzas3DJr166Fk5MTBg8e/Mzj1UZ1jq8m69VlbLnRo7Km2YsXL0IQBJ11KiMiMiRPT0+cOHECKSkpsLKygr29PRo1aoTvv/8erq6uSE1NRXh4uNo6ffv2RUxMDEJCQmBnZ4fIyEjIZLJn7quml6XCwsIwbtw4dO7cGV27dsXixYuRl5eHCRMmqJZZtmwZtm3bpvqy12SdPXv2QBAEtGrVCklJSfjoo4/QunVrtWWAx6Fh7dq1GDduHExMKv+Kzc3NRW5urur1pk2bADx+QHQZR0fHcuesOsen6Xq5ublISkpSvS4bWNfe3h4eHh7PfL9W0fl9XLWcoW4FF4THtw9KpVIBgJCenq73/RERVUdVt98KgiAkJiYK3bp1EywsLFS3gu/bt09o06aNYGZmJnTs2FE4dOiQ2u3B2dnZQmhoqGBjYyO4u7sLMTExBrkVXBAEYenSpYKHh4cgl8uFrl27CsePH1d7PyoqSmjatKlW62zevFnw8vIS5HK54OLiIkydOlV4+PBhuX3v2bNHACAkJiZWWWNUVFS5W+yfnpKTk3V2fJqsd/DgwQrrGDdunEbv64KubgWXCMJTF0WNXE5ODmxtbZGdnW2Qh2h6e3vj+vXr2Ldvn9pteEREtUVhYSGSk5PRrFmzcrc7ExlSVX+L2nx/s8+Nnj15aYqIiIj0j+FGz9ipmIiIyLAYbvSMLTdERESGxXCjZ0+23NSz7k1ERESiYLjRM29vb5iYmODRo0dIS0sTuxwiIiKjx3CjZ3K5HK1atQLAfjdERESGwHBjAGWXptjvhoiISP8YbgyAnYqJiIgMh+HGAHg7OBER6dunn34KZ2dnSCQSbN++HePHj8eLL74odlmiYLgxgLKWm8uXL0OpVIpcDRER6cL48eMhkUhUU6NGjTBgwACcP39eZ/v49NNP4evr+8zlrly5grlz5+K7775Deno6Bg4ciCVLliAmJka1TO/evTFjxgyd1VabMdwYQPPmzWFmZoaCggKNnopLRER1w4ABA5Ceno709HTExcXBxMQEQ4YMMXgdN27cAAAMGzYMLi4uMDMzg62tLezs7AxeS23AcGMAMpkMbdq0AcB+N0RExsTMzAwuLi5wcXGBr68vwsPDkZaWhnv37qmWSUtLw6uvvgo7OzvY29tj2LBhSElJUb1/6NAhdO3aFQ0aNICdnR169OiBW7duISYmBnPnzsW5c+dUrUNPtsSU+fTTTxESEgIAkEqlkEgkAKB2WWr8+PE4fPgwlixZotrWkzUYm8qfx0461b59eyQkJODSpUsYNmyY2OUQEdVagiAgPz9flH1bWlqqwoG2cnNz8dNPP6FFixZo1KgRAKCkpATBwcEIDAzEH3/8ARMTE3z++eeqy1dSqRQvvvgi3nrrLWzcuBHFxcWIj4+HRCJBaGgoLl68iNjYWOzfvx8AYGtrW26/H374ITw9PTFhwgSkp6dXWNuSJUtw7do1tG/fHp999hkAwNHRsVrHWRcw3BgIbwcnItJMfn4+rKysRNl3bm4uGjRooPHyO3bsUNWal5cHV1dX7NixA1Lp4wsjmzdvhlKpxA8//KAKTWvXroWdnR0OHTqEzp07Izs7G0OGDEHz5s0BQNXSDwBWVlYwMTGBi4tLpTVYWVmpLj9VtpytrS3kcjksLS2r3Jax4GUpA+Ht4ERExqdPnz5ISEhAQkIC4uPjERwcjIEDB+LWrVsAgHPnziEpKQnW1tawsrKClZUV7O3tUVhYiBs3bsDe3h7jx49HcHAwQkJCsGTJkkpbX0hzbLkxkLJwk5iYiJKSEpiamopcERFR7WRpaYnc3FzR9q2NBg0aoEWLFqrXP/zwA2xtbbFq1Sp8/vnnyM3Nhb+/P9avX19u3bLLQmvXrsV7772H2NhYbN68GbNnz8a+ffvQrVu3mh1MPcZwYyAeHh5o0KAB8vLykJSUpNbsSERE/yORSLS6NFSbSCQSSKVSFBQUAAA6deqEzZs3w8nJCTY2NpWu5+fnBz8/P0RERCAwMBAbNmxAt27dIJfLoVAodFKbLrdV2/GylIFIpVIO5kdEZGSKioqQkZGBjIwMXLlyBdOmTUNubq7q7qXRo0fDwcEBw4YNwx9//IHk5GQcOnQI7733Hv7++28kJycjIiICx44dw61bt7B3715cv35d9T/Anp6eSE5ORkJCArKyslBUVFTtWj09PXHixAmkpKQgKyvLqMddY7gxIHYqJiIyLrGxsXB1dYWrqysCAgJw8uRJbNmyBb179wbw+DLXkSNH4OHhgeHDh6NNmzaYOHEiCgsLYWNjA0tLS1y9ehUjRoyAt7c3Jk2ahKlTp+Ltt98GAIwYMQIDBgxAnz594OjoiI0bN1a71g8//BAymQxt27aFo6MjUlNTdXEKaiWJIAiC2EUYUk5ODmxtbZGdnV1lE6E+LFq0CB988AFefvllbNmyxaD7JiKqTGFhIZKTk9GsWTOYm5uLXQ7VY1X9LWrz/c2WGwNiyw0REZH+MdwYUNkdU9evX1d1NiMiIiLdYrgxIDc3Nzg4OEChULBTMRERkZ4w3BiQRCKBn58fAODs2bMiV0NERGScGG4MrOzR9QkJCaLWQUREZKwYbgyM4YaIiEi/GG4MrOyy1Llz5+rNSJFERESGxHBjYN7e3rCwsEBeXh5u3LghdjlERERGh+HGwGQyGTp06ACAl6aIiHQpv7gUnuE74Rm+E/nFpWKXQyJiuBFBWb8b3jFFRESkeww3Iijrd8OWGyKium38+PGQSCSQSCQwNTWFs7MzXnjhBaxZs0arB1PGxMTAzs5Of4XWMww3IuAdU0RExmPAgAFIT09HSkoKdu/ejT59+mD69OkYMmQISkt5eUwMDDci6NChAyQSCTIyMpCRkSF2OURERicju9Bg+zIzM4OLiwsaN26MTp064eOPP8avv/6K3bt3IyYmBsDjByd36NABDRo0gLu7O9555x3k5uYCAA4dOoQJEyYgOztb1Qr06aefAgB+/PFHdO7cGdbW1nBxccGoUaNw9+5dgx1bXcVwI4IGDRqgVatWANh6Q0RUHfnFpeWmDSdSVe8HLTqMH4+llFvGUPr27QsfHx9s3boVACCVSvHNN9/g0qVLWLduHQ4cOICZM2cCALp3747FixfDxsYG6enpSE9Px4cffggAKCkpwbx583Du3Dls374dKSkpGD9+vMGOo64yEbuA+srX1xdXr15FQkICBgwYIHY5RER1StvIPVW+rxSAOb9ewpxf1Z/jl7JgsD7LUtO6dWucP38eADBjxgzVfE9PT3z++eeYPHkyvv32W8jlctja2kIikcDFxUVtG2+88Ybqdy8vL3zzzTfo0qULcnNzYWVlZZDjqIvYciMS9rshIjJugiBAIpEAAPbv349+/fqhcePGsLa2xpgxY3D//n3k5+dXuY3Tp08jJCQEHh4esLa2Rq9evQAAqampVa5X37HlRiR8gCYRUfVd/ixY7XVGdiGCFh2GUvjfPKkE2B/WCy625gau7rErV66gWbNmSElJwZAhQzBlyhT861//gr29PY4ePYqJEyeiuLgYlpaWFa6fl5eH4OBgBAcHY/369XB0dERqaiqCg4NRXFxs4KOpW0RvuVm+fDk8PT1hbm6OgIAAxMfHV7n84sWL0apVK1hYWMDd3R3vv/8+CgsN13FMV3x8fAAA169fV3UqIyIizVjKTdQmL0crzB3aTvW+VALMH94BXo5WassZyoEDB3DhwgWMGDECp0+fhlKpxNdff41u3brB29sbd+7cUVteLpeXeyTP1atXcf/+fSxYsADPPfccWrduzc7EGhI13GzevBlhYWGIiorCmTNn4OPjg+Dg4Eo/vA0bNiA8PBxRUVG4cuUKVq9ejc2bN+Pjjz82cOU15+zsDFdXVwiCgAsXLohdDhFRnTfCv4nq9/1hvRDaxcMg+y0qKkJGRgZu376NM2fOIDo6GsOGDcOQIUMwduxYtGjRAiUlJVi6dClu3ryJH3/8EStXrlTbhqenJ3JzcxEXF4esrCzk5+fDw8MDcrlctd5vv/2GefPmGeSY6jpRw82iRYvw1ltvYcKECWjbti1WrlwJS0tLrFmzpsLl//rrL/To0QOjRo2Cp6cn+vfvj5EjRz6ztae24qUpIiL9MOSlqNjYWLi6usLT0xMDBgzAwYMH8c033+DXX3+FTCaDj48PFi1ahC+++ALt27fH+vXrMX/+fLVtdO/eHZMnT0ZoaCgcHR2xcOFCODo6IiYmBlu2bEHbtm2xYMECfPXVVwY7rrpMtD43xcXFOH36NCIiIlTzpFIpgoKCcOzYsQrX6d69O3766SfEx8eja9euuHnzJnbt2oUxY8ZUup+ioiIUFRWpXufk5OjuIGrI19cXu3btYqdiIqI6KiYmRjWWTVXef/99vP/++2rznv7uWrFiBVasWKE2b+TIkRg5cqTaPEEQQFUTLdxkZWVBoVDA2dlZbb6zszOuXr1a4TqjRo1CVlYWevbsCUEQUFpaismTJ1d5WWr+/PmYO3euTmvXFd4xRUREpHuidyjWxqFDhxAdHY1vv/0WZ86cwdatW7Fz584qr0FGREQgOztbNaWlpRmw4qqVXZa6cOECh+gmIqohS7kJUhYMRsqCwQbtPEy1j2ifvoODA2QyGTIzM9XmZ2ZmlhvEqMycOXMwZswYvPnmmwAeP8YgLy8PkyZNwieffAKptHxWMzMzg5mZme4PQAe8vLxgZWWF3NxcJCYmol27ds9eiYiIiKokWsuNXC6Hv78/4uLiVPOUSiXi4uIQGBhY4Tr5+fnlAoxMJgNQN69BSqVS1S3hvDRFRESkG6JelgoLC8OqVauwbt06XLlyBVOmTEFeXh4mTJgAABg7dqxah+OQkBCsWLECmzZtQnJyMvbt24c5c+YgJCREFXLqmrJLU2fOnBG5EiKq7+ri/ySScdHV36CoFyVDQ0Nx7949REZGIiMjA76+voiNjVV1Mk5NTVVrqZk9ezYkEglmz56N27dvw9HRESEhIfjXv/4l1iHUWOfOnQEAJ0+eFLkSIqqvyv7nsLi4GBYWFiJXQ/VZ2cjLNW2wkAj1LKrn5OTA1tYW2dnZsLGxEbscXLlyBW3btoWlpSWys7NhYsJOcERkWIIgIDU1FSUlJXBzc6uw/yKRvimVSty5cwempqbw8PBQPZerjDbf3/wmFVmrVq1gbW2NR48e4fLly+jYsaPYJRFRPSORSODq6ork5GTcunVL7HKoHpNKpRUGG20x3IhMKpWic+fOOHjwIE6ePMlwQ0SikMvlaNmyJR/ISKKSy+U6aTlkuKkFunbtioMHDyI+Ph4TJ04UuxwiqqekUinMzcV5gjaRLvHCai3QpUsXAOxUTEREpAsMN7VA165dAQDnz59HQUGByNUQERHVbQw3tUCTJk3g7OwMhULBJ4QTERHVEMNNLSCRSFStN7w0RUREVDMMN7VEWb+b+Ph4kSshIiKq2xhuagm23BAREekGw00tUdZyc/36dTx48EDkaoiIiOouhptawt7eHs2bNwcAnDp1SuRqiIiI6i6Gm1qk7NIU+90QERFVH8NNLcJOxURERDXHcFOLPNlyU88e1k5ERKQzDDe1iJ+fH2QyGTIyMnD79m2xyyEiIqqTGG5qEUtLS7Rv3x4AbwknIiKqLoabWoadiomIiGqG4aaWYadiIiKimmG4qWXKWm5OnToFpVIpcjVERER1D8NNLdOuXTtYWloiJycHV65cEbscIiKiOofhppYxMTFBQEAAAODPP/8UuRoiIqK6h+GmFurRowcAhhsiIqLqYLiphXr27AkAOHr0qMiVEBER1T0MN7VQt27dIJFIcPPmTaSnp4tdDhERUZ3CcFML2draomPHjgB4aYqIiEhbDDe1FPvdEBERVQ/DTS1VFm7Y74aIiEg7DDe1VFmn4rNnzyIvL0/kaoiIiOoOE00W+uabb7Te8IQJE2Btba31evSYh4cHmjRpgr///hvx8fHo06eP2CURERHVCRqFmxkzZqBJkyaQyWQabTQtLQ1DhgxhuKmhnj17YtOmTTh69CjDDRERkYY0CjfA42cdOTk5abQsQ41u9OjRA5s2bWKnYiIiIi1o1OcmKioKVlZWGm/0448/hr29fbWLosfK+t389ddfUCgUIldDRERUN0gEQRDELsKQcnJyYGtri+zsbNjY2IhdTpUUCgUaNmyIR48eISEhAT4+PmKXREREJAptvr91crdUTk4OVqxYgc6dO+tic/T/ZDIZunXrBoC3hBMREWmqRuHm4MGDGDNmDFxdXTFv3jzV06xJd8ouTbHfDRERkWY07lBc5vbt24iJicHatWvx8OFDPHjwABs2bMCrr74KiUSijxrrNY5UTEREpB2NW25++eUXDBo0CK1atUJCQgK+/vpr3LlzB1KpFB06dGCw0ZOAgADIZDKkpqYiLS1N7HKIiIhqPY3DTWhoKPz8/JCeno4tW7Zg2LBhkMvl+qyNAFhZWcHX1xcAW2+IiIg0oXG4mThxIpYvX44BAwZg5cqVePDggT7roieU9bv5448/RK6EiIio9tM43Hz33XdIT0/HpEmTsHHjRri6umLYsGEQBAFKpVKfNdZ7zz//PADg8OHDIldCRERU+2l1t5SFhQXGjRuHw4cP48KFC2jXrh2cnZ3Ro0cPjBo1Clu3btVXnfVar169IJFIcOnSJWRmZopdDhERUa1W7VvBW7ZsiejoaKSlpeGnn35Cfn4+Ro4cqcva6P81atRINYDfwYMHRa6GiIiodqvxIH5SqRQhISHYvn077+bRo759+wIADhw4IHIlREREtZvW49wAwJ07d3D06FHcvXtXrb+NRCLBtGnTdFYc/U/fvn2xaNEihhsiIqJn0PrZUjExMXj77bchl8vRqFEjtfFtJBIJbt68qfMidakuPVvqSTk5ObC3t4dCoUBKSgqaNm0qdklEREQGo9dnS82ZMweRkZHIzs5GSkoKkpOTVVNtDzZ1mY2NDbp06QKA/W6IiIiqonW4yc/Px2uvvQapVCfP3MTy5cvh6ekJc3NzBAQEID4+vsrlHz58iKlTp8LV1RVmZmbw9vbGrl27dFJLbdenTx8ADDdERERV0TqhTJw4EVu2bNHJzjdv3oywsDBERUXhzJkz8PHxQXBwMO7evVvh8sXFxXjhhReQkpKC//73v0hMTMSqVavQuHFjndRT2z3ZqVjLq4lERET1htZ9bhQKBYYMGYKCggJ06NABpqamau8vWrRI420FBASgS5cuWLZsGQBAqVTC3d0d06ZNQ3h4eLnlV65ciS+//BJXr14tt9/KFBUVoaioSPU6JycH7u7uda7PDfC41axhw4YoLi7GtWvX0LJlS7FLIiIiMgi99rmZP38+9uzZg8zMTFy4cAFnz55VTQkJCRpvp7i4GKdPn0ZQUND/ipFKERQUhGPHjlW4zm+//YbAwEBMnToVzs7OaN++PaKjo6FQKKqs19bWVjW5u7trXGNtY2lpicDAQAC8JZyIiKgyWt8K/vXXX2PNmjUYP358jXaclZUFhUIBZ2dntfnOzs64evVqhevcvHkTBw4cwOjRo7Fr1y4kJSXhnXfeQUlJCaKioipcJyIiAmFhYarXZS03dVXfvn1x+PBhHDhwAG+//bbY5RAREdU6WrfcmJmZoUePHvqo5ZmUSiWcnJzw/fffw9/fH6Ghofjkk0+wcuXKStcxMzODjY2N2lSXlfW7OXjwIJ/pRUREVAGtw8306dOxdOnSGu/YwcEBMpms3LOSMjMz4eLiUuE6rq6u8Pb2hkwmU81r06YNMjIyUFxcXOOa6oKuXbvC0tIS9+7dw6VLl8Quh4iIqNbROtzEx8dj3bp18PLyQkhICIYPH642aUoul8Pf3x9xcXGqeUqlEnFxcap+JU/r0aMHkpKS1Fosrl27BldXV8jlcm0PpU6Sy+Xo2bMnAN4STkREVBGtw42dnR2GDx+OXr16wcHBQa2zrq2trVbbCgsLw6pVq7Bu3TpcuXIFU6ZMQV5eHiZMmAAAGDt2LCIiIlTLT5kyBf/88w+mT5+Oa9euYefOnYiOjsbUqVO1PYw6jc+ZIiIiqpzWHYrXrl2rs52Hhobi3r17iIyMREZGBnx9fREbG6vqZJyamqo2WKC7uzv27NmD999/Hx07dkTjxo0xffp0zJo1S2c11QVl4ebQoUNQKBRql+mIiIjqO63Huanr6uqzpZ5UWloKBwcHZGdn48SJE+jatavYJREREemVzse56dSpEx48eKBxAT179sTt27c1Xp60Y2Jign79+gEAdu/eLXI1REREtYtGl6USEhJw7tw52Nvba7TRhIQEtVGBSfcGDhyIrVu3Yvfu3ZWO8UNERFQfadznpl+/fho/z0gikVS7INLMgAEDADy+ey0rKwsODg4iV0RERFQ7aBRukpOTtd5wkyZNtF6HNNekSRN06NABFy5cwN69ezFq1CixSyIiIqoVNAo3TZs21XcdVA0DBw7EhQsXsHv3boYbIiKi/6f1ODdUewwcOBAAsGfPHj6KgYiI6P8x3NRhPXr0gLW1Ne7du4fTp0+LXQ4REVGtwHBTh5mamiIoKAgAbwknIiIqw3BTx5VdmmK4ISIiekzrcOPl5YX79++Xm//w4UN4eXnppCjSXFm4OXHiRIWfCxERUX2jdbhJSUmBQqEoN7+oqIijEougSZMmaN++PQRBwN69e8Uuh4iISHQaD+L322+/qX7fs2eP2hPAFQoF4uLi4OnpqdPiSDMDBw7ExYsXsXv3bowcOVLscoiIiESl8YMzy57OLZFIyo1UbGpqCk9PT3z99dcYMmSI7qvUIWN4cObTDh48iL59+8LR0REZGRlqT1InIiIyBtp8f2vcclM2jkqzZs1w8uRJDvdfi/To0QNWVla4d+8ezpw5g86dO4tdEhERkWi0/l/85ORkBptaRi6X85ZwIiKi/6dxy82T4uLiEBcXh7t375YbGXfNmjU6KYy0M2jQIGzfvh07d+7EnDlzxC6HiIhINFq33MydOxf9+/dHXFwcsrKy8ODBA7WJxDFkyBBIJBKcOHGCd60REVG9pnXLzcqVKxETE4MxY8boox6qJldXV3Tr1g3Hjh3Dr7/+infeeUfskoiIiEShdctNcXExunfvro9aqIZeeuklAMC2bdtEroSIiEg8WoebN998Exs2bNBHLVRDZeHm0KFDvERIRET1ltaXpQoLC/H9999j//796NixI0xNTdXeX7Rokc6KI+20aNEC7du3x8WLF7Fjxw5eOiQionpJ63Bz/vx5+Pr6AgAuXryo9p5EItFJUVR9L730Ei5evIht27Yx3BARUb2k8QjFxsIYRyh+0tmzZ9GpUydYWFggKysLlpaWYpdERERUY9p8f1d7nP6kpCTs2bMHBQUFAFDukQwkDl9fXzRt2hQFBQV8kCYREdVLWoeb+/fvo1+/fvD29sagQYOQnp4OAJg4cSI++OADnRdI2pFIJLxrioiI6jWtw837778PU1NTpKamql3yCA0NRWxsrE6Lo+opCze///47SkpKRK6GiIjIsLQON3v37sUXX3yBJk2aqM1v2bIlbt26pbPCqPp69OgBR0dHPHjwAEeOHBG7HCIiIoPSOtzk5eVV2En1n3/+gZmZmU6KopqRyWQYOnQoAF6aIiKi+kfrcPPcc8/hP//5j+q1RCKBUqnEwoUL0adPH50WR9VXdmlq+/bt5R5uSkREZMy0Hudm4cKF6NevH06dOoXi4mLMnDkTly5dwj///IM///xTHzVSNfTr1w9WVla4ffs2Tp48iYCAALFLIiIiMgitW27at2+Pa9euoWfPnhg2bBjy8vIwfPhwnD17Fs2bN9dHjVQN5ubmGDJkCABg06ZNIldDRERkOFoN4ldSUoIBAwZg5cqVaNmypT7r0htjH8TvSb///juGDh0KV1dXpKWlQSaTiV0SERFRtehtED9TU1OcP3++RsWR4QQHB6Nhw4ZIT0/H4cOHxS6HiIjIILS+LPX6669j9erV+qiFdEwul+Pll18GAPznp5/gGb4TnuE7kV9cKnJlRERE+qN1h+LS0lKsWbMG+/fvh7+/Pxo0aKD2Pp8KXruMGjUKq1atwvatW2H75lBITEyfvRIREVEdpnW4uXjxIjp16gQAuHbtmtp7fCp47fPcc8+hcePGuH37NuTJp2HZspvYJREREemVVuFGoVBg7ty56NChAxo2bKivmkiHZDIZQkNDsWjRIuRdPsxwQ0RERk+rPjcymQz9+/fHw4cP9VQO6cOoUaMAAAVJJ6Asyhe5GiIiIv2q1jg3N2/e1EctpCedOnVCy5beEEqLkX/9uNjlEBER6ZXW4ebzzz/Hhx9+iB07diA9PR05OTlqE9U+EokEr4SGAgDyrvCWcCIiMm5aDeIHAFLp//LQkx2IBUGARCKBQqHQXXV6UJ8G8XtSwoVL8OvYHpBIkZL2N5o2dhW7JCIiIo1p8/2t9d1SBw8erHZhJB7vVq0gd2mB4owkbPvlv5jx3jSxSyIiItILrcNNr1699FEHGUCDNr1QnJGEzZs2MtwQEZHR0jrcHDlypMr3n3/++WoXQ/pl2eZ5PDi0FsePHUNiYiJatWoldklEREQ6p3W46d27d7l5T/a9qe19buozE+tGsAkYgbxLB7B69WosXLhQ7JKIiIh0Tuu7pR48eKA23b17F7GxsejSpQv27t1brSKWL18OT09PmJubIyAgAPHx8Rqtt2nTJkgkErz44ovV2q+xyy8uVU0bTqQCABr2GofGk9fix79uIjuvgM+ZIiIio6P13VKVOXz4MMLCwnD69Gmt1tu8eTPGjh2LlStXIiAgAIsXL8aWLVuQmJgIJyenStdLSUlBz5494eXlBXt7e2zfvl2j/dWnu6U8w3dW+p6gVKAw5SwsvDojZcFgA1ZFRESkPW2+v7VuuamMs7MzEhMTtV5v0aJFeOuttzBhwgS0bdsWK1euhKWlJdasWVPpOgqFAqNHj8bcuXPh5eVVk7LrLYlUhsK0i2KXQUREpHNa97k5f/682mtBEJCeno4FCxbA19dXq20VFxfj9OnTiIiIUM2TSqUICgrCsWPHKl3vs88+g5OTEyZOnIg//vijyn0UFRWhqKhI9bo+DTR4+bNgAEBGdiGCFh2G8ok2OkGpQMHlwzi94SuRqiMiItIPrVtufH194efnB19fX9XvgwYNQnFxMX744QettpWVlQWFQgFnZ2e1+c7OzsjIyKhwnaNHj2L16tVYtWqVRvuYP38+bG1tVZO7u7tWNdZllnITWMpN4OVohblD26nmSyVAo+S9KMm5h80bfhKxQiIiIt3TOtwkJyfj5s2bSE5ORnJyMm7duoX8/Hz89ddfaN26tT5qVHn06BHGjBmDVatWwcHBQaN1IiIikJ2drZrS0tL0WmNtNcK/ier3/WG9MCOkKwBg9erVUCqVYpVFRESkc1pflmratKnOdu7g4ACZTIbMzEy1+ZmZmXBxcSm3/I0bN5CSkoKQkBDVvLIvZhMTEyQmJqJ58+Zq65iZmcHMzExnNRsDF1tzvPzyy5g2bRqSk5Nx6NAh9O3bV+yyiIiIdELjlpsDBw6gbdu2FfZZyc7ORrt27Z7Z/+Vpcrkc/v7+iIuLU81TKpWIi4tDYGBgueVbt26NCxcuICEhQTUNHToUffr0QUJCQr265FRTlpaWGD16NABofTmRiIioNtM43CxevBhvvfVWhbdf2dra4u2338aiRYu0LiAsLAyrVq3CunXrcOXKFUyZMgV5eXmYMGECAGDs2LGqDsfm5uZo37692mRnZwdra2u0b98ecrlc6/3XZxMnTgQAbN26Ff/884/I1RAREemGxuHm3LlzGDBgQKXv9+/fX+sxbgAgNDQUX331FSIjI+Hr64uEhATExsaqOhmnpqYiPT1d6+3Ss3Xq1Am+vr4oKirCf/7zH7HLISIi0gmNB/EzNzfHxYsX0aJFiwrfT0pKQocOHVBQUKDTAnWtPg3i96T84lK0jdwD4PEt4pbyx92tvvvuO0yePBnNmzdHYmIiZDKZmGUSERFVSC+D+DVu3BgXL1Y+6Nv58+fh6uqqeZVUK7z++uto2LAhbty4gd27d4tdDhERUY1pHG4GDRqEOXPmoLCwsNx7BQUFiIqKwpAhQ3RaHOlfgwYN8OabbwIAlixZInI1RERENafxZanMzEx06tQJMpkM7777Llq1agUAuHr1KpYvXw6FQoEzZ86UG5CvtuFlKfXLUgBw69YteHl5QalU4tKlS2jbtq1YZRIREVVIL5elnJ2d8ddff6F9+/aIiIjASy+9hJdeegkff/wx2rdvj6NHj9b6YEMVa9q0qerJ6kuXLhW3GCIiohqq1lPBHzx4gKSkJAiCgJYtW6Jhw4b6qE0v2HJTvuUGePxU9969e8PS0hJ///13nfpMiYjI+Gnz/V2tcFOX1ddw8yyCIMDX1xfnz5/Hl19+iQ8//FDskoiIiFT0clmKjJtEIsH06dMBAMuWLYNCoRC5IiIiouphuCGVkSNHolGjRrh16xZ+++03scshIiKqFoYbUrGwsMDbb78NgLeFExFR3cVwQ2qmTJkCExMTHD58GCdOnBC7HCIiIq0x3JCaJk2a4PXXXwcAREdHi1wNERGR9hhuqJzw8HBIJBL89ttvuHDhgtjlEBERaYXhhspp1aoVXn75ZQDAggULRK6GiIhIOww3VKGIiAgAwKZNm5CUlCRyNURERJpjuKEK+fn5YdCgQVAqlVi4cKHY5RAREWmM4YYq9fHHHwMAYmJi8Pfff4tcDRERkWYYbqhSPXr0wPPPP4+SkhJ8/fXXYpdDRESkEYYbqtInn3wCAPjuu+9w7949kashIiJ6NoYbqtILL7wAf39/FBQUsPWGiIjqBIYbqpJEIkFkZCQA4JtvvkF6errIFREREVWN4YaeKSQkBIGBgSgoKMC8efPELoeIiKhKDDf0TBKJRDWY36pVq3Djxg2RKyIiIqocww1p5Pnnn8eAAQNQWlqqukxFRERUGzHckMbKHqS5YcMGnDt3TuRqiIiIKsZwQxrz8/PDa6+9BuB/t4gTERHVNgw3pJV58+bBxMQEO3fuxB9//CF2OUREROUw3JBWWrRogYkTJwJ4/HBNQRBEroiIiEgdww1pLTIyEhYWFvjzzz/x3//+V+xyiIiI1DDckNbc3Nwwa9YsAMAHH3yAvLw8kSsiIiL6H4YbqpaZM2eiadOmSEtLwxdffCF2OURERCoMN1QtFhYWWLRoEQBg4cKFuHnzpsgVERERPcZwQ9X20ksvISgoCEVFRfjggw/ELoeIiAgAww3VgEQiwZIlS2BiYoLt27dj7969YpdERETEcEM107ZtW0ybNg0A8N5776G4uFjkioiIqL5juKEai4qKgpOTExITE7FkyRKxyyEionqO4YZqzNbWVnXHVFRUFJKSkkSuiIiI6jOGG9KJcePGoV+/figoKMBbb70FpVIpdklERFRPMdyQTkgkEqxatQqWlpY4dOgQVq1aJXZJRERUTzHckM40a9YM0dHRAICPPvoIaWlpIldERET1EcMN6dS7776LwMBAPHr0CFOmTOGDNYmIyOAYbkinZDIZVq9eDblcjp07d2LDhg1il0RERPUMww3pXJs2bRAZGQkAmD59OtLT00WuiIiI6hOGG9KLmTNnws/PD/fv38e4ceN49xQRERkMww3phampKdavXw8LCwvs27dP9ZBNIiIifWO4Ib1p06aNasTijz/+GKdPnxa5IiIiqg8Ybkiv3nzzTQwfPhwlJSUYOXIkcnNzxS6JiIiMXK0IN8uXL4enpyfMzc0REBCA+Pj4SpddtWoVnnvuOTRs2BANGzZEUFBQlcuTuMoG92vSpAmuX7+uesgmERGRvogebjZv3oywsDBERUXhzJkz8PHxQXBwMO7evVvh8ocOHcLIkSNx8OBBHDt2DO7u7ujfvz9u375t4MpJU/b29li/fj2kUiliYmKwceNGsUsiIiIjJhFEHmUtICAAXbp0wbJlywAASqUS7u7umDZtGsLDw5+5vkKhQMOGDbFs2TKMHTv2mcvn5OTA1tYW2dnZsLGxqXH9pLnIyEjMmzcPDRo0wPHjx9G+fXuxSyIiojpCm+9vUVtuiouLcfr0aQQFBanmSaVSBAUF4dixYxptIz8/HyUlJbC3t6/w/aKiIuTk5KhNJI7IyEj069cPeXl5ePHFF/HgwQOxSyIiIiMkarjJysqCQqGAs7Oz2nxnZ2dkZGRotI1Zs2bBzc1NLSA9af78+bC1tVVN7u7uNa6bqsfExASbNm2Cp6cnbty4gZEjR0KhUIhdFhERGRnR+9zUxIIFC7Bp0yZs27YN5ubmFS4TERGB7Oxs1cSHOYrLwcEB27dvh4WFBfbs2YPZs2eLXRIRERkZUcONg4MDZDIZMjMz1eZnZmbCxcWlynW/+uorLFiwAHv37kXHjh0rXc7MzAw2NjZqE4nLx8cHa9asAfA4oG7ZskWj9fKLS+EZvhOe4TuRX1yqzxKJiKgOEzXcyOVy+Pv7Iy4uTjVPqVQiLi4OgYGBla63cOFCzJs3D7GxsejcubMhSiUde+211/Dhhx8CAMaPH4+zZ8+KXBERERkL0S9LhYWFYdWqVVi3bh2uXLmCKVOmIC8vDxMmTAAAjB07FhEREarlv/jiC8yZMwdr1qyBp6cnMjIykJGRwcHh6qD58+ejf//+yM/Px6BBg5CSkiJ2SUREZAREDzehoaH46quvEBkZCV9fXyQkJCA2NlbVyTg1NVXtqdIrVqxAcXExXn75Zbi6uqqmr776SqxDoGoyMTHBzz//jI4dOyIjIwMDBgzA/fv3xS6LiIjqONHHuTE0jnNT+9y+fRuBgYFIS0tD9+7dsX//flhYWJRbLr+4FG0j9wAALn8WDEu5iaFLJSIikdSZcW6IAKBx48aIjY2FnZ0d/vrrL4wePZq3iBMRUbUx3FCt0LZtW/z2228wMzPDtm3b8O6776KeNSoSEZGOMNxQrfHcc8/hp59+gkQiwcqVK/H+++8z4BARkdYYbqhWefnll/HDDz8AAJYsWYIPP/yQAYeIiLTCcEO1zhtvvIHvvvsOALBo0SKEh4cz4BARkcYYbqhWmjRpEr799lsAjwdtnD17NgMOERFphPfSUq01ZcoUlJaW4r333kN0dDQe5eVDMOsLiUSKjOxCeDlaiV0iERHVQmy5oVpt2rRpWLx4MQBg7cFLqvlBiw5j88lUkaoiIqLajIP4UZ3gOCwClq26QyL9Xx6XSSQ4Gt4HrrblB/wjIiLjwkH8yOg0aNNTLdgAgEIQkJKVL1JFRERUWzHcUJ1w4INekEqemqlUQpbPZ1EREZE6hhuqE7wcrTB3aDvVa0GpwP09SzGoT3ccPnxYxMqIiKi2YbihOmOEfxPV7xtfb4NWpv/g/v37CAoKwvfffy9iZUREVJsw3FCd5Nu6GY4cOYLQ0FCUlpbi7bffxnvvvYfS0lKxS3um/OJSeIbvhGf4TuQX1/56iYjqGoYbqrMsLS2xceNGzJs3DwCwdOlS9OnTB3///bfIlRERkZgYbqhOk0gkmD17NrZu3Qpra2scPXoUvr6+2LVrl9ilERGRSBhuyCi89NJLOHPmDDp16oT79+9j8ODBmDlzJkpKSsQujYiIDIzhhoxGixYt8Ndff2HatGkAgC+//BI9e/ZEYmKiyJXVfewnRER1CcMNGRUzMzN88803+OWXX2Bra4v4+Hj4+vri3//+NxQKhdjlERGRATDckFEaPnw4zp8/jxdeeAGFhYUICwtD7969kZSUJHZpRESkZww3ZLQ8PDywZ88efPfdd7CyssLRo0fRsWNHfPXVV+yLQ0RkxBhuyKhJJBJMmjQJFy5cQN++fVFQUICPPvoIfn5+OHLkiNjlERGRHjDcUL3g6emJffv2YfXq1XBwcMClS5fQq1cvjB07FpmZmWKXR0REOsRwQ3WGpdwEKQsGI2XBYFjKTbReXyqV4o033kBiYiLefvttSCQS/Pjjj/D29saCBQtQUFCgh6qJ6g/eVUe1BcMN1Tv29vZYuXIljh8/Dn9/f+Tk5CAiIgLe3t6IiYkx6F1VGdmFBtsXEVF9wXBD9VbXrl0RHx+PH3/8ER4eHvj7778xYcIE+Pn54ffff4cgCDrfZ35xKTacSFW9Dlp0GD8eS9H5foiI6jOGG6rXpFIpXn/9dSQmJuLLL7+EnZ0dLly4gKFDh8Lf3x/bt2+HUqnU2f7aRu7B5zuvqF4rBWDOr5eQns1LYkREusJwQwTA3NwcH374IW7cuIFZs2ahQYMGOHv2LF566SX4+flhy5Yter1clZKVr7dtExHVNww3RE+wt7fHggULkJKSgk8++QTW1tY4f/48Xn31VXh7e+Obb77Bo0ePqr39Ax/0glSiPk8qATwdLGtYueGwnxAR1XYMN0QVcHBwwOeff46UlBRERkbC3t4eN2/exPTp0+Hu7o6PPvoIt27d0nq7Xo5WmDu0neq1VALMH94BrrYWuixf59hPiIjqEoYboirY29tj7ty5SEtLw4oVK+Dt7Y3s7Gx89dVXaNasGQYPHoxff/0VpaWa3/Y6wr+J6vf9Yb0Q2sVDH6XrTHp2AfsJEVGdwnBDpAFLS0tMnjwZV65cwY4dOxAUFARBELBr1y68+OKL8PT0RGRkJG7cuKHVdl1szfVUse4kZ+VVOJ/9hIiotmK4IdKCVCrF4MGDsW/fPly7dg0zZ86Eo6Mjbt++jXnz5qFFixbo3r07VqxYgfv374tdrk40c2hQp/sJcWA5ovqH4Yaomlq2bIkvvvgCaWlp2LRpE4KDgyGVSnHs2DG88847cHV1RUhICNatW4cHDx6IXW61udpa1Ml+QkRlGHDrH4YbohoyMzNDaGgoYmNj8ffff2PRokXw8/NDSUkJduzYgfHjx8PJyQnBwcH4/vvvkZ6eLnbJWqtr/YRIfLyrjsTEcEOkQ66urnj//fdx5swZXLp0CXPnzkWHDh1QWlqKvXv34u2330YLTw+kr5uBh3+sx6mT8TodJNAQ6kI/ITI8jr5NtQnDDZGetG3bFpGRkTh//jwSExMRHR2NLl26AACKM5KQ/ddG9OrZA87Oznjttdfwww8/ICUlRdyiiaqJo29TbcJwQ2QA3t7eiIiIQHx8PG7cSkOjgdNh6d0d1tbWyMrKwubNm/HWW2+hWbNmaNGiBSZOnIh169bh5s2bennGFZGh8K46EoOJ2AUQ1TcuLi6w6vgCrDq+gITZfXAx4Qz279+P/fv34/jx47hx4wZu3LiBNWvWAAAaN26Mnj17IiAgAAEBAejUqRPMzXlpiGqXAx/0QtCiw1A+kcXr0l11ZFwYbohEJJfL0bNnT/Ts2ROffvopcnJy8Mcff+DIkSP4448/cOrUKdy+fRubN2/G5s2bAQCmpqbw8fFB586d0alTJ3Tq1Ant27eHmZmZyEdD9VnZ6Ntzfr0EgHfVkbgYbohqERsbGwwePBiDBw8GAOTn5+PEiRM4duwYjh8/jhMnTuDu3bs4deoUTp06pVrPxMQEbdu2RYcOHdSmJk2aQCKRVLY7Ip0a4d9EFW72h/WCl6OVyBVRfcVwQ2RglnITpCwYrNmylpbo06cP+vTpAwAQBAG3bt3CiRMncObMGZw9exZnzpzB/fv3cf78eZw/f15tfRsbG7Ru3RqtW7dGmzZt0Lp1a7Rs2RJeXl6wsOD/UdcF+cWlaBu5BwBw+bNgWMrrxj/bvKtOe3X1s66NeOaI6hCJRAJPT094enoiNDQUwOPAk5aWhnPnzuHChQs4f/48Lly4gMTEROTk5CA+Ph7x8fHlttOkSRNV0GnWrJna5OTkxBYfIqqzGG6I6jiJRAIPDw94eHggJCRENb+oqAg3btzAlStXcPXqVVy5cgWJiYm4fv06srOzkZaWhrS0NBw4cKDcNs3MzODu7q7arrOrGx6dfQiZdSOcPeuIFp5N4eDgAJlMZshDrbGM7EJeKiGqBxhuiIyUmZkZ2rZti7Zt26rNFwQB9+/fx/Xr13H9+nXcvHkTycnJqun27dsoKipCUlISkpKSym235y/zAAAymQxOTk5wcXFRTY6OjnByclJNDg4OaNSoERwcHNCgQQODtwZVNLDc3KHtMCbQ06B1UO3BgFs/MNwQ1TMSiQQODg5wcHBAYGBgufeLi4tx+/ZtpKWlITU1Fbdu3cLt27dx+/Zt3LlzB7dv30ZGRgYUCgXS09M1fpyEmZkZGjVqBHt7e9jb26Nhw4aqn3Z2dmqTjY0NbGxsYGtrCxsbG1hbW1frbrCy/gtlygaWC2rrzLt46oGy50hVFHBH+DdhnxYjVis+2eXLl+PLL79ERkYGfHx8sHTpUnTt2rXS5bds2YI5c+YgJSVF9fDCQYMGGbBiIuMll8tVfW8qU1painv37iEjIwPp6enIyMhARkYG7t27h3v37uHu3bu4e/cusrKykJWVhaKiIhQVFeHOnTu4c+dOteuytrZWTVZWVrCyskKDBg1UPxs0aABLS0vVz/ykf2DZoku5bR08eRFdPRvCwsIC5ubmMDMzg7m5OUxMasU/iaQjT4db4H8Bd86vlzTu2E91j+j/JW/evBlhYWFYuXIlAgICsHjxYgQHByMxMRFOTk7llv/rr78wcuRIzJ8/H0OGDMGGDRvw4osv4syZM2jfvr0IR0BU/5iYmMDV1RWurq7w8/OrcllBEJCfn68KOg8ePMCDBw/wzz//4J9//sHDhw/LTTk5OcjOzkZOTg7y8vIAPG5Run//Pu7fv69xnTLrRrDwWguJ9H+DsQtKBcYOHwjFo/LbkclkMDMzq3CSy+Wqn09Opqamqp+VTSYmJpX+LJtkMlm5nzKZDKWCBIVpFwGJDCfj7dDA3Ez1nkwmg1QqLff7kz/LpqdfPz1JJBJ2IiejIRFEHts9ICAAXbp0wbJlywAASqUS7u7umDZtGsLDw8stHxoairy8POzYsUM1r1u3bvD19cXKlSvLLV/2f4xlcnJy4O7ujuzsbNjY2OjhiIhIl0pLS/Ho0SM8evQIubm5ar/n5uYiLy8Pjx49Ql5eHvLz89V+FhQU4I55M9zzDHoccJRKCCc3oOBSHAoLC1FQUIDS0lKxD7HWKAs4ZWHnWT+f/l0ilSIrtxgA4GxrAenT7z8RoJ6ep8n7T84v+72ieWW/CwAUZtb4p/sMQPLE04YEJZxOLINpSW6F26rovOhymcrmKZQC/rrxOHT3aOEAmbTibWkSQnW1THW31bp1a3z55ZcabV9TOTk5sLW11ej7W9SWm+LiYpw+fRoRERGqeVKpFEFBQTh27FiF6xw7dgxhYWFq84KDg7F9+/YKl58/fz7mzp2rs5qJyLBMTEzQsGFDNGzYsFrrPzl2yIGP+sDLMUTtfYVCgaKiIhQWFqr9fHIqLi4u97OkpATFxcWqqex1SUmJ2lRaWqr2+5NTSUkJFAqF6rVCoVDNK5tKSkqRdDcHUCrR2NYMSuX/3lMqlWrLKpVKtXnaPnFeEAQIgqCTJ9Xfya3xJnTGKkcG++B3IZHKICgV+GfPMtw6v0/ssqoUlyJ2BTWjTQurPogabrKysqBQKODs7Kw239nZGVevXq1wnYyMjAqXz8jIqHD5iIgItTBU1nJDRPVPRQPLyWQyWFpawtKydj4DqaYDu5WFlSfDz5Mh6MlA8/Trsqns9ZPzy5Z78r384hIMX/4XAAFbJneDuYlM7X1NprKan/69omUqWvbJ4y57XVhcind/PgeJqTnmDvSCc/d3ALxT4baeXP/pedVZRpt5hSWlmPXLBQDAFyM6wOz/z191ti3mMgAq7FZiSKL3udG3suvlRET1kUQiUfXJMYQ7a/0Nsh9t5BeX4qOTcgDAmFdq78i/+cWlmHf1cZAdOar21lkXSJ+9iP6UDQKWmZmpNj8zMxMuLi4VruPi4qLV8kRExiIju1DsEshA+FnXjKjhRi6Xw9/fH3Fxcap5SqUScXFxFY6/AQCBgYFqywPAvn37Kl2eiKguyS8uVZueHqPlx2Mpau9T3fT056zJZ83PXHOit3mFhYVh3Lhx6Ny5M7p27YrFixcjLy8PEyZMAACMHTsWjRs3xvz58wEA06dPR69evfD1119j8ODB2LRpE06dOoXvv/9ezMMgItKJisZmKfPkGC1lOFZL3VTV5wxU/FmX4Wf+bKKHm9DQUNy7dw+RkZHIyMiAr68vYmNjVZ2GU1NTIX1ijIru3btjw4YNmD17Nj7++GO0bNkS27dv5xg3REREBKAWjHNjaNrcJ09EdV9N7zYytCcvO2RkFyJo0WEon/hXWioB9of1Ut35VduPpzaojX8DT19e0uSzLlMb6heDNt/fova5ISIidZZyE9Xk5WiFuUPbqd6TSoD5wzvAy9FKtQzVTU9+zpp+1vzMNcdwQ0RUi43wb6L6fX9YL4R28RCxGtInfta6w3BDRFRHVDQIIRknftY1w/YtIjJqlnIT3l1CVM+w5YaIiIiMCltuiIjIqLH1rv5hyw0REREZFYYbIiIiMioMN0RERGRUGG6IiIjIqDDcEBERkVFhuCEiIiKjwgdnEhERUa3HB2cSERFRvcVwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKgw3BAREZFRYbghIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKiYiF2AoQmCAADIyckRuRIiIiLSVNn3dtn3eFXqXbh59OgRAMDd3V3kSoiIiEhbjx49gq2tbZXLSARNIpARUSqVuHPnDqytrSGRSHS67ZycHLi7uyMtLQ02NjY63Tap47k2HJ5rw+G5Nhyea8PR1bkWBAGPHj2Cm5sbpNKqe9XUu5YbqVSKJk2a6HUfNjY2/I/FQHiuDYfn2nB4rg2H59pwdHGun9ViU4YdiomIiMioMNwQERGRUWG40SEzMzNERUXBzMxM7FKMHs+14fBcGw7PteHwXBuOGOe63nUoJiIiIuPGlhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG40dLy5cvh6ekJc3NzBAQEID4+vsrlt2zZgtatW8Pc3BwdOnTArl27DFRp3afNuV61ahWee+45NGzYEA0bNkRQUNAzPxv6H23/rsts2rQJEokEL774on4LNCLanuuHDx9i6tSpcHV1hZmZGby9vfnviIa0PdeLFy9Gq1atYGFhAXd3d7z//vsoLCw0ULV115EjRxASEgI3NzdIJBJs3779mescOnQInTp1gpmZGVq0aIGYmBjdFiWQxjZt2iTI5XJhzZo1wqVLl4S33npLsLOzEzIzMytc/s8//xRkMpmwcOFC4fLly8Ls2bMFU1NT4cKFCwauvO7R9lyPGjVKWL58uXD27FnhypUrwvjx4wVbW1vh77//NnDldY+257pMcnKy0LhxY+G5554Thg0bZphi6zhtz3VRUZHQuXNnYdCgQcLRo0eF5ORk4dChQ0JCQoKBK697tD3X69evF8zMzIT169cLycnJwp49ewRXV1fh/fffN3Dldc+uXbuETz75RNi6dasAQNi2bVuVy9+8eVOwtLQUwsLChMuXLwtLly4VZDKZEBsbq7OaGG600LVrV2Hq1Kmq1wqFQnBzcxPmz59f4fKvvvqqMHjwYLV5AQEBwttvv63XOo2Btuf6aaWlpYK1tbWwbt06fZVoNKpzrktLS4Xu3bsLP/zwgzBu3DiGGw1pe65XrFgheHl5CcXFxYYq0Whoe66nTp0q9O3bV21eWFiY0KNHD73WaWw0CTczZ84U2rVrpzYvNDRUCA4O1lkdvCyloeLiYpw+fRpBQUGqeVKpFEFBQTh27FiF6xw7dkxteQAIDg6udHl6rDrn+mn5+fkoKSmBvb29vso0CtU915999hmcnJwwceJEQ5RpFKpzrn/77TcEBgZi6tSpcHZ2Rvv27REdHQ2FQmGosuuk6pzr7t274/Tp06pLVzdv3sSuXbswaNAgg9Rcnxjiu7HePTizurKysqBQKODs7Kw239nZGVevXq1wnYyMjAqXz8jI0FudxqA65/pps2bNgpubW7n/gEhddc710aNHsXr1aiQkJBigQuNRnXN98+ZNHDhwAKNHj8auXbuQlJSEd955ByUlJYiKijJE2XVSdc71qFGjkJWVhZ49e0IQBJSWlmLy5Mn4+OOPDVFyvVLZd2NOTg4KCgpgYWFR432w5YaMzoIFC7Bp0yZs27YN5ubmYpdjVB49eoQxY8Zg1apVcHBwELsco6dUKuHk5ITvv/8e/v7+CA0NxSeffIKVK1eKXZrROXToEKKjo/Htt9/izJkz2Lp1K3bu3Il58+aJXRpVA1tuNOTg4ACZTIbMzEy1+ZmZmXBxcalwHRcXF62Wp8eqc67LfPXVV1iwYAH279+Pjh076rNMo6Dtub5x4wZSUlIQEhKimqdUKgEAJiYmSExMRPPmzfVbdB1Vnb9rV1dXmJqaQiaTqea1adMGGRkZKC4uhlwu12vNdVV1zvWcOXMwZswYvPnmmwCADh06IC8vD5MmTcInn3wCqZRtAbpS2XejjY2NTlptALbcaEwul8Pf3x9xcXGqeUqlEnFxcQgMDKxwncDAQLXlAWDfvn2VLk+PVedcA8DChQsxb948xMbGonPnzoYotc7T9ly3bt0aFy5cQEJCgmoaOnQo+vTpg4SEBLi7uxuy/DqlOn/XPXr0QFJSkipAAsC1a9fg6urKYFOF6pzr/Pz8cgGmLFQKfASjThnku1FnXZPrgU2bNglmZmZCTEyMcPnyZWHSpEmCnZ2dkJGRIQiCIIwZM0YIDw9XLf/nn38KJiYmwldffSVcuXJFiIqK4q3gGtL2XC9YsECQy+XCf//7XyE9PV01PXr0SKxDqDO0PddP491SmtP2XKempgrW1tbCu+++KyQmJgo7duwQnJychM8//1ysQ6gztD3XUVFRgrW1tbBx40bh5s2bwt69e4XmzZsLr776qliHUGc8evRIOHv2rHD27FkBgLBo0SLh7Nmzwq1btwRBEITw8HBhzJgxquXLbgX/6KOPhCtXrgjLly/nreBiW7p0qeDh4SHI5XKha9euwvHjx1Xv9erVSxg3bpza8j///LPg7e0tyOVyoV27dsLOnTsNXHHdpc25btq0qQCg3BQVFWX4wusgbf+un8Rwox1tz/Vff/0lBAQECGZmZoKXl5fwr3/9SygtLTVw1XWTNue6pKRE+PTTT4XmzZsL5ubmgru7u/DOO+8IDx48MHzhdczBgwcr/Pe37PyOGzdO6NWrV7l1fH19BblcLnh5eQlr167VaU0SQWB7GxERERkP9rkhIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKgw3BAREZFRYbghItGNHz8eL774osH3GxMTA4lEAolEghkzZmi0zvjx41XrbN++Xa/1EVH18KngRKRXEomkyvejoqKwZMkS0R5OaGNjg8TERDRo0ECj5ZcsWYIFCxbA1dVVz5URUXUx3BCRXqWnp6t+37x5MyIjI5GYmKiaZ2VlBSsrKzFKA/A4fLm4uGi8vK2tLWxtbfVYERHVFC9LEZFeubi4qCZbW1tVmCibrKysyl2W6t27N6ZNm4YZM2agYcOGcHZ2xqpVq5CXl4cJEybA2toaLVq0wO7du9X2dfHiRQwcOBBWVlZwdnbGmDFjkJWVpXXN3377LVq2bAlzc3M4Ozvj5ZdfrulpICIDYrgholpp3bp1cHBwQHx8PKZNm4YpU6bglVdeQffu3XHmzBn0798fY8aMQX5+PgDg4cOH6Nu3L/z8/HDq1CnExsYiMzMTr776qlb7PXXqFN577z189tlnSExMRGxsLJ5//nl9HCIR6QkvSxFRreTj44PZs2cDACIiIrBgwQI4ODjgrbfeAgBERkZixYoVOH/+PLp164Zly5bBz88P0dHRqm2sWbMG7u7uuHbtGry9vTXab2pqKho0aIAhQ4bA2toaTZs2hZ+fn+4PkIj0hi03RFQrdezYUfW7TCZDo0aN0KFDB9U8Z2dnAMDdu3cBAOfOncPBgwdVfXisrKzQunVrAMCNGzc03u8LL7yApk2bwsvLC2PGjMH69etVrUNEVDcw3BBRrWRqaqr2WiKRqM0ruwtLqVQCAHJzcxESEoKEhAS16fr161pdVrK2tsaZM2ewceNGuLq6IjIyEj4+Pnj48GHND4qIDIKXpYjIKHTq1Am//PILPD09YWJSs3/aTExMEBQUhKCgIERFRcHOzg4HDhzA8OHDdVQtEekTW26IyChMnToV//zzD0aOHImTJ0/ixo0b2LNnDyZMmACFQqHxdnbs2IFvvvkGCQkJuHXrFv7zn/9AqVSiVatWeqyeiHSJ4YaIjIKbmxv+/PNPKBQK9O/fHx06dMCMGTNgZ2cHqVTzf+rs7OywdetW9O3bF23atMHKlSuxceNGtGvXTo/VE5EuSQSxhgUlIhJZTEwMZsyYUa3+NBKJBNu2bRPlsRFEVDW23BBRvZadnQ0rKyvMmjVLo+UnT54s6ojKRPRsbLkhonrr0aNHyMzMBPD4cpSDg8Mz17l79y5ycnIAAK6urho/k4qIDIfhhoiIiIwKL0sRERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMio/B98F7WANTmb4AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1111,47 +2110,45 @@ " color='k',\n", " label='Best fit'\n", " )\n", - "plt.legend()\n", + "fit_info = [\n", + " f\"$\\\\chi^2$/$n_\\\\mathrm{{dof}}$ = {mi.fval:.1f} / {mi.ndof:.0f} = {mi.fmin.reduced_chi2:.1f}\",\n", + "]\n", + "for p, v, e in zip(mi.parameters, mi.values, mi.errors):\n", + " fit_info.append(f\"{p} = ${v:.3f} \\pm {e:.3f}$\")\n", + "\n", + "plt.legend(title=\"\\n\".join(fit_info))\n", "plt.ylabel('Current [mA]')\n", "plt.xlabel('Time [s]')\n", "plt.show()" ] }, - { - "cell_type": "markdown", - "id": "b47df6fb-7fd6-473c-b3d7-af937b5518f0", - "metadata": {}, - "source": [ - "# ADD TASK HERE " - ] - }, { "cell_type": "markdown", "id": "1cd73609-8593-4725-a7c4-317d6a48a72f", "metadata": {}, "source": [ - "# Mathematisch motivierete Herleitung des $\\chi^2$-Fits:\n", + "# Mathematisch motivierte Herleitung des $\\chi^2$-Fits:\n", "\n", - "Nach diesen anfänglichen Beispielen wollen wir uns eine semi-mathematische Herleitung des $\\chi^2$-Fits angucken um etwas besser zu verstehen, warum diese Methode für uns in der Physik so wichtig ist. In unserem Grundpraktikum haben wir bereits gelernt, dass Messwerte durch Zufallszahlen $x_i$ representiert werden und einer gewissen **Wahrscheinlichkeitsdichtefunktion (probability density function)** $f(x)$ unterliegen.\n", + "Nach diesen anfänglichen Beispielen wollen wir uns eine semi-mathematische Herleitung des $\\chi^2$-Fits angucken um etwas besser zu verstehen, warum diese Methode für uns in der Physik so wichtig ist. In unserem Grundpraktikum haben wir bereits gelernt, dass Messwerte durch Zufallszahlen $x_i$ repräsentiert werden und einer gewissen **Wahrscheinlichkeitsdichtefunktion (probability density function)** $f(x)$ unterliegen.\n", "\n", "
\n", "\"{{\n", "
\n", "\n", "\n", - "Eine **pdf** gibt an, mit welcher **Wahrscheinlichkeit ein Wert $x_i$** innerhalb eines **infinitesimalen Intervals $\\text{d}x_i$** zu finden ist. Des Weitren gilt, dass die Gesamtwahrscheinlichkeit gegeben ist durch $\\int_S f(x) dx = 1$. \n", + "Eine **pdf** gibt an, mit welcher **Wahrscheinlichkeit ein Wert $x_i$** innerhalb eines **infinitesimalen Intervals $\\text{d}x_i$** zu finden ist. Des Weiteren gilt, dass die Gesamtwahrscheinlichkeit gegeben ist durch $\\int_S f(x) dx = 1$. \n", "\n", - "Nun betrachten wir folgendes Beispiel: In unserem Labor messen wir genau drei mal die Raumtemperartur T. Auch hier gilt, dass unsere Messung der einzelnen $T_i$ einer gewissen **Wahrscheinlichkeitsdichtefunktion** folgen. Betrachten Sie nun das folgende Bild; Welche **Wahrscheinlichkeitsdichtefunktion** passt besser zu den gezeigten Daten und **Warum?**\n", + "Nun betrachten wir folgendes Beispiel: In unserem Labor messen wir genau drei mal die Raumtemperartur T. Auch hier gilt, dass unsere Messungen der einzelnen $T_i$ einer gewissen **Wahrscheinlichkeitsdichtefunktion** folgen. Betrachten Sie nun das folgende Bild; Welche **Wahrscheinlichkeitsdichtefunktion** passt besser zu den gezeigten Daten und **Warum?**\n", "\n", "
\n", "\"{{\n", "
\n", "\n", - "Die rechte Verteilung spiegelt unsere Messdaten besser wieder. Dies können wir auch mathematisch ausdrücken. Für $N$ voreinander unabhängige Zufallszahlen bzw. Messpunkte (in unserem Beispiel $N = 3$) ist die Gesamtwahrscheinlichkeit gegeben durch das Produkt der einzelnen Wahrscheinlichkeitsdichten $f(x_i, \\theta)$ multipliziert mit dem jeweiligen infinitesimalen element $dx_i$\n", + "Die rechte Verteilung spiegelt unsere Messdaten besser wider. Dies können wir auch mathematisch ausdrücken. Für $N$ voreinander unabhängige Zufallszahlen bzw. Messpunkte (in unserem Beispiel $N = 3$) ist die Gesamtwahrscheinlichkeit gegeben durch das Produkt der einzelnen Wahrscheinlichkeitsdichten $f(x_i, \\theta)$ multipliziert mit dem jeweiligen infinitesimalen Element $dx_i$\n", "\n", "$$\\prod_{i = 1}^{N} f(x_i,\\theta) \\ dx_i \\text{ für alle } x_i \\text{ in } [x_i, x_i + dx_i]$$\n", "\n", - "wobei $x_i$ in unserem Beispiel den Messpunkten $T_i$ und $f(x_i,\\theta)$ unserer Gausverteilung mit $\\theta = (\\mu, \\sigma)$ entspricht. Sprich sofern unsere Werte gut von der jeweiligen **Wahrscheinlichkeitsdichtefunktion** repräsentiert werden, d.h. wir die richtigen Parameter $\\theta$ gewählt haben (wie im rechten oberen Plot), gilt \n", + "wobei $x_i$ in unserem Beispiel den Messpunkten $T_i$ und $f(x_i,\\theta)$ unserer Gaussverteilung mit $\\theta = (\\mu, \\sigma)$ entspricht. Sofern unsere Werte gut von der jeweiligen **Wahrscheinlichkeitsdichtefunktion** repräsentiert werden, d.h. wir die richtigen Parameter $\\theta$ gewählt haben (wie im rechten oberen Plot), gilt \n", "\n", "$$ \\prod_{i = 1}^{N} f(x_i,\\theta) dx_i \\ \\ \\text{ist} \\ \\textbf{maximal.}$$\n", "\n", @@ -1161,13 +2158,13 @@ "\n", "wobei $\\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N)$ die sogenannte **\"likelihood\"** function darstellt.\n", "\n", - "Wie kommen wir nun von der **likelihood function** auf unsere **Methode der kleinsten Quadrate** und das Fitten einer Funktion $\\lambda(x; \\ $**$\\phi$**$)$ an die gemessenen Punkte **$(x,y)$**? Dazu brauche wir noch einen Zwischenschritt. Oftmals ist es einfacher, statt die **likelihood function** zu maximieren, die so genannte **log likelihood function**\n", + "Wie kommen wir nun von der **likelihood function** auf unsere **Methode der kleinsten Quadrate** und das Fitten einer Funktion $\\lambda(x; \\ $**$\\phi$**$)$ an die gemessenen Punkte **$(x,y)$**? Dazu brauchen wir noch einen Zwischenschritt. Oftmals ist es einfacher, statt die **likelihood function** zu maximieren, die so genannte **log likelihood function**\n", "\n", "$$ \\log( \\mathcal{L}(x_1 ... x_N; \\theta_1 ... \\theta_N)) = \\sum_{i = 1}^{N} \\log(f(x_i,\\theta))$$\n", "\n", "zu maximieren. Dies ist im Grunde das Gleiche, da der Logarithmus eine monoton-steigende Funktion ist. Auch in unserem Fall der **Methode der kleinsten Quadrate** benötigen wir die **log likelihood function**. \n", "\n", - "Stellen Sie sich nun vor, wir haben eine Messung mit $N$ voneinander unabhängigen Messpunkten (x,y). Des Weiteren nehmen wir an, dass alle $x_i$ ohne Fehler sind und dass unsere $y_i$ gaußförmig um einen unbekannten Wahrenwert $\\lambda_i$ (sprich $\\lambda_i$ entspricht dem Erwartungswert $\\mu_i$ unserer Gaußverteilung) mit einer bekannten Varianz $\\Delta y_i^2$ verteilt sind (Diese Annahme lässt sich mit dem zentralen Grenzwertsatz begründen, so lange der Fehler sich aus der Summe kleiner Fehler zusammensetzt). Die dazugehörige **likelihood function** ist dann gegeben durch:\n", + "Stellen Sie sich nun vor, wir haben eine Messung mit $N$ voneinander unabhängigen Messpunkten (x,y). Des Weiteren nehmen wir an, dass alle $x_i$ ohne Fehler sind und dass unsere $y_i$ gaußförmig um einen unbekannten wahren Wert $\\lambda_i$ (sprich $\\lambda_i$ entspricht dem Erwartungswert $\\mu_i$ unserer Gaußverteilung) mit einer bekannten Varianz $\\Delta y_i^2$ verteilt sind (Diese Annahme lässt sich mit dem zentralen Grenzwertsatz begründen, so lange der Fehler sich aus der Summe kleiner Fehler zusammensetzt). Die dazugehörige **likelihood function** ist dann gegeben durch:\n", "\n", "$$ \\mathcal{L}(y_1 ... y_N; \\lambda_1 ... \\lambda_N, \\Delta y_1 ... \\Delta y_N)) = \\prod_{i = 1}^{N}\\frac{1}{\\sqrt{2 \\pi \\Delta y_i^2}} \\cdot \\exp \\bigg( \\frac{ -(y_i - \\lambda_i)^2}{2 \\cdot \\Delta y_i^2}\\bigg)$$\n", "\n", @@ -1179,14 +2176,11 @@ "\n", "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", "\n", - "Diese Funktion ist unsere gesuchte **Methode der kleinsten Quadrate**. Mit ihrer Hilfe kann eine beliebige Funktion $\\lambda(x; \\phi)$, welche liniear in ihren Parametern $\\phi$ ist, an unsere Messdaten $(x,y\\pm\\Delta y)$ gefittet werden. Dabei stellt der Fitprozess selbst lediglich ein Minimierungsproblem dar. Im Folgenden sind unsere Annahmen noch einmal grafisch in einem Beispiel dargestellt.\n", + "Diese Funktion ist unsere gesuchte **Methode der kleinsten Quadrate**. Mit ihrer Hilfe kann eine beliebige Funktion $\\lambda(x; \\phi)$, welche linear in ihren Parametern $\\phi$ ist, an unsere Messdaten $(x,y\\pm\\Delta y)$ gefittet werden. Dabei stellt der Fitprozess selbst lediglich ein Minimierungsproblem dar. Im Folgenden sind unsere Annahmen noch einmal grafisch in einem Beispiel dargestellt.\n", "\n", "
\n", "\"{{\n", - "
\n", - "\n", - "\n", - "Need to update figure above... sigma is touching best fit too often..." + "
" ] }, { @@ -1194,16 +2188,14 @@ "id": "be4a8d21-29db-4866-9117-8746b80d5945", "metadata": {}, "source": [ - "How does optimization work.... ? \n", + "Wie ein Algorithmus bei der Minimierung vorgeht, sprengt den Rahmen dieses Vorversuchs. Hier sei auf entsprechende Vorlesungen verwiesen. Aber um einen kleinen Einblick zu erhalten, kann man sich die Werte der Parameter und von $\\chi^2$ für jeden Schritt ausgeben lassen. Dazu wird der Parameter `verbose` auf 1 gesetzt.\n", "\n", - "Use verbose mode to check steps.... \n", - "\n", - "=> Alternating specific value check if cost function minimizes.... If yes continue if not start changing other parameter:" + "Man erkannt, dass für jeden Parameter zunächst separat geprüft wird, welche Änderung (größer oder kleiner) die Kostenfunktion minimiert. Danach beginnt die eigentliche Minimierung der Kostenfunktion durch den Algorithmus." ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 500, "id": "43bfd15e-7b68-4b70-bc06-0b23f89f7bff", "metadata": {}, "outputs": [ @@ -1305,30 +2297,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", " \n", "
Migrad Migrad
FCN = 2.707 (χ²/ndof = 0.4) Nfcn = 87 FCN = 2.707 (χ²/ndof = 0.4) Nfcn = 87
EDM = 2.18e-10 (Goal: 0.0002) EDM = 2.18e-10 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok APPROXIMATE NOT pos. def. FORCED Hesse ok Covariance FORCED pos. def.
\n", " \n", @@ -1400,7 +2389,511 @@ " \n", " \n", " \n", - "
-224.592785048e-3 (-0.997) 2.25e-11
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:48.677208\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", @@ -1409,12 +2902,12 @@ "│ FCN = 2.707 (χ²/ndof = 0.4) │ Nfcn = 87 │\n", "│ EDM = 2.18e-10 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │APPROXIMATE│NOT pos. def.│ FORCED │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance FORCED pos. def. │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", @@ -1431,25 +2924,14 @@ "└────┴───────────────────────────────────────────────────────┘" ] }, - "execution_count": 41, + "execution_count": 500, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6eUlEQVR4nO3de3xU9Z3/8feZSTIJIQmBkJCQQASUqwKCpAHx1hRaLNVlaam6YtmqW4tdNL9tFRVptRVrlUIrlhaltbtabDG1bmFRpCIosSgYb9yEcAkhCQmXXCbkNnN+fyQZCCSQCZk5c3k9H84jmTPfM/MZz8C8+Z7v93sM0zRNAQAAWMRmdQEAACC8EUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJaKsLqAznC73Tpy5Iji4uJkGIbV5QAAgE4wTVPV1dVKS0uTzdZx/0dQhJEjR44oIyPD6jIAAEAXFBUVKT09vcPHgyKMxMXFSWp+M/Hx8RZXAwAAOqOqqkoZGRme7/GOBEUYaT01Ex8fTxgBACDIXGiIBQNYAQCApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFgqbMOI0+mUYRgyDENOp9PqcgAACFthG0YAAEBgIIwAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYK2zDicrk8v2/atKnNfQAA4D9hGUby8vI0YsQIz/1p06YpMzNTeXl5FlYFAEB4CrswkpeXp5kzZ6q4uLjN9uLiYs2cOZNAAgCAn4VVGHG5XJo3b55M0zznsdZt9913H6dsAADwo7AKI5s3b9bhw4c7fNw0TRUVFWnz5s1+rAoAgPAWVmGkpKSkW9sBAICLF1ZhJDU1tVvbAQCAixdWYWTy5MlKT0+XYRjtPm4YhjIyMjR58mQ/VwYAQPgKqzBit9u1dOlSSTonkLTeX7Jkiex2u99rAwAgXIVVGJGkGTNmaPXq1UpLS2uzPT09XatXr9aMGTMsqgwAgPBkmO3Ncw0wVVVVSkhIUGVlpeLj47vtORNT0tX7K99TRM9E7V35/xQbHdUtzw0AADr//R12PSOt7Ha73HXVir7kSjkGXKGDx+usLgkAgLAUtmGkVWPFIUnSnrJqiysBACA8EUYqDkqSdhNGAACwRNiHkYby5jDyBWEEAABLhH0YaT1NQ88IAADWIIy0nKYpOn5KtQ1NFlcDAED4Cfsw4j5VpT6xkZKkL8pqLK4GAIDwE/ZhRJKG9I2VxKkaAACs4HUY2bRpk6ZPn660tDQZhqHXXnvtgvts3LhRV155pRwOh4YMGaI//OEPXSi1e8XGxso0TZmmqeFpvSQxiBUAACt4HUacTqdGjx6tZcuWdar9/v37deONN+r6669XQUGB7rvvPt1555164403vC7WV4b2i5Mk7eY0DQAAfhfh7Q5f+9rX9LWvfa3T7ZcvX65LLrlEzzzzjCRp+PDhevfdd/XLX/5SU6dO9fblfeKylJ6SpD2l9IwAAOBvPh8zkp+fr5ycnDbbpk6dqvz8fF+/dKddmtLcM1JaVafKU40WVwMAQHjxeRgpLS1VSkpKm20pKSmqqqrSqVOn2t2nvr5eVVVVbW6+FB8dqbSEaEmMGwEAwN8CcjbNokWLlJCQ4LllZGT4/DVbe0eYUQMAgH/5PIz069dPZWVlbbaVlZUpPj5eMTEx7e4zf/58VVZWem5FRUW+LtMziJW1RgAA8C+vB7B6Kzs7W2vXrm2zbf369crOzu5wH4fDIYfD4evS2ristWeEQawAAPiV1z0jNTU1KigoUEFBgaTmqbsFBQU6dKj5Gi/z58/X7NmzPe2/973vqbCwUD/60Y+0a9cuPffcc/rzn/+s+++/v3veQTcZ2hJGdpVWyTRNi6sBACB8eB1GPvzwQ40dO1Zjx46VJOXm5mrs2LF69NFHJUklJSWeYCJJl1xyidasWaP169dr9OjReuaZZ/T8888HzLTeVpem9JTNkE7UNupodb3V5QAAEDYMMwi6AaqqqpSQkKDKykrFx8f77HVyFr+jvUdr9Ps5V+n6ock+ex0AAMJBZ7+/A3I2jVWGpzb/j9pZ4tupxAAA4DTCyBmGpzaPG9lZwiBWAAD8hTByBnpGAADwP8LIGUa0hJHC8hrVNbosrgYAgPBAGDlDcpxDvWOj5DalPazECgCAXxBGzmAYhoa1rMS6i3EjAAD4BWHkLK3jRnYwbgQAAL8gjJyFQawAAPgXYeQsp6f3siw8AAD+QBg5y5DknoqwGaqqa9KRyjqrywEAIOQRRs7iiLBrSHJPSdLOI5yqAQDA1wgj7WidUcO4EQAAfI8w0o7WQay7SpneCwCArxFG2sGMGgAA/Icw0o7WMLL/mFO1DU0WVwMAQGgjjLSjb5xDST0dMk1pN6dqAADwKcJIB1rXG2ElVgAAfIsw0oFR/RMkSZ8VE0YAAPAlwkgHRqU1h5HPj1RaXAkAAKGNMNKBy1t6RnaVVKuhyW1xNQAAhC7CSAcyescoPjpCDS63vjjKIFYAAHyFMNIBwzA840Y+Z9wIAAA+Qxg5j9Yw8mkx40YAAPAVwsh5jExrXvzsMwaxAgDgM4SR82gdxLqzpEpNLgaxAgDgC4SR88jsE6vYKLvqGt3aV+60uhwAAEISYeQ8bDZDI9NaFz/jVA0AAL5AGLkAz0qsjBsBAMAnCCMXMKp/yyBWekYAAPAJwsgFeNYaOVIlt9u0uBoAAEIPYeQCBvftqehIm2obXNp/jEGsAAB0N8LIBdhthkakcqoGAABfIYx0Qut6I4QRAAC6H2GkE0Z6wgjXqAEAoLsRRjrhzJ4RBrECANC9CCOdcGlyT8VE2lVd36TCCgaxAgDQnQgjnRBht3l6Rz4uOmltMQAAhBjCSCeNzmgJI4dPWlsIAAAhhjDSSaMzekmiZwQAgO5GGOmk0em9JEk7SqpU3+SythgAAEIIYaST0hNj1Cc2So0uUztLqq0uBwCAkEEY6STDMDhVAwCADxBGvNB6qoYwAgBA9yGMeKF1Rk0BM2oAAOg2hBEvtPaMFJY7VVnbaG0xAACECMKIFxJjozSwTw9J0ifFJ60tBgCAENGlMLJs2TJlZmYqOjpaWVlZ2rp163nbL1myREOHDlVMTIwyMjJ0//33q66urksFW41xIwAAdC+vw8grr7yi3NxcLVy4UNu3b9fo0aM1depUHT16tN32L7/8sh588EEtXLhQO3fu1AsvvKBXXnlFDz300EUXb4XWGTUFRZXWFgIAQIjwOowsXrxYd911l+bMmaMRI0Zo+fLl6tGjh1auXNlu+y1btmjSpEm69dZblZmZqSlTpuiWW265YG9KoBrTOoi16KRMkyv4AgBwsbwKIw0NDdq2bZtycnJOP4HNppycHOXn57e7z8SJE7Vt2zZP+CgsLNTatWs1bdq0Dl+nvr5eVVVVbW6BYmRaguw2QxU19SqpDM5TTQAABBKvwkhFRYVcLpdSUlLabE9JSVFpaWm7+9x666167LHHdPXVVysyMlKDBw/Wddddd97TNIsWLVJCQoLnlpGR4U2ZPhUdadewfnGSmntHAADAxfH5bJqNGzfqiSee0HPPPaft27crLy9Pa9as0eOPP97hPvPnz1dlZaXnVlRU5OsyvTKmZdzIR4dOWFsIAAAhIMKbxklJSbLb7SorK2uzvaysTP369Wt3nwULFuj222/XnXfeKUm6/PLL5XQ6dffdd+vhhx+WzXZuHnI4HHI4HN6U5lfjBibqpX8e0raDhBEAAC6WVz0jUVFRGjdunDZs2ODZ5na7tWHDBmVnZ7e7T21t7TmBw263S1LQDgAdNzBRkvRZcZXqGrmCLwAAF8OrnhFJys3N1R133KHx48drwoQJWrJkiZxOp+bMmSNJmj17tvr3769FixZJkqZPn67Fixdr7NixysrK0t69e7VgwQJNnz7dE0qCzYDePZTUM0oVNQ36/Eilxg3sbXVJAAAELa/DyKxZs1ReXq5HH31UpaWlGjNmjNatW+cZ1Hro0KE2PSGPPPKIDMPQI488ouLiYvXt21fTp0/Xz372s+57F35mGIauHJCoN3eUadvBE4QRAAAugmEGwbmSqqoqJSQkqLKyUvHx8VaXI0n67Tv7tOj/dmnqyBT99vbxVpcDAEDA6ez3N9em6aLWcSPbDrL4GQAAF4Mw0kWj+ico0t68+FnR8VNWlwMAQNAijHRRdKRdo/o3Lw2/7dBxi6sBACB4EUYuwnjPqRrWGwEAoKsIIxfhzHEjAACgawgjF+HKAc1hZHdplarrGi2uBgCA4EQYuQjJ8dHK6B0jtyl9XFRpdTkAAAQlwshFGjeAcSMAAFwMwshFah038uFBZtQAANAVhJGLdGVLGPno0Em53Cx+BgCAtwgjF2lYv3jFOSJUU9+knSVVVpcDAEDQIYxcJLvN0PjM5t6Rf+7nVA0AAN4ijHSDrEF9JEn/LDxmcSUAAAQfwkg3mHBJb0nSBweOy824EQAAvEIY6QaX909QTKRdJ2obtbe8xupyAAAIKoSRbhBpt3mm+HKqBgAA7xBGuknrqRoGsQIA4B3CSDdpDSNb9x+XaTJuBACAziKMdJMxGb0UZbfpaHW9DhyrtbocAACCBmGkm0RH2jUmo5ckaet+xo0AANBZhJFu5Bk3Usi4EQAAOosw0o2yBjGIFQAAbxFGutGVAxJltxkqPnlKh08wbgQAgM4gjHSjWEeERvVPkNQ8qwYAAFwYYaSbfanlVM2WfQxiBQCgMwgj3WzS4CRJ0pa9Faw3AgBAJxBGutn4zERF2g0dqaxjvREAADqBMNLNekRFaOyA5uvUvLe3wuJqAAAIfIQRH/CcqtlHGAEA4EIIIz4waUgfSVL+vmNyuxk3AgDA+RBGfGB0Ri/FRtl1orZRO0qqrC4HAICARhjxgUi7zbM0fD5TfAEAOC/CiI9MGtI8buQ9xo0AAHBehBEfmdgyiHXr/uNqaHJbXA0AAIGLMOIjw/rFqXdslGobXPr48EmrywEAIGARRnzEZjOUPbh5Vg3rjQAA0DHCiA+dXhqeQawAAHSEMOJDreuNbD90QjX1TRZXAwBAYCKM+NDAPrEa2KeHmtwmU3wBAOgAYcTHrr2sryTpnT1HLa4EAIDARBjxsWsubQ4jG3eXyzRZGh4AgLMRRnwse3AfRdoNHT5xSvsrnFaXAwBAwCGM+FisI0JXZTYvDf/OnnKLqwEAIPAQRvzg9LgRwggAAGcjjPjBtUObw8j7hcdU1+iyuBoAAAILYcQPhqbEKSXeobpGtz44cNzqcgAACChdCiPLli1TZmamoqOjlZWVpa1bt563/cmTJzV37lylpqbK4XDosssu09q1a7tUcDAyDOP0qZrdnKoBAOBMXoeRV155Rbm5uVq4cKG2b9+u0aNHa+rUqTp6tP11NBoaGvSVr3xFBw4c0OrVq7V7926tWLFC/fv3v+jig8k1jBsBAKBdEd7usHjxYt11112aM2eOJGn58uVas2aNVq5cqQcffPCc9itXrtTx48e1ZcsWRUZGSpIyMzMvruogdPWQJNkM6YujNSo+eUr9e8VYXRIAAAHBq56RhoYGbdu2TTk5OaefwGZTTk6O8vPz293n9ddfV3Z2tubOnauUlBSNGjVKTzzxhFyujgdy1tfXq6qqqs0t2PXqEaUxGb0kcaoGAIAzeRVGKioq5HK5lJKS0mZ7SkqKSktL292nsLBQq1evlsvl0tq1a7VgwQI988wz+ulPf9rh6yxatEgJCQmeW0ZGhjdlBqzrhyZLkjbsLLO4EgAAAofPZ9O43W4lJyfrd7/7ncaNG6dZs2bp4Ycf1vLlyzvcZ/78+aqsrPTcioqKfF2mX0wZ2U+StHlvhZxcxRcAAElejhlJSkqS3W5XWVnbf9mXlZWpX79+7e6TmpqqyMhI2e12z7bhw4ertLRUDQ0NioqKOmcfh8Mhh8PhTWlB4bKUnhrYp4cOHqvVpj3l+trlqVaXBACA5bzqGYmKitK4ceO0YcMGzza3260NGzYoOzu73X0mTZqkvXv3yu12e7bt2bNHqamp7QaRUGYYhqaMaD7F9eYOTtUAACB14TRNbm6uVqxYoRdffFE7d+7UPffcI6fT6ZldM3v2bM2fP9/T/p577tHx48c1b9487dmzR2vWrNETTzyhuXPndt+7CCJfGdHcg7RhZ5kaXe4LtAYAIPR5PbV31qxZKi8v16OPPqrS0lKNGTNG69at8wxqPXTokGy20xknIyNDb7zxhu6//35dccUV6t+/v+bNm6cHHnig+95FEBk3MFG9Y6N03NmgrfuPa9KQJKtLAgDAUoZpmqbVRVxIVVWVEhISVFlZqfj4eKvLuWg/Wv2x/vzhYd2RPVA/uWmU1eUAAOATnf3+5to0FpjScqrmzR1lCoIsCACATxFGLHD1pUmKibSrpLJOnxUH/4JuAABcDMKIBaIj7Z4L5725o/3F4gAACBeEEYtMGdkyxfdzpvgCAMIbYcQiNwxLlt1maHdZtQ4ec1pdDgAAliGMWKRXjyhlXdJbkrSeBdAAAGGMMGIhz2qsnKoBAIQxwoiFvtJy4bwPDx5XRU29xdUAAGANwoiF+veK0aj+8XKb0j92HrW6HAAALEEYsdjpBdCY4gsACE+EEYu1TvHd9EWFnPVNFlcDAID/EUYsNjQlTgN691BDk1ubvyi3uhwAAPyOMGIxwzCYVQMACGuEkQAwpWVWzYZdR9XocltcDQAA/kUYCQDjBiaqd2yUKk816oP9x60uBwAAvyKMBAC7zVDO8GRJ0trPSiyuBgAA/yKMBIivX5EmSVrzSYkamjhVAwAIH4SRADFxcB/1jXPoRG2jNu1hVg0AIHwQRgJEhN2mb4xu7h35a0GxxdUAAOA/hJEA8i9j+0tqvopvVV2jxdUAAOAfhJEAMjItXpcm91RDk1vrPmV5eABAeCCMBBDDMHRzS+/IXz/iVA0AIDwQRgLMTWOax428v/+Yjpw8ZXE1AAD4HmEkwKQn9tCES3rLNKXXPz5idTkAAPgcYSQAtQ5kfY1TNQCAMEAYCUDTLk9VlN2mXaXV2llSZXU5AAD4FGEkACXEROrLLcvDM5AVABDqCCMBqnVWzd8KiuVymxZXAwCA7xBGAtR1Q/sqISZSZVX1er/wmNXlAADgM4SRAOWIsOvGK1IlcaoGABDaCCMBrHVWzbrPSnWqwWVxNQAA+AZhJICNH5io9MQY1dQ36a2dZVaXAwCATxBGAphhGKw5AgAIeYSRAHfTmOYw8s6ech2rqbe4GgAAuh9hJMANSe6pK9IT1OQ29eqHB2QYhgzDkNPptLo0AAC6BWEkCMxoOVWzenuJxZUAAND9CCNB4F+uTFdMpF17jjrlSB9pdTkAAHQrwkgQSIiJ1M1j0yRJcWOnWVwNAADdizASJP7tSwMlST2GTpQttpe1xQAA0I0II0FiZFqCxqTHy7BHKu6KqVaXAwBAtyGMBJFbxjcPZO055qtqcrstrgYAgO5BGAkiU4b3lau2UhHxffXOHi6eBwAIDYSRIBIVYVPNx29Kkv704RGLqwEAoHsQRoKIy+VS1Yd/U83nb+vtd97RntJKq0sCAOCiEUaCRF5enkaMGCF37Ukd+/szKvvTQ7pq1FDl5eVZXRoAABelS2Fk2bJlyszMVHR0tLKysrR169ZO7bdq1SoZhqGbb765Ky8btvLy8jRz5kwVF7e9WF7VsTLNnDmTQAIACGpeh5FXXnlFubm5WrhwobZv367Ro0dr6tSpOnr06Hn3O3DggP7rv/5LkydP7nKx4cjlcmnevHkyTbPdx01Tuu++++RyufxcGQAA3cPrMLJ48WLdddddmjNnjkaMGKHly5erR48eWrlyZYf7uFwu3XbbbfrJT36iQYMGXVTB4Wbz5s06fPjweVqYKioq0ubNm/1WEwAA3cmrMNLQ0KBt27YpJyfn9BPYbMrJyVF+fn6H+z322GNKTk7Wd7/73a5XGqZKSjp3cbzOtgMAINBEeNO4oqJCLpdLKSkpbbanpKRo165d7e7z7rvv6oUXXlBBQUGnX6e+vl719fWe+1VVVd6UGVJSU1O7tR0AAIHGp7Npqqurdfvtt2vFihVKSkrq9H6LFi1SQkKC55aRkeHDKgPb5MmTlZ6eLsMwOmwTEZ+kEWMn+LEqAAC6j1dhJCkpSXa7XWVlZW22l5WVqV+/fue037dvnw4cOKDp06crIiJCERER+uMf/6jXX39dERER2rdvX7uvM3/+fFVWVnpuRUVF3pQZUux2u5YuXSpJ5wSS1vuJN9ytv2xnETQAQHDyKoxERUVp3Lhx2rBhg2eb2+3Whg0blJ2dfU77YcOG6dNPP1VBQYHn9o1vfEPXX3+9CgoKOuzxcDgcio+Pb3MLZzNmzNDq1auVlpbWZnt6err+66nfqcfQifr9ewdU18iMGgBA8PFqzIgk5ebm6o477tD48eM1YcIELVmyRE6nU3PmzJEkzZ49W/3799eiRYsUHR2tUaNGtdm/V69eknTOdpzfjBkzlJOTo4SEBEnS2rVrNWXKFLlMQ+/94m0dqazTXz4s0u3ZmdYWCgCAl7wOI7NmzVJ5ebkeffRRlZaWasyYMVq3bp1nUOuhQ4dks7Gwqy/Y7XbP79dcc43sdrvskv7j2sFa+PrnWv5Oob49YYAi7fz/BwAED8PsaDWtAFJVVaWEhARVVlaG9Skbp9Opnj17SpJqamoUGxsrSaprdOnqn/9DFTUNevqbozVzXLqVZQIAIKnz39/8EzoEREfa9d2rmxeTe27jXrncAZ8vAQDwIIyEiH/70gDFR0eosNypNz4vtbocAAA6jTASIuKiI/WdiZmSpGVv7+3wWjYAAAQawkgImTPpEvWIsuvzI1XauKfc6nIAAOgUwkgISYyN0q0TBkiSlv2D3hEAQHAgjISYu64ZpCi7TR8ePKGt+49bXQ4AABdEGAkisbGxMk1Tpml6pvWeLSU+WjPHN0/tffbtvf4sDwCALiGMhKDvXTNYdpuhzV9U6JPDJ60uBwCA8yKMhKABfXroG6Obr2OzjN4RAECAI4yEqO9fN1iS9MbnZfqirNriagAA6BhhJERdmhKnr47sJ0n61T/oHQEABC7CSAj7wZeHyDCk//34iD4uOml1OQAAtIswEsJGpiXoX8b0lyT9bO1O1h0BAAQkwkiI+39Th8oRYdPW/cf11s6jVpcDAMA5CCMhrn+vGP371ZdIkhb93041utwWVwQAQFuEkTBwz3WD1Ts2SoXlTq36oMjqcgAAaIMwEgbioyM178uXSpKWvrVHNfVNFlcEAMBphJEwcWvWAF2SFKuKmgb99p19VpcDAIAHYSRMRNpteuCrwyRJKzYXqrSyzuKKAABoRhgJI1NHpmj8wETVNbr1zJu7rS4HAABJhJGwYhiGHrpxuCRp9fbD2llSZXFFAAAQRsLOlQMSdeMVqTJN6Ym1O60uBwAAwkg4emDqMEXaDW3+okKb9pRbXQ4AIMwRRsLQgD49NDs7U5L0k//9XPVNLmsLAgCENcJImPrPGy5VUk+H9pU79dzbTPUFAFiHMBKmEnpE6sffGCFJem7jXn1RVm1xRQCAcEUYCWM3Xp6qLw9LVqPL1IN5n8rt5qq+AAD/I4yEMcMw9PjNoxQbZde2gyf00tZDVpcEAAhDhJEwl9YrRj+cOlSS9PP/28XKrAAAvyOMQLdnZ2pMRi/V1Dfp0b99ZnU5AIAwQxiB7DZDT/7r5YqwGXpzR5nWfVZidUkAgDBCGIEkaVi/eH3v2sGSpEf/9rkqTzVaXBEAIFwQRuBx7w1DNCgpVker6/XzdbusLgcAECYII/CIjrTriRmXS5Je/uchbd1/3OKKAADhgDCCNr40qI++fVWGJOmHqz9WdR2nawAAvkUYwTnmTxuu/r1idPBYrR7+62cyTRZDAwD4DmEE50iIidSvbhkju83Q6x8f0V+2Hba6JABACCOMoF3jBvZW7lcukyQt/Nvn2nuUa9cAAHyDMIIO3XPtYF09JEmnGl269+WPVNfosrokAEAIIoygQzabocWzRiupZ5R2lVbribU7rS4JABCCCCM4r+S4aD3zrTGSpD/mH9S6z0qtLQgAEHIII7igay/rq/+4dpAk6UerP9bhE7UWVwQACCWEEXTKf00ZqjEZvVRV16R5qwrU5HJbXRIAIEQQRtApkXabfn3LWMU5IrTt4Ak9s36P1SUBAEIEYQSdltG7hxb9a/Ny8b/ZuE+vfVRscUUAgFBAGIFXvn5Fmufqvj9a/Yk+PMD1awAAF6dLYWTZsmXKzMxUdHS0srKytHXr1g7brlixQpMnT1ZiYqISExOVk5Nz3vYIfD+aOlRTR6aoweXW3f+9TYeOMaAVANB1XoeRV155Rbm5uVq4cKG2b9+u0aNHa+rUqTp69Gi77Tdu3KhbbrlFb7/9tvLz85WRkaEpU6aouJgu/mBlsxn65awxGtU/XsedDfr3Fz9Q5SkuqAcA6BrD9PIqaFlZWbrqqqv07LPPSpLcbrcyMjL0gx/8QA8++OAF93e5XEpMTNSzzz6r2bNnd+o1q6qqlJCQoMrKSsXHx3tTLnyorKpONz37nkqr6jT50iSt/M5VirRz5g8A0Kyz399efXM0NDRo27ZtysnJOf0ENptycnKUn5/fqeeora1VY2Ojevfu3WGb+vp6VVVVtbkh8KTER+v5O8YrJtKuzV9U6Mevf84VfgEAXvMqjFRUVMjlciklJaXN9pSUFJWWdm5lzgceeEBpaWltAs3ZFi1apISEBM8tIyPDmzLhR6P6J2jpt8fIMKSX/nlIv3/vgNUlAQCCjF/71J988kmtWrVKf/3rXxUdHd1hu/nz56uystJzKyoq8mOV8NaUkf00/2vDJEk/XbNDG3aWWVwRACCYeBVGkpKSZLfbVVbW9sumrKxM/fr1O+++Tz/9tJ588km9+eabuuKKK87b1uFwKD4+vs0Nge2uyYP07asy5Dal77+0Xfn7jnV6X6fTKcMwZBiGnE6nD6sEAAQir8JIVFSUxo0bpw0bNni2ud1ubdiwQdnZ2R3u99RTT+nxxx/XunXrNH78+K5Xi4BlGIYev3mUbhiWrPomt7774gf6gDVIAACd4PVpmtzcXK1YsUIvvviidu7cqXvuuUdOp1Nz5syRJM2ePVvz58/3tP/5z3+uBQsWaOXKlcrMzFRpaalKS0tVU1PTfe8CASHSbtNzt12pyZcmqbbBpTm//0DbD52wuiwAQIDzOozMmjVLTz/9tB599FGNGTNGBQUFWrdunWdQ66FDh1RSUuJp/5vf/EYNDQ2aOXOmUlNTPbenn366+94FAkZ0pF0rZo/XxMF9VFPfpDtWbtUnh09aXRYAIIB5vc6IFVhnJPjUNjTpOys/0NYDx5UQE6mX78rSyLSEdts6nU717NlTklRTU6PY2Fh/lgoA8BGfrDMCdFaPqAitnHOVrhzQS5WnGvVvz/9Tu0urrS4LABCACCPwmZ6OCP3h3yfoivQEnaht1G3Pv6+9RwkkAIC2CCPwqfjoSP33v2dpRGq8KmoaNOu37+vjopNWlwUACCCEEfhcQo9I/c+dWRqZFq9jzgZ9+3fv6+1d7V9YEQAQfggj8IvesVFadfeXNPnSJJ1qdOnOP36oP3/QvLKuy+XytNu0aVOb+wCA0EcYgd/ERUfqhTuu0owr+8vlNvWjVz/Rvy98ViNGjPC0mTZtmjIzM5WXl2dhpQAAfyKMwK+iImx65pujNff6wardvUW/f+wHKi4ubtOmuLhYM2fOJJAAQJhgnRFYwuVyKTktQ8ePlrT7uGEYSk9P1/79+2W32/1cHQCgO7DOCALa5s2bOwwikmSapoqKirR582Y/VgUAsAJhBJY485IB3dEOABC8CCOwRGpqare2AwAEL8IILDF58mSlp6fLMIwO2/RITNGIsRP8WBUAwAqEEVjCbrdr6dKlknRuIGm5H3vtd3XTc/nafuiEv8sDAPgRYQSWmTFjhlavXq20tLQ22zPS0/Wr5/9HoyZ9RSWVdZr123y98O5+ud0BP/ELANAFTO2F5VqPryStXbtWU6ZMkd1uV3Vdox549ROt/bRUkvSlQb311L+O1oA+Pawst0ucTqd69uwpSaqpqVFsbKzFFQGA7zG1F0HjzHVErrnmGs/9uOhILbv1Sj1+00jFRNr1fuFxfXXpJv0x/wC9JAAQQggjCGiGYej27Eytu2+yJlzSW7UNLj36t8912/P/VNHxWqvLAwB0A8IIgsLAPrFaddeX9OPpIxQTaVd+4TFNXbJJ//3+QXpJ/MzpdMowDBmGIafTaXU5AEIAYQRBw2Yz9J1Jl7TpJVnw2mf69or39cnhk1aXBwDoIsIIgs7ZvSRb9x/XN559T3Nf3q4DFfxLHQCCDWEEQam1l2R97jWaMba/DENa80mJcha/o4V/+0wVNfVWlwgA6CTCCIJaemIPLZ41Rmt+MFnXDe2rJrepF/MP6tqn3tbSt76Qs77J6hIBABdAGEFIGJEWrz/MmaCX78rSFekJcja49Mu39ujaX7yt/84/oEaX2+oSAQAdIIwgpEwcnKS/zZ2kZ28dq4F9eqiipkEL/va5vrL4Ha35pERWrfHncrk8v2/atKnNfQDnYtZWeCGMwHKxsbEyTVOmaXbLyqSGYejrV6Rp/f3X6rGbRqpPbJQOHKvV3Je36+bntih/37FuqLrz8vLyNGLECM/9adOmKTMzU3l5eX6tAwACFcvBI+TV1DdpxaZCrdhcqNqG5h6J64f21Q+nDtOINN9+nvLy8jRz5sxzemRaLw64evVqzZgxw6c1dDeWtoc/8DkLDZ39/iaMIGyUV9frVxu+0J+2HlJTy0JpEzJ767YvDdBXR/WTI8J+gWfwjsvlUmZmpg4fPtzu44ZhKD09Xfv372+zJH6g6+haQkB3IoyEBq5NA5ylb5xDj988Sutzr9X00Wmy2wxtPXBc81YVKHvRP7To/3bq4LHuOze9efPmDoOIJJmmqaKiIm3evLnbXtPXOOUEwBcIIwg7lyTF6te3jNV7D9yg+3MuU2pCtI47G/Tbdwp17S826vYX/ql1n5Wq6SJn4JSUlHRrO6u1nnIqLi5us724uFgzZ84kkADoMk7TIOw1udx6e3e5XvrnQb2zp1ytfyJS4h2addUAffuqDKX1ivH6eTdu3Kjrr7/+gu3efvttXXfddV4/vz+F6iknBC5O04QGxowAXXDoWK3+9MEh/fmDIh1zNkiSbIb05eEpui1rgK65tK9sNqNTz9X6BV5cXNzulOJg+gIPpWCF4EAYCQ2MGQG6YECfHnrgq8OUP//L+vUtY/WlQb3lNqX1O8r0nd9/oGt+8bae/ccX2nu0+oJrltjtdi1dulTS6dkzrVrvL1myJOCDiBR6p5wABBbCCNCOqAibpo9O06q7s/VW7jWaMylT8dEROnzilJ5+c49yFm/S9U9v1E//vkP/LDzW4fiSGTNmaPXq1UpLS2uzPT09Paim9aampnZru0DC4lqBiYUCwwunaYBOOtXg0t8/OaK/f1Ki/H3H1HBGAOnVI1I3DE1WzogUXXNZX/V0RLTZN9inw4bSKaezcTog8OTl5ek///M/2wyWTk9P19KlS4MmwKMZY0YAH6qpb9KmPeV6a0eZ/rH7qE7WNnoei7LblD24j3JGpOgrw1PULyE6JL7wWmfTSGoTSIJ5ATeJMBJognGhQD5DHSOMAH7S5HJr28ETWr+jTOt3lungsdo2j1/eP0HXDEnUI3NuUsPR/aqprgrav6za+xdrRkaGlixZEnBfEJ3FF0ngCNZZW3yGOkYYASxgmqb2ldfozR1lemtHmT4qOqkz/4S56526eni6sgb11fjMRI3J6KXYs07pBLpgP+V0Nr5IAkewztriM9Sxzn5/B9ffgkCAMwxDQ5LjNCQ5Tt+/bojKq+v19q6j+r9Pi7Xh0yLZHLHaUnhCWwpPSGqeNjw8NV7jByZqXGZvjR+Y2KU1TfzpzOBxzTXXBHUQQWBh1lb4IowAPtQ3zqFvXZWhG0f0Vs87Jymy70Ate2WdPi1xatvBEyo+eUqfH6nS50eq9GL+QUlSWkK0J5iMG5ioYf3iFGFn4htCXyjP2sL5EUYAfzHdajy6X7de1d/TjVtSeUofHjihbQdP6MODx7WzpFpHKut05OMj+t+Pj0iSYiLtGtQ3VoP69tQlSbEa3DdWg5J66pK+sefM2gGC2eTJk5Wenn7BWVuTJ0+2oDr4En+TARZKTYjR9NExmj66eR0SZ32TPi46qQ8PntCHB0/oo4MnVF3f5Ok9OVtKvEOXJDUHlUFJsRrcEljSE2PoTUHQaV0ocObMmTIMo91ZW8GyUCC8QxgBAkisI0IThyRp4pAkSZLLberAMacKy50qLK/R/oqW3ytqVFHToLKqepVV1ev9wuNtnifSbmhgn1gNOiOotPau9I6NsuKtwc+CdVBl60KB7a0zEsyztgJVoHxOCCOAH8TGxl5w+fj22G2GBvftqcF9e0pKafNY5anGcwJKYblT+yucqm9ya+/RGu09WiOprM1+vXpENvemJPXUoL4tp3369tSA3j0UHRl+/+I8e6XPYJ8dFApmzJihnJyckJq1hfMjjABBKiEmUmMHJGrsgMQ2291uU0cqT3l6UwornJ7AUnzylE7WNuqjQyf10aGTbfazGVL/xBhdktRTKXEO9enpUFLPKPXpGaU+sQ7PT4fR/tL3wah13ZRW06ZNY6XPABFMs7YItBePdUaAMHKqwdUcTCpqtL/cqcKKlsBS7lR1fVOnn8dVVyO386SyxoxUcnxMc1BpDS8twaX194SYyE5f6difgnGlT28ESvd7VwVL/cG+dL2v/z+z6BmATjNNU+U19dpf7tTBY7Uqr6nXsZoGHXM2/6yoqdcxZ4OOOxvkcnv3V4bdZqh3bJT6xEYpqaej+feezb/3iW0OMbEOu2Ii7YqJsis6ouVnZPO2SLtxzlWPL1awrvTpjWD5Mu9IMNQfCoE2UMJIl07TLFu2TL/4xS9UWlqq0aNH69e//rUmTJjQYfu//OUvWrBggQ4cOKBLL71UP//5zzVt2rSuvDQAHzAMQ8lx0UqOi1bWoD4dtnO7TVWeatQxZ70qaho8gaX593MDTFVdk1xuU+XV9SqvrpdU7XVtNkOeoOJoCSoxLUHFEWnrMMRER9o891u3Nbe16ZOtWzoMIlJzOCsqKtLmzZsDaqVPBA6Xy6V58+a1OxbMNE0ZhqH77rtPN910U9AGWn/yOoy88sorys3N1fLly5WVlaUlS5Zo6tSp2r17t5KTk89pv2XLFt1yyy1atGiRvv71r+vll1/WzTffrO3bt2vUqFHd8iYA+IfNZigxNkqJsVEacu4f93M0NLl1oralZ6VNUGkJL87mn84Gl041uFTf1PzzVKNLrR0wblNyNrjkbOi+S8g7d2zqVLt5K9/W4B2RnrATfUYQim4JQtFnBKGYyNbwc0ZIirQrym6T3WZ4bjaj5XfDkM0mz7aIlse7uycI3W/z5s0E2m7kdRhZvHix7rrrLs2ZM0eStHz5cq1Zs0YrV67Ugw8+eE77pUuX6qtf/ap++MMfSpIef/xxrV+/Xs8++6yWL19+keUDCGRRETalxEcrJT7aq/1M01Sjy9SpRpfqGpsDSt0ZQaW+0a1Tjafv17W2a3SpruWxujMeO9Xo0qlGt+pbfi/rm6KKTtRR1hStyrMG+vqDYaglqDQHluawopYwY5PddsbjnlBzuq3dZkimWyn/9gvJ7dZ3/viRIiMiTgeis5/bZshuNIfNiLMCk81oG6IibGfuK8/vhiEZav7Z/B4MGS3vxWi93/K72jxmnNGm+b4MqaGhXrGjbpBM6fVPShUd7TjP87d9DrW5f0a7M57/nMd0Zn1nP+fp12313idfdOpYbvl0r+IHjdaZu58dNts+duZ2o93tZ+vMPh21OXWqVpFJA5p/b3TJqpNhXoWRhoYGbdu2TfPnz/dss9lsysnJUX5+frv75OfnKzc3t822qVOn6rXXXuvwderr61VfX++5X1V17mJPAEKXYRiKijAUFWFTQkxktz+/y3WNMt9cct6VPpP7penlBXPU4FKbHpvWwOMJSY1tQ09do/uc7Q1NbrlMUy538+1Cw25MU2oyTV2w4QVE9x8uSfrgYOVFPY9Vkm5s/u6Y/7ddFldyrrpDnYmz0q/yy/W74i0+rubipH33OUnSnrIaJfWyZlymV2GkoqJCLpdLKSlt1ztISUnRrl3tf1hKS0vbbV9aWtrh6yxatEg/+clPvCkNADqtMyt9Pvfsr3TD8H4+eX3TbA4kzcGkJaSYptzu04GlNby43Tr9+xmB5px9zNNt3W5TVTU1+tbNX5fcLj204Me6fMIkybCd8Tw6z2ue8dwtbd2mqSZXB/WaptT8n0zTbPnZ9n7z42bz9jN/b2mrNvdNNblcevPNNyUZ+nJOjux2e9v9znoOnfOcbetQm/tnPoc8x//cuk7X7jl2rT97T9DJtX1VX1ne4XF2JPTVpVdcJdlOr4Z8dvbtaArJmZ9Js832s9qd8ajZTp3n7tP2CVxNTTr88bty155Uwag6ZQ252ZoxLqYXiouLTUnmli1b2mz/4Q9/aE6YMKHdfSIjI82XX365zbZly5aZycnJHb5OXV2dWVlZ6bkVFRWZkszKykpvygWA83r11VfN/v37my1/Q5uSzIyMDPPVV1+1urSL0t77Sk9PD/r3FWheffVV0zAM0zCMNv+vW7cF+v9vf3xOKisrO/X97dXFK5KSkmS321VW1nZFx7KyMvXr1/6/IPr16+dVe0lyOByKj49vcwOA7jZjxgzt2LHDc3/t2rXav39/wE/HPJ/W6aZnrnshScXFxZo5c6by8vIsqiz0tC5dn5aW1mZ7enp6wE/rDbTPiVdhJCoqSuPGjdOGDRs829xutzZs2KDs7Ox298nOzm7TXpLWr1/fYXsA8KdgWunzQi403VSS7rvvvjYrhuLiBGOgDcTPideX9czNzdWKFSv04osvaufOnbrnnnvkdDo9s2tmz57dZoDrvHnztG7dOj3zzDPatWuXfvzjH+vDDz/Uvffe233vAgDg1XRTdJ9gC7SB+DnxemrvrFmzVF5erkcffVSlpaUaM2aM1q1b5xmkeujQIdnOGKwzceJEvfzyy3rkkUf00EMP6dJLL9Vrr73GGiMA0M1KSkq6tR1CUyB+Trq0Auu9997bYc/Gxo0bz9n2zW9+U9/85je78lIAgE5KTU3t1nYITYH4OfH6NA0AIDBNnjxZ6enpHa7gahiGMjIyNHnyZD9XhkASiJ8TwggAhIjW9VOkdlb5bLm/ZMmSgB/TAN8KxM8JYQQAQkgwTzeF/wTa58Qw25vbE2A6ewliAPBWMFyqvita/96UmqebTpkyhR4RHwnmz5CvPyed/f7u0gBWAAgVsbGx7a63EOyCbboprBEonxPCCAAAFyFUA60/MWYEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBSTO0FgBDEdFN0RqB8TugZAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFgqwuoCOsM0TUlSVVWVxZUAAIDOav3ebv0e70hQhJHq6mpJUkZGhsWVAAAAb1VXVyshIaHDxw3zQnElALjdbh05ckRxcXEyDKPbnreqqkoZGRkqKipSfHx8tz0vLg7HJTBxXAITxyUwcVyamaap6upqpaWlyWbreGRIUPSM2Gw2paen++z54+Pjw/rDEqg4LoGJ4xKYOC6BieOi8/aItGIAKwAAsBRhBAAAWCqsw4jD4dDChQvlcDisLgVn4LgEJo5LYOK4BCaOi3eCYgArAAAIXWHdMwIAAKxHGAEAAJYijAAAAEsRRgAAgKVCPowsW7ZMmZmZio6OVlZWlrZu3Xre9n/5y180bNgwRUdH6/LLL9fatWv9VGl48ea4rFixQpMnT1ZiYqISExOVk5NzweOIrvH2z0urVatWyTAM3Xzzzb4tMEx5e1xOnjypuXPnKjU1VQ6HQ5dddhl/l/mAt8dlyZIlGjp0qGJiYpSRkaH7779fdXV1fqo2wJkhbNWqVWZUVJS5cuVK8/PPPzfvuusus1evXmZZWVm77d977z3TbrebTz31lLljxw7zkUceMSMjI81PP/3Uz5WHNm+Py6233mouW7bM/Oijj8ydO3ea3/nOd8yEhATz8OHDfq48tHl7XFrt37/f7N+/vzl58mTzpptu8k+xYcTb41JfX2+OHz/enDZtmvnuu++a+/fvNzdu3GgWFBT4ufLQ5u1xeemll0yHw2G+9NJL5v79+8033njDTE1NNe+//34/Vx6YQjqMTJgwwZw7d67nvsvlMtPS0sxFixa12/5b3/qWeeONN7bZlpWVZf7Hf/yHT+sMN94el7M1NTWZcXFx5osvvuirEsNSV45LU1OTOXHiRPP5558377jjDsKID3h7XH7zm9+YgwYNMhsaGvxVYljy9rjMnTvXvOGGG9psy83NNSdNmuTTOoNFyJ6maWho0LZt25STk+PZZrPZlJOTo/z8/Hb3yc/Pb9NekqZOndphe3ivK8flbLW1tWpsbFTv3r19VWbY6epxeeyxx5ScnKzvfve7/igz7HTluLz++uvKzs7W3LlzlZKSolGjRumJJ56Qy+XyV9khryvHZeLEidq2bZvnVE5hYaHWrl2radOm+aXmQBcUF8rrioqKCrlcLqWkpLTZnpKSol27drW7T2lpabvtS0tLfVZnuOnKcTnbAw88oLS0tHOCI7quK8fl3Xff1QsvvKCCggI/VBieunJcCgsL9Y9//EO33Xab1q5dq7179+r73/++GhsbtXDhQn+UHfK6clxuvfVWVVRU6Oqrr5ZpmmpqatL3vvc9PfTQQ/4oOeCFbM8IQtOTTz6pVatW6a9//auio6OtLidsVVdX6/bbb9eKFSuUlJRkdTk4g9vtVnJysn73u99p3LhxmjVrlh5++GEtX77c6tLC2saNG/XEE0/oueee0/bt25WXl6c1a9bo8ccft7q0gBCyPSNJSUmy2+0qKytrs72srEz9+vVrd59+/fp51R7e68pxafX000/rySef1FtvvaUrrrjCl2WGHW+Py759+3TgwAFNnz7ds83tdkuSIiIitHv3bg0ePNi3RYeBrvx5SU1NVWRkpOx2u2fb8OHDVVpaqoaGBkVFRfm05nDQleOyYMEC3X777brzzjslSZdffrmcTqfuvvtuPfzww7LZwrtvIGTffVRUlMaNG6cNGzZ4trndbm3YsEHZ2dnt7pOdnd2mvSStX7++w/bwXleOiyQ99dRTevzxx7Vu3TqNHz/eH6WGFW+Py7Bhw/Tpp5+qoKDAc/vGN76h66+/XgUFBcrIyPBn+SGrK39eJk2apL1793rCoSTt2bNHqampBJFu0pXjUltbe07gaA2MJpeIC/2pvQ6Hw/zDH/5g7tixw7z77rvNXr16maWlpaZpmubtt99uPvjgg5727733nhkREWE+/fTT5s6dO82FCxcytdcHvD0uTz75pBkVFWWuXr3aLCkp8dyqq6utegshydvjcjZm0/iGt8fl0KFDZlxcnHnvvfeau3fvNv/+97+bycnJ5k9/+lOr3kJI8va4LFy40IyLizP/9Kc/mYWFheabb75pDh482PzWt75l1VsIKCEdRkzTNH/961+bAwYMMKOioswJEyaY77//vuexa6+91rzjjjvatP/zn/9sXnbZZWZUVJQ5cuRIc82aNX6uODx4c1wGDhxoSjrntnDhQv8XHuK8/fNyJsKI73h7XLZs2WJmZWWZDofDHDRokPmzn/3MbGpq8nPVoc+b49LY2Gj++Mc/NgcPHmxGR0ebGRkZ5ve//33zxIkT/i88ABmmSf8QAACwTsiOGQEAAMGBMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAAS/1/opl9JO8gpq8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ "ls = cost.LeastSquares(data_frame['time'], data_frame['current'], data_frame['delta_current'], discharge_current, verbose=1)\n", "\n", - "\n", "mi = Minuit(ls, I0=0.9, R=10*10**3, C=10**-6)\n", "mi.migrad()" ] @@ -1459,37 +2941,34 @@ "id": "c664e4f0-0226-4be0-91f4-7c28aee16a4a", "metadata": {}, "source": [ - "General problem LeastSquares only accounts for uncertainty in y but not x! Needs always to be kept in mind... " + "__Zur Erinnerung__: die Methode der kleinsten Quadrate berücksichtigt nur Fehler in `y` aber nicht in `x`. Hierfür sind komplexere Methoden notwendig, die wir hier nicht betrachten wollen.\n", + "Ebenfalls wichtig ist, die Statusmeldungen von `iminuit` zu prüfen, d.h. eine gelbe Box zeigt an, das man sich Gedanken über das Ergebnis machen sollte (in unserem Fall, dass die Variablen $R$ und $C$ korreliert sind) und eine , violette Box, dass der Fit nicht konvergiert ist und das Ergebnis nicht verwendet werden kann." ] }, { "cell_type": "markdown", - "id": "8c68c1c7-5568-4fc8-a2c6-7ca6791ad2f6", + "id": "fb3aeee8", "metadata": {}, "source": [ - "Box yellow -> Pay attention to result think about it \n", - "\n", - "Box purple -> Fit did not converege cannot be used... \n", - "\n", - "\n", - "Limits can also be specified only as onsided as e.g. `(lower_boundary, None)` ..." + "***\n", + "--- Split Notebook here ---\n", + "***" ] }, { "cell_type": "markdown", - "id": "75f63b27-cd52-49b5-8c97-12615b808a2e", + "id": "5064e2e2", "metadata": {}, "source": [ - "Now more complex example to show other minuit features:\n", - "\n", - "-> Counting experiment\n", - "\n", - "-> Poisson statistics -> uncertainty sqrt n..." + "# Fortgeschrittenes Beispiel\n", + "In diesem Abschnitt wollen wir uns mit einem komplexeren Beispiel beschäftigen, um weitere Methoden von `iminuit` kennzulernen.\n", + "Hierzu betrachten wir ein Zählexperiment, z.B. ein Teilchendetektor, bei dem ein Energiespektrum aufgenommen wird. Für jedes Energieintervall (Bin) wird die Anzahl der registrierten Ereignisse bestimmt. Hierbei können wir annehmen, dass die Verteilung der gemessenen Anzahl durch eine Poisson-Verteilung beschrieben wird. Dann entspricht der Fehler in jedem Bin gerade $\\sqrt n$. \n", + "Dieses Spektrum soll aus zwei gauß-förmigen Peaks über einem exponentiellen Untergrund bestehen und wird mit Hilfe eines Zufallszahlengenerator \"erzeugt\"." ] }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 501, "id": "143a2a23-0a62-439f-9d28-9f555ae85589", "metadata": {}, "outputs": [ @@ -1499,13 +2978,13 @@ "Text(0, 0.5, 'Number of counts per bin')" ] }, - "execution_count": 105, + "execution_count": 501, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQlUlEQVR4nO3deXhTZdoG8Dtd6UJTlq7D0rIIFspWFfKBgrSyWEWnHQSmImIHHKbIUkSKCrIIRWZEBwdBGTYVXFBUhBGkrCOUdUTWAQrFojRFlqbQ0pa25/uDyTFJkzSnTXKSk/t3XbmunCU5z9s0yZN3VQmCIICIiIhIobzkDoCIiIjIkZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQfuQNwBTU1Nbh8+TIaN24MlUoldzhERERkA0EQcPPmTURHR8PLy3L9DZMdAJcvX0bLli3lDoOIiIjq4dKlS2jRooXF40x2ADRu3BjA3T9WSEiIzNEQERGRLUpKStCyZUvxe9wSJjuA2HQVEhLCZIeIiMjN1NUFhR2UiYiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSJSnLLKKsRkbUZM1maUVVbV2iYiz8Jkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0TkUdh/h8jzMNkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtEpGhaXbnRdlFJuYUziUipfOQOgIjI3r448rN4P2nRbgzpGi1uP/7OXjlCIiIZsWaHiBSlUHcbr208KW7XCMBXRy8bbRORZ5E92fnll1/w9NNPo1mzZggICEB8fDwOHz4sHhcEATNnzkRUVBQCAgKQlJSEc+fOGT3H9evXkZaWhpCQEISGhiI9PR23bt1ydlGIyAXkXy1lQkNERmRNdm7cuIHevXvD19cX3377LU6dOoU333wTTZo0Ec9ZuHAhFi9ejGXLluHAgQMICgrCwIEDUV7+W7t7WloaTp48iW3btmHTpk3Ys2cPxo4dK0eRiEhmsc2D4KWSOwoiciUqQRBk+w2UlZWFvXv34t///rfZ44IgIDo6GlOmTMGLL74IANDpdIiIiMDq1asxfPhwnD59GnFxcTh06BDuu+8+AMCWLVvw6KOP4ueff0Z0dLTZ5zZUUlICtVoNnU6HkJAQ+xWQiGTxYe5FzPj6blOWlwoY0jVabMryUv3WlLVjSl+0CQuWK0wiaiBbv79lrdnZuHEj7rvvPgwdOhTh4eHo3r07li9fLh7Pz8+HVqtFUlKSuE+tVqNnz57Izc0FAOTm5iI0NFRMdAAgKSkJXl5eOHDggNnrVlRUoKSkxOhGRMqRmtBCvJ+T2RfzU+LF7fH924n3kxbtxqeHCpwaGxE5n6zJzoULF7B06VK0b98eW7duxbhx4zBhwgSsWbMGAKDVagEAERERRo+LiIgQj2m1WoSHhxsd9/HxQdOmTcVzTGVnZ0OtVou3li1b2rtoROQiItWNjLb/sSNPvF8jAC9vOIFC3W1nh0VETiRrslNTU4MePXpg/vz56N69O8aOHYsxY8Zg2bJlDr3u9OnTodPpxNulS5ccej0ich2mnZerBQEXr5bJEwwROYWsyU5UVBTi4uKM9t17770oKLhbrRwZGQkAKCoqMjqnqKhIPBYZGYkrV64YHa+qqsL169fFc0z5+/sjJCTE6EZEnsG087K3SoWY5oHyBENETiFrstO7d2+cOXPGaN/Zs2fRunVrAEBsbCwiIyOxfft28XhJSQkOHDgAjUYDANBoNCguLsaRI0fEc3bs2IGamhr07NnTCaUgInfy8qP3ive9VMD8lM6IUgfIGBEROZqsyc7kyZOxf/9+zJ8/H3l5eVi3bh3ef/99ZGRkAABUKhUmTZqE119/HRs3bsTx48fxzDPPIDo6Gk8++SSAuzVBgwYNwpgxY3Dw4EHs3bsX48ePx/Dhw20aiUVEnuXJ7r99LuRk9sWw+1vJGA0ROYOsy0Xcf//9+PLLLzF9+nTMmTMHsbGxePvtt5GWliae89JLL6G0tBRjx45FcXEx+vTpgy1btqBRo986Ha5duxbjx49HYmIivLy8kJqaisWLF8tRJCJyI6adl4lImWRfG+uxxx7DY489ZvG4SqXCnDlzMGfOHIvnNG3aFOvWrXNEeESkcGWVVYibuRUAcGrOQAT6yf6xSER2JvtyEURERESOxGSHiIiIFI31tUSkOIF+Pri4INlon367rLJKjpCISEas2SEiMlBWWYWYrM2IydrMxIhIIZjsEBERkaIx2SEiIiJFY7JDREREisYOykTkUUw7L7NfDpHysWaHiIiIFI3JDhHR/2h15XKHQEQOwGSHiNyOPYeHf3HkZ/F+0qLdRtv2vhYRyYPJDhF5rELdbby28aS4XSPAaJuIlIHJDhF5rPyrpagRjPeZbhOR+2OyQ0QeK7Z5ELxUxvsMt0378LBJi8g9MdkhIo8VpQ7A7CGdxG0vFTCka7S4ba4PDxG5HyY7ROT2GlLjkprQQrz/8Zhe2PjjZXGbfXiIlIHJDhHR/5RVVrEPD5ECMdkhIvqf1s2s9+EhIvfEZIeI6H8i1Y1q9eEx3CYi98Rkh4jIgGEfnpzMvkbbRSWcYZnIHTHZISK35sglHiLVjYxGYz3+zl6HXYuIHIfJDhG5nbqWeLAXra681gzLROR+mOwQkVtx5hIPP12rPcMyEbkfJjtE5FacucSDudFZelwhnch9MNkhIrcidYmHhjAdnWV42aRFu/HpoQK7XYuIHIfJDhG5PMMZktUBvnUu8SAlCQn088HFBcm4uCAZgX4+tY4bjsYyzHZqBODlDSdQqLstrTBE5HRMdojI7dS1xIOjkhDBpLmsWhBw8WqZ3a9DRPbFZIeI3Jq5JR4clYSYNp95q1SIaR5o9+sQkX0x2SEit2auE7GjkpCXH71XvO+lAuandEaUOsDu1yEi+2KyQ0RuzdwSDw1JQqz14Xmy+299g3Iy+2LY/a3qFzQRORWTHSJye6ZLPDgjCYlUN3L4NYjIPpjsEJGiMAkhIlNMdoiIiEjRmOwQEdWT4fw/ZZVVcodDRBYw2SEit8JlGohIqtrThRIRuRjTVc6zU+JxcUGyuM+RtSr60VmOvg4ROQ5rdojIpZlb5ZzLNBCRFEx2iMilmVvlnMs0EJEUbMYiIpemX+XcMOGRa5kGwyYtgM1aRO6CNTtE5NKi1AF2nSGZiDwPa3aIyOWlJrTAjK/v9tvJyeyLNmHBRsdNa1yIiAyxZoeI3ApnSCYiqZjsEBHZAef/IXJdsiY7s2bNgkqlMrp17NhRPF5eXo6MjAw0a9YMwcHBSE1NRVFRkdFzFBQUIDk5GYGBgQgPD8fUqVNRVcVOg0TkeKbz/3x6qEDGaIjIEtlrdjp16oTCwkLx9v3334vHJk+ejG+++Qbr16/H7t27cfnyZaSkpIjHq6urkZycjMrKSuzbtw9r1qzB6tWrMXPmTDmKQkQehPP/ELkP2Tso+/j4IDIystZ+nU6HFStWYN26dejfvz8AYNWqVbj33nuxf/9+9OrVC9999x1OnTqFnJwcREREoFu3bpg7dy6mTZuGWbNmwc/Pz9nFISIPYW3+H44UI3ItstfsnDt3DtHR0WjTpg3S0tJQUHC3GvjIkSO4c+cOkpKSxHM7duyIVq1aITc3FwCQm5uL+Ph4REREiOcMHDgQJSUlOHnyJCypqKhASUmJ0Y2IXIurL7Kpn//HkFzz/xCRdbImOz179sTq1auxZcsWLF26FPn5+XjwwQdx8+ZNaLVa+Pn5ITQ01OgxERER0Gq1AACtVmuU6OiP649Zkp2dDbVaLd5atmxp34IRkeJx/h8i9yFrM9bgwYPF+126dEHPnj3RunVrfPbZZwgIcNwHxvTp05GZmSlul5SUMOEhIsnqmv+HiFyD7H12DIWGhuKee+5BXl4eHnnkEVRWVqK4uNiodqeoqEjs4xMZGYmDBw8aPYd+tJa5fkB6/v7+8Pf3t38BiMgh3GHSQM7/Q+S6ZO+zY+jWrVs4f/48oqKikJCQAF9fX2zfvl08fubMGRQUFECj0QAANBoNjh8/jitXrojnbNu2DSEhIYiLi3N6/EREROR6ZK3ZefHFF/H444+jdevWuHz5Ml577TV4e3tjxIgRUKvVSE9PR2ZmJpo2bYqQkBC88MIL0Gg06NWrFwBgwIABiIuLw8iRI7Fw4UJotVq8+uqryMjIYM0NkZspq6xC3MytAIBTcwbKHA0RKYmsyc7PP/+MESNG4Nq1awgLC0OfPn2wf/9+hIWFAQDeeusteHl5ITU1FRUVFRg4cCDeffdd8fHe3t7YtGkTxo0bB41Gg6CgIIwaNQpz5syRq0hERETkYmRNdj755BOrxxs1aoQlS5ZgyZIlFs9p3bo1/vWvf9k7NCIiIlIIl+qzQ0RERGRvTHaIyOW56yKbrj4xIpGnYLJDRC6Ji2wSkb241Dw7RETA3Zocc4tsPnRPmEvNUOwO8/8QUT2TnXPnzmHnzp24cuUKampqjI5xxXEiaqifrnGRTSKyH8nJzvLlyzFu3Dg0b94ckZGRUKl+WwlPpVIx2SGiBmvd7O4im4YJDxfZJKL6kpzsvP7665g3bx6mTZvmiHiIiAAAs4d0Eted4iKbRNQQkjso37hxA0OHDnVELETkwUw7JBvKyeyLYfe3cnZIRKQQkpOdoUOH4rvvvnNELETkoQp1t2t1SDbcdpdFNjnUnMg1SW7GateuHWbMmIH9+/cjPj4evr6+RscnTJhgt+CIyDPkX63dIdl0m4ioviQnO++//z6Cg4Oxe/du7N5tXNWsUqmY7BCRZLHNa3dINt12d1pdOdqEBcsdBpFHktyMlZ+fb/F24cIFR8RIRAoXpQ7A7CGdxG0vFYy23RUnRiRyDZxBmYhcQmpCC/F+TmZfo213ZGlixELdbRmjIvJMNjVjZWZmYu7cuQgKCkJmZqbVcxctWmSXwIjIc7lLh2RrODEikeuwKdn54YcfcOfOHfG+JYYTDBIReTJOjEjkOmxKdnbu3Gn2PhERmRepbsSJEYlcRIMWAr106RIAoGXLlnYJhohIz90X2dTqypGa0EJMdnIy+3I0FpFMJHdQrqqqwowZM6BWqxETE4OYmBio1Wq8+uqrYlMXEZEnMh19ZbithH5IRO5Kcs3OCy+8gA0bNmDhwoXQaDQAgNzcXMyaNQvXrl3D0qVL7R4kEZGrq2sWaCKSj+RkZ926dfjkk08wePBgcV+XLl3QsmVLjBgxgskOEXkkzgJN5LokJzv+/v6IiYmptT82NhZ+fn72iImIPJC799HxhFmgidyV5D4748ePx9y5c1FRUSHuq6iowLx58zB+/Hi7BkdE5C6UOgs0kRLYVLOTkpJitJ2Tk4MWLVqga9euAIAff/wRlZWVSExMtH+ERERuwnT0VaS6kbhNRPKxKdlRq9VG26mpqUbbHHpORGSMo6+IXIdNyc6qVascHQcRkeK4ez8kIqXgQqBERESkaEx2iIiISNGY7BAREZGiMdkhIlmUVVYhJmszYrI2o6yySu5wiEjBJCU7d+7cQWJiIs6dO+eoeIiIiIjsSlKy4+vri2PHjjkqFiIiIiK7k9yM9fTTT2PFihWOiIWIyK3ph5pfXJCMQD/Jq/EQkYNIfjdWVVVh5cqVyMnJQUJCAoKCgoyOL1q0yG7BERERETWU5GTnxIkT6NGjBwDg7NmzRsdUKpV9oiIiIiKyE8nJzs6dOx0RBxEREZFD1HvoeV5eHrZu3Yrbt28DAARBsFtQRERERPYiOdm5du0aEhMTcc899+DRRx9FYWEhACA9PR1Tpkyxe4BEpHxaXbncIRCRgklOdiZPngxfX18UFBQgMDBQ3D9s2DBs2bLFrsERkXJ9ceRn8X7Sot349FCBjNEQkZJJ7rPz3XffYevWrWjRooXR/vbt2+Onn36yW2BEpFyFutt4beNJcbtGAF7ecAIP3ROGKHWAjJERkRJJrtkpLS01qtHRu379Ovz9/e0SFBEpW/7VUtSYdPOrFgRcvFomT0BEpGiSk50HH3wQH3zwgbitUqlQU1ODhQsX4uGHH7ZrcESkTLHNg+BlMlOFt0qFmOa1f0gRETWU5GashQsXIjExEYcPH0ZlZSVeeuklnDx5EtevX8fevXsdESMRKUyUOgCzh3TCjK/vNmV5qYD5KZ3ZhEVEDiG5Zqdz5844e/Ys+vTpgyeeeAKlpaVISUnBDz/8gLZt2zoiRiJSoNSE3/r95WT2xbD7W8kYjXNwpXciedRrnh21Wo1XXnkFn332Gf71r3/h9ddfR1RUVIMCWbBgAVQqFSZNmiTuKy8vR0ZGBpo1a4bg4GCkpqaiqKjI6HEFBQVITk5GYGAgwsPDMXXqVFRV8UOEyNVY+6KPVDeSKSoi8gT1Wqnuxo0bWLFiBU6fPg0AiIuLw+jRo9G0adN6BXHo0CG899576NKli9H+yZMnY/PmzVi/fj3UajXGjx+PlJQUsbmsuroaycnJiIyMxL59+1BYWIhnnnkGvr6+mD9/fr1iIXJHZZVViJu5FQBwas5ALkJJRGRAcs3Onj17EBMTg8WLF+PGjRu4ceMGFi9ejNjYWOzZs0dyALdu3UJaWhqWL1+OJk2aiPt1Oh1WrFiBRYsWoX///khISMCqVauwb98+7N+/H8DdYfCnTp3CRx99hG7dumHw4MGYO3culixZgsrKSsmxEBERkfJITnYyMjIwbNgw5OfnY8OGDdiwYQMuXLiA4cOHIyMjQ3IAGRkZSE5ORlJSktH+I0eO4M6dO0b7O3bsiFatWiE3NxcAkJubi/j4eERERIjnDBw4ECUlJTh58iQsqaioQElJidGNiIiIlElyspOXl4cpU6bA29tb3Oft7Y3MzEzk5eVJeq5PPvkE//nPf5CdnV3rmFarhZ+fH0JDQ432R0REQKvViucYJjr64/pjlmRnZ0OtVou3li1bSoqbiIiI3IfkZKdHjx5iXx1Dp0+fRteuXW1+nkuXLmHixIlYu3YtGjVybufE6dOnQ6fTibdLly459fpERETkPJJ7MU6YMAETJ05EXl4eevXqBQDYv38/lixZggULFuDYsWPiuaYdjg0dOXIEV65cQY8ePcR91dXV2LNnD/7xj39g69atqKysRHFxsVHtTlFRESIjIwEAkZGROHjwoNHz6kdr6c8xx9/fn7M9ExEReQjJyc6IESMAAC+99JLZYyqVCoIgQKVSobq62uLzJCYm4vjx40b7Ro8ejY4dO2LatGlo2bIlfH19sX37dqSmpgIAzpw5g4KCAmg0GgCARqPBvHnzcOXKFYSHhwMAtm3bhpCQEMTFxUktGhE5UaCfDy4uSJY7DNlodeVoExYsdxhEHkFyspOfn2+XCzdu3BidO3c22hcUFIRmzZqJ+9PT05GZmYmmTZsiJCQEL7zwAjQajVijNGDAAMTFxWHkyJFYuHAhtFotXn31VWRkZLDmhjyWO3yJukOMjmC60nt2SrxHTKZIJDfJyU7r1q0dEYdZb731Fry8vJCamoqKigoMHDgQ7777rnjc29sbmzZtwrhx46DRaBAUFIRRo0Zhzpw5TouRyBW4w5eoO8ToSFzpnUg+KkEQhLpPU7aSkhKo1WrodDqEhITIHQ6RJIW62+i9YIfRKuLeKhW+z3rYZb5E3SFGR9t3/ir+uPxArf0fj+kFTdtmMkRE5P5s/f6u13IRROQ68q+WGiURAFAtCLh4tUyegMxwhxgdjSu9E8mHyQ6Rm3OHL1F3iNHR9Cu963mp7iZ8muwdXBSUyMGY7BC5OXNfovNTOrtU85A7xOgMhiu9f/NCbxkjIfIskpOdS5cu4eeff+toePDgQUyaNAnvv/++XQMjItsZfonmZPZ1yY6/7hCjM0WEcKV3ImeRnOz88Y9/xM6dOwHcXZLhkUcewcGDB/HKK69wFBSRCwgJ8EFM1mbEZG1GWWUVyiqrjLZdQaSaX/RE5DySk50TJ07ggQceAAB89tln6Ny5M/bt24e1a9di9erV9o6PiIiIqEEkJzt37twRJ+zLycnBkCFDANxdkbywsNC+0RGRS3PFWiMiIlOSk51OnTph2bJl+Pe//41t27Zh0KBBAIDLly+jWTPOFUFERESuRXKy88Ybb+C9995Dv379MGLECHGl840bN4rNW0REZDutrlzuEIgUTfJyEf369cPVq1dRUlKCJk2aiPvHjh2LoKAguwZH5CnKKqsQN3MrAODUnIEI9PORdJzcg+Hipx/mXhT3e+LyGUTOJLlmp3///rh586ZRogMATZs2xbBhw+wWGBG5N9P+PPov+osLkj0+WbO0Tlah7raMUREpl+RPnF27dqGysrLW/vLycvz73/+2S1BEJI1hjYFhR2GtrtxomLenrjbuaqwtn+FpEy0SOYPNyc6xY8fE+6dOnYJWqxW3q6ursWXLFvzud7+zb3REJJnp6uJDukYbbbO5RH765TNMF0b1pOUziJzJ5mSnW7duUKlUUKlU6N+/f63jAQEBeOedd+waHBFJY6555Kujl422X95wAg/dE8YaBBnpl8+Y8fXd18pTl88gchabk538/HwIgoA2bdrg4MGDCAsLE4/5+fkhPDwc3t7eDgmSiIxZ6rBsrnnEVEOaS0yva4hNZNKkJrQQk52czL782xE5kM3JTuvWrQEANTU1DguGiBrGXPOIKXs2l5g2mbGJrH64fAaRY9VrSMS5c+ewc+dOXLlypVbyM3PmTLsERuSp6qohMe10bMhc88iQrtFiU5aXCpg1JA6a7B0AGjaMXasrNzuiiE1kRORqJH/KLV++HOPGjUPz5s0RGRkJlUolHlOpVEx2iOqhrhoS0+Ozh3Sy+FymzSOR6kZisqPf1h8H6j+Hz0/XbB9RxCYuIpKT5GTn9ddfx7x58zBt2jRHxEPkcSzNuaKvITF33HDbGtMaIHs2l7RuZn1EEZu4iMhVSJ5U8MaNGxg6dKgjYiHySNbmXLF0vK5OyM4QqW5kVMNkOKKIk+YRkSuRnOwMHToU3333nSNiIfJI+k7FhgxrSMwdN92WS2pCC/F+TmZfseamrgSOiMiZJDdjtWvXDjNmzMD+/fsRHx8PX19fo+MTJkywW3BEnqCuOVfMHTfclqs/jGlHacP7nDSvboazXhORY0lOdt5//30EBwdj9+7d2L17t9ExlUrFZIeoHuqac8X0+N68q+IxZ/aHsbWjNCfNIyJXIjnZyc/Pd0QcRPQ/tnQitteQb2vD2AHjkVo7pvSV1FGak+YRkauQ3GeHiBzPdMVwQ9aGfNvCtHbGcFurK7f4OHPXtbWjNCfNIyI5Sa7Zee6556weX7lyZb2DIaK61TXk21xfEP22uVFSMw3m3LHWJGbuunXN1kxE5ArqNfTc8HblyhXs2LEDGzZsQHFxsQNCJCJD1oZ818XcKCnDTWtDxM1d19rkhkRErkJyzc6XX35Za19NTQ3GjRuHtm3b2iUoIk9g2B/m8KuJkh5b3/4wtqydZW2hUHPXHamJkRQ7EZGz2aXPjpeXFzIzM/HWW2/Z4+mISAIp/WH0o6T0VP+7GbJ1iDj74RCRu6jfCoBmnD9/HlVVVXWfSES1mPazMe2UXNdxKQxrZ7ZPuTuMnUPEiUjJJCc7mZmZRtuCIKCwsBCbN2/GqFGj7BYYEd3lyEkDI9WNbG4Sq2uYuilOmkdErkJysvPDDz8YbXt5eSEsLAxvvvlmnSO1iMg2ci2iGRLgg5iszQDuroAuZbV1IiJXJTnZ2blzpyPiIKL/qWsVdGfR6srrvdo6EZErqXefnV9//RVnzpwBAHTo0AFhYWF2C4rIk1lbRNOZyU5DJhEkInIlkpOd0tJSvPDCC/jggw9QU1MDAPD29sYzzzyDd955B4GBXOiPSCrDfjm2LKLpjP4wliYv/D7rYXZgJiK3InnoeWZmJnbv3o1vvvkGxcXFKC4uxtdff43du3djypQpjoiRSJFM+8N8eqgAQO3h4XKNkGrI5IVERK5EcrLzxRdfYMWKFRg8eDBCQkIQEhKCRx99FMuXL8fnn3/uiBiJFMdSvxz9zMWpCS3EYzmZfe3aOVlfK3RxQTIC/axX7joyDiIiZ5HcjFVWVoaIiIha+8PDw1FWZttChESeTkq/HEdP3mfYJGZt/h5OIkhE7kpyzY5Go8Frr72G8vLfVke+ffs2Zs+eDY1GY9fgiJRK3y/HkK0zFzuLtRXQiYjcieSanb///e8YOHAgWrRoga5duwIAfvzxRzRq1Ahbt261e4BESqTvl+NqMxdzXh0iUiLJyU7nzp1x7tw5rF27Fv/9738BACNGjEBaWhoCAthxkchW9V3M01HM9SPivDpEpAT1mmcnMDAQY8aMsXcsRB7LFfrDmOtHJHVeHcOV3E/NGVhnB2giImeQ/EmUnZ2NiIiIWktDrFy5Er/++iumTZtmt+CIyHksze/DeXWIyN1J7qD83nvvoWPHjrX2d+rUCcuWLZP0XEuXLkWXLl3EIewajQbffvuteLy8vBwZGRlo1qwZgoODkZqaiqKiIqPnKCgoQHJyMgIDAxEeHo6pU6dy9XVye1KGh9uLq8zvQ0Rkb5KTHa1Wi6ioqFr7w8LCUFhYKOm5WrRogQULFuDIkSM4fPgw+vfvjyeeeAInT97tJzB58mR88803WL9+PXbv3o3Lly8jJSVFfHx1dTWSk5NRWVmJffv2Yc2aNVi9ejVmzpwptVhEBM6rQ0TKJDnZadmyJfbu3Vtr/969exEdHS3puR5//HE8+uijaN++Pe655x7MmzcPwcHB2L9/P3Q6HVasWIFFixahf//+SEhIwKpVq7Bv3z7s378fAPDdd9/h1KlT+Oijj9CtWzcMHjwYc+fOxZIlS1BZWSm1aEQOVVZZhZiszYjJ2mx1PhtX4Qr9iDyJu/1/ELkTycnOmDFjMGnSJKxatQo//fQTfvrpJ6xcuRKTJ09uUKfl6upqfPLJJygtLYVGo8GRI0dw584dJCUlied07NgRrVq1Qm5uLgAgNzcX8fHxRpMcDhw4ECUlJWLtkDkVFRUoKSkxuhEREZEySe4MMHXqVFy7dg1/+ctfxNqTRo0aYdq0aZg+fbrkAI4fPw6NRoPy8nIEBwfjyy+/RFxcHI4ePQo/Pz+EhoYanR8REQGtVgvgbpOa6WzO+m39OeZkZ2dj9uzZkmMlsidnLOZJRET1qNlRqVR444038Ouvv2L//v348ccfcf369Xr3k+nQoQOOHj2KAwcOYNy4cRg1ahROnTpVr+ey1fTp06HT6cTbpUuXHHo9Ik/EGZiJyFXUe5hHcHAw7r///gYH4Ofnh3bt2gEAEhIScOjQIfz973/HsGHDUFlZieLiYqPanaKiIkRGRgIAIiMjcfDgQaPn04/W0p9jjr+/P/z9/RscO5E1pnPOeALTGZizU+LZyZmIZCe5ZsfRampqUFFRgYSEBPj6+mL79u3isTNnzqCgoEBcg0uj0eD48eO4cuWKeM62bdsQEhKCuLg4p8dO5O4aMuS9rpXciYjkIuv0ptOnT8fgwYPRqlUr3Lx5E+vWrcOuXbuwdetWqNVqpKenIzMzE02bNkVISAheeOEFaDQa9OrVCwAwYMAAxMXFYeTIkVi4cCG0Wi1effVVZGRksOaGXJpWVy778hD2JmUld7JOif8fRHKStWbnypUreOaZZ9ChQwckJibi0KFD2Lp1Kx555BEAwFtvvYXHHnsMqampeOihhxAZGYkNGzaIj/f29samTZvg7e0NjUaDp59+Gs888wzmzJkjV5GILDJt4vn0UIGM0difO6zk7sqU/v9BJCeVIAh1rn7To0cPbN++HU2aNMGcOXPw4osvIjBQOR9gJSUlUKvV0Ol0CAkJkTscUgjDPjs7pvRF0qLdil+K4cPci0YrubPPjm0KdbfRe8EOxf9/ENmbrd/fNtXsnD59GqWlpQCA2bNn49atW/aJkshD/HTNchOPknAG5vqx1gRIRA1nU5+dbt26YfTo0ejTpw8EQcDf/vY3BAebb0/mUg1EtQX6+ZhdZFPJTTycgdl2lhZhVfL/B5Ez2ZTsrF69Gq+99ho2bdoElUqFb7/9Fj4+tR+qUqmY7BD9j2EfjBHL92NI12h8dfQyAC6yScb0i7AaNgHy/4PIfmxKdjp06IBPPvkEAODl5YXt27cjPDzcoYERuTNzw7A3/nhZ3M7J7MvRNmQkNaGFmOzw/4PIviQPPa+pqXFEHESKYq4PhuE2m3jIGv5/ENlXvebZOX/+PN5++22cPn0aABAXF4eJEyeibdu2dg2OyF2Z64Nhuk1ERM4heZ6drVu3Ii4uDgcPHkSXLl3QpUsXHDhwAJ06dcK2bdscESOR29H3wdDzUsFoW6kaMgMzEZGjSP40ysrKwuTJk7FgwYJa+6dNmyZOCEjk6Uz7YESqG4nbRHUxXVuNySNR/Umu2Tl9+jTS09Nr7X/uueccvlo5kbtiHwwiIvlI/qkQFhaGo0ePon379kb7jx49yhFaRFbom3iIzDH9/yirrJIxGiJlkZzsjBkzBmPHjsWFCxfwf//3fwCAvXv34o033kBmZqbdAyQiIiJqCMnJzowZM9C4cWO8+eabmD59OgAgOjoas2bNwoQJE+weIBEREVFDSE52VCoVJk+ejMmTJ+PmzZsAgMaNG9s9MCIiukurK+ckg0QN0KDu/UxyiCxjHx1qCMPlRpIW7eYK8kQNIHk0FhEROZa55UZe3nAChbrbMkZF5L6Y7BARuRhzy41UCwIuXi2TJyAiN8dkh4jIxeiXGzHkrVIhpnmgPAERuTlJyc6dO3eQmJiIc+fOOSoeIiKPZ265kfkpnRGlDpAxKiL3JSnZ8fX1xbFjxxwVCxER/U9qQgvxfk5mX3ZOJmoAyc1YTz/9NFasWOGIWIiIyAwuN0LUMJKHnldVVWHlypXIyclBQkICgoKCjI4vWrTIbsERERERNZTkZOfEiRPo0aMHAODs2bNGx1QqlbmHEBFRA3EVdKL6k/xu2blzpyPiICIiInKIeg89z8vLw9atW3H79t1JrgRBqOMRRERERM4nuWbn2rVreOqpp7Bz506oVCqcO3cObdq0QXp6Opo0aYI333zTEXESEXkU0+VGyiqrZIyGyL1JrtmZPHkyfH19UVBQgMDA3ya4GjZsGLZs2WLX4IiIiIgaSnLNznfffYetW7eiRYsWRvvbt2+Pn376yW6BERGReVwFnUgayTU7paWlRjU6etevX4e/v79dgiIiImOmq6B/eqhAxmiI3IvkZOfBBx/EBx98IG6rVCrU1NRg4cKFePjhh+0aHBERcRV0ooaS3Iy1cOFCJCYm4vDhw6isrMRLL72EkydP4vr169i7d68jYiQi8mjWVkHnellEdZNcs9O5c2ecPXsWffr0wRNPPIHS0lKkpKTghx9+QNu2bR0RIxGRR+Mq6EQNoxI4QQ5KSkqgVquh0+kQEhIidzhERLV8mHsRM76+25TlpQKyU+K5OCh5PFu/v+s13/iNGzewYsUKnD59GgAQFxeH0aNHo2nTpvWLlkgBOJ0/OVJqQgsx2cnJ7MvRWEQSSG7G2rNnD2JiYrB48WLcuHEDN27cwOLFixEbG4s9e/Y4IkYiIjLAVdCJpJH80zMjIwPDhg3D0qVL4e3tDQCorq7GX/7yF2RkZOD48eN2D5KIiIioviTX7OTl5WHKlCliogMA3t7eyMzMRF5enl2DIyIiImooyclOjx49xL46hk6fPo2uXbvaJSgiIiIie7GpGevYsWPi/QkTJmDixInIy8tDr169AAD79+/HkiVLsGDBAsdESeRmOJ0/2ZvpwqBEZDubhp57eXlBpVKhrlNVKhWqq6vtFpyzcOg52QOHBhMROZddh57n5+fbLTAiJbI0nf9D94RxhlsiIpnZlOy0bt3a0XEQuTVO509E5LrqNevZ5cuX8f333+PKlSuoqakxOjZhwgS7BEbkTvTT+RsmPJzOnxyJk1gS2U7yu2P16tV4/vnn4efnh2bNmkGl+m3BFpVKxWSHPFKUOgCzh3Qy6rMzP6Uza3WIiFyA5KHnM2bMwMyZM6HT6XDx4kXk5+eLtwsXLkh6ruzsbNx///1o3LgxwsPD8eSTT+LMmTNG55SXlyMjIwPNmjVDcHAwUlNTUVRUZHROQUEBkpOTERgYiPDwcEydOhVVVVVSi0bUIKkJLcT7OZl92TmZiMhFSE52ysrKMHz4cHh5SX5oLbt370ZGRgb279+Pbdu24c6dOxgwYABKS0vFcyZPnoxvvvkG69evx+7du3H58mWkpKSIx6urq5GcnIzKykrs27cPa9aswerVqzFz5swGx0dkTVllFWKyNiMmazPKKo2Ta07nT0TkOiRnLOnp6Vi/fr1dLr5lyxY8++yz6NSpE7p27YrVq1ejoKAAR44cAQDodDqsWLECixYtQv/+/ZGQkIBVq1Zh37592L9/PwDgu+++w6lTp/DRRx+hW7duGDx4MObOnYslS5agsrLSLnESEbkyra5c7hCIXJrkPjvZ2dl47LHHsGXLFsTHx8PX19fo+KJFi+odjE6nAwBx9fQjR47gzp07SEpKEs/p2LEjWrVqhdzcXPTq1Qu5ubmIj49HRESEeM7AgQMxbtw4nDx5Et27d691nYqKClRUVIjbJSUl9Y6ZiEgOXxz5WbyftGg353UisqJeyc7WrVvRoUMHAKjVQbm+ampqMGnSJPTu3RudO3cGAGi1Wvj5+SE0NNTo3IiICGi1WvEcw0RHf1x/zFIZZs+eXe9YiYjkxHmdiKSRnOy8+eabWLlyJZ599lm7BpKRkYETJ07g+++/t+vzmjN9+nRkZmaK2yUlJWjZsqXDr0vKpV8egtP5kzNwXiciaST32fH390fv3r3tGsT48eOxadMm7Ny5Ey1a/DaiJTIyEpWVlSguLjY6v6ioCJGRkeI5pqOz9Nv6c0z5+/sjJCTE6EYklWkzwqeHCmSMhjyJfl4nQ5zXicgyycnOxIkT8c4779jl4oIgYPz48fjyyy+xY8cOxMbGGh1PSEiAr68vtm/fLu47c+YMCgoKoNFoAAAajQbHjx/HlStXxHO2bduGkJAQxMXF2SVOIlOWmhEKdbdljIo8hX5eJz3O60RkneRmrIMHD2LHjh3YtGkTOnXqVKuD8oYNG2x+royMDKxbtw5ff/01GjduLPaxUavVCAgIgFqtRnp6OjIzM9G0aVOEhITghRdegEajEVdcHzBgAOLi4jBy5EgsXLgQWq0Wr776KjIyMuDv7y+1eEQ2YTMCyS01oYU4iWVOZl+0CQuWOSIi1yU52QkNDTWa56Yhli5dCgDo16+f0f5Vq1aJfYLeeusteHl5ITU1FRUVFRg4cCDeffdd8Vxvb29s2rQJ48aNg0ajQVBQEEaNGoU5c+bYJUYic7g8BLkSzutEZJ1KEASh7tOUzdYl4okMfZh70Wh5CA79JWfi2lhEtn9/N3waZCIPxeUhiIjcg+SfArGxsVbn05G6PhaRErAZgYjIdUlOdiZNmmS0fefOHfzwww/YsmULpk6daq+4iIjIikA/H87rRGQjycnOxIkTze5fsmQJDh8+3OCAiIiIiOzJbh2UL1y4gG7durnlOlPsoExEROR+nN5B+fPPPxcX8CQiIiJyFZKbsbp3727UQVkQBGi1Wvz6669G898QKRGH+xIRuR/Jn9RPPvmk0baXlxfCwsLQr18/dOzY0V5xEREREdmF5GTntddec0QcRERERA7BSQWJiIhI0WxOdry8vODt7W315uPD/gvkObS6crlDICIiG9icnXz55ZcWj+Xm5mLx4sWoqamxS1BEruqLIz+L95MW7eZ6WOQS2HGeyDqb3xFPPPFErX1nzpxBVlYWvvnmG6SlpXGlcVK0Qt1tvLbxpLhdIwAvbziBh+4JQ5Q6QMbIiIjImnr12bl8+TLGjBmD+Ph4VFVV4ejRo1izZg1at25t7/iIXEb+1VLUmEzBWS0IuHi1TJ6AiIjIJpKSHZ1Oh2nTpqFdu3Y4efIktm/fjm+++QadO3d2VHxELiO2eRC8TNbA9VapENM8UJ6AiMxgXzKi2mxOdhYuXIg2bdpg06ZN+Pjjj7Fv3z48+OCDjoyNyKVEqQMwe0gncdtLBcxP6cwmLJKdaV+yTw8VyBgNkeuxeW0sLy8vBAQEICkpCd7e3hbP27Bhg92CcxaujUW2MuwIumNKX7QJC5Y5IvJ0hbrb6L1gh1ETq7dKhe+zHmYiTopn6/e3zR2Un3nmGaNlIog8XaS6kdwhEFntS8Zkh+gum5Od1atXOzAMIiKqD31fMtOaHfYlI/oNZ1AmInJj5vqSzRoSB032DsRkbUZZZZWM0RG5BiY7RBIE+vng4oJkXFyQzInbyGWkJrQQ7+dk9jXaJiImO0REisK+ZES1MdkhIlIwzrtDxGSHyKqyyirEZG1m3wdyK5x3h8gYOx0QEbk5fV8ywPwabtM3HMe0L44D4EKh5JlYs0NEpCDm5t0x3SbyNEx2iGzEvg/kDsyt4Wa6TeRpmOwQWcG+D+RuzM27Y7jNpJ08EZMdIgvM9X14ecMJFOpuyxgVUd1M590xxKSdPBGTHSILrK05ROROmLSTp2OyQ2SBub4PXHOI3M1P15i0E3H8IZEF+r4PM76++6vYSwXMT+nMlaTJ5ZkORedCoeTpWLNDZIVp34dh97eSMRoi6cx1WGbSTp6GyQ6RjbjmELkrJu3k6ZjsEBF5ECbt5ImY7BAREZGiqQRB8PiJxEtKSqBWq6HT6RASEiJ3OERERGQDW7+/WbNDREREisZkh8hAWWUVYrI2IyZrM8oqq+QOh8gh+H9OnobJDhERESkakx0iIiJSNCY7RBZwdWjyBPw/J0/AZIc8jrX+Cl8c+Vm8z9WhSan4f06eRtZkZ8+ePXj88ccRHR0NlUqFr776yui4IAiYOXMmoqKiEBAQgKSkJJw7d87onOvXryMtLQ0hISEIDQ1Feno6bt265cRSkDszTHwu/HqLq0OT4hXqbvP/nDyOrMlOaWkpunbtiiVLlpg9vnDhQixevBjLli3DgQMHEBQUhIEDB6K8/Ldq17S0NJw8eRLbtm3Dpk2bsGfPHowdO9ZZRSA3V1Ty2/8SV4cmT5B/lf/n5HlkXfV88ODBGDx4sNljgiDg7bffxquvvoonnngCAPDBBx8gIiICX331FYYPH47Tp09jy5YtOHToEO677z4AwDvvvINHH30Uf/vb3xAdHe20spD7MKzCf/ydveL9QD8frg5NihfbPIj/5+RxXLbPTn5+PrRaLZKSksR9arUaPXv2RG5uLgAgNzcXoaGhYqIDAElJSfDy8sKBAwcsPndFRQVKSkqMbuQZzFXh641Yvh9Duv6WIHN1aFIiroJOnshlkx2tVgsAiIiIMNofEREhHtNqtQgPDzc67uPjg6ZNm4rnmJOdnQ21Wi3eWrZsaefoyVWZq8LXqxGAjT9eFre5OjQpFVdBJ0/jssmOI02fPh06nU68Xbp0Se6QyEn0VfiWGCZCXB2aPAH/z8kTyNpnx5rIyEgAQFFREaKiosT9RUVF6Natm3jOlStXjB5XVVWF69evi483x9/fH/7+/vYPmlyevgp/xtcnzR73VqnwfdbDrNInRQv088HFBclyh0HkNC5bsxMbG4vIyEhs375d3FdSUoIDBw5Ao9EAADQaDYqLi3HkyBHxnB07dqCmpgY9e/Z0eszkHgyr8CckthPvs+8CeSqulUVKJ2vNzq1bt5CXlydu5+fn4+jRo2jatClatWqFSZMm4fXXX0f79u0RGxuLGTNmIDo6Gk8++SQA4N5778WgQYMwZswYLFu2DHfu3MH48eMxfPhwjsQimzyjaY3F2+/+D+Zk9kWbsGCZIyIiInuTNdk5fPgwHn74YXE7MzMTADBq1CisXr0aL730EkpLSzF27FgUFxejT58+2LJlCxo1+q2Nee3atRg/fjwSExPh5eWF1NRULF682OllIddVVlmFuJlbAQCn5gy0eB77LhDdXT6CST8pjUoQBAtjUzxHSUkJ1Go1dDodQkJC5A6H7Mw02Qn087HpGJGn+DD3otiPzUsFZKfEc4QWuQVbv7/5yU4exfRXKztqkqeztHzEQ/eEsf8aKYbLdlAmshcuekhkGZePIE/AZIcUjYseEllnbu4pLh9BSsNkhxSNv1qJrOPyEeQJmOyQovFXK1HduHwEKR2THVI0/molkoZTMJASceg5OPRc6QyHl++YwokDiYiUwtbvb9bskEfhr1YiIs/DeXZI8TiXDhGRZ2PNDhERESkakx0iIiJSNCY7pDhllVWIydqMmKzNKKuskjscIiKSGZMdUjStrlzuEIjcCn8skBIx2SHF4VpYRPbBHwukFEx2SFG4FhZRw/DHAikRkx2ShWFV+YVfb9ntebkWFlH9mfuxMH3DcYe8V4mcicmOG2hIG7qrtr876tcj18Iiqj9zPxYMt1nTQ+6KyY6baUgbuqu0vzuyqYlrYRHVn7kfC4bYLEzuismOTKTUuDSkFsSR7e/1rTVqaFNTXdflCs5E9WP6Y8Fc3mP6XnXV2mMiQ0x2XIC1Gpe62tCtfbg4s7OulFojezY1aXXltT5s9ctDXFyQzEU/iSQy/LHwydhekt6r+VdvMfEhl8Rkx0Hq+rVjWuPyYe5F8fyrt8rF+/vyrlptQ7eWZDi6s259a40a2tRkel3DbVdpqiNyV4Y/Fnq2aVbne9Xw/ff4O3vF++Z+iBDJhcmOE5h+AZurcTHc/iD3J/H+i+uP1apKNty2lmQ0tAbF2oiphtYa1bepydx1Z3792zY7UBLZl7X3qrn3ox5/iJArYbLjINZqPeoa8bB4e5543+S0WomPtSTD3jUodZVBSq1RfZuazF3XcJMdKInsy/S9avgjyFzNsx5/iJAr8ZE7ACWyVOvx0D1hiFIHiDUulj4kTAkA/jGiO5oF++NaaQXGr/vB6Lg+yTCXxIzUxCApLgIXr5Yhpnkg1AG+iMnaDADYMaWvxUSjPmWwVmtUVlmFuJlb67yuufNPzRkIAOJ2XX87a38PImoYwx9B+ppnS29Hcz9E9J8hRM7Emh0HqKvWw5YRD4a8VSokxDSBpm0zJLRuIrlpKkodAE3bZohSB9jcz0ZqGeqqNWrIqDDT6u/x/duJ91Wo/ffjvDpEjmH6I8jG32siTvBJcmHNjgPYUuthWOMS6OeF37+7z2xthWkSoU8yZvyvethLBcwaEgdN9g4ADautaUgZYpoHWkx0bLmuac3P3ryr4vlJi3ZjSNdocfsfO/IwfXBHdGkRipjmgcg5VWT09+C8OkSOYakZWV/zfOSn6/jbd2cB/PYjxPB0/hAhuTDZcQBzCYm5L+AodYC4z/R8/QdKTmbt5MU0ycg5VSQeS1q0G9kp8WY7/FqrrTEXmy1JlWEZLDVV2XJdw5qfxDd3G51bIwBfHb1stL1wyxl8n/UwotQBNiddRNQwln4EJcQ0EWuQUxNaGH028YcIuQImOw4ita+M1C9sfZJh79oaw4Rl84Te4v6czNq1LaZJlWlTlf54XdetT9W4abJkmHQRkWPY8kPO8L3IHyLkKthnx4Gk9pUxPN9WlmpNNNk7ag0Zt6WfjemcGW+kxuPigmQE+HlbHWpubSh6Xdc1V4a6sDqcSB4jNTHInd4fH4/phb1Z/eucNqI+n2t6hbrb2Hf+KkdXUoOxZscJpNS+SGWu1sRwdIRpDYy1GqdPx/ayGGddTVF1Hbf2C6+uMnipgCFdo8WmLFaHE8nLGTWpH+ZeNKpBstQ8T2QLJjtOIKWvjFSm1cqW5uExTKwMP6g+zL0onjv8/f21mpD0cdbVFGXuuJcKGLF8PwDjPj51lUH/wfbQPWFGydG0wR1ZHU7kASwtkzPti+MAbJu+wp6kTp1BrofNWE5gz7WgzDGsVn7nj90tJiymbOkro4+zrqYoc8cNR1DVNdzcXNW4afV3Q6rDicg12NI0VdfEq86eoNCRCyqTc7BmxwlsHZ3V0GvoOyzbOtlfXX1lTOOsq7OhueH0erY03bGTMZGy2dI0Vai7jWu3KqxOHurMCQod2Q1B//z5V0sR2zyIn38OxGTHSZw1KkFKYmWpaWrDXzQoq6wxG2ddCYn++L7ztaeR58zGRJ7LlqTBMBkyrAw3N0uzfiAGYL5pyVrTk5RmKXt0QzBMaPTPGds8qNbQfEf3S6pvYiW1Gc8VEzgmO07krJoLWxMrS4lR15ZNGhyD1OUkiEjZ6koazDWrewF454/d0aJJQK2JV80NxNAPptAnEjA5rk8kLE2TYUj/hR3k592gzzLTBE7/NLb0rzSnvolEQzp8S/l7/eenG+LEkq7UsZzJjkLZmlg5qsbJGU13ROQ+LP0ACvTzwr7zV3G9tLJ2Px0ATYP80bVlkzoHYmR9cdxqIjH9i+MI8vdByyYBkmqYzI0GfWlQB+RfLQUAs59phomSpX6R5lroqgUBRy7eQNNg88mMaVzTBnVEfAu1eK5pImQpDilNcVJr5Azpz+0Y2RilldWy1vSoBEGQuryJ4pSUlECtVkOn0yEkJETucBSlUHebI6iICID1JMLS8hL6mdKB3z5PzC2IbCtLC5d+PKYXNG2boVB3G70X7LDYvG+4JIa5mgtLNTlSYzMclapPWKwtK2SakJn+ba2VGbBcY7Tv/FX8cfmBWo/9x4juaBrsZzUuc3Hau6bH1u9v1uyQQ7HTMRHpWRvEIMC4Rsba7MzmBmLYytKoU2s1TNWCIPZjTPvnfnG/ac2FtZocc+pq1jKtrbL0fOaW1DHcrqvM5pqeDJMsc/Ogjf/4hzrjMhenszqWm2KyQ0RETmNtEIPhoqJ19TfMTonHyxtOoFoQ4PW/xxo+nQqAykpCpP8C91ap8HjXKDyxZN9vj4P5BUwt9TsyfKy1L35LNTeWaqvqavaqLy8VjMpsyDTJ8lIBv+/+O3z1w2Wjv7UtcVnqWC7HQBUmO0RE5HR1LSpal2H3tzKaeNTcyKaH7gnDkYs3MOGTHyw2S1mqYTJMhgxrmKzVKFmqQTEc4QqgVtN+Q2urbGGtzKYMQ6gRgK9+uCw+1lITouHf66VBHdClRah4HVcYqMJkh4iInM60dsY0qbD1OeqaB+yxrgEorayqdR39qFNLNUzvDK9dw2SuRqnGTFymiZLpCFdbZpK31IdJn3Qc+6UYC789I5bpye7RYu2Lue26ymyNvhlP36dJypQlrjJQhR2UwQ7KRERycdYgBkvXsdQh2bBjtKXnslRzYW2uMilx7jn7a60kzbBzr2mZ6tq2VmY9c02Cpn+PTw8VWI3LWpns/Rrb+v3NZAdMdoiIPJnUL297PdYWjkoUTOPWNz3ZkmQ5Mi6pPC7ZWbJkCf76179Cq9Wia9eueOedd/DAAw/Y9FgmO0REnq0hX96u8sUvlbW43aVMHpXsfPrpp3jmmWewbNky9OzZE2+//TbWr1+PM2fOIDw8vM7HM9khIiJyP7Z+fyti1fNFixZhzJgxGD16NOLi4rBs2TIEBgZi5cqVcodGREREMnP7ZKeyshJHjhxBUlKSuM/LywtJSUnIzc01+5iKigqUlJQY3YiIiEiZ3D7ZuXr1KqqrqxEREWG0PyIiAlqt1uxjsrOzoVarxVvLli2dESoRERHJwO2TnfqYPn06dDqdeLt06ZLcIREREZGDuP2kgs2bN4e3tzeKioqM9hcVFSEyMtLsY/z9/eHv7++M8IiIiEhmbl+z4+fnh4SEBGzfvl3cV1NTg+3bt0Oj0cgYGREREbkCt6/ZAYDMzEyMGjUK9913Hx544AG8/fbbKC0txejRo+UOjYiIiGSmiGRn2LBh+PXXXzFz5kxotVp069YNW7ZsqdVpmYiIiDyPIiYVbChOKkhEROR+PGpSQSIiIiJLmOwQERGRojHZISIiIkVjskNERESKpojRWA2l76PNNbKIiIjch/57u66xVkx2ANy8eRMAuEYWERGRG7p58ybUarXF4xx6jrszLl++fBmNGzeGSqVq8POVlJSgZcuWuHTpkmKHsrOMysAyuj+llw9gGZXCEWUUBAE3b95EdHQ0vLws98xhzQ4ALy8vtGjRwu7PGxISoth/Wj2WURlYRven9PIBLKNS2LuM1mp09NhBmYiIiBSNyQ4REREpGpMdB/D398drr70Gf39/uUNxGJZRGVhG96f08gEso1LIWUZ2UCYiIiJFY80OERERKRqTHSIiIlI0JjtERESkaEx2iIiISNGY7NjJggULoFKpMGnSJHFfeXk5MjIy0KxZMwQHByM1NRVFRUXyBdlA5srYr18/qFQqo9uf//xn+YKUaNasWbXi79ixo3hcCa9hXWV099dQ75dffsHTTz+NZs2aISAgAPHx8Th8+LB4XBAEzJw5E1FRUQgICEBSUhLOnTsnY8TS1VXGZ599ttZrOWjQIBkjliYmJqZW/CqVChkZGQCU8X6sq4zu/n6srq7GjBkzEBsbi4CAALRt2xZz5841WrtKjvciZ1C2g0OHDuG9995Dly5djPZPnjwZmzdvxvr166FWqzF+/HikpKRg7969MkVaf5bKCABjxozBnDlzxO3AwEBnhtZgnTp1Qk5Ojrjt4/Pb20Ipr6G1MgLu/xreuHEDvXv3xsMPP4xvv/0WYWFhOHfuHJo0aSKes3DhQixevBhr1qxBbGwsZsyYgYEDB+LUqVNo1KiRjNHbxpYyAsCgQYOwatUqcdudhjIfOnQI1dXV4vaJEyfwyCOPYOjQoQCU8X6sq4yAe78f33jjDSxduhRr1qxBp06dcPjwYYwePRpqtRoTJkwAINN7UaAGuXnzptC+fXth27ZtQt++fYWJEycKgiAIxcXFgq+vr7B+/Xrx3NOnTwsAhNzcXJmirR9LZRQEoda2u3nttdeErl27mj2mlNfQWhkFwf1fQ0EQhGnTpgl9+vSxeLympkaIjIwU/vrXv4r7iouLBX9/f+Hjjz92RogNVlcZBUEQRo0aJTzxxBPOCcgJJk6cKLRt21aoqalRzPvRlGEZBcH934/JycnCc889Z7QvJSVFSEtLEwRBvvcim7EaKCMjA8nJyUhKSjLaf+TIEdy5c8dof8eOHdGqVSvk5uY6O8wGsVRGvbVr16J58+bo3Lkzpk+fjrKyMidH2DDnzp1DdHQ02rRpg7S0NBQUFABQ1mtoqYx67v4abty4Effddx+GDh2K8PBwdO/eHcuXLxeP5+fnQ6vVGr2WarUaPXv2dJvXsq4y6u3atQvh4eHo0KEDxo0bh2vXrskQbcNVVlbio48+wnPPPQeVSqWo96OeaRn13Pn9+H//93/Yvn07zp49CwD48ccf8f3332Pw4MEA5HsvshmrAT755BP85z//waFDh2od02q18PPzQ2hoqNH+iIgIaLVaJ0XYcNbKCAB//OMf0bp1a0RHR+PYsWOYNm0azpw5gw0bNjg50vrp2bMnVq9ejQ4dOqCwsBCzZ8/Ggw8+iBMnTijmNbRWxsaNG7v9awgAFy5cwNKlS5GZmYmXX34Zhw4dwoQJE+Dn54dRo0aJr1dERITR49zptayrjMDdJqyUlBTExsbi/PnzePnllzF48GDk5ubC29tb5hJI89VXX6G4uBjPPvssAOV8phoyLSPg/p+pWVlZKCkpQceOHeHt7Y3q6mrMmzcPaWlpACDbe5HJTj1dunQJEydOxLZt29yivb8+bCnj2LFjxfvx8fGIiopCYmIizp8/j7Zt2zor1HrT/9oAgC5duqBnz55o3bo1PvvsMwQEBMgYmf1YK2N6errbv4YAUFNTg/vuuw/z588HAHTv3h0nTpzAsmXLxETA3dlSxuHDh4vnx8fHo0uXLmjbti127dqFxMREWeKurxUrVmDw4MGIjo6WOxSHMVdGd38/fvbZZ1i7di3WrVuHTp064ejRo5g0aRKio6NlfS+yGauejhw5gitXrqBHjx7w8fGBj48Pdu/ejcWLF8PHxwcRERGorKxEcXGx0eOKiooQGRkpT9AS1VVGw052ej179gQA5OXlOTtcuwgNDcU999yDvLw8REZGuv1raI5hGc1xx9cwKioKcXFxRvvuvfdesblO/3qZjtxxp9eyrjKa06ZNGzRv3tytXksA+Omnn5CTk4M//elP4j6lvR/NldEcd3s/Tp06FVlZWRg+fDji4+MxcuRITJ48GdnZ2QDkey8y2amnxMREHD9+HEePHhVv9913H9LS0sT7vr6+2L59u/iYM2fOoKCgABqNRsbIbVdXGc1Vix89ehTA3Q9md3Tr1i2cP38eUVFRSEhIcPvX0BzDMprjjq9h7969cebMGaN9Z8+eRevWrQEAsbGxiIyMNHotS0pKcODAAbd5Lesqozk///wzrl275lavJQCsWrUK4eHhSE5OFvcp7f1orozmuNv7saysDF5exqmFt7c3ampqAMj4XnRY12cPZNqL/s9//rPQqlUrYceOHcLhw4cFjUYjaDQa+QK0A8My5uXlCXPmzBEOHz4s5OfnC19//bXQpk0b4aGHHpI3SAmmTJki7Nq1S8jPzxf27t0rJCUlCc2bNxeuXLkiCIIyXkNrZVTCaygIgnDw4EHBx8dHmDdvnnDu3Dlh7dq1QmBgoPDRRx+J5yxYsEAIDQ0Vvv76a+HYsWPCE088IcTGxgq3b9+WMXLb1VXGmzdvCi+++KKQm5sr5OfnCzk5OUKPHj2E9u3bC+Xl5TJHb7vq6mqhVatWwrRp02odU8L7URAsl1EJ78dRo0YJv/vd74RNmzYJ+fn5woYNG4TmzZsLL730kniOHO9FJjt2ZJrs3L59W/jLX/4iNGnSRAgMDBR+//vfC4WFhfIFaAeGZSwoKBAeeughoWnTpoK/v7/Qrl07YerUqYJOp5M3SAmGDRsmREVFCX5+fsLvfvc7YdiwYUJeXp54XAmvobUyKuE11Pvmm2+Ezp07C/7+/kLHjh2F999/3+h4TU2NMGPGDCEiIkLw9/cXEhMThTNnzsgUbf1YK2NZWZkwYMAAISwsTPD19RVat24tjBkzRtBqtTJGLN3WrVsFAGZfGyW8HwXBchmV8H4sKSkRJk6cKLRq1Upo1KiR0KZNG+GVV14RKioqxHPkeC+qBMFgWkMiIiIihWGfHSIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiAP369YNKpYJKpRLXI9q1axdUKlWtxSftbdasWeK13377bYdei8gTMdkhIsmeffZZ8cvZ8DZo0CC5Q2uQMWPGoLCwEJ07d27wcxUVFcHX1xeffPKJ2ePp6eno0aMHAODFF19EYWEhWrRo0eDrElFtTHaIqF4GDRqEwsJCo9vHH3/s0GtWVlY69PkDAwMRGRkJHx+fBj9XREQEkpOTsXLlylrHSktL8dlnnyE9PR0AEBwcjMjISHh7ezf4ukRUG5MdIqoXf39/REZGGt2aNGkiHlepVPjnP/+J3//+9wgMDET79u2xceNGo+c4ceIEBg8ejODgYERERGDkyJG4evWqeLxfv34YP348Jk2ahObNm2PgwIEAgI0bN6J9+/Zo1KgRHn74YaxZs0ZsbiotLUVISAg+//xzo2t99dVXCAoKws2bN+td5rKyMgwePBi9e/cWm7b++c9/4t5770WjRo3QsWNHvPvuu+L56enp2L59OwoKCoyeZ/369aiqqkJaWlq9YyEi2zHZISKHmT17Np566ikcO3YMjz76KNLS0nD9+nUAQHFxMfr374/u3bvj8OHD2LJlC4qKivDUU08ZPceaNWvg5+eHvXv3YtmyZcjPz8cf/vAHPPnkk/jxxx/x/PPP45VXXhHPDwoKwvDhw7Fq1Sqj51m1ahX+8Ic/oHHjxvUqS3FxMR555BHU1NRg27ZtCA0Nxdq1azFz5kzMmzcPp0+fxvz58zFjxgysWbMGAPDoo48iIiICq1evrhVLSkoKQkND6xULEUnk0DXViUiRRo0aJXh7ewtBQUFGt3nz5onnABBeffVVcfvWrVsCAOHbb78VBEEQ5s6dKwwYMMDoeS9duiQAEM6cOSMIgiD07dtX6N69u9E506ZNEzp37my075VXXhEACDdu3BAEQRAOHDggeHt7C5cvXxYEQRCKiooEHx8fYdeuXRbL1LdvX2HixIlG+3bu3CkAEE6fPi106dJFSE1NFSoqKsTjbdu2FdatW2f0mLlz5woajUbczsrKEmJjY4WamhpBEAQhLy9PUKlUQk5OTq0YWrduLbz11lsWYySi+mHNDhHVy8MPP4yjR48a3f785z8bndOlSxfxflBQEEJCQnDlyhUAwI8//oidO3ciODhYvHXs2BEAcP78efFxCQkJRs955swZ3H///Ub7HnjggVrbnTp1EmtYPvroI7Ru3RoPPfRQvcr6yCOPoF27dvj000/h5+cH4G6/m/PnzyM9Pd2oDK+//rpR/M899xzy8/Oxc+dOAHdrdWJiYtC/f/96xUJE0jW8Fx4ReaSgoCC0a9fO6jm+vr5G2yqVCjU1NQCAW7du4fHHH8cbb7xR63FRUVFG16mPP/3pT1iyZAmysrKwatUqjB49GiqVql7PlZycjC+++AKnTp1CfHy8GD8ALF++HD179jQ637Cjcfv27fHggw9i1apV6NevHz744AOMGTOm3rEQkXRMdohIFj169MAXX3yBmJgYSaOfOnTogH/9619G+w4dOlTrvKeffhovvfQSFi9ejFOnTmHUqFH1jnXBggUIDg5GYmIidu3ahbi4OERERCA6OhoXLlyos6Nxeno6xo0bhyFDhuCXX37Bs88+W+9YiEg6NmMRUb1UVFRAq9Ua3QxHUtUlIyMD169fx4gRI3Do0CGcP38eW7duxejRo1FdXW3xcc8//zz++9//Ytq0aTh79iw+++wzsQOwYW1JkyZNkJKSgqlTp2LAgAENnsPmb3/7G9LS0tC/f3/897//BXC3A3Z2djYWL16Ms2fP4vjx41i1ahUWLVpk9NihQ4fC19cXzz//PAYMGICWLVs2KBYikobJDhHVy5YtWxAVFWV069Onj82Pj46Oxt69e1FdXY0BAwYgPj4ekyZNQmhoKLy8LH80xcbG4vPPP8eGDRvQpUsXLF26VByN5e/vb3Rueno6Kisr8dxzz9WvkCbeeustPPXUU+jfvz/Onj2LP/3pT/jnP/+JVatWIT4+Hn379sXq1asRGxtr9LjAwEAMHz4cN27csFssRGQ7lSAIgtxBEBE1xLx587Bs2TJcunTJaP+HH36IyZMn4/Lly2LHYkv69euHbt26ybpcQ0xMDCZNmoRJkybJFgORErFmh4jczrvvvotDhw7hwoUL+PDDD/HXv/7VqE9OWVkZzp8/jwULFuD555+vM9ExfN7g4GAcP37cUaGbNX/+fAQHB9eafJCI7IM1O0TkdiZPnoxPP/0U169fR6tWrTBy5EhMnz5d7Og8a9YszJs3Dw899BC+/vprBAcH1/mcv/zyC27fvg0AaNWqlc0Jkj1cv35dnGwxLCwMarXaadcm8gRMdoiIiEjR2IxFREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJF+38FT5u6kO0OUQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQPUlEQVR4nO3de1xUdf4/8NdwlYsMXoCBFQFNMxTvprOampCmVLawpS6pGavl4hXXW6mZpqC7Xda+pl0MbdMsy8q0NDUvvxSvq3ldFUOhZDBvg4qAwPn94c5xZhhgzjDDmTnzej4e83hwLnPm/XE8M+/5XFWCIAggIiIiUigPuQMgIiIiciQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBTNS+4AnEFlZSUuXbqEhg0bQqVSyR0OERERWUEQBNy8eRMRERHw8Ki+/obJDoBLly4hMjJS7jCIiIjIBvn5+WjWrFm1x5nsAGjYsCGAe/9YQUFBMkdDRERE1igqKkJkZKT4PV4dJjuA2HQVFBTEZIeIiMjF1NYFhR2UiYiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSJyK8Vl5YiesQnRMzahuKxc7nCIqB4w2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiMsJJB4mUh8kOEbktnb5E7hCIqB4w2SEit/Ll4V/FvxPe3IXPDubJGA0R1QcmO0TkNgr0d/DqhpPidqUAvLz+BAr0d2SMiogcjckOEbmN3Cu3USmY7qsQBFy4UixPQERUL5jsEJHbiGkaAA+V6T5PlQrRTf3lCYiI6gWTHSJyG+FqP7z2VFtx20MFLExqh3C1n4xREZGjMdkhIreS3KWZ+Pe29D4Y0q15jedzKDqR62OyQ0SKY22ColE3qMeoiEguTHaIiIhI0ZjsEBFVg5MOEikDkx0iIiPmkw4abxORa2KyQ0T0P5YmHTTeJiLXxGSHiOh/LE06aL5NRK6HyQ4RKZ61o7MsTTpovk1Erkf2ZOe3337Dc889hyZNmsDPzw9xcXE4dOiQeFwQBMyZMwfh4eHw8/NDQkICzp07Z3KNa9euISUlBUFBQQgODkZqaipu3bpV30UhIhdnadJB420ick2yJjvXr19Hz5494e3tje+//x6nTp3CG2+8gUaNGonnLF68GEuWLMHy5cuxf/9+BAQEYMCAASgpuT9KIiUlBSdPnsTWrVuxceNG7N69G2PGjJGjSETk4swnHTTeJiLX5CXniy9atAiRkZHIysoS98XExIh/C4KAt99+G7NmzcLgwYMBAB9//DHCwsLw9ddfY+jQoTh9+jQ2b96MgwcPomvXrgCAd955B4MGDcI///lPREREVHnd0tJSlJaWittFRUWOKiIRORl/Hy9cyEy06lzzSQd1+hK0CAl0RFhE5ECy1uxs2LABXbt2xTPPPIPQ0FB06tQJH3zwgXg8NzcXOp0OCQkJ4j61Wo3u3bsjOzsbAJCdnY3g4GAx0QGAhIQEeHh4YP/+/RZfNyMjA2q1WnxERkY6qIREVB9q6pNT17lyzIeif3Ywr07XI6L6J2uy88svv2DZsmVo1aoVtmzZgrFjx2LChAlYtWoVAECn0wEAwsLCTJ4XFhYmHtPpdAgNDTU57uXlhcaNG4vnmJs5cyb0er34yM/Pt3fRiEhG9porR6cvqTIU/eX1J1Cgv1PnGImo/sjajFVZWYmuXbti4cKFAIBOnTrhxIkTWL58OUaOHOmw1/X19YWvr6/Drk9E8rGUoNg6V87Fq1WHolcIAi5cKeZK6UQuRNaanfDwcMTGxprse+ihh5CXd6+aWKPRAAAKCwtNziksLBSPaTQaXL582eR4eXk5rl27Jp5DRO7DUoJi61w5UU2qDkX3VKkQ3dTftgsSkSxkTXZ69uyJM2fOmOw7e/YsoqKiANzrrKzRaLB9+3bxeFFREfbv3w+tVgsA0Gq1uHHjBg4fPiye8+OPP6KyshLdu3evh1IQkTOxlKDYOleORt2gylD0hUntWKtD5GJkTXYmT56Mffv2YeHChcjJycGaNWvw/vvvIy0tDQCgUqkwadIkvP7669iwYQOOHz+OESNGICIiAk8//TSAezVBjz/+OEaPHo0DBw5gz549GDduHIYOHWpxJBYRKZulBKUuc+WYD0Uf0q15neIjovona7LTrVs3fPXVV/j000/Rrl07zJ8/H2+//TZSUlLEc6ZNm4bx48djzJgx6NatG27duoXNmzejQYP7Q0JXr16NNm3aID4+HoMGDUKvXr3w/vvvy1EkInICNc2VU5fRWeZD0YnINcjaQRkAnnjiCTzxxBPVHlepVJg3bx7mzZtX7TmNGzfGmjVrHBEeETmh4rJyxM7ZAgA4NW9Ajedq1A2qjM7KSIpjDQ2RG5E92SEicqTqho/3bh1ise+N+aSDNa2lRUSuQfa1sYiIHKmm4eNE5B6Y7BCRopj3yeHwcSJiskNELq+mGZM5fJyImOwQkUuzZsZkDh8ncm9MdojIpUmdMZnDx4ncD0djEZFLM/TJMU5wzLfrwnx0FhG5HtbsEJFLs/eMyUSkPKzZISKXptOXILlLM8z+5l4/nW3pfdAiJBDDtdHiOTXNlWM+QaG/Dz8WiZSGNTtE5HJqG31FRGSMyQ4RuZQC/Z1aR18RERljskNELiX3irTRV/ZUXFaO6BmbED1jE5eRIHIhTHaIyKXENK06I7L5NhGRMSY7RORSwtV+kkdfGYaPX8hMZAdkIjfEZIeIXI75jMjG20RE5pjsEJFL4+grIqoNkx0iIiJSNDZeE5HLs9eSDjp9CVqEBNohIiJyJqzZISK3Zj5B4WcH82SMhogcgckOEbktSxMUvrz+BAr0d2SMiojsjckOEbktSxMUVggCLlwprvW5On2Jg6IiIntjskNEbsvSBIWeKhWim/pbPJ9NXkSuickOEbktSxMULkxqh3C1X5Vz2eRF5LqY7BCRWzOfoHBIt+YWz6tLkxcRyYtDz4nI5dhrqLm5miYoNDR5GSc8Hipg2Af7AACn5g3gUhREToo1O0REVrBlTS4icg5MdojI6RWXlSN6xiZEz9iE4rJy2eLgmlxEronJDhGRDbgmF5HrYLJDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjROCkFEbs1Rc/YQkfNgzQ4RkR1wYVAi58Vkh4jIRlwYlMg1sBmLiFyKTl+CFiGBsry2cZNXdQuD9m4dYnEhUSKSD2t2iMjpOWMNChcGJXIdTHaIyKlVV4NSoL8jY1T3FwY15qlSIbqpvzwBEVG1mOwQkVNz1hoUSwuDLkxqxyYsIifEZIeInJoz16CYLww6pFtzGaMhouow2SEip+YqNShcGJTIecma7MydOxcqlcrk0aZNG/F4SUkJ0tLS0KRJEwQGBiI5ORmFhYUm18jLy0NiYiL8/f0RGhqKqVOnory8vL6LQkQOxBoUIqoL2Yeet23bFtu2bRO3vbzuhzR58mRs2rQJ69atg1qtxrhx45CUlIQ9e/YAACoqKpCYmAiNRoO9e/eioKAAI0aMgLe3NxYuXFjvZSEix2MNChFJJXuy4+XlBY1GU2W/Xq/HihUrsGbNGvTr1w8AkJWVhYceegj79u1Djx498MMPP+DUqVPYtm0bwsLC0LFjR8yfPx/Tp0/H3Llz4ePjY/E1S0tLUVpaKm4XFRU5pnBEREQkO9n77Jw7dw4RERFo0aIFUlJSkJd3b/6Mw4cP4+7du0hISBDPbdOmDZo3b47s7GwAQHZ2NuLi4hAWFiaeM2DAABQVFeHkyZOoTkZGBtRqtfiIjIx0UOmIiIhIbrImO927d8fKlSuxefNmLFu2DLm5uXjkkUdw8+ZN6HQ6+Pj4IDg42OQ5YWFh0Ol0AACdTmeS6BiOG45VZ+bMmdDr9eIjPz/fvgUjIiIipyFrM9bAgQPFv9u3b4/u3bsjKioKn3/+Ofz8HDfSwtfXF76+vg67PhERETkPm5Kdc+fOYceOHbh8+TIqKytNjs2ZM8fmYIKDg9G6dWvk5OTgscceQ1lZGW7cuGFSu1NYWCj28dFoNDhw4IDJNQyjtSz1AyIisifjtbKIyHlJTnY++OADjB07Fk2bNoVGo4FKdX+2L5VKVadk59atWzh//jyGDx+OLl26wNvbG9u3b0dycjIA4MyZM8jLy4NWqwUAaLVaLFiwAJcvX0ZoaCgAYOvWrQgKCkJsbKzNcRAREZFySE52Xn/9dSxYsADTp0+v84v//e9/x5NPPomoqChcunQJr776Kjw9PTFs2DCo1WqkpqYiPT0djRs3RlBQEMaPHw+tVosePXoAAPr374/Y2FgMHz4cixcvhk6nw6xZs5CWlsZmKiIiIgJgQ7Jz/fp1PPPMM3Z58V9//RXDhg3D1atXERISgl69emHfvn0ICQkBALz11lvw8PBAcnIySktLMWDAALz77rvi8z09PbFx40aMHTsWWq0WAQEBGDlyJObNm2eX+IhIPsVl5YidswUAcGreADYXEZHNVIIgCLWfdl9qaiq6deuGl156yVEx1buioiKo1Wro9XoEBQXJHQ6RWzJPbgCYbPv7yD4tGBE5GWu/vyV/ejzwwAOYPXs29u3bh7i4OHh7e5scnzBhgvRoiYiIiBxEcrLz/vvvIzAwELt27cKuXbtMjqlUKiY7RERE5FQkJzu5ubmOiIOIiIjIIWRfLoKIiIjIkayq2UlPT8f8+fMREBCA9PT0Gs9988037RIYERERkT1YlewcOXIEd+/eFf+ujvEEg0RERETOwKpkZ8eOHRb/JiIiInJ2deqzk5+fzxXDicjhdPoSuUMgIhcmOdkpLy/H7NmzoVarER0djejoaKjVasyaNUts6iIiqgudvgRfHv5V3E54cxc+O5gnY0RE5MokDz0fP3481q9fj8WLF4sLcmZnZ2Pu3Lm4evUqli1bZvcgiUj5jJOb+DdM5/CqFICX159A79YhCFf71XdoROTiJCc7a9aswdq1azFw4EBxX/v27REZGYlhw4Yx2SEiyQr0d/DqhpPitqU1bCoEAReuFDPZISLJJDdj+fr6Ijo6usr+mJgY+Pj42CMmInIzuVduo7KWVfo8VSpEN/Wvn4CISFEkJzvjxo3D/PnzUVpaKu4rLS3FggULMG7cOLsGR0TuIaZpADzMZq4w3vRQAQuT2rFWh4hsYlUzVlJSksn2tm3b0KxZM3To0AEA8PPPP6OsrAzx8fH2j5CIFMl8lfPXnmqL2d/ca8ryUMFke1t6H7QICZQtVmuZl4krtRM5B6vuRLVabbKdnJxssh0ZGWm/iIjILSV3aWaS3GjUDcRtjbqBnKHZjMkPkXOw6s7LyspydBxERCJXTW6IyDlxIVAiIiJSNCY7REREpGhMdoiIiEjRmOwQERGRoklKdu7evYv4+HicO3fOUfEQERER2ZWkcZDe3t44duyYo2IhIjel05dUGYHl7+OFC5mJMkVUd5bKRETykNyM9dxzz2HFihWOiIWI3Ij5qubf/nwJFzITcSEz0WXnozEvk/G2Tl8iR0hEBEAlCEItK9KYGj9+PD7++GO0atUKXbp0QUBAgMnxN998064B1oeioiKo1Wro9XoEBQXJHQ6R4hXo76Bn5o8m62F5qlT4acajLrskhKUyqXB/UVMPFZCRFIch3ZrLER6RIln7/S3559OJEyfQuXNnAMDZs2dNjqlUKktPISIyYWnhT1df1dxSmYw3KwXg5fUn0Lt1iMuWkchVSU52duzY4Yg4iMiNGBb+NK/ZceVVzS2VyZyrJ3RErsrmoec5OTnYsmUL7ty5AwCQ2BpGRG4sXO2H155qK24rYVVz8zKpYLpyO+D6CR2Rq5Kc7Fy9ehXx8fFo3bo1Bg0ahIKCAgBAamoqpkyZYvcAiUiZkrs0E//elt5HEX1ZjMu0fUofzBusrISOyFVJTnYmT54Mb29v5OXlwd///i+UIUOGYPPmzXYNjojcgxKHaGvUDRSZ0BG5Isl9dn744Qds2bIFzZo1M9nfqlUrXLx40W6BEREpiRITOiJXIblm5/bt2yY1OgbXrl2Dr6+vXYIiIlPFZeWInrEJ0TM2obisXO5wiIhciuRk55FHHsHHH38sbqtUKlRWVmLx4sV49NFH7RocESkHEzYikovkZqzFixcjPj4ehw4dQllZGaZNm4aTJ0/i2rVr2LNnjyNiJCIiIrKZ5Jqddu3a4ezZs+jVqxcGDx6M27dvIykpCUeOHEHLli0dESMRERGRzWxagEatVuOVV16xdyxE5EZcfaFPS8zLxOY6IudgU7Jz/fp1rFixAqdPnwYAxMbGYtSoUWjcuLFdgyMiIiKqK8nNWLt370Z0dDSWLFmC69ev4/r161iyZAliYmKwe/duR8RIROSSDDU9rrySO5ESSL770tLSMGTIECxbtgyenp4AgIqKCvztb39DWloajh8/bvcgiYiIiGwluWYnJycHU6ZMERMdAPD09ER6ejpycnLsGhwRVaXTl8gdAtmIw++J5CE52encubPYV8fY6dOn0aFDB7sERUSmvjz8q/h3wpu78NnBPBmjqTsmbERUnyQ3Y02YMAETJ05ETk4OevToAQDYt28fli5diszMTBw7dkw8t3379vaLlMhNFejv4NUNJ8XtSgF4ef0J9G4d4lKLSponbBlJcVwriojqheSanWHDhiE/Px/Tpk1D79690bt3b0ybNg0XL17EsGHD0KlTJ3Ts2BGdOnWSdN3MzEyoVCpMmjRJ3FdSUoK0tDQ0adIEgYGBSE5ORmFhocnz8vLykJiYCH9/f4SGhmLq1KkoL2f1MClH7pXbqBRM91UIAi5cKZYnIBtUl7AV6O/IGBURuQvJNTu5ubl2D+LgwYN47733qtQETZ48GZs2bcK6deugVqsxbtw4JCUliTM1V1RUIDExERqNBnv37kVBQQFGjBgBb29vLFy40O5xEskhpmkAPFQwSXg8VSpEN626Rp2zqilhc6XaKSJyTZKTnaioKLsGcOvWLaSkpOCDDz7A66+/Lu7X6/VYsWIF1qxZg379+gEAsrKy8NBDD2Hfvn3o0aMHfvjhB5w6dQrbtm1DWFgYOnbsiPnz52P69OmYO3cufHx8LL5maWkpSktLxe2ioiK7lonInsLVfnjtqbaY/c29mhEPFbAwqZ1LJQlKSNiIyHVJbsayt7S0NCQmJiIhIcFk/+HDh3H37l2T/W3atEHz5s2RnZ0NAMjOzkZcXBzCwsLEcwYMGICioiKcPHkS1cnIyIBarRYfkZGRdi4VkX0ld2km/r0tvY/L9XUxJGwGrpiwEZHrkjXZWbt2Lf7zn/8gIyOjyjGdTgcfHx8EBweb7A8LC4NOpxPPMU50DMcNx6ozc+ZM6PV68ZGfn1/HkhDVH426gdwh2MTVEzZ744g0ovojW7KTn5+PiRMnYvXq1WjQoH4/vH19fREUFGTyIHIlrj5fi6smbHWltCkEiFyFbMnO4cOHcfnyZXTu3BleXl7w8vLCrl27sGTJEnh5eSEsLAxlZWW4ceOGyfMKCwuh0WgAABqNpsroLMO24RwiImfAEWlE8pGc7OTn5+PXX+//Ojlw4AAmTZqE999/X9J14uPjcfz4cRw9elR8dO3aFSkpKeLf3t7e2L59u/icM2fOIC8vD1qtFgCg1Wpx/PhxXL58WTxn69atCAoKQmxsrNSiERE5jBKmECByVZJHY/3lL3/BmDFjMHz4cOh0Ojz22GNo27YtVq9eDZ1Ohzlz5lh1nYYNG6Jdu3Ym+wICAtCkSRNxf2pqKtLT09G4cWMEBQVh/Pjx0Gq14mSG/fv3R2xsLIYPH47FixdDp9Nh1qxZSEtLg6+vr9SiERE5DEekEclHcs3OiRMn8PDDDwMAPv/8c7Rr1w579+7F6tWrsXLlSrsG99Zbb+GJJ55AcnIyevfuDY1Gg/Xr14vHPT09sXHjRnh6ekKr1eK5557DiBEjMG/ePLvGQeTK5Orf4+r9iuyNI9KI5CO5Zufu3btircm2bdvw1FNPAbg3LLygoKBOwezcudNku0GDBli6dCmWLl1a7XOioqLw3Xff1el1iZydv48XLmQmits1JQ/FZeWInbMFAHBq3gCHx0bWS+7STJwvaVt6H7QICZQ5IiL3IDnZadu2LZYvX47ExERs3boV8+fPBwBcunQJTZo0sXuARKQM5gmbu3PXEWlEcpDcjLVo0SK899576Nu3L4YNGyaudL5hwwaxeYuI6g/nayEiqpnkmp2+ffviypUrKCoqQqNGjcT9Y8aMQUBAgF2DIyLLuII4EZH1JNfs9OvXDzdv3jRJdACgcePGGDJkiN0CI3JnNXXu5XwtRETSSE52du7cibKysir7S0pK8P/+3/+zS1BEVD3O10JEJI3VzVjHjh0T/z516pTJ2lMVFRXYvHkz/vCHP9g3OiKqoi7ztej0JQ4dAWQ8EuzQrPh6e10ioppYnex07NgRKpUKKpUK/fr1q3Lcz88P77zzjl2DI6KqDPO1GIYw1zRfi05fgj05V8Tt+uzf8/WRS7K8LhGROauTndzcXAiCgBYtWuDAgQMICQkRj/n4+CA0NBSenp4OCZKITNU0X4tx5+X4N3aZPM/Qv6d36xCHT2a38LvTsryuM+PweyJ5WJ3sREVFAQAqKysdFgwRSWc8X4t552XBwvmG/j2OTjqq61fkzskOEclD8tBzADh37hx27NiBy5cvV0l+rF0bi4jsx7ivTG3qaz0mrgNFRM5CcrLzwQcfYOzYsWjatCk0Gg1UKpV4TKVSMdkhsjOpnXvNkwwV7tfw1LYek/lSE/4+Nv0eAgC8POghvL7ptFWvS0TkSJKHnr/++utYsGABdDodjh49iiNHjoiP//znP46IkcjtmE8a+NnBPKuf+/Kgh8S/PVTAvMH3F5/clt6n3joJP90pQpbXJSIyJznZuX79Op555hlHxEJEqPukgeZJRnKXZuJ2fa7HVFh0fxkLrgNFRHKSnOw888wz+OGHHxwRCxHBvpMG1neSYVwj9eQ7e+r1tYmIqiO5Qf6BBx7A7NmzsW/fPsTFxcHb29vk+IQJE+wWHJE7smbSQPMhzOZLSsjBUo0UEZEzkJzsvP/++wgMDMSuXbuwa5fpHB4qlYrJDlEdSZk00JlYqpEiInIGkpOd3NxcR8RBREZqmjSwNsZ9ZeqTpRopIiJnILnPDhHVL2v63Tiir4xOLy1pMtRIGXioajiZiKgeSa7ZeeGFF2o8/tFHH9kcDBFJV1tfGSlLFJgPeZe6nlVdaqSIiBxFcrJz/fp1k+27d+/ixIkTuHHjhsUFQonIsarrK/Pp6B4WJwWsbuLA6oa827qeFYebE5GzkJzsfPXVV1X2VVZWYuzYsWjZsqVdgiIi61kzessaNQ15d/bO0URENbFLnx0PDw+kp6fjrbfessfliEgCS31lbBm9ZUiajJknTcVl5YiesQnRMzY5xXB3IiJr2K2D8vnz51Fezg8/IjkYz5Js69IM9kqaiIicjeRmrPT0dJNtQRBQUFCATZs2YeTIkXYLjMidSelUbK4ufWXYwZiIlEhysnPkyBGTbQ8PD4SEhOCNN96odaQWEbkOdjAmIqWQnOzs2LHDEXEQubXqRki5mrrUSBEROYrNn6i///47zpw5AwB48MEHERISYregiKh+6PQlbKoiIsWT3EH59u3beOGFFxAeHo7evXujd+/eiIiIQGpqKoqLpa/KTET1y3ziwM8O5tl0HZ2+hKOziMglSE520tPTsWvXLnz77be4ceMGbty4gW+++Qa7du3ClClTHBEjEdlJdRMHFujvWPV880TJeJuIyFlJbsb68ssv8cUXX6Bv377ivkGDBsHPzw/PPvssli1bZs/4iMgK1vaVqcvEgZYSJeNtIiJnJTnZKS4uRlhYWJX9oaGhbMYicnK1zbZcU9JkKVHiCudE5AokN2NptVq8+uqrKCm5vyLynTt38Nprr0Gr1do1OCJ3JHW1cSnqMnGgpRmWubI5EbkCycnOv/71L+zZswfNmjVDfHw84uPjERkZib179+Jf//qXI2IkUjx7dRq2hq2zLVtKlIy3SRp27iaqP5KTnXbt2uHcuXPIyMhAx44d0bFjR2RmZuLcuXNo25YffERS1bXTcF1InTjQPFEy3nZkjRQRUV3YNM+Ov78/Ro8ebe9YiNySq642rlE3qFIjlZEUZ9O6XEREjiS5ZicjIwMfffRRlf0fffQRFi1aZJegiNyJNauNOyOdvkS2GikiIikkJzvvvfce2rRpU2V/27ZtsXz5crsEReRO5F5t3Na+IxevVl8jRUTkTCQnOzqdDuHh4VX2h4SEoKCgwC5BEbkbWzsNyymqiWvWSBGR+5Gc7ERGRmLPnj1V9u/ZswcRERF2CYrIHVRXo+Lo1cYNc+lcyEys04KjGnUDWWuklISdu4kcS3KyM3r0aEyaNAlZWVm4ePEiLl68iI8++giTJ09mp2UiN+OKNVLOoj6nGyByd5J/1k2dOhVXr17F3/72N5SVlQEAGjRogOnTp2PmzJl2D5CI5FNcVo7YOVsAAKfmDagyw3J91kgpSXXTDfRuHcKaMSIHkFyzo1KpsGjRIvz+++/Yt28ffv75Z1y7dg1z5syR/OLLli1D+/btERQUhKCgIGi1Wnz//ffi8ZKSEqSlpaFJkyYIDAxEcnIyCgsLTa6Rl5eHxMRE+Pv7IzQ0FFOnTkV5OSfoIiLnVdN0A0Rkf5KTHYPAwEB069YN7dq1g6+vr03XaNasGTIzM3H48GEcOnQI/fr1w+DBg3Hy5L1fPJMnT8a3336LdevWYdeuXbh06RKSkpLE51dUVCAxMRFlZWXYu3cvVq1ahZUrV9qUeBER+47UF1edboDIVdmc7NjDk08+iUGDBqFVq1Zo3bo1FixYgMDAQOzbtw96vR4rVqzAm2++iX79+qFLly7IysrC3r17sW/fPgDADz/8gFOnTuGTTz5Bx44dMXDgQMyfPx9Lly4Vm9gsKS0tRVFRkcmDyF2x70j9szTdwNynYqHN+JHLRxA5gKzJjrGKigqsXbsWt2/fhlarxeHDh3H37l0kJCSI57Rp0wbNmzdHdnY2ACA7OxtxcXEmq7APGDAARUVFYu2QJRkZGVCr1eIjMjLScQUj+p+a5rMpulNulxFSUsm5VIW7q2npDSKyL9mTnePHjyMwMBC+vr546aWX8NVXXyE2NhY6nQ4+Pj4IDg42OT8sLAw6nQ7AvTl/jBMdw3HDserMnDkTer1efOTn59u3UERWcIYaFfYdcQ7s3E3kWFYlO507d8b169cBAPPmzUNxsf0+CB988EEcPXoU+/fvx9ixYzFy5EicOnXKbte3xNfXV+wUbXgQ1SdnWWpBSt8RS/157DVnDxGRI1mV7Jw+fRq3b98GALz22mu4deuW3QLw8fHBAw88gC5duiAjIwMdOnTAv/71L2g0GpSVleHGjRsm5xcWFkKj0QAANBpNldFZhm3DOUTOyFmWWqhtqQpnqH1yV7Yu40FEVVn1U6xjx44YNWoUevXqBUEQ8M9//hOBgYEWz63rSKjKykqUlpaiS5cu8Pb2xvbt25GcnAwAOHPmDPLy8qDVagEAWq0WCxYswOXLlxEaGgoA2Lp1K4KCghAbG1unOIgcybDUgnHCI9donOQuzTD7m3u1TNvS+6BFyL17m3PBEJFSWJXsrFy5Eq+++io2btwIlUqF77//Hl5eVZ+qUqkkJTszZ87EwIED0bx5c9y8eRNr1qzBzp07sWXLFqjVaqSmpiI9PR2NGzdGUFAQxo8fD61Wix49egAA+vfvj9jYWAwfPhyLFy+GTqfDrFmzkJaWZvNweKL6YFhqwZBkOMtSC8Z9R2rqzyN3nEqn05ewHw+RHVmV7Dz44INYu3YtAMDDwwPbt28Xa1Lq4vLlyxgxYgQKCgqgVqvRvn17bNmyBY899hgA4K233oKHhweSk5NRWlqKAQMG4N133xWf7+npiY0bN2Ls2LHQarUICAjAyJEjMW/evDrHRuRIOn1JtTUqzsLQn8cZap+UyHw26n9nXxD/Tnhzl0nzIhHVjeQehZWVlXZ78RUrVtR4vEGDBli6dCmWLl1a7TlRUVH47rvv7BYTkaOY938x/jJzxl/xhv48zlb7pESWmgyNt4mobmwaPnH+/Hm8/fbbOH36NAAgNjYWEydORMuWLe0aHJFSuOqXmbPXPimFpSZD820isp3keXa2bNmC2NhYHDhwAO3bt0f79u2xf/9+tG3bFlu3bnVEjEQuTwlfZs5Y+6QUlqYAMN7mMh5EdSO5ZmfGjBmYPHkyMjMzq+yfPn262N+GiO6z1P/FfFsu5n1HqP5ZajJ8qkMEvj56CcC9Zs+MpDgM6dZczjCJXJbkmp3Tp08jNTW1yv4XXnjB4ZMBErkqS/PZsAMqGTNeLuLT0T2w4edL4jaX8SCqG8nJTkhICI4ePVpl/9GjR+0yQotIqczXQhqujebsw2RRcVm5U0w6SaQUkj9hR48ejTFjxuCXX37BH//4RwDAnj17sGjRIqSnp9s9QCIlYv8XqokzTTpJpASSk53Zs2ejYcOGeOONNzBz5kwAQEREBObOnYsJEybYPUAikg/788jDWSedJHJVkpMdlUqFyZMnY/Lkybh58yYAoGHDhnYPjIjInXHYP5H91KmjAJMcIiL7MK9FM178k82eRHXDXpFE9YRNQkRE8pA8GouIrFNcVo7oGZsQPWOTya90IiKqX0x2iIiISNEkJTt3795FfHw8zp0756h4iIgI95s9OQ8TUd1JSna8vb1x7NgxR8VCREREZHeSm7Gee+45rFixwhGxEBEREdmd5LrR8vJyfPTRR9i2bRu6dOmCgIAAk+Nvvvmm3YIjUgqdvoTzpBARyURysnPixAl07twZAHD27FmTYyqVyj5RESnAl4d/Ff/mqtVUV8Vl5YidswUAcGreAPbjIZJA8t2yY8cOR8RBpCgF+jt4dcNJcduwanXv1iGc8p+IqJ7ZPPQ8JycHW7ZswZ07dwAAgiDU8gwi95F75TZXrSYichKSk52rV68iPj4erVu3xqBBg1BQUAAASE1NxZQpU+weIJEriml6b9VqY1y1mohIHpKTncmTJ8Pb2xt5eXnw97//wT1kyBBs3rzZrsERuapwtR9ee6qtuM1Vq4mI5CM52fnhhx+waNEiNGvWzGR/q1atcPHiRbsFRuTqkrvcv0e2pfdh52SyG52+RO4QiFyK5GTn9u3bJjU6BteuXYOvr69dgiJSGq5aTXVlPrrvs4N5MkZD5FokJzuPPPIIPv74Y3FbpVKhsrISixcvxqOPPmrX4IhcCRf+JEepbnRfgf6OjFERuQ7JQ88XL16M+Ph4HDp0CGVlZZg2bRpOnjyJa9euYc+ePY6IkYjIrdU0uo/9wIhqJ7lmp127djh79ix69eqFwYMH4/bt20hKSsKRI0fQsmVLR8RIROTWOLqPqG5smoJTrVbjlVdesXcsRIpiWLWaqK4Mo/tmf3OvKYuj+4iksSnZuX79OlasWIHTp08DAGJjYzFq1Cg0btzYrsEREdE9yV2aicnOtvQ+XGuNSALJzVi7d+9GdHQ0lixZguvXr+P69etYsmQJYmJisHv3bkfESORyODSYHImj+4ikkZzspKWlYciQIcjNzcX69euxfv16/PLLLxg6dCjS0tIcESORS+DQYCIi5yQ52cnJycGUKVPg6ekp7vP09ER6ejpycnLsGhyRq+DQYCIi5yU52encubPYV8fY6dOn0aFDB7sEReQKjOfV+W9BERf+JCJyUlZ1UD527Jj494QJEzBx4kTk5OSgR48eAIB9+/Zh6dKlyMzMdEyURE4uqsm9ocHGCQ+HBpM9cXQfke1UgiAItZ3k4eEBlUqF2k5VqVSoqKiwW3D1paioCGq1Gnq9HkFBQXKHQy6iuKwcsXO2AABOzRuALw//ajI0OCMpjuthERE5kLXf31bV7OTm5totMCKl4tBgIiLnZFWyExUV5eg4iFyaTl9iMhyYQ4OJiJyHTZMKXrp0CT/99BMuX76MyspKk2MTJkywS2BEzs58qPlrT7WVMRoiIqqO5GRn5cqVePHFF+Hj44MmTZpApbq/YItKpWKyQ27B0lBz420iInIekpOd2bNnY86cOZg5cyY8PCSPXCdSBEurUFcKwKeje0Dbsok8QRERkUWSs5Xi4mIMHTqUiQ65Na5CTUTkOiRnLKmpqVi3bp0jYiFyGYZVqA24CjURkfOSnOxkZGRg165d6Nu3L8aPH4/09HSTh9RrdevWDQ0bNkRoaCiefvppnDlzxuSckpISpKWloUmTJggMDERycjIKCwtNzsnLy0NiYiL8/f0RGhqKqVOnory8XGrRiCRJ7tJM/Htbeh/OqUNE5KQk99nJyMjAli1b8OCDDwJAlQ7KUuzatQtpaWno1q0bysvL8fLLL6N///44deoUAgICAACTJ0/Gpk2bsG7dOqjVaowbNw5JSUnYs2cPAKCiogKJiYnQaDTYu3cvCgoKMGLECHh7e2PhwoVSi0dkEw41JyJyXlbNoGysUaNGeOutt/D888/bPZjff/8doaGh2LVrF3r37g29Xo+QkBCsWbMGf/7znwEA//3vf/HQQw8hOzsbPXr0wPfff48nnngCly5dQlhYGABg+fLlmD59On7//Xf4+PhUeZ3S0lKUlpaK20VFRYiMjOQMyiSJ+QzK/j42zeRAREQ2snYGZcnNWL6+vujZs2edgquOXq8HADRu3BgAcPjwYdy9excJCQniOW3atEHz5s2RnZ0NAMjOzkZcXJyY6ADAgAEDUFRUhJMnLQ8FzsjIgFqtFh+RkZEOKQ8RkaMYL0RbXMZme6KaSE52Jk6ciHfeecfugVRWVmLSpEno2bMn2rVrBwDQ6XTw8fFBcHCwyblhYWHQ6XTiOcaJjuG44ZglM2fOhF6vFx/5+fl2Lg0RERE5C8n17gcOHMCPP/6IjRs3om3btvD29jY5vn79epsCSUtLw4kTJ/DTTz/Z9HwpfH194evr6/DXIWXjKtRERK5BcrITHByMpKQkuwYxbtw4bNy4Ebt370azZvdHuGg0GpSVleHGjRsmtTuFhYXQaDTiOQcOHDC5nmG0luEcIiIicl+Sk52srCy7vbggCBg/fjy++uor7Ny5EzExMSbHu3TpAm9vb2zfvh3JyckAgDNnziAvLw9arRYAoNVqsWDBAly+fBmhoaEAgK1btyIoKAixsbF2i5WIyFnp9CVoERIodxhETkvWaZDT0tLwySefYM2aNWjYsCF0Oh10Oh3u3LkDAFCr1UhNTUV6ejp27NiBw4cPY9SoUdBqtejRowcAoH///oiNjcXw4cPx888/Y8uWLZg1axbS0tLYVEVEimW+EO1nB/NkjIbIuUkeeh4TE1PjfDq//PKL9S9ezXWysrLEoe0lJSWYMmUKPv30U5SWlmLAgAF49913TZqoLl68iLFjx2Lnzp0ICAjAyJEjkZmZCS8v6yqurB26RkTkDAr0d9Az80eT9dk8VSr8NONRzuJNbsXa72/JzViTJk0y2b579y6OHDmCzZs3Y+rUqZKuZU2e1aBBAyxduhRLly6t9pyoqCh89913kl6biMhVWVqItkIQcOFKMZMdIgskJzsTJ060uH/p0qU4dOhQnQMiIqKaGRaiNa/Z4UK0RJbZrc/OwIED8eWXX9rrckREVA0uREskjd2SnS+++EKc+ZiIiByLC9ESWU9yM1anTp1MOhYLggCdTofff/8d7777rl2DIyKi2nEhWqKaSU52nn76aZNtDw8PhISEoG/fvmjTpo294iIiIiKyC8nJzquvvuqIOIiIiIgcQnKyQ0RE8uPabETWszrZ8fDwqHEyQeDeJIHl5eV1DoqIiKxXXFaO2DlbAACn5g0AAJNtfx/+riX3ZvUd8NVXX1V7LDs7G0uWLEFlZaVdgiIiIiKyF6uTncGDB1fZd+bMGcyYMQPffvstUlJSMG/ePLsGR0RERFRXNs2zc+nSJYwePRpxcXEoLy/H0aNHsWrVKkRFRdk7PiKnUlxWjugZmxA9YxOKy9hkS0TkCiQlO3q9HtOnT8cDDzyAkydPYvv27fj222/Rrl07R8VHREQS6PQlNW4TuSOrk53FixejRYsW2LhxIz799FPs3bsXjzzyiCNjIyIiK3x5+Ffx74Q3d+Hl9cdNtj87mCdHWEROQyVYs/Q47o3G8vPzQ0JCAjw9Pas9b/369XYLrr5Yu0Q8kfmoF45yIbkV6O+gZ+aPVVZBN+apUuGnGY9y7SxSHGu/v63+pB4xYkStQ8+J3IlOX4IWIYFyh0FuLvfK7RoTHQCoEARcuFLMZIfcltXJzsqVKx0YBpFrMG8uyEiK4wKMJKuYpgHwUKHWmp3opv71FxSRk7HbqudESlegv4NXN5wUtysF4OX1J1CgvyNjVOTuwtV+eO2ptuK2hwp4umOEyfbCpHas1SG3xmSHyEqWmgsMzQNEckru0kz8e1t6HyxMijPZZu0juTsmO0RWMjQXGGPzADkbjbpBjdtE7ojJDpGVLDUXsHmAiMj5MdkhksC8uYDNA0REzo+ThBDZiM0D5Cz8fbxwITPRZJ/5NpE7Y80OERERKRprdohqYGnGZP5iJiJyLazZISIiIkVjskNERESKxmSHyEo6fYncIRARkQ2Y7BDVwHwtrM8O5skYDRER2YLJDlE1uBYWEZEyMNkhqgbXwiIiUgYmO0TV4FpYRETKwGSHqBpcC4uISBmY7BDVgGthERG5PiY7RFbiWlhERK6JyQ4REREpGtfGIqoB18IiJbC0xhuRO2HNDhERESkakx0iIjfCZU/IHTHZISJSOC57Qu6OyQ4RkYJx2RMimZOd3bt348knn0RERARUKhW+/vprk+OCIGDOnDkIDw+Hn58fEhIScO7cOZNzrl27hpSUFAQFBSE4OBipqam4detWPZaClKS4rBzRMzYhesYmFJeVyx0OUZ1x2RMimZOd27dvo0OHDli6dKnF44sXL8aSJUuwfPly7N+/HwEBARgwYABKSu63OaekpODkyZPYunUrNm7ciN27d2PMmDH1VQQiIqfGZU+IZE52Bg4ciNdffx1/+tOfqhwTBAFvv/02Zs2ahcGDB6N9+/b4+OOPcenSJbEG6PTp09i8eTM+/PBDdO/eHb169cI777yDtWvX4tKlS/VcGnJFNdXksCMnKQGXPSFy4j47ubm50Ol0SEhIEPep1Wp0794d2dnZAIDs7GwEBweja9eu4jkJCQnw8PDA/v37q712aWkpioqKTB5EADtykjKZL3vyZIcINteSW3HaZEen0wEAwsLCTPaHhYWJx3Q6HUJDQ02Oe3l5oXHjxuI5lmRkZECtVouPyMhIO0dPruj4r3p25CTF47In5I6cNtlxpJkzZ0Kv14uP/Px8uUMimRjX5Ax9fx87cpIiGWYCv5CZWGX2ZDbXkjtw2mRHo9EAAAoLC032FxYWisc0Gg0uX75scry8vBzXrl0Tz7HE19cXQUFBJg9yP+ZDcgUL57AjJykRm2vJ3ThtshMTEwONRoPt27eL+4qKirB//35otVoAgFarxY0bN3D48GHxnB9//BGVlZXo3r17vcdMrsXSkFxj7MhJSsR5d8gdyboa3K1bt5CTkyNu5+bm4ujRo2jcuDGaN2+OSZMm4fXXX0erVq0QExOD2bNnIyIiAk8//TQA4KGHHsLjjz+O0aNHY/ny5bh79y7GjRuHoUOHIiIiQqZSkaswDMk1TniMt7el90GLkEB5giNykJrm3WFiT0ola83OoUOH0KlTJ3Tq1AkAkJ6ejk6dOmHOnDkAgGnTpmH8+PEYM2YMunXrhlu3bmHz5s1o0OB+B7vVq1ejTZs2iI+Px6BBg9CrVy+8//77spSHXIulIbnG2+zISUrEeXfIHakEQaihIt89FBUVQa1WQ6/Xs/+OmykuK0fsnC0AgB+nsCaH3MO/sy9g9jf3mrI8VEBGUhyGdGsuc1RE0ln7/e20fXaI6htrcshdmM+7w0SHlE7WPjtEcjMMySVyV0zyyR0w2SEicjPmSb5xc+6peQOqzMVD5OrYjEVuhyubE1WPkwySEjHZISJyc5xkkJSOyQ65Nf6KJXfHSQbJHTDZIbfDX7FE99U0ySCRUjDZIbfCX7FEpjjJILkDJjvkVvgrlsiUpZnEuSYcKQ2THXIr/BVLVBUnGSSlY7JDLk/KUHL+iiWqGScZJCXizFGkKDp9CTTqBjVOkJbcpZm4LhBXNifiTOKkfEx23IwSZ0o1H11lXHOj05dUSWb4wU5E5F7YjOXGlDDHjKXRVXO+ub/NoeVERMRkx80obY4ZS6OrjDc5tJyIiJjsuBElzjFjaXSVuQpBgDbjR66FReQAXGuOXAGTHQdxxg8ApcwxY/xvq/bzNumjo/rfw5hxMqSEpjsiZ8X7i5wVk5164CwfAEqcY0anLzGZI2T7lD6YN9h0aPlTHSLEbSU03RE5ktQfakprGidlYrLjIOYfAP/OviB+gPzy+y1J1zL+8JH6XGP1PceMlLhr+4A1Pr5813lxf8Kbu/Dtz5dwITMRFzIT0SIk0CT5+XR0D2z4+ZK4rYSmO6L6YumHmvl9rbSmcVImJjsOYO8RQvb85SRlptTakpXajtsat6UPWONrLdmeI/5t6cPVMLT8QmYiKgRBEU13RPVFyn17JO867y9yCUx2HMCaEUIz1x+vtiajtl9Oxs+VWtNjnAjUNpleTbVTxWXlNX4oWkr4pn95XHyueU2OlGuZq+nDVYlNd0SOYs0gBuN79e/rjlXpI8f7i5wRkx0HsGaEkHEyVFOfHku/nIy361rTU13tjKUPPePt47/qa0zC9uZcqRK3gXl5LV3L+APWUvJorKYPVy4PQWS96gYxGEYz7v/lqsm9an5b8v4iZ6USBKGGrxH3UFRUBLVaDb1ej6CgILtc89/ZF8QlCQx5j/E/tMpo20MFZCTFiU1KtT3XnKdKhZ9mPGrTB4zxaxnHsff8Ffzlg/3VPs84/uqOo5pzDJ2Gvz56yaprfTamB4Z9sM9iwmP+b1edAv0dXLhSjOim/vwgJqpGgf4Oemb+aHKvGd+ftd2rP04xXX7FeMZ282NE9mDt9zeTHTgm2QFMv2C3nSqsMYHxUN2vsVGpAKEePmwsfbAZEicAVY5JVVus1j7XPDnyUAHTH2+D9s2CmbwQ2Zk9f2xV92OKyF6s/f5mM5YDhav9oG3ZBOFqP5OOwf98pn2VDw/jpMI8/TTeXDumR5UmMuNN87415iOXjJu8app3x7z5p5ZWOYvH65LoGKsUYDKialt6H7zYp6X4b0tE9jNcG43smf3w6egeeOcvnWq8j2tqtlLiJKbkulx/FUgXYbz4ZIH+jklNTm3Mfzm99lTbKr+8DMxHflkaudS7dQjC1X5i3yLzmh1D/xfj1cHXWmhKMn6upeNSaok8VSqs/5sWxWWVuHq7FOPWHKlSrk9H94C2ZZPqL0JEdhGu9kO42s/iZ5XxvWpes2pck/zGM+1r/DFFVJ9YsyMDKbUmln451VZLVFMOZTxyyVLn3blPxYqdEXX6EnHkVvcWTaqcm5EUV+NxQ9yWXufpjhFVzu0Q2Qjalk3QJaoRR1AROYHqOvgb7lXzpMWWkVoF+jvYe/4Ka3zIodhnB47rs1MbQ58efx8P/Ondvaa1JgDe+UsndI5qVOOvIEv9bmpiXktk3qdnT86VGtvYa+roW1tnRPPn1nQttvUTOQdrOxnX1rnZ0n3M+5zqih2UJZAr2TFWl5ve2g6FtV23pg7L9V3tzFEcRK6luhGc/zesE5oE+iK6qT/Uft7ifW1plKVcnzfkuqz9/mafHScxXBuNhNgwm4ZHmz/XeOSXlJFLtXVYrk/GfZyIyPlV1wewS/T92ul/Z18Qjw19f1+VH2XGnzf8wUP2xGTHiRj6t9T1ubYmTrV1WCYiqo6hf4/xDy3j/obmo7Ms1T57qlTw9/HA3vNX8J+L18X9CW/uMrm23MlPgf4Ocq/cRkzTANZCuQg2Y8E5mrGcBdvQiaguquuLV9tEpebzaZmrrf+POUfVDDn6M1KORMqVa9HYjEU2qUtzGhFRdTXU1dUcG4axGwZqVMd8fUHjaTQMjBOFbacKxf0Jb+6qMSmR0gnb0txB5nHYSq4fm+ZrE5q/risnQwZMdqiKujSnERFZUl0zV4fIRgDu1fxImbG9QhBw+MJ1NA68n9zUNP9YTUlJbV/2Btb2azROuow7ZduSSLXRNMTtsooqNT2WEhBbaoWseV1rEkdnb9pjskNERPWipppjSzU/BtWtLzju0yMmx2HhPIMKQcCmYwVIbB8uTn2Re+U2Anw8ra6tqa52ytDPyDzpMjTNGdiSSA1eule8lvFzzRM08yV1MpLi0Lt1iEkCYikhqe11q0sczZMhZ+/+wD47YJ8dIiJnYN6MYzySdPfZ3/Hy+hOoEAR44F5CY8uXl7ULEZvP2G5IFP5z8Tr++cPZaq+FWuLyALDkL53Q5X9zqBknXebzrZkzNPvlXSvGxLVHazy3tvUFDQmJ1LnaLL0OYFrm+pxCgPPsSMBkh4jIOdQ02ajhmKUlZcypcG9RZVu+xA1JRXU1F4YkzNKEsNaylIBYk4TZi3EZj/+mx+Lvz4iJZKUdrm+cLDqyiYsdlImIyOXU1GewpjW7jJMbT5UKC5PaoXfrEGw6VoDXN52u9XU9jJ77ZIfwGptxFm8+g59mPGqxCchalQJMRp5VCsC3Pxfgm7Q/mnTYtvX6tTFvIqspgTP+t7UmGfIAcPV2KQr0d7D77O+Yuf74vefK2MTFZIeIiFxKuNoPGUlxYrOWcXJjXiuU2D4cC787bfVCxOajwqrr/3PhSrHFPjzmSdfTnSLw9ZFLqLCiEaVCEFBcVinWiBiXsaYkw/x1pDbzGSdwtf3b1pYMGWqkxq05UqWJy96j16RgskNERC5nSLfmFpMb8y9RS1/exomB4ctcyqgww2Sr1iZdfx/wIA5fuI4Ja4/UmnQZT+JqXEZr1lD8+4AHxdc17uNkKRkyT5yMR5XV9m9bXZnNy1hToljfyQ777IB9doiIlM7ahYirW9DUvInM2gWSjX12MK/WpKumJh7z59d2fnVltpQ4Se1UbKnMtU0cacvr1MbtOigvXboU//jHP6DT6dChQwe88847ePjhh616LpMdIiIysJRUWKrpsIW1SZe1z7eV1MTJGrYkinXlVsnOZ599hhEjRmD58uXo3r073n77baxbtw5nzpxBaGhorc9nskNERMbslVQ4M0eU0ZGJoiVulex0794d3bp1w//93/8BACorKxEZGYnx48djxowZtT6fyQ4REZF91Gei6DZDz8vKynD48GHMnDlT3Ofh4YGEhARkZ2dbfE5paSlKS0vF7aKiIofHSURE5A6ccckhD7kDqKsrV66goqICYWFhJvvDwsKg0+ksPicjIwNqtVp8REZG1keoREREJAOXT3ZsMXPmTOj1evGRn58vd0hERETkIC7fjNW0aVN4enqisLDQZH9hYSE0Go3F5/j6+sLX17c+wiMiIiKZuXzNjo+PD7p06YLt27eL+yorK7F9+3ZotVoZIyMiIiJn4PI1OwCQnp6OkSNHomvXrnj44Yfx9ttv4/bt2xg1apTcoREREZHMFJHsDBkyBL///jvmzJkDnU6Hjh07YvPmzVU6LRMREZH7UcQ8O3XFeXaIiIhcj7Xf3y7fZ4eIiIioJkx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUTRHz7NSVYfQ9Vz8nIiJyHYbv7dpm0WGyA+DmzZsAwNXPiYiIXNDNmzehVqurPc5JBXFvLa1Lly6hYcOGUKlUdb5eUVERIiMjkZ+fr9hJCllGZWAZXZ/SywewjErhiDIKgoCbN28iIiICHh7V98xhzQ4ADw8PNGvWzO7XDQoKUux/WgOWURlYRten9PIBLKNS2LuMNdXoGLCDMhERESkakx0iIiJSNCY7DuDr64tXX30Vvr6+cofiMCyjMrCMrk/p5QNYRqWQs4zsoExERESKxpodIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2bGTzMxMqFQqTJo0SdxXUlKCtLQ0NGnSBIGBgUhOTkZhYaF8QdaRpTL27dsXKpXK5PHSSy/JF6REc+fOrRJ/mzZtxONKeA9rK6Orv4cGv/32G5577jk0adIEfn5+iIuLw6FDh8TjgiBgzpw5CA8Ph5+fHxISEnDu3DkZI5autjI+//zzVd7Lxx9/XMaIpYmOjq4Sv0qlQlpaGgBl3I+1ldHV78eKigrMnj0bMTEx8PPzQ8uWLTF//nyTtavkuBc5g7IdHDx4EO+99x7at29vsn/y5MnYtGkT1q1bB7VajXHjxiEpKQl79uyRKVLbVVdGABg9ejTmzZsnbvv7+9dnaHXWtm1bbNu2Tdz28rp/WyjlPaypjIDrv4fXr19Hz5498eijj+L7779HSEgIzp07h0aNGonnLF68GEuWLMGqVasQExOD2bNnY8CAATh16hQaNGggY/TWsaaMAPD4448jKytL3HalocwHDx5ERUWFuH3ixAk89thjeOaZZwAo436srYyAa9+PixYtwrJly7Bq1Sq0bdsWhw4dwqhRo6BWqzFhwgQAMt2LAtXJzZs3hVatWglbt24V+vTpI0ycOFEQBEG4ceOG4O3tLaxbt0489/Tp0wIAITs7W6ZobVNdGQVBqLLtal599VWhQ4cOFo8p5T2sqYyC4PrvoSAIwvTp04VevXpVe7yyslLQaDTCP/7xD3HfjRs3BF9fX+HTTz+tjxDrrLYyCoIgjBw5Uhg8eHD9BFQPJk6cKLRs2VKorKxUzP1ozriMguD692NiYqLwwgsvmOxLSkoSUlJSBEGQ715kM1YdpaWlITExEQkJCSb7Dx8+jLt375rsb9OmDZo3b47s7Oz6DrNOqiujwerVq9G0aVO0a9cOM2fORHFxcT1HWDfnzp1DREQEWrRogZSUFOTl5QFQ1ntYXRkNXP093LBhA7p27YpnnnkGoaGh6NSpEz744APxeG5uLnQ6ncl7qVar0b17d5d5L2sro8HOnTsRGhqKBx98EGPHjsXVq1dliLbuysrK8Mknn+CFF16ASqVS1P1oYF5GA1e+H//4xz9i+/btOHv2LADg559/xk8//YSBAwcCkO9eZDNWHaxduxb/+c9/cPDgwSrHdDodfHx8EBwcbLI/LCwMOp2uniKsu5rKCAB/+ctfEBUVhYiICBw7dgzTp0/HmTNnsH79+nqO1Dbdu3fHypUr8eCDD6KgoACvvfYaHnnkEZw4cUIx72FNZWzYsKHLv4cA8Msvv2DZsmVIT0/Hyy+/jIMHD2LChAnw8fHByJEjxfcrLCzM5Hmu9F7WVkbgXhNWUlISYmJicP78ebz88ssYOHAgsrOz4enpKXMJpPn6669x48YNPP/88wCU85lqzLyMgOt/ps6YMQNFRUVo06YNPD09UVFRgQULFiAlJQUAZLsXmezYKD8/HxMnTsTWrVtdor3fFtaUccyYMeLfcXFxCA8PR3x8PM6fP4+WLVvWV6g2M/zaAID27duje/fuiIqKwueffw4/Pz8ZI7OfmsqYmprq8u8hAFRWVqJr165YuHAhAKBTp044ceIEli9fLiYCrs6aMg4dOlQ8Py4uDu3bt0fLli2xc+dOxMfHyxK3rVasWIGBAwciIiJC7lAcxlIZXf1+/Pzzz7F69WqsWbMGbdu2xdGjRzFp0iRERETIei+yGctGhw8fxuXLl9G5c2d4eXnBy8sLu3btwpIlS+Dl5YWwsDCUlZXhxo0bJs8rLCyERqORJ2iJaiujcSc7g+7duwMAcnJy6jtcuwgODkbr1q2Rk5MDjUbj8u+hJcZltMQV38Pw8HDExsaa7HvooYfE5jrD+2U+cseV3svaymhJixYt0LRpU5d6LwHg4sWL2LZtG/7617+K+5R2P1oqoyWudj9OnToVM2bMwNChQxEXF4fhw4dj8uTJyMjIACDfvchkx0bx8fE4fvw4jh49Kj66du2KlJQU8W9vb29s375dfM6ZM2eQl5cHrVYrY+TWq62MlqrFjx49CuDeB7MrunXrFs6fP4/w8HB06dLF5d9DS4zLaIkrvoc9e/bEmTNnTPadPXsWUVFRAICYmBhoNBqT97KoqAj79+93mfeytjJa8uuvv+Lq1asu9V4CQFZWFkJDQ5GYmCjuU9r9aKmMlrja/VhcXAwPD9PUwtPTE5WVlQBkvBcd1vXZDZn3on/ppZeE5s2bCz/++KNw6NAhQavVClqtVr4A7cC4jDk5OcK8efOEQ4cOCbm5ucI333wjtGjRQujdu7e8QUowZcoUYefOnUJubq6wZ88eISEhQWjatKlw+fJlQRCU8R7WVEYlvIeCIAgHDhwQvLy8hAULFgjnzp0TVq9eLfj7+wuffPKJeE5mZqYQHBwsfPPNN8KxY8eEwYMHCzExMcKdO3dkjNx6tZXx5s2bwt///nchOztbyM3NFbZt2yZ07txZaNWqlVBSUiJz9NarqKgQmjdvLkyfPr3KMSXcj4JQfRmVcD+OHDlS+MMf/iBs3LhRyM3NFdavXy80bdpUmDZtmniOHPcikx07Mk927ty5I/ztb38TGjVqJPj7+wt/+tOfhIKCAvkCtAPjMubl5Qm9e/cWGjduLPj6+goPPPCAMHXqVEGv18sbpARDhgwRwsPDBR8fH+EPf/iDMGTIECEnJ0c8roT3sKYyKuE9NPj222+Fdu3aCb6+vkKbNm2E999/3+R4ZWWlMHv2bCEsLEzw9fUV4uPjhTNnzsgUrW1qKmNxcbHQv39/ISQkRPD29haioqKE0aNHCzqdTsaIpduyZYsAwOJ7o4T7URCqL6MS7seioiJh4sSJQvPmzYUGDRoILVq0EF555RWhtLRUPEeOe1ElCEbTGhIREREpDPvsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBEB6Nu3L1QqFVQqlbge0c6dO6FSqaosPmlvc+fOFV/77bffduhrEbkjJjtEJNnzzz8vfjkbPx5//HG5Q6uT0aNHo6CgAO3atavztQoLC+Ht7Y21a9daPJ6amorOnTsDAP7+97+joKAAzZo1q/PrElFVTHaIyCaPP/44CgoKTB6ffvqpQ1+zrKzModf39/eHRqOBl5dXna8VFhaGxMREfPTRR1WO3b59G59//jlSU1MBAIGBgdBoNPD09Kzz6xJRVUx2iMgmvr6+0Gg0Jo9GjRqJx1UqFT788EP86U9/gr+/P1q1aoUNGzaYXOPEiRMYOHAgAgMDERYWhuHDh+PKlSvi8b59+2LcuHGYNGkSmjZtigEDBgAANmzYgFatWqFBgwZ49NFHsWrVKrG56fbt2wgKCsIXX3xh8lpff/01AgICcPPmTZvLXFxcjIEDB6Jnz55i09aHH36Ihx56CA0aNECbNm3w7rvviuenpqZi+/btyMvLM7nOunXrUF5ejpSUFJtjISLrMdkhIod57bXX8Oyzz+LYsWMYNGgQUlJScO3aNQDAjRs30K9fP3Tq1AmHDh3C5s2bUVhYiGeffdbkGqtWrYKPjw/27NmD5cuXIzc3F3/+85/x9NNP4+eff8aLL76IV155RTw/ICAAQ4cORVZWlsl1srKy8Oc//xkNGza0qSw3btzAY489hsrKSmzduhXBwcFYvXo15syZgwULFuD06dNYuHAhZs+ejVWrVgEABg0ahLCwMKxcubJKLElJSQgODrYpFiKSyKFrqhORIo0cOVLw9PQUAgICTB4LFiwQzwEgzJo1S9y+deuWAED4/vvvBUEQhPnz5wv9+/c3uW5+fr4AQDhz5owgCILQp08foVOnTibnTJ8+XWjXrp3JvldeeUUAIFy/fl0QBEHYv3+/4OnpKVy6dEkQBEEoLCwUvLy8hJ07d1Zbpj59+ggTJ0402bdjxw4BgHD69Gmhffv2QnJyslBaWioeb9mypbBmzRqT58yfP1/QarXi9owZM4SYmBihsrJSEARByMnJEVQqlbBt27YqMURFRQlvvfVWtTESkW1Ys0NENnn00Udx9OhRk8dLL71kck779u3FvwMCAhAUFITLly8DAH7++Wfs2LEDgYGB4qNNmzYAgPPnz4vP69Kli8k1z5w5g27dupnse/jhh6tst23bVqxh+eSTTxAVFYXevXvbVNbHHnsMDzzwAD777DP4+PgAuNfv5vz580hNTTUpw+uvv24S/wsvvIDc3Fzs2LEDwL1anejoaPTr18+mWIhIurr3wiMitxQQEIAHHnigxnO8vb1NtlUqFSorKwEAt27dwpNPPolFixZVeV54eLjJ69jir3/9K5YuXYoZM2YgKysLo0aNgkqlsulaiYmJ+PLLL3Hq1CnExcWJ8QPABx98gO7du5ucb9zRuFWrVnjkkUeQlZWFvn374uOPP8bo0aNtjoWIpGOyQ0Sy6Ny5M7788ktER0dLGv304IMP4rvvvjPZd/DgwSrnPffcc5g2bRqWLFmCU6dOYeTIkTbHmpmZicDAQMTHx2Pnzp2IjY1FWFgYIiIi8Msvv9Ta0Tg1NRVjx47FU089hd9++w3PP/+8zbEQkXRsxiIim5SWlkKn05k8jEdS1SYtLQ3Xrl3DsGHDcPDgQZw/fx5btmzBqFGjUFFRUe3zXnzxRfz3v//F9OnTcfbsWXz++ediB2Dj2pJGjRohKSkJU6dORf/+/es8h80///lPpKSkoF+/fvjvf/8L4F4H7IyMDCxZsgRnz57F8ePHkZWVhTfffNPkuc888wy8vb3x4osvon///oiMjKxTLEQkDZMdIrLJ5s2bER4ebvLo1auX1c+PiIjAnj17UFFRgf79+yMuLg6TJk1CcHAwPDyq/2iKiYnBF198gfXr16N9+/ZYtmyZOBrL19fX5NzU1FSUlZXhhRdesK2QZt566y08++yz6NevH86ePYu//vWv+PDDD5GVlYW4uDj06dMHK1euRExMjMnz/P39MXToUFy/ft1usRCR9VSCIAhyB0FEVBcLFizA8uXLkZ+fb7L/3//+NyZPnoxLly6JHYur07dvX3Ts2FHW5Rqio6MxadIkTJo0SbYYiJSINTtE5HLeffddHDx4EL/88gv+/e9/4x//+IdJn5zi4mKcP38emZmZePHFF2tNdIyvGxgYiOPHjzsqdIsWLlyIwMDAKpMPEpF9sGaHiFzO5MmT8dlnn+HatWto3rw5hg8fjpkzZ4odnefOnYsFCxagd+/e+OabbxAYGFjrNX/77TfcuXMHANC8eXOrEyR7uHbtmjjZYkhICNRqdb29NpE7YLJDREREisZmLCIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKdr/ByQHzAZeqeuEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1530,16 +3009,6 @@ "plt.ylabel('Number of counts per bin')" ] }, - { - "cell_type": "markdown", - "id": "9a9f1ac1-fe1c-44b6-99a2-30f7bd0f6c98", - "metadata": {}, - "source": [ - "Concept entries PER BIN ! Differential plot...\n", - "\n", - "-> Binnded fit problem, how to choose binning?" - ] - }, { "cell_type": "markdown", "id": "b582615c-9251-409d-bcfc-d19fd579e161", @@ -1549,12 +3018,12 @@ "\n", "$$f(x) = A_1 \\cdot \\exp \\bigg\\{\\frac{-(x - \\mu_1)^2}{2 \\cdot \\sigma_1^2}\\bigg\\} + A_2 \\cdot \\exp \\bigg\\{\\frac{-(x - \\mu_2)^2}{2 \\cdot \\sigma_2^2}\\bigg\\} + A_3 \\exp\\{-x/\\tau\\}$$\n", "\n", - "definieren. Hier lohnt es sich erst Funktionen für die einzelnen Komponenten zu definieren und dann das Gesamtmodel. Hierdurch lassen sich später die einzelnen Komponenten besser darstellen." + "definieren. Hier lohnt es sich, erst Funktionen für die einzelnen Komponenten zu definieren und dann das Gesamtmodel. Hierdurch lassen sich später die einzelnen Komponenten besser darstellen." ] }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 502, "id": "f84d7527-c0d2-475d-966d-5363a8e09369", "metadata": {}, "outputs": [], @@ -1574,12 +3043,12 @@ "id": "32014861-316c-4692-9d52-48f2fb71321c", "metadata": {}, "source": [ - "Nun wollen wir wieder die Kostenfunktion und den Minimierungsfunktion definieren. Startwerte können wir anhand unseres Plots ablesen, lediglich $\\tau$ lässt sich auf diese weise nicht gut bestimmen." + "Nun wollen wir wieder die Kostenfunktion und die Minimierungsfunktion definieren. Startwerte können wir anhand unseres Plots ablesen, lediglich $\\tau$ lässt sich auf diese Weise nicht gut bestimmen." ] }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 503, "id": "a31901cf-a0ce-4db8-a072-a661fbbb7296", "metadata": {}, "outputs": [], @@ -1601,23 +3070,23 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 504, "id": "1e69a046-770f-4c38-9b91-0176bb0686a1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 110, + "execution_count": 504, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6Q0lEQVR4nO3deVhU9f4H8PewbzIIsioCiooouKApaWpqbpSa/rzqNTMzNcNcKLdSc02zW5ldsyxTu2V2LSuXEsW1FNdccENBFJRNZVN2mPP7gzvHGRhgZphhFt6v55knzv45jXPmM99VIgiCACIiIiIzZWHoAIiIiIj0ickOERERmTUmO0RERGTWmOwQERGRWWOyQ0RERGaNyQ4RERGZNSY7REREZNasDB2AMZDJZEhNTUWjRo0gkUgMHQ4RERGpQRAEPHr0CD4+PrCwqL78hskOgNTUVPj6+ho6DCIiItJCSkoKmjVrVu12JjsAGjVqBKDif5azs7OBoyEiIiJ15OXlwdfXV/werw6THUCsunJ2dmayQ0REZGJqa4LCBspERERk1pjsEBERkVljskNERERmjW12iIjI6JSXl6O0tNTQYZCBWVtbw9LSss7nYbJDRERGQxAEpKenIycnx9ChkJFwcXGBl5dXncbBY7JDRERGQ57oeHh4wMHBgQO9NmCCIKCgoACZmZkAAG9vb63PxWSHiIiMQnl5uZjouLm5GTocMgL29vYAgMzMTHh4eGhdpcUGykREZBTkbXQcHBwMHAkZE/m/h7q04WKyQ0RERoVVV6RIF/8emOwQERGRWWOyQ0RERGaNyQ4REZEBSCQS/PrrrzXu88orr2D48OFqn/P27duQSCS4cOFCnWIzN+yNRURmSxAEPHz4EHZ2dnBycjJ0OGTGXnnlFeTk5NSavChKS0tD48aNAVQkKQEBATh//jw6duwo7vPpp59CEAQdR9vwGLRkx9/fHxKJpMorMjISAFBUVITIyEi4ubnByckJI0eOREZGhtI5kpOTERERAQcHB3h4eGDOnDkoKyszxO0QkRG5fv06OnfuDHd3d7i5uWHJkiV8NpBR8fLygq2tbY37SKVSuLi41E9AZsygyc6ZM2eQlpYmvg4cOAAAGDVqFABg9uzZ2L17N3bs2IGjR48iNTUVI0aMEI8vLy9HREQESkpKcOLECWzduhVbtmzB4sWLDXI/RGQcbt++jfDwcLEov6SkBEuXLsX8+fMNGxhpTBAE5OfnG+RVlxKVPn36YMaMGZg7dy5cXV3h5eWFJUuWKO2jWI0VEBAAAOjUqRMkEgn69OkDoGo11r59+9CzZ0+4uLjAzc0Nzz//PBITEzWKLS0tDREREbC3t0dAQAC2bdsGf39/rF27FoDqqrCcnBxIJBIcOXJEXHf58mUMHjwYTk5O8PT0xPjx4/HgwQNx+08//YSQkBDY29vDzc0N/fv3R35+PgDgyJEjeOqpp+Do6AgXFxf06NEDd+7c0eg+NGHQZMfd3R1eXl7ia8+ePWjZsiV69+6N3NxcbNq0CR9//DH69u2LsLAwbN68GSdOnMDJkycBAPv378fVq1fx3XffoWPHjhg8eDCWL1+O9evXo6SkpNrrFhcXIy8vT+lFROZBJpNhwoQJyMnJQVhYGNLS0rBp0yYAwEcffYR9+/YZOELSREFBAZycnAzyKigoqFPsW7duhaOjI06dOoU1a9Zg2bJl4o/6yk6fPg0AiImJQVpaGnbu3Klyv/z8fERFReHs2bM4ePAgLCws8OKLL0Imk6kd18svv4zU1FQcOXIEP//8MzZu3CiOUqyunJwc9O3bF506dcLZs2exb98+ZGRk4B//+AeAioRq7NixePXVV3Ht2jUcOXIEI0aMgCAIKCsrw/Dhw9G7d29cunQJsbGxmDJlin6HHBCMRHFxseDm5iasXLlSEARBOHjwoABAyM7OVtqvefPmwscffywIgiAsWrRI6NChg9L2W7duCQCEv//+u9prvffeewKAKq/c3Fyd3hMR1b8ff/xRACA4OjoKCQkJ4vrp06cLAIQOHToIMpnMgBFSdQoLC4WrV68KhYWF4rrHjx+rfF7Xx+vx48dqxz5hwgRh2LBh4nLv3r2Fnj17Ku3TtWtXYd68eeIyAOGXX34RBEEQkpKSBADC+fPnazxvZffv3xcACHFxcTWeR+7atWsCAOHMmTPiups3bwoAhE8++aTac2RnZwsAhMOHDwuCIAjLly8XBgwYoHTulJQUAYAQHx8vnDt3TgAg3L59u0oMDx8+FAAIR44cqfa+FKn6dyGXm5ur1ve30fTG+vXXX5GTk4NXXnkFQMX8KDY2NlXqKj09PZGeni7u4+npWWW7fFt1FixYgNzcXPGVkpKiuxshIoMRBAGrVq0CALz99tto2bKluG3JkiVwcnLCxYsXsXv3bkOFSBpycHDA48ePDfKq60jOoaGhSsve3t4al6BUdvPmTYwdOxYtWrSAs7Mz/P39AVS0X1VHfHw8rKys0LlzZ3FdYGCg2FBaXRcvXsThw4eVSsKCgoIAAImJiejQoQP69euHkJAQjBo1Cl999RWys7MBAK6urnjllVcwcOBAvPDCC/j000+Rlpam0fU1ZTTJzqZNmzB48GD4+Pjo/Vq2trZwdnZWehGR6YuJicGFCxfg6OiIGTNmKG1zc3MTOz/I2yaQ8ZNIJHB0dDTIq67VKtbW1lXuRZPqJlVeeOEFZGVl4auvvsKpU6dw6tQpAKix6YamLCwqUgNBoc1S5akaHj9+jBdeeAEXLlxQet28eRO9evWCpaUlDhw4gD/++APBwcH47LPP0KZNGyQlJQEANm/ejNjYWDz99NP48ccf0bp1a7GJij4YRbJz584dxMTE4LXXXhPXeXl5oaSkBDk5OUr7ZmRkwMvLS9yncu8s+bJ8HyJqODZv3gygolGnq6trle2vv/46gIrGker+EiaqDzY2NgAqOt5U5+HDh4iPj8fChQvRr18/tG3bViwtUVebNm1QVlaG8+fPi+sSEhKUzuPu7g4ASqUtlcft6dy5M65cuQJ/f38EBgYqvRwdHQFUJHc9evTA0qVLcf78edjY2OCXX34Rz9GpUycsWLAAJ06cQPv27bFt2zaN7kUTRpHsbN68GR4eHoiIiBDXhYWFwdraGgcPHhTXxcfHIzk5GeHh4QCA8PBwxMXFKRULHjhwAM7OzggODq6/GyAig8vLyxN7tkyYMEHlPv7+/ujTpw8EQcD3339fj9ER1czDwwP29vZiQ9/c3Nwq+zRu3Bhubm7YuHEjEhIScOjQIURFRWl0naCgIPTv3x9TpkzB6dOncf78eUyZMgX29vZiSZa9vT26d++O1atX49q1azh69CgWLlyodJ7IyEhkZWVh7NixOHPmDBITExEdHY2JEyeivLwcp06dwvvvv4+zZ88iOTkZO3fuxP3799G2bVskJSVhwYIFiI2NxZ07d7B//37cvHkTbdu21f5/YC0MnuzIZDJs3rwZEyZMgJXVkzEOpVIpJk2ahKioKBw+fBjnzp3DxIkTER4eju7duwMABgwYgODgYIwfPx4XL15EdHQ0Fi5ciMjIyFrHLiAi87Jz504UFhYiKCgIXbp0qXa/l19+GQDwww8/1FdoRLWysrLCunXr8OWXX8LHxwfDhg2rso+FhQW2b9+Oc+fOoX379pg9ezY+/PBDja/17bffwtPTE7169cKLL76IyZMno1GjRrCzsxP3+eabb1BWVoawsDDMmjULK1asUDqHj48Pjh8/jvLycgwYMAAhISGYNWsWXFxcYGFhAWdnZxw7dgxDhgxB69atsXDhQnz00UcYPHgwHBwccP36dYwcORKtW7fGlClTEBkZialTp2r+P05dajWF1qPo6Gix9XZlhYWFwhtvvCE0btxYcHBwEF588UUhLS1NaZ/bt28LgwcPFuzt7YUmTZoIb731llBaWqpRDOq25iYi4zV8+HABgLBkyZIa93vw4IFgYWEhABDu3LlTT9GROmrqdUP6I+9FFRMTY+hQVNJFbyyJIHAc6ry8PEilUuTm5rKxMpEJKioqgpubGwoKCvD333+jU6dONe7fs2dPHD9+HJ9//jmmTZtWT1FSbYqKipCUlISAgAClUgbSrUOHDuHx48cICQlBWloa5s6di3v37uHGjRtVGlUbg5r+Xaj7/W3waiwioro6cuQICgoK0LRpU6V5harz/PPPAwD27t2r58iIjE9paSneeecdtGvXDi+++CLc3d1x5MgRo0x0dIXJDhGZPHnS8vzzz6vVXVjeGeLQoUM67bJLZAoGDhyIy5cvo6CgABkZGfjll1/g5+dn6LD0iskOEZk8ea/NAQMGqLV/+/bt0aRJExQWFuLs2bP6DI20wNYVpEgX/x6Y7BCRSUtPT8e1a9eUJk+sjUQiQe/evQEAR48e1WN0pAl5NUpd56Qi8yL/91CXajar2nchIjJe8lmYO3bsqHIgwer07t0bP//8M44cOYIFCxboKTrShKWlJVxcXMSx0xwcHPQ7OSQZNUEQUFBQgMzMTLi4uMDS0lLrczHZISKTdujQIQDAs88+q9Fx8pKd48ePo6ysTGmcLzIc+ej3dZ1DisyHi4tLnWdF4KebiEza8ePHATxJXtTVvn17scvq5cuX1erFRfonkUjg7e0NDw+PKvMxUcNjbW1dpxIdOSY7RGSy8vLycO3aNQBAt27dNDrWwsICXbt2RUxMDE6dOsVkx8hYWlrq5EuOCGADZSIyYWfPnoUgCPDz84Onp6fGx8sTJPnM0URknpjsEJHJkicpmpbqyDHZIWoYmOwQkck6ffo0AOCpp57S6nh5snPt2jXk5eXpLC4iMi5MdojIJAmCUOeSHQ8PD/j5+UEQBJw/f16X4RGREWGyQ0Qm6d69e0hLS4OlpSU6d+6s9Xnkk4Yy2SEyX0x2iMgkyUt1QkJC4ODgoPV5mOwQmT8mO0RkkuraXkeOyQ6R+WOyQ0QmSV6yU9dkRz6+ztWrV1FUVFTXsIjICDHZISKTU15eLs5WXtdkp1mzZnBzc0N5eTkuX76si/CIyMgw2SEik3Pr1i3k5+fDzs4Obdu2rdO5JBIJOnToAABMdojMFJMdIjI5ly5dAgC0a9dOJxN4tmvXDkBFVRYRmR8mO0RkcuLi4gAAoaGhOjlfcHAwACY7ROaKyQ4RmRx5yQ6THSJSB5MdIjI5+kp2bt++jfz8fJ2ck4iMB5MdIjIpjx8/RmJiIoCKAQV1oUmTJnB3d4cgCLh+/bpOzklExoPJDhGZFHmPKW9vb7i7u+vsvKzKIjJfTHaIyKTougpLjskOkfliskNEJkWdZKegpAz+8/fCf/5eFJSUVVlWhckOkfliskNEJkWe7OiqvY4cx9ohMl9MdojIZAiCoPdqrFu3bqGwsFCn5yYiw2KyQ0Qm4+7du8jNzYWVlRWCgoJ0em4PDw+4urpCJpPhxo0bOj03ERkWkx0iMhnykZPbtGkDW1tbrc+jqg2PRCJhux0iM8Vkh4hMxrVr1wA8qXLSNfl5r1y5opfzE5FhMNkhIpMhT3bqOtN5ddq0aQMAuHnzpl7OT0SGwWSHiEyGvpOdwMBAAEx2iMwNkx0iMgmCIOg92WnVqhUAICEhAYIg6OUaRFT/mOwQkUnIzMxEdnY2JBIJWrdurfZx6blFNS4rCggIgEQiwaNHj3D//n2tYyUi48Jkh4hMgrxUJyAgAPb29jXu+/O5u+Lf/T8+ind2xiktK25XZGdnh+bNmwNgVRaROTF4snPv3j289NJLcHNzg729PUJCQnD27FlxuyAIWLx4Mby9vWFvb4/+/ftXeQhlZWVh3LhxcHZ2houLCyZNmoTHjx/X960QkR6pW4WVlluI93Y96U0lE4BfL6QqLStur0zebichIaEu4RKRETFospOdnY0ePXrA2toaf/zxB65evYqPPvoIjRs3FvdZs2YN1q1bhy+++AKnTp2Co6MjBg4ciKKiJ0XR48aNw5UrV3DgwAHs2bMHx44dw5QpUwxxS0SkJ+omO0kP8iGrpbmN4vbK1Vrydjss2SEyH1aGvPgHH3wAX19fbN68WVwXEBAg/i0IAtauXYuFCxdi2LBhAIBvv/0Wnp6e+PXXXzFmzBhcu3YN+/btw5kzZ9ClSxcAwGeffYYhQ4bgX//6F3x8fOr3pohIL9RNdgKaOMJCghoTHgkA+eb+Hx/FqhEhGN21ovqKJTtE5segJTu7du1Cly5dMGrUKHh4eKBTp0746quvxO1JSUlIT09H//79xXVSqRTdunVDbGwsACA2NhYuLi5iogMA/fv3h4WFBU6dOqXyusXFxcjLy1N6EZFxUzfZ8ZbaY+nQduKyhQQY3vHJjx5Jpf1lAvDOzstIy62YD4vdz4nMj0GTnVu3bmHDhg1o1aoVoqOjMW3aNMyYMQNbt24FAKSnpwMAPD09lY7z9PQUt6Wnp8PDw0Npu5WVFVxdXcV9Klu1ahWkUqn48vX11fWtEZEOPXr0CPfu3QMAtebEGhnWTPw7Jqo33h/xZIb0f40KReVCn3JBwO0HBQDY/ZzIHBk02ZHJZOjcuTPef/99dOrUCVOmTMHkyZPxxRdf6PW6CxYsQG5urvhKSUnR6/WIqG6uX78OoOKHjmKbPnV4Se2Uljs1bwyLSsU7lhIJ/Js4AABatGgBiUSCvLw8dj8nMhMGTXa8vb2rzHHTtm1bJCcnAwC8vLwAABkZGUr7ZGRkiNu8vLyQmZmptL2srAxZWVniPpXZ2trC2dlZ6UVExkuXgwl6Se2qVHO9P6I9vKUV3dnt7OzE0l622yEyDwZNdnr06IH4+HildTdu3ICfnx+AisbKXl5eOHjwoLg9Ly8Pp06dQnh4OAAgPDwcOTk5OHfunLjPoUOHIJPJ0K1bt3q4CyLSN3nJjq5GTq5czSVvnCzHdjtE5sWgyc7s2bNx8uRJvP/++0hISMC2bduwceNGREZGAgAkEglmzZqFFStWYNeuXYiLi8PLL78MHx8fDB8+HEDFw2/QoEGYPHkyTp8+jePHj2P69OkYM2YMe2IRmYkbN24AeDJRpy5VruYC2COLyNwYtOt5165d8csvv2DBggVYtmwZAgICsHbtWowbN07cZ+7cucjPz8eUKVOQk5ODnj17Yt++fbCze/KA+v777zF9+nT069cPFhYWGDlyJNatW2eIWyIiPZAnO/LGw7pWUFKG4MXRAICrywYqNVImItNn0GQHAJ5//nk8//zz1W6XSCRYtmwZli1bVu0+rq6u2LZtmz7CIyIDk8lkYtKhyZxYdcFqLCLzYvDpIoiIapKamorCwkJYWVnB39+/Xq7ZokULABVjfRGR6TN4yQ4RUU3kVVgBAQGwslLvkeVgY4XbqyOU1ikuF5SU1Xi8fCT3rKws5OXlsccmkYljyQ4RGTV5VVJ9VWEVlJQhZOUxWNhXJDgs3SEyfUx2iMio6btxcnWspBUjtzPZITJ9THaIyKjVd8mOnJW0Yhqa27dv1+t1iUj32GaHiIyaPkp2KrfpUdWGhyU7ROaDJTtEZLTKyspw69YtAAYo2XGpmG6GyQ6R6WOyQ0RG686dOygtLYWdnR2aNWtW+wE6kJFXBOBJyU7irVvwn78X/vP31tqLi4iME5MdIjJa8vY6gYGBsLBQflwVlJTpLAn5+dxd8e8XPjsO4Emyc+f2bQiCUKfzE5FhMdkhIqNVHz2x0nIL8d6uK+Ky7H95jbyBcn5+PmSFeXq7PhHpH5MdIjJa9dETK+lBvpjgKJJY2cCrZTAAoCw3Q2/XJyL9Y7JDREarPkp2Apo4wkKiepvtyNVwCn0OZTlPkh1dVp8RUf1gskNERktesqNOsqNtEuIttcfSoe1Ub5RYwHXgdJSzGovIpDHZISKjVFxcjDt37gDQf7fzkWHV9/SSWFhCKCvR6/WJSL+Y7BCRUbp16xZkMhmcnJzg6elZb9etXKUlyMpRkp5Qb9cnIt1jskNERkmxcbJEUk2jGj14Z0hb8W8LAFnR/0ZJBpMdIlPGZIeIjJImjZPTc4t0dt3hnXzEv7f8IwCPLx2AUF4GQZDp9DpEVH+Y7BCRUaqt27niQID9Pz6qtKwrHYNaoFGHgWg65StIJBZ6uw4R6RcnAiUio1RTyY6qgQAVl3XlQX4ZGg+MhERiodfrEJF+sWSHiIxSTSU7qgYCVDUwYF3deZgvJjqqrsNqLSLTwGSHiIxOfn4+7t27B0B1yY6qgQAVl3WVhPi5OQKCTGmd4mX7f3wUP55J1sm1iEh/mOwQkdFJSKjo/eTm5gZXV1cAyoMGSu2tlQYCtJAAQzs8aVisaRLiYGOF26sjcHt1BBxsntTue0ntECYkQJCVA1BOdICKUp53dl5GWm6hprdIRPWIyQ4RGR11emIpDgT4w+Tu2HUxVVzWZRLSy9ca9754FdlHv8W/RoWicm1ZuSDg9oOCOl+HiPSHyQ4RGR1NpokAKkp9KrfZ0VUS4uvbHOWPHqLw1ll0at64SvWZpUQC/yYOdb4OEekPkx0iMjrykh11p4nwc6vahkdXSUiz5r4AgPK8+/CS2lWpPnt/RHt4S+3rfB0i0h+tup7fvHkThw8fRmZmJmQy5cZ7ixcv1klgRNRwaVqyI09CFv1W0S28LkmIvP2OXPPmfgAAWdEjPH78GCPDmonXiYnqjRbuThpfg4jql8bJzldffYVp06ahSZMm8PLyUhrGXSKRMNkhojrTtGQHgN6SEGdnZ0hsHSEU5yMlJRlt2waL27ykdjq5BhHpl8bJzooVK7By5UrMmzdPH/EQUQOXnZ2NBw8eAAACAwO1OoeukxArZ3eU3s9HSnKKUrJDRKZB4zY72dnZGDVqlD5iISISq7C8vb3RqFEjA0dTwcrZHQBwN6Vqd3bFLvEFJWX1HRoRqUHjZGfUqFHYv3+/PmIhIlKrvU59j1xs+b9kJyUlpV6vS0S6oXE1VmBgIBYtWoSTJ08iJCQE1tbWSttnzJihs+CIqOGpbpqIyhN/rhoRotSQWF+lKg42Vlg4uhfmn/8dafc4CSiRKdI42dm4cSOcnJxw9OhRHD16VGmbRCJhskNEdaJqQEFVE3++s/MyerV2r5du382bNwcAJCdzaggiU6RxspOUlKSPOIiIAKiuxlI18ad80MD6THbu3Lmj92sRke5pNc4OEZE+CIKgstu5fOJPxYSnPkculic7d+/eha2lpF6qz4hId9RKdqKiorB8+XI4OjoiKiqqxn0//vhjnQRGRA3P/fv3kZeXB4lEgpYtW4rrvaX2tQ4aWHkwQF3y9vaGpaUlysrKkJ6ejqZNm+rlOkSkH2olO+fPn0dpaan4d3UUBxgkItKUvFTH19cXdnbKY+UYcuRiKysrNG3aFMnJyUhOTmayQ2Ri1Ep2Dh8+rPJvIiJdkic7bdq0qXE/Q4xc7OfnJyY74eHhKvdJzy3i9BFERqhOE4GmpKTUadyJJUuWQCKRKL2CgoLE7UVFRYiMjISbmxucnJwwcuRIZGRkKJ0jOTkZERERcHBwgIeHB+bMmYOyMtahE5kibaaJqC/V9ciq3CX+xzPssUVkbDROdsrKyrBo0SJIpVL4+/vD398fUqkUCxcuFKu6NNGuXTukpaWJr7/++kvcNnv2bOzevRs7duzA0aNHkZqaihEjRojby8vLERERgZKSEpw4cQJbt27Fli1bOD8XkYkyhWRHsUdWdV3i03IL6z0+Iqqexr2x3nzzTezcuRNr1qwRi3JjY2OxZMkSPHz4EBs2bNAsACsreHl5VVmfm5uLTZs2Ydu2bejbty8AYPPmzWjbti1OnjyJ7t27Y//+/bh69SpiYmLg6emJjh07Yvny5Zg3bx6WLFkCGxsbTW+PiAzIFJIdxZIdQ3eJJyL1aFyys23bNmzZsgVTp05FaGgoQkNDMXXqVDEx0dTNmzfh4+ODFi1aYNy4ceKD5Ny5cygtLUX//v3FfYOCgtC8eXPExsYCqEiyQkJC4OnpKe4zcOBA5OXl4cqVK6hOcXEx8vLylF5EZFjl5eVISEgAUJHsGNucU6qSHXmXeEX12SWeiNSjcbJja2sLf3//KusDAgI0Lknp1q0btmzZgn379mHDhg1ISkrCM888g0ePHiE9PR02NjZwcXFROsbT0xPp6ekAgPT0dKVER75dvq06q1atglQqFV++vr4axU1EupeSkoLi4mJYW1vDz8/P0OFUIY9JMdmRd4mXU9UlnogMT+NkZ/r06Vi+fDmKi4vFdcXFxVi5ciWmT5+u0bkGDx6MUaNGITQ0FAMHDsTvv/+OnJwc/Pe//9U0LI0sWLAAubm54ouT+xEZnrwKKzAwEJaWlgaOpir5j6Ls7Gw8evRIXD8yrJn4d0xUb4zu2rzeYyOimqnVZkexUTAAxMTEoFmzZujQoQMA4OLFiygpKUG/fv3qFIyLiwtat26NhIQEPPfccygpKUFOTo5S6U5GRobYxsfLywunT59WOoe8t5aqdkBytra2sLW1rVOsRKRbtbXX0eeggepwdnaGi4sLcnJykJKSguDg4Cr7GKJLPBHVTq1kRyqVKi2PHDlSaVlX1UCPHz9GYmIixo8fj7CwMFhbW+PgwYPi9eLj45XGuAgPD8fKlSuRmZkJDw8PAMCBAwfg7Oys8kFERMbr6rXrAIDDaZZG0UZHlebNmyMnJwd37tzhM4bIhKiV7GzevFkvF3/77bfxwgsvwM/PD6mpqXjvvfdgaWmJsWPHQiqVYtKkSYiKioKrqyucnZ3x5ptvIjw8HN27dwcADBgwAMHBwRg/fjzWrFmD9PR0LFy4EJGRkSy5ITIx8glArVyNd3Ti5s2b49KlS5z9nMjEGHQi0Lt372Ls2LF4+PAh3N3d0bNnT5w8eRLu7u4AgE8++QQWFhYYOXIkiouLMXDgQHz++efi8ZaWltizZw+mTZuG8PBwODo6YsKECVi2bJmhbomItJTwv2TH2siTHaDqwIJEZNwMmuxs3769xu12dnZYv3491q9fX+0+fn5++P3333UdGhHVo+LiYty5cxsAYN3YeJMdeZU9OzUQmZY6TRdBRKQLiYmJEAQBEhsHWDi6VNmenltU/0GpoGmyY2xjBRE1VEx2iMjg5D2xrF2bQiKpGKXPGOecUpXsyHuJ3V4dAQcbgxaWE1E1NEp2SktL0a9fP7EhIRGRLsiTHStXHwAVJTnGOOeUvM3O3bt3IZPJDBoLEalPo2TH2toaly5d0lcsRNRAyZMdG89AAMD55Oxq55wypKZNK0qeiouLcf/+fYPGQkTq07ga66WXXsKmTZv0EQsRNVA3btyAU+hzcO46HADw9o5LqDTllFHMOWVtbS0OWMpGykSmQ+MK5rKyMnzzzTeIiYlBWFgYHB0dlbZ//PHHOguOiBqGG3fvw/X/1ojtdQRAKdkxpjmnfH19kZaWhpSUFHTp0sXQ4RCRGjROdi5fvozOnTsDeFL0LCd/UBERqSs3Nxc55dbwslAuaFasxYqJ6o0W7k71G1g1fH19cfr0aZUlOwUlZQheHA0AuLpsYH2HRkTV0DjZOXz4sD7iIKIG6ubNmyjLToUgk0GikPBYSCC22zGmOae0HWsnPbfIaBI2ooZG667nCQkJiI6ORmFhRe8IQRBqOYKIqKobN26g/NFDuN6KFtdZSIClQ9sZMKrqaZLsGGP3eaKGSONk5+HDh+jXrx9at26NIUOGIC0tDQAwadIkvPXWWzoPkIjMm7w6vKP0SbfymKjeGBnWzFAh1Uje/by2ZMdYu88TNUQaJzuzZ8+GtbU1kpOT4eDwpGfE6NGjsW/fPp0GR0Tm7/r1itnOAwNbi+uMqdqqMnnJTm3zY915mG+U3eeJGiKN2+zs378f0dHRaNZM+VdXq1atcOfOHZ0FRkQNw7Vr1wAAbdu2BU4aOBg1yJOd1NRUlJWVwcpK9WPUz81Rqd0RYBzd54kaIo1LdvLz85VKdOSysrJga2urk6CIqGEoLy9HfHw8AKBNUJCBo1GPp6cnrKysIJPJxGp8Vbykdkrtjoyp+zxRQ6NxsvPMM8/g22+/FZclEglkMhnWrFmDZ599VqfBEZF5S0pKQnFxMezs7NDcz09pm7HOOWVpaYmmTStmZq+p3U56bpFSu6OYqN4Y3bW53uMjoqo0foKsWbMG/fr1w9mzZ1FSUoK5c+fiypUryMrKwvHjx/URIxGZKXkVVps2bWBpaWngaNTn6+uLO3fuVEl2Kve+UizZMeZ2SETmTuOSnfbt2+PGjRvo2bMnhg0bhvz8fIwYMQLnz59Hy5Yt9REjEZkppfY6JkRVj6y03MIqva8Ul4nIcLQqG5ZKpXj33Xd1HQsRNTCmmuyoGmsn6UHV3leVl4nIMLRKdrKzs7Fp0ybxQRUcHIyJEyfC1dVVp8ERkXlTTHbkbXRMgaru5wFNqva+qrxMRIahcTXWsWPH4O/vj3Xr1iE7OxvZ2dlYt24dAgICcOzYMX3ESERmSBAEsyrZ8ZbaV+l9ZayjQBM1NBonO5GRkRg9ejSSkpKwc+dO7Ny5E7du3cKYMWMQGRmpjxiJyAylpaUhLy8PFhYWaNWqlaHD0Uh1U0ZU7n1lrKNAEzU0GldjJSQk4KefflLqOWFpaYmoqCilLulERDW5evUqACAwMNDkxuiSJzuZmZkoLi5WGb+X1M6kquaIzJnGJTudO3cWi54VXbt2DR06dNBJUERk/ky1CgsA3NzcYG9fMTjg3bt3a9mbiAxN45KdGTNmYObMmUhISED37t0BACdPnsT69euxevVqXLp0Sdw3NDRUd5ESkVkx5WRHIpHA19cXN27cQEpKCofdIDJyGic7Y8eOBQDMnTtX5TaJRAJBECCRSFBeXl73CInILJlysgNATHZqmxCUiAxP42QnKSlJH3EQUQMiCAIuX74MAJh3MAuLr+7F1WUDjWpaiNpU10iZiIyPxk8Wv0rz1xARaSojIwMPHjyAhYUFrJuY5nxRTHaITIfp/IwiIrMhb9sXGNgKxdam1RNLTlWyw95XRMZJ495YRER1JU922rVvb+BItMeSHSLTwWSHiOpdXFwcAKB9SIiBI9GeqslAicg4MdkhononL9lp3950kx15yU5OTg4ePXpk4GiIqCYaJzspKSlKg2idPn0as2bNwsaNG3UaGBGZp9LSUnH0ZFOuxmrUqBGkUikAlu4QGTuNk51//vOfOHz4MAAgPT0dzz33HE6fPo13330Xy5Yt03mARGRebt68iZKSEjg5OcHP319cn55bZLigtMR2O0SmQeNk5/Lly3jqqacAAP/973/Rvn17nDhxAt9//z22bNmi6/iIyMzIq7BCQkLwy/lUcX3/j4/ixzOmNUAfkx0i06BxslNaWipOehcTE4OhQ4cCAIKCgpCWlqbb6IjI7MiTnVahXfHeriviepkAvLPzMtJyCw0VmsaY7BCZBo2TnXbt2uGLL77An3/+iQMHDmDQoEEAgNTUVLi5uek8QCLSzv379/HgwQMIgmDoUJTIe2J5tQqFrFJo5YKA2w8KDBCVdtgji8g0aJzsfPDBB/jyyy/Rp08fjB07VpzpfNeuXWL1FhEZhiAI+O677xAcHAwPDw+4u7ujbdu2+Prrr40m6ZGX7DwdEggLifI2S4kE/k0cDBCVdliyQ2QaJIIWT8Dy8nLk5eWhcePG4rrbt2/D0dER7u7uOg2wPuTl5UEqlSI3NxfOzs6GDodIK+Xl5XjttdeqbTs3dOhQbN++Hfb29vUbmIKcnBzxuZGVlYU913Ox6LeKqiwLCbBqRAhGdzWd6SMOHz6Mvn37ok2bNrh+/Xqt+xeUlCF4cTQAmNxcYETGSN3vb41Ldvr27YtHjx4pJToA4OrqitGjR2se6f+sXr0aEokEs2bNEtcVFRUhMjISbm5ucHJywsiRI5GRkaF0XHJyMiIiIuDg4AAPDw/MmTMHZWVlWsdBZKqmT5+OLVu2wMrKCsuXL0dOTg5yc3OxZs0a2NnZYdeuXRg6dChKSkoMFuPxk6cBAFZST9g6NsLIsGbitpio3iaV6ABPSnaSk5ONpuSMiKrSONk5cuSIyodlUVER/vzzT62COHPmDL788kuEhoYqrZ89ezZ2796NHTt24OjRo0hNTcWIESPE7eXl5YiIiEBJSQlOnDiBrVu3YsuWLVi8eLFWcRCZqu3bt+OLL74AJBZwiXgbUXPnQyqVwtnZGXPmzMGBAwfg5OSEmJgYpR8U9e3cubMAABuvVlW2eUnt6jucOmvWrCJZKywsRFZWloGjIaLqqJ3sXLp0Saxrv3r1qrh86dIlnD9/Hps2bULTpk01DuDx48cYN24cvvrqK6XSotzcXGzatAkff/wx+vbti7CwMGzevBknTpzAyZMnAQD79+/H1atX8d1336Fjx44YPHgwli9fjvXr19f467W4uBh5eXlKLyJTdf/+fUybNg0AIA0fDcegnlX26dmzJ7Zv3w6JRIINGzbgp59+qu8wAQDnz50DANh4V012TJGdnZ1Ydc92O0TGS+1kp2PHjujUqRMkEgn69u2Ljh07iq+wsDCsWLFCqxKVyMhIREREoH///krrz507h9LSUqX1QUFBaN68OWJjYwEAsbGxCAkJgaenp7jPwIEDkZeXhytXrqA6q1atglQqFV/yomgiU/Tee+8hJycHHTp2hLTHmGr3i4iIwIIFCwAA06ZNw/379+srRJG8ZMfWTJIdgD2yiEyB2slOUlISEhMTIQgCTp8+jaSkJPF179495OXl4dVXX9Xo4tu3b8fff/+NVatWVdmWnp4OGxsbuLi4KK339PREenq6uI9ioiPfLt9WnQULFiA3N1d88SFFpurGjRv48ssvAQBr/vUxJBaWNe6/ePFihISE4MGDB3jvvffqI0RRZmYmUpKTAUhg4xlYr9fWJ/bIIjJ+ancF8PPzAwDIZDKdXDglJQUzZ87EgQMHYGdXv3X1tra24sCIRKZszZo1kMlkeP7559HzmWeAA9E17m9ra4vPPvsMffr0wcaNGzFjxgwEBQXVS6xnz1aU6li5NoWFrel0L6+NtslOem4RWrg76SMkIqpEq36PN2/exOHDh5GZmVkl+VG3KuvcuXPIzMxE586dxXXl5eU4duwY/v3vfyM6OholJSXIyclRKt3JyMiAl5cXAMDLywunT59WOq+8t5Z8HyJzdffuXXz77bcAgHfeeUft43r37o2hQ4di165dmDdvHn777Td9hajkzJkzAAD7gE4AnnzZ314dUS/X1xdNkp2fzz2ZRLn/x0dNrqs9kanSuDfWV199hbZt22Lx4sX46aef8Msvv4ivX3/9Ve3z9OvXD3Fxcbhw4YL46tKlC8aNGyf+bW1tjYMHD4rHxMfHIzk5GeHh4QCA8PBwxMXFITMzU9znwIEDcHZ2RnBwsKa3RmRSNm7ciNLSUjzzzDPiZ0Kutkk1P/jgA1haWmLXrl04cuSIHqN84syZM3AKfQ6N+00BYJpzYami2P28Jmm5hSY/PQaRqdK4ZGfFihVYuXIl5s2bV6cLN2rUCO3bt1da5+joCDc3N3H9pEmTEBUVBVdXVzg7O+PNN99EeHg4unfvDgAYMGAAgoODMX78eKxZswbp6elYuHAhIiMjWU1FZq20tBRff/01gIrxdQDNSg2CgoIwZcoUbNiwAYsXL8axY8f0Gq8gCDhzJQGuoz6ERFIxbLL8y75Xa3d4Sw030GFdqVuyk/Qgv9rpMUz5/olMgcYlO9nZ2Rg1apQ+Yqnik08+wfPPP4+RI0eiV69e8PLyws6dO8XtlpaW2LNnDywtLREeHo6XXnoJL7/8MpYtW1Yv8REZyp49e5CWlgYPDw8MHz5cq1KDd999FzY2Nvjzzz+1HiNLXXfv3kWuzAYSC+VHjqnNhaWKPNm5d+9ejW0aA5o4mvz0GESmSuNkZ9SoUdi/f78+YsGRI0ewdu1acdnOzg7r169HVlYW8vPzsXPnziptcfz8/PD777+joKAA9+/fx7/+9S9YWXEIdjJv8rY6r7zyCmxsbGosNahO06ZN8corrwCAyh6RunT69GmUZacCgnIyYA5f9j4+PrCwsEBpaWmVEd4VeUvtsXRoO3HZQgIsGRqM8FWH4D9/LwpKOPI7kb5onBUEBgZi0aJFOHnyJEJCQmBtba20fcaMGToLjoiqysrKwt69ewEA48ePB/Ck1EAx4VEnkZg7dy6+/vpr/PHHHzh//jw6deqkl5iPHz+O8kcPEVxwCVcdOwKo+LJ/f0R7k6/CsbKygo+PD+7evYuUlBR4e3tXu+/IsGbiXGAxUb3hJbUTl4lIfzROdjZu3AgnJyccPXoUR48eVdomkUiY7BDp2U8//YTS0lKEhoaK7dvkpQaKk2qqk0i0bNkSY8eOxffff4/3338fO3bs0EvM8mqyUV2bY+nVinUxUb3Npuu1r6+vmOw89dRTah1jitNjEJkqjauxFAcTrPy6deuWPmIkIgXydmtjx45VWq84qebuN3tg3s9xYvVIQUkZ/OfvVVldMn/+fADAzz//jISEBJ3H+/jxY5w/fx4A0KPHk6kszOnLngMLEhk3jZMdIjKcvLw8HDp0CAAwfPjwavfzdFY/kWjfvj2GDBkCQRDwySef1DXEKk6ePIny8nI0b94czcx0ahZ1u58TkWFoXI1V25QQ33zzjdbBEFHNoqOjUVpaitatW+t05OM5c+bg999/x+bNm7F06VI0adJE7WMLSsoQvLhi5OarywbCwUb5sSKv7n7mmWd0Fq+xYckOkXHTquu54iszMxOHDh3Czp07kZOTo4cQiUhu165dAIChQ4fq9Ly9e/dGly5dUFhYiPXr1+v03PKBQfv27avT8xoTXUwGWttAkESkPY1Ldn755Zcq62QyGaZNm4aWLVvqJCiihqi2EpKysjKxF5aukx2JRIK3334bY8aMwb///W/MmTMHDg517xKem5srTunSv3//Op/PWGlbssPpI4jqh07a7FhYWCAqKkov9f1EVCHm8FFkZ2fDwt4ZHbuo1+NHEyNHjoS/vz8ePHiArVu36uScR48eRXl5OVq1aiWWfpgjebKTlpaG0tLSavdzsLHC7dURuL06ArmFpZw+gqie6KyBcmJiIsrKOCgWkb7s3bMbAGDfsissLS2rbFf8IlUsFapcPVJddYmVlRWioqIAAB999BHKy8vrHPPvf+wDAKQ5BqKgpKzaGE2du7s7bGxsIAgCUlNT1TpGm4EgiUg7Gj9t5A9DOUEQkJaWhr1792LChAk6C4yIlEX/8QcAwD6w9lKdytUjQzv4KC1XV13y6quvYsmSJUhMTMRvv/2GESNGaB2vIAj444/fK2JuEab1eUyBhYUFmjVrhlu3biE5ORl+fn61HqPtQJBEpDmNS3bOnz+v9Lp06RKAil+CilM9EJHu3L17Fzdv3gAkFrD361Djvqrmyfr1QqrScnXVJY6OjnjjjTcAAB9++CEEQaiyT00US40uX76M5Dt3ILGygZ1fR43OY4o0bbejavoIcxhRmsgYaVyyc/jwYX3EQUQ1kPdosvEKhIVdxajD1TVoVlU9UllNs21Pnz4dH374IU6ePInjx4+jZ8+eStsrX7e6Rra7d1dUu9n5dYCFjfkMIFgdbXpkVZ4+wlxGlCYyNlq32bl//z7++usv/PXXX7h//74uYyJq8Cq3q5EnO3a1lOoAqmfXrqym6hJPT0+8/PLLACpKd2qLs7pGtvKem+pUu5mDuo61Y04jShMZG42Tnfz8fLz66qvw9vZGr1690KtXL/j4+GDSpEkoKGDDOiJtVS4h+fFMxWi8giCIoybbtegCoOYxWVRVjwzv6KO0XNts22+99RYkEgl27dqF69evV3utOw9VN7L960I8zp49C0tLSzi0frqGuzYfHFiQyHhpnOxERUXh6NGj2L17N3JycpCTk4PffvsNR48exVtvvaWPGInMnqp2NvISkhs3buDevXtw6TwEds2CAVQkQ4rJUWWK82TFRPXG+yNClJYVtwOoMndWmzZtxLF8VqxYUe11/NyqliJZSiQ4c7iiYXK//s/B0kEKwPwHzWOyQ2S8NE52fv75Z2zatAmDBw+Gs7MznJ2dMWTIEHz11Vf46aef9BEjkdmrqRvywYMHYdnIDdL+r0MiqcgsZAKUkqOaVK4eUbe6ZPHixQCAbdu24cKFC9Weu3Ip0ooX22HndxXTxrQa9KSHpmJplTliskNkvDROdgoKCuDp6VllvYeHB6uxiLSkqp2NvF3NwYMHYdXYB5Aof1wVkyN9lJp07twZY8eOhSAImDdvnsp90nOLqpQiNc66hsTERLj4BOD3jEZK8ZrzoHnyZOfBgwd8FhIZGY2TnfDwcLz33nsoKnrycC0sLMTSpUsRHh6u0+CIGorquiF7NrLF4cOHUZadisptjhWX9VVqsmLFClhbW2P//v2IiYkBULVtkeKyl9QO//73vwEAEaNfaVCD5rm4uMDR0RFAxVABRGQ8NE52Pv30Uxw/fhzNmjVDv3790K9fP/j6+uLEiRP49NNP9REjUYNQuYRkdNfmuHz5MrKzs2EvFOO9F9qK2ysnPvoqNWnRogWmTZsGoKK9XvL9vCptixSXL1w4j71790IikeCNl/+v2tIqcySRSDTufm6uI0oTGRuNk5327dvj5s2bWLVqFTp27IiOHTti9erVuHnzJtq1a1f7CYioVl5SOxSUlOHZOV8CALo+1Q3/UBjx+F+jQlF5KB1tS01qqwJ7a94CWNg7Iy4uDsvXfVWltEZxeen/2vmMHTsWT3cMbnCD5rHdDpFx0uqnhIODAyZPnqzrWIiokqK7FaUmT/foobS+U/PGNU41IC8xUKS4/J/Y2+Lf/T8+qpSUpOcWKQ1u16RJE7j2n4oHuz/Et5+tgc/r3yglWvI48q//hf3R+2BlZYWlS5cCaHiD5jHZITJOGpfsrFq1Ct98802V9d988w0++OADnQRFRBWK714DAHQPVx6rRlUvKHVLTVR1c1/825NlVe1/HNr2gmO7Z1GSm4miP78Rp5GwkABLh7ZDaXYqsqLXAwDmzJmDwMDAKtdtCIPmMdkhMk4aJztffvklgoKCqqxv164dvvjiC50ERUTAvbt3UZ6XCUgs0PWpqqMQq2rjow5V3dwVF1W1/5FIJHAdGInOYWFIP7ETqZveQEHCafwwvi1cHsQBe5ZAVvQIYWFhWLJkiSa3aVaY7BAZJ42TnfT0dHh7e1dZ7+7ujrS0NJ0ERdRQVB7MT1Fs7AkAgI1HABo1aqTqcJEmpSbqTCehqv2PhbUddv++D93Dw1H2MAX3f16G7u1aYujQoUhNTUX79u3x+++/w8bGRu1YzI082UlONt/xhIhMkcbJjq+vL44fP15l/fHjx+Hj46PiCCJSR+WeObH/+5zZ/m/UZF2p3M1dgqq9u6rrNVUksUN0zCE0fvZVWDWu+NHj5uaGOXPm4K+//oKHh4dOYzU12kwGSkT6p3ED5cmTJ2PWrFkoLS1F3759AVRMUjh37lxOF0GkQ7GxJ2DZyA32rcLFRsOKjYxVzWmlLsWGwwff6o3jCQ/E5crtfyqPq7N0aDs4PzUCzk+NwPl3+6BxI8dqr6OqobQ5k5fsPHr0CLm5uZBKpQaOiIgALUp25syZg0mTJuGNN95AixYt0KJFC7z55puYMWMGFixYoI8YiRqcR48e4Zbgiaavb4a9X6hep1rwktoptf/Z/WYPzPs5Dv7z9+LW/cc1jqtja2url5hMlYODA1xdXQGwdIfImGic7EgkEnzwwQe4f/8+Tp48iYsXLyIrK0ucR4eI6u73I7FoPCASEouKj2h9TrXg6fyk/Y+qWc0rL5MyNlImMj5aD9np5OSErl276jIWogZNcXybI+euQGLRWmm7vNGwvHqpPqqI5LOaVx7P56/5z5r14IB14evri4sXLzLZITIiGpfsEJHuVG4PI6+qSrp4CoJMprSvIaZaqMt4Pg0VS3aIjA+THSIDUTW43zs7LyM1pwB/Hz+ErOjPlAbvM1SSoe14Pg0Vu58TGR/OPEdkIKoG9ysXBJy6cgv379+Hdc4R4LlpgJWNzqdaqGk6iZp6eTWEUZDrit3PiYyPWiU7nTt3RnZ2NgBg2bJlKCjQfLJBIlKmanA/S4kEmbeuAgBCQkMhsaoYoM9QSUZtk4RSVazGIjI+aiU7165dQ35+PgBg6dKlePz4sV6DImoIKg/uJ6+qij9/EgDQtWvVKSLqQ+V2RIrLVDt5snP37l2xGpKIDEutaqyOHTti4sSJ6NmzJwRBwL/+9S84OakuUmcXdCL1qZoVfN2sUwCALk89hX3x9RuPqnZEistUu6ZNm0IikaCoqAgPHjyAu7u7oUMiavDUSna2bNmC9957D3v27IFEIsEff/wBK6uqh0okEiY7RFryktqhtLQUf//9NwCgS5euQPzteo1BVTsiTcbVKSgpQ/DiaADA1WUD4WDT8JoF2tjYwNPTE+np6UhJSWGyQ2QE1KrGatOmDbZv344zZ85AEAQcPHgQ58+fr/KSP6TVtWHDBoSGhsLZ2RnOzs4IDw/HH3/8IW4vKipCZGQk3Nzc4OTkhJEjRyIjI0PpHMnJyYiIiICDgwM8PDwwZ84clJVpP4w+kSHFxcWhqKgILi4uCGzVqt6vX107otgFfcU5u6h2bLdDZFw07nouk8l0Ntlfs2bNsHr1apw7dw5nz55F3759MWzYMFy5UlFsPnv2bOzevRs7duzA0aNHkZqaihEjRojHl5eXIyIiAiUlJThx4gS2bt2KLVu2sHSJTNapUxVVWE899RSc7GyUJgatD9W1I+K4OpqR98hi93Mi46DVEzQxMRFr167FtWvXAADBwcGYOXMmWrZsqdF5XnjhBaXllStXYsOGDTh58iSaNWuGTZs2Ydu2beKEo5s3b0bbtm1x8uRJdO/eHfv378fVq1cRExMDT09PdOzYEcuXL8e8efOwZMkS2NjYaHN7RAZz5swZABXJjqGoakdEmtG2ZIfVgET6oXHJTnR0NIKDg3H69GmEhoYiNDQUp06dQrt27XDgwAGtAykvL8f27duRn5+P8PBwnDt3DqWlpejfv7+4T1BQEJo3b47Y2FgAQGxsLEJCQuDp6SnuM3DgQOTl5YmlQ6oUFxcjLy9P6UVUHwpKyuA/fy/85+9VOZ7NuXPnAABdunSp79BU4rg62uHAgkTGReOfDfPnz8fs2bOxevXqKuvnzZuH5557TqPzxcXFITw8HEVFRXBycsIvv/yC4OBgXLhwATY2NnBxcVHaX97wDwDS09OVEh35dvm26qxatQpLly7VKE4ifVAc3K+wsFBM0sPCwgwZlk4ozvXV0Pj7+wMAbt++bdA4iKiCxiU7165dw6RJk6qsf/XVV3H16lWNA2jTpg0uXLiAU6dOYdq0aZgwYYJW59HEggULkJubK77YiJD0pbaSHEVxcXEoLy+Hu7s7mjZtWk8R6lZ1c301NAEBAQCY7BAZC42THXd3d1y4cKHK+gsXLmjVcNnGxgaBgYEICwvDqlWr0KFDB3z66afw8vJCSUkJcnJylPbPyMiAl5cXAMDLy6tK7yz5snwfVWxtbcUeYPIXkaHJq7DCwsIgkUhq2dv4VDfXV1puoQGjMgx5yU5GRgZHnCcyAhonO5MnT8aUKVPwwQcf4M8//8Sff/6J1atXY+rUqZg8eXKdA5LJZCguLkZYWBisra1x8OBBcVt8fDySk5MRHh4OAAgPD0dcXBwyMzPFfQ4cOABnZ2cEBwfXORai+qSY7BiSvGpN015g1c31dftBw/uyb9y4MaRSKQDgzp07Wp2DU3UQ6Y7GbXYWLVqERo0a4aOPPsKCBQsAAD4+PliyZAlmzJih0bkWLFiAwYMHo3nz5nj06BG2bduGI0eOIDo6GlKpFJMmTUJUVBRcXV3h7OyMN998E+Hh4ejevTsAYMCAAQgODsb48eOxZs0apKenY+HChYiMjIStra2mt0ZUryq3aZGPU9W5c2dDhVQn8jF6FBMeS4kE/k0cDBeUAfn7++PixYtISkpC27Zt1TqmcjXgqhEhnGWeSAc0LtmRSCSYPXs27t69K7Z5uXv3LmbOnKlx0XtmZiZefvlltGnTBv369cOZM2cQHR0tNnL+5JNP8Pzzz2PkyJHo1asXvLy8sHPnTvF4S0tL7NmzB5aWlggPD8dLL72El19+GcuWLdP0tojqRXVtWoqLi3H58mUAhi/Z0RbH6FGmabsdVgMS6U+dBnFo1KhRnS6+adOmGrfb2dlh/fr1WL9+fbX7+Pn54ffff69THET1Ie5ursovs16t3XHv5hWUlpbCzc1NHJDOFHGMnifk7XaSkpLU2r+masCGmjAS6QpHrCLSI8WSnDEbT6LyNFPyL7M4hSosU2ycrEpDH6NH0+7nrAYk0h+Nq7GISD2VqyVUzacp/zIzlsbJpDvyaix1S3ZYDUikP0x2iPREVbWEIsUvMyY75kebgQVHhjUT/46J6s3GyUQ6olGyU1pain79+uHmzZv6iofIbKiaQVxxWf5lVlJSgri4OACm2xOLqpInOw8fPsSjR480Pr6hVwMS6ZJGyY61tTUuXbqkr1iIzIqqagnFZfmX2ZUrV1BSUoLGjRuLVR+mStsxesyRs7MzXF1dAXAkZSJD07ga66WXXqq1FxURVahcLaG4LCevwjKnxslUQdN2O4o0mWqEiGqm8U+vsrIyfPPNN4iJiUFYWBgcHR2Vtn/88cc6C47InFRXLaGY7JB58ff3x7lz51iyQ2RgGic7ly9fFh/KN27cUNrGX6VEmpOPnMzGyeZH05IdeTUgAJbmEOmQxsnO4cOH9REHUYOg+GUGVDT6v3jxIgAmO+ZImx5ZRKR7Wnc9T0hIQHR0NAoLK4YyF4Qa+tgSkUpXr15FcXExnJ2d0aJFC0OHQzpWlzY7RKQ7GpfsPHz4EP/4xz9w+PBhSCQS3Lx5Ey1atMCkSZPQuHFjfPTRR/qIk8gkVS7JqUxx8k8LCw57ZW50VbJTedJYItKMxk/X2bNnw9raGsnJyXBweDKM+ejRo7Fv3z6dBkdk7jiYoHnz8/MDAOTm5iI7O1ujY6ubNJaINKdxsrN//3588MEHaNZMuQttq1atcOfOHZ0FRtQQsCeWeXN0dISHhwcAzUp3OAM6kW5pnOzk5+crlejIZWVlwdbWVidBETUEZWVlbJzcAGg6+zlQ8wzoRKQ5jZOdZ555Bt9++624LJFIIJPJsGbNGjz77LM6DY7InF2/fh2FhYVwcnJCq1atDB0O6Ym8kbImJTuqphrhDOhE2tO4gfKaNWvQr18/nD17FiUlJZg7dy6uXLmCrKwsHD9+XB8xEpkleRVWp06d2DjZjGlTsiOfamTRbxVVWZwBnahuNH7Ctm/fHjdu3EDPnj0xbNgw5OfnY8SIETh//jxatmypjxiJzBIHE2wYtCnZATgDOpEuaTVTn1QqxbvvvqvrWIgaFPbEahh00f2cM6AT1Y1WyU52djY2bdqEa9euAQCCg4MxceJEcYZfIqpZeXk5zp8/D4A9scyd4sCCgiBoPa1OQUkZghdHAwCuLhvY4GeVJ9KExtVYx44dg7+/P9atW4fs7GxkZ2dj3bp1CAgIwLFjx/QRI5HZuXHjBgoKCuDo6Ig2bdoYOhzSIz8/P0gkEuTn5+P+/fuGDoeoQdL4p0FkZCRGjx6NDRs2wNLSEkDFr9Q33ngDkZGRiIuL03mQROZGXoXVsWNH8XNE5snW1hbNmjVDSkoKEhMTxXF3iKj+aFyyk5CQgLfeekvpAW1paYmoqCgkJCToNDgic8XBBBuWwMBAANDoGSmfauT26ghWWRHVkcbJTufOncW2OoquXbuGDh066CQoInPHnlgNi7ynqq5+EKbnFunkPEQNhVo/Fy5duiT+PWPGDMycORMJCQno3r07AODkyZNYv349Vq9erZ8oicyITCYTGycz2WkY5CU7iYmJWp+j8lxZq0aEsDs6kZokgiAIte1kYWEBiUSC2naVSCQoLy/XWXD1JS8vD1KpFLm5uXB2djZ0OGTm4uPjERQUBHt7e+Tl5cHKilUU5u7nn3/G//3f/6Fbt244efKkxsen5Raix+pDSlNIWEok+Gv+sxxokBo0db+/1XrKajLyJxHVTF6F1aFDByY6DYS8Gkvbkp2a5spiskNUO7WetH5+fvqOg6jB4GCCDY882Xnw4AFycnLg4uKi0fHyubIql+xwriwi9Wj1szI1NRV//fUXMjMzIZPJlLbNmDFDJ4ERmSJ1Bn47e/YsACY7DUmjRo3g4eGBzMxMJCYmavzec64sorrRONnZsmULpk6dChsbG7i5uSmNBiqRSJjsENVAJpOxJ1YDFRgYqHWyA1TMlSVPdmKieqOFu5OuQyQyWxp3PV+0aBEWL16M3Nxc3L59G0lJSeLr1q1b+oiRyGwkJCTg0aNHsLOzQ3BwsKHDoXqkzVg71eFcWUSa0TjZKSgowJgxY2BhofGhRA2e4sjJbJzcsNS1kTIRaU/jjGXSpEnYsWOHPmIhMiuqBn5j4+SGS5clO0SkGY1/Wq5atQrPP/889u3bh5CQEFhbWytt//jjj3UWHJGpqW3gNyY7DVddS3bk00cQkea0Snaio6PFmZorN1AmaqjScgvx3q4r4rJMAN7ZeRm9WrvDW2oPmUzGZKcBk5fs3Lt3DwUFBXBwYLdxovqicbLz0Ucf4ZtvvsErr7yih3CITFdtA7+xcXLD5urqChcXF+Tk5ODWrVto3769oUMiajA0brNja2uLHj166CMWIpMmH/hNkeLAb/JSHY6c3DBJJBKxdOfmzZt1Pl9BSRn85++F//y9KCgpq/P5iMyZxsnOzJkz8dlnn+kjFiKTJh/4Ta7ywG/yZKdLly4GiY8Mr3Xr1gCAGzduGDgSooZF42Tn9OnT2Lp1K1q0aIEXXngBI0aMUHppYtWqVejatas4uujw4cMRHx+vtE9RUREiIyPh5uYGJycnjBw5EhkZGUr7JCcnIyIiAg4ODvDw8MCcOXNQVsZfOlT/RoY1E/+OierNxsmkRN7WsfJzjoj0S+OydBcXF42TmuocPXoUkZGR6Nq1K8rKyvDOO+9gwIABuHr1KhwdHQEAs2fPxt69e7Fjxw5IpVJMnz4dI0aMwPHjxwEA5eXliIiIgJeXF06cOIG0tDS8/PLLsLa2xvvvv6+TOIlqojhFxNmF/cT1igO/ceRkApjsEBmKxsnO5s2bdXbxffv2KS1v2bIFHh4eOHfuHHr16oXc3Fxs2rQJ27ZtQ9++fcXrt23bFidPnkT37t2xf/9+XL16FTExMfD09ETHjh2xfPlyzJs3D0uWLIGNjY3O4iXSVkJCAvLy8tg4uYHTV7KTnlvE6SOIamBUwyDn5uYCqOi1AFQU+5eWlqJ///7iPkFBQWjevDliY2MBALGxsQgJCYGnp6e4z8CBA5GXl4crV65AleLiYuTl5Sm9iPSJjZMJAFq1agUAePjwIR4+fFinc1Ue0+nHM8l1Oh+ROdP4qRsQEFDjeDrazo8lk8kwa9Ys9OjRQ+ySmZ6eDhsbG7i4uCjt6+npifT0dHEfxURHvl2+TZVVq1Zh6dKlWsVJVJO8wjKVA7+xvQ4BgKOjI3x9fZGSkoL4+Hg8/fTTWp2ntjGdiEiZxsnOrFmzlJZLS0tx/vx57Nu3D3PmzNE6kMjISFy+fBl//fWX1udQ14IFCxAVFSUu5+XlwdfXV+/XJfNU26jJAJMdeqJNmzZ1TnZqG9OJiJRpnOzMnDlT5fr169fj7NmzWgUxffp07NmzB8eOHUOzZk96s3h5eaGkpAQ5OTlKpTsZGRnw8vIS9zl9+rTS+eS9teT7VGZrawtbW1utYiVSpM4vbMXGyex2Tm3atEFMTEyd2u3Ix3RSTHgUx3QiImU6a7MzePBg/PzzzxodIwgCpk+fjl9++QWHDh1CQECA0vawsDBYW1vj4MGD4rr4+HgkJycjPDwcABAeHo64uDhkZmaK+xw4cADOzs5sCEp6V9MvbLnExEQ2TiaRLhop1zamExEp01lLyZ9++klsWKyuyMhIbNu2Db/99hsaNWoktrGRSqWwt7eHVCrFpEmTEBUVBVdXVzg7O+PNN99EeHg4unfvDgAYMGAAgoODMX78eKxZswbp6elYuHAhIiMjWXpDeqfOL2x5iScbJxOgux5ZI8OaYdFvFaWKMVG92RuLqAYaP3k7deqk1EBZEASkp6fj/v37+PzzzzU614YNGwAAffr0UVq/efNmce6tTz75BBYWFhg5ciSKi4sxcOBApetYWlpiz549mDZtGsLDw+Ho6IgJEyZg2bJlmt4akcbkv7DlXzqqfmGzvQ4pkic7CQkJKCsr00kCrDimExFVpfGnbPjw4UrLFhYWcHd3R58+fRAUFKTRuQRBqHUfOzs7rF+/HuvXr692Hz8/P/z+++8aXZtIV2r7hc1khxT5+vrC3t4ehYWFuH37tjhfFhHpj8bJznvvvaePOIjMQuVf2OXl5Ux2SImFhQVatWqFS5cuIT4+nskOUT0wqkEFiczN9evX8ejRIzg6OqJdu3a1H0ANgi7a7TjYWOH26gjcXh0BBxu2BSOqidqfEAsLixoHEwQAiUTCCTiJFJw6dQpARZdzNk4mOXmV//Xr1w0cCVHDoPbT95dffql2W2xsLNatWweZTKaToIhMifwXtiryZKdbt271GRIZOfkQBNVNaUNEuqV2sjNs2LAq6+Lj4zF//nzs3r0b48aNYw8oahAUZzm/umxgjVUITHZIFfmUOJcvX4YgCLWWmhNR3WjVZic1NRWTJ09GSEgIysrKcOHCBWzduhV+fn66jo/IZOXn5yMuLg4Akx1S1rp1a1hZWSEvLw/37t0zdDhEZk+jZCc3Nxfz5s1DYGAgrly5goMHD2L37t3irxQieuLcuXOQyWRo2rQpmjZtauhwyIjY2NiIM6CzKotI/9ROdtasWYMWLVpgz549+OGHH3DixAk888wz+oyNyOil5xZVu41VWFQTee88JjtE+qd2m5358+fD3t4egYGB2Lp1K7Zu3apyv507d+osOCJjpM4s5wBw8uRJAEx2SLV27drhp59+wuXLlw0dCpHZUzvZefnll9mIjho8dWY5l2PJDtVEXv2vq5IdTRrOEzU0an8atmzZoscwiExDTbOcKyY79+7dw71792BhYYEuXbrUc5RkCuTVWFevXmWPLCI94wjKRBqQz3KuqPIs58CTUp2QkBA4OjrWV3hkQgIDA2FtbY3Hjx8jOTnZ0OEQmTUmO0QakM9yLqdqlnOAVVhUO2tra3HaCF2326mp4TxRQ8Rkh0hDI8OaiX/HRPVW2TiZyQ6pQ5c9sio3nP/xDEuLiOSY7BDVQeVZzoGKmc7Pnj0LgMkO1UxXjZSraziflltYp/MSmQsmO0Q6duXKFeTn56NRo0bihI9EqshLduQjbWurpobzRMRkh0hj8ok/b6+OUNm998SJEwCAp556CpaWlvUdHpmQDh06AKhIkEtLS7U+j6qG8wAw9quTKCgp0/q8ROaCyQ6Rjv31118AwBHGqVb+/v5wdnZGSUkJrl27pvV5VDWcJ6InmOwQ6Zg82enZs6eBIyFjZ2FhgY4dOwIALly4UKdzKTac3/1mD/Fv9swiYrJDpFMpKSm4c+cOLC0t2TiZ1NKpUycAwPnz53V2ztjELPFv9swi0mAEZaKGSpNh+I8fPw4A6NixI5ycnOolPjJt8pKduiY78rZkabmF6LH6kLheJgALdsZh3s8VjaA5lQQ1RCzZIdIhVmGRpuQlOxcuXIAgCLXsXTtVPbMqLxM1NEx2iDRQW/sHJjukqbZt28LGxga5ubm4fft2nc+nqmeW4jLb8FBDxGSHqBbqjkybm5uLS5cuAQB69Oihch+iymxsbMTxduraSBlQ3TNraAcfcZlteKghYrJDVANNRqaNjY2FIAho2bIlvL296zNMMnG6bqSs2DPrh8ndsetiqrjM0ZWpIWKyQ1QDTUam/fPPPwGwVIc0p48eWXIFJWUcXZkaPCY7RDVQ1f7BUiKBfxOHKvseOXIEANC7d+96iIzMia7G2lHFz039f8NE5orJDlENVLV/eH9Ee3hL7ZX2e/z4MU6fPg0AePbZZ+s1RjJ9HTp0gEQiwd27d5GZmVnn8ylOadLC3Umtf8NE5ozJDlEtFNs/xET1xuiuzavsc/z4cZSVlcHPzw8BAQH1GR6ZgUaNGqFt27YAICbNuqTOv2Eic8Zkh0gDXlI7lesPHz4MgKU6pD35iNsnT57U63Wq+zdMZM6Y7BDVorZZzoEnyU7fvn3rMzQyI927dwcAnDp1ysCREJkfjhlOVEe5ubk4e/YsAJbskPbkJTunT5+GTCaDhYXufovKE3aihoolO0R19Oeff0ImkyEwMBDNmjWr/QAiFdq1awcHBwfk5eXh+vXrhg6HyKww2SGqpKCkDP7z98J//l4UlJTVuj/b65AuWFlZoWvXrgD0X5Wl6b9xIlPHZIeojg4dqphhmskO1VV9NVImamiY7BDVoLZJE9PT08WB4Pr161cPEZE5M0QjZU4MSg0Bkx1qkGoqxld34k8A2L9/PwAgLCwMHh4e+gmWGgx5yU5cXBweP36st+to8m+cyBwYNNk5duwYXnjhBfj4+EAikeDXX39V2i4IAhYvXgxvb2/Y29ujf//+uHnzptI+WVlZGDduHJydneHi4oJJkybp9SFB5kkx+VF34k8A2LdvHwBg0KBB9RInmTcfHx/4+vpCJpOJPfx0TZPJbYnMhUGTnfz8fHTo0AHr169XuX3NmjVYt24dvvjiC5w6dQqOjo4YOHAgioqeFLuOGzcOV65cwYEDB7Bnzx4cO3YMU6ZMqa9bIDNQuRhf3UkTy8vLxZIdJjukK08//TSAJxPL6pomk9sSmQuDJjuDBw/GihUr8OKLL1bZJggC1q5di4ULF2LYsGEIDQ3Ft99+i9TUVLEE6Nq1a9i3bx++/vprdOvWDT179sRnn32G7du3IzU1tdrrFhcXIy8vT+lFDUvlYnzFZYmakyb+/fffePjwIZydncXqB6K66tOnD4AnE8vqmiaT2xKZC6Nts5OUlIT09HT0799fXCeVStGtWzfExsYCAGJjY+Hi4oIuXbqI+/Tv3x8WFhY1NvBbtWoVpFKp+PL19dXfjZDRUVWMv/i3J8tQ+NVb06SJ8iqs/v37w9raWm/xUsMiT3ZOnDiB4uJinZ9f3clticyJ0SY76enpAABPT0+l9Z6enuK29PT0Ko1Crays4OrqKu6jyoIFC5Cbmyu+UlJSdBw9GTNVxfhCNX/XNGki2+uQPrRp0waenp4oKirSy6SgACcGpYbHaJMdfbK1tYWzs7PSixoOVcX41alu0sSsrCxxLJSBAwfqKjQiSCQSvVdlKeLEoNQQGG2y4+XlBQDIyMhQWp+RkSFu8/LyQmZmptL2srIyZGVlifsQVVa5GF/yv5ciS4kEsQv6Vjvx5549eyCTyRAaGormzfmrmHRL38mOOpPbEpkTo012AgIC4OXlhYMHD4rr8vLycOrUKYSHhwMAwsPDkZOTg3Pnzon7HDp0CDKZjA1GqUaKxfgH3+qNZcM0a8MgbyQ/fPhwfYVIDZi+2+1UxukjyNwZNKV//PgxEhISxOWkpCRcuHABrq6uaN68OWbNmoUVK1agVatWCAgIwKJFi+Dj4yN+wbRt2xaDBg3C5MmT8cUXX6C0tBTTp0/HmDFj4OPjY6C7ImNUUFKG4MXRAICrywZWmQXaS2qHRf9rpBwT1Rst3J2qP1dBgdheh8kO6YO83U5GRgZOnz6NZ555pt6unZ5bVOO/fyJTZNCSnbNnz6JTp07o1KkTACAqKgqdOnXC4sWLAQBz587Fm2++iSlTpqBr1654/Pgx9u3bBzu7J3XM33//PYKCgtCvXz8MGTIEPXv2xMaNGw1yP2QaVA2Pr1isX9uD/sCBAygsLISfnx86duyopyipIVNstyOfaFafOKIymTuJIAhC7buZt7y8PEilUuTm5rKxspn6T+xtseTGQgKsGhGidQ+UiRMnYsuWLZg5cybWrl2rwyiJnti4cSOmTp2K8PBwnDhxQm/XScstRI/Vh5R6KFpKJPhr/rPsjk5GT93vb6Nts0OkK7ocHr+srAy7d+8GwCos0q/BgwcDqJgB/cGDB3q7DkdUpoaAyQ6ZPV0+zP/88088fPgQbm5u6Nmzp44iJKrK19cXoaGhEAQB0dHRersOR1SmhoDJDpk9XT7Mf/jhBwDAsGHDYGXFLrukXxERFY3o9+7dq7drcERlagiY7JDZ09XDvLi4GDt27ABQMQEtkb7Jk519+/ahrEx/XcI5ojKZOzZQBhsoNwSKXc8PvVVz1/Lq/Pbbbxg+fDh8fHyQnJwMS0tLXYdJpKS8vBweHh7IysrCn3/+yapTokrYQJmoGtoOj//9998DAMaOHctEh+qFpaWlOB2JPquyiMwdkx1qEOo6PH5eXp7YC4tVWFSf5FVZ8n9/RKQ5JjtEati5cyeKiooQFBTEgQSpXg0ZMgTW1ta4cuUKrly5UvsBRFQFkx0iNXzzzTcAgJdeegkSiZpTphPpQOPGjTFo0CAAwPbt2w0cDZFpYrJDZklxYsNb9x/X6VyXL1/Gn3/+CUtLS0ycOFFHERKpb+zYsQAqkh199ynhpKBkjpjskFnS5Vw/X375JYCKsXU4wSwZwgsvvAB7e3skJCTg3Llz9XZdVfPIEZkiJjtkdnQ5PUR+fj6+/fZbAMC0adN0FiORJpycnDB06FAATwa21BdOCkrmiMkOGZQuq5vkdDk9xA8//IC8vDwEBgaib9++OomPSBtjxowBAPz444+QyWR6uYaqHwoLdsbp/DNKVN+Y7JiQuiQG+kgqdEEfvyJ1NT2EIAhYv349AGDq1KmwsODHhQxn8ODBcHFxwb1793DgwAG9XEPVDwXFZZb0kKni09uE1CUxMMaiaV1WNynS1fQQ+/fvx4ULF+Do6MiGyWRwtra2mDBhAgDg888/18s1VP1QUKSrzyhRfWOyY2DqlrjUJTHQV1Ihp22pUV2rm2q6ri7m+lm1ahUAYMqUKXBzc9P4eCJdk7cb27NnD+7cuaPz81f+oaAq76n8GTXWUmMiRUx2DKymEhfFh8iJhAcqE4PwVYdqfcjosg2LpvdQk7pWN1W+ruIDV3HEZG3mwTpx4gSOHj0Ka2trREVFaXw8kT60adMG/fr1g0wmw8aNG/VyjfHh/ohd0Bc/TO6OXyOfrvUzWvlz+J/Y20x+yOgw2dGzmn71qCpxmfdznLiv4kPk7R2XqvzKUlyuKcmoa1Kh6T2oW2pUl+omVdeV00U1nbxUZ/z48WjWrFktexPVH3npztdff43i4mK9XMNbao/wlm7o4Nu4xs+oqs/h4t+eLFf+EUJkKEx29KymUg9VJS5y/T46qvTQqLxb5cSnpiSjrm1YNL0HTUqNtK1uqun/XV2r6U6fPo09e/ZAIpFg7ty5Wp2DSF+GDh0KHx8fZGZm1suIypU/oy908KmxxFlxkY2byVhoPiMiqa26Uo9erd3hLbUXS1xUfWmr+h4XAPx7bCe4OdniYX4xpm87r7RdnmSoSmLGh/ujf7Anbj8ogH8TB0jtreE/v2IW5UNv9a62qkebe6ip1KigpAzBi6OVrnt7dYRa+3pJ7cTlH6d0r/b/XW3/L2oiCALefvttABWlOm3atNHoeCJ9s7a2xowZMzB//nysWLEC48aNg5WV/h7l8iphuf/E3hb/lpc4qzOmc+VnB1F9YsmOHtVW6lG5xKU2lhIJwvwbI7ylG8L8GmtcNSUvmvaW2qvdzkbTe6it1EiT9j2V931nZ5y4PParkxjaofrRjLXpag4Av/76K/7880/Y2dlh5cqVGh9PVB8iIyPh5uaGhIQEbNu2rd6uW/nHj6oS55pmjtNlW0EiTTDZ0SN12srIGwP+e2ynKvsqLlZOIlQlGfIGy7XVjWvSzkbVPVhIKpINeT28YoPG4/P7VlsVVdt1FdsGnbr1sMq+v15IVVrefTENv0U+jR8md8fbA1pX+/9KXSUlJWK11VtvvcW2OmS0nJycMGfOHADA8uXLUVZWP3NYqfrxIy9x/mFyd5xY0BfLhlX/A07bHyFEdcVkR4+qK/UAgBOJD8QveW+pPZ7v4FNlX8WHhqr2LIpJRtRzT77saysx0aSdjap7UCxRkV9LXmokrx5T1SCxtusqluSM2Xiy2ioqxWMLSmQIb+mG6X1bqZVw1eSjjz5CQkICPDw8MG/ePI2PJ6pPkZGRaNKkCRISEvCf//ynXq5Z3Q84eYmzt9Re6bmkix8hRLogEfQ9ha4JyMvLg1QqRW5uLpydnXV+/rTcQrGtTMzVDCz6X8NjCwmwakSI0hez4r7qPhTScgvRY/WhKu1mdr4RjvyScgQ0cVQ6V3X7/zX/WXhL7VW2q5HH5WBjgRc/P1Htsf+JvV3t/dV0XQBVttVG8bp1dfXqVXTq1AklJSXYunUrXn755Tqfk0jfPvzwQ8ydOxdeXl64fv06pFKp3q9Z02dcFW2eaUTqUvf7myU79UBe6gGg1uojxXY16qquxGTY+hP451en0GP1IaWSntpKnL75K0ncVrnkJr+kvNrSmdqqqWpq31NT7yr5vsM7+qg8tq7KysowceJElJSUYMiQIRg/fnydz0lUH2bMmIHWrVsjPT0dixYtqpdrqlttLafNMw3gYIWkW+yNVY9qqsapy5d2Tb26ANW9ICr3zoq5moHwVYdqPbam3lfV3d+529lwdcpHQBPHKteVx1PdeXe+EY6CEpm477zBQTr/lbhmzRqcPn0aUqkUGzduhERSUxNLIuNha2uLzz//HP3798f69esxYcIEhIWF6f263lJ7vZfSVO6gsGpECHq1dkfSg/wqpdX6lpZbaJDrku4w2alHmnbTVpe8xERetKyqK6iqpEr+wKpcIlOZ4rGVr1W5hKXy/UkATP/hvLhNXuRd+YFR3Xk7+Dausp8uHzbR0dFYuHAhAGDt2rVo2rSpzs5NVB/69euHf/7zn9i2bRtee+01xMbGws7OztBhVUudxEFVKfH8n+PE55o61We6omm1HRknttmB/tvsKNLnB0fddjWVnUh8gH9+dara86o6trp6+B/PJOOdnZdRLgiwQEXSJdRyLlX3UB/1+4mJiejSpQtycnLw2muvsVSHTFZ6ejrat2+Phw8fYtq0aXqbKLSu1Hn+peUWYs+lVKzce73Gc9XULlF+npqSKnWTrpraN+qCKZQaGXOM6n5/M9lB/SY7QP18oWuSVKn6QMtZSiR4f0R7jRIy+f2pGvgQAH6Y3F1sw2QomZmZ6NOnD65du4Zu3brh6NGjsLW1NWhMRHWxb98+DBkyBIIg4LvvvsO4ceMMHZISdRIHxeeWJio/42p7/tW2Xf7lnpVfUudnWOVEQXG5tg4ruqRtwqJuglrdPeo7OWKyo4H6TnbqiyZJVeV/0PMGBSG0mUudErL6+FWkjYcPH+LZZ59FXFwcmjZtilOnTrH6iszC4sWLsXz5cjg4OCAmJgbh4eGGDklUXQnyv8d2gquTDRxtLKuUSMupKiWuTF7Sk5xVgJnbL1TbO1XVdarrUSov561cOl1TiRLw5Mv/7zvZ+Nf+GxX38L9hO+TjhVV37tpKvmtKKhSXAdQ5qdI0Qa18j/VR7cdkRwPmmuxoSh8lTorVWtqUEulaWloaIiIicP78eXh7e+Po0aNo1aqVweIh0qXy8nI8//zz2LdvH6RSKQ4dOoTOnTsbOiwAqr84FdsXVjftxKKIthgS6o1jN+4rVZHLtIyjuuv8MLk7/Js4qIxR8r+2iJYSCV7o4F3jl7m2pVNy8uSvtoSlclJROZFS/P8K1J5UqSqNqUuCKmcBYN0/OyHMr7FefuQy2dEAkx39MpZxNv7++28MHToU9+7dg7u7O44ePYq2bdsaLB4ifcjPz8egQYPw119/wc3NDdHR0fXSQ0sdtbXpq6zyl3JN7RLrQl5ac/p2lsq2QvI5CatrD1lTqZEmqkv+VCUsdaWYVKkq+enV2h1nb2dVKSVTJ0FVRV+lPEx2NMBkx7zJZDJ8+eWXeOutt1BYWIigoCDs3r0bgYGBhg6NSC/y8vLQv39/nDlzBvb29ti8eTNGjx5t6LAA1N6mz0KhFKWmkuDK1U3VfZHV9oVsIQFe7NQUv5y/V227RXnCVVtnDk2+/OX7y0uN1En+dEXxuqoSKX0lXfpoxqDu9ze7npNZu3nzJl5//XUcOlQxhtCgQYOwffv2ehlplshQnJ2dceDAAfzzn//E77//jjFjxuD48eN4//334eTkZNDYFIe8UGdsreoojtmlqsTFAsBn/+yEZo3tqy2NKSiR1VhKJE+4ahoPTFFtpVTDO/ng1/OpStX6vVq715j86YKqpEp+D6piFir9Lf9/KQC1JqiK91iZLsaV0xaTHTJLycnJWLFiBb755huUl5fD3t4eq1evxvTp02FhwYHDyfxJpVLs2rULCxYswIcffojPPvsMu3btwqeffoqhQ4cafJgFb6k9Vo0IqdKmr/LYWrWdQ/7FqepcEaE+1W6TX+dE4gOVyYu8rVDlsckUz1Vd2yHFL/+5g9oodfZ4e2CbKtX61SV/iiq3HaqcOCkuS/53gKBQQlaXpEoGwNXRFv5NHNRKUN8e2AbnbmdjxvbzOh9XTlusxgKrscxFSUkJDh48iI0bN2LXrl2QySoeQxEREVi7di2rrajBio6OxtSpU3Hnzh0AQOfOnfHuu+9i6NChsLIy7G9eXbbpq+lc1W3TptdobWOaqVs6VZlim6aaEhb5eSvfk+IyALXvt7bqNMX/H5p0OqmPDioNrs3O+vXr8eGHHyI9PR0dOnTAZ599hqeeekqtY5nsmCaZTIbr16/jxIkTOHLkCPbu3YucnBxxe9++fbF06VL07NnTcEESGYn8/HysWLECn332GfLz8wEAnp6eGDduHIYNG4bw8HBYW1sbOErDqMuXsq6/0NVJWOpKVcyKiZRizzdV96RJgqrvDioNKtn58ccf8fLLL+OLL75At27dsHbtWuzYsQPx8fHw8PCo9XgmO8ZJEATk5uYiMzMTmZmZyMjIwK1bt3Djxg3cuHEDly5dUkpuAMDDwwOjR4/G66+/juDgYMMETmTE7t+/j08++QRff/017t+/L653dnZG9+7d0blzZ4SFhSEkJAR+fn5GPfWELtXlS9lYepxqoraYTeWeGlSy061bN3Tt2hX//ve/AVT84vf19cWbb76J+fPn13q8vpKd9u3bIz4+HhYWFpBIJCb5X032FQRBfMlkMrX+lslkKCoqQkFBAQoLC5X++/jxY5SWltb4/9jBwQFPPfUUnn76aQwePBjh4eGwtLTU2XtIZK5KS0vxxx9/4Mcff0R0dDQePnyocj8vLy80b94c7u7ucHV1FV+NGjWCnZ2d0svW1hZ2dnawsrJSeoZUfpaoerao04aotn10cQ5T3aeu6uMaTZs21XnpYYPpjVVSUoJz585hwYIF4joLCwv0798fsbGxKo8pLi5GcXGxuJyXl6eX2EpLS1FWVqaXczckzs7O8PDwgLu7O/z8/NC6dWu0bt0abdu2RUhISIMteieqC2trawwdOhRDhw5FeXk5Lly4gLNnz+Lvv//GuXPnEB8fj8ePHyM9PR3p6emGDpfMQHx8PFq3bm2Qa5t8svPgwQOUl5fD09NTab2npyeuX1c9kdyqVauwdOlSvcd27NgxlJaWKpVo6Oq/+jhnXf4rk8nEX2eKv9QqL1f+28LCAnZ2dnBwcIC9vT3s7e3Fvx0dHeHu7g57e+MtQiUyB5aWlggLC1MafFAQBGRlZeHOnTtITk5GVlYWHj58KP43Pz8fRUVFKCoqQnFxsfh3UVERysvLxedC5edEdevVoW5FhKH2M/S1jf0chuwBaPLJjjYWLFiAqKgocTkvLw++vr46v07lBIyIyFRIJBK4ubnBzc3NaKacINKWySc7TZo0gaWlJTIyMpTWZ2RkwMvLS+Uxtra2nOGaiIiogTD50dVsbGwQFhaGgwcPiutkMhkOHjxoVDP+EhERkWGYfMkOAERFRWHChAno0qULnnrqKaxduxb5+fmYOHGioUMjIiIiAzOLZGf06NG4f/8+Fi9ejPT0dHTs2BH79u1jmxkiIiIyj3F26oqDChIREZkedb+/Tb7NDhEREVFNmOwQERGRWWOyQ0RERGaNyQ4RERGZNSY7REREZNaY7BAREZFZY7JDREREZo3JDhEREZk1JjtERERk1sxiuoi6kg8inZeXZ+BIiIiISF3y7+3aJoNgsgPg0aNHAABfX18DR0JERESaevToEaRSabXbOTcWAJlMhtTUVDRq1AgSiURn583Ly4Ovry9SUlLMds4tc79Hc78/wPzv0dzvDzD/ezT3+wPM/x71dX+CIODRo0fw8fGBhUX1LXNYsgPAwsICzZo109v5nZ2dzfIfryJzv0dzvz/A/O/R3O8PMP97NPf7A8z/HvVxfzWV6MixgTIRERGZNSY7REREZNaY7OiRra0t3nvvPdja2ho6FL0x93s09/sDzP8ezf3+APO/R3O/P8D879HQ98cGykRERGTWWLJDREREZo3JDhEREZk1JjtERERk1pjsEBERkVljsqNjq1evhkQiwaxZs8R1RUVFiIyMhJubG5ycnDBy5EhkZGQYLsg6UnWPffr0gUQiUXq9/vrrhgtSQ0uWLKkSf1BQkLjd1N/D2u7P1N8/ALh37x5eeukluLm5wd7eHiEhITh79qy4XRAELF68GN7e3rC3t0f//v1x8+ZNA0asudru8ZVXXqnyPg4aNMiAEWvG39+/SvwSiQSRkZEATP9zWNv9mfrnsLy8HIsWLUJAQADs7e3RsmVLLF++XGneKkN9DjmCsg6dOXMGX375JUJDQ5XWz549G3v37sWOHTsglUoxffp0jBgxAsePHzdQpNqr7h4BYPLkyVi2bJm47ODgUJ+h1Vm7du0QExMjLltZPfl4mMN7WNP9Aab9/mVnZ6NHjx549tln8ccff8Dd3R03b95E48aNxX3WrFmDdevWYevWrQgICMCiRYswcOBAXL16FXZ2dgaMXj3q3CMADBo0CJs3bxaXTakr85kzZ1BeXi4uX758Gc899xxGjRoFwPQ/h7XdH2Dan8MPPvgAGzZswNatW9GuXTucPXsWEydOhFQqxYwZMwAY8HMokE48evRIaNWqlXDgwAGhd+/ewsyZMwVBEIScnBzB2tpa2LFjh7jvtWvXBABCbGysgaLVTnX3KAhClWVT89577wkdOnRQuc0c3sOa7k8QTP/9mzdvntCzZ89qt8tkMsHLy0v48MMPxXU5OTmCra2t8MMPP9RHiHVW2z0KgiBMmDBBGDZsWP0EVA9mzpwptGzZUpDJZGbxOaxM8f4EwfQ/hxEREcKrr76qtG7EiBHCuHHjBEEw7OeQ1Vg6EhkZiYiICPTv319p/blz51BaWqq0PigoCM2bN0dsbGx9h1kn1d2j3Pfff48mTZqgffv2WLBgAQoKCuo5wrq5efMmfHx80KJFC4wbNw7JyckAzOc9rO7+5Ez5/du1axe6dOmCUaNGwcPDA506dcJXX30lbk9KSkJ6errSeyiVStGtWzeTeQ9ru0e5I0eOwMPDA23atMG0adPw8OFDA0RbdyUlJfjuu+/w6quvQiKRmM3nUK7y/cmZ8ufw6aefxsGDB3Hjxg0AwMWLF/HXX39h8ODBAAz7OWQ1lg5s374df//9N86cOVNlW3p6OmxsbODi4qK03tPTE+np6fUUYd3VdI8A8M9//hN+fn7w8fHBpUuXMG/ePMTHx2Pnzp31HKl2unXrhi1btqBNmzZIS0vD0qVL8cwzz+Dy5ctm8R7WdH+NGjUy+ffv1q1b2LBhA6KiovDOO+/gzJkzmDFjBmxsbDBhwgTxffL09FQ6zpTew9ruEaiowhoxYgQCAgKQmJiId955B4MHD0ZsbCwsLS0NfAea+fXXX5GTk4NXXnkFgPk8S+Uq3x9g+s/R+fPnIy8vD0FBQbC0tER5eTlWrlyJcePGAYBBP4dMduooJSUFM2fOxIEDB0yi3l8b6tzjlClTxL9DQkLg7e2Nfv36ITExES1btqyvULUm/+UBAKGhoejWrRv8/Pzw3//+F/b29gaMTDdqur9JkyaZ/Psnk8nQpUsXvP/++wCATp064fLly/jiiy/ERMDUqXOPY8aMEfcPCQlBaGgoWrZsiSNHjqBfv34GiVtbmzZtwuDBg+Hj42PoUPRC1f2Z+ufwv//9L77//nts27YN7dq1w4ULFzBr1iz4+PgY/HPIaqw6OnfuHDIzM9G5c2dYWVnBysoKR48exbp162BlZQVPT0+UlJQgJydH6biMjAx4eXkZJmgN1XaPig3u5Lp16wYASEhIqO9wdcLFxQWtW7dGQkICvLy8TP49rEzx/lQxtffP29sbwcHBSuvatm0rVtXJ36fKPXdM6T2s7R5VadGiBZo0aWIy76PcnTt3EBMTg9dee01cZ06fQ1X3p4qpfQ7nzJmD+fPnY8yYMQgJCcH48eMxe/ZsrFq1CoBhP4dMduqoX79+iIuLw4ULF8RXly5dMG7cOPFva2trHDx4UDwmPj4eycnJCA8PN2Dk6qvtHlUVj1+4cAFAxQPaFD1+/BiJiYnw9vZGWFiYyb+HlSnenyqm9v716NED8fHxSutu3LgBPz8/AEBAQAC8vLyU3sO8vDycOnXKZN7D2u5Rlbt37+Lhw4cm8z7Kbd68GR4eHoiIiBDXmdPnUNX9qWJqn8OCggJYWCinFZaWlpDJZAAM/DnUa/PnBqpyi/rXX39daN68uXDo0CHh7NmzQnh4uBAeHm64AHVA8R4TEhKEZcuWCWfPnhWSkpKE3377TWjRooXQq1cvwwapgbfeeks4cuSIkJSUJBw/flzo37+/0KRJEyEzM1MQBNN/D2u6P3N4/06fPi1YWVkJK1euFG7evCl8//33goODg/Ddd9+J+6xevVpwcXERfvvtN+HSpUvCsGHDhICAAKGwsNCAkauvtnt89OiR8PbbbwuxsbFCUlKSEBMTI3Tu3Flo1aqVUFRUZODo1VdeXi40b95cmDdvXpVtpv45FITq788cPocTJkwQmjZtKuzZs0dISkoSdu7cKTRp0kSYO3euuI+hPodMdvSgcrJTWFgovPHGG0Ljxo0FBwcH4cUXXxTS0tIMF6AOKN5jcnKy0KtXL8HV1VWwtbUVAgMDhTlz5gi5ubmGDVIDo0ePFry9vQUbGxuhadOmwujRo4WEhARxu6m/hzXdnzm8f4IgCLt37xbat28v2NraCkFBQcLGjRuVtstkMmHRokWCp6enYGtrK/Tr10+Ij483ULTaqekeCwoKhAEDBgju7u6CtbW14OfnJ0yePFlIT083YMSai46OFgCofG9M/XMoCNXfnzl8DvPy8oSZM2cKzZs3F+zs7IQWLVoI7777rlBcXCzuY6jPoUQQFIY2JCIiIjIzbLNDREREZo3JDhEREZk1JjtERERk1pjsEBERkVljskNERERmjckOERERmTUmO0RERGTWmOwQERGRWWOyQ0QEoE+fPpBIJJBIJOKcREeOHIFEIqky+aSuLVmyRLz22rVr9XotooaIyQ4RaeyVV14Rv5wVX4MGDTJ0aHUyefJkpKWloX379nU+V0ZGBqytrbF9+3aV2ydNmoTOnTsDAN5++22kpaWhWbNmdb4uEVXFZIeItDJo0CCkpaUpvX744Qe9XrOkpESv53dwcICXlxesrKzqfC5PT09ERETgm2++qbItPz8f//3vfzFp0iQAgJOTE7y8vGBpaVnn6xJRVUx2iEgrtra28PLyUno1btxY3C6RSPD111/jxRdfhIODA1q1aoVdu3YpnePy5csYPHgwnJyc4OnpifHjx+PBgwfi9j59+mD69OmYNWsWmjRpgoEDBwIAdu3ahVatWsHOzg7PPvsstm7dKlY35efnw9nZGT/99JPStX799Vc4Ojri0aNHWt9zQUEBBg8ejB49eohVW19//TXatm0LOzs7BAUF4fPPPxf3nzRpEg4ePIjk5GSl8+zYsQNlZWUYN26c1rEQkfqY7BCR3ixduhT/+Mc/cOnSJQwZMgTjxo1DVlYWACAnJwd9+/ZFp06dcPbsWezbtw8ZGRn4xz/+oXSOrVu3wsbGBsePH8cXX3yBpKQk/N///R+GDx+OixcvYurUqXj33XfF/R0dHTFmzBhs3rxZ6TybN2/G//3f/6FRo0Za3UtOTg6ee+45yGQyHDhwAC4uLvj++++xePFirFy5EteuXcP777+PRYsWYevWrQCAIUOGwNPTE1u2bKkSy4gRI+Di4qJVLESkIb3Pq05EZmfChAmCpaWl4OjoqPRauXKluA8AYeHCheLy48ePBQDCH3/8IQiCICxfvlwYMGCA0nlTUlIEAEJ8fLwgCILQu3dvoVOnTkr7zJs3T2jfvr3SunfffVcAIGRnZwuCIAinTp0SLC0thdTUVEEQBCEjI0OwsrISjhw5Uu099e7dW5g5c6bSusOHDwsAhGvXrgmhoaHCyJEjheLiYnF7y5YthW3btikds3z5ciE8PFxcnj9/vhAQECDIZDJBEAQhISFBkEgkQkxMTJUY/Pz8hE8++aTaGIlIOyzZISKtPPvss7hw4YLS6/XXX1faJzQ0VPzb0dERzs7OyMzMBABcvHgRhw8fhpOTk/gKCgoCACQmJorHhYWFKZ0zPj4eXbt2VVr31FNPVVlu166dWMLy3Xffwc/PD7169dLqXp977jkEBgbixx9/hI2NDYCKdjeJiYmYNGmS0j2sWLFCKf5XX30VSUlJOHz4MICKUh1/f3/07dtXq1iISHN1b4VHRA2So6MjAgMDa9zH2tpaaVkikUAmkwEAHj9+jBdeeAEffPBBleO8vb2VrqON1157DevXr8f8+fOxefNmTJw4ERKJRKtzRURE4Oeff8bVq1cREhIixg8AX331Fbp166a0v2JD41atWuGZZ57B5s2b0adPH3z77beYPHmy1rEQkeaY7BCRQXTu3Bk///wz/P39Ner91KZNG/z+++9K686cOVNlv5deeglz587FunXrcPXqVUyYMEHrWFevXg0nJyf069cPR44cQXBwMDw9PeHj44Nbt27V2tB40qRJmDZtGoYOHYp79+7hlVde0ToWItIcq7GISCvFxcVIT09Xein2pKpNZGQksrKyMHbsWJw5cwaJiYmIjo7GxIkTUV5eXu1xU6dOxfXr1zFv3jzcuHED//3vf8UGwIqlJY0bN8aIESMwZ84cDBgwoM5j2PzrX//CuHHj0LdvX1y/fh1ARQPsVatWYd26dbhx4wbi4uKwefNmfPzxx0rHjho1CtbW1pg6dSoGDBgAX1/fOsVCRJphskNEWtm3bx+8vb2VXj179lT7eB8fHxw/fhzl5eUYMGAAQkJCMGvWLLi4uMDCovpHU0BAAH766Sfs3LkToaGh2LBhg9gby9bWVmnfSZMmoaSkBK+++qp2N1nJJ598gn/84x/o27cvbty4gddeew1ff/01Nm/ejJCQEPTu3RtbtmxBQECA0nEODg4YM2YMsrOzdRYLEalPIgiCYOggiIjqYuXKlfjiiy+QkpKitP4///kPZs+ejdTUVLFhcXX69OmDjh07GnS6Bn9/f8yaNQuzZs0yWAxE5oglO0Rkcj7//HOcOXMGt27dwn/+8x98+OGHSm1yCgoKkJiYiNWrV2Pq1Km1JjqK53VyckJcXJy+Qlfp/fffh5OTU5XBB4lIN1iyQ0QmZ/bs2fjxxx+RlZWF5s2bY/z48ViwYIHY0HnJkiVYuXIlevXqhd9++w1OTk61nvPevXsoLCwEADRv3lztBEkXsrKyxMEW3d3dIZVK6+3aRA0Bkx0iIiIya6zGIiIiIrPGZIeIiIjMGpMdIiIiMmtMdoiIiMisMdkhIiIis8Zkh4iIiMwakx0iIiIya0x2iIiIyKz9P/MpHxQjAc1FAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6jElEQVR4nO3deVxU5f4H8M+wbwKCrIqAoiICimhKmpqaG6mlt6tmZuZV81KmdN1KzSXTvL+sa5llmdots0wrlxJ3LcU1dxEFUVA22WVf5vz+4M5xBgaYGWaYhc/79ZpXzDlnznyPNMP3PM/3eR6JIAgCiIiIiEyUmb4DICIiItIlJjtERERk0pjsEBERkUljskNEREQmjckOERERmTQmO0RERGTSmOwQERGRSbPQdwCGQCqVIjU1FS1atIBEItF3OERERKQCQRDw6NEjeHt7w8ys7vYbJjsAUlNT4ePjo+8wiIiISAMpKSlo06ZNnfuZ7ABo0aIFgOp/LEdHRz1HQ0RERKooKCiAj4+P+He8Lkx2ALHrytHRkckOERGRkWmoBIUFykRERGTSmOwQERGRSWOyQ0RERCaNNTtERGRwqqqqUFFRoe8wSM8sLS1hbm7e6PMw2SEiIoMhCALS09ORl5en71DIQDg7O8PT07NR8+Ax2SEiIoMhS3Tc3d1hZ2fHiV6bMUEQUFxcjMzMTACAl5eXxudiskNERAahqqpKTHRcXV31HQ4ZAFtbWwBAZmYm3N3dNe7SYoEyEREZBFmNjp2dnZ4jIUMi+/+hMTVcTHaIiMigsOuK5Gnj/wcmO0RERGTSmOwQERGRSWOyQ0REpAcSiQS//PJLvce88soreO6551Q+5927dyGRSHDp0qVGxWZqOBqLiEyWIAjIzs6GjY0NHBwc9B0OmbBXXnkFeXl5DSYv8tLS0tCyZUsA1UmKv78/Ll68iG7duonH/Oc//4EgCFqOtvnRa8uOn58fJBJJrUdUVBQAoLS0FFFRUXB1dYWDgwPGjh2LjIwMhXMkJycjMjISdnZ2cHd3x9y5c1FZWamPyyEiA3Lz5k10794dbm5ucHV1xdKlS/ndQAbF09MT1tbW9R7j5OQEZ2fnpgnIhOk12Tl37hzS0tLEx8GDBwEAL7zwAgBgzpw52LNnD3bs2IHjx48jNTUVY8aMEV9fVVWFyMhIlJeX49SpU9i6dSu2bNmCJUuW6OV6iMgw3L17FxEREWJTfnl5OZYtW4YFCxboNzBSmyAIKCoq0sujMS0qAwYMwKxZszBv3jy4uLjA09MTS5cuVThGvhvL398fABAWFgaJRIIBAwYAqN2NtX//fvTt2xfOzs5wdXXFs88+i8TERLViS0tLQ2RkJGxtbeHv749t27bBz88PH3/8MQDlXWF5eXmQSCQ4duyYuO3atWsYPnw4HBwc4OHhgUmTJiErK0vc/9NPPyEkJAS2trZwdXXF4MGDUVRUBAA4duwYnnjiCdjb28PZ2Rl9+vTBvXv31LoOdeg12XFzc4Onp6f42Lt3L9q3b4/+/fsjPz8fmzZtwtq1azFw4ECEh4dj8+bNOHXqFE6fPg0AOHDgAG7cuIFvv/0W3bp1w/Dhw7FixQqsX78e5eXldb5vWVkZCgoKFB5EZBqkUikmT56MvLw8hIeHIy0tDZs2bQIAfPjhh9i/f7+eIyR1FBcXw8HBQS+P4uLiRsW+detW2Nvb48yZM1izZg2WL18u3tTXdPbsWQDAoUOHkJaWhl27dik9rqioCNHR0Th//jwOHz4MMzMzPP/885BKpSrH9fLLLyM1NRXHjh3Dzp07sXHjRnGWYlXl5eVh4MCBCAsLw/nz57F//35kZGTg73//O4DqhGrChAl49dVXERcXh2PHjmHMmDEQBAGVlZV47rnn0L9/f1y5cgWxsbGYPn26bqccEAxEWVmZ4OrqKqxcuVIQBEE4fPiwAEDIzc1VOK5t27bC2rVrBUEQhMWLFwtdu3ZV2H/nzh0BgPDXX3/V+V7vvvuuAKDWIz8/X6vXRERN74cffhAACPb29kJCQoK4/fXXXxcACF27dhWkUqkeI6S6lJSUCDdu3BBKSkrEbYWFhUq/r5viUVhYqHLskydPFkaPHi0+79+/v9C3b1+FY3r27CnMnz9ffA5A+PnnnwVBEISkpCQBgHDx4sV6z1vTw4cPBQDC1atX6z2PTFxcnABAOHfunLjt9u3bAgDho48+qvMcubm5AgDh6NGjgiAIwooVK4QhQ4YonDslJUUAIMTHxwsXLlwQAAh3796tFUN2drYAQDh27Fid1yVP2f8XMvn5+Sr9/TaY0Vi//PIL8vLy8MorrwCoXh/FysqqVl+lh4cH0tPTxWM8PDxq7Zftq8vChQuRn58vPlJSUrR3IUSkN4IgYNWqVQCAf/3rX2jfvr24b+nSpXBwcMDly5exZ88efYVIarKzs0NhYaFeHo2dyTk0NFThuZeXl9otKDXdvn0bEyZMQLt27eDo6Ag/Pz8A1fWrqoiPj4eFhQW6d+8ubgsICBALpVV1+fJlHD16VKElLDAwEACQmJiIrl27YtCgQQgJCcELL7yAL7/8Erm5uQAAFxcXvPLKKxg6dChGjhyJ//znP0hLS1Pr/dVlMMnOpk2bMHz4cHh7e+v8vaytreHo6KjwICLjd+jQIVy6dAn29vaYNWuWwj5XV1dx8IOsNoEMn0Qigb29vV4eje1WsbS0rHUt6nQ3KTNy5Ejk5OTgyy+/xJkzZ3DmzBkAqLd0Q11mZtWpgSBXs1RzqYbCwkKMHDkSly5dUnjcvn0b/fr1g7m5OQ4ePIjff/8dQUFB+OSTT9CpUyckJSUBADZv3ozY2Fg8+eST+OGHH9CxY0exREUXDCLZuXfvHg4dOoR//OMf4jZPT0+Ul5cjLy9P4diMjAx4enqKx9QcnSV7LjuGiJqPzZs3A6gu6nRxcam1/7XXXgNQXRyp6p0wUVOwsrICUD3wpi7Z2dmIj4/HokWLMGjQIHTu3FlsLVFVp06dUFlZiYsXL4rbEhISFM7j5uYGAAqtLTXn7enevTuuX78OPz8/BAQEKDzs7e0BVCd3ffr0wbJly3Dx4kVYWVnh559/Fs8RFhaGhQsX4tSpUwgODsa2bdvUuhZ1GESys3nzZri7uyMyMlLcFh4eDktLSxw+fFjcFh8fj+TkZERERAAAIiIicPXqVYVmwYMHD8LR0RFBQUFNdwFEpHcFBQXiyJbJkycrPcbPzw8DBgyAIAj47rvvmjA6ovq5u7vD1tZWLPTNz8+vdUzLli3h6uqKjRs3IiEhAUeOHEF0dLRa7xMYGIjBgwdj+vTpOHv2LC5evIjp06fD1tZWbMmytbVF7969sXr1asTFxeH48eNYtGiRwnmioqKQk5ODCRMm4Ny5c0hMTERMTAymTJmCqqoqnDlzBu+//z7Onz+P5ORk7Nq1Cw8fPkTnzp2RlJSEhQsXIjY2Fvfu3cOBAwdw+/ZtdO7cWfN/wAboPdmRSqXYvHkzJk+eDAuLx3McOjk5YerUqYiOjsbRo0dx4cIFTJkyBREREejduzcAYMiQIQgKCsKkSZNw+fJlxMTEYNGiRYiKimpw7gIiMi27du1CSUkJAgMD0aNHjzqPe/nllwEA33//fVOFRtQgCwsLrFu3Dl988QW8vb0xevToWseYmZlh+/btuHDhAoKDgzFnzhz8+9//Vvu9vvnmG3h4eKBfv354/vnnMW3aNLRo0QI2NjbiMV9//TUqKysRHh6O2bNn47333lM4h7e3N06ePImqqioMGTIEISEhmD17NpydnWFmZgZHR0ecOHECI0aMQMeOHbFo0SJ8+OGHGD58OOzs7HDz5k2MHTsWHTt2xPTp0xEVFYUZM2ao/w+nKpVKoXUoJiZGrN6uqaSkRPjnP/8ptGzZUrCzsxOef/55IS0tTeGYu3fvCsOHDxdsbW2FVq1aCW+99ZZQUVGhVgyqVnMTkeF67rnnBADC0qVL6z0uKytLMDMzEwAI9+7da6LoSBX1jboh3ZGNojp06JC+Q1FKG6OxJILAeagLCgrg5OSE/Px8FisTGaHS0lK4urqiuLgYf/31F8LCwuo9vm/fvjh58iQ+++wzzJw5s4mipIaUlpYiKSkJ/v7+Cq0MpF1HjhxBYWEhQkJCkJaWhnnz5uHBgwe4detWraJqQ1Df/xeq/v3WezcWEVFjHTt2DMXFxWjdurXCukJ1efbZZwEA+/bt03FkRIanoqICb7/9Nrp06YLnn38ebm5uOHbsmEEmOtrCZIeIjJ4saXn22WdVGi4sGwxx5MgRrQ7ZJTIGQ4cOxbVr11BcXIyMjAz8/PPP8PX11XdYOsVkh4iMnmzU5pAhQ1Q6Pjg4GK1atUJJSQnOnz+vy9BIA6yuIHna+P+ByQ4RGbX09HTExcUpLJ7YEIlEgv79+wMAjh8/rsPoSB2ybpTGrklFpkX2/0NjutksGj6EiMhwyVZh7tatm9KJBOvSv39/7Ny5E8eOHcPChQt1FB2pw9zcHM7OzuLcaXZ2drpdHJIMmiAIKC4uRmZmJpydnWFubq7xuZjsEJFRO3LkCADg6aefVut1spadkydPorKyUmGeL9If2ez3jV1DikyHs7Nzo1dF4KebiIzayZMnATxOXlQVHBwsDlm9du2aSqO4SPckEgm8vLzg7u5eaz0man4sLS0b1aIjw2SHiIxWQUEB4uLiAAC9evVS67VmZmbo2bMnDh06hDNnzjDZMTDm5uZa+SNHBLBAmYiM2Pnz5yEIAnx9feHh4aH262UJkmzlaCIyTUx2iMhoyZIUdVt1ZJjsEDUPTHaIyGidPXsWAPDEE09o9HpZshMXF4eCggKtxUVEhoXJDhEZJUEQGt2y4+7uDl9fXwiCgIsXL2ozPCIyIEx2iMgoPXjwAGlpaTA3N0f37t01Po9s0VAmO0Smi8kOERklWatOSEgI7OzsND4Pkx0i08dkh4iMUmPrdWSY7BCZPs6zQ0RGSdayo0myU1xeiaAlMQCAA9OCAQA3btxAaWkpbGxstBckERkEtuwQkdGpqqoSVytvbMtO6zZt4OrqiqqqKly7dk0b4RGRgWGyQ0RG586dOygqKoKNjQ06d+7cqHNJJBJ07doVAJjsEJkoJjtEZHSuXLkCAOjSpYtWFvDs0qULgOquLCIyPUx2iMjoXL16FQAQGhqqlfMFBQUBYLJDZKqY7BCR0ZG17DDZISJVMNkhIqOjq2Tn7t27KCoq0so5ichwMNkhIqNSWFiIxMREANUTCmpDq1at4ObmBkEQcPPmTa2ck4gMB5MdIjIqshFTXl5ecHNza/T50vNLATxu3bl45Sr8FuyD34J9KC6vbPT5iUj/mOwQkVHRRhfWzgv3xZ8Hrz2OH84li8nOzbi4xgVIRAaHyQ4RGZXGJjtp+SV4d/d18blUAN7edQ0+Hau7xJjsEJkeJjtEZFRkyY6m9TpJWUWQCorbqgQBzj4dADDZITJFTHaIyGgIgtDolh3/VvYwkyhuM5dI0KdrJwBAUtIdSCvKGhUnERkWJjtEZDTu37+P/Px8WFhYIDAwUKNzeDnZYtmoLuJzMwnw/phghLRvAxcXF0ilUlTmPtBWyERkAJjsEJHRkM2c3KlTJ1hbW2t8nrHhbcSfD0X3x7iebSGRSMQi5YqsFHF/cXklR2cRGTkmO0RkNOL+V08jS0q0wdPJRvxZdt7yrGStnZ+I9I/JDhEZDVmy09BK55q2xnTqVF23U5mbqnmQRGRwmOwQkdFQNdnRVEBAAABAWla9ZIRswkEiMm5MdojIKAiCoPNkp0OHDnAIfQbuf1sKoHrCQfkJCInIODHZISKjkJmZidzcXEgkEnTs2FEn72Hr4gWXoW9AYlb91SgVoDABIREZJyY7RGQUZK06/v7+sLW11cl7pBZWiomOTM0JCInI+Og92Xnw4AFeeukluLq6wtbWFiEhITh//ry4XxAELFmyBF5eXrC1tcXgwYNx+/ZthXPk5ORg4sSJcHR0hLOzM6ZOnYrCwsKmvhQi0qHGdGGpWrDs38oeEKQK22pOQEhExkevyU5ubi769OkDS0tL/P7777hx4wY+/PBDtGzZUjxmzZo1WLduHT7//HOcOXMG9vb2GDp0KEpLHxcOTpw4EdevX8fBgwexd+9enDhxAtOnT9fHJRGRjui6XgeonnAwqOgKBGkVgOpER34CQiIyThb6fPMPPvgAPj4+2Lx5s7jN399f/FkQBHz88cdYtGgRRo8eDQD45ptv4OHhgV9++QXjx49HXFwc9u/fj3PnzqFHjx4AgE8++QQjRozA//3f/8Hb27tpL4qIdEKbyY6dlQXuro5Uuu8pHyscWPkqHEKH4q+fv4Cnkw0W/1pdt5OeX4p2bg6Nfn8ialp6bdnZvXs3evTogRdeeAHu7u4ICwvDl19+Ke5PSkpCeno6Bg8eLG5zcnJCr169EBsbCwCIjY2Fs7OzmOgAwODBg2FmZoYzZ84ofd+ysjIUFBQoPIjIsGma7Kg7fLx9+/aoepSNkoQz8HSyURiNNXjtcfxwjhMOEhkbvSY7d+7cwYYNG9ChQwfExMRg5syZmDVrFrZu3QoASE9PBwB4eHgovM7Dw0Pcl56eDnd3d4X9FhYWcHFxEY+padWqVXBychIfPj4+2r40ItKiR48e4cGD6vWq6loTS74uZ9uZxwmJusPH23eonmunIjcNaXklCqOxpALw9q5rSMsv0eQyiEhP9JrsSKVSdO/eHe+//z7CwsIwffp0TJs2DZ9//rlO33fhwoXIz88XHykpKQ2/iIj05ubNmwCqb3Tka/rq8v5vceLP6g4f9/dvB0ACobwYV+6k1hqNVSUIuJtVrPL5iEj/9JrseHl51VrjpnPnzkhOrr4r8/T0BABkZGQoHJORkSHu8/T0RGZmpsL+yspK5OTkiMfUZG1tDUdHR4UHERkudbuwaiYo6gwft7GxgbljKwBAVV5ardFY5hIJ/FrZqX5CItI7vSY7ffr0QXx8vMK2W7duwdfXF0B1sbKnpycOHz4s7i8oKMCZM2cQEREBAIiIiEBeXh4uXLggHnPkyBFIpVL06tWrCa6CiHRN1rKjarJTM0FRd/i4ZUsvAEDOgzsKo7HMJMD7Y4Lh5aSbeX6ISDf0muzMmTMHp0+fxvvvv4+EhARs27YNGzduRFRUFABAIpFg9uzZeO+997B7925cvXoVL7/8Mry9vfHcc88BqP7yGzZsGKZNm4azZ8/i5MmTeP311zF+/HiOxCIyEbdu3QLweKHOhrw94nFSVHP4uCoFyxbO1d8ddxITMTa8jbj9UHR/jOvZVqUYiMhw6DXZ6dmzJ37++Wd8//33CA4OxooVK/Dxxx9j4sSJ4jHz5s3DG2+8genTp6Nnz54oLCzE/v37YWNjIx7z3XffITAwEIMGDcKIESPQt29fbNy4UR+XREQ6IEt2OnTooNLxz4U9vtE5FN1fYZ8qI6osWla/PjExUWG7p5ONssOJyMDpdZ4dAHj22Wfx7LPP1rlfIpFg+fLlWL58eZ3HuLi4YNu2bboIj4j0TCqVIiEhAQAU1sQqLq9E0JIYAMCN5UPrPYeyEVX9OrrV2R0l68ZKTLitdD8RGRe9LxdBRFSf1NRUlJSUwMLCAn5+fmq//l52kVojquysLHBo6d+rX3v3rtrvR0SGh8kOERk0WReWv78/LCxUa4zOKHhcl+Praq/2iCrZTO45OTmcdJTIBDDZISKDJlv4V74LSxn5iQNHfnJS/NnTyUbtEVUtWrSAq6srAODu3SSN4iYiw8Fkh4gMmirFyen5pbXqcuRpMqJK1rpzL+muGtESkSFiskNEBk2Vlh1ldTl1UXVElaw+6N69u6qdmIgMlt5HYxER1UeVlh1ZXY46MyU3RNay8yAlGXf/85b2TkxETY4tO0RksCorK3Hnzh0A9bfsKKvLaSxZspOUxJodImPHlh0iMlj37t1DRUUFbGxs0KZNmzqPS88vxdjwNlj8a3XdzqHo/mjn5iDuLy6vrPd9as7ZY2dlwWSHyISwZYeIDJasXicgIABmZopfV/KjrwavPa7wXBszHcsnO4Kgxf4xImpyTHaIyGDVVa+Tll9Sa/SV/HNtkC1IXFRUhKysLK2em4iaFpMdIjJYdY3ESsqqPfpKm8XJAGBjYwMvr+plI+7KzaRcXF4JvwX74LdgX4PdY0RkGJjsEJHBqqtlx79V7VmRtVGUXBPrdohMA5MdIjJYspadmsmOl5NtrdFX8s9rsrOywN3Vkbi7OhJ2VqqPy2CyQ2QamOwQkUEqKyvDvXv3ACgfdl5zVmT559rCZIfINDDZISKDdOfOHUilUjg4OMDDw6PeY7Ux+koZ2SzKTHaIjBuTHSIySPLFyRKJDgpy6pCe/3jFdFnLjnyBMhEZHyY7RGSQVFkmQp6mdTlA7Tl7fjiXDEAx2ZFKpWqdk4gMB5MdIjJIqiwAqg3K5ux5e9c1pOWXwMfHB2ZmZigvL0daWppO4yAi3WGyQ0QGSd2WHU0pm7OnShBwN6sYFhYWaN26NQAgJSWl1mvlu7yIyHAx2SEig9RULTvK5uwxl0jg18oOwOOZlJOTq7u26uryIiLDxWSHiAxOUVERHjx4AED3LTvK5ux5f0wwvJxsAQBt27YFUL0oaX1dXkRkuLjqOREZnISEBACAq6srXFxclB4jK0jWhvpWTJclO8nJyfV2ecmSIyIyPGzZISKD01T1OsrUnLNHPtmpa5mKCV+e5lpZRAaMyQ4RGZy6lonQB/lkR91lKojIMDDZISKDI2vZkS9O1tdq4/LJDtA0y1QQkXZpVLNz+/ZtHD16FJmZmbUm2lqyZIlWAiOi5suQWnZko7FycnJQWFgIM6vH3Vy6WqaCiLRL7WTnyy+/xMyZM9GqVSt4enoqTOMukUiY7BBRoylr2dEXR0dHODk5IT8/H8nJyfAL0H9MRKQetZOd9957DytXrsT8+fN1EQ8RNXO5ubnIysoCAAQEBOg5mmpt27bF1atXmewQGSm1a3Zyc3Pxwgsv6CIWIiKxC8vLywstWrTQczTVatbtEJFxUTvZeeGFF3DgwAFdxEJEpJd6nYYWEVU12eHyEUSGSe1urICAACxevBinT59GSEgILC0tFfbPmjVLa8ERUfPTVMtEqKPmkhHyai4fsWpMCMb1bNtksRFRw9ROdjZu3AgHBwccP34cx48fV9gnkUiY7BBRo+hzQsG61NWyk55fqnT5iH4d3TijMpEBUTvZSUpK0kUcREQAVOvGSs8vVVjSQdfk18eSX6biVGIWl48gMgKcVJCIDIYgCHUOO9fnauOyZOf+/fuoqqoStze0YjoRGQaVWnaio6OxYsUK2NvbIzo6ut5j165dq5XAiKj5efjwIQoKCiCRSNC+fXtxe12rjTdVd5GXlxfMzc1RWVmJ9PR0tG7dunr7/5aPkC0iWnPFdCIyDColOxcvXkRFRYX4c13kJxgkIlKXrFXHx8cHNjaPZyfW92rjFhYWaN26NZKTk5GcnCwmO0D9K6YTkWFQKdk5evSo0p+JiLRJlux06tRJYbusu0g+4Wnq7iJfX18x2YmIiFB6DJePIDJMjarZSUlJQUpKisavX7p0KSQSicIjMDBQ3F9aWoqoqCi4urrCwcEBY8eORUZGhsI5kpOTERkZCTs7O7i7u2Pu3LmorGy6RQKJSHvqqtdRttp4U3cXcWJBIuOldrJTWVmJxYsXw8nJCX5+fvDz84OTkxMWLVokdnWpo0uXLkhLSxMff/75p7hvzpw52LNnD3bs2IHjx48jNTUVY8aMEfdXVVUhMjIS5eXlOHXqFLZu3YotW7ZwfS4iI1Xfmlg1Vxtv6rls5EdkEZFxUXvo+RtvvIFdu3ZhzZo1YlNubGwsli5diuzsbGzYsEG9ACws4OnpWWt7fn4+Nm3ahG3btmHgwIEAgM2bN6Nz5844ffo0evfujQMHDuDGjRs4dOgQPDw80K1bN6xYsQLz58/H0qVLYWVlpe7lEZEeqboAqD66i9iyQ2S81G7Z2bZtG7Zs2YIZM2YgNDQUoaGhmDFjhpiYqOv27dvw9vZGu3btMHHiRPGL5MKFC6ioqMDgwYPFYwMDA9G2bVvExsYCqE6yQkJC4OHhIR4zdOhQFBQU4Pr166hLWVkZCgoKFB5EpF9VVVVISEgAYFizJ8sw2SEyXmonO9bW1vDz86u13d/fX+2WlF69emHLli3Yv38/NmzYgKSkJDz11FN49OgR0tPTYWVlBWdnZ4XXeHh4ID09HQCQnp6ukOjI9sv21WXVqlVwcnISHz4+PmrFTUTal5KSgrKyMlhaWorLMxiS+paMICLDpnay8/rrr2PFihUoKysTt5WVlWHlypV4/fXX1TrX8OHD8cILLyA0NBRDhw7Fb7/9hry8PPz444/qhqWWhQsXIj8/X3w0psiaiLRD1oUVEBAAc3NzPUdTm+ymKDc3F48ePdJzNESkDpVqduSLggHg0KFDaNOmDbp27QoAuHz5MsrLyzFo0KBGBePs7IyOHTsiISEBzzzzDMrLy5GXl6fQupORkSHW+Hh6euLs2bMK55CN1lJWByRjbW0Na2vrRsVKRNqlar2Ovjg6OsLZ2Rl5eXlISUlBUFAQACgsH0FEhkmlZMfJyUnh+dixYxWea6sbqLCwEImJiZg0aRLCw8NhaWmJw4cPi+8XHx+vMMdFREQEVq5ciczMTLi7uwMADh48CEdHR/GLiIiMg6EnO0B13U5eXh7u3bvH7xgiI6JSsrN582advPm//vUvjBw5Er6+vkhNTcW7774Lc3NzTJgwAU5OTpg6dSqio6Ph4uICR0dHvPHGG4iIiEDv3r0BAEOGDEFQUBAmTZqENWvWID09HYsWLUJUVBRbboiMjLEkO1euXGHdDpGRUXvouTbdv38fEyZMQHZ2Ntzc3NC3b1+cPn0abm5uAICPPvoIZmZmGDt2LMrKyjB06FB89tln4uvNzc2xd+9ezJw5ExEREbC3t8fkyZOxfPlyfV0SEWmoZrJTXF6JoCUxAIAby4caRHcRR2QRGSe9Jjvbt2+vd7+NjQ3Wr1+P9evX13mMr68vfvvtN22HRkRNqKysDHfv3gUATPwxGfG9DXMWdFmXPQc1EBmXRi0XQUSkDYmJiRAEARIrO5jZO+s7nDox2SEyTkx2iEjvZF1Yli6tIZFI9BxN3ZjsEBkntZKdiooKDBo0CLdv39ZVPETUDMmSHQsXbz1HUj9Zzc79+/chlUr1HA0RqUqtZMfS0hJXrlzRVSxE1EyJLTstW+s5kvq1bl3d8lRWVoaHDx/qOxwiUpHa3VgvvfQSNm3apItYiKiZku/GMmSWlpbihKXsyiIyHmqPxqqsrMTXX3+NQ4cOITw8HPb29gr7165dq7XgiKh5eNyNpTzZSc8vRTs3h6YMqU4+Pj5IS0tDSkoKevTooe9wiEgFaic7165dQ/fu3QE8/oKSMeTCQiIyTPn5+eIyL7JurPT8UpxMyBKPGbz2OFaNCcG4nm31EqM8Hx8fnD17li07REZE7WTn6NGjuoiDiJop2YAH775/g5m1LQBg0IfHFY6RCsDbu66hX0c3eDnZNnmM8jgii8j4aDz0PCEhATExMSgpKQEACIKgtaCIqPm4desWzFu4wvLJl8Vtwv8e8qoEAXezips0NmWY7BAZH7WTnezsbAwaNAgdO3bEiBEjkJaWBgCYOnUq3nrrLa0HSESm7datW7Bo6Q1I6v86MpdI4NfKromiqpts+DmTHSLjoXayM2fOHFhaWiI5ORl2do+/eMaNG4f9+/drNTgiMn03b95EZW4qJDXacuQrAM0kwPtjgvXehQU8btnh+lhExkPtZOfAgQP44IMP0KZNG4XtHTp0wL1797QWGBGZvuLySuw6cgZVj7LxvG+VuN1MAiwf3UV8fii6v0EUJwOPk53U1FRUViqu4VVcXgm/Bfvgt2AfissNc30vouZI7WSnqKhIoUVHJicnB9bW1loJioiah6qqKlTkPAAAvNi3o7j9UHR/jA1/fEPl6WTT5LHVxcPDAxYWFpBKpWI3PhEZNrWTnaeeegrffPON+FwikUAqlWLNmjV4+umntRocEZm2u0lJQFUFJBZW8Gn7uOXGkJKbmszNzdG6dfUQ+YbqdtjSQ2QY1B56vmbNGgwaNAjnz59HeXk55s2bh+vXryMnJwcnT57URYxEZKLib94EUD2ZoLm5uZ6jUZ2Pjw/u3bvHImUiI6F2y05wcDBu3bqFvn37YvTo0SgqKsKYMWNw8eJFtG/fXhcxEpGJuvm/ZMfS1UfPkaiHI7KIjIvaLTsA4OTkhHfeeUfbsRBRMxMfHwfA+JIdzrVDZFw0SnZyc3OxadMmxMVVf1EFBQVhypQpcHFx0WpwRGTa4o20ZYfDz4mMi9rdWCdOnICfnx/WrVuH3Nxc5ObmYt26dfD398eJEyd0ESMRmSBBEBB/8ybMW7jCyjMAGQWl+g5JZaq07KTnG8/1EJk6tVt2oqKiMG7cOGzYsEEsKKyqqsI///lPREVF4erVq1oPkohMT1paGqR+vdB66BuQmJlh5Ccn8cFYxcU+766O1GOEdasr2dl54b748+C1x7FsVBcQkf6p3bKTkJCAt956S2HkhLm5OaKjo5GQkKDV4IjIdP3513W4/C/RAR4v9pmWX6LnyBomS3YyMzNRVlYGAEjLL8G7u6+Lx0gFKDxnSw+R/qid7HTv3l2s1ZEXFxeHrl27aiUoIjJ9527eFRMdGUNZ7LMhrq6usLWtXrri/v3q1pykrCJIa6xeKv988Nrj+OEca3yI9EHtbqxZs2bhzTffREJCAnr37g0AOH36NNavX4/Vq1fjypUr4rGhoaHai5SITEpWUhwEe0+FhMdQFvtsiEQigY+PD27duoWUlBS0b98e/q3sYSZBrYRHRtZy1a+jm0Gs8UXUnKid7EyYMAEAMG/ePKX7JBIJBEGARCJBVVVVrWOIiADg7o2LyMm5BpdhsyCRSAxqsU9VyJId2YgsLydbLBvVBYt/re66kgComffIWq6M5RqJTIXayU5SUpIu4iCiZkQQBFy7dg2FWVlw6D4K1h7+OBTdH+3cHPQdmsqUFSmPDW8jJjvbp/fGhC9PK7T0GEvLFZGpUTvZ8fX11UUcRNSMZGRkICsrC2ZmZrB08QZg2OthKdPQ8POQNk4KLT3G1nJFZErULlAmImosWW1fQEAHmFla6zkazagy1478yu2HovsrDKsnoqbDZIfISJjSCtqyZKdLcLCeI9GcuktGGFvLFZEp0Wi5CCIiTRSXVyJoSQyy9v0OAAgOCcFfRjr9DBcDJTIebNkhoiZXnnkXABAcHKLfQBpB1rKTl5eHR48e6TkaIqqP2slOSkqKOIkWAJw9exazZ8/Gxo0btRoYEZkmoaoSFdnVw7WNuRurRYsWcHJyAsDWHSJDp3Y31osvvojp06dj0qRJSE9PxzPPPIMuXbrgu+++Q3p6OpYsWaKLOInIRFTkpgJVlXBwcEDnjgG4u7qjvkPSmI+PD/Lz85GSkoKgoCDYWVkorOdl7LVVRKZC7Zada9eu4YknngAA/PjjjwgODsapU6fw3XffYcuWLdqOj4hMTEVm9VxdXYKDYWZm3D3p6hYpE5F+qN2yU1FRAWvr6qGihw4dwqhRowAAgYGBSEtL0250RGRyyh/eBQB06WK8XVgyDSU7NVt6iEg/1L6t6tKlCz7//HP88ccfOHjwIIYNGwYASE1Nhaurq9YDJKLaVFlB++HDh8jKyoIg1LFYk55U/C/ZCQ4x3uJkGY7IIjIOaic7H3zwAb744gsMGDAAEyZMEFc63717t9i9RUTat/PC44EBda2gLQgCvv32WwQFBcHd3R1ubm7o3LkzvvrqK4NJeqqK82HdNgTeHUy/ZacmU5oriciYqN2NNWDAAGRlZaGgoAAtW7YUt0+fPh329vZaDY6IqqXll+Dd3dfF58pW0K6qqsI//vGPWrVz8fHxmDZtGvbs2YPt27fD1lZ/yxX8949b8Hzp/yAxM8PCP0oAt2SjnlWYNTtExkHtlp2BAwfi0aNHCokOALi4uGDcuHEaB7J69WpIJBLMnj1b3FZaWoqoqCi4urrCwcEBY8eORUZGhsLrkpOTERkZCTs7O7i7u2Pu3LmorOQdE5mWpKwihQUlgccraMu8/vrr2LJlCywsLLBixQrk5eUhPz8fa9asgY2NDXbv3o1Ro0ahvLy8iaOvlpZfgtUHkyD5X1GyLGFLyy/RSzzaIEt2kpOTDabljIhqUzvZOXbsmNIvy9LSUvzxxx8aBXHu3Dl88cUXCA0NVdg+Z84c7NmzBzt27MDx48eRmpqKMWPGiPurqqoQGRmJ8vJynDp1Clu3bsWWLVs4/J1Mjn8re5hJFLfJr6C9fft2fP755zAzM8O2bduwaNEiODk5wdHREXPnzsXBgwfh4OCAQ4cOKdxQNKWkrCLUTAdqJmzGpk2b6rWvSkpKkJOTo+doiKguKic7V65cEdezuXHjhvj8ypUruHjxIjZt2oTWrVurHUBhYSEmTpyIL7/8UqG1KD8/H5s2bcLatWsxcOBAhIeHY/PmzTh16hROnz4NADhw4ABu3LiBb7/9Ft26dcPw4cOxYsUKrF+/vt6717KyMhQUFCg8iAyZl5Mtlo3qIj6XX0H74cOHmDlzJgBg0aJFeOGFF2q9vm/fvti+fTskEgk2bNiAn376qclil/FvZQ8IUoVt8gmbMbKxsYGbmxsAdmURGTKVk51u3bohLCwMEokEAwcORLdu3cRHeHg43nvvPY1aVKKiohAZGYnBgwcrbL9w4QIqKioUtgcGBqJt27aIjY0FAMTGxiIkJAQeHh7iMUOHDkVBQQGuX7+OuqxatQpOTk7iQ9YUTWTI6lpB+91330VeXh7CwsKwePHiOl8fGRmJhQsXAgBmzpyJhw8f6jbgGrycbCE9uw2CtAqAYsJmzDgii8jwqZzsJCUlITExEYIg4OzZs0hKShIfDx48QEFBAV599VW13nz79u3466+/sGrVqlr70tPTYWVlBWdnZ4XtHh4eSE9PF4+RT3Rk+2X76rJw4ULk5+eLD35JkbHxdLJBcXklWk/fiA2ffwEA+Pjjj2FhUf+YgyVLliAkJARZWVl49913myJUUWZmJlKObceDz6dCWl6qkLAZM02LlFWZPoCItEPl0Vi+vr4AAKlU2sCRqklJScGbb76JgwcPwsbGRivnVJW1tbU4MSKRMSs4sxMQpBg+IhL9+vVr8Hhra2t88sknGDBgADZu3IhZs2YhMDCwCSIFzp8/DwCQWNrAzMoGnk5N+7nXFXWSnZrTB6waE2ISCR+RoVN76DkA3L59G0ePHkVmZmat5EfVrqwLFy4gMzMT3bt3F7dVVVXhxIkT+PTTTxETE4Py8nLk5eUptO5kZGTA09MTAODp6YmzZ88qnFc2Wkt2DJGpenD/PgqvHQEAzJ0/X+XX9e/fH6NGjcLu3bsxf/58/Prrr7oKUcG5c+cAANZeHZrk/ZqKqsmOKtMHEJFuqJ3sfPnll5g5cyZatWoFT09PSCSPh4hIJBKVk51Bgwbh6tWrCtumTJmCwMBAzJ8/Hz4+PrC0tMThw4cxduxYANXzhSQnJyMiIgIAEBERgZUrVyIzMxPu7u4AgIMHD8LR0RFBQUHqXhqRUfl601eAtBLWbbqgV+8ItV77wQcfYN++fdi9ezeOHTuGAQMG6CZIObJkx8rLeBf+VEZ++Hl96ps+gMkOkW6pney89957WLlyJearcSepTIsWLRAcrDiDqr29PVxdXcXtU6dORXR0NFxcXODo6Ig33ngDERER6N27NwBgyJAhCAoKwqRJk7BmzRqkp6dj0aJFiIqKYjcVmbSKigps2fw1AKBF92cbPL64vBJBS2IAADeWD0VgYCCmT5+ODRs2YMmSJThx4oRO4pS9ryAIKJG17HgG6OS99EXVlh3Z9AHyCY+xj0YjMhZqz7OTm5urdGirLnz00Ud49tlnMXbsWPTr1w+enp7YtWuXuN/c3Bx79+6Fubk5IiIi8NJLL+Hll1/G8uXLmyQ+oqYkW1Ty7upIHDmwH+lpaTCzc4Zdx961jlVlWYJ33nkHVlZW+OOPPzSeI0tVVY+y8DAzExYWFrB0b6fT92pqsmTnwYMH9dY01jd9ABHpltotOy+88AIOHDiA1157TevBHDt2TOG5jY0N1q9fj/Xr19f5Gl9fX/z2229aj4XIkH3zzTcAAIeQQZCYW2p0jtatW+OVV17Bxo0bsWrVKjz11FPaDFFBWdotANULCV/6cEwDRxsXb29vmJmZoaKiAhkZGfDy8qrz2LHhbbD41+q6nUPR/dHOzaGpwiRq1tROdgICArB48WKcPn0aISEhsLRU/KKdNWuW1oIjotpycnKwb98+AIB9SPU8VOn5pRr94Zw3bx6++uor/P7777h48SLCwsK0GqtM2f0bAIAnn3xSJ+fXJwsLC3h7e+P+/ftISUmpN9mRZyqj0YiMgdrJzsaNG+Hg4IDjx4/j+PHjCvskEgmTHSId++mnn1BRUYGOw6egzLW6C0XTYczt27fHhAkT8N133+H999/Hjh07dBGymOz07dtXJ+fXNx8fHzHZeeKJJ/QdDhHVoHbNjvxkgjUfd+7c0UWMRM1SXXU3u3btgnkLV5SHPu4OasyimgsWLAAA7Ny5EwkJCY0PvAZpeQnKMxIBQKddZfrE1c+JDJvayQ4R6U9BQQGOHDkCi5beEKC4Mqimi2oGBwdjxIgREAQBH330kbZCFZWlxgOCFD5t25rs0iyqDj8nIv1QuxuroSUhvv76a42DIaL6xcTEoKKiAh2cbVCp4jDm9PxShfoQZfU9c+fOxW+//YbNmzdj2bJlaNWqlUbx1RziDgDl6YmwbhuC8H49NTqnMWDLDpFh02joufwjMzMTR44cwa5du5CXl6eDEIlIZvfu3QCA0UP61zuMueayBG/vuqrw/Idzii0Q/fv3R48ePVBSUlLv6Ed17bxwH45PPA/PCatwqfXztd7XVKi6GKj89AF2VhpNYE9EGlD70/bzzz/X2iaVSjFz5ky0b99eK0ERUW2VlZXiKKxRo0YhvI5hzMqWJfjlUqrC85rLFEgkEvzrX//C+PHj8emnn2Lu3Lmws2vcZHfp+aV4d/d1SMyq76kESEx2eQS27BAZNq3U7JiZmSE6Olon/f1EVO3PP/9Ebm4uXF1daw3hlu+mUrYsQU3K6nvGjh0LPz8/ZGVlYevWrY2O91523csjmBpZspOWloaKigo9R0NENWmtQDkxMRGVlcpnaiWixknPLxW7sJ599lmYm5vXOkY2euvFL8/ATFJrtwJl9T0WFhaIjo4GAHz44YeoqqpqVMy+rvaAoJjtmOryCG5ubrCysoIgCEhNTW34BUTUpNTuxpJ9GcoIgoC0tDTs27cPkydP1lpgRM1dzbobs2tZAICRI0c2+Nq3R3TGe/viAFTX84zq6i12ZdW3TMGrr76KpUuXIjExEV5/W4K7PyzTuLbEw9EawrnvgB4TIDEzN+nlEczMzNCmTRvcuXMHycnJ8PX11XdIRCRH7ZadixcvKjyuXLkCoPpO8OOPP9Z2fETNkrK6m4puf4OloxsGDRrU4OufC/MWfz4U3R/vjwlReF7X5IP29vaYNqN6KZj8szshCA30h9XjxLnLSD66HalfvgZpRXm972sKWLdDZLjUvmU7evSoLuIgIjnK6m4kZubo0nsAnJ2d1TpXzWUJGlqmYMbMf+KDNf9GeWo8Yk+dxOCnB6j8XvKtUf/cmw6H0GdQVZQHM0srk18eQdURWUTU9DQe+/jw4UPEx8cDADp16gQ3NzetBUXU3Pm3sodZjXl0BGkV+ncPEp/LhjHL1LW6ubo8PDzgEDwQhZdj8PHatSonOzVbowRI4DL0dRTFndBKXIaOLTtEhkvtbqyioiK8+uqr8PLyQr9+/dCvXz94e3tj6tSpKC42vVEWRPrg5WSrMI+OIK1CTsyneHZQ06wt5djzeQAS7Nu7Bzdv3lTpNXW1Rtm2N93JBOUx2SEyXGonO9HR0Th+/Dj27NmDvLw85OXl4ddff8Xx48fx1ltv6SJGomZpbHgbAEBl/kM8+PxVVMSfQJ8+fVR6bUZBaaPe29K1DRwj/g7zFq547733VHqNrDVKgSCFuY36q7EbIyY7RIZL7WRn586d2LRpE4YPHw5HR0c4OjpixIgR+PLLL/HTTz/pIkaiZq0k8SyqHmXjySefhK1t3SOZ5OtlRn5yUuP3k52nZb9JaP3aZvx69SEuXbrU4OtkrVGyomZBWoVnvYo0jsPYMNkhMlxq1+wUFxfDw8Oj1nZ3d3d2YxHpQOm9ywBQ7ygsZaO35NWs71H1PBIzM7gMjUL0ohU4sndng68fG94G/1r3PfJPfg/bqkKsjr+CTx2aV8tOVlYWiouLGz0DNRFpj9otOxEREXj33XdRWvq4mbykpATLli1DRESEVoMjau4EQYrS5OrpHepLduqaNfn7ab2VzpMjm4DQb8E+hcLmuupuTl25jUOHDqkU86NzP6Ms5Somjh0Jh2aS6ACAs7Mz7O3tAQD3799v4Ggiakpqt+z85z//wdChQ9GmTRt07doVAHD58mXY2NggJiZG6wESNWcVD+9BWloIBwcH9OjRo87jlI3e0mS2YmXnkQgCKvNSER0djfPnz6MSZgorm8snU5cuXURJ4jkAEkz/33w9zYVEIkHbtm0RFxeHlJQUdOzYUd8hEdH/qN2yExwcjNu3b2PVqlXo1q0bunXrhtWrV+P27dvo0qVLwycgIpWVPaieBbnnE71gYVH3vUnN0Vuazlas7DzvDGuHltYSXL16FatXr6739cuWLAEA2AX1Q0CHDmq9tylg3Q6RYdJonh07OztMmzZN27EQkRw7KwsMa5WHbQD693uqwePH1rEKurqUncd+3Tq8+OKLWL58OZ6IUD4i7KeffsKBmP2AmTmc+07U6L2NHZMdIsOkdsvOqlWr8PXXX9fa/vXXX+ODDz7QSlBEVO3kyepRVaoOOZfR1mzFsvOMHz8eL730EqqqqjDpxfEoz7yjcFxCQgJmzJgBAHB8YgwsW3rXOldzwGSHyDCpnex88cUXCAwMrLW9S5cu+Pzzz7USFFFzVLNo+P79+7h37x7MzMzQq1cvvcYmkUjwxRdfoEePHsjKykL6toV4dGk/0tPTsWfPHvTv3x85OTkIDw/Hw+Pf4u7qSI0XEDVmTHaIDJPayU56ejq8vLxqbXdzc0NaWppWgiKix6063bp1Q4sWLXT2Pun5qk1AaGdnh4MHD6J3RASEsiLkxHyK9r4+GDVqFFJTUxEcHIzffvsNVlZWOovV0MmSneTkZD1HQkTy1E52fHx8xC9heSdPnoS3d/NsuibShT///BOA+l1YqpCfgHDw2uP44Zxqf5ydnZ0Rc+gIXIZEwS5oAMxbuMLV1RWOT4xB/uDFcHB20XqsxoSLgRIZJrXbmadNm4bZs2ejoqICAwcOBAAcPnwY8+bN43IRRFoku6no21e19bA0nThQKgBv77qGfh3dVBq99evldLQIG44WYcNhJgGWjeoiFjQ3d7KWnUePHiE/Px9OTk56joiIAA2Snblz5yI7Oxv//Oc/UV5eDgCwsbHB/PnzsXDhQq0HSNQcPXr0CJcvV8+crO2WHWUTB1YJAu5mFcPLybbepElZoiT/vLmzs7ODi4sLcnJykJKSwmSHyECo3Y0lkUjwwQcf4OHDhzh9+jQuX76MnJwcLPnf/BpE1Hhnz5yBVCqFn58fWrdurdVzK1uwU9UJCJUlSspmbm7OWKRMZHjUTnZkHBwc0LNnTwQHB8Pa2lqbMRE1e8fO/AUAOlmCpTETECpLlGqtdN7MMdkhMjwaJztEpF3yRcM7S0PgEPqMzoacjw1vI/58KLo/xvVsq9LrlCVK8s9JvWSnrjXKiEi7mOwQGYCatTCQmMFl6OsICK17PSxtUXcCwpqJkvxzVYexmzIOPycyPEx2iAxAXauNO3i2009AKvJ0stF4GLup4vBzIsOjUrLTvXt35ObmAgCWL1+O4uJinQZF1Nwoq4WBIEVHb2d9hKOy9PxSpcPY0/JL9BiVfrFmh8jwqJTsxMXFoaioCACwbNkyFBYW6jQoouamZi2MIK1CaNl1tVct15SmtSP3susext5cyZKd+/fvQxA4VI3IEKg0z063bt0wZcoU9O3bF4Ig4P/+7//g4KB8RWUOQSfSjGy18ZyDG1B8+zTeW/+Rzt6r5lw6mhbH+rpWt0jJJzyqDmM3Va1bt4ZEIkFpaSmysrLg5uam0uvS80s1XqmeiOqnUrKzZcsWvPvuu9i7dy8kEgl+//13WFjUfqlEImGyQ6SG4vJKBC2JAQCcXzQIQlUlCq8chFBZjieeeELP0TXM08lGYQZldYaxmyorKyt4eHggPT0dKSkp9SY7NeudVo0JUXlkHBGpTqVurE6dOmH79u04d+4cBEHA4cOHcfHixVqPv/76S60337BhA0JDQ+Ho6AhHR0dERETg999/F/eXlpYiKioKrq6ucHBwwNixY5GRkaFwjuTkZERGRsLOzg7u7u6YO3cuKis5hJOMU/nDuxAqy+Hs7IwOHTroOxwAtbu4ZK1CspXNNR3GbspUqdupa9mO5lzvRKQrao/GkkqlcHd318qbt2nTBqtXr8aFCxdw/vx5DBw4EKNHj8b169VfAHPmzMGePXuwY8cOHD9+HKmpqRgzZoz4+qqqKkRGRqK8vBynTp3C1q1bsWXLFrYukdEqT7sFAAjv0RNmZsY3WFLdYeymSjYiq77h5/Ut20FE2qX22lgAkJiYiI8//hhxcXEAgKCgILz55pto3769WucZOXKkwvOVK1diw4YNOH36NNq0aYNNmzZh27Zt4oKjmzdvRufOnXH69Gn07t0bBw4cwI0bN3Do0CF4eHigW7duWLFiBebPn4+lS5fCyspKk8sj0puy/yU7PXr21FsMrB1pPFVadmQj8FjvRKR7at86xsTEICgoCGfPnkVoaChCQ0Nx5swZdOnSBQcPHtQ4kKqqKmzfvh1FRUWIiIjAhQsXUFFRgcGDB4vHBAYGom3btoiNjQUAxMbGIiQkBB4eHuIxQ4cORUFBgdg6pExZWRkKCgoUHkRNob5RT3ZWFmgvyQQARPRq2nodzpWjXapMLKhsNuqlo4IQseoIZ1Qm0jK1k50FCxZgzpw5OHPmDNauXYu1a9fizJkzmD17NubPn692AFevXoWDgwOsra3x2muv4eeff0ZQUBDS09NhZWUFZ2dnheNlhX8AkJ6erpDoyPbL9tVl1apVcHJyEh+yLyYifbqbkScm6eHh4U32vqwd0T4/Pz8AwN27d+s9rr7ZqIlIe9ROduLi4jB16tRa21999VXcuHFD7QA6deqES5cu4cyZM5g5cyYmT56s0XnUsXDhQuTn54sPTv5F+iLfohK5/gxsuwyEm5ub1lc6r486tSPKloOoWbBMgL+/P4CGkx15rHci0h21kx03NzdcunSp1vZLly5pVLhsZWWFgIAAhIeHY9WqVejatSv+85//wNPTE+Xl5cjLy1M4PiMjA56engAAT0/PWqOzZM9lxyhjbW0tjgCTPYiaWs3ZhwUALkNfR2jvfpBImm4pcWWzN8vXjrCLS32ylp2MjAyNZ5znIqFE2qN2sjNt2jRMnz4dH3zwAf744w/88ccfWL16NWbMmIFp06Y1OiCpVIqysjKEh4fD0tIShw8fFvfFx8cjOTkZERERAICIiAhcvXoVmZmZ4jEHDx6Eo6MjgoKCGh0LkS4pm31YYmYOv+CmrddRVjsimyuHXVyaadmyJZycnAAA9+7d03M0RKR2m/PixYvRokULfPjhh1i4cCEAwNvbG0uXLsWsWbPUOtfChQsxfPhwtG3bFo8ePcK2bdtw7NgxxMTEwMnJCVOnTkV0dDRcXFzg6OiIN954AxEREejduzcAYMiQIQgKCsKkSZOwZs0apKenY9GiRYiKioK1tbW6l0bUpJTNPixIq/Bkt4Amj0U2ezNQXTsiG41VXxdXc544UBV+fn64fPkykpKS0LlzZ7Vfn1HAFeSJtEXtZEcikWDOnDmYM2cOHj16BABo0aKFRm+emZmJl19+GWlpaXByckJoaChiYmLwzDPPAAA++ugjmJmZYezYsSgrK8PQoUPx2Wefia83NzfH3r17MXPmTERERMDe3h6TJ0/G8uXLNYqHqKnJzz4sSKuQE/MpBkV9qdeY5GtHODxac/7+/rh8+XK9dTs1l+34b+zjY0d+clKH0RE1L42qJtQ0yZHZtGlTvfttbGywfv16rF+/vs5jfH198dtvvzUqDqKmUrP+RdZ9VJ59H5k/vANnq8cT0hkCWRcXl4NQn6xuJykpSaXjlXUZEpF2GN8UrURGStkfM9nzspRrqHqUje7duzdpcbIquByEZlQdfi6jrMtQRtkoOCJSHZMdoiai7I+Z7Hl5egKApp1fRxMcHq062fBzVVt2lI2Kk+EoOKLGYbJD1ESU/TGTPS/P0G+yw7lytE/dlp2ao+LkcRQcUeOolexUVFRg0KBBuH37tq7iITJZyoZ4LxvVBUJVBcof3gUAdO/eXU/RkbbJkp3s7GxxMEdD6ptBmYuEEmlOrWTH0tISV65c0VUsRCavZv3LpAg//PKiL1BViZYtW4pdH2T8HB0d4eLiAkC9mZRl6pvokYjUo3Y31ksvvdTgKCoiapis/uXChQsAYJDFyQC7uBpD3bodeW+PeDw3D0fBETWO2t9clZWV+Prrr3Ho0CGEh4fD3t5eYf/atWu1FhxRcyCf7JBp8fPzw4ULFzRq2XkuzBvv7YsDoDjRIxGpT+1k59q1a+KX8q1btxT2GeJdKZGh++uvvwAY/kgsUl9jWnbkcRQcUeOonewcPXpUF3EQNUsVFRW4fPkyACY7pkjdEVnyMypz8U8i7dG4Az4hIQGJiYno168fbG1tIQgCW3aIaigur0TQkhgAwI3lQ2stD3D58mWUlZXB0dER7dq101eYpCPaatkhosZRu0A5OzsbgwYNQseOHTFixAikpaUBAKZOnYq33npL6wESmTJZF1b37t1hZsZpr0yNui07RKQban+7zpkzB5aWlkhOToad3eNhkOPGjcP+/fu1GhyRqZMVJ7MLyzT5+voCAPLz85Gbm6vWazkKjkh71P4EHThwADExMWjTRnHyqw4dOuDevXtaC4yoOeBILNNmb28Pd3d3ZGZm4u7du2jZsqW+QyJqltRu2SkqKlJo0ZHJycmBtbW1VoIiag4qKytZnNwMqLv6ORFpn9rJzlNPPYVvvvlGfC6RSCCVSrFmzRo8/fTTWg2OyJTUXLn65s2bKCkpgYODAzp06KCnqEjXZEXKrNsh0h+1u7HWrFmDQYMG4fz58ygvL8e8efNw/fp15OTk4OTJk7qIkcho7bxwX/x58NrjWDUmBON6tgXwuAsrLCyMxckmTFstO8pG9hGRatT+hg0ODsatW7fQt29fjB49GkVFRRgzZgwuXryI9u3b6yJGIqOUll+Cd3dfF5/XXLmakwk2D2zZIdI/jW4NnJyc8M4772g7FiKTkpRVBKmguE22crWXky1HYjUTHH5OpH8aJTu5ubnYtGkT4uKq120JCgrClClTxBV+iQjwb2UPMwkUEh7ZytVVVVW4ePEiAI7EMnXyEwty8lUi/VC7G+vEiRPw8/PDunXrkJubi9zcXKxbtw7+/v44ceKELmIkMkpeTrZYNqqL+Fx+5epbt26huLgY9vb26NSpkx6jJF3z9fWFRCJBUVERHj58qJVz1ix2J6L6qZ3sREVFYdy4cUhKSsKuXbuwa9cu3LlzB+PHj0dUVJQuYiQyWmPDH89HdSi6f63i5G7dusHc3FwvsVHTsLa2FuclS0xM1Pg8NYvdfziX3OjYiJoLtZOdhIQEvPXWWwpf0Obm5oiOjkZCQoJWgyMyNsXllfBbsA9+C/bVWshRfuVqTibYvAQEBACAxt+RDRW7E1H91E52unfvLtbqyIuLi0PXrl21EhSRqeNIrOZFNlJV02SnvmJ3ImqYSgXKV65cEX+eNWsW3nzzTSQkJKB3794AgNOnT2P9+vVYvXq1bqIkMiFSqVQsTmay0zzIWnY07caqr9idiBqmUrLTrVs3SCQSCMLjT9q8efNqHffiiy9i3Lhx2ouOyMjJFnOUd/v2bTx69Ai2trYIDAzUU2TUlBrbjSUrdl/8a3VXlnyxOxE1TKVkh2u6EKkvPb8U7dwcam2XdWF17doVFhacBbc5kHVjNaZAeWx4GzHZORTdX+n/W0SknErftL6+vrqOg8gk1Lc8hAwnE2x+ZMlOVlYW8vLy4Ozs3KjzyRe7E1HDNLqtTE1NxZ9//onMzExIpVKFfbNmzdJKYETGpq4RM/06uil0N5w/fx4Ak53mpEWLFnB3d0dmZiYSExP5uydqYmonO1u2bMGMGTNgZWUFV1dXhdlAJRIJkx1qduQXaKxJfnkIoLo4mSOxmqeAgAAmO0R6onays3jxYixZsgQLFy7kSs1ENTQ0YiYhIQGPHj2CjY0NgoKC9BAh6UtAQABOnTqlcZGysmJ3IlKN2tlKcXExxo8fz0SHSIm3R3QWf1Y2YkZ+5mQWJzcv2ihSJiLNqJ2xTJ06FTt27NBFLERG77kwb/Fn+eUhZFic3Hw1dvg5EWlO7VvLVatW4dlnn8X+/fsREhICS0tLhf1r167VWnBExiaj4PECjcpGzDDZab7YskOkPxolOzExMeJKzTULlImaG/nh5iM/OVnncVKplMlOMyZr2Xnw4AGKi4thZ8fZj4maitrJzocffoivv/4ar7zyig7CITIuyoab14XFyc2bi4sLnJ2dkZeXhzt37iA4OFjfIRE1G2rX7FhbW6NPnz66iIXI6ChboBEAvp/WG3ZWivcSslYdzpzcPEkkErF15/bt23qOhqh5UTvZefPNN/HJJ5/oIhYioyNboFFeXQs0ypKdHj16NEVoZIA6duwIALh165aeIyFqXtROds6ePYutW7eiXbt2GDlyJMaMGaPwUMeqVavQs2dPcXbR5557DvHx8QrHlJaWIioqCq6urnBwcMDYsWORkZGhcExycjIiIyNhZ2cHd3d3zJ07F5WVlepeGpHaZAs0ytS3QCPrdUhW61jze46IdEvtZMfZ2RljxoxB//790apVKzg5OSk81HH8+HFERUXh9OnTOHjwICoqKjBkyBAUFRWJx8yZMwd79uzBjh07cPz4caSmpiokVVVVVYiMjER5eTlOnTqFrVu3YsuWLViyZIm6l0akkbHhbcSflQ03BzhzMlVjskOkHxJBEOopqWxaDx8+hLu7O44fP45+/fohPz8fbm5u2LZtG/72t78BAG7evInOnTsjNjYWvXv3xu+//45nn30Wqamp8PDwAAB8/vnnmD9/Ph4+fAgrK6sG37egoABOTk7Iz8+Ho6OjTq+RTI/8chE3lg+tVasDVHdbdOrUCTY2Nnj06BFrdpqpS5cuISwsDK6ursjKytJ3OERGT9W/3wY1DXJ+fj6A6lELQHWzf0VFBQYPHiweExgYiLZt2yI2NhYAEBsbi5CQEDHRAYChQ4eioKAA169fhzJlZWUoKChQeBDpEouTCQA6dOgAAMjOzkZ2dnajzlVcXgm/Bfvgt2AfisvZbU9UH7W/df39/eudT+fOnTsaBSKVSjF79mz06dNHHJKZnp4OKysrODs7Kxzr4eGB9PR08Rj5REe2X7ZPmVWrVmHZsmUaxUmkCdbrEADY29vDx8cHKSkpiI+Px5NPPqnvkIiaBbWTndmzZys8r6iowMWLF7F//37MnTtX40CioqJw7do1/PnnnxqfQ1ULFy5EdHS0+LygoAA+Pj46f18yTaos0Mhkh2Q6derEZIeoiamd7Lz55ptKt69fvx7nz5/XKIjXX38de/fuxYkTJ9CmzeNiT09PT5SXlyMvL0+hdScjIwOenp7iMWfPnlU4n2y0luyYmqytrWFtba1RrETqki9O5rBz6tSpEw4dOsQiZaImpLWaneHDh2Pnzp1qvUYQBLz++uv4+eefceTIEfj7+yvsDw8Ph6WlJQ4fPixui4+PR3JyMiIiIgAAERERuHr1KjIzM8VjDh48CEdHR85SSwYhMTERBQUFnDmZAOhmRFZ6fmnDBxE1Y1pLdn766SexsFhVUVFR+Pbbb7Ft2za0aNEC6enpSE9PR0lJCQDAyckJU6dORXR0NI4ePYoLFy5gypQpiIiIQO/evQEAQ4YMQVBQECZNmoTLly8jJiYGixYtQlRUFFtvyCDIWjxZnEyA9pId+TXZBq89jh/OJTfqfESmTO1v3rCwMIUCZUEQkJ6ejocPH+Kzzz5T61wbNmwAAAwYMEBh++bNm8W1tz766COYmZlh7NixKCsrw9ChQxXex9zcHHv37sXMmTMREREBe3t7TJ48GcuXL1f30oh0gvU6JE+W7CQkJKCyslKjBFjZmmxv77qGfh3dlE5oSdTcqf0pe+655xSem5mZwc3NDQMGDEBgYKBa51Jlih8bGxusX78e69evr/MYX19f/Pbbb2q9N1FTYbJD8nx8fGBra4uSkhLcvXtXXC9LHcrWZKsSBNzNKmayQ6SE2snOu+++q4s4iExSVVUVkx1SYGZmhg4dOuDKlSuIj4/XKNmRrckmn/DUtSYbERnYpIJEpubmzZt49OgR7O3t0aVLl4ZfQM1CY+t21FmTjYjUSHbMzMxgbm5e74PFl0SKzpw5A6B6yDk/HyQj6/K/efOmxudQZU02Iqqm8rfvzz//XOe+2NhYrFu3DlKpVCtBEZkKWbLTq1cvPUdChkQ2BUFdS9qoy9PJRivnITJVKic7o0ePrrUtPj4eCxYswJ49ezBx4kSOgCKqgckOKSNbEufatWsQBKHeJXiIqPE0qtlJTU3FtGnTEBISgsrKSly6dAlbt26Fr6+vtuMjMlpFRUW4evUqACY7pKhjx46wsLBAQUEBHjx4oNE5ZMuU3F0dCTsrdpES1UetZCc/Px/z589HQEAArl+/jsOHD2PPnj3iXQoRPXbhwgVIpVK0bt0arVu31nc4ZECsrKzEFdC11ZVFRHVTOdlZs2YN2rVrh7179+L777/HqVOn8NRTT+kyNiKjxi4sqo9sdJ62kp3i8kr4LdgHvwX7kFVYKv5cXF6plfMTGTOV2z4XLFgAW1tbBAQEYOvWrdi6davS43bt2qW14IiM2enTpwEw2SHlunTpgp9++gnXrl3TdyhEJk/lZOfll19mER0Rqu+gg5bEAABuLB9aZ70EW3aoPrLuf3ZjEemeysnOli1bdBgGkWl58OABHjx4ADMzM/To0UPf4ZABknVj3bhxQ+sjsjIKHq+Cnp5finZuDlo7N5Ex4gzKRDoga9UJCQmBvb29nqMhQxQQEABLS0sUFhYiObnxK5bLr4L+7LqT4s9cEZ2IyQ5Ro6Tnlyrdzi4saoilpaW4bERj63ZqroIuv0aobEX0tPySRr0HkTFjskOkJvk76LrumpnskCq0NSJL2Sro8mQrohM1V0x2iNRQ8w5a2V1zVVUVzp8/D4DJDtVPW0XKslXQ68IV0am5Y7JDpAZld9A175qvX7+OoqIitGjRQlzwkUgZWcuObKZtTdVcBV0+7+GK6ERMdojUouwOuuZd86lTpwAATzzxBMzNzZsyPDIyXbt2BVCdIFdUVDTqXPKroO+d1Uf8mSuiEzHZIVJLzTtoZXfNf/75JwBwhnFqkJ+fHxwdHVFeXo64uDitndfD8fEq6FwRnYjJDpHa5O+gld01y5Kdvn37NmlcZHzMzMzQrVs3AMClS5f0GguRKeNSuUSNUPOuOSUlBffu3YO5uTmLk0klYWFhOHHiBC5evIiXX35Z4/PIVkGXkf+ZqLljyw6RFp08WT2ZW7du3eDgwFlrqWGylp2LFy/qNxAiE8aWHaIGKFsLq667ZnZhkbrCwsIAVHdjaXvZCCKqxpYdIi1iskPq6ty5M6ysrJCfn4+7d+/qOxwik8Rkh0gNdS0PAQD5+fm4cuUKAKBPnz51Hkckz8rKSpxvh0XKRLrBZIeoAaosDwEAsbGxEAQB7du3h5eXV1OFRyZA1pXFuh0i3WCyQ1QPVZaHkPnjjz8AsFWH1Mdkh0i3mOwQ1UOV5SFkjh07BgDo379/E0RGpoRz7RDpFpMdonqosjwEABQWFuLs2bMAgKeffrqpwiMT0bVrV0gkEty/fx+ZmZn6DofI5DDZIaqHKstDANXz61RWVsLX1xf+/v5NHSYZuRYtWqBz584AICbNRKQ9THaIGtDQ8hAAcPToUQBs1SHNyWbcPn36tJ4jITI9THaI1FDXooqyZGfgwIFNGQ6ZkN69ewMAzpw5o+dIiEwPkx2iRsrPz8f58+cBsGWHNCdr2Tl79iykUqlWz11cXgm/Bfvgt2AfissrtXpuImPA5SKIGlDf8hBA9ZBzqVSKgIAAtGnTps7jiOrTpUsX2NnZoaCgADdv3kRQUJC+QyIyGWzZIWok1uuQNlhYWKBnz54AdNuVVd8s4ESmiskOUSMdOXIEAJMdajxdFSmrOgs4kaliskPUCOnp6eJEcIMGDdJvMGT0dFGkrM4s4ESmiskOUQ3qFHMeOHAAABAeHg53d/emCI9MmKxl5+rVqygsLNTKOdWZBZzIVOk12Tlx4gRGjhwJb29vSCQS/PLLLwr7BUHAkiVL4OXlBVtbWwwePBi3b99WOCYnJwcTJ06Eo6MjnJ2dMXXqVK19SRA1ZP/+/QCAYcOG6TkSMgXe3t7w8fGBVCoVR/g1lqqzgBOZMr0mO0VFRejatSvWr1+vdP+aNWuwbt06fP755zhz5gzs7e0xdOhQlJY+LrCbOHEirl+/joMHD2Lv3r04ceIEpk+f3lSXQCairtac+oo5q6qqxJYdJjukLU8++SSAxwvLNpaqs4ATmTK9JjvDhw/He++9h+eff77WPkEQ8PHHH2PRokUYPXo0QkND8c033yA1NVVsAYqLi8P+/fvx1VdfoVevXujbty8++eQTbN++HampqXW+b1lZGQoKChQeRDK/XHz8/059xZx//fUXsrOz4ejoKHY/EDXWgAEDADxeWFYbas4CPrKrN+fdoWbFYGt2kpKSkJ6ejsGDB4vbnJyc0KtXL8TGxgIAYmNj4ezsjB49eojHDB48GGZmZvUW+K1atQpOTk7iw8fHR3cXQkZn5W9x4s/1FXPKurAGDx4MS0vLJouPTJss2Tl16hTKysq0fv66ZgEnMmUGm+ykp6cDADw8PBS2e3h4iPvS09NrFYVaWFjAxcVFPEaZhQsXIj8/X3ykpKRoOXoyNvJDcwUVizlZr0O60KlTJ3h4eKC0tFRri4LKJsa8uzoSdlaKc8ly3h1qDgw22dEla2trODo6Kjyo+ao5NLcmZcWcOTk54lwoQ4cO1Wl81LxIJBKddGXJ47w71NwYbLLj6ekJAMjIyFDYnpGRIe7z9PREZmamwv7Kykrk5OSIxxA1RNnQXJm6ijn37t0LqVSK0NBQtG1bexV0osbQZbLDeXeoOTLYZMff3x+enp44fPiwuK2goABnzpxBREQEACAiIgJ5eXm4cOGCeMyRI0cglUpZMEoqUzY0V+ZQdH+M61k7mZEVyT/33HO6C4yaLV3W7XDeHWqO9JrsFBYW4tKlS+IMtElJSbh06RKSk5MhkUgwe/ZsvPfee9i9ezeuXr2Kl19+Gd7e3uIfmM6dO2PYsGGYNm0azp49i5MnT+L111/H+PHj4e3trb8LI6OibGiujLJizuLiYrFeh8kO6YIu6nZkOO8ONUd6TXbOnz+PsLAwhIWFAQCio6MRFhaGJUuWAADmzZuHN954A9OnT0fPnj1RWFiI/fv3w8bm8R+g7777DoGBgRg0aBBGjBiBvn37YuPGjXq5HjJeNYfm1lXMCQAHDx5ESUkJfH190a1btyaMkpoL+bod2UKz2sJ5d6g50muyM2DAAAiCUOuxZcsWANUf+OXLlyM9PR2lpaU4dOgQOnbsqHAOFxcXbNu2DY8ePUJ+fj6+/vprODg46OFqyFQ0NDRXvgtLIqmj/4uokQYOHAjg8ag/baqZ3CvrqiUyJRJBqDnQtvkpKCiAk5MT8vPzOTKL6lVZWQlPT09kZ2fj6NGj4t03kbalpKSgbdu2kEgkyMzMRKtWrXT2XsXllQhaEgMAuLF8qNIWTSJDpOrfb4MtUCYyRH/88Qeys7Ph6uqKvn376jscMmE+Pj4IDQ2FIAiIiYlpsvflvDtkipjsULOkzsrm8r7//nsAwOjRo2Fhwbtf0q3IyEgAwL59+3T6Ppx3h0wdkx1q9lS9ky0rK8OOHTsAVC9AS6RrsmRn//79qKzUzRpWnHeHmgMmO9QsaXInu3//fuTl5cHb2xv9+/fXZXhEAIDevXvDxcUFubm54ozd2sZ5d6g5YLJDzY6md7LfffcdAGDChAkwNzfXaYxEAGBubi4uR6KrrizOu0PNAZMdanY0uZMtKCjAnj17ALALi5qWrCtL9v+ftnHeHWoOmOxQs6PJneyuXbtQWlqKwMBATiRITWrEiBGwtLTE9evXcf163QvWNgbn3SFTx2SHTII6o6s0uZP9+uuvAQAvvfQSJxKkJtWyZUsMGzYMALB9+3advIedlYU4a3g7N07KSqaHyQ6ZnPT8UoXk587DwlrHqHMne+3aNfzxxx8wNzfHlClTdBIzUX0mTJgAoDrZ4TywROpjstNMNZQMGJuao6ve3nVV4XnN0Vbq3Ml+8cUXAKrn1uECs6QPI0eOhK2tLRISEnDhwgV9h0NkdJjsNFOmNImYstFVv1xKVXiu6bwhRUVF+OabbwAAM2fObHywRBpwcHDAqFGjADye2JKIVMdkpxkytUnElI2uqqlKEBCx6ohGMyYXFBQgICBAXJiRSB/Gjx8PAPjhhx8glUr1HA2RcWGyo2OaLkugS6YyiZjs3/bFL8/UGl1Vk/x+VWdMFgQB69evBwDMmDEDZmb8uJD+DB8+HM7Oznjw4AEOHjyo73BEptYlTqaJ395NyFAW2DPFScReHxgg/mwmAZ7r5q3wfFTXx89V7bY7cOAALl26BHt7exYmk95ZW1tj8uTJAIDPPvtMZ++j7g2aKXWJk+lisqNjNb8I/ht7V+O7IG3dQTXlJGLqxNzQsTX3y//bfnokAQuHB+L7ab1xcsFAvD8mRNz3/bTe2H1Z/RqeVatWAQCmT58OV1dXla6XSJdkdWN79+7FvXv3dP5+ym7Q5D+HZ+5km1SXOJkuJjs6pKw2Zsmvj5+rexekzTsodYZeq5uEaBpzQ8fK7x/04XGFf0upAKzZHw+/VnbwcrJVGG1VJQhqd9udOnUKx48fh6WlJaKjo+s8jqgpderUCYMGDYJUKsXGjRt18h7qfA7HbzxtEl3iZPokAidtQEFBAZycnJCfnw9HR0etnfdUYhZe/PJMvceYSSB+WRx5q7/CMOji8koELYkBAPwwvTcmfKn4xVLfa7Xpv7F3sfh/iYWZBFg2qov4/Mhb/XEyIUth/6oxIRjXsy3S8kvQZ/WRemP2dLIRr1EiAeT/bzSXSPDngqfh5WSr9FzKfD+tNyLaK7bCKHut/LmVGTlyJPbu3YtXX30VmzZtauifiKjJ7Ny5E3/729/g7u6O5ORkWFtba+3cDX1WVPkcNvTZItImVf9+s2VHh5TVxtQk/6VR8y6qoTuo+l6rrrpaZxpqnVLWwjJ/51X4LdiHUwlZDcYsPx9OzbRb/g5RlRFXddUdqdttd/bsWezduxcSiQTz5s2r/02JmtioUaPg7e2NzMxMrc+oXNfgBdlIRmWfaXk1P1ssXiZDwZYd6K5lB1BsFZHlPfX9g8vuigCo1JKh7LWa3FHVbL2Rtc6o0jpVF1Wutz7yrUDKWrYkcueWj7kuafkluJtVLHZ1KSMIAvr3748//vgDL7/8MrZu3aph9ES688EHH2DBggUICAhAXFwcLCwstHJeZS038p8zZZ9pc4kEu/4ZgeJyaa3PVl3fK0TaourfbyY70G2yAyj+kT10I0Mh+anrH//DF0Lx1o4rdZ6zvtfW7B5S9ly+y6u+pmtA/aSrrjjri7km2Qgq2eSAyp6vGhOCfh3dGkxg1PHzzz9jzJgxsLGxwe3bt9GmTZuGX0TUxAoLC+Hn54fs7Gxs3boVL7/8stbO3dANmqo3GZp0HxOpi8mOGnSd7NQkS37srMzw/GenlCYSDd1B1fdaVRMF2RdUXa03svoXdb78lPl0QhhcHazrjbkmZS059d1BakN5eTm6dOmChIQEvPPOO3jvvfe0en4ibdJV6w7w+Dsqu6gMr2+7WOdxymoF5WsNlVFWV0ekKdbsGDAvJ1tEtHdFV5+WCrUk8mrmA7K+8K4+LRt8rbLlEupbPkFZbZEZgOyiMqTll2BShB9iFw7E99N649TCgVg+WrH+ZfXYEMQuHIhPJ4Qpnb8n3E95zMrmw/lgbEi9I6iKy6WIaO+qkzvDDz/8EAkJCXB3d8f8+fO1fn4ibYqKikKrVq2QkJCA//73v1o9t+w7Kty3pdLPdOzCgXWuKydfa1iTsc/nRcaLLTto+padmtLyS7DvShre2xdXa5+sVaSuloz6XtsQ+Tusmq03DTVT11X/okoffc3XKjtXUzeB37hxA2FhYSgvL9d6twCRrvz73//GvHnz4OnpiZs3b8LJyUnr76FO3U19o7WUvVa+FUiXI0rJdLEbSw36TnaAxv1xV3VYtjxl507LL8GFu7mYtf1io5IMVQqBVdFUxY2VlZXo06cPzp49ixEjRogjsYgMXVlZGUJDQ3Hr1i288cYbWLdunU7eR9XPdF1d4osjO2NEqJd4c5OUVQT/VvYKNYwsYCZNqPr3W3udvNQosuHR8h98VWc1Vvbahmp2lJ3by8kWLg51r5ulauLi5WSrldaXSRF+GBzkodUCZGXWrFmDs2fPwsnJCRs3bmSiQ0bD2toan332GQYPHoz169dj8uTJCA8P1/r7qPqZlnWJ17xZkiU6yur/ZGTd6/06uim08MoSo5qJEoucSR1s2YFhtOzINKZVpKHuIVXO3dxGUMTExGD48OEQBAGbN2/GK6+8ou+QiNQ2ceJEbNu2Dd26dUNsbCxsbGz0FktdLbKqtkB/OiEMLg5W+OteLv7vwC3xPPUNslBGl4mRKSZdxnpN7MZSgyElO4agucyNkZiYiB49eiAvLw//+Mc/2KpDRis9PR3BwcHIzs7GzJkzdbpQqCqU3VipMmeXOtNT1HcTpsl3mKp/7HX9/aiPpKOhazLkRIjJjhqY7NSmrbobQ5WZmYkBAwYgLi4OvXr1wvHjx7U67T5RU9u/fz9GjBgBQRDw7bffYuLEifoOSUFdExZK/tftZYbqREedP0g1h7Gn5Zfg/N0cvLn9klqt06omMJq0fKuTKKibSGkjCWnomgz95pc1O9Qo2qq7MUTZ2dkYPHgw4uLi0Lp1a+zcuZOJDhm9YcOGYdGiRVixYgWmT5+Odu3aISIiQt9hiZTVFspPDNrQnD41mUsksLMyw6nErFrFzjUpqzuUJQr2VuZKV26Xrx2SqWs5jQt3c+HiULu2qGZXXEMj2WrGsXDnVdhbWyDct2WtWJQlIf06uonJjyzehhKh+q5JQI7Sf5tAzxYoKq8yqloqtuyALTvNSVpaGiIjI3Hx4kV4eXnh+PHj6NChg77DItKKqqoqPPvss9i/fz+cnJxw5MgRdO/eXd9hKair1bi+mh5ziQQju3rVOeiioaVpZBOSyv5AqzKTvaqLCtecqkM+robikE8UcorK60z2aiZKqizrUXP6EPlEqKF/d1W7EzWppdI2dmOpgclO8/DXX39h1KhRePDgAdzc3HD8+HF07txZ32ERaVVRURGGDRuGP//8E66uroiJidHJCC1d+OFcMt7edQ1VggBziQTzhnVCaBvnWoMs1JmNXd3ECKjuUlv3YpjYoiLfcnHi1kMxRk263jSNSz5Rqi8xUqah5Kdm8ldfHA1p6gEtTHbUwGTHtEmlUnzxxRd46623UFJSgsDAQOzZswcBAQH6Do1IJwoKCjB48GCcO3cOtra22Lx5M8aNG6fvsFSiSr2gKsXOZgA+eTEMbVraqpwYAYp/7Btak0/drjdV3ltWw6RqjI19H3WuSdUWH/lWMV13cXG5CCIAt2/fxjPPPIN//vOfKCkpwbBhw3D69GkmOmTSHB0dcfDgQYwYMQIlJSUYP348Zs2ahcLCQn2H1iDZUhX1/WFUtsSNBBC3mUskWDU2BJGh3igqr2oweTCXSPBr1JP4dEIYJJLHf9DrWmoHQJ3LadRFlT+2AoB148OULr1T8zjg8fWaofa8RQ29j+zfRJVrMgOw/sUw/BL1ZIPXK19L9emR24hYdQQvfnkGfVYfwQ/nktWIUruY7JBJSk5OxvTp09G5c2ccOXIEtra2+M9//oN9+/bpZEp9IkPj5OSE3bt3Y+7cuQCATz75BMHBwfj1119h7A36Xk62WDUmBOb/myrCXCLB6rEhOLmgeg2/Pxc8LdaNqJIYydYddHGwajAxkhU71xXH2O6tFZ4vHB6I76f1xs8qJgrhfi3xbFdvhfMq+0MtS4y+n9YbJxcOxOqxj4+XtdzIXttQItTQNckSx64+LRu83pFdvTB6/Sm8+OUZsTgbqL0mY1NjNxbYjWUqysvLcfjwYWzcuBG7d++GVCoFAERGRuLjjz9maw41WzExMZgxYwbu3bsHAOjevTveeecdjBo1SqurpTc1VafIqFkL9P6YYLHbpqE1+Wqqa6kdVSZwrRnHc2He+OViqkJcNee3qatGqaE4AIg/N1RnpMo11ffvrk4tlbZXvW92NTvr16/Hv//9b6Snp6Nr16745JNP8MQTT6j0WiY7xkkqleLmzZs4deoUjh07hn379iEvL0/cP3DgQCxbtgx9+/bVX5BEBqKoqAjvvfcePvnkExQVFQEAPDw8MHHiRIwePRoRERGwtLTUc5S6o2li1FBC0tg4GpOwqROH/PvIJz/auCaZhmqpdFG83KySnR9++AEvv/wyPv/8c/Tq1Qsff/wxduzYgfj4eLi7uzf4eiY7hkkQBOTn5yMzMxOZmZnIyMjAnTt3cOvWLdy6dQtXrlxRSG4AwN3dHePGjcNrr72GoKAg/QROZMAePnyIjz76CF999RUePnwobnd0dETv3r3RvXt3hIeHIyQkBL6+vnpdekJfNE1ImjouQzmX/Dnrmz5AW0mVvGaV7PTq1Qs9e/bEp59+CqD6jt/HxwdvvPEGFixY0ODrdZXsBAcHIz4+HmZmZpBIJEb5X3WOFQRBfEilUpV+lkqlKC0tRXFxMUpKShT+W1hYiIqKinr/je3s7PDEE0/gySefxPDhwxEREQFzc3Ot/Q6JTFVFRQV+//13/PDDD4iJiUF2drbS4zw9PdG2bVu4ubnBxcVFfLRo0QI2NjYKD2tra9jY2MDCwkLhO6Tmd4my7xZVlmpp6BhtnMNYj2ksbb3HvrhcfHgiVRzpNb2XBzq52aK1kxXCOvlpvfWw2SQ75eXlsLOzw08//YTnnntO3D558mTk5eXh119/rfWasrIylJWVic8LCgrg4+Oj9WSnU6dOuHXrVsMHUr0cHR3h7u4ONzc3+Pr6omPHjujYsSM6d+6MkJAQk256J2oKVVVVuHTpEs6fP4+//voLFy5cQHx8vFGM3iLDY97CFRbO3qjMS0XVo8dJdHx8PDp27KjV92o2y0VkZWWhqqoKHh4eCts9PDxw8+ZNpa9ZtWoVli1bpvPYTpw4gYqKCoUWDW39VxfnbMx/pVKpeHcmf6dW83nNn83MzGBjYwM7OzvY2trC1tZW/Nne3h5ubm6wtTXM6ceJTIW5uTnCw8MVJh8UBAE5OTm4d+8ekpOTkZOTg+zsbPG/RUVFKC0tRWlpKcrKysSfS0tLUVVVJX4v1PyeqGu7KlS9N9fXcfp+b4M5R2UxkJUAKwCQ+/7W50LLRp/saGLhwoWIjo4Wn8tadrStZgJGRGQsJBIJXF1d4erqanBLThCpy+iTnVatWsHc3BwZGRkK2zMyMuDp6an0NdbW1lz4kYiIqJkw+kkFraysEB4ejsOHD4vbpFIpDh8+bFAr/hIREZF+GH3LDgBER0dj8uTJ6NGjB5544gl8/PHHKCoqwpQpU/QdGhEREemZSSQ748aNw8OHD7FkyRKkp6ejW7du2L9/P2tmiIiIyPiHnmsDJxUkIiIyPlz1nIiIiAhMdoiIiMjEMdkhIiIik8Zkh4iIiEwakx0iIiIyaUx2iIiIyKQx2SEiIiKTxmSHiIiITBqTHSIiIjJpJrFcRGPJJpEuKCjQcyRERESkKtnf7YYWg2CyA+DRo0cAAB8fHz1HQkREROp69OgRnJyc6tzPtbEASKVSpKamokWLFpBIJFo7b0FBAXx8fJCSkmKya26Z+jWa+vUBpn+Npn59gOlfo6lfH2D616ir6xMEAY8ePYK3tzfMzOquzGHLDgAzMzO0adNGZ+d3dHQ0yf955Zn6NZr69QGmf42mfn2A6V+jqV8fYPrXqIvrq69FR4YFykRERGTSmOwQERGRSWOyo0PW1tZ49913YW1tre9QdMbUr9HUrw8w/Ws09esDTP8aTf36ANO/Rn1fHwuUiYiIyKSxZYeIiIhMGpMdIiIiMmlMdoiIiMikMdkhIiIik8ZkR8tWr14NiUSC2bNni9tKS0sRFRUFV1dXODg4YOzYscjIyNBfkI2k7BoHDBgAiUSi8Hjttdf0F6Sali5dWiv+wMBAcb+x/w4buj5j//0BwIMHD/DSSy/B1dUVtra2CAkJwfnz58X9giBgyZIl8PLygq2tLQYPHozbt2/rMWL1NXSNr7zySq3f47Bhw/QYsXr8/PxqxS+RSBAVFQXA+D+HDV2fsX8Oq6qqsHjxYvj7+8PW1hbt27fHihUrFNat0tfnkDMoa9G5c+fwxRdfIDQ0VGH7nDlzsG/fPuzYsQNOTk54/fXXMWbMGJw8eVJPkWqurmsEgGnTpmH58uXiczs7u6YMrdG6dOmCQ4cOic8tLB5/PEzhd1jf9QHG/fvLzc1Fnz598PTTT+P333+Hm5sbbt++jZYtW4rHrFmzBuvWrcPWrVvh7++PxYsXY+jQobhx4wZsbGz0GL1qVLlGABg2bBg2b94sPjemocznzp1DVVWV+PzatWt45pln8MILLwAw/s9hQ9cHGPfn8IMPPsCGDRuwdetWdOnSBefPn8eUKVPg5OSEWbNmAdDj51AgrXj06JHQoUMH4eDBg0L//v2FN998UxAEQcjLyxMsLS2FHTt2iMfGxcUJAITY2Fg9RauZuq5REIRaz43Nu+++K3Tt2lXpPlP4HdZ3fYJg/L+/+fPnC3379q1zv1QqFTw9PYV///vf4ra8vDzB2tpa+P7775sixEZr6BoFQRAmT54sjB49umkCagJvvvmm0L59e0EqlZrE57Am+esTBOP/HEZGRgqvvvqqwrYxY8YIEydOFARBv59DdmNpSVRUFCIjIzF48GCF7RcuXEBFRYXC9sDAQLRt2xaxsbFNHWaj1HWNMt999x1atWqF4OBgLFy4EMXFxU0cYePcvn0b3t7eaNeuHSZOnIjk5GQApvM7rOv6ZIz597d792706NEDL7zwAtzd3REWFoYvv/xS3J+UlIT09HSF36GTkxN69eplNL/Dhq5R5tixY3B3d0enTp0wc+ZMZGdn6yHaxisvL8e3336LV199FRKJxGQ+hzI1r0/GmD+HTz75JA4fPoxbt24BAC5fvow///wTw4cPB6DfzyG7sbRg+/bt+Ouvv3Du3Lla+9LT02FlZQVnZ2eF7R4eHkhPT2+iCBuvvmsEgBdffBG+vr7w9vbGlStXMH/+fMTHx2PXrl1NHKlmevXqhS1btqBTp05IS0vDsmXL8NRTT+HatWsm8Tus7/patGhh9L+/O3fuYMOGDYiOjsbbb7+Nc+fOYdasWbCyssLkyZPF35OHh4fC64zpd9jQNQLVXVhjxoyBv78/EhMT8fbbb2P48OGIjY2Fubm5nq9APb/88gvy8vLwyiuvADCd71KZmtcHGP/36IIFC1BQUIDAwECYm5ujqqoKK1euxMSJEwFAr59DJjuNlJKSgjfffBMHDx40in5/TahyjdOnTxd/DgkJgZeXFwYNGoTExES0b9++qULVmOzOAwBCQ0PRq1cv+Pr64scff4Stra0eI9OO+q5v6tSpRv/7k0ql6NGjB95//30AQFhYGK5du4bPP/9cTASMnSrXOH78ePH4kJAQhIaGon379jh27BgGDRqkl7g1tWnTJgwfPhze3t76DkUnlF2fsX8Of/zxR3z33XfYtm0bunTpgkuXLmH27Nnw9vbW++eQ3ViNdOHCBWRmZqJ79+6wsLCAhYUFjh8/jnXr1sHCwgIeHh4oLy9HXl6ewusyMjLg6empn6DV1NA1yhfcyfTq1QsAkJCQ0NThaoWzszM6duyIhIQEeHp6Gv3vsCb561PG2H5/Xl5eCAoKUtjWuXNnsatO9nuqOXLHmH6HDV2jMu3atUOrVq2M5vcoc+/ePRw6dAj/+Mc/xG2m9DlUdn3KGNvncO7cuViwYAHGjx+PkJAQTJo0CXPmzMGqVasA6PdzyGSnkQYNGoSrV6/i0qVL4qNHjx6YOHGi+LOlpSUOHz4sviY+Ph7JycmIiIjQY+Sqa+galTWPX7p0CUD1F7QxKiwsRGJiIry8vBAeHm70v8Oa5K9PGWP7/fXp0wfx8fEK227dugVfX18AgL+/Pzw9PRV+hwUFBThz5ozR/A4bukZl7t+/j+zsbKP5Pcps3rwZ7u7uiIyMFLeZ0udQ2fUpY2yfw+LiYpiZKaYV5ubmkEqlAPT8OdRp+XMzVbOi/rXXXhPatm0rHDlyRDh//rwQEREhRERE6C9ALZC/xoSEBGH58uXC+fPnhaSkJOHXX38V2rVrJ/Tr10+/QarhrbfeEo4dOyYkJSUJJ0+eFAYPHiy0atVKyMzMFATB+H+H9V2fKfz+zp49K1hYWAgrV64Ubt++LXz33XeCnZ2d8O2334rHrF69WnB2dhZ+/fVX4cqVK8Lo0aMFf39/oaSkRI+Rq66ha3z06JHwr3/9S4iNjRWSkpKEQ4cOCd27dxc6dOgglJaW6jl61VVVVQlt27YV5s+fX2ufsX8OBaHu6zOFz+HkyZOF1q1bC3v37hWSkpKEXbt2Ca1atRLmzZsnHqOvzyGTHR2omeyUlJQI//znP4WWLVsKdnZ2wvPPPy+kpaXpL0AtkL/G5ORkoV+/foKLi4tgbW0tBAQECHPnzhXy8/P1G6Qaxo0bJ3h5eQlWVlZC69athXHjxgkJCQnifmP/HdZ3fabw+xMEQdizZ48QHBwsWFtbC4GBgcLGjRsV9kulUmHx4sWCh4eHYG1tLQwaNEiIj4/XU7Saqe8ai4uLhSFDhghubm6CpaWl4OvrK0ybNk1IT0/XY8Tqi4mJEQAo/d0Y++dQEOq+PlP4HBYUFAhvvvmm0LZtW8HGxkZo166d8M477whlZWXiMfr6HEoEQW5qQyIiIiITw5odIiIiMmlMdoiIiMikMdkhIiIik8Zkh4iIiEwakx0iIiIyaUx2iIiIyKQx2SEiIiKTxmSHiIiITBqTHSIiAAMGDIBEIoFEIhHXJDp27BgkEkmtxSe1benSpeJ7f/zxxzp9L6LmiMkOEantlVdeEf84yz+GDRum79AaZdq0aUhLS0NwcHCjz5WRkQFLS0ts375d6f6pU6eie/fuAIB//etfSEtLQ5s2bRr9vkRUG5MdItLIsGHDkJaWpvD4/vvvdfqe5eXlOj2/nZ0dPD09YWFh0ehzeXh4IDIyEl9//XWtfUVFRfjxxx8xdepUAICDgwM8PT1hbm7e6PclotqY7BCRRqytreHp6anwaNmypbhfIpHgq6++wvPPPw87Ozt06NABu3fvVjjHtWvXMHz4cDg4OMDDwwOTJk1CVlaWuH/AgAF4/fXXMXv2bLRq1QpDhw4FAOzevRsdOnSAjY0Nnn76aWzdulXsbioqKoKjoyN++uknhff65ZdfYG9vj0ePHml8zcXFxRg+fDj69Okjdm199dVX6Ny5M2xsbBAYGIjPPvtMPH7q1Kk4fPgwkpOTFc6zY8cOVFZWYuLEiRrHQkSqY7JDRDqzbNky/P3vf8eVK1cwYsQITJw4ETk5OQCAvLw8DBw4EGFhYTh//jz279+PjIwM/P3vf1c4x9atW2FlZYWTJ0/i888/R1JSEv72t7/hueeew+XLlzFjxgy888474vH29vYYP348Nm/erHCezZs3429/+xtatGih0bXk5eXhmWeegVQqxcGDB+Hs7IzvvvsOS5YswcqVKxEXF4f3338fixcvxtatWwEAI0aMgIeHB7Zs2VIrljFjxsDZ2VmjWIhITTpfV52ITM7kyZMFc3Nzwd7eXuGxcuVK8RgAwqJFi8TnhYWFAgDh999/FwRBEFasWCEMGTJE4bwpKSkCACE+Pl4QBEHo37+/EBYWpnDM/PnzheDgYIVt77zzjgBAyM3NFQRBEM6cOSOYm5sLqampgiAIQkZGhmBhYSEcO3aszmvq37+/8OabbypsO3r0qABAiIuLE0JDQ4WxY8cKZWVl4v727dsL27ZtU3jNihUrhIiICPH5ggULBH9/f0EqlQqCIAgJCQmCRCIRDh06VCsGX19f4aOPPqozRiLSDFt2iEgjTz/9NC5duqTweO211xSOCQ0NFX+2t7eHo6MjMjMzAQCXL1/G0aNH4eDgID4CAwMBAImJieLrwsPDFc4ZHx+Pnj17Kmx74oknaj3v0qWL2MLy7bffwtfXF/369dPoWp955hkEBATghx9+gJWVFYDqupvExERMnTpV4Rree+89hfhfffVVJCUl4ejRowCqW3X8/PwwcOBAjWIhIvU1vgqPiJole3t7BAQE1HuMpaWlwnOJRAKpVAoAKCwsxMiRI/HBBx/Uep2Xl5fC+2jiH//4B9avX48FCxZg8+bNmDJlCiQSiUbnioyMxM6dO3Hjxg2EhISI8QPAl19+iV69eikcL19o3KFDBzz11FPYvHkzBgwYgG+++QbTpk3TOBYiUh+THSLSi+7du2Pnzp3w8/NTa/RTp06d8NtvvylsO3fuXK3jXnrpJcybNw/r1q3DjRs3MHnyZI1jXb16NRwcHDBo0CAcO3YMQUFB8PDwgLe3N+7cudNgofHUqVMxc+ZMjBo1Cg8ePMArr7yicSxEpD52YxGRRsrKypCenq7wkB9J1ZCoqCjk5ORgwoQJOHfuHBITExETE4MpU6agqqqqztfNmDEDN2/exPz583Hr1i38+OOPYgGwfGtJy5YtMWbMGMydOxdDhgxp9Bw2//d//4eJEydi4MCBuHnzJoDqAuxVq1Zh3bp1uHXrFq5evYrNmzdj7dq1Cq994YUXYGlpiRkzZmDIkCHw8fFpVCxEpB4mO0Skkf3798PLy0vh0bdvX5Vf7+3tjZMnT6KqqgpDhgxBSEgIZs+eDWdnZ5iZ1f3V5O/vj59++gm7du1CaGgoNmzYII7Gsra2Vjh26tSpKC8vx6uvvqrZRdbw0Ucf4e9//zsGDhyIW7du4R//+Ae++uorbN68GSEhIejfvz+2bNkCf39/hdfZ2dlh/PjxyM3N1VosRKQ6iSAIgr6DICJqjJUrV+Lzzz9HSkqKwvb//ve/mDNnDlJTU8XC4roMGDAA3bp10+tyDX5+fpg9ezZmz56ttxiITBFbdojI6Hz22Wc4d+4c7ty5g//+97/497//rVCTU1xcjMTERKxevRozZsxoMNGRP6+DgwOuXr2qq9CVev/99+Hg4FBr8kEi0g627BCR0ZkzZw5++OEH5OTkoG3btpg0aRIWLlwoFjovXboUK1euRL9+/fDrr7/CwcGhwXM+ePAAJSUlAIC2bduqnCBpQ05OjjjZopubG5ycnJrsvYmaAyY7REREZNLYjUVEREQmjckOERERmTQmO0RERGTSmOwQERGRSWOyQ0RERCaNyQ4RERGZNCY7REREZNKY7BAREZFJ+390TYqhCqMz9wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1641,12 +3110,12 @@ "id": "89f755f4-b780-43a6-a923-49662c4c701a", "metadata": {}, "source": [ - "Unser Startparameter sind bereits nicht schlecht, aber weichen noch stark von den Daten ab. Bei komplexeren Daten und Fitmodellen lohnt es sich den fit schrittweise durchzuführen. Bevor wir uns den beiden Peaks widmen, welche uns eigentlich interessieren, sollten wir Versuchen den Untergrund etwas besser zu beschreiben. Um den Untergrund besser fitten zu können sollten wir erst den Fitbereich auf einen Energiebereich limitieren, in welchem der Untergrund dominiert. Dem Plot können wir entnehmen, dass dies für alle Werte unterhalb von 45 keV und oberhalb von 70 keV der Fall ist. Im allgemeinen können wir Wertebereiche in python mit Hilfe von „Masken“ selektieren. Eine Maske lässt sich wie folg erstellen:" + "Unsere Startparameter sind bereits nicht schlecht, aber weichen noch stark von den Daten ab. Bei komplexeren Daten und Fitmodellen lohnt es sich, den Fit schrittweise durchzuführen. Bevor wir uns den beiden Peaks widmen, welche uns eigentlich interessieren, sollten wir versuchen, den Untergrund etwas besser zu beschreiben. Um den Untergrund besser fitten zu können, sollten wir erst den Fitbereich auf einen Energiebereich limitieren, in welchem der Untergrund dominiert. Dem Plot können wir entnehmen, dass dies für alle Werte unterhalb von 45 keV und oberhalb von 70 keV der Fall ist. Im Allgemeinen können wir Wertebereiche in Python mit Hilfe von „Masken“ selektieren. Eine Maske lässt sich wie folgt erstellen:" ] }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 505, "id": "d53e8386-ea7f-43fa-b4fe-65229308a2ec", "metadata": {}, "outputs": [], @@ -1664,7 +3133,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 506, "id": "d1d06116-d726-4163-b414-6ccde6a19027", "metadata": {}, "outputs": [ @@ -1674,7 +3143,7 @@ "(120, 120)" ] }, - "execution_count": 112, + "execution_count": 506, "metadata": {}, "output_type": "execute_result" } @@ -1688,12 +3157,12 @@ "id": "80db0ae0-5cbd-4db9-b184-610d77bf1c58", "metadata": {}, "source": [ - "… und beinhaltet Wahrheitswerte True und False, bzw. 1 und 0 mit welchen wir unsere Daten wie folgt selektieren können:" + "… und beinhaltet Wahrheitswerte `True` und `False`, bzw. 1 und 0, mit welchen wir unsere Daten selektieren können:" ] }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 507, "id": "f24d19d8-3483-45b5-aee9-1d3f8755da22", "metadata": {}, "outputs": [ @@ -1725,7 +3194,7 @@ " 78.5 , 78.83333333, 79.16666667, 79.5 , 79.83333333]))" ] }, - "execution_count": 113, + "execution_count": 507, "metadata": {}, "output_type": "execute_result" } @@ -1739,23 +3208,17 @@ "id": "5b5c07e7-1865-48f2-bd9e-0540661fd71e", "metadata": {}, "source": [ - "Wir können auch verschieden Masken mit Hilfe von Wahrheitsoperatoren kombinieren\n", - "\n", - "TODO add operators and examples +/*\n", - "\n", - " \n", - "Unsere Selektion können wir an unsere Kostenfunktion direkt übergeben. Außerdem müssen wir noch alle Fitparameter festhalten, welche nicht zum Untergrund beitragen. " + "Unsere Selektion können wir an unsere Kostenfunktion direkt übergeben." ] }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 508, "id": "3034bb22-0b96-498d-9736-ed9bb2189460", "metadata": {}, "outputs": [], "source": [ - "ls.mask = (center < 45) | (center >= 70)\n", - "mi.fixed[:] = True" + "ls.mask = (center < 45) | (center >= 70)" ] }, { @@ -1768,23 +3231,23 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 509, "id": "81232354-a7b8-4e2a-9ac0-159ce0a03da4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 115, + "execution_count": 509, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFsklEQVR4nO3dd3iTddfA8W+6F21poQtKW/Yqe1UREJA9FFyICIrKo0WWAqKACCqIr4r44EBZPoIoigqoIBvZQ/ZsoVBGyyptoaUz9/tHSUjatE3apGnS87muXOTe5yZNcvKbKkVRFIQQQggh7JSDtQMQQgghhLAkSXaEEEIIYdck2RFCCCGEXZNkRwghhBB2TZIdIYQQQtg1SXaEEEIIYdck2RFCCCGEXXOydgDlgVqt5sqVK1SqVAmVSmXtcIQQQghhBEVRuH37NiEhITg4FF5+I8kOcOXKFUJDQ60dhhBCCCFK4OLFi1SvXr3Q7ZLsAJUqVQLy/rO8vb2tHI0QQgghjJGamkpoaKj2e7wwkuyAturK29tbkh0hhBDCxhTXBEUaKAshhBDCrkmyI4QQQgi7JsmOEEIIIeyatNkRQghR7uTm5pKdnW3tMISVOTs74+joWOrzSLIjhBCi3FAUhcTERJKTk60diignfH19CQoKKtU4eJLsCCGEKDc0iU5AQAAeHh4y0GsFpigK6enpXLt2DYDg4OASn0uSHSGEEOVCbm6uNtHx9/e3djiiHHB3dwfg2rVrBAQElLhKSxooCyGEKBc0bXQ8PDysHIkoTzR/D6VpwyXJjhBCiHJFqq6ELnP8PUiyI4QQQgi7JsmOEEIIIeyaJDtCCCGEFahUKn777bci9xk2bBiPPvqo0ec8f/48KpWKQ4cOlSo2eyO9sYQQdktRFG7evImbmxteXl7WDkfYsWHDhpGcnFxs8qIrISGBypUrA3lJSkREBAcPHqRZs2bafT777DMURTFztBWPVUt2wsPDUalUBR7R0dEAZGRkEB0djb+/P15eXgwcOJCrV6/qnSM+Pp7evXvj4eFBQEAA48ePJycnxxq3I4QoR06dOkWLFi2oWrUq/v7+TJs2TT4bRLkSFBSEq6trkfv4+Pjg6+tbNgHZMasmO/v27SMhIUH7WL9+PQBPPPEEAGPHjmX16tWsWLGCrVu3cuXKFQYMGKA9Pjc3l969e5OVlcXOnTtZsmQJixcvZurUqVa5HyFE+XD+/HmioqK0RflZWVm8++67vPnmm9YNTJhMURTS0tKs8ihNiUqnTp0YNWoUEyZMwM/Pj6CgIKZNm6a3j241VkREBADNmzdHpVLRqVMnoGA11tq1a2nfvj2+vr74+/vTp08fzp49a1JsCQkJ9O7dG3d3dyIiIli2bBnh4eHMmTMHMFwVlpycjEqlYsuWLdp1x44do2fPnnh5eREYGMiQIUO4ceOGdvvPP/9MZGQk7u7u+Pv707VrV9LS0gDYsmULbdq0wdPTE19fXx588EEuXLhg0n2YwqrJTtWqVQkKCtI+1qxZQ61atejYsSMpKSksWLCATz75hM6dO9OyZUsWLVrEzp072b17NwB///03J06c4Pvvv6dZs2b07NmTGTNmMG/ePLKysgq9bmZmJqmpqXoPIYR9UKvVDB06lOTkZFq2bElCQgILFiwA4OOPP2bt2rVWjlCYIj09HS8vL6s80tPTSxX7kiVL8PT0ZM+ePcyePZvp06drf9Tnt3fvXgA2bNhAQkICK1euNLhfWloa48aNY//+/WzcuBEHBwcee+wx1Gq10XE999xzXLlyhS1btvDLL78wf/587SjFxkpOTqZz5840b96c/fv3s3btWq5evcqTTz4J5CVUgwYN4oUXXuDkyZNs2bKFAQMGoCgKOTk5PProo3Ts2JEjR46wa9cuXn75ZcsOOaCUE5mZmYq/v7/y/vvvK4qiKBs3blQA5datW3r71ahRQ/nkk08URVGUKVOmKE2bNtXbfu7cOQVQ/v3330Kv9c477yhAgUdKSopZ70kIUfZ+/PFHBVA8PT2V2NhY7fqRI0cqgNK0aVNFrVZbMUJRmLt37yonTpxQ7t69q113584dg5/XZfG4c+eO0bEPHTpU6d+/v3a5Y8eOSvv27fX2ad26tTJx4kTtMqD8+uuviqIoSlxcnAIoBw8eLPK8+V2/fl0BlKNHjxZ5Ho2TJ08qgLJv3z7tupiYGAVQPv3000LPcevWLQVQNm/erCiKosyYMUPp1q2b3rkvXryoAMrp06eVAwcOKIBy/vz5AjHcvHlTAZQtW7YUel+6DP1daKSkpBj1/V1uemP99ttvJCcnM2zYMCBvfhQXF5cCdZWBgYEkJiZq9wkMDCywXbOtMJMmTSIlJUX7uHjxovluRAhhNYqiMHPmTADeeOMNatWqpd02bdo0vLy8OHz4MKtXr7ZWiMJEHh4e3LlzxyqP0o7k3KRJE73l4OBgk0tQ8ouJiWHQoEHUrFkTb29vwsPDgbz2q8Y4ffo0Tk5OtGjRQruudu3a2obSxjp8+DCbN2/WKwmrX78+AGfPnqVp06Z06dKFyMhInnjiCb755htu3boFgJ+fH8OGDaN79+707duXzz77jISEBJOub6pyk+wsWLCAnj17EhISYvFrubq64u3trfcQQti+DRs2cOjQITw9PRk1apTeNn9/f23nB03bBFH+qVQqPD09rfIobbWKs7NzgXsxpbrJkL59+5KUlMQ333zDnj172LNnD0CRTTdM5eCQlxooOm2W8k/VcOfOHfr27cuhQ4f0HjExMXTo0AFHR0fWr1/PX3/9RcOGDfn888+pV68ecXFxACxatIhdu3bxwAMP8OOPP1K3bl1tExVLKBfJzoULF9iwYQMvvviidl1QUBBZWVkkJyfr7Xv16lWCgoK0++TvnaVZ1uwjhKg4Fi1aBOQ16vTz8yuw/T//+Q+Q1zjS2F/CQpQFFxcXIK/jTWFu3rzJ6dOnmTx5Ml26dKFBgwba0hJj1atXj5ycHA4ePKhdFxsbq3eeqlWrAuiVtuQft6dFixYcP36c8PBwateurffw9PQE8pK7Bx98kHfffZeDBw/i4uLCr7/+qj1H8+bNmTRpEjt37qRx48YsW7bMpHsxRblIdhYtWkRAQAC9e/fWrmvZsiXOzs5s3LhRu+706dPEx8cTFRUFQFRUFEePHtUrFly/fj3e3t40bNiw7G5ACGF1qamp2p4tQ4cONbhPeHg4nTp1QlEUli5dWobRCVG0gIAA3N3dtQ19U1JSCuxTuXJl/P39mT9/PrGxsWzatIlx48aZdJ369evTtWtXXn75Zfbu3cvBgwd5+eWXcXd315Zkubu7065dO2bNmsXJkyfZunUrkydP1jtPdHQ0SUlJDBo0iH379nH27FnWrVvH888/T25uLnv27OGDDz5g//79xMfHs3LlSq5fv06DBg2Ii4tj0qRJ7Nq1iwsXLvD3338TExNDgwYNSv4fWAyrJztqtZpFixYxdOhQnJzuj3Ho4+PD8OHDGTduHJs3b+bAgQM8//zzREVF0a5dOwC6detGw4YNGTJkCIcPH2bdunVMnjyZ6OjoYscuEELYl5UrV3L37l3q169Pq1atCt3vueeeA+CHH34oq9CEKJaTkxNz587l66+/JiQkhP79+xfYx8HBgeXLl3PgwAEaN27M2LFj+eijj0y+1nfffUdgYCAdOnTgscce46WXXqJSpUq4ublp91m4cCE5OTm0bNmSMWPG8N577+mdIyQkhB07dpCbm0u3bt2IjIxkzJgx+Pr64uDggLe3N9u2baNXr17UrVuXyZMn8/HHH9OzZ088PDw4deoUAwcOpG7durz88stER0czYsQI0//jjGVUU2gLWrdunbb1dn53795VXn31VaVy5cqKh4eH8thjjykJCQl6+5w/f17p2bOn4u7urlSpUkV5/fXXlezsbJNiMLY1txCi/Hr00UcVQJk2bVqR+924cUNxcHBQAOXChQtlFJ0wRlG9boTlaHpRbdiwwdqhGGSO3lgqRZFxqFNTU/Hx8SElJUUaKwthgzIyMvD39yc9PZ1///2X5s2bF7l/+/bt2bFjB1988QWvvPJKGUUpipORkUFcXBwRERF6pQzCvDZt2sSdO3eIjIwkISGBCRMmcPnyZc6cOVOgUXV5UNTfhbHf31avxhJCiNLasmUL6enpVKtWTW9eocL06dMHgD/++MPCkQlR/mRnZ/PWW2/RqFEjHnvsMapWrcqWLVvKZaJjLpLsCCFsniZp6dOnj1HdhTWdITZt2mTWLrtC2ILu3btz7Ngx0tPTuXr1Kr/++ithYWHWDsuiJNkRQtg8Ta/Nbt26GbV/48aNqVKlCnfv3mX//v2WDE0IUQ5IsiOEsGmJiYmcPHlSb/LE4qhUKjp27AjA1q1bLRidEKI8kGRHCGHTNLMwN2vWzOBAgoXRJDu6szgLIeyTJDtCCJu2adMmAB5++GGTjtMkOzt27CAnJ8fscQkhyg9JdoQQNm3Hjh3A/eTFWI0bN8bHx4e0tDSOHTtmidCEFaVn5RD+5h+Ev/kH6VmSzFZ0kuwIIWxWamoqJ0+eBKBt27YmHevg4EDr1q0BtJMpCiGK1qlTJ8aMGWPWcw4bNoxHH33UrOfMT5IdIYTN2r9/P4qiEBYWRmBgoMnHaxIkSXZEaQ0bNgyVSsWsWbP01v/2228mz54eHh7OnDlzzBidkGRHCGGzNEmKqaU6GpLsCHNyc3Pjww8/NHkmcmF5kuwIIWzW3r17AWjTpk2JjtckOydPniQ1NdVscYnyJTElo0yu07VrV4KCgpg5c2aR+/3yyy80atQIV1dXwsPD+fjjj7XbOnXqxIULFxg7diwqlarIUiGVSsXXX39Nnz598PDwoEGDBuzatYvY2Fg6deqEp6cnDzzwAGfPntUec/bsWfr3709gYCBeXl60bt2aDRs26J33iy++oE6dOri5uREYGMjjjz9eaAx//PEHPj4+LF26FICLFy/y5JNP4uvri5+fH/379+f8+fPa/XNzcxk3bhy+vr74+/szYcIEymLWKkl2hBA2SVGUUpfsBAQEEBYWhqIoHDx40JzhCSv75cAl7fOun2zlx33xFr+mo6MjH3zwAZ9//jmXLl0yuM+BAwd48sknefrppzl69CjTpk1jypQpLF68GICVK1dSvXp1pk+fTkJCAgkJCUVec8aMGTz33HMcOnSI+vXr88wzzzBixAgmTZqkreYdOXKkdv87d+7Qq1cvNm7cyMGDB+nRowd9+/YlPj7v/2f//v2MGjWK6dOnc/r0adauXUuHDh0MXnvZsmUMGjSIpUuXMnjwYLKzs+nevTuVKlXin3/+YceOHXh5edGjRw/tSOUff/wxixcvZuHChWzfvp2kpCR+/fVXU/+rTWf26UltkMx6LoTt0czU7OjoqKSlpZX4PJrZ0j/99FPzBSdKxFyznl9JTlci3lyjhE28/6j55h/KleR0M0Va0NChQ5X+/fsriqIo7dq1U1544QVFURTl119/VXS/ap955hnlkUce0Tt2/PjxSsOGDbXLYWFhRv09AsrkyZO1y7t27VIAZcGCBdp1P/zwg+Lm5lbkeRo1aqR8/vnniqIoyi+//KJ4e3srqampBvft2LGjMnr0aOW///2v4uPjo2zZskW77X//+59Sr149Ra1Wa9dlZmYq7u7uyrp16xRFUZTg4GBl9uzZ2u3Z2dlK9erVtf93hphj1nMp2RFC2CRNqU5kZCQeHh4lPo9mhnQp2bEfcTfSUOerGclVFM7fSC+T63/44YcsWbJE21NQ18mTJ3nwwQf11j344IPExMSQm5tr8rWaNGmifa5ppB8ZGam3LiMjQ1tNe+fOHd544w0aNGiAr68vXl5enDx5Uluy88gjjxAWFkbNmjUZMmQIS5cuJT1d///t559/ZuzYsaxfv15vyIfDhw8TGxtLpUqV8PLywsvLCz8/PzIyMjh79iwpKSkkJCTolcQ6OTnRqlUrk+/bVJLsCCFsUmnb62hIsmN/Iqp44pCvqYujSkV4lZInxabo0KED3bt3Z9KkSRa/lu5M5Zr2PYbWqdVqAN544w1+/fVXPvjgA/755x8OHTpEZGSktpqpUqVK/Pvvv/zwww8EBwczdepUmjZtSnJysvaczZs3p2rVqixcuFCvvc2dO3do2bIlhw4d0nucOXOGZ555xmL/B8aQZEcIYZM0JTulTXaaNWsGwIkTJ8jIKJuGrMKygn3cebdfI+2ygwo+GNCYYB/3Moth1qxZrF69ml27dumtb9CggXYgTI0dO3ZQt25dHB0dAXBxcSlRKY8xduzYwbBhw3jssceIjIwkKChIrwEx5JW2dO3aldmzZ3PkyBHOnz+vHakcoFatWmzevJnff/+d1157Tbu+RYsWxMTEEBAQQO3atfUePj4++Pj4EBwcrNf7MScnhwMHDljkXnVJsiOEsDm5ubna2cpLm+xUr14df39/cnNzZSRlOzKwZXXt8w3jOvJU6xplev3IyEgGDx7M3Llz9da//vrrbNy4kRkzZnDmzBmWLFnCf//7X9544w3tPuHh4Wzbto3Lly9z48YNs8ZVp04dVq5cyaFDhzh8+DDPPPOMttQHYM2aNcydO5dDhw5x4cIFvvvuO9RqNfXq1dM7T926ddm8eTO//PKLdpDBwYMHU6VKFfr3788///xDXFwcW7ZsYdSoUdoG26NHj2bWrFn89ttvnDp1ildffVWv1MhSJNkRQticc+fOkZaWhpubGw0aNCjVuVQqFU2bNgWQZMdOBfm4WeW606dP10skIK/046effmL58uU0btyYqVOnMn36dIYNG6Z33Pnz56lVqxZVq1Y1a0yffPIJlStX5oEHHqBv3750796dFi1aaLf7+vqycuVKOnfuTIMGDfjqq6/44YcfaNSoUYFz1atXj02bNvHDDz/w+uuv4+HhwbZt26hRowYDBgygQYMGDB8+nIyMDLy9vYG8ZG/IkCEMHTqUqKgoKlWqxGOPPWbWezREpShl0MG9nEtNTcXHx4eUlBTtCyKEKL9++eUXHn/8cVq2bKkt4SmNUaNG8fnnnzN+/Hhmz55thghFSWRkZBAXF0dERARubqVLUNKzcmg4dR0AJ6Z3x8PFyRwhCiso6u/C2O9vKdkRQtico0ePAvo9UUqjYcOGQF67HSGE/ZFUVwhhc44cOQJIsiMK5+HixPlZva0dhignpGRHCGFzLJXsnD9/nrS0NLOcUwhRfkiyI4SwKXfu3NHO9aM7eFppVKlShapVq6IoCqdOnTLLOYUQ5YckO0IIm6LpMRUcHGzWnipSlSWE/ZJkRwhhU8xdhaUhyY4Q9ksaKAshbIpRyU5WGnwQkvf8rSt5/+ouu3gWOESSHSHsl5TsCCFsiibZMVd7HQ3NoGmS7AhhfyTZEULYDEVRLF6Nde7cOe7evWvWcwsryEqDaT55jyzpYVfRSbIjhLAZly5dIiUlBScnJ+rXr2/WcwcEBODn54darebMmTNmPbcQ5qRSqfjtt9/Mes7w8HDmzJlj1nOWJ5LsCCFshmbk5Hr16uHq6lryExn41a9SqaTdjiixYcOGoVKp+M9//lNgW3R0NCqVSm/+K1G2JNkRQtiMkydPAvernMxNc97jx49b5PzCvoWGhrJ8+XK9atCMjAyWLVtGjRplO+u60CfJjhDCZmiSndLOdF6YevXqARATE2OR8wsrSb1SJpdp0aIFoaGhrFy5Urtu5cqV1KhRg+bNm2vXrV27lvbt2+Pr64u/vz99+vTRDpQJkJWVxciRIwkODsbNzY2wsDBmzpxZ6HXfeecdgoODte3Ztm/fzkMPPYS7uzuhoaGMGjVKb2Twa9eu0bdvX9zd3YmIiGDp0qXm/G8olyTZEULYDEsnO7Vr1wYk2bELh5bdfz6vDfz7XZlc9oUXXmDRokXa5YULF/L888/r7ZOWlsa4cePYv38/GzduxMHBgcceewy1Wg3A3LlzWbVqFT/99BOnT59m6dKlhIeHF7iWoii89tprfPfdd/zzzz80adKEs2fP0qNHDwYOHMiRI0f48ccf2b59OyNHjtQeN2zYMC5evMjmzZv5+eef+eKLL7h27Zpl/kPKCRlnRwhhExRFsXiyU6dOHQBiY2NRFAWVSmWR6wgLS7kMf024v6yoYfUYqNUFfKpZ9NLPPvsskyZN4sKFCwDs2LGD5cuXs2XLFu0+AwcO1Dtm4cKFVK1alRMnTtC4cWPi4+OpU6cO7du3R6VSERYWVuA6OTk5PPvssxw8eJDt27dTrVrefc2cOZPBgwczZswYIO9veu7cuXTs2JEvv/yS+Ph4/vrrL/bu3Uvr1q0BWLBggcXeU+WFJDtCCJtw7do1bt26hUqlom7dusYfmHoFvEMKX9YRERGBSqXi9u3bXL9+nYCAgFJGLawi6WxegqNLyYWkcxZPdqpWrUrv3r1ZvHgxiqLQu3dvqlSpordPTEwMU6dOZc+ePdy4cUNbohMfH0/jxo0ZNmwYjzzyCPXq1aNHjx706dOHbt266Z1j7NixuLq6snv3br3zHz58mCNHjuhVTSmKglqtJi4ujjNnzuDk5ETLli212+vXr4+vr68F/jfKD6nGEkLYBE2pTkREBO7u7kXvnL8KY/Vo/WXd7Trc3Ny0DUmlKsuG+dUCVb6vN5Uj+NUsk8u/8MILLF68mCVLlvDCCy8U2N63b1+SkpL45ptv2LNnD3v27AHy2upAXtufuLg4ZsyYwd27d3nyySd5/PHH9c7xyCOPcPnyZdatW6e3/s6dO4wYMYJDhw5pH4cPHyYmJoZatWpZ6I7LP6snO5cvX+bZZ5/F398fd3d3IiMj2b9/v3a7oihMnTqV4OBg3N3d6dq1a4EPoaSkJAYPHoy3tze+vr4MHz6cO3fulPWtCCEsyOgqLENVGEdX6C//NbHQwzXtdmJjY0scq7Ayn2rQc/b9ZZUj9J1j8VIdjR49epCVlUV2djbdu3fX23bz5k1Onz7N5MmT6dKlCw0aNODWrVsFzuHt7c1TTz3FN998w48//sgvv/xCUlKSdnu/fv1YtmwZL774IsuXL9eub9GiBSdOnKB27doFHi4uLtSvX5+cnBwOHDigPeb06dMkJyeb/z+iHLFqsnPr1i0efPBBnJ2d+euvvzhx4gQff/wxlStX1u4ze/Zs5s6dy1dffcWePXvw9PSke/fuZGRkaPcZPHgwx48fZ/369axZs4Zt27bx8ssvW+OWhBAWYnSyY6gKIz8l9/7zfD11NO12pGTHxjV75v7z6D3Q4rkyu7SjoyMnT57kxIkTODo66m2rXLky/v7+zJ8/n9jYWDZt2sS4ceP09vnkk0/44YcfOHXqFGfOnGHFihUEBQUVqGp67LHH+N///sfzzz/Pzz//DMDEiRPZuXMnI0eO5NChQ8TExPD7779rGyhrqsZGjBjBnj17OHDgAC+++GLxpaU2zqptdj788ENCQ0P1Wq5HRERonyuKwpw5c5g8eTL9+/cH4LvvviMwMJDffvuNp59+mpMnT7J27Vr27dtHq1atAPj888/p1asX//d//0dIiOG6eSGEbTE62dFUYRSZ8KgAJe/pvDbQ9zPtl6GU7NihQtpoWfSS3t4G1zs4OLB8+XJGjRpF48aNqVevHnPnzqVTp07afSpVqsTs2bOJiYnB0dGR1q1b8+eff+LgULB84vHHH0etVjNkyBAcHBwYMGAAW7du5e233+ahhx5CURRq1arFU089pT1m0aJFvPjii3Ts2JHAwEDee+89pkyZYvb/g/JEpSiKYq2LN2zYkO7du3Pp0iW2bt1KtWrVePXVV3nppZeAvDlqatWqxcGDB2nWrJn2uI4dO9KsWTM+++wzFi5cyOuvv65XDJiTk4ObmxsrVqzgscceK3DdzMxMMjMztcupqamEhoaSkpJS6B+oEMK6qlevzuXLl9m5cydRUVFF77z3G/jzjbznKkdoPECnKsuBvERH56NP5QhjjoJPNX7//XceffRRWrRooVfULywvIyODuLg4IiIicHNzK93JstKKnele2Iai/i5SU1Px8fEp9vvbqtVY586d48svv6ROnTqsW7eOV155hVGjRrFkyRIAEhMTAQgMDNQ7LjAwULstMTGxQI8JJycn/Pz8tPvkN3PmTHx8fLSP0NBQc9+aEMKMbt++zeXLlwGMmxMrfxVG38/uLz/6BXqJDtzvqUPB7udCCNtn1WostVpNq1at+OCDDwBo3rw5x44d46uvvmLo0KEWu+6kSZP06kg1JTtCiPLp1KlTQN4PHd02fUbJX4VRvVXBai6dnjo1a9ZEpVKRmpoq3c9tmYsnTEuxdhSinLBqyU5wcHCBOW4aNGhAfHw8AEFBQQBcvXpVb5+rV69qtwUFBRUY+TEnJ4ekpCTtPvm5urri7e2t9xBClF9mHUzQO6TInjpubm7aHz/SbkcI+2DVZOfBBx/k9OnTeuvOnDmjHS0yIiKCoKAgNm7cqN2emprKnj17tHX2UVFRJCcn69Wtb9q0CbVaTdu2bcvgLoQQlqYp2THbKK/F9NSRaSOEsC9WTXbGjh3L7t27+eCDD4iNjWXZsmXMnz+f6OhoAFQqFWPGjOG9995j1apVHD16lOeee46QkBAeffRRIO/Dr0ePHrz00kvs3buXHTt2MHLkSJ5++mnpiSWEnThz5gxwf6JOszLQU0d6ZFmXtJUSuszx92DVNjutW7fm119/ZdKkSUyfPp2IiAjmzJnD4MGDtftMmDCBtLQ0Xn75ZZKTk2nfvj1r167Va5G9dOlSRo4cSZcuXXBwcGDgwIHMnTvXGrckhLAATbKjaTxsdvl67ug2UhZlx9nZGYD09HS7H/dFGC89PR24//dRElafG6tPnz706dOn0O0qlYrp06czffr0Qvfx8/Nj2TLDw78LIWybWq3WJh0mzYlVClKNZR2Ojo74+vpq22F6eHjIZKwVmKIopKenc+3aNXx9fQsM0GgKqyc7QghRlCtXrnD37l2cnJwIDw8vk2vWrJnXMysuLq5Mrifu03Qsyd/xRFRcvr6+hXY4MpYkO0KIck1ThRUREYGTk5EfWYa6HesuZ6UVebhmJPekpCRSU1Olx2YZUqlUBAcHExAQQHZ2trXDEVbm7OxcqhIdDUl2hBDlmqYqqayqsMhKp9LHtfF3V3HzrkJcXBxNmzYtm2sLLUdHR7N8yQkB5WDWcyGEKIrFGycXIqJyXlsRqcoSwvZJsiOEKNfKvGTnnnDfvI/H8+fPl+l1hRDmJ9VYQohyzSIlO/nb9BhowxNxL9mRkh0hbJ+U7Aghyq2cnBzOncuboLOsS3Yk2RHCfkiyI4Qoty5cuEB2djZubm5Ur169bC56OwGAiMr3kp1zZ2GaT96jmF5cQojySZIdIUS5pWmvU7t2bRwc8n1cZaWZLwk5pDMo6fyOAET43mugfP6CTF8ghI2TZEcIUW6VSU+slMvw14T7y4oagLB71VhpaWncSJdkRwhbJsmOEKLcKpOeWElntQmOLjcnFS1qBwBwPlmSHSFsmSQ7Qohyq0xKdvxqgcrwR+HeZzJ4obkzcck6yZA5q8+EEGVCkh0hRLmlKdkxKtkpaRLiUw16zja4yVEFX/dx40ZawZIfIYTtkGRHCFEuZWZmcuHCBaAMup03e6bQTU4OKjJyLXt5IYRlSbIjhCiXzp07h1qtxsvLi8DAwLK7cL4qrRy1woEEyXaEsGWS7AghyiXdxskqlarsLtztPe1TBQdGrMlg/xWpxhLClkmyI4Qol0xqnJx6xXwXjnxS+/Ri/5UsPJhNdq6CWlHMex0hRJmRZEcIUS4V2+1cdyDAeW30l80kpF4LXmzhQsxrXjioVBa7jhDCsmQiUCFEuVRkyY6hgQD/mmj2GJzSr/FVbzccNT8LLXQdIYRlScmOEKJcKrJkx9BAgIoFGhEnxd1PdAxdR6q1hLAJkuwIIcqdtLQ0Ll++DBRSsmNoIECV4/3n5kpC/CJQFxg8Waex9Lw28O935rmWEMJiJNkRQpQ7sbGxAPj7++Pn55e3UnfQQHdf/YEAVY7QeMD9ZVOTEBdPmJaS93DxuL/eO4Rfsx4iR5vx5PvIVNSwekxetZoQotySZEcIUe4Y1RNLdyDAoavg2C/3l82YhFwL6Ur4nDu8vSkDHv0CyFfUo+RC0rlSX0cIYTmS7Aghyh2TpokAyEo33IbHDElIjdBQLt9W+DMmB6q3Mlx95lez1NcRQliOJDtCiHJHU7Jj9DQRfhEWS0Jq1KgOQHyKAt4hBavP+s7Jm19LCFFulajreUxMDJs3b+batWuo1fq/pqZOnWqWwIQQFZfJJTuaJOTPN/KWS5OEaNrv3BNWowYASXcV7ty5g1ezZ+5fJ3oPVLHgjOxCCLMwOdn55ptveOWVV6hSpQpBQUF6w7irVCpJdoQQpWZyyQ7kteGxQBLi7e2NjyukZEL8xYs0bNBAZ2OIWa4hhLAsk5Od9957j/fff5+JE2VgLSGE+d26dYsbN24AULt27ZKdxMxJSA0fB45eUxMff0k/2RFC2AST2+zcunWLJ554whKxCCGEtgorODiYSpUqWTmaPDV88j4q4y9eLLhRt0t8VloZRyaEMIbJyc4TTzzB33//bYlYhBDCuPY6ZTxycQ2fvOp6g8mOEKLcM7kaq3bt2kyZMoXdu3cTGRmJs7Oz3vZRo0aZLTghRMVT6DQR+Sf+7PuZXkNii5WquHgS9vgM2P8m8ZcTLXMNIYRFmZzszJ8/Hy8vL7Zu3crWrVv1tqlUKkl2hBClYnBAQUMTf64eA7W6lEm37xr3emTFx8db/FpCCPMzOdmJi4uzRBxCCAEUUo1V2MSfSefKNNm5cOGCxa8lhDC/Eo2zI4QQlqAoiuFu55qJP3UTnjIcuViT7Fy6dIlcRzccy6L6TAhhNkYlO+PGjWPGjBl4enoybty4Ivf95JNPzBKYEKLiuX79OqmpqahUKmrVqnV/g0+14gcNzDcYoDkFBwfj6OhITk4OiYmJVKsmIyYLYUuMSnYOHjxIdna29nlhdAcYFEIIU2lKdUJDQ3Fzc9PfaMWRi52cnKhWrRrx8fHEx8dLsiOEjTEq2dm8ebPB50IIYU6aZKdevXpF72iFkYvDwsK0yU5UVJThnVKvyPQRQpRDpZoI9OLFi1wsxbgT06ZNQ6VS6T3q16+v3Z6RkUF0dDT+/v54eXkxcOBArl69qneO+Ph4evfujYeHBwEBAYwfP56cnJwSxySEsJ4STRNRRgrtkZW/S/y/35VhVEIIY5ic7OTk5DBlyhR8fHwIDw8nPDwcHx8fJk+erK3qMkWjRo1ISEjQPrZv367dNnbsWFavXs2KFSvYunUrV65cYcCAAdrtubm59O7dm6ysLHbu3MmSJUtYvHixzM8lhI2yhWRHr0dWYV3iUy6XbXBCiCKZ3BvrtddeY+XKlcyePVtblLtr1y6mTZvGzZs3+fLLL00LwMmJoKCgAutTUlJYsGABy5Yto3PnzgAsWrSIBg0asHv3btq1a8fff//NiRMn2LBhA4GBgTRr1owZM2YwceJEpk2bhouLi6m3J4SwIltIdvRKdqzcJV4IYRyTS3aWLVvG4sWLGTFiBE2aNKFJkyaMGDFCm5iYKiYmhpCQEGrWrMngwYO1HyQHDhwgOzubrl27avetX78+NWrUYNeuXUBekhUZGUlgYKB2n+7du5Oamsrx48cLvWZmZiapqal6DyGEdeXm5hIbGwvcS3bK2ZxTBpMdTZd4XWXYJV4IYRyTkx1XV1fCw8MLrI+IiDC5JKVt27YsXryYtWvX8uWXXxIXF8dDDz3E7du3SUxMxMXFBV9fX71jAgMDSUzMG7I9MTFRL9HRbNdsK8zMmTPx8fHRPkJDQ02KWwhhfhcvXiQzMxNnZ2fCwsKsHU4Bmpj0kh1Nl3gNQ13ihRBWZ3KyM3LkSGbMmEFmZqZ2XWZmJu+//z4jR4406Vw9e/bkiSeeoEmTJnTv3p0///yT5ORkfvrpJ1PDMsmkSZNISUnRPkrTyFoIYR6aKqzatWvj6Oho5WgK0vwounXrFrdv376/odkz959H74EWz5VxZEKI4hjVZke3UTDAhg0bqF69Ok2bNgXg8OHDZGVl0aVLl1IF4+vrS926dYmNjeWRRx4hKyuL5ORkvdKdq1evatv4BAUFsXfvXr1zaHprGWoHpOHq6oqrq2upYhVCmFex7XUsOGigMby9vfH19SU5OZmLFy/SsGFDAzuVfZd4IUTxjEp2fHx89JYHDhyot2yuaqA7d+5w9uxZhgwZQsuWLXF2dmbjxo3a650+fVpvjIuoqCjef/99rl27RkBAAADr16/H29vb8AeREKLcOnMyr51d3et/lYs2OobUqFGD5ORkLly4IJ8xQtgQo5KdRYsWWeTib7zxBn379iUsLIwrV67wzjvv4OjoyKBBg/Dx8WH48OGMGzcOPz8/vL29ee2114iKiqJdu3YAdOvWjYYNGzJkyBBmz55NYmIikydPJjo6WkpuhLAxZ2LuNU72L9XwXxZVo0YNjhw5IrOfC2FjrDoR6KVLlxg0aBA3b96katWqtG/fnt27d1O1alUAPv30UxwcHBg4cCCZmZl0796dL774Qnu8o6Mja9as4ZVXXiEqKgpPT0+GDh3K9OnTrXVLQogSspVkBwwMLCiEKNesmuwsX768yO1ubm7MmzePefPmFbpPWFgYf/75p7lDE0KUoczMTM7fG6yvPCc7mip76dQghG0pv58qQogK4+zZsyiKgrcrBHoamFA49UrZB2WAyclOORsrSIiKSpIdIYTVaXti+TugUt1LdsrhnFMGkx1NL7FpKXnPhRDljknJTnZ2Nl26dCEmJsZS8QghKiDdZAfIK8kph3NOadrsXLp0CbVaXczeQojywqRkx9nZmSNHjlgqFiFEBaVJdloG3xtM8NL+wuecsqJq1aqhUqnIzMzk+vXrVo1FCGE8k6uxnn32WRYsWGCJWIQQFdSZM2d4obkzY9vdm3Lmt1eAfG13ysGcU87OztoBS6WRshC2w+TeWDk5OSxcuJANGzbQsmVLPD3166g/+eQTswUnhKgYbl8+zfzBbvfb66Cgl+yUozmnQkNDSUhI4OLFi7Rq1cra4QghjGBysnPs2DFatGgB3C961rj/QSWEEMZJSUnBV30TR4f8jXuV+0+j90CVOmUaV2FCQ0PZu3ev4ZKdrDT44N6UEW+Vjx5kQogSJDubN2+2RBxCiAoqJiaGmJtqctXgqFuxrnLMa6cD5WrOqRKPtZN6pdwkbEJUNCXueh4bG8u6deu4e/cuAIqiFHOEEEIUdObMGS7fVvi/0zpVVCpH6Pmh9YIqgknJTjnsPi9ERWRysnPz5k26dOlC3bp16dWrFwkJCQAMHz6c119/3ewBCiHsm6Y6PNar7f2V0Xug2TNWiqhomu7nxSY75bT7vBAVkcnJztixY3F2diY+Ph4PDw/t+qeeeoq1a9eaNTghhP07deoUAHVr176/shxVW+WnKdkpdn6spLhy2X1eiIrI5DY7f//9N+vWraN69ep66+vUqcOFe3PbCCGEsU6ePAlAwwb14ZB1YzGGJtm5cuUKOTk5ODkV8jHqFwEqB/2Epxx0nxeiIjK5ZCctLU2vREcjKSkJV1dXswQlhKgYcnNzOX36NAAN6tezcjTGCQwMxMnJCbVara3GN8g7BHrOvr9cjrrPC1HRmJzsPPTQQ3z33f1GdiqVCrVazezZs3n44YfNGpwQwr7FxcWRmZmJm5sbYWE19DeW0zmnHB0dqVYtL2Epst1O6hX9dkfRe6DFcxaOTghhiMnVWLNnz6ZLly7s37+frKwsJkyYwPHjx0lKSmLHjh2WiFEIYac0VVj16tXD0dHRytEYLzQ0lAsXLhRMdvL3vtIt2SnH7ZCEsHcml+w0btyYM2fO0L59e/r3709aWhoDBgzg4MGD1KpVyxIxCiHslCbZadCggZUjMY3BHlkplwv2vvprYhlHJoQwxOSSHQAfHx/efvttc8cihKhgbDXZMTjWTtJZw72vhBBWV6Jk59atWyxYsOB+L4qGDXn++efx8/Mza3BCCPuml+xo2ujYAIPdz/1qGe59JQmPEFZncjXWtm3bCA8PZ+7cudy6dYtbt24xd+5cIiIi2LZtmyViFELYIUVR7Ktkx6dawd5X5XQUaCEqGpOTnejoaJ566ini4uJYuXIlK1eu5Ny5czz99NNER0dbIkYhhB1KSEggNTUVBwcH6tSxrTmjCp0yIn/vq3I6CrQQFY3J1VixsbH8/PPPej0nHB0dGTdunF6XdCGEKMqJEycAqF27ts2N0aVJdq5du0ZmZqbh+L1DbKpqTgh7ZnLJTosWLbRFz7pOnjxJ06ZNzRKUEML+2WoVFoC/vz/u7u4AXLp0ycrRCCGKY3LJzqhRoxg9ejSxsbG0a9cOgN27dzNv3jxmzZrFkSNHtPs2adLEfJEKIeyKLSc7KpWK0NBQzpw5w8WLF2XYDSHKOZOTnUGDBgEwYcIEg9tUKhWKoqBSqcjNlV4IQgjDbDnZAbTJTrETggohrM7kZCcuLs4ScQghKhBFUTh27BgADbe/Cudeg7eulKtpIYpTaCNlIUS5Y3KyExYWZok4hBAVyNWrV7lx4wYODg40qmpy08FyQZIdIWxHiQYVFEKI0tC07atTuxbuzletHE3JGEx2pPeVEOWSbf6kEkLYNE2yE9m4kZUjKTkp2RHCdkiyI4Qoc0ePHgWgSWRjK0dScgYnAxVClEuS7AghypymZKdJY9tNdjQlO8nJydy+fdvK0QghimJysnPx4kW9QbT27t3LmDFjmD9/vlkDE0LYp+zsbO3oybZcjVWpUiV8fHwAKd0RorwzOdl55pln2Lx5MwCJiYk88sgj7N27l7fffpvp06ebPUAhhH2JiYkhKysLLy8vwsN1enemXrFeUCUk7XaEsA0mJzvHjh2jTZs2APz00080btyYnTt3snTpUhYvXmzu+IQQdkbbODkyEocjy+9vmNcG/rWt+fUk2RHCNpic7GRnZ2snvduwYQP9+vUDoH79+iQkJJg3OiGE3dEkOw81rQV/6YzErqhh9RhIuWydwEpAkh0hbIPJyU6jRo346quv+Oeff1i/fj09evQA4MqVK/j7+5s9QCFEyVy/fp0bN26gKIq1Q9Gj6YkVVbdqXoKjS8mFpHNWiKpkpEeWELbB5GTnww8/5Ouvv6ZTp04MGjRIO9P5qlWrtNVbQgjrUBSF77//noYNGxIQEEDVqlVp0KAB3377bblJejQlO8GNHwJVvo8glSP41bRCVCUjJTtC2AaVUoJPwNzcXFJTU6lcubJ23fnz5/H09KRq1apmDbAspKam4uPjQ0pKCt7e3tYOR4gSyc3N5cUXXyy07Vy/fv1Yvnw57u7uZRuYjuTkZO3nRlJSEpVjfoY/38jbqHKEvnOgxXNWi89UmzdvpnPnztSrV49Tp04Vf0BWGnwQkvfcxuYCE6I8Mvb72+SSnc6dO3P79m29RAfAz8+Pp556yvRI75k1axYqlYoxY8Zo12VkZBAdHY2/vz9eXl4MHDiQq1f1h5aPj4+nd+/eeHh4EBAQwPjx48nJySlxHELYqpEjR7J48WKcnJyYMWMGycnJpKSkMHv2bNzc3Fi1ahX9+vUjKyvLajEe2L0dgAhfFZU9XaDZM/c3Ru+xqUQH7pfsxMfHl5uSMyFEQSYnO1u2bDH4YZmRkcE///xToiD27dvH119/TZMmTfTWjx07ltWrV7NixQq2bt3KlStXGDBggHZ7bm4uvXv3Jisri507d7JkyRIWL17M1KlTSxSHELZq+fLlfPXVVzioYNmjzkyeMBYfHx+8vb0ZP34869evx8vLiw0bNuj9oChr+w78C0CrEMeCG71Dyjia0qtevToAd+/eJSkpycrRCCEKY3Syc+TIEW1d+4kTJ7TLR44c4eDBgyxYsIBq1aqZHMCdO3cYPHgw33zzjV5pUUpKCgsWLOCTTz6hc+fOtGzZkkWLFrFz5052794NwN9//82JEyf4/vvvadasGT179mTGjBnMmzevyF+vmZmZpKam6j2EsFXXr1/nlVdeAWDyQy480ci5wD7t27dn+fLlqFQqvvzyS37++eeyDhOA/feSndaGkh0b5Obmpq26l3Y7QpRfRic7zZo1o3nz5qhUKjp37kyzZs20j5YtW/Lee++VqEQlOjqa3r1707VrV731Bw4cIDs7W299/fr1qVGjBrt27QJg165dREZGEhgYqN2ne/fupKamcvz48UKvOXPmTHx8fLQPTVG0ELbonXfeITk5mebNmjKlo2uh+/Xu3ZtJkyYB8Morr3D9+vWyClFLU7LTupp9JDsgPbKEsAVGJztxcXGcPXsWRVHYu3cvcXFx2sfly5dJTU3lhRdeMOniy5cv599//2XmzJkFtiUmJuLi4oKvr6/e+sDAQBITE7X76CY6mu2abYWZNGkSKSkp2od8SAlbdebMGb7++msA5vzfhzg5qIrcf+rUqURGRnLjxg3eeeedsghR69q1a8THX0QFtAi2n2RHemQJUf45GbtjWFjesO5qtbqYPY1z8eJFRo8ezfr163FzczPLOY3l6uqqHRhRCFs2e/Zs1Go1ffr0ocND7aGYZnOurq58/vnndOrUifnz5zNq1Cjq169fJrHu378fgHpVHPB2LTopsyUlTnZSr0CVOhaISAiRn9HJjq6YmBg2b97MtWvXCiQ/xlZlHThwgGvXrtGiRQvtutzcXLZt28Z///tf1q1bR1ZWFsnJyXqlO1evXiUoKAiAoKAg9u7dq3deTW8tzT5C2KtLly7x3Xd50yu89dZbRh/XsWNH+vXrx6pVq5g4cSK///67pULUs2/fPgC61bxXqqP5sp+WUibXtxSTkp1Dy+4/n9cG+n5mcz3QhLBFJvfG+uabb2jQoAFTp07l559/5tdff9U+fvvtN6PP06VLF44ePcqhQ4e0j1atWjF48GDtc2dnZzZu3Kg95vTp08THxxMVFQVAVFQUR48e5dq1a9p91q9fj7e3Nw0bNjT11oSwKfPnzyc7O5uHHnpI+57QKmZSzQ8//BBHR0dWrVrFli1bLBekjn379vFCc2c+7XGvJNcG58IyRLf7eZFSLtv89BhC2CqTS3bee+893n//fSZOnFiqC1eqVInGjRvrrfP09MTf31+7fvjw4YwbNw4/Pz+8vb157bXXiIqKol27dgB069aNhg0bMmTIEGbPnk1iYiKTJ08mOjpaqqmEXcvOzubbb78F8sbXAUwqNahfvz4vv/wyX375JVOnTmXbtm0WjVdRFC6d2Mvvz7rhoLpXhaX5sq/VBXxM78lZXhhdspN0tvDpMWz4/oWwBSaX7Ny6dYsnnnjCErEU8Omnn9KnTx8GDhxIhw4dCAoKYuXKldrtjo6OrFmzBkdHR6Kionj22Wd57rnnmD59epnEJ4S1rFmzhoSEBAICAnj00UdLVGrw9ttv4+Liwj///FPiMbKMdenSJSorSTjmb0BtY3NhGaJJdi5fvlx0m0a/WjY/PYYQtsrkZOeJJ57g77//tkQsbNmyhTlz5miX3dzcmDdvHklJSaSlpbFy5coCbXHCwsL4888/SU9P5/r16/zf//0fTk4laookhM3QtNUZNmwYLi4uRZcaFKJatWoMGzYMwGCPSHPau3cvMTfV5OYfZNgOvuxDQkJwcHAgOzu7wAjvenyqQc/Z95dVjtDzQ/i0IUzzyZtKQghhESZnBbVr12bKlCns3r2byMhInJ31BzAbNWqU2YITQhSUlJTEH3/8AcCQIUPyVmpKDXQTHiMSiQkTJvDtt9/y119/cfDgQZo3b26RmHfs2MHl2wo/pLTiWd/99+PrO8fmq3CcnJwICQnh0qVLXLx4keDg4MJ3bvbM/bnAovfkjRqtWRZCWIzJyc78+fPx8vJi69atbN26VW+bSqWSZEcIC/v555/Jzs6mSZMm99u9aUoN8k+qWUwiUatWLQYNGsTSpUv54IMPWLFihUVi1lSTObR4Fs7dS3ai99hN1+vQ0FBtstOmTRvjDrLB6TGEsFUmV2PpDiaY/3HunG3XvQthCzTt1gYNGqS/QXdSzZe3wKrX7lePZKXlPTdQXfLmm28C8MsvvxAbG2v2eO/cucPBgwcBeOjBB+5vsKMvexlYUIjyzeRkRwhhPampqWzatAkgr2FyYSoVUZWST+PGjenVqxeKovDpp5+WMsKCdu/eTW5uLjVq1CA0tLrZz18eGN39XAhhFSZXYxU3JcTChQtLHIwQomjr1q0jOzubunXrmnXk4/Hjx/Pnn3+yaNEi3n33XapUqWL8wVlp8MG9Upq3roCLp95mTXX3Qw89ZK5wyx0p2RGifCtR13Pdx7Vr19i0aRMrV64kOTnZAiEKITRWrVoFQL9+/cx63o4dO9KqVSvu3r3LvHnzzHpuzcCgnTt3Nut5yxOzTAZazECQQoiSM7lk59dffy2wTq1W88orr1CrVi2zBCVEhVRMCUlOTo62F5a5kx2VSsUbb7zB008/zX//+1/Gjx+Ph4dHqc+bkpKindKla9eupT5feVXikh2ZPkKIMmGWNjsODg6MGzfOIvX9Qog82zev59atW/i7q3igVVOzn3/gwIGEh4dz48YNlixZYpZzbt26ldzcXOrUqaMt/bBHmmQnISGB7Ozswnd08cybC2xaCtxNlukjhCgjZmugfPbsWXJycsx1OiFEPqvW/AlAn7pOODo6FtxB94vURadUJn/1SCHVJU5OTowbNw6Ajz/+mNzc3FLH/PdfeSVRXbzP55Vc6cXoWfTBNqRq1aq4uLigKApXrhhZHVWCgSCFECVjcjWW5sNQQ1EUEhIS+OOPPxg6dKjZAhNC6Pvjr3UA9K1rxNs2f/VI44H6y4VUl7zwwgtMmzaNs2fP8vvvvzNgwIASx6soCmv+WgtAj9r2Paq5g4MD1atX59y5c8THxxMWFlb8QSUcCFIIYTqTS3YOHjyo9zhy5AiQ90tQd6oHIYT5XLp0iTMxMTiooEvNYhIHQ/NkHV2hv1xIdYmnpyevvvoqAB999BGKkn9+h2LolBodO3aMCxficXOCrsXFbAdMbrdjaPoIOxhRWojyyORPoM2bN1siDiFEETQ9mlqFOODrdm8yzcIaNBuqHsmviNm2R44cyUcffcTu3bvZsWMH7du3198h/3ULaWS7evVqALpEOOHpkm8CUDtUoh5Z+aePsJMRpYUob0rcZuf69ets376d7du3c/36dXPGJITI165Gk+x0iTDi94mh2bXzK6K6JDAwkOeey6vi+uijj4qPs5BGtpqem0ZVu9mBUo+1Y0cjSgtR3pic7KSlpfHCCy8QHBxMhw4d6NChAyEhIQwfPpz09HRLxChExZC/hOTfvJnNFUXRjprcU9P2pagxWQxVj0Q+ob9czGzbr7/+OiqVilWrVnHq1KnCr5UUZ7CR7cUj29i/fz+Ojo4MaCDJjhDCukxOdsaNG8fWrVtZvXo1ycnJJCcn8/vvv7N161Zef/11S8QohP0z1M7mXgnJmTNnuHz5MiNau9O+xr1eWPPa6CdH+enOkxW9J69qSXdZdzsUmDurXr162rF83nvvvcKv4xdRsBRJ5ciKjQcA6Na1C1U9722380HzJNkRovwyOdn55ZdfWLBgAT179sTb2xtvb2969erFN998w88//2yJGIWwf0V0Q964cSPVKqmY19MZlepe2xdFDX9NNO7c+atHjKwumTp1KgDLli3j0KFDhZ87XymSus+nfPH9bwBM6a0zto5OaZU9kmRHiPLL5GQnPT2dwMDAAusDAgKkGkuIkjLUzuZeu5qNGzdSx98Bx/xtfBWdcXAsUGrSokULBg0ahKIoTJxYSGKVeqVAKdLf1wM5e/YsDap50y5J5weQnQ+ap0l2bty4IZ+FQpQzJic7UVFRvPPOO2RkZGjX3b17l3fffZeoqCizBidEhVFIN2R1pWA2b95MzE01CvmzHZ1lC5WavPfeezg7O/P333+zYcOGvJX52xbpLnuH8N///heA6Kd7oqpAg+b5+vri6ZnXI+7SpUtWjkYIocvkZOezzz5jx44dVK9enS5dutClSxdCQ0PZuXMnn332WfEnEEIYlr+dTYvnOHbsGLdu3SJF8UTd40OdnfO9dS1UalKzZk1eeeUVIK+9XtaN8wXbFulUpx08dJg//vgDlUpFryEjCy2tskcqlcr07ud2OqK0EOWNyclO48aNiYmJYebMmTRr1oxmzZoxa9YsYmJiaNSokSViFKLi8Q6BrDR2TGoLQLs2rXFs8ez97Y9+AeQb8K+kpSbFVIFNmTiOKh4qjh49yvLPpxluW3TP21PfBWDQoEFENG1f4QbNk3Y7QpRPJeoT6uHhwUsvvWTuWIQQ+Wy/mDffXPsH81URV29V9FQDmhIDXbrLe7+5/3xeG/2kJPWK3uB2VapUYW4PN55ZeZcpc5cyZLQnKt1ES+UISi4/n8jmr3V/4+TkxLvv5iU9FW3QPEl2hCifTC7ZmTlzJgsXLiywfuHChXz44YcGjhBClNSO+LxSkwfzt4cz0AvK6FITQ93c/xx/f9lA+5+nGzvxbBNn4pNzGLvJ4f40EvfG7IlNUjNiTV47vvHjx1O7du2C160Ag+ZJsiNE+WRysvP1119Tv379AusbNWrEV199ZZaghBBw6dJlLqQoOKigbZtWBXcw0MbHKAank9ApqTHQ/kelUvF1HzdatWzBZ//cotEXd1hzOptrT/7B6qtBdPzFm6S7Ci1btmTatGnG3qLdkWRHiPLJ5GqsxMREgoODC6yvWrUqCQkJZglKiApDd56pN2L1Nu3YtQuAZkEOVKpUqejzmFJqYmi27fwMzJ3l4axi/Z+r6P3o4+zctZu+y+/C8ge02xs3bsyff/6Ji4uL8bHYGU2yEx8fb+VIhBC6TC7ZCQ0NZceOHQXW79ixg5AQ+y+mFsJiXDz0euZs35GX7DwYaubpFvJ3c8cB8ndrL6TXlK9DOls3rOX/HnGltl/ex4e/vz/jx49n+/btBAQEmDdWG1OiyUCFEBZn8qfoSy+9xJgxY8jOzqZz585A3iSFEyZMkOkihDCjHbt2U62SisfqO91vNKzbyNjAnFZG0204PHIvnNtyfzl/+5984+o49ZzN6w+48voDrmS+HodrJb/Cr2OoobQd05Ts3L59m5SUFHx8fKwckRACSpDsjB8/nps3b/Lqq6+SlZUFgJubGxMnTmTSpElmD1CIiuj27du0dDjJV2O8cHRQ5TUa7vuZ8e1yTOEdop/8vLwFvn4IVr0GI/cXOa6Oq6ur+eOxYR4eHvj5+ZGUlMTFixcl2RGinDC5GkulUvHhhx9y/fp1du/ezeHDh0lKStLOoyOEKL2DW//gq96ueYkOlO1UC5V02uQVMqu5KJw0Uhai/ClxYwAvLy9at25tzliEqNh0xrc5/+9GOjjka0eTv9FwWVQRaWY1zz+ez5ijdj04YGmEhoZy+PBhSXaEKEdMLtkRQphR/nmm7o1vs+nQBXLV+UZItsZUC6UZz6eCkpIdIcofSXaEsBZDg/utHoOScok/tx/i5TUZ+oP3WSvJKOl4PhWUdD8Xovwxc59WIYTRDA3up+SSeGIn169f53/JzszrBW5OmH+qhaKmkyiql1cFGAW5tKT7uRDlj1ElOy1atODWrVsATJ8+nfT0dIsGJUSFoBncT5fKkX1nkwBo2iQSN6d77XaslWQUM0moKEiqsYQof4xKdk6ePElaWt6vvXfffZc7d+5YNCghKoT8g/vdq6ra8u8ZANq2NjBFRFnI345Id1kUS5PsXLp06X41pBDCqoyqxmrWrBnPP/887du3R1EU/u///g8vLy+D+0oXdCFMYGBW8D2vfQ1A2zat4cLyso3HUDsinXF1RPGqVauGSqUiIyODGzduULVqVWuHJESFZ1Sys3jxYt555x3WrFmDSqXir7/+wsmp4KEqlUqSHSFKyjuE7Oxs/v33XwDatGoJF8o4hkLaERlNd66vt67ktQ2qYFxcXAgMDCQxMZGLFy9KsiNEOWBUNVa9evVYvnw5+/btQ1EUNm7cyMGDBws8NB/Sxvryyy9p0qQJ3t7eeHt7ExUVxV9//aXdnpGRQXR0NP7+/nh5eTFw4ECuXr2qd474+Hh69+6Nh4cHAQEBjB8/npycHJPiEKK8OHr0KBkZGfj6+lKnTu2yD6CQdkSMPaGds0sUT9rtCFG+mNz1XK1Wm22yv+rVqzNr1iwOHDjA/v376dy5M/379+f48eMAjB07ltWrV7NixQq2bt3KlStXGDBggPb43NxcevfuTVZWFjt37mTJkiUsXrxYSpeEzdqzZw8Abdq0wcGtkt7EoGWikHZEMq6OaTQ9sqT7uRDlQ4m6np89e5Y5c+Zw8uRJABo2bMjo0aOpVauWSefp27ev3vL777/Pl19+ye7du6levToLFixg2bJl2glHFy1aRIMGDdi9ezft2rXj77//5sSJE2zYsIHAwECaNWvGjBkzmDhxItOmTcPFxaUktyeE1ezbtw/IS3asxkA7ImGaEpfsSDWgEBZhcsnOunXraNiwIXv37qVJkyY0adKEPXv20KhRI9avX1/iQHJzc1m+fDlpaWlERUVx4MABsrOz6dq1q3af+vXrU6NGDXbt2gXArl27iIyMJDAwULtP9+7dSU1N1ZYOGZKZmUlqaqreQ4gykZUG03zyHgbGszlw4AAArVpZqSdWfjKuTonIwIJClC8ml+y8+eabjB07llmzZhVYP3HiRB555BGTznf06FGioqLIyMjAy8uLX3/9lYYNG3Lo0CFcXFzw9fXV21/T8A8gMTFRL9HRbNdsK8zMmTN59913TYpTCIvQGdzv7t272iS9ZcuW1ozKPHTm+qpowsPDATh//rxV4xBC5DG5ZOfkyZMMHz68wPoXXniBEydOmBxAvXr1OHToEHv27OGVV15h6NChJTqPKSZNmkRKSor2IY0IhcUUU5Kj6+jRo+Tm5lK1alWqVbPRNjKFzPVV0URERACS7AhRXpic7FStWpVDhw4VWH/o0KESNVx2cXGhdu3atGzZkpkzZ9K0aVM+++wzgoKCyMrKIjk5WW//q1evEhQUBEBQUFCB3lmaZc0+hri6ump7gGkeQlibpgqrZcuWqFSqYvYuhwqZ64uUy1YLyVo0JTtXr16VEeeFKAdMTnZeeuklXn75ZT788EP++ecf/vnnH2bNmsWIESN46aWXSh2QWq0mMzOTli1b4uzszMaNG7XbTp8+TXx8PFFRUQBERUVx9OhRrl27pt1n/fr1eHt707Bhw1LHIkRZ0k12rEpTtWZqL7DCxuhJOmfe+GxA5cqV8fHxAeDChRIOliRTdQhhNia32ZkyZQqVKlXi448/ZtKkSQCEhIQwbdo0Ro0aZdK5Jk2aRM+ePalRowa3b99m2bJlbNmyhXXr1uHj48Pw4cMZN24cfn5+eHt789prrxEVFUW7du0A6NatGw0bNmTIkCHMnj2bxMREJk+eTHR0NK6urqbemhBlK1+bFs04VS1atLBWRKWjGaNHN+FROYJfTevFZEXh4eEcPnyYuLg4GjRoYNxB+asB+34ms8wLYQYml+yoVCrGjh3LpUuXtG1eLl26xOjRo00uer927RrPPfcc9erVo0uXLuzbt49169ZpGzl/+umn9OnTh4EDB9KhQweCgoJYuXKl9nhHR0fWrFmDo6MjUVFRPPvsszz33HNMnz7d1NsSomwU0qYlMzOTY8eOAeWgZKekZIwePSa325FqQCEspkTj7GhUqlSpVBdfsGBBkdvd3NyYN28e8+bNK3SfsLAw/vzzz1LFIUSZuHLQ8JdZrS4cjUkgOzsbf39/7YB0NknG6NHStNuJi4sz7oCiqgEraMIohLmUKtkRQhRDtyRncR8g3yzY977M/v03b4DOFi1a2GbjZEMq+Bg9Jnc/l2pAISzG5GosIYSR8ldL5E90QPtlVm4aJwuz0VRjGV2yI9WAQliMJDtCWIqhagldOl9mkuzYnxINLNjsmfvPo/dI42QhzMSkZCc7O5suXboQExNjqXiEsB+FzSCuce/LLCsri6NHjwI23BNLFKBJdm7evMnt27dNP0EFrwYUwpxMSnacnZ05cuSIpWIRwr4Yqpbo+eH95XtfZsePHycrK4vKlStrqz5sVknH6LFD3t7e+Pn5ATKSshDWZnI11rPPPltsLyohxD35qyV0l+/RVGHZVeNkAZSg3Y6urHSjpxoRQhTN5N5YOTk5LFy4kA0bNtCyZUs8PfV/vX3yySdmC04Iu1JItYRusiPsS3h4OAcOHJCSHSGszORk59ixY9oP5TNnzuhtk1+lQphOM3KyNE62PyaX7GiqAUFKc4QwI5OTnc2bN1siDiEqBt0vM/Ia/R8+fBiQZMcelahHlhDC7Erc9Tw2NpZ169Zx9+5dABTFwBgiQoginThxgszMTLy9valZUwaPszelarMjhDAbk5Odmzdv0qVLF+rWrUuvXr1ISEgAYPjw4bz++utmD1AIm1ZM7yTdyT8dHGTYK3tjtpIdmQFdiFIx+dN17NixODs7Ex8fj4eHh3b9U089xdq1a80anBD2TgYTtG9hYWEApKSkcOvWLdMOLmTSWCGE6UxOdv7++28+/PBDqlevrre+Tp06XLhwwWyBCVERSE8s++bp6UlAQABgYumOzIAuhFmZnOykpaXplehoJCUl4erqapaghKgIcnJypHFyBWDy7OdQ9AzoQgiTmZzsPPTQQ3z33f3iVJVKhVqtZvbs2Tz88MNmDU4Ie3bq1Cnu3r2Ll5cXderUsXY4wkI0jZRNKtkpbKoRmQFdiBIxuev57Nmz6dKlC/v37ycrK4sJEyZw/PhxkpKS2LFjhyViFMIuaaqwmjdvLo2T7ViJSnY0U438+UbessyALkSpmPwJ27hxY86cOUP79u3p378/aWlpDBgwgIMHD1KrVi1LxCiEXZLBBCuGEpXsgMyALoQZmVyyA+Dj48Pbb79t7liEqFCkJ1bFYJbu5zIDuhClUqJk59atWyxYsICTJ08C0LBhQ55//nntDL9CiKLl5uZy8OBBQHpi2TvdgQUVRSn5tDpZafDBvaTnrSsVflZ5IUxhcjXWtm3bCA8PZ+7cudy6dYtbt24xd+5cIiIi2LZtmyViFMLunDlzhvT0dDw9PalXr561wxEWFBYWhkqlIi0tjevXr1s7HCEqJJNLdqKjo3nqqaf48ssvcXR0BPJ+pb766qtER0dz9OhRswcphL3RVGE1a9ZM+z4S9snV1ZXq1atz8eJFzp49qx13RwhRdkwu2YmNjeX111/X+4B2dHRk3LhxxMbGmjU4IeyVDCZYsdSuXRvAtM/IYqYaEUIYz+Rkp0WLFtq2OrpOnjxJ06ZNzRKUEPZOemJVLJqeqmb7QShzZQlhEqOqsY4cOaJ9PmrUKEaPHk1sbCzt2rUDYPfu3cybN49Zs2ZZJkoh7IhardY2TpZkp2LQlOycPXu25CfJP1dW38+kO7oQRlIpiqIUt5ODgwMqlYridlWpVOTm5potuLKSmpqKj48PKSkpeHt7WzscYedOnz5N/fr1cXd3JzU1FSenEnWKFDbkl19+4fHHH6dt27bs3r3b9BOkXIY5jfWnkFA5wpijMtCgqNCM/f426lPWpJE/hRBF0lRhNW3aVBKdCkJTjVXikp2i5sqSZEeIYhn1SRsWFmbpOISoMGQwwYpHk+zcuHGD5ORkfH19TTuBZq6s/CU7MleWEEYp0c/KK1eusH37dq5du4Zarf9rY9SoUWYJTAibZMTAb/v37wck2alIKlWqREBAANeuXePs2bOmv/YyV5YQpWJysrN48WJGjBiBi4sL/v7+eqOBqlQqSXaEKIJarZaeWBVU7dq1S57sQN5cWZpkJ3oPVKlj3gCFsGMmdz2fMmUKU6dOJSUlhfPnzxMXF6d9nDt3zhIxCmE3YmNjuX37Nm5ubjRs2NDa4YgyVKKxdgojc2UJYRKTk5309HSefvppHBxMPlSICk935GRpnFyxlLqRshCixEzOWIYPH86KFSssEYsQ9sXAwG/SOLniMmvJjhDCJCb/tJw5cyZ9+vRh7dq1REZG4uzsrLf9k08+MVtwQticYgZ+k2Sn4ip1yY5m+gghhMlKlOysW7dOO1Nz/gbKQlRYKZfhrwn3lxU1rB4DtbqATzXUarUkOxWYpmTn8uXLpKen4+HhYeWIhKg4TE52Pv74YxYuXMiwYcMsEI4QNqyYgd+kcXLF5ufnh6+vL8nJyZw7d47GjRtbOyQhKgyT2+y4urry4IMPWiIWIWybZuA3XToDv2lKdWTk5IpJpVJpS3diYmJKf8KsNJjmk/fISiv9+YSwYyYnO6NHj+bzzz+3RCxC2DbNwG8a+QZ+0yQ7rVq1skJwojyoW7cuAGfOnLFyJEJULCYnO3v37mXJkiXUrFmTvn37MmDAAL2HKWbOnEnr1q21o4s++uijnD59Wm+fjIwMoqOj8ff3x8vLi4EDB3L16lW9feLj4+nduzceHh4EBAQwfvx4cnJyTL01IUqv2TP3n0fvkcbJQo+mrWP+zzkhhGWZXJbu6+trclJTmK1btxIdHU3r1q3Jycnhrbfeolu3bpw4cQJPz7xh9seOHcsff/zBihUr8PHxYeTIkQwYMIAdO3YAkJubS+/evQkKCmLnzp0kJCTw3HPP4ezszAcffGCWOIUoku4UEW/odCvWGfhNRk4WIMmOENaiUhRFsXYQGtevXycgIICtW7fSoUMHUlJSqFq1KsuWLePxxx8H4NSpUzRo0IBdu3bRrl07/vrrL/r06cOVK1cIDAwE4KuvvmLixIlcv34dFxeXYq9r7BTxQhiUP9n5v7x2GbpzY505c4Z69erh5ubG7du3pc1OBXXo0CGaN2+Ov78/N27cKN3JdP/uRu6X6SNEhWTs93e5GgY5JSVvDAk/Pz8gr9g/Ozubrl27avepX78+NWrUYNeuXQDs2rWLyMhIbaID0L17d1JTUzl+/LjB62RmZpKamqr3EMKSpHGyAKhTJy8huXnzJjdv3izdyfKP6fTvd6U7nxB2zORP3YiIiCLH0ynp/FhqtZoxY8bw4IMPartkJiYm4uLigq+vr96+gYGBJCYmavfRTXQ02zXbDJk5cybvvvtuieIUokgZyQYHfpP2OgLA09OT0NBQLl68yOnTp3nggQdKdqJixnQSQugzOdkZM2aM3nJ2djYHDx5k7dq1jB8/vsSBREdHc+zYMbZv317icxhr0qRJjBs3TrucmppKaGioxa8r7FQxoyaDJDvivnr16pU+2SlmTCchhD6Tk53Ro0cbXD9v3jz2799foiBGjhzJmjVr2LZtG9WrV9euDwoKIisri+TkZL3SnatXrxIUFKTdZ+/evXrn0/TW0uyTn6urK66uriWKVQg9RvzC1m2cLN3ORb169diwYUPpGilrxnTSTXh0xnQSQugzW5udnj178ssvv5h0jKIojBw5kl9//ZVNmzYRERGht71ly5Y4OzuzceNG7brTp08THx9PVFQUAFFRURw9epRr165p91m/fj3e3t4ySq2wvKJ+Yd9z9uxZUlNTZeRkAZipR1YxYzoJIfSZraXkzz//rG1YbKzo6GiWLVvG77//TqVKlbRtbHx8fHB3d8fHx4fhw4czbtw4/Pz88Pb25rXXXiMqKop27doB0K1bNxo2bMiQIUOYPXs2iYmJTJ48mejoaCm9EZZnxC9sTYmnNE4WYMbu582egT/fyHsevUd6YwlRBJM/eZs3b67XQFlRFBITE7l+/TpffPGFSef68ssvAejUqZPe+kWLFmnn3vr0009xcHBg4MCBZGZm0r17d73rODo6smbNGl555RWioqLw9PRk6NChTJ8+3dRbE8J0ml/Ymi8dA7+wpb2O0KVJdmJjY8nJyTFPAqwzppMQoiCT32WPPvqo3rKDgwNVq1alU6dO1K9f36RzGTPEj5ubG/PmzWPevHmF7hMWFsaff/5p0rWFMJtifmFLsiN0hYaG4u7uzt27dzl//rx2viwhhOWYnOy88847lohDCPuQ7xd2bm6uJDtCj4ODA3Xq1OHIkSOcPn1akh0hykC5GlRQCHtz6tQpbt++jaenJ40aNbJ2OKKcMEu7HRfPvDGdpqVoR+oWQhhmdMmOg4NDkYMJAqhUKpmAUwgde/bsAfK6nEvjZKGhqfI/deqUlSMRomIw+tP3119/LXTbrl27mDt3Lmq1utB9hLBbml/YBmiSnbZt25ZlRKKc0wxBUNiUNkII8zI62enfv3+BdadPn+bNN99k9erVDB48WHpAiYpBdwJGnck+DZFkRxiimRLn2LFjKIpSbKm5EKJ0StRm58qVK7z00ktERkaSk5PDoUOHWLJkCWFhYeaOTwiblZaWxtGjRwFJdoS+unXr4uTkRGpqKpcvX7Z2OELYPZOSnZSUFCZOnEjt2rU5fvw4GzduZPXq1dpfKUKI+w4cOIBaraZatWpUqyYj24r7XFxctDOgS1WWEJZndLIze/ZsatasyZo1a/jhhx/YuXMnDz30kCVjE6L8S71S6CapwhJF0fTOk2RHCMszus3Om2++ibu7O7Vr12bJkiUsWbLE4H4rV640W3BClEtGzHIOsHv3bkCSHWFYo0aN+Pnnnzl27Ji1QxHC7hmd7Dz33HPSiE4II2Y515CSHVEUTfW/2Up2TGg4L0RFY3Sys3jxYguGIYSNKGqWc51k5/Lly1y+fBkHBwdatWpVxkEKW6Cpxjpx4oT0yBLCwmQEZSFMoZnlXFe+Wc7hfqlOZGQknp7yC1sUVLt2bZydnblz5w7x8fHWDkcIuybJjhCm0MxyrmFglnOQKixRPGdnZ+20EWZvt1NEw3khKiJJdoQwVbNn7j+P3mOwcbIkO8IYZu2Rlb/h/L/flf6cQtgJSXaEKI18s5xD3kzn+/fvByTZEUUzWyPlwhrOp8iAhUKAJDtCmN3x48dJS0ujUqVK2gkfhTBEU7KjGWm7xIpqOC+EkGRHCJNpJv6clmKwe+/OnTsBaNOmDY6OjmUdnbAhTZs2BfIS5Ozs7JKfyFDDeYAlffK6pAtRwUmyI4SZbd++HUBGGBfFCg8Px9vbm6ysLE6ePFnyExVoOC8f7ULokneEEGamSXbat29v5UhEeefg4ECzZs0AOHToUOlOpttw/uWt959LzywhJNkRwpwuXrzIhQsXcHR0lMbJwijNmzcH4ODBg+Y76fl/7j+XnllCGD+CshAVlgnD8O/YsQOAZs2a4eXlVRbRCRunKdkpdbKjaUuWchnmNL6/XtMza9VrecsylYSogKRkRwgzkiosYSpNyc6hQ4dQFKX0JyysZ5YQFZgkO0KYopj2D5LsCFM1aNAAFxcXUlJSOH/+fOlPWNiUJhrShkdUQJLsCFEcI0emTUlJ4ciRIwA8+OCDZRGZsAMuLi7a8XZK3UgZDE9p0njA/WVpwyMqIEl2hCiKCSPT7tq1C0VRqFWrFsHBwWUXo7B5Zm+krNsza+gqOPbL/WUZXVlUQJLsCFEUE0am/eefvB4wUqojTGWRHlkaWekyurKo8CTZEaIohbV/8KtZYNctW7YA0LFjxzIITNgTs421Y4hfhNF/w0LYK0l2hCiKofYPfefkrddx584d9u7dC8DDDz9chgEKe9C0aVNUKhWXLl3i2rVrpT+h7pQmVeoY9TcshD2TZEeI4ui2f4jeAy2eK7DLjh07yMnJISwsjIiIiDIMTtiDSpUq0aBBAwBt0mxWRvwNC2HPJNkRwhTeIQZXb968GZBSHVFymhG3d+/ebdkLFfI3LIQ9k2RHiOIUM8s53E92OnfuXJaRCTvSrl07APbs2WPlSISwPzJdhBCllJKSwv79+wEp2RElpynZ2bt3L2q1GgcHM/4W1STsQlRQUrIjRCn9888/qNVqateuTfXq1a0djrBRjRo1wsPDg9TUVE6dOmXtcISwK5LsCJFfVhpM88l7ZKUVu7u01xHm4OTkROvWrYEyqMoy8W9cCFsnyY4QpbRp0yZAkh1RemXWSFmICkaSHSGKUsykiYmJidqB4Lp06VIGAQl7ZpVGyjIxqKgAJNkRFVNRxfhGTvwJ8PfffwPQsmVLAgICLBGpqEA0JTtHjx7lzp07lruQCX/jQtgDqyY727Zto2/fvoSEhKBSqfjtt9/0tiuKwtSpUwkODsbd3Z2uXbsSExOjt09SUhKDBw/G29sbX19fhg8fbtkPCWGfdJMfIyf+BFi7di0APXr0KIMghb0LCQkhNDQUtVqt7eFndiZMbiuEvbBqspOWlkbTpk2ZN2+ewe2zZ89m7ty5fPXVV+zZswdPT0+6d+9ORkaGdp/Bgwdz/Phx1q9fz5o1a9i2bRsvv/xyWd2CsAf5i/GNnDQxNzdXW7IjyY4wlwceeAC4P7Gs2Zkwua0Q9sKqyU7Pnj157733eOyxxwpsUxSFOXPmMHnyZPr370+TJk347rvvuHLlirYE6OTJk6xdu5Zvv/2Wtm3b0r59ez7//HOWL1/OlSuF10NnZmaSmpqq9xAVTP5ifN1lIydN/Pfff7l58ybe3t7a6gchSqtTp07A/Yllzc6EyW2FsBflts1OXFwciYmJdO3aVbvOx8eHtm3bsmvXLgB27dqFr68vrVq10u7TtWtXHBwcimzgN3PmTHx8fLSP0NBQy92IKH8MFeP/OV5nWbn/vIhJEzVVWF27dsXZ2dlCwYqKRpPs7Ny5k8zMTPNfwMjJbYWwJ+U22UlMTAQgMDBQb31gYKB2W2JiYoFGoU5OTvj5+Wn3MWTSpEmkpKRoHxcvXjRz9KJcM1SMj2L4eRGTJkp7HWEJ9erVIzAwkIyMDMtMCgoyMaiocMptsmNJrq6ueHt76z1EBWKoGL8whUyamJSUpB0LpXv37uaKTAhUKpXlq7J0ycSgogIot8lOUFAQAFevXtVbf/XqVe22oKAgrl27prc9JyeHpKQk7T5CFJC/GB8HQKW/j8oRxp4odOLPNWvWoFaradKkCTVq1LBYqKJisniyY8TktkLYk3Kb7ERERBAUFMTGjRu161JTU9mzZw9RUVEAREVFkZyczIEDB7T7bNq0CbVaLQ1GRdF0i/FH7oVeH91fNqINg6aR/KOPPmqR8ETFZvF2O/nJ9BHCzll11vM7d+4QGxurXY6Li+PQoUP4+flRo0YNxowZw3vvvUedOnWIiIhgypQphISEaL9gGjRoQI8ePXjppZf46quvyM7OZuTIkTz99NOEhEjRrNCRlQYf3PubeOtKwVmgvUPgzzfynkfvgSp1Cj1Venq6tr2OJDvCEjTtdq5evcrevXt56KGHyu7iqVeK/PsXwhZZtWRn//79NG/enObNmwMwbtw4mjdvztSpUwGYMGECr732Gi+//DKtW7fmzp07rF27Fjc3N+05li5dSv369enSpQu9evWiffv2zJ8/3yr3I2yEoeHxdYv1i/mgX79+PXfv3iUsLIxmzZpZJkZRoem229FMNGtRMqKysHMqRdHtZ1sxpaam4uPjQ0pKijRWtld7v7lfcqNygL6flbgHyvPPP8/ixYsZPXo0c+bMMV+MQuiYP38+I0aMICoqip07d1ruQimXYU5j/R6KKkcYc1S6o4tyz9jv73LbZkcIszHj8Pg5OTmsXr0akCosYVk9e/YE8mZAv3HjhuUuJCMqiwpAkh1h/8z4Yf7PP/9w8+ZN/P39ad++vZkCFKKg0NBQmjRpgqIorFu3znIXkhGVRQUgyY6wf2b8MP/hhx8A6N+/P05OVm3fLyqA3r17A/DHH39Y7iIyorKoACTZEfbPTB/mmZmZrFixAsibgFYIS9MkO2vXriUnJ8dyF5IRlYWdk2RHVAxm+DBfu3YtycnJhISE0LFjRzMGJ4Rh7dq1w8/Pj1u3bmlH7LYIE3ojCmGLJNkRFU8Jh8dfunQpAIMGDcLR0dGcEQlhkKOjo3Y6EotWZQlh5yTZERVDKYfHT01N1fbCkiosUZY0VVmavz8hhOkk2RHCCCtXriQjI4P69evLQIKiTPXq1QtnZ2eOHz/O8ePHrR2OEDZJkh0hjLBw4UIAnn32WVQqVTF7C2E+lStXpkePHgAsX77cytEIYZsk2RH2SXdiwxsxpTrVsWPH+Oeff3B0dOT55583U4BCGG/QoEFAXrJj8UHvZVJQYYck2RH2yYxz/Xz99ddA3tg6MsGssIa+ffvi7u5ObGwsBw4cKLsLG5pHTggbJMmOsD9mnB4iLS2N777LS5ReeeUVMwUohGm8vLzo168fcH9gS4uRSUGFHZJkR1iXGaubtMw4PcQPP/xAamoqtWvXpnPnzuaJT4gSePrppwH48ccfUavVxexdQoX9UDD3e1SIMibJjg1Jz8oh/M0/CH/zD85dv1Nmx1qUJX5Fmml6CEVRmDdvHgAjRozAwUHeLsJ6evbsia+vL5cvX2b9+vWWuUhhPxQ0pKRH2Cj59LYhvxy4pH3e9ZOt/LgvvkyOtRgzVjfpMdP0EH///TeHDh3C09NTGiYLq3N1dWXo0KEAfPHFF5a5iKEfCrrM9R4VooxJsmNlxpa4JKTc5Z1V98fYUCvw1spjJKTcLfYapTnWKCWtiiptdVNR1zXD9BAzZ84E4OWXX8bf39/k44UwN027sTVr1nDhwgXzXyD/DwVDXxH536OWqIoWwswk2bGyokpcdBOhnbE3UOfrcZqrKETN3FRsohR3I83gsedvpJvlHkpcFVXa6qb819X9wC3lXD87d+5k69atODs7M27cOJOPF8IS6tWrR5cuXVCr1cyfP98yF2nzEow9AUPXwIsbin+P5n8f7v1Gkh9R7kiyY2FFldwYKnGZ+MtR7b66idAbK46Qfyg73eWiqqYiqnjikO9gR5WK8Coepb6HUlVFlaa6ydB1NczQrkBTqjNkyBCqV69eqnMJYU6a0p1vv/2WzMxMy1zEpxpEPATVWxb9HjX0Pvxz/P3l/D9ChLASSXYsrKiSG0MlLhpdPt7K1N/vJ0L5d8uf+BRVNRXs4867/Rpplx1U8MGAxgT7uJf6HkpdFVXS6iZD19Vev3TtCvbu3cuaNWtQqVRMmDCh+AOEKEP9+vUjJCSEa9eulc2Iyvnfo40H3k9g4rYZeB/qfFqZ+UeIECXlZO0A7FlhbWU61K1KsI+7tsTFUMJjKAdSgP8Oao6/lys30zIZueyg3nZN1ZShJGZIVDhdGwZy/kY64VU88HF3JvzNvFmUN73ekZpVvUp0D9qqKN0PtaKqorLS4IN7A/ON3J9XxTQtxbh9vUPuLw/7o+B1dWkSLhMbJSuKwhtvvAHklerUq1fPpOOFsDRnZ2dGjRrFm2++yXvvvcfgwYNxcrLgR7mmSlhj7zf3n//2Cnk/vYwY1VnzI6RWF5Pfl0KUlpTsWFBxbWXyl7gUx1GlomV4ZaJq+dMyrLLJVVPBPu5E1fIn2Mfd6N5Zxbb3MbUqypT2Pfn3XT36/vKSvnm/MAtTgq7mAL/99hv//PMPbm5uvP/++yYfL0RZiI6Oxt/fn9jYWJYtW1b8AeaSv9qqQJLjQMFyZ93dSzbelRClJcmOBRnTVmZIVDi7JnXmv4OaF9hXdzF/1ZOhqilNg+XixtExpXeWoXtwUMGgb3bfb8Oj26BxzNHCq6KKa9+j26vj/PaC+x5dob98bCW8uCnvup0n399Wwq7mWVlZ2mqr119/XdrqiHLLy8uL8ePz2sbMmDGDnJycsrmwwepjBR5fnPc+HHsMen1U+PEl/BEiRGlJsmNBhbWVAdh59oY2uQj2cadP05AC+07vf395w7iOPNW6ht75NYnSDy+1Y9wjdbXrixtHx5TeWYbuoV/T+/NDaa+ladDo7lt4g8Ti2vfoluQs7lN4FZXusdnpedftMN64hKsIH3/8MbGxsQQEBDBx4kSTjxeiLEVHR1OlShViY2P53//+VzYXLawHZWibvPehTzX9Hz9m+BEihDmoFItPoVv+paam4uPjQ0pKCt7e3mY/f0LKXW1bmQ0nrjLlXsNjBxXMHBCpl8To7mtsA+KElLs8OGuTXgLjqFKx8tUo0rJyiajiqXeuwvbf/ubDBPu4k56VQ8Op64D77Xk0cXm4OPDYFzsLPZa938CfeW1eUDlA38/uJx4pl2FO44Lte8YczXuef1txNMea4cPzxIkTNG/enKysLJYsWcJzz5meLAlR1j766CMmTJhAUFAQp06dwsfHx/IX1XuP30tgivpxkXI57weNX01JdITZGfv9LSU7ZUDTVgYotvpIt12NsQorqek/byfPfLOHB2dt0ivpKa7EaeH2OO02TcmNJq60rNzCS4WKq6Yqqn1PUb2rNPtGPmH42FLKycnh+eefJysri169ejFkyJBSn1OIsjBq1Cjq1q1LYmIiU6ZMKZuLGlttraEp9TX1vSqDFQozkt5YZaio6iNTkpv8iurVBQZ6UFGwd9aGE1eJmrmp2GMNXUvbDinpuOFqqot7Ick/rwi8zUtQr1fBX3qF9eoavj6vqkqzb9d3zf4rcfbs2ezduxcfHx/mz5+PSlVEA0shyhFXV1e++OILunbtyrx58xg6dCgtW7a0/IV9qlm+lCZ/B4W+n5FQ6wnibqQVKK22tISUu1a5rjAfKdkpQ6Ud3K8w+UtqDH1VG2qTU1iJU1HHFjlmj8F5dVTw87C83lNzGuf1vjL0S6+wUp/qLfX3LemvxEKsW7eOyZPz2hXMmTOHatWkmF3Yli5duvDMM8+gVqt58cUXycjIsHZIRUu5nDc+T1HjYBkoJVavGs1jM1cYLK22pP/tOk/UzE1lfl1hXtJmB8u32dH1v13ni2yzUxpGt6vJZ+fZGzzzzZ5Cz2vo2ELbFv37XV7VlZJLXi6toNc9tbh2NmVYv3/27FlatWpFcnIyL774opTqCJuVmJhI48aNuXnzJq+88orlJgotraLa9GmkXIbjv8Lfbxc4/OmsyexWNwSKbpcIxZfGGFNaU1z7RnOwhVKj8hyjsd/fkuxQtskOlKwRsqlMSaoMvaE1HFUqPhjQ2LSETJOwpF2Hnw3MFj50TV7pjBVdu3aNTp06cfLkSdq2bcvWrVtxdXW1akxClMbatWvp1asXiqLw/fffM3jwYGuHpK+oDgqaHza6yVA+OYoD7TM/I5GCk/Lm/4wr7vOvuO2aL/ektKwCg7cC/PBSO22peHHyJwq6y8V1WDGnkiYsxnyXFHWPlk6OJNkxQVknO2XFlKQq/x/0xB71aVLdt3QJmTEfblZw8+ZNHn74YY4ePUq1atXYs2ePVF8JuzB16lRmzJiBh4cHGzZsICoqytoh3Re3La86O7/HF4OnPzh7woKuBjsqKCpHJmW9wPLchws9vaakJz4pndHLDxXaO9XTxbHIkm/dz0JNOa/ul2RxJUpw/8v/3wu3+L+/zwD3h+347dCVIs9dVKlRcUmF7jJQ6qTKmJKt/N8duvdo6QQOJNkxib0mO6aySImTbrWWMd1ULSwhIYHevXtz8OBBgoOD2bp1K3XqmD4ruhDlUW5uLn369GHt2rX4+PiwadMmWrRoYe2w8hj68aM31UQh0050/wAaPsqPZ3J5a+UxchUFB8CEQSr0FDa5xQ8vtSO8ikeBL3cVoLrXKcNRpaJv0+Aiv8x1v/xL4r+DmuPn5VJswpI/qcifSOn+r0LxSZWh0pjCmjhoYjSUOObnAMx9pjktwypbpJRHkh0TSLJjYeVknI1///2Xfv36cfnyZapWrcrWrVtp0KCB1eIRwhLS0tLo0aMH27dvx9/fn3Xr1pVNDy1jFNemL798JcFFtUssDU1pzd7zSbz/x6kC2zVzEhbWHrKoUiNTFJb6GUpYSks3qTJU8tOhblX2n08qUEpmRHpqkKVKeSTZMYEkO/ZNrVbz9ddf8/rrr3P37l3q16/P6tWrqV27trVDE8IiUlNT6dq1K/v27cPd3Z1Fixbx1FNPWTusPMW16dMMQVFMSXD+6qbCvsiK+0J2UMFjzavx68HLhbZb1JSCFNeZw5Qvf83+mlIjI1I/s9G9rqFEylJJl7kbd4Px398yzo6wazExMfznP/9h06a8MYR69OjB8uXLy2akWSGsxNvbm/Xr1/PMM8/w559/8vTTT7Njxw4++OADvLy8rBucZoyelMvGja1VCN2xwgyVuDgAnz/TnOqV3QstjUnPUhdZSqTpoKH5ci5uTLOikgBHlYpHm4fw28Er5CqK9twd6lbl/I10bqZlGmwMbQ6GkirNPRiKWcn3XPN/qYDBGB10qvl07zE/c4wrV1KS7Ai7FB8fz3vvvcfChQvJzc3F3d2dWbNmMXLkSBwcZHgpYf98fHxYtWoVkyZN4qOPPuLzzz9n1apVfPbZZ/Tr18/6wyz4VMvrep6/TV9146vcgn3ctV+cMwdEatv0aBKJ3k1CCt3WNLQykNcuxVDyMqV3A3o1Cdb7Yg72cdc7V2Fth3S//Cf0qKfX2eON7vUKtI3UNC4uKpHK33Yof+Kku6y6d4CiYJakSg34eboSXsXD4KCymsRR9x4PnL/FqOUHDQ9AawVSjYVUY9mLrKwsNm7cyPz581m1ahVqdd7HUO/evZkzZ45UW4kKa926dYwYMYILFy4A0KJFC95++2369euHk5OVf/OasU1fUZ0sCttWkrF0ihvTLP+Xv7F+3BevTaSKSlg0581/T7rLgNH3W1x1mu7/h26MxQ1NYsq+JVXh2uzMmzePjz76iMTERJo2bcrnn39OmzZtjDpWkh3bpFarOXXqFDt37mTLli388ccfJCcna7d37tyZd999l/bt21svSCHKibS0NN577z0+//xz0tLSAAgMDGTw4MH079+fqKgonJ2drRyldZTmS9ncX+jGJCylZShm3URq25nrRd6TKT13LT2uXIVKdn788Ueee+45vvrqK9q2bcucOXNYsWIFp0+fJiAgoNjjJdkpnxRFISUlhWvXrnHt2jWuXr3KuXPnOHPmDGfOnOHIkSN6yQ1AQEAATz31FP/5z39o2LChdQIXohy7fv06n376Kd9++y3Xr1/Xrvf29qZdu3a0aNGCli1bEhkZSVhYGG5ublaMtuyU5ku5LAaKNbfiYraVe6pQyU7btm1p3bo1//3vf4G8X/yhoaG89tprvPnmm8Ueb6lkp3Hjxpw+fRoHBwdUKpVN/mvKvoqiaB9qtdqo52q1moyMDNLT07l7967ev3fu3CE7O7vI/2MPDw/atGnDAw88QM+ePYmKisLR0dFsr6EQ9io7O5u//vqLH3/8kXXr1nHz5k2D+wUFBVGjRg2qVq2Kn5+f9lGpUiXc3Nz0Hq6urri5ueHk5KT3GZL/s8TQZ4sxbYiK28cc57DVfUqrLK5RrVo1s5ceVpjeWFlZWRw4cIBJkyZp1zk4ONC1a1d27dpl8JjMzEwyMzO1y6mpqRaJLTs7m5ycHIucuyLx9vYmICCAqlWrEhYWRt26dalbty4NGjQgMjKywha9C1Eazs7O9OvXj379+pGbm8uhQ4fYv38///77LwcOHOD06dPcuXOHxMREEhMTrR2usAOnT5+mbt26Vrm2zSc7N27cIDc3l8DAQL31gYGBnDpVcHAogJkzZ/Luu+9aPLZt27aRnZ2tV6Jhrn8tcc7S/KtWq7W/znR/qeVfzv/cwcEBNzc3PDw8cHd3x93dXfvc09OTqlWr4u5efotQhbAHjo6OtGzZUm/wQUVRSEpK4sKFC8THx5OUlMTNmze1/6alpZGRkUFGRgaZmZna5xkZGeTm5mo/F/J/ThS23hjGVkRYaz9rX7u8n8OaPQBtPtkpiUmTJjFu3DjtcmpqKqGhoWa/Tv4ETAghbIVKpcLf3x9/f//yM+WEECVk88lOlSpVcHR05OrVq3rrr169SlBQkMFjXF1dZYZrIYQQooKw+dHVXFxcaNmyJRs3btSuU6vVbNy4sXzN+CuEEEIIq7D5kh2AcePGMXToUFq1akWbNm2YM2cOaWlpPP+8gXlXhBBCCFGh2EWy89RTT3H9+nWmTp1KYmIizZo1Y+3atdJmRgghhBD2Mc5OacmggkIIIYTtMfb72+bb7AghhBBCFEWSHSGEEELYNUl2hBBCCGHXJNkRQgghhF2TZEcIIYQQdk2SHSGEEELYNUl2hBBCCGHXJNkRQgghhF2TZEcIIYQQds0uposoLc0g0qmpqVaORAghhBDG0nxvFzcZhCQ7wO3btwEIDQ21ciRCCCGEMNXt27fx8fEpdLvMjQWo1WquXLlCpUqVUKlUZjtvamoqoaGhXLx40W7n3LL3e7T3+wP7v0d7vz+w/3u09/sD+79HS92foijcvn2bkJAQHBwKb5kjJTuAg4MD1atXt9j5vb297fKPV5e936O93x/Y/z3a+/2B/d+jvd8f2P89WuL+iirR0ZAGykIIIYSwa5LsCCGEEMKuSbJjQa6urrzzzju4urpaOxSLsfd7tPf7A/u/R3u/P7D/e7T3+wP7v0dr3580UBZCCCGEXZOSHSGEEELYNUl2hBBCCGHXJNkRQgghhF2TZEcIIYQQdk2SHTObNWsWKpWKMWPGaNdlZGQQHR2Nv78/Xl5eDBw4kKtXr1ovyFIydI+dOnVCpVLpPf7zn/9YL0gTTZs2rUD89evX12639dewuPuz9dcP4PLlyzz77LP4+/vj7u5OZGQk+/fv125XFIWpU6cSHByMu7s7Xbt2JSYmxooRm664exw2bFiB17FHjx5WjNg04eHhBeJXqVRER0cDtv8+LO7+bP19mJuby5QpU4iIiMDd3Z1atWoxY8YMvXmrrPU+lBGUzWjfvn18/fXXNGnSRG/92LFj+eOPP1ixYgU+Pj6MHDmSAQMGsGPHDitFWnKF3SPASy+9xPTp07XLHh4eZRlaqTVq1IgNGzZol52c7r897OE1LOr+wLZfv1u3bvHggw/y8MMP89dff1G1alViYmKoXLmydp/Zs2czd+5clixZQkREBFOmTKF79+6cOHECNzc3K0ZvHGPuEaBHjx4sWrRIu2xLXZn37dtHbm6udvnYsWM88sgjPPHEE4Dtvw+Luz+w7ffhhx9+yJdffsmSJUto1KgR+/fv5/nnn8fHx4dRo0YBVnwfKsIsbt++rdSpU0dZv3690rFjR2X06NGKoihKcnKy4uzsrKxYsUK778mTJxVA2bVrl5WiLZnC7lFRlALLtuadd95RmjZtanCbPbyGRd2fotj+6zdx4kSlffv2hW5Xq9VKUFCQ8tFHH2nXJScnK66ursoPP/xQFiGWWnH3qCiKMnToUKV///5lE1AZGD16tFKrVi1FrVbbxfswP937UxTbfx/27t1beeGFF/TWDRgwQBk8eLCiKNZ9H0o1lplER0fTu3dvunbtqrf+wIEDZGdn662vX78+NWrUYNeuXWUdZqkUdo8aS5cupUqVKjRu3JhJkyaRnp5exhGWTkxMDCEhIdSsWZPBgwcTHx8P2M9rWNj9adjy67dq1SpatWrFE088QUBAAM2bN+ebb77Rbo+LiyMxMVHvNfTx8aFt27Y28xoWd48aW7ZsISAggHr16vHKK69w8+ZNK0RbellZWXz//fe88MILqFQqu3kfauS/Pw1bfh8+8MADbNy4kTNnzgBw+PBhtm/fTs+ePQHrvg+lGssMli9fzr///su+ffsKbEtMTMTFxQVfX1+99YGBgSQmJpZRhKVX1D0CPPPMM4SFhRESEsKRI0eYOHEip0+fZuXKlWUcacm0bduWxYsXU69ePRISEnj33Xd56KGHOHbsmF28hkXdX6VKlWz+9Tt37hxffvkl48aN46233mLfvn2MGjUKFxcXhg4dqn2dAgMD9Y6zpdewuHuEvCqsAQMGEBERwdmzZ3nrrbfo2bMnu3btwtHR0cp3YJrffvuN5ORkhg0bBtjPZ6lG/vsD2/8cffPNN0lNTaV+/fo4OjqSm5vL+++/z+DBgwGs+j6UZKeULl68yOjRo1m/fr1N1PuXhDH3+PLLL2ufR0ZGEhwcTJcuXTh79iy1atUqq1BLTPPLA6BJkya0bduWsLAwfvrpJ9zd3a0YmXkUdX/Dhw+3+ddPrVbTqlUrPvjgAwCaN2/OsWPH+Oqrr7SJgK0z5h6ffvpp7f6RkZE0adKEWrVqsWXLFrp06WKVuEtqwYIF9OzZk5CQEGuHYhGG7s/W34c//fQTS5cuZdmyZTRq1IhDhw4xZswYQkJCrP4+lGqsUjpw4ADXrl2jRYsWODk54eTkxNatW5k7dy5OTk4EBgaSlZVFcnKy3nFXr14lKCjIOkGbqLh71G1wp9G2bVsAYmNjyzpcs/D19aVu3brExsYSFBRk869hfrr3Z4itvX7BwcE0bNhQb12DBg20VXWa1yl/zx1beg2Lu0dDatasSZUqVWzmddS4cOECGzZs4MUXX9Sus6f3oaH7M8TW3ofjx4/nzTff5OmnnyYyMpIhQ4YwduxYZs6cCVj3fSjJTil16dKFo0ePcujQIe2jVatWDB48WPvc2dmZjRs3ao85ffo08fHxREVFWTFy4xV3j4aKxw8dOgTkfUDbojt37nD27FmCg4Np2bKlzb+G+enenyG29vo9+OCDnD59Wm/dmTNnCAsLAyAiIoKgoCC91zA1NZU9e/bYzGtY3D0acunSJW7evGkzr6PGokWLCAgIoHfv3tp19vQ+NHR/htja+zA9PR0HB/20wtHREbVaDVj5fWjR5s8VVP4W9f/5z3+UGjVqKJs2bVL279+vREVFKVFRUdYL0Ax07zE2NlaZPn26sn//fiUuLk75/ffflZo1ayodOnSwbpAmeP3115UtW7YocXFxyo4dO5SuXbsqVapUUa5du6Yoiu2/hkXdnz28fnv37lWcnJyU999/X4mJiVGWLl2qeHh4KN9//712n1mzZim+vr7K77//rhw5ckTp37+/EhERody9e9eKkRuvuHu8ffu28sYbbyi7du1S4uLilA0bNigtWrRQ6tSpo2RkZFg5euPl5uYqNWrUUCZOnFhgm62/DxWl8Puzh/fh0KFDlWrVqilr1qxR4uLilJUrVypVqlRRJkyYoN3HWu9DSXYsIH+yc/fuXeXVV19VKleurHh4eCiPPfaYkpCQYL0AzUD3HuPj45UOHToofn5+iqurq1K7dm1l/PjxSkpKinWDNMFTTz2lBAcHKy4uLkq1atWUp556SomNjdVut/XXsKj7s4fXT1EUZfXq1Urjxo0VV1dXpX79+sr8+fP1tqvVamXKlClKYGCg4urqqnTp0kU5ffq0laItmaLuMT09XenWrZtStWpVxdnZWQkLC1NeeuklJTEx0YoRm27dunUKYPC1sfX3oaIUfn/28D5MTU1VRo8erdSoUUNxc3NTatasqbz99ttKZmamdh9rvQ9ViqIztKEQQgghhJ2RNjtCCCGEsGuS7AghhBDCrkmyI4QQQgi7JsmOEEIIIeyaJDtCCCGEsGuS7AghhBDCrkmyI4QQQgi7JsmOEEIIIeyaJDtCCAF06tQJlUqFSqXSzkm0ZcsWVCpVgcknzW3atGnaa8+ZM8ei1xKiIpJkRwhhsmHDhmm/nHUfPXr0sHZopfLSSy+RkJBA48aNS32uq1ev4uzszPLlyw1uHz58OC1atADgjTfeICEhgerVq5f6ukKIgiTZEUKUSI8ePUhISNB7/PDDDxa9ZlZWlkXP7+HhQVBQEE5OTqU+V2BgIL1792bhwoUFtqWlpfHTTz8xfPhwALy8vAgKCsLR0bHU1xVCFCTJjhCiRFxdXQkKCtJ7VK5cWbtdpVLx7bff8thjj+Hh4UGdOnVYtWqV3jmOHTtGz5498fLyIjAwkCFDhnDjxg3t9k6dOjFy5EjGjBlDlSpV6N69OwCrVq2iTp06uLm58fDDD7NkyRJtdVNaWhre3t78/PPPetf67bff8PT05Pbt2yW+5/T0dHr27MmDDz6ordr69ttvadCgAW5ubtSvX58vvvhCu//w4cPZuHEj8fHxeudZsWIFOTk5DB48uMSxCCGMJ8mOEMJi3n33XZ588kmOHDlCr169GDx4MElJSQAkJyfTuXNnmjdvzv79+1m7di1Xr17lySef1DvHkiVLcHFxYceOHXz11VfExcXx+OOP8+ijj3L48GFGjBjB22+/rd3f09OTp59+mkWLFumdZ9GiRTz++ONUqlSpRPeSnJzMI488glqtZv369fj6+rJ06VKmTp3K+++/z8mTJ/nggw+YMmUKS5YsAaBXr14EBgayePHiArEMGDAAX1/fEsUihDCRxedVF0LYnaFDhyqOjo6Kp6en3uP999/X7gMokydP1i7fuXNHAZS//vpLURRFmTFjhtKtWze98168eFEBlNOnTyuKoigdO3ZUmjdvrrfPxIkTlcaNG+ute/vttxVAuXXrlqIoirJnzx7F0dFRuXLliqIoinL16lXFyclJ2bJlS6H31LFjR2X06NF66zZv3qwAysmTJ5UmTZooAwcOVDIzM7Xba9WqpSxbtkzvmBkzZihRUVHa5TfffFOJiIhQ1Gq1oiiKEhsbq6hUKmXDhg0FYggLC1M+/fTTQmMUQpSMlOwIIUrk4Ycf5tChQ3qP//znP3r7NGnSRPvc09MTb29vrl27BsDhw4fZvHkzXl5e2kf9+vUBOHv2rPa4li1b6p3z9OnTtG7dWm9dmzZtCiw3atRIW8Ly/fffExYWRocOHUp0r4888gi1a9fmxx9/xMXFBchrd3P27FmGDx+udw/vvfeeXvwvvPACcXFxbN68Gcgr1QkPD6dz584likUIYbrSt8ITQlRInp6e1K5du8h9nJ2d9ZZVKhVqtRqAO3fu0LdvXz788MMCxwUHB+tdpyRefPFF5s2bx5tvvsmiRYt4/vnnUalUJTpX7969+eWXXzhx4gSRkZHa+AG++eYb2rZtq7e/bkPjOnXq8NBDD7Fo0SI6derEd999x0svvVTiWIQQppNkRwhhFS1atOCXX34hPDzcpN5P9erV488//9Rbt2/fvgL7Pfvss0yYMIG5c+dy4sQJhg4dWuJYZ82ahZeXF126dGHLli00bNiQwMBAQkJCOHfuXLENjYcPH84rr7xCv379uHz5MsOGDStxLEII00k1lhCiRDIzM0lMTNR76PakKk50dDRJSUkMGjSIffv2cfbsWdatW8fzzz9Pbm5uoceNGDGCU6dOMXHiRM6cOcNPP/2kbQCsW1pSuXJlBgwYwPjx4+nWrVupx7D5v//7PwYPHkznzp05deoUkNcAe+bMmcydO5czZ85w9OhRFi1axCeffKJ37BNPPIGzszMjRoygW7duhIaGlioWIYRpJNkRQpTI2rVrCQ4O1nu0b9/e6ONDQkLYsWMHubm5dOvWjcjISMaMGYOvry8ODoV/NEVERPDzzz+zcuVKmjRpwpdffqntjeXq6qq37/Dhw8nKyuKFF14o2U3m8+mnn/Lkk0/SuXNnzpw5w4svvsi3337LokWLiIyMpGPHjixevJiIiAi94zw8PHj66ae5deuW2WIRQhhPpSiKYu0ghBCiNN5//32++uorLl68qLf+f//7H2PHjuXKlSvahsWF6dSpE82aNbPqdA3h4eGMGTOGMWPGWC0GIeyRlOwIIWzOF198wb59+zh37hz/+9//+Oijj/Ta5KSnp3P27FlmzZrFiBEjik10dM/r5eXF0aNHLRW6QR988AFeXl4FBh8UQpiHlOwIIWzO2LFj+fHHH0lKSqJGjRoMGTKESZMmaRs6T5s2jffff58OHTrw+++/4+XlVew5L1++zN27dwGoUaOG0QmSOSQlJWkHW6xatSo+Pj5ldm0hKgJJdoQQQghh16QaSwghhBB2TZIdIYQQQtg1SXaEEEIIYdck2RFCCCGEXZNkRwghhBB2TZIdIYQQQtg1SXaEEEIIYdck2RFCCCGEXft/rL1yfyEQ+WQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF6klEQVR4nO3deViUZffA8e+wbwKKsikCueGC+0aZmpq7WdpiWWmammGmlpplZmpp9qvMXlssU3tfzbJs0UpzN/cl11xRFBUQFQFFZZvn9wfNMAMDzMAMs3A+1zWXM896HmGGM/dz7vtWKYqiIIQQQgjhoJysHYAQQgghhCVJsiOEEEIIhybJjhBCCCEcmiQ7QgghhHBokuwIIYQQwqFJsiOEEEIIhybJjhBCCCEcmou1A7AFarWaxMREqlSpgkqlsnY4QgghhDCCoijcvHmT0NBQnJyKb7+RZAdITEwkLCzM2mEIIYQQogwuXrxIrVq1il0vyQ5QpUoVIP8/y9fX18rRCCGEEMIYGRkZhIWFaf+OF0eSHdDeuvL19ZVkRwghhLAzpZWgSIGyEEIIIRyaJDtCCCGEcGiS7AghhBDCoUnNjhBCCJuTl5dHTk6OtcMQVubq6oqzs3O5jyPJjhBCCJuhKArJycmkpaVZOxRhI/z9/QkODi7XOHiS7AghhLAZmkQnMDAQLy8vGei1ElMUhdu3b5OSkgJASEhImY8lyY4QQgibkJeXp010AgICrB2OsAGenp4ApKSkEBgYWOZbWlKgLIQQwiZoanS8vLysHImwJZrfh/LUcEmyI4QQwqbIrSuhyxy/D5LsCCGEEMKhSbIjhBBCCIcmyY4QQghhBSqVip9//rnEbYYOHcrDDz9s9DHPnz+PSqXi0KFD5YrN0UhvLCGEw1IUhevXr+Ph4YGPj4+1wxEObOjQoaSlpZWavOhKSkqiatWqQH6SEhkZycGDB2nevLl2m48//hhFUcwcbeVj1ZadiIgIVCpVkUdsbCwAd+/eJTY2loCAAHx8fBg4cCBXrlzRO0ZCQgJ9+vTBy8uLwMBAJk6cSG5urjUuRwhhQ06ePEnLli2pUaMGAQEBTJ8+XT4bhE0JDg7G3d29xG38/Pzw9/evmIAcmFWTnX379pGUlKR9rF+/HoDHHnsMgPHjx7N69WpWrlzJ1q1bSUxMZMCAAdr98/Ly6NOnD9nZ2ezcuZOlS5eyZMkSpk2bZpXrEULYhvPnzxMTE6Ntys/Ozubtt9/mtddes25gwmSKopCZmWmVR3laVDp37szYsWOZNGkS1apVIzg4mOnTp+tto3sbKzIyEoAWLVqgUqno3LkzUPQ21tq1a+nQoQP+/v4EBATQt29fzp49a1JsSUlJ9OnTB09PTyIjI1m+fDkRERHMmzcPMHwrLC0tDZVKxZYtW7TLjh07Rq9evfDx8SEoKIhnnnmGa9euadf/8MMPREdH4+npSUBAAN26dSMzMxOALVu20LZtW7y9vfH39+e+++7jwoULJl2HKaya7NSoUYPg4GDtY82aNdSpU4dOnTqRnp7OokWL+PDDD+nSpQutWrVi8eLF7Ny5k927dwPw559/cvz4cf73v//RvHlzevXqxcyZM1mwYAHZ2dnFnjcrK4uMjAy9hxDCMajVaoYMGUJaWhqtWrUiKSmJRYsWAfDBBx+wdu1aK0coTHH79m18fHys8rh9+3a5Yl+6dCne3t7s2bOHuXPnMmPGDO2X+sL27t0LwIYNG0hKSmLVqlUGt8vMzGTChAns37+fjRs34uTkxCOPPIJarTY6rmeffZbExES2bNnCjz/+yMKFC7WjFBsrLS2NLl260KJFC/bv38/atWu5cuUKjz/+OJCfUD355JMMGzaMEydOsGXLFgYMGICiKOTm5vLwww/TqVMnjhw5wq5duxg5cqRlhxxQbERWVpYSEBCgvPPOO4qiKMrGjRsVQLlx44bedrVr11Y+/PBDRVEU5c0331SaNWumt/7cuXMKoPz999/Fnuutt95SgCKP9PR0s16TEKLifffddwqgeHt7K3FxcdrlY8aMUQClWbNmilqttmKEojh37txRjh8/rty5c0e77NatWwY/ryvicevWLaNjHzJkiNK/f3/t606dOikdOnTQ26ZNmzbK5MmTta8B5aefflIURVHi4+MVQDl48GCJxy3s6tWrCqAcPXq0xONonDhxQgGUffv2aZedOXNGAZSPPvqo2GPcuHFDAZTNmzcriqIoM2fOVLp376537IsXLyqAcurUKeXAgQMKoJw/f75IDNevX1cAZcuWLcVely5Dvxca6enpRv39tpneWD///DNpaWkMHToUyJ8fxc3Nrci9yqCgIJKTk7XbBAUFFVmvWVecKVOmkJ6ern1cvHjRfBcihLAaRVGYPXs2AK+++ip16tTRrps+fTo+Pj4cPnyY1atXWytEYSIvLy9u3bpllUd5R3Ju2rSp3uuQkBCTW1AKO3PmDE8++ST33HMPvr6+REREAPn1q8Y4deoULi4utGzZUrusbt262kJpYx0+fJjNmzfrtYRFRUUBcPbsWZo1a0bXrl2Jjo7mscce48svv+TGjRsAVKtWjaFDh9KjRw/69evHxx9/TFJSkknnN5XNJDuLFi2iV69ehIaGWvxc7u7u+Pr66j2EEPZvw4YNHDp0CG9vb8aOHau3LiAgQNv5QVObIGyfSqXC29vbKo/y3lZxdXUtci2m3G4ypF+/fqSmpvLll1+yZ88e9uzZA1Bi6YapnJzyUwNFp2ap8FQNt27dol+/fhw6dEjvcebMGTp27IizszPr16/njz/+oFGjRnzyySc0aNCA+Ph4ABYvXsyuXbu49957+e6776hfv762RMUSbCLZuXDhAhs2bOD555/XLgsODiY7O5u0tDS9ba9cuUJwcLB2m8K9szSvNdsIISqPxYsXA/lFndWqVSuy/oUXXgDyiyON/SYsREVwc3MD8jveFOf69eucOnWKqVOn0rVrVxo2bKhtLTFWgwYNyM3N5eDBg9plcXFxesepUaMGgF5rS+Fxe1q2bMk///xDREQEdevW1Xt4e3sD+cndfffdx9tvv83Bgwdxc3Pjp59+0h6jRYsWTJkyhZ07d9KkSROWL19u0rWYwiaSncWLFxMYGEifPn20y1q1aoWrqysbN27ULjt16hQJCQnExMQAEBMTw9GjR/WaBdevX4+vry+NGjWquAsQQlhdRkaGtmfLkCFDDG4TERFB586dURSFZcuWVWB0QpQsMDAQT09PbaFvenp6kW2qVq1KQEAACxcuJC4ujk2bNjFhwgSTzhMVFUW3bt0YOXIke/fu5eDBg4wcORJPT09tS5anpyft27dnzpw5nDhxgq1btzJ16lS948TGxpKamsqTTz7Jvn37OHv2LOvWreO5554jLy+PPXv28O6777J//34SEhJYtWoVV69epWHDhsTHxzNlyhR27drFhQsX+PPPPzlz5gwNGzYs+39gKaye7KjVahYvXsyQIUNwcSkY49DPz4/hw4czYcIENm/ezIEDB3juueeIiYmhffv2AHTv3p1GjRrxzDPPcPjwYdatW8fUqVOJjY0tdewCIYRjWbVqFXfu3CEqKorWrVsXu92zzz4LwLfffltRoQlRKhcXF+bPn88XX3xBaGgo/fv3L7KNk5MTK1as4MCBAzRp0oTx48fz/vvvm3yub775hqCgIDp27MgjjzzCiBEjqFKlCh4eHtptvv76a3Jzc2nVqhXjxo1j1qxZescIDQ1lx44d5OXl0b17d6Kjoxk3bhz+/v44OTnh6+vLtm3b6N27N/Xr12fq1Kl88MEH9OrVCy8vL06ePMnAgQOpX78+I0eOJDY2llGjRpn+H2cso0qhLWjdunXa6u3C7ty5o7z44otK1apVFS8vL+WRRx5RkpKS9LY5f/680qtXL8XT01OpXr268sorryg5OTkmxWBsNbcQwnY9/PDDCqBMnz69xO2uXbumODk5KYBy4cKFCopOGKOkXjfCcjS9qDZs2GDtUAwyR28slaLIONQZGRn4+fmRnp4uxcpC2KG7d+8SEBDA7du3+fvvv2nRokWJ23fo0IEdO3bw6aefMnr06AqKUpTm7t27xMfHExkZqdfKIMxr06ZN3Lp1i+joaJKSkpg0aRKXL1/m9OnTRYqqbUFJvxfG/v22+m0sIYQory1btnD79m1q1qypN69Qcfr27QvAb7/9ZuHIhLA9OTk5vP766zRu3JhHHnmEGjVqsGXLFptMdMxFkh0hhN3TJC19+/Y1qruwpjPEpk2bzNplVwh70KNHD44dO8bt27e5cuUKP/30E+Hh4dYOy6Ik2RFC2D1Nr83u3bsbtX2TJk2oXr06d+7cYf/+/ZYMTQhhAyTZEULYteTkZE6cOKE3eWJpVCoVnTp1AmDr1q0WjE4IYQsk2RFC2DXNLMzNmzc3OJBgcTTJju4szkIIxyTJjhDCrm3atAmABx54wKT9NMnOjh07yM3NNXtcQgjbIcmOEMKu7dixAyhIXozVpEkT/Pz8yMzM5NixY5YITVjR7excIl77jYjXfuN2tiSzlZ0kO0IIu5WRkcGJEycAaNeunUn7Ojk50aZNGwDtZIpCiJJ17tyZcePGmfWYQ4cO5eGHHzbrMQuTZEcIYbf279+PoiiEh4cTFBRk8v6aBEmSHVFeQ4cORaVSMWfOHL3lP//8s8mzp0dERDBv3jwzRick2RFC2C1NkmJqq46GJDvCnDw8PHjvvfdMnolcWJ4kO0IIu7V3714A2rZtW6b9NcnOiRMnyMjIMFtcwrYkp9+tkPN069aN4OBgZs+eXeJ2P/74I40bN8bd3Z2IiAg++OAD7brOnTtz4cIFxo8fj0qlKrFVSKVS8cUXX9C3b1+8vLxo2LAhu3btIi4ujs6dO+Pt7c29997L2bNntfucPXuW/v37ExQUhI+PD23atGHDhg16x/3000+pV68eHh4eBAUF8eijjxYbw2+//Yafnx/Lli0D4OLFizz++OP4+/tTrVo1+vfvz/nz57Xb5+XlMWHCBPz9/QkICGDSpElUxKxVkuwIIeySoijlbtkJDAwkPDwcRVE4ePCgOcMTVvbjgUva590+3Mp3+xIsfk5nZ2feffddPvnkEy5dumRwmwMHDvD4448zaNAgjh49yvTp03nzzTdZsmQJAKtWraJWrVrMmDGDpKQkkpKSSjznzJkzefbZZzl06BBRUVE89dRTjBo1iilTpmhv844ZM0a7/a1bt+jduzcbN27k4MGD9OzZk379+pGQkP//s3//fsaOHcuMGTM4deoUa9eupWPHjgbPvXz5cp588kmWLVvG4MGDycnJoUePHlSpUoW//vqLHTt24OPjQ8+ePbUjlX/wwQcsWbKEr7/+mu3bt5OamspPP/1k6n+16cw+PakdklnPhbA/mpmanZ2dlczMzDIfRzNb+kcffWS+4ESZmGvW88S020rka2uU8MkFj3te+01JTLttpkiLGjJkiNK/f39FURSlffv2yrBhwxRFUZSffvpJ0f1T+9RTTykPPvig3r4TJ05UGjVqpH0dHh5u1O8joEydOlX7eteuXQqgLFq0SLvs22+/VTw8PEo8TuPGjZVPPvlEURRF+fHHHxVfX18lIyPD4LadOnVSXn75ZeU///mP4ufnp2zZskW77r///a/SoEEDRa1Wa5dlZWUpnp6eyrp16xRFUZSQkBBl7ty52vU5OTlKrVq1tP93hphj1nNp2RFC2CVNq050dDReXl5lPo5mhnRp2XEc8dcyURe6M5KnKJy/drtCzv/ee++xdOlSbU9BXSdOnOC+++7TW3bfffdx5swZ8vLyTD5X06ZNtc81RfrR0dF6y+7evau9TXvr1i1effVVGjZsiL+/Pz4+Ppw4cULbsvPggw8SHh7OPffcwzPPPMOyZcu4fVv//+2HH35g/PjxrF+/Xm/Ih8OHDxMXF0eVKlXw8fHBx8eHatWqcffuXc6ePUt6ejpJSUl6LbEuLi60bt3a5Os2lSQ7Qgi7VN56HQ1JdhxPZHVvnAqVujirVERUL3tSbIqOHTvSo0cPpkyZYvFz6c5UrqnvMbRMrVYD8Oqrr/LTTz/x7rvv8tdff3Ho0CGio6O1t5mqVKnC33//zbfffktISAjTpk2jWbNmpKWlaY/ZokULatSowddff61Xb3Pr1i1atWrFoUOH9B6nT5/mqaeestj/gTEk2RFC2CVNy06Zkp3sTJjuB9P9aN6oPgDHjx/n7t2KKWQVlhXi58nbDzXWvnZSwbsDmhDi51lhMcyZM4fVq1eza9cuveUNGzbUDoSpsWPHDurXr4+zszMAbm5uZWrlMcaOHTsYOnQojzzyCNHR0QQHB+sVEEN+a0u3bt2YO3cuR44c4fz589qRygHq1KnD5s2b+eWXX3jppZe0y1u2bMmZM2cIDAykbt26eg8/Pz/8/PwICQnR6/2Ym5vLgQMHLHKtuiTZEULYnby8PO1s5eVt2alVqyYBAQHk5eXJSMoOZGCrWtrnGyZ04ok2tSv0/NHR0QwePJj58+frLX/llVfYuHEjM2fO5PTp0yxdupT//Oc/vPrqq9ptIiIi2LZtG5cvX+batWtmjatevXqsWrWKQ4cOcfjwYZ566iltqw/AmjVrmD9/PocOHeLChQt88803qNVqGjRooHec+vXrs3nzZn788UftIIODBw+mevXq9O/fn7/++ov4+Hi2bNnC2LFjtQXbL7/8MnPmzOHnn3/m5MmTvPjii3qtRpYiyY4Qwu6cO3eOzMxMPDw8aNiwYbmOpVKpaNasGYAkOw4q2M/DKuedMWOGXiIB+a0f33//PStWrKBJkyZMmzaNGTNmMHToUL39zp8/T506dahRo4ZZY/rwww+pWrUq9957L/369aNHjx60bNlSu97f359Vq1bRpUsXGjZsyOeff863335L48aNixyrQYMGbNq0iW+//ZZXXnkFLy8vtm3bRu3atRkwYAANGzZk+PDh3L17F19fXyA/2XvmmWcYMmQIMTExVKlShUceecSs12iISlEqoIO7jcvIyMDPz4/09HTtD0QIYbt+/PFHHn30UVq1aqVt4TFJdia8G5r//PVExr46hU8++YSJEycyd+5c8wYrjHb37l3i4+OJjIzEw6N8Ccrt7FwaTVsHwPEZPfByczFHiMIKSvq9MPbvt7TsCCHsztGjRwH9nijl0ahRIyC/bkcI4Xgk1RVC2J0jR44AkuyI4nm5uXB+Th9rhyFshLTsCCHsjqWSnfPnz5OZmWmWYwohbIckO0IIu3Lr1i3tXD+6g6eVR/Xq1alRowaKonDy5EmzHFMIYTsk2RFC2BVNj6mQkBDz9FTJSAR0bmUdOagdg4dsaeURwhFIsiOEsCtmuYV1aHnB8wVt4e9vCpKdE9KyI4SjkWRHCGFXyp3spF+GPyYVvFbUsHocbRrUBCTZEcIRSbIjhLArmmSnzPU6qWfzExxdSh7Na1cBJNkRwhFJsiOEsBuKopS/ZadaHVAV+uhTOVOraf7szefi47mTU+nHWrV/OvOfSe2VkGRHCGE3Ll26RHp6Oi4uLkRFRZXtIH41oZfOKMkqZ+g3j+r3NKVatWqo1WpOX1cXv78QVqZSqfj555/NesyIiAjmzZtn1mPaEkl2hBB2QzNycoMGDXB3dy/7gZo/VfA8dg+0fBaVSlVQpHxVJ9mRFgJhhKFDh6JSqXjhhReKrIuNjUWlUunNfyUqliQ7Qgi7ceLECaCgm7hZ+IZqn2qO+8/VPPMdX1QaYWFhrFixgjt37miX3b17l+XLl1O7dsXOui70SbIjhLAbmmSn1JnOy9ga06BBAwDOpMptLIfy71hKltayZUvCwsJYtWqVdtmqVauoXbs2LVq00C5bu3YtHTp0wN/fn4CAAPr27asdKBMgOzubMWPGEBISgoeHB+Hh4cyePbvY87711luEhIRo69m2b9/O/fffj6enJ2FhYYwdO1ZvZPCUlBT69euHp6cnkZGRLFu2zJz/DTZJkh0hhN0wOtkpo7p16wKQfvffAuUK+iMpLMDAWEoVYdiwYSxevFj7+uuvv+a5557T2yYzM5MJEyawf/9+Nm7ciJOTE4888ghqdX6SPX/+fH799Ve+//57Tp06xbJly4iIiChyLkVReOmll/jmm2/466+/aNq0KWfPnqVnz54MHDiQI0eO8N1337F9+3bGjBmj3W/o0KFcvHiRzZs388MPP/Dpp5+SkpJimf8QGyETgQoh7IKiKBZPdurVq8ewFq4s7OuRv2BBW/1iZmEfihlLiTpd8wvULejpp59mypQpXLhwAYAdO3awYsUKtmzZot1m4MCBevt8/fXX1KhRg+PHj9OkSRMSEhKoV68eHTp0QKVSER4eXuQ8ubm5PP300xw8eJDt27dTs2b+dc2ePZvBgwczbtw4IP93ev78+XTq1InPPvuMhIQE/vjjD/bu3UubNm0AWLRokcXeU7ZCkh0hhF1ISUnhxo0bqFQq6tevb5FzRAa4s7CvB85OqvwFihr+mGyRcwkLKmYsJVLPWTzZqVGjBn369GHJkiUoikKfPn2oXr263jZnzpxh2rRp7Nmzh2vXrmlbdBISEmjSpAlDhw7lwQcfpEGDBvTs2ZO+ffvSvXt3vWOMHz8ed3d3du/erXf8w4cPc+TIEb1bU4qioFariY+P5/Tp07i4uNCqVSvt+qioKPz9/S3wv2E75DaWEMIuaFp1IiMj8fT0tMg5PDIvFSQ6GooUK9udYsZSoto9FXL6YcOGsWTJEpYuXcqwYcOKrO/Xrx+pqal8+eWX7Nmzhz179gD5tTqQX/sTHx/PzJkzuXPnDo8//jiPPvqo3jEefPBBLl++zLp16/SW37p1i1GjRnHo0CHt4/Dhw5w5c4Y6depY6Iptn9WTncuXL/P0008TEBCAp6cn0dHR7N+/X7teURSmTZtGSEgInp6edOvWjTNnzugdIzU1lcGDB+Pr64u/vz/Dhw/n1q1bFX0pQggLKtctLGMLlqvVIa/weIIqZ9PPJ6yrmLGULN2qo9GzZ0+ys7PJycmhR48eeuuuX7/OqVOnmDp1Kl27dqVhw4bcuHGjyDF8fX154okn+PLLL/nuu+/48ccfSU1N1a5/6KGHWL58Oc8//zwrVqzQLm/ZsiXHjx+nbt26RR5ubm5ERUWRm5vLgQMHtPucOnWKtLQ08/9H2BCrJjs3btzgvvvuw9XVlT/++IPjx4/zwQcfULVqVe02c+fOZf78+Xz++efs2bMHb29vevTowd27d7XbDB48mH/++Yf169ezZs0atm3bxsiRI61xSUIIC7F0vQ4AfjVZnt6aXPW/GY/KGXq9Z7nzCcsxMJZSRXF2dubEiRMcP34cZ2f9ZLlq1aoEBASwcOFC4uLi2LRpExMmTNDb5sMPP+Tbb7/l5MmTnD59mpUrVxIcHFzkVtMjjzzCf//7X5577jl++OEHACZPnszOnTsZM2YMhw4d4syZM/zyyy/aAmXNrbFRo0axZ88eDhw4wPPPP2+x1lJbYdWanffee4+wsDC9yvXIyEjtc0VRmDdvHlOnTqV///4AfPPNNwQFBfHzzz8zaNAgTpw4wdq1a9m3bx+tW7cG4JNPPqF379783//9H6GhoQgh7J9Zkx03b5iebnBVSkg3It7ZzMhWrkxbeSx/HJ7fX81fmZEI1euV//yiYvlW/N8BX19fg8udnJxYsWIFY8eOpUmTJjRo0ID58+fTuXNn7TZVqlRh7ty5nDlzBmdnZ9q0acPvv/+Ok1PR9olHH30UtVrNM888g5OTEwMGDGDr1q288cYb3H///SiKQp06dXjiiSe0+yxevJjnn3+eTp06ERQUxKxZs3jzzTfN/n9gS1SKolhtEphGjRrRo0cPLl26xNatW6lZsyYvvvgiI0aMAODcuXPUqVOHgwcP0rx5c+1+nTp1onnz5nz88cd8/fXXvPLKK3rNgLm5uXh4eLBy5UoeeeSRIufNysoiKytL+zojI4OwsDDS09OL/QUVQlhXrVq1uHz5Mjt37iQmJqbkjbMz4d1//8CN2Z//x07z+vXE/GSnGL/88B0PPzaIliFOHDifkd+FWZPsqJyg38cV2kpQmdy9e5f4+HgiIyPx8PAo38F0fwdK+ZkL21bS70VGRgZ+fn6l/v226m2sc+fO8dlnn1GvXj3WrVvH6NGjGTt2LEuXLgUgOTkZgKCgIL39goKCtOuSk5MJDAzUW+/i4kK1atW02xQ2e/Zs/Pz8tI+wsDBzX5oQwoxu3rzJ5cuXAYqfE0u3LufAkoLlC9rqj7lSinr18os441LVKMV1YU6/bOIVCCGsyaq3sdRqNa1bt+bdd98FoEWLFhw7dozPP/+cIUOGWOy8U6ZM0btHqmnZEULYppMnTwL5X3R0a/qK9efUgucmdh+/JzISFZCRBWnxh6hqpS7MopxKuFUpKh+rtuyEhIQUmeOmYcOGJCQkABAcHAzAlStX9La5cuWKdl1wcHCRkR9zc3NJTU3VblOYu7s7vr6+eg8hhO0yuV7HUIJiJA8PD8L88rufn72hWLULsxDCPKya7Nx3332cOnVKb9np06e1o0VGRkYSHBzMxo0bteszMjLYs2eP9p59TEwMaWlpet3oNm3ahFqtpl27dhVwFUIIS9O07Bid7BhKUExQt1r+/v9cSrdqF2YhhHlYNdkZP348u3fv5t133yUuLo7ly5ezcOFCYmNjAVCpVIwbN45Zs2bx66+/cvToUZ599llCQ0N5+OGHgfwPv549ezJixAj27t3Ljh07GDNmDIMGDZKeWEI4iNOnTwMFE3WWqvusgueFu48bMd9V3ar5H41xZ89atQtzZWXFfjPCBpnj98GqyU6bNm346aef+Pbbb2nSpAkzZ85k3rx5DB48WLvNpEmTeOmllxg5ciRt2rTh1q1brF27Vq8ie9myZURFRdG1a1d69+5Nhw4dWLhwoTUuSQhhAZpkp149I7t9Rz9e8Dx2j/46IyaFrBegSXbO6a+wQhfmysTV1RWA27dvWzkSYUs0vw+a34+ysPrcWH379qVv377FrlepVMyYMYMZM2YUu021atVYvtz43hZCCPuhVquJi4sD0J8Tq3DX4pKYOCmk5jbWmbizZQ1blIGzszP+/v7aOkwvLy9UKlUpewlHpSgKt2/fJiUlBX9//yIDNJrC6smOEEKUJDExkTt37uDi4kJERITpB0iNN21SSDdv7nl9N3zXjPjzF8oUsyg7TceSwh1PROXl7+9fbIcjY0myI4SwaZpbWJGRkbi4GPmRdTOp4Hm1yPyCZd2Ep5QeVZqR3FNTU8nIyED6a1YclUpFSEgIgYGB5OTkWDscYWWurq7latHRkGRHCGHTNBP/6t3CMkR34MCFnQqe+4bm96jSjoJceo+qKlWqEBAQwPXr14k/f4FmZYxdlJ2zs7NZ/sgJATYw67kQQpTEqOLkjMSidTm6ytCjStO6Ex9/3thQhRA2SpIdIYRNM6plx1BdTnGM7FGlqQ86fyHBuOMKIWyW3MYSQtg0o1p2DNXllJO2ZefiZfhYph0Qwp5Jy44Qwmbl5uZy7lz+WDcltuxo6nI0Co+gXAYFt7Hiy30sIYR1ScuOEMJmXbhwgZycHDw8PKhVq1bxG2Yk5tflaIqQY/dCdZ2WoOzMkk9UeMweN29JdoRwINKyI4SwWZp6nbp16+LkVOjjSrf31YK2+q/NMNKxbrIj0xcIYd8k2RFC2Kxi63XSLxftffXHZLOeWzMhcWZmJteuXTPrsYUQFUuSHSGEzSq2J1bqWcOjIpuRh4cHISEhAJw/f75gRXYmTPfLf5R2e0wIYRMk2RFC2KxiW3aq1SlahKwy/wB0UrcjhGOQZEcIYbM0LTtFkh2/moV6XzlDr/eKP5CbN0xPz3+4eRt9fkl2hHAMkuwIIWxSVlYWFy7kT8RpsNt54VGRdV+biSQ7QjgGSXaEEDbp3LlzqNVqfHx8CAoKKnljM/S+MkQzirIkO0LYN0l2hBA2Sbc4WaVSVdyJMxK1TzUtO3oFykIIuyPJjhDCJhk1TYSuMtblAEXH7Pn7G0A/2VGrzTcVhRCiYkmyI4SwSUZNAGoOhsbsWT0O0i8TFhaGk5MT2dnZJCUlWTYOIYTFSLIjhLBJJrfslFVxY/aknsPFxYWaNWsCcPHixaL76tzyEkLYLkl2hBA2qcJadoobs6faPUDBSMoJCQn564q55SWEsF2S7AghbE5mZiaXL18GKqBlx9CYPf3m5S8HateuDeRPSlrSLS8hhO2SWc+FEDYnLi4OgICAAKpVq2Z4I01BsjnozZi+R2/GdE2yk5CQUOItL01yJISwPdKyI4SwORVWr2NIoTF79JKd4m55Le0rc2UJYcMk2RFC2Jxip4mwAr1kx9RpKoQQNkGSHSGEzdG07OgVJ1tptnG9ZAcqZJoKIYR5lalm58yZM2zevJmUlJQiA21NmzbNLIEJISovW2rZ0fTGSk1N5datW/i46YzmbKFpKoQQ5mVysvPll18yevRoqlevTnBwsN4w7iqVSpIdIUS5GWzZsRJfX1/8/PxIT08nISGBRnXDrR2SEMJEJic7s2bN4p133mHy5MmWiEcIUcnduHGDa9euAVC3bl0rR5Ovdu3aHD16VJIdIeyUyTU7N27c4LHHHrNELEIIob2FFRISQpUqVawcTb4idTtCCLticrLz2GOP8eeff1oiFiGEsE69TimTiBqd7Mj0EULYJJNvY9WtW5c333yT3bt3Ex0djaurq976sWPHmi04IUTlU2HTRJigyJQRugpPH9HvY2j5bAVFJoQwhsnJzsKFC/Hx8WHr1q1s3bpVb51KpZJkRwhRLlYdULAYxbbsZCQanj6iTlcZUVkIG2JyshMfH2+JOIQQAjDyNlZGot6UDpamNz+W7jQV8dtk+ggh7IAMKiiEsBmKohTf7dyKs41rkp1Lly6Rl5dXsKKUGdOFELbBqJadCRMmMHPmTLy9vZkwYUKJ23744YdmCUwIUflcvXqVjIwMVCoVderUKVhR3GzjFXS7KCQkBGdnZ3Jzc0lOTqZmzX/PqZk+QjOJaKEZ04UQtsGoZOfgwYPk5ORonxdHd4BBIYQwlaZVJywsDA8Pj4IVVp5t3MXFhZo1a5KQkEBCQkJBsgMlzpguhLANRiU7mzdvNvhcCCHMSZPsNGjQQH+F5naRbsJTwbeLwsPDtclOTEyM4Y1k+gghbFK5anYuXrzIxYsXy7z/9OnTUalUeo+oqCjt+rt37xIbG0tAQAA+Pj4MHDiQK1eu6B0jISGBPn364OXlRWBgIBMnTiQ3N7fMMQkhrKfYeh1Ds41X8O0iGVhQCPtlcrKTm5vLm2++iZ+fHxEREURERODn58fUqVO1t7pM0bhxY5KSkrSP7du3a9eNHz+e1atXs3LlSrZu3UpiYiIDBgzQrs/Ly6NPnz5kZ2ezc+dOli5dypIlS2R+LiHsVIlzYhWebbyCx7LR65ElhLArJnc9f+mll1i1ahVz587VNuXu2rWL6dOnc/36dT777DPTAnBxITg4uMjy9PR0Fi1axPLly+nSpQsAixcvpmHDhuzevZv27dvz559/cvz4cTZs2EBQUBDNmzdn5syZTJ48menTp+Pm5mbq5QkhrMjoCUCtcLtIWnaEsF8mt+wsX76cJUuWMGrUKJo2bUrTpk0ZNWqUNjEx1ZkzZwgNDeWee+5h8ODB2g+SAwcOkJOTQ7du3bTbRkVFUbt2bXbt2gXkJ1nR0dEEBQVpt+nRowcZGRn8888/xZ4zKyuLjIwMvYcQwrry8vKIi4sDbGv0ZA1JdoSwXyYnO+7u7kRERBRZHhkZaXJLSrt27ViyZAlr167ls88+Iz4+nvvvv5+bN2+SnJyMm5sb/v7+evsEBQWRnJwMQHJysl6io1mvWVec2bNn4+fnp32EhYWZFLcQwvwuXrxIVlYWrq6u2ukZbEmJU0YIIWyaycnOmDFjmDlzJllZWdplWVlZvPPOO4wZM8akY/Xq1YvHHnuMpk2b0qNHD37//XfS0tL4/vvvTQ3LJFOmTCE9PV37KE+RtRDCPDS3sOrWrYuzs7OVoylK86Xoxo0b3Lx508rRCCFMYVTNjm5RMMCGDRuoVasWzZo1A+Dw4cNkZ2fTtWvXcgXj7+9P/fr1iYuL48EHHyQ7O5u0tDS91p0rV65oa3yCg4PZu3ev3jE0vbUM1QFpuLu74+7uXq5YhRDmZXS9jpX4+vri7+9PWloaFy9epFGjRvkrdKePEELYJKOSHT8/P73XAwcO1HttrttAt27d4uzZszzzzDO0atUKV1dXNm7cqD3fqVOn9Ma4iImJ4Z133iElJYXAwEAA1q9fj6+vb8EHkRDCLth6sgP5dTtpaWlcuHBBPmOEsCNGJTuLFy+2yMlfffVV+vXrR3h4OImJibz11ls4Ozvz5JNP4ufnx/Dhw5kwYQLVqlXD19eXl156iZiYGNq3bw9A9+7dadSoEc888wxz584lOTmZqVOnEhsbKy03QtgZe0l2jhw5InU7QtgZk7uem9OlS5d48sknuX79OjVq1KBDhw7s3r2bGjVqAPDRRx/h5OTEwIEDycrKokePHnz66afa/Z2dnVmzZg2jR48mJiYGb29vhgwZwowZM6x1SUKIMiqS7GRnwrv/djF/PdEmbhdJjywh7JNVk50VK1aUuN7Dw4MFCxawYMGCYrcJDw/n999/N3doQogKlJWVxfnz5wGo/2sfaF98b0pr0tyyl04NQtiXck0XIYQQ5nD27FkURcHXHYK8bXdCYUl2hLBPkuwIIaxOewsrwAmVSpIdIYR5mZTs5OTk0LVrV86cOWOpeIQQlZBusmPLNDU7ly5dQq1Wl7K1EMJWmPTJ4urqypEjRywVixCiktImO9VsbzBBXTVr1kSlUpGVlcXVq1etHY4Qwkgmf416+umnWbRokSViEUJUUvbSsuPq6qodsFRuZQlhP0zujZWbm8vXX3/Nhg0baNWqFd7e3nrrP/zwQ7MFJ4SoHEpNdjISoXq9CoyoeGFhYSQlJXHx4kVat25t7XCEEEYwOdk5duwYLVu2BAo+oDRsubBQCGGb0tPTtdO8aJOdjEQ4t6VgowVtod/H0PLZig+wkLCwMPbu3SstO0LYEZOTnc2bN1siDiFEJaXp8DC+UwBV3HPyF/6njf5GihpWj4M6XcGvZsUGWIj0yBLC/pT5BnlcXBzr1q3jzp07ACiKYraghBCVx+nTp6lZRcX7nXJ0lir/PnQX5UHquYoMzSBJdoSwPyYnO9evX6dr167Ur1+f3r17k5SUBMDw4cN55ZVXzB6gEMKxnT59mnoBTjiXdhdc5QzV7qmQmEqi6X4uyY4Q9sPkZGf8+PG4urqSkJCAl5eXdvkTTzzB2rVrzRqcEMLxnTx5kjPX1agpnO3ovFY5Q795Vr+FBQUtOzI/lhD2w+Rk588//+S9996jVq1aesvr1avHhQsXzBaYEKISyM7kxJaVXL6pcCx0cMFylTP0fr/gdewemyhOhoJkJzExkdzcXP2V2Zkw3S//kZ1pheiEEIaYnOxkZmbqtehopKam4u7ubpaghBCVQ15eHqeu5Y9E7BMztGBF7B5o/lTBa9/Qig2sBEFBQbi4uKBWq7W38YUQts3kZOf+++/nm2++0b5WqVSo1Wrmzp3LAw88YNbghBCOLT7+PFl54OEC4bXDClbYUHJTmLOzMzVr5t9OK7VuR1p6hLAJJnc9nzt3Ll27dmX//v1kZ2czadIk/vnnH1JTU9mxY4clYhRCOKgTJ08B0CDACWdn254qQldYWBgXLlyQImUh7ITJLTtNmjTh9OnTdOjQgf79+5OZmcmAAQM4ePAgderUsUSMQggHpUl2Gtaw7WkiCpMeWULYF5NbdgD8/Px44403zB2LEKKSOXHq32Snuv206oCMtSOEvSlTsnPjxg0WLVrEiRMnAGjUqBHPPfcc1apVM2twQgjHpm3ZqW5fLTvS/VwI+2LyJ8y2bduIiIhg/vz53Lhxgxs3bjB//nwiIyPZtm2bJWIUQjggRVE4cfIUNauoaB3qBDftp2eTUS07GYkVFI0QojQmt+zExsbyxBNP8Nlnn2kLCvPy8njxxReJjY3l6NGjZg9SCOF4kpKSeLTOHRb29cHZSQULO8FDn+iPpzM93XoBlqDYZOfQ8oLnC9pCr7kVGJUQojgmt+zExcXxyiuv6PWccHZ2ZsKECcTFxZk1OCGE4zp78C8W9vXIT3SgYLLP9MtWjcsYmmQnJSWFrKys/IXpl+GPSQUbKWr4Y3LBa2npEcJqTE52WrZsqa3V0XXixAmaNWtmlqCEEI7v6qndBYmOho1M9lmagIAAPD09Abh06VL+wtSz+QmOLiWv4PmCtvD3NwghKp7Jt7HGjh3Lyy+/TFxcHO3btwdg9+7dLFiwgDlz5nDkyBHttk2bNjVfpEIIh7L/3A36V1P0Ex4bmeyzNCqVirCwME6fPs3Fixfzh92oVgdUTkUTHg1Ny1WdrjYxx5cQlYnJyc6TTz4JwKRJkwyuU6lUKIqCSqUiLy+vyDZCCAGw658LjEy/y5f9PHBSqWxqsk9jaJIdbY8sv5r5NTq/v/rvFk6AgZae1HN2c41COAqTk534+HhLxCGEqEQUReHYsWNsuZbD2LZuNAt2zp8Pq3o9a4dmNINFys2fKkh2hq6Gpf30W3rspOVKCEdjcrITHh5uiTiEEJXIlStXuHbtGk5OTtQP+Ld00IbnwzKk1O7noS30W3rsrOVKCEdiXyN5CSEcgqa2r17dOni6qkrZ2jYZNdaO7sztsXv0u9ULISqMJDtC2AsHmkFbk+xEN2ls5UjKzuQpI+ys5UoIR1Km6SKEEKJMsjPh3VCO/nwHgKbRTYBN1o2pjGQyUCHsh7TsCCEq3JEr+T01mzZpYuVIyk7TspOWlsbNmzetHI0QoiQmJzsXL14sGEQL2Lt3L+PGjWPhwoVmDUwI4Zhy8hSOX83voWTPt7GqVKmCn58fIK07Qtg6k5Odp556is2bNwOQnJzMgw8+yN69e3njjTeYMWOG2QMUQjiWM6lqsvPAx8eHiPqN8ue/mp4Obt7WDs1kRep23Lzt+nqEcFQmJzvHjh2jbdu2AHz//fc0adKEnTt3smzZMpYsWWLu+IQQDubIlYJWHScn+76TbnKRshDCKkwuUM7JycHd3R2ADRs28NBDDwEQFRVFUlKSeaMTQjgcTb1OdONGVo6k/EpNdjQtPUIIqzL5a1Xjxo35/PPP+euvv1i/fj09e/YEIDExkYCAALMHKIQwwIgZtK9evcq1a9dQFKUCAjLe0ZT8lp38nlj2TXpkCWEfTE523nvvPb744gs6d+7Mk08+qZ3p/Ndff9Xe3hJCWMCh5QXPi5lBW1EU/ve//9GoUSMCAwOpUaMGDRs25KuvvrKZpCclU03nCGda1w+xdijlZvJtLAcaK0kIe2LybazOnTtz7do1MjIyqFq1qnb5yJEj8faWgjwhLCL9MvyhM/mugRm08/LyeP7554vUzp06dYoRI0awevVqVqxYgaenZ8XFXcjtnYvYOcwbZycVyt4XISjHrkcVlpodIeyDyS07Xbp04ebNm3qJDkC1atV44oknyhzInDlzUKlUjBs3Trvs7t27xMbGEhAQgI+PDwMHDuTKlSt6+yUkJNCnTx+8vLwIDAxk4sSJ5ObmljkOIWxS6ln9CSWhYAbtf40ZM4YlS5bg4uLCzJkzSUtLIz09nblz5+Lh4cGvv/7KQw89RHZ2dgUH/6/0y3humYazU/70ECpNwpZ+2TrxmIEm2UlISLCZljMhRFEmJztbtmwx+GF59+5d/vrrrzIFsW/fPr744guaNm2qt3z8+PGsXr2alStXsnXrVhITExkwYIB2fV5eHn369CE7O5udO3eydOlSlixZwrRp08oUhxA2q1odUBV6u+rMoL1ixQo+//xznJycWL58OVOnTsXPzw9fX18mTpzI+vXr8fHxYcOGDXpfKCpU6llUFEoICiVs9qZWrVoA3Llzh9TUVCtHI4QojtHJzpEjR7Tz2Rw/flz7+siRIxw8eJBFixZRs6bps/neunWLwYMH8+WXX+q1FqWnp7No0SI+/PBDunTpQqtWrVi8eDE7d+5k9+7dAPz5558cP36c//3vfzRv3pxevXoxc+ZMFixYUOK316ysLDIyMvQeQtg0v5r5M2hr6MygffXqVUaPHg3A1KlTeeyxx4rs3qFDB1asWIFKpeKzzz7jhx9+qKDAdVSrg7pw44dOwmaPPDw8qFGjBiC3soSwZUYnO82bN6dFixaoVCq6dOlC8+bNtY9WrVoxa9asMrWoxMbG0qdPH7p166a3/MCBA+Tk5Ogtj4qKonbt2uzatQuAXbt2ER0dTVBQkHabHj16kJGRwT///FPsOWfPno2fn5/2oWmKFsKmFTOD9ltvvUVaWhotWrTgzTffLHb3Pn36MGXKFABGjx7N1atXLRpuEX41eW2HJ7majEcnYbNn0iNLCNtndLITHx/P2bNnURSFvXv3Eh8fr31cvnyZjIwMhg0bZtLJV6xYwd9//83s2bOLrEtOTsbNzQ1/f3+95UFBQSQnJ2u30U10NOs164ozZcoU0tPTtQ/5kBJ2xzcUsjM5/ZIPX3z+GQDz5s3DxaXkPgfTpk0jOjqaa9eu8dZbb1VEpFopKSm8v/EKkfNukZmt6CVs9qzMRcpGDB8ghDAPo3tjhYeHA6BWq0vZ0jgXL17k5ZdfZv369Xh4eJjlmMZyd3fXDowohD2buyMbtQJ9e/eiY8eOpW7v7u7OJ598QufOnVm4cCFjx44lKiqqAiKF/fv3A+DjrsLbTZWfsDkAk5KdwsMH9PvYIRI+IWydyV3PAc6cOcPmzZtJSUkpkvwYeyvrwIEDpKSk0LJlS+2yvLw8tm3bxn/+8x/WrVtHdnY2aWlpeq07V65cITg4GIDg4GD27t2rd1xNby3NNkI4qkuXLvPN4RwAXp/8qtH7derUiYceeohff/2VyZMn88svv1gqRD379u0DoE2oc4Wcr6IYnewYMXyAEMIyTE52vvzyS0aPHk316tUJDg5GpVJp16lUKqOTna5du3L06FG9Zc899xxRUVFMnjyZsLAwXF1d2bhxIwMHDgTyxwtJSEggJiYGgJiYGN555x1SUlIIDAwEYP369fj6+tKokf0PRS9ESRYu+pocNdxf25mY9u1M2ve9997jt99+49dff2XLli107tzZMkHqcPRkJyEhoeQNSxo+QJIdISzK5GRn1qxZvPPOO0yePLlcJ65SpQpNmugPF+/t7U1AQIB2+fDhw5kwYQLVqlXD19eXl156iZiYGNq3bw9A9+7dadSoEc888wxz584lOTmZqVOnEhsbK7ephEPLycnhq8VLARjT1q30HbIz4d1/bxu9nkhUVBQjR47ks88+Y9q0aWzbts0ygf57XkVR2Lcv/3Z161D7nvyzMKNbdjTDB+gmPHbeG00Ie2Hyp86NGzcMdm21hI8++oi+ffsycOBAOnbsSHBwMKtWrdKud3Z2Zs2aNTg7OxMTE8PTTz/Ns88+y4wZMyokPiEqlGZSyenprPlzM0lJyQR6q3g4ysB3FiOmJXjjjTdwc3Pjr7/+KvMYWca6lKGQknIVFxcXmgc7ZsvO5cuXS65pLGH4ACGEZZncsvPYY4/x559/8sILL5g9mC1btui99vDwYMGCBSxYsKDYfcLDw/n999/NHosQtuybb/LnxRrazBU3Z1UpWxtWs2ZNhg4dysKFC5k9ezb333+/OUPUs/dy/kznjRs3xvOdQxY7jzWEhobi5ORETk4OV65cISSkhDm/mj8Fv/9bXxW7B6rXq5gghajkTE526taty5tvvsnu3buJjo7G1dVVb/3YsWPNFpwQoqjU1FR+++03AJ5r8e/7LyOxTH84J02axFdffcUff/zBwYMHadGihTlD1dpxMT/Zuffeey1yfGtycXEhNDSUS5cucfHixZKTHV0O0htNCHtgcrKzcOFCfHx82Lp1K1u3btVbp1KpJNkRwsJ++OEHcnJyeKtvBFHV/52ioIzdmOvUqcOTTz7JsmXLePfdd1m5cqUFIoa/EvLnq+vQoYNFjm9tYWFh2mSnbdu21g5HCFGIyclOfHy8JeIQQhRWqKgYN28AVq1aRc0qKqa1ulGwbTm6Mb/22mssW7aMH3/8kbi4OOrWrWumC8h3K1vhYFJ+LYslb5VZU1hYGLt27ZIBSoWwUY7VLUIIB5eRkcGmTZuoF+CEk5km1WzSpAm9e/dGURQ++ugjM0VaYPelPPIUqF07zGGnZjG6+7kQwipMbtkpbUqIr7/+uszBCCFKtm7dOnJycsjzqwOq68Z1Y85I1K8PMVDfM3HiRH7//XcWL17M22+/TfXq1csWYOHWKOBgUi6dI5yJvt8y9UC2oMxTRgghKkSZup7rPlJSUti0aROrVq0iLS3NAiEKITR+/fVXANo9+EjJ3ZgLT0uw+mX9139/o3fcTp060bp1a+7cuVNi70eTHVrOhBh3Ng/xZt49W4uc11EYPRmozvABmtuSQgjLM7ll56effiqyTK1WM3r0aOrUqWOWoIQQReXm5mp7YT300EPQvKXhbsyGpiU4ulL/daH6HpVKxauvvsqgQYP4z3/+w8SJE/Hy8ipfwBmJKH9Mwtkpv2u8E4rDTo8gLTtC2Daz1Ow4OTkxYcIEi9zvF0Lk2759Ozdu3CAgIKBoF27d21SGpiUozEB9z8CBA4mIiODatWssXbq0/AGnxqMqbnoEB6NJdpKSksjJybFyNEKIwsxWoHz27Flyc3PNdTghhK6MRO0trL59++LsbGAUYs2oyUv75U9LUBID9T0uLi5MmDABgA8++IC8vLzyxVwtEnWhGmpHnR6hRo0auLm5oSgKiYmJ1g5HCFGIybexNB+GGoqikJSUxG+//caQIUPMFpgQlV6huhvPEz4A9OvXr/R9u8+Cda/nP1c5Q5MBBbeySpimYNiwYUyfPp2zZ8/yy1NVGPDfq2WuLVGqhPDaTk/ejbmNi5PKoadHcHJyolatWpw7d46EhATCw8OtHZIQQofJLTsHDx7Uexw5cgTI/yY4b948c8cnROVkoO7m7TbphPk507Vr19L3j3684HnsnvwBB3VfFzP4oLe3Ny+Oeh6A93dmoyiFm2aMd3L/Ft7fcIWo/9ziTo5S4nkdgdTtCGG7TG7Z2bx5syXiEELoMlB34+Kkok9MFP7+/qYdq/C0BKVMUzBm9CjenzuX3Zfy2LFzFx0eeND4c+m0RjVY/zTDWrhy5ZaCp6vK4adHMLpHlhCiwpW5Zufq1ats376d7du3c/XqVXPGJISoVqdI3U2uWiG8RZeCBRbqxhwUFMSzzfLn3Hr/w49L2VpHodYoJxS+6OvBoMYmf6eyS9KyI4TtMjnZyczMZNiwYYSEhNCxY0c6duxIaGgow4cP5/bt25aIUYjKx6+m3jg6uWoYteYurbs8VCGnfyXGDRXw65rfOHnypHE7FdMa1be+JDtCCOsyOdmZMGECW7duZfXq1aSlpZGWlsYvv/zC1q1beeWVVywRoxCVU/OnAEhIzyNi3k2WHXfivvvuM27fm0nlOnWD6s68fr8bNauomDVrlnE7GWiNylPA37NyzEojyY4QtsvkT6Eff/yRRYsW0atXL3x9ffH19aV37958+eWX/PDDD5aIUYhKbc3pPC7fVLj33nvx9PQsfkPd3lsLO5X9hP8eZ1YXDy6M88Hj+EoOHTpU+n7/tkZpippz1Qp7qz9eyk6OQ5IdIWyXye3Lt2/fJigoqMjywMBAuY0lhAVsjM8fv6rEXliGRk3WpanvKU2h4zg7qfi8rztD3hzHstVbSt+/+VNsWTCOt7dmkZLrzd6TH4HPl6Xv5wA0yc61a9e4fft2+UegFkKYjcktOzExMbz11lvcvXtXu+zOnTu8/fbbxMTEmDU4ISo7taKw2Zhkp7hRk4esMVy8rBmAcLpf/vMSjuPipOLy0e1s2LDBqJg/2JXN1gt59BjwDD4+Pkbt4wj8/f3x9s7/v7506ZKVoxFC6DK5Zefjjz+mR48e1KpVi2bNmgFw+PBhPDw8WLdundkDFKIyO5ai5sZd8PHxoXXr1sVvqKmXMWYW9JIYOI5aURGXqmbChAns378fN3L0ZzbXSaYOHjrMb2dyUQEvjhph2rntnEqlonbt2pw4cYKLFy9Sv359a4ckhPiXyS07TZo04cyZM8yePZvmzZvTvHlz5syZw5kzZ2jcuLElYhSi0tqRkD9lQ/u2bXBxKeG7SaHeW2UerdjAcTK7vkuWewBHjx5lzpw5Je7+xrS3AXgy2oV69eqadm4HIHU7QtimMvUJ9fLyYsSIyvWtTYgK5+bNdv8BwHI6dDSi4Lj5U4ZnQTdVoeNUqV6P+fOr8tRTTzFjxgw6xrShs4HdfvjhB/5Y9ycuTvB2Z4+yndvOSbIjhG0yuWVn9uzZfP3110WWf/3117z33ntmCUoIkW/Hjh0Axnc51zDXaMX/HmfQoEE8/fTT5OXl8dhTz3A4WX+S0Li4OEaNGgXAxHvdqFutcnQ3L0ySHSFsk8mfSF988QVRUVFFljdu3JjPP//cLEEJUSkVKhq+dOkSFy5cwMnJiXbt2lk1NJVKxRdffEHr1q25du06nZZk8uWBbJKTr7B69Wo6depEamoqrVq1YvrGm2Yf1dleSLIjhG0y+TZWcnIyISEhRZbXqFGDpKTyDWQmhCigadVp3rw5VapUsdyJMhKNuuXl5eXF+vXr6dO7Fzt37Wbkmruwpo52fZMmTfj9999xc3OzXKw2TpPsJCQkWDkSIYQuk1t2wsLCtB/Cunbs2EFoqGNP9CdERdq+fTtQhltYxtAdgHBBW/j7G6N28/f3Z+uGtXzex53B0a7UrKIiIKAaE+91Y3ufCwT6V77WHF0yGagQtsnklp0RI0Ywbtw4cnJy6NIlf1LCjRs3MmnSJJkuQggz0nyp6NChg3E7lHHgQBQ1rB4Hdboa1XvL5dj3jGrtzqjWoKicUPWaU1DQXMlpWnZu3rxJeno6fn5+Vo5ICAFlSHYmTpzI9evXefHFF8nOzgbAw8ODyZMnM2XKFLMHKERldPPmTQ4fPgxYoGXH0ACESh6knstPdkpKmgolSipFDX9MNm98dszLy4tq1aqRmprKxYsXJdkRwkaYfBtLpVLx3nvvcfXqVXbv3s3hw4dJTU1l2rRplohPiEpp9559qNVqIiIiqFnTxLFySmNgwk6jByAsLlESWlKkLITtKXP/UB8fH9q0aUOTJk1wd3c3Z0xCVHr/7N0IYJkpWMozAGFxiZLQkmRHCNtTOQfDEMIW6RQNj1UWM6yFq+W6nDd/quB57B5o+axx+xlKlHrJ+Fq6TEp2ipujTAhhVpLsCGELCtXCOKngi74e3N/MxLmtysLUAQgLJ0q6rzMSzROTHZPu50LYHkl2hLAFxcw23iTEy0oBGck3tMzd2B2VdD8XwvYYley0bNmSGzduADBjxgxu375t0aCEqHQM1MLkqcEtuOho5TYlI9FwN/b0y1YLydqkZkcI22NUsnPixAkyM/PvJ7/99tvcunXLokEJUekUqoXJVSusyGxv+qzlZVXW2pHU+OK7sVdSmmTn0qVLKIpi5WiEEGDkODvNmzfnueeeo0OHDiiKwv/93//h4+NjcFvpgi5EGf072/iY3+/w88lcZi942nLnKjyWTlmLY6tF5rdI6SY8xnZjd1A1a9ZEpVJx9+5drl27Ro0aNYzb0chpO4QQpjMq2VmyZAlvvfUWa9asQaVS8ccff+DiUnRXlUolyY4QpsjOhHf/LRB+NY6cPIVFB3O4mwtt27a1bmzG8A3Nb5HSjKBsSjd2B+Xm5kZQUBDJyclcvHix5GSncL1Tv4+N7xknhDCaUbexGjRowIoVK9i3bx+KorBx40YOHjxY5PH333+bdPLPPvuMpk2b4uvri6+vLzExMfzxxx/a9Xfv3iU2NpaAgAB8fHwYOHAgV65c0TtGQkICffr0wcvLi8DAQCZOnEhubq5JcQhhK46mqLmbmz8HVb16NvItv/AtLk2rkGZm87J2Y3dgRtXtFDdtRyWudxLCUkzujaVWqwkMDDTLyWvVqsWcOXM4cOAA+/fvp0uXLvTv359//vkHgPHjx7N69WpWrlzJ1q1bSUxMZMCAAdr98/Ly6NOnD9nZ2ezcuZOlS5eyZMkSaV0SdmvPpfzRiNu2boWTkx12ljS1G7uD0vTIKrH7eUnTdgghzMrkubEAzp49y7x58zhx4gQAjRo14uWXX6ZOnTomHadfv356r9955x0+++wzdu/eTa1atVi0aBHLly/XTji6ePFiGjZsyO7du2nfvj1//vknx48fZ8OGDQQFBdG8eXNmzpzJ5MmTmT59Om5ubmW5PCGsZl/iv8lOm1bWC0JqR8rNqJYdTQ88qXcSwuJM/uq4bt06GjVqxN69e2natClNmzZlz549NG7cmPXr15c5kLy8PFasWEFmZiYxMTEcOHCAnJwcunXrpt0mKiqK2rVrs2vXLgB27dpFdHQ0QUFB2m169OhBRkaGtnXIkKysLDIyMvQeQlSIkno9uXlxQN0QgNbt7q3YuGSsHLMyamDB4kaj/qiRjKgshJmZnOy89tprjB8/nj179vDhhx/y4YcfsmfPHsaNG8fkyabPfnz06FF8fHxwd3fnhRde4KeffqJRo0YkJyfj5uaGv7+/3vaawj+A5ORkvURHs16zrjizZ8/Gz89P+9B8MAlhTXdSzmmT9FatKrBlR2pHzC4iIgKA8+fPl7xhSaNRCyHMxuRk58SJEwwfPrzI8mHDhnH8+HGTA2jQoAGHDh1iz549jB49miFDhpTpOKaYMmUK6enp2ocM/iWsRqdFxeOr+xnS1IkaNWqYf6bzkphSO2JoOojCBcuCyMhIwIhkR5fUOwlhMSYnOzVq1ODQoUNFlh86dKhMhctubm7UrVuXVq1aMXv2bJo1a8bHH39McHAw2dnZpKWl6W1/5coVgoODAQgODi7SO0vzWrONIe7u7toeYJqHEBWu0OjDKhS+6OtBj5gmqFSqioujuJnMNbUjcovLZJqWnStXrpR9xPns2zJJqBBmYnKyM2LECEaOHMl7773HX3/9xV9//cWcOXMYNWoUI0aMKHdAarWarKwsWrVqhaurKxs3btSuO3XqFAkJCcTExAAQExPD0aNHSUlJ0W6zfv16fH19adSoUbljEcKiDIw+7OKkonPT2hUbh6HaEc1YOXKLq0yqVq2Kn58fABcuXLByNEIIk3tjvfnmm1SpUoUPPviAKVOmABAaGsr06dMZO3asSceaMmUKvXr1onbt2ty8eZPly5ezZcsW1q1bh5+fH8OHD2fChAlUq1YNX19fXnrpJWJiYmjfvj0A3bt3p1GjRjzzzDPMnTuX5ORkpk6dSmxsLO7u7qZemhAVy8Dow7lqhdDGHSo+ln9Hbwbya0c0vbFKusVViQcONEZERASHDx8mPj6ehg0bmn6Am0nmD0qISsrkZEelUjF+/HjGjx/PzZs3AahSpUqZTp6SksKzzz5LUlISfn5+NG3alHXr1vHggw8C8NFHH+Hk5MTAgQPJysqiR48efPrpp9r9nZ2dWbNmDaNHjyYmJgZvb2+GDBnCjBkzyhSPEBVOZ/ThXLXCqDV3mTb8QevGpFs7It2jyywyMpLDhw+XXLdTeNqOvV8WPF/YyWKxCVHZlGmcHY2yJjkaixYtKnG9h4cHCxYsYMGCBcVuEx4ezu+//16uOISoMIXrX/69fXTqWh5dv7nNXbdqfFW7gm9jlURzi0umgzCZpm4nPj7euB0M3TIUQpiFHQ7RKoSdMvTH7I/84Rq2Xsjj8k2Fli1bVmxxsjFkOogyMbr7uYahW4YahnrBCSGMJsmOEBWluPoX4MC/IydX6Pg6ZSHdo42m6X5udMuOoV5xGtILTohykWRHiIpSXBdv4ECSlZMdGSvH7Exu2SncK06X9IITolxMSnZycnLo2rUrZ86csVQ8QjiuYqYHyM5TOJqS3+LTsmVLKwUnzE2T7Fy/fl3bmaNUJY2gLJOEClFmJiU7rq6uHDlyxFKxCOH4Cte/tB3BPwO2kp2XPzaL5taHsH++vr5Uq1YNMHEkZY2SBnoUQpjE5NtYTz/9dKm9qIQQRvi3/uXAgQMAtlmcDHKLqxxMrtvR1X1WwXPpBSdEuZjc9Tw3N5evv/6aDRs20KpVK7y99T/8PvzwQ7MFJ0RloJvsCMcSERHBgQMHytayE/04rHs9/7nuQI9CCJOZnOwcO3ZM+6F8+vRpvXU2+a1UCBv3999/A3bQE0uYrFwtO7qkF5wQ5WJysrN582ZLxCFEpZSTk8Phw4cBSXYckck9snRHVJbJP4UwmzKPoBwXF8fZs2fp2LEjnp6eKIoiLTtCFJadCe/++6389cQi0wMcP3yYrKwsfH19ueceKT51NGZr2RFClIvJBcrXr1+na9eu1K9fn969e5OUlD9Z3fDhw3nllVfMHqAQjkxzC6tly5Y4OcmwV47G5JYdIYRFmPzpOn78eFxdXUlISMDLy0u7/IknnmDt2rVmDU4IR6cpTpZbWI4pPDwcgPT0dG7cuGHaztILTgizMfk21p9//sm6deuoVauW3vJ69epx4cIFswUmRGUgPbEcm7e3N4GBgaSkpHD+/HmqVq1q7ZCEqJRMbtnJzMzUa9HRSE1Nxd3d3SxBCVEZ5ObmSnFyJWDy7OdCCLMzOdm5//77+eabggnpVCoVarWauXPn8sADD5g1OCEcSqGZq0+ePMmdO3fw8fGhXj0ZQ8VRaYqUpW5HCOsx+TbW3Llz6dq1K/v37yc7O5tJkybxzz//kJqayo4dOywRoxD269DygucL2kK/j6Hls0DBLawWLVpIcbIDM1vLjqGefUIIo5j8CdukSRNOnz5Nhw4d6N+/P5mZmQwYMICDBw9Sp04dS8QohH1Kvwx/TCp4XWjmahlMsHKQlh0hrK9M4+z4+fnxxhtvmDsWIRxL6tn8BEeXZuZqv5rSE6uSkO7nQlhfmZKdGzdusGjRIk6cOAFAo0aNeO6557Qz/AohgGp18meu1k14/p25Oi8vj4MHDwLSE8vR6Q4sKIOvCmEdJt/G2rZtGxEREcyfP58bN25w48YN5s+fT2RkJNu2bbNEjELYJ7+a0GtuwWudmatPnz7N7du38fb2pkGDBlYLUVheeHg4KpWKzMxMrl69ap6DFip2F0KUzORkJzY2lieeeIL4+HhWrVrFqlWrOHfuHIMGDSI2NtYSMQphv5o/VfA8dk+R4uTmzZvj7OxsjchEBXF3d9eOS3b27NmyH6hwsfvf3xS/rRBCj8nJTlxcHK+88oreB7SzszMTJkwgLi7OrMEJYXeyM2G6X/6j8ESOOjNXy2CClUvdunUByv4ZWUqxuxCiZCYnOy1bttTW6ug6ceIEzZo1M0tQQjg66YlVuWh6qpY52Smp2F0IUSqjCpSPHDmifT527Fhefvll4uLiaN++PQC7d+9mwYIFzJkzxzJRCuFA1Gq1tjhZkp3KQdOyU+bbWCUUuwshSmdUstO8eXNUKhWKomiXTZo0qch2Tz31FE888YT5ohPC3mkmc9Rx5swZbt68iaenJ1FRUVYKTFSkct/G0hS7//5q/mudYnchROmMSnZkThchyiAjEaoXnQZCcwurWbNmuLiUafQHYWc0t7HKVaDc/KmCZCd2j8HfLSGEYUZ90oaHh1s6DiEcQwnTQ2jIYIKVjybZuXbtGmlpafj7+5fvgDrF7kKI0pXpa2ViYiLbt28nJSUFtVq/aG7s2LFmCUwIu1Ncj5k6XfVuN+zfvx+QZKcyqVKlCoGBgaSkpHD27Fn52QtRwUxOdpYsWcKoUaNwc3MjICBAbzRQlUolyY6ofHQnaCxMZ3oIyC9Olp5YlVPdunUl2RHCSkxOdt58802mTZvGlClTZKZmIQorpcdMXFwcN2/exMPDg0aNGlkhQGEtdevWZefOnWUvUjZQ7C6EMI7J2crt27cZNGiQJDpCGNJ9VsFzAz1mdEdOluLkysUsRcpCiDIxOWMZPnw4K1eutEQsQti/6McLnutMD6EhxcmVV7m7nwshyszkr5azZ8+mb9++rF27lujoaFxdXfXWf/jhh2YLTgi7czOp4LmBHjOS7FRe0rIjhPWUKdlZt26ddqbmwgXKQlQ6ut3NF3YqdjO1Wi3JTiWmadm5fPkyt2/fxsvLy8oRCVF5mJzsfPDBB3z99dcMHTrUAuEIYWcMdTcvhhQnV27VqlXD39+ftLQ0zp07R5MmTawdkhCVhsk1O+7u7tx3332WiEUI+2NogkaAIWvye8/o0LTqyMjJlZNKpdK27pw5c8bK0QhRuZic7Lz88st88sknlohFCPujmaBRVzETNGqSndatW1dEZMIG1a9fH4DTp09bORIhKheTk529e/eydOlS7rnnHvr168eAAQP0HqaYPXs2bdq00Y4u+vDDD3Pq1Cm9be7evUtsbCwBAQH4+PgwcOBArly5ordNQkICffr0wcvLi8DAQCZOnEhubq6plyaE6TQTNGqUMEGj1OsITa1j4c85IYRlmZzs+Pv7M2DAADp16kT16tXx8/PTe5hi69atxMbGsnv3btavX09OTg7du3cnMzNTu8348eNZvXo1K1euZOvWrSQmJuolVXl5efTp04fs7Gx27tzJ0qVLWbJkCdOmTTP10oQom+ZPFTw30N0cZORkkU+SHSGsQ6UoimLtIDSuXr1KYGAgW7dupWPHjqSnp1OjRg2WL1/Oo48+CsDJkydp2LAhu3bton379vzxxx/07duXxMREgoKCAPj888+ZPHkyV69exc3NrdTzZmRk4OfnR3p6Or6+vha9RuGAdKeLeD2xSK0O5N+2aNCgAR4eHty8eVNqdiqpQ4cO0aJFCwICArh27Zq1wxHC7hn799umhkFOT88fCr1atWpAfrN/Tk4O3bp1024TFRVF7dq12bVrFwC7du0iOjpam+gA9OjRg4yMDP755x+D58nKyiIjI0PvIYQlSXGyAKhXrx4A169f5/r16+U7WHYmTPfLf2Rnlr69EJWYyZ+6kZGRJY6nc+7cuTIFolarGTduHPfdd5+2S2ZycjJubm74+/vrbRsUFERycrJ2G91ER7Nes86Q2bNn8/bbb5cpTiHKQup1BIC3tzdhYWFcvHiRU6dOce+991o7JCEqBZOTnXHjxum9zsnJ4eDBg6xdu5aJEyeWOZDY2FiOHTvG9u3by3wMY02ZMoUJEyZoX2dkZBAWFmbx8woHZcQEjZLsCI0GDRpIsiNEBTM52Xn55ZcNLl+wYAH79+8vUxBjxoxhzZo1bNu2jVq1ammXBwcHk52dTVpaml7rzpUrVwgODtZus3fvXr3jaXprabYpzN3dHXd39zLFKoSpdIuTpdu5aNCgARs2bJAiZSEqkNlqdnr16sWPP/5o0j6KojBmzBh++uknNm3aRGRkpN76Vq1a4erqysaNG7XLTp06RUJCAjExMQDExMRw9OhRUlJStNusX78eX19fGaVW2ISzZ8+SkZEhIycLwEI9sjISzXcsIRyQ2Solf/jhB21hsbFiY2NZvnw5v/zyC1WqVNHW2Pj5+eHp6Ymfnx/Dhw9nwoQJVKtWDV9fX1566SViYmJo3749AN27d6dRo0Y888wzzJ07l+TkZKZOnUpsbKy03giboGnxlOJkAWZMdnTnZFvQFvp9bHDYAyFEGZKdFi1a6BUoK4pCcnIyV69e5dNPPzXpWJ999hkAnTt31lu+ePFi7dxbH330EU5OTgwcOJCsrCx69Oihdx5nZ2fWrFnD6NGjiYmJwdvbmyFDhjBjxgxTL00Ii5B6HaFLk+zExcWRm5tbtgTY0Jxsq8dBna4GB7QUorIz+V328MMP6712cnKiRo0adO7cmaioKJOOZcwQPx4eHixYsIAFCxYUu014eDi///67SecWoqJIsiN0hYWF4enpyZ07dzh//rx2viyTGJqTTcmD1HOS7AhhgMnJzltvvWWJOIRwSHl5eZLsCD1OTk7Uq1ePI0eOcOrUqbIlO5o52XQTnmLmZBNC2NiggkI4mpMnT3Lz5k28vb1p3LixtcMRNqLcdTsmzMkmhDAh2XFycsLZ2bnEhxRfCqFvz549QH6Xc3l/CA3NLf+TJ0+W/SBGzMkmhMhn9KfvTz/9VOy6Xbt2MX/+fNRqdbHbCFEZaZKddu3aWTkSYUs0QxAUN6WNyXxDzXMcIRyU0clO//79iyw7deoUr732GqtXr2bw4MHSA0qIQiTZEYZopsQ5duwYiqKUOAWPEKL8ylSzk5iYyIgRI4iOjiY3N5dDhw6xdOlSwsPDzR2fEHYrMzOTo0ePApLsCH3169fHxcWFjIwMLl++XLaDaKYpmZ6e/1wIUSyTkp309HQmT55M3bp1+eeff9i4cSOrV6/WfksRQhQ4cOAAarWamjVrUrOmFI6KAm5ubtoZ0M12K0sIUSyjk525c+dyzz33sGbNGr799lt27tzJ/fffb8nYhLBrcgtLlETTO89syU52Jkz3y3/culrwPDvTPMcXwo4ZXbPz2muv4enpSd26dVm6dClLly41uN2qVavMFpwQ9mz37t2AJDvCsMaNG/PDDz9w7Ngxa4cihMMzOtl59tlnpYhOCMj/pvzuv71fXk8stl5CWnZESTS3/+U2lhCWZ3Sys2TJEguGIYRjuXz5MpcvX8bJyYnWrVtbOxxhgzS3sY4fP27+Hlk3kwqeZyRC9XrmO7YQdkhGUBbCAjStOtHR0Xh7S08ZUVTdunVxdXXl1q1bJCQklP+AurOgf9Gx4PmCtvD3N+U/vhB2TJIdIcojI9HgYrmFJUrj6uqqnTai3HU7hWdBR2eSZc2M6Oll7OIuhAOQZEcIU+l+gy7mW7MkO8IYZuuRZWgWdF2aGdGFqKQk2RHCFIW/QRv41pyXl8f+/fsBSXZEycxWpKyZBb04MiO6qOQk2RHCFIa+QRf61vzPP/+QmZlJlSpVtBM+CmGIpmVHM9J2mRWeBR2dYmeZEV0ISXaEMImhb9CFvjXv3LkTgLZt2+Ls7FyR0Qk706xZMyA/Qc7JySnfwXRnQR+1reC5zIguhCQ7Qpik8DdoA9+at2/fDiAjjItSRURE4OvrS3Z2NidOnDDfgauEFDyXGdGFkGRHCJPpfoM28K1Zk+x06NChIqMSdsjJyYnmzZsDcOjQIavGIoQjk2RHiPIo9K354sWLXLhwAWdnZylOFkZp0aIFAAcPHizfgXRnQfepITOiC6FDkh0hzGjHjh0ANG/eHB8fHytHI+yBpmWn3MmOEKJYRk8XIUSlZWgurOnpBjeVW1jCVJqWnUOHDpl/2gghBCAtO0KYlSQ7wlQNGzbEzc2N9PR0zp8/b+1whHBIkuwIYYpipocASE9P58iRIwDcd999FRWRsHNubm7a8XakSFkIy5BkR4jSGDE9BMCuXbtQFIU6deoQEhJicBshDDFbkbIQwiBJdoQoiRHTQ2j89ddfgLTqCNNJsiOEZUmyI0RJjJgeQmPLli0AdOrUqQICE45ExtoRwrIk2RGiJEZMDwFw69Yt9u7dC8ADDzxQUdEJB9GsWTNUKhWXLl0iJSXF2uEI4XAk2RGiJEZMDwH54+vk5uYSHh5OZGRkxcYo7F6VKlVo2LAhgDZpFkKYjyQ7QpSmlOkhADZv3gxIq44oO82I27t377ZyJEI4Hkl2hDBFMZMqapKdLl26VGQ0woG0b98egD179lg5EiEcjyQ7QpRTeno6+/fvB6RlR5SdpmVn7969qNXqUrY2UXYmTPfLf2RnmvfYQtgBmS5CiNKUMD0E5Hc5V6vV1K1bl1q1alVgYMKRNG7cGC8vLzIyMjh58iSNGjWydkhCOAxp2RGinKReR5iDi4sLbdq0ASx8K6uEUcCFcFSS7AhRTps2bQIk2RHlZ7EiZSNHARfCUUmyI0Q5JCcnaweC69q1q3WDEXbPIkXKJowCLoSjkmRHiMJMKOb8888/AWjVqhWBgYEVEZ1wYJqWnaNHj3Lr1i3zHNSEUcCFcFRWTXa2bdtGv379CA0NRaVS8fPPP+utVxSFadOmERISgqenJ926dePMmTN626SmpjJ48GB8fX3x9/dn+PDh5vuQEKIUa9euBaBnz55WjkQ4gtDQUMLCwlCr1doefuVm5CjgQjgyqyY7mZmZNGvWjAULFhhcP3fuXObPn8/nn3/Onj178Pb2pkePHty9e1e7zeDBg/nnn39Yv349a9asYdu2bYwcObKiLkE4Cr3WnNsFy0so5szLy9O27EiyI8zl3nvvBQomli03I0cBF8KRWTXZ6dWrF7NmzeKRRx4psk5RFObNm8fUqVPp378/TZs25ZtvviExMVHbAnTixAnWrl3LV199Rbt27ejQoQOffPIJK1asIDGx+D9SWVlZZGRk6D2E0Dr6fcHzEoo5//77b65fv46vr6/29oMQ5dW5c2egYGJZsyg8CniTgTLujqhUbLZmJz4+nuTkZLp166Zd5ufnR7t27di1axcAu3btwt/fn9atW2u36datG05OTiUW+M2ePRs/Pz/tIywszHIXIuzPn1MLnpdQzKm5hdWtWzdcXV0rKDjh6DTJzs6dO8nKyjL/CYoZBVwIR2azyU5ycjIAQUFBesuDgoK065KTk4sUhbq4uFCtWjXtNoZMmTKF9PR07ePixYtmjl7YHd2uuUYWc0q9jrCEBg0aEBQUxN27d803KahmYMzp6fnPdcm4O6ISsNlkx5Lc3d3x9fXVe4hKrHDX3MIMFHOmpqZqx0Lp0aOHJaMTlYxKpbLMrSxdMu6OqGRsNtkJDg4G4MqVK3rLr1y5ol0XHBxMSkqK3vrc3FxSU1O12whRKkNdczWKKeZcs2YNarWapk2bUrt2bcvHKCoViyY7Mu6OqIRsNtmJjIwkODiYjRs3apdlZGSwZ88eYmJiAIiJiSEtLY0DBw5ot9m0aRNqtVoKRoXxDHXN1YjdAy2fLbJYUyT/8MMPWy4uUWlZtG5Hxt0RlZBVk51bt25x6NAh7Qi08fHxHDp0iISEBFQqFePGjWPWrFn8+uuvHD16lGeffZbQ0FDtH5iGDRvSs2dPRowYwd69e9mxYwdjxoxh0KBBhIZKEZ4wUpGuuTpvCwPFnLdv39bW60iyIyzBInU7GjLujqiErJrs7N+/nxYtWtCiRQsAJkyYQIsWLZg2bRoAkyZN4qWXXmLkyJG0adOGW7dusXbtWjw8PLTHWLZsGVFRUXTt2pXevXvToUMHFi5caJXrEXZMr2vu3uKLOYH169dz584dwsPDad68ecXFKCoN3bodzUSzZiPj7ohKSKUoimLtIKwtIyMDPz8/0tPTpVi5ssrOhHf/bcV5PdFgkqPx3HPPsWTJEl5++WXmzZtXMfGJSmfhwoWMGjWKmJgYdu7cad6D6/6+j9kP1euZ9/hCVBBj/35LsoMkO8J4ubm5BAcHc/36dTZv3qz99i2EuV28eJHatWujUqlISUmhevXqljuZCcm+ELbE2L/fNlugLIQt+uuvv7h+/ToBAQF06NDB2uEIBxYWFkbTpk1RFIV169ZV3Ill3B3hgCTZEZWTCTOb6/r2228B6N+/Py4uLpaKTggA+vTpA8Bvv/1m2RPJuDvCwUmyI4SR32SzsrJYuXIlkD8BrRCWpkl21q5dS25urmVOIuPuiEpAkh1ROZXhm+zatWtJS0sjNDSUTp06WTA4IfK1b9+eatWqcePGDe2I3WYn4+6ISkCSHVH5lPGb7LJlywB48skncXZ2tmCAQuRzdnbWTkdisVtZMu6OqAQk2RGVTxm+yWZkZLB69WpAbmGJiqW5laX5/TM7GXdHVAKS7IjKpwzfZFetWsXdu3eJioqSgQRFherduzeurq78888//PPPP5Y5id6gmoanSBHCnkmyIxyDKb2ryvBN9uuvvwbg6aefRqVSmSFgIYxTtWpVevbsCcCKFSsscxI374JRw2WAQeGAJNkRjicjUT/5uXam6DYmfJM9duwYf/31F87Ozjz33HMWCFiIkj355JNAfrIj48AKYTpJdiqp29m5RLz2GxGv/ca5q7esHU75Fe5dtfpl/deFe1uZ8E32iy++APLH1pEJZoU19OvXD09PT+Li4jhw4IC1wxHC7kiyU0n9eOCS9nm3D7fy3b4EK0ZTToZ6Vx1dqf+6jOOGZGZm8s03+YnS6NGjyxmoEGXj4+PDQw89BBQMbCmEMJ4kO5VQUvod3vq1oNBRrcDrq46RlH7HilGVg6HeVYUpefBRozKNmJyRkUHdunXp0qVLOQMVouwGDRoEwHfffYdaXcrvuxBCjyQ7FqZ7u+h2toVGQDVR/LVM1IVu++cpCuev3bZOQGWlqctZ2q9o76rCVDrj4hg5YrKiKCxYsACAUaNG4eQkbxdhPb169cLf35/Lly+zfv16a4dToLT6OCFsgHx6V6Dk9LvWDgGAyOreOBXqUOSsUhFR3cs6AZlDx4kFz1XOEP2Y/usmAwpeGzli8p9//smhQ4fw9vaWwmRhde7u7gwZMgSATz/91HInMnXeOJlXS9gBSXYsrHBtzH93nS9zYbC5iopD/Dx5+6HG2tdOKnh3QBNC/DzLfMximfKtr7RtC6/X/ZDd9j48OAOGrIFxR6HfxwXrhvwKx34seG1kDc/s2bMBGDlyJAEBAaVcqBCWp6kbW7NmDRcuXLD8CQ21guq+D89vl3m1hF2QZMeCDNXGTPul4LWphcHmLCoe2KqW9vmGCZ14ok3tYrctNckqKUkx5Vtfadvqrv9PG/hdpzVHUcOGt/MHBvSrqd/bSlGbPGLyzp072bp1K66urkyYMKH4mIWoQA0aNKBr166o1WoWLlxomZOY8j5c0lfm1RJ2QaXIoA1kZGTg5+dHeno6vr6+ZjvuzrPXeOrLPSVu46RCWz+z6ZVO3FPDR7vudnYujaatA+C7ke158svderU2Je1rTv/ddZ43/03SnFTw9kONta83vdKJe+K/hd9fzd9Y5ZTfqtLy2fxvd/Oa6H8YqpzzPwwBxuwH31B4N7Rg38Lbjjuan7wYOpYhQ9ZA5P36y4qLQ3NsA/r168eaNWsYNmwYixYtKvmcQlSgH3/8kUcffZTAwEASEhJwd3c338FLe68Y8z4s5b0lhDkZ+/dbWnYsyFBtTGG6yUvh1hrdlpxBC3cXKSouaV9TFdd6U1rr1NMfrkL5vVAz9q8v5bfyxG8z/K1Po/B4OCV9QzSmx1VxUz6YOGLy3r17WbNmDSqVikmTJhncRghreeihhwgNDSUlJcX8IyoXN2+cpiejofe0rsLvLSleFjZCkh0LKlwbo/r3URzdLuCFk4zSmt/K2328uFtkhnpu6b4MVyWjopgPv59HU+IVFx4PpzCVMyztm/9BqXIy0ONKpb9tSVM+tB0B448X1PQUM2Kyoii8+mp+K9UzzzxDgwYNio9PCCtwdXVl7NixAMyaNYvcXDP28jQ0b5zu+8zQe1rlDM9vMvzekuJlYSPkNhaWu42lkZR+h/PXbhNR3YsNx69obwGpKD6J+eCxpryy8kixxyxp302vdCLYz0N7C8zQa91bXknpd7hvzia9pMZZpWL7aw8AFFmnK5jr7HAfi7OquGh0I3WC4hKjIrv924NKkwypnKDJQJ3X/yY3dbrmt/5oanXK6aeffmLAgAF4eHhw5swZatWqVfpOQlSwW7duERERwfXr11m6dCnPPmvGiTv3fllwWxon8t+/uu9vnfe05n1o6MtDGW4fC2EqY/9+S7KD5ZOdwjTJj5ebE498utNgIqH57qS7ylmlYtWLMdzOVpe4r5MKHmoWys+HEot9PXtAtLYoubjaom9HtCemToBezY6huAY5b2a2y5cUOz/mo0vAuzq4esGibqXfjgIY+lv++DmFPyiHr4ec22ZLbnRlZ2fTuHFj4uLieOONN5g1a5ZZjy+EOb333nu89tpr1K1blxMnTuDi4mK+g6dfzv8SkXkVfihh2IUx+4tOt5KdWVCHZ4ihujohykhqdmxYiJ8nMXUCaBZWVe82l67COYyme3izsKql7qtW0CY2xb3WveVlqLbICbiemUVS+h2eiYlg15QufDuiPTundGFGf/1u6y0eHotqwvH8pKZwE7jKGcLa5n+41WpVtHam8Hg4D31Scg+qnNv5x7LAN8MPPviAuLg4AgMDmTx5stmPL4Q5xcbGUr16deLi4vjvf/9r3oP71cx/n4W1M/yeHn+8+HnldG9dFVZcXZ0QFiYtO1R8y05hSel3+O1IErN+O1Fk3X+ebEGAjzsR1b0MjoNT0r6l0bTcAEVab7Q3ngq1AumeV3NrTi8u3Sbw4pq4Nd8aNa0zhV9rtqnAJvDjx4/TokULsrOzzX9bQAgLef/995k0aRLBwcGcPHkSPz8/85/EmPe0Rkm9tQztq9sKZKiVSIhSyG0sE1g72YGS62ZKG+zP0L6lMXTspPQ7HDh/g7ErDpYpDi1DyUtZmPIhWw65ubncd9997N27l969e2t7Yglh67KysmjatCmnT5/mpZdeYv78+ZY5kbHv6fht+befC+vxLjR6WOfLzdn8YuhTvxsetkIII8ltLDtTnlGNDe37cPPQEl8bOnaInyfVfNzKP2+Wpgm8vC0wRvagKq+5c+eyd+9e/Pz8WLhwoSQ6wm64u7trp45YsGABBw4csMyJjH1PG+rNpXIuSHT2fpnfjX1pP/iocdGBQQuPvpx+OT+B+ndZUvoddp69Zr+TFgurkZYdbKNlR6PY20Nl2Le018Udo6wtTPZo3bp19OrVC0VRWLx4MUOHDrV2SEKYbPDgwSxfvpzmzZuza9cuPDw8rBdMcS2yxg4M+ugS8A6Ai3tg07+dBFRO7Gr0Jk8eyB8Korjb67qS0u8Qfy2TyOreZv/ssuSxrcVer0luY5nAlpIdW1B4xOTSPlTs1dmzZ2ndujVpaWk8//zz0qoj7FZycjJNmjTh+vXrjB492rIThRrD0G2v4m5x6Sl+UI1cxYkOWR+TTH6dYUlfwsryGWbsH3tLfz5aI+ko7ZpsORGSZMcEkuwUVZ4WJnuQkpJC586dOXHiBO3atWPr1q3mHXZfiAq2du1aevfujaIo/O9//2Pw4MHWDkmfwZYdFahU/y4zNKaPvkHZU9mtbqR9rdvJAvI/t/afT+XlFYdMap02NoEpS8u3KYmCqYmUOZKQ0q7J1r/8Gvv324wDMwhHEuLn6ZBJDsD169fp1q0bJ06coGbNmvz444+S6Ai717NnT6ZOncrMmTMZOXIk99xzDzExMdYOq4Bm2pbCt7g0A4OWMqZPruLEeXWQ9rWzSoWXmxM7z14jsrq33oCthWnqDgt3yIi/lom3m3ORKXFeX3WMjvVrFPkMNDSifJ6icOD8Dar5FCQdmmP/feEG//fnaaD0RMHQ1DxTfjyKt7sLrcKrFonFUBLSsX4NbfKjibe0RKika1JINfh/ExVchczsvCLXa4stPxrSsoO07FQmSUlJ9OnTh4MHDxISEsLWrVupV0+6uwrHkJeXR9++fVm7di1+fn5s2rSJli1bWjssfcX17Cql2/quRlP1anZ0B0o1NNipLs2ArJo/0MaMZF+41QgMt4IUHqpDN67S4tBNFFIzsxmz/KDB/QonSqXFYWj4EN1EqHDSV9KxSlLagLUVQW5jmUCSncrh77//5qGHHuLy5cvUqFGDrVu30rBhQ2uHJYRZZWZm0rNnT7Zv305AQADr1q2jVatW1g7LOH9/k98jS8nLb/np9haEttQmRsaMPl+YqYkR5N9Qm/9UC22Lim7LxbbTV3l91THyFMWIG2/mi0s3USopMTKktOSncPJXUhylqegOLZLsmECSHcemVqv54osveOWVV7hz5w5RUVGsXr2aunXrWjs0ISwiIyODbt26sW/fPjw9PVm8eDFPPPGEtcMyjhFj+hQ3xY0uJ+CTp1pQq6qn0YkR6P+xL67lomP9Gpy/dpvrmVkmJR3GnFulotRYy5uQ6J7HlGsytsVHt1XM0re4ZJwdIYAzZ87w4IMP8uKLL3Lnzh169uzJ7t27JdERDs3X15f169fTu3dv7ty5w6BBgxg7diy3bt2ydmilM2JMH0NT3KhAu8xZpWL2wGj6NA0lMzuv1OTBWaXil9h7+c+TLfLrpf9dXtxUOwAxdQJoFV61SBzFMeaPrQLMH9SC/zzZosTj6rbSaI5tSj9ShYKEyphrcgIWPNWCn2PvLfV6dWup/rPpDDGzN/HUl3u4b84mvtuXYEKU5iXJjnBICQkJjBw5koYNG7Jp0yY8PT35+OOP+e233ywzpL4QNsbPz49ff/2ViRPzB+775JNPaNKkCb/88gv23qAf4ufJ7AHROP87VISzSsWcgdHseC1/Dr/trz2grRsxJjHSzDtoaFDVwnQHWTUUx8CWNfVeT+kVxbcj2vOTkYlCq4iq9G0WqndcQ3+oNYnRtyPas2NKF+YMLNhe03Kj2be0RKi0a9Ikjs3CqpZ6vf2ahdB/wU6e+nKPtjgbis7JWNHkNhZyG8tRZGdns3HjRhYuXMivv/6KWp1f6NinTx/mzZsnrTmi0lq3bh2jRo3iwoULALRs2ZI33niDhx56yLyzpVcwY4fI+G5fgrbORpPcaG7b6O5rzNQ7xU21Y8wAroXjeLhFKD8fTNSLq/D4NsXVKJUWB6B9XlqdkTHXVNL/uym1VIYKv8uj0tXsLFiwgPfff5/k5GSaNWvGJ598Qtu2bY3aV5Id+6RWqzl58iQ7d+5ky5Yt/Pbbb6SlpWnXd+nShbfffpsOHTpYL0ghbERmZiazZs3ik08+ITMzE4CgoCAGDx5M//79iYmJwdXV1cpRWk5ZE6PSEpLyxlGehM2UOHTPo5v8mOOaNEqrpbJE8XKlSna+++47nn32WT7//HPatWvHvHnzWLlyJadOnSIwMLDU/SXZsU2KopCenk5KSgopKSlcuXKFc+fOcfr0aU6fPs2RI0f0khuAwMBAnnjiCV544QUaNWpk+MBCVGJXr17lo48+4quvvuLq1ava5b6+vrRv356WLVvSqlUroqOjCQ8Pt+7UE1ZS1oSkouOylWPpHrO4ljFzJlW6KlWy065dO9q0acN//vMfIP8bf1hYGC+99BKvvfZaqftbKtlp0qQJp06dwsnJCZVKZZf/mrKtoijah1qtNuq5Wq3m7t273L59mzt37uj9e+vWLXJyckr8P/by8qJt27bce++99OrVi5iYGJydnc32MxTCUeXk5PDHH3/w3XffsW7dOq5fv25wu+DgYGrXrk2NGjWoVq2a9lGlShU8PDz0Hu7u7nh4eODi4qL3GVL4s8TQZ4sxU7WUto05jmGv25SXuc7x24kbfLAtUdvTa2S7IBrU8KSmnxstGkSYvfWw0iQ72dnZeHl58cMPP/Dwww9rlw8ZMoS0tDR++eWXIvtkZWWRlZWlfZ2RkUFYWJjZk50GDRpw+vTp0jcUJfL19SUwMJAaNWoQHh5O/fr1qV+/Pg0bNiQ6Otqhm96FqAh5eXkcOnSI/fv38/fff3PgwAFOnTplH723hM1xrhKAi38ouWmJ5N0sSKJPnTpF/fr1zXquSjNdxLVr18jLyyMoKEhveVBQECdPnjS4z+zZs3n77bctHtu2bdvIycnRa9Ew17+WOGZ5/lWr1dpvZ7rf1Aq/LvzcyckJDw8PvLy88PT0xNPTU/vc29ubGjVq4Olpm8OPC+EonJ2dadWqld7gg4qikJqayoULF0hISCA1NZXr169r/83MzOTu3bvcvXuXrKws7fO7d++Sl5en/Vwo/DlR3HJjGPvd3FrbWfvcNnOM3NtwLQ43AJ3Pb2tOtGz3yU5ZTJkyhQkTJmhfa1p2zK1wAiaEEPZCpVIREBBAQECA7U05IYSJ7D7ZqV69Os7Ozly5ckVv+ZUrVwgODja4j7u7u0z8KIQQQlQSdj+ooJubG61atWLjxo3aZWq1mo0bN9rWjL9CCCGEsAq7b9kBmDBhAkOGDKF169a0bduWefPmkZmZyXPPPWft0IQQQghhZQ6R7DzxxBNcvXqVadOmkZycTPPmzVm7dq3UzAghhBDC/ruem4MMKiiEEELYH5n1XAghhBACSXaEEEII4eAk2RFCCCGEQ5NkRwghhBAOTZIdIYQQQjg0SXaEEEII4dAk2RFCCCGEQ5NkRwghhBAOTZIdIYQQQjg0h5guorw0g0hnZGRYORIhhBBCGEvzd7u0ySAk2QFu3rwJQFhYmJUjEUIIIYSpbt68iZ+fX7HrZW4sQK1Wk5iYSJUqVVCpVGY7bkZGBmFhYVy8eNFh59xy9Gt09OsDx79GR78+cPxrdPTrA8e/Rktdn6Io3Lx5k9DQUJyciq/MkZYdwMnJiVq1alns+L6+vg75y6vL0a/R0a8PHP8aHf36wPGv0dGvDxz/Gi1xfSW16GhIgbIQQgghHJokO0IIIYRwaJLsWJC7uztvvfUW7u7u1g7FYhz9Gh39+sDxr9HRrw8c/xod/frA8a/R2tcnBcpCCCGEcGjSsiOEEEIIhybJjhBCCCEcmiQ7QgghhHBokuwIIYQQwqFJsmNmc+bMQaVSMW7cOO2yu3fvEhsbS0BAAD4+PgwcOJArV65YL8hyMnSNnTt3RqVS6T1eeOEF6wVpounTpxeJPyoqSrve3n+GpV2fvf/8AC5fvszTTz9NQEAAnp6eREdHs3//fu16RVGYNm0aISEheHp60q1bN86cOWPFiE1X2jUOHTq0yM+xZ8+eVozYNBEREUXiV6lUxMbGAvb/Pizt+uz9fZiXl8ebb75JZGQknp6e1KlTh5kzZ+rNW2Wt96GMoGxG+/bt44svvqBp06Z6y8ePH89vv/3GypUr8fPzY8yYMQwYMIAdO3ZYKdKyK+4aAUaMGMGMGTO0r728vCoytHJr3LgxGzZs0L52cSl4ezjCz7Ck6wP7/vnduHGD++67jwceeIA//viDGjVqcObMGapWrardZu7cucyfP5+lS5cSGRnJm2++SY8ePTh+/DgeHh5WjN44xlwjQM+ePVm8eLH2tT11Zd63bx95eXna18eOHePBBx/kscceA+z/fVja9YF9vw/fe+89PvvsM5YuXUrjxo3Zv38/zz33HH5+fowdOxaw4vtQEWZx8+ZNpV69esr69euVTp06KS+//LKiKIqSlpamuLq6KitXrtRue+LECQVQdu3aZaVoy6a4a1QUpchre/PWW28pzZo1M7jOEX6GJV2fotj/z2/y5MlKhw4dil2vVquV4OBg5f3339cuS0tLU9zd3ZVvv/22IkIst9KuUVEUZciQIUr//v0rJqAK8PLLLyt16tRR1Gq1Q7wPC9O9PkWx//dhnz59lGHDhuktGzBggDJ48GBFUaz7PpTbWGYSGxtLnz596Natm97yAwcOkJOTo7c8KiqK2rVrs2vXrooOs1yKu0aNZcuWUb16dZo0acKUKVO4fft2BUdYPmfOnCE0NJR77rmHwYMHk5CQADjOz7C469Ow55/fr7/+SuvWrXnssccIDAykRYsWfPnll9r18fHxJCcn6/0M/fz8aNeund38DEu7Ro0tW7YQGBhIgwYNGD16NNevX7dCtOWXnZ3N//73P4YNG4ZKpXKY96FG4evTsOf34b333svGjRs5ffo0AIcPH2b79u306tULsO77UG5jmcGKFSv4+++/2bdvX5F1ycnJuLm54e/vr7c8KCiI5OTkCoqw/Eq6RoCnnnqK8PBwQkNDOXLkCJMnT+bUqVOsWrWqgiMtm3bt2rFkyRIaNGhAUlISb7/9Nvfffz/Hjh1ziJ9hSddXpUoVu//5nTt3js8++4wJEybw+uuvs2/fPsaOHYubmxtDhgzR/pyCgoL09rOnn2Fp1wj5t7AGDBhAZGQkZ8+e5fXXX6dXr17s2rULZ2dnK1+BaX7++WfS0tIYOnQo4DifpRqFrw/s/3P0tddeIyMjg6ioKJydncnLy+Odd95h8ODBAFZ9H0qyU04XL17k5ZdfZv369XZx378sjLnGkSNHap9HR0cTEhJC165dOXv2LHXq1KmoUMtM880DoGnTprRr147w8HC+//57PD09rRiZeZR0fcOHD7f7n59araZ169a8++67ALRo0YJjx47x+eefaxMBe2fMNQ4aNEi7fXR0NE2bNqVOnTps2bKFrl27WiXuslq0aBG9evUiNDTU2qFYhKHrs/f34ffff8+yZctYvnw5jRs35tChQ4wbN47Q0FCrvw/lNlY5HThwgJSUFFq2bImLiwsuLi5s3bqV+fPn4+LiQlBQENnZ2aSlpentd+XKFYKDg60TtIlKu0bdgjuNdu3aARAXF1fR4ZqFv78/9evXJy4ujuDgYLv/GRame32G2NvPLyQkhEaNGukta9iwofZWnebnVLjnjj39DEu7RkPuueceqlevbjc/R40LFy6wYcMGnn/+ee0yR3ofGro+Q+ztfThx4kRee+01Bg0aRHR0NM888wzjx49n9uzZgHXfh5LslFPXrl05evQohw4d0j5at27N4MGDtc9dXV3ZuHGjdp9Tp06RkJBATEyMFSM3XmnXaKh5/NChQ0D+B7Q9unXrFmfPniUkJIRWrVrZ/c+wMN3rM8Tefn733Xcfp06d0lt2+vRpwsPDAYiMjCQ4OFjvZ5iRkcGePXvs5mdY2jUacunSJa5fv243P0eNxYsXExgYSJ8+fbTLHOl9aOj6DLG39+Ht27dxctJPK5ydnVGr1YCV34cWLX+upApX1L/wwgtK7dq1lU2bNin79+9XYmJilJiYGOsFaAa61xgXF6fMmDFD2b9/vxIfH6/88ssvyj333KN07NjRukGa4JVXXlG2bNmixMfHKzt27FC6deumVK9eXUlJSVEUxf5/hiVdnyP8/Pbu3au4uLgo77zzjnLmzBll2bJlipeXl/K///1Pu82cOXMUf39/5ZdfflGOHDmi9O/fX4mMjFTu3LljxciNV9o13rx5U3n11VeVXbt2KfHx8cqGDRuUli1bKvXq1VPu3r1r5eiNl5eXp9SuXVuZPHlykXX2/j5UlOKvzxHeh0OGDFFq1qyprFmzRomPj1dWrVqlVK9eXZk0aZJ2G2u9DyXZsYDCyc6dO3eUF198Ualatari5eWlPPLII0pSUpL1AjQD3WtMSEhQOnbsqFSrVk1xd3dX6tatq0ycOFFJT0+3bpAmeOKJJ5SQkBDFzc1NqVmzpvLEE08ocXFx2vX2/jMs6foc4eenKIqyevVqpUmTJoq7u7sSFRWlLFy4UG+9Wq1W3nzzTSUoKEhxd3dXunbtqpw6dcpK0ZZNSdd4+/ZtpXv37kqNGjUUV1dXJTw8XBkxYoSSnJxsxYhNt27dOgUw+LOx9/ehohR/fY7wPszIyFBefvllpXbt2oqHh4dyzz33KG+88YaSlZWl3cZa70OVougMbSiEEEII4WCkZkcIIYQQDk2SHSGEEEI4NEl2hBBCCOHQJNkRQgghhEOTZEcIIYQQDk2SHSGEEEI4NEl2hBBCCOHQJNkRQgghhEOTZEcIIYDOnTujUqlQqVTaOYm2bNmCSqUqMvmkuU2fPl177nnz5ln0XEJURpLsCCFMNnToUO0fZ91Hz549rR1auYwYMYKkpCSaNGlS7mNduXIFV1dXVqxYYXD98OHDadmyJQCvvvoqSUlJ1KpVq9znFUIUJcmOEKJMevbsSVJSkt7j22+/teg5s7OzLXp8Ly8vgoODcXFxKfexgoKC6NOnD19//XWRdZmZmXz//fcMHz4cAB8fH4KDg3F2di73eYUQRUmyI4QoE3d3d4KDg/UeVatW1a5XqVR89dVXPPLII3h5eVGvXj1+/fVXvWMcO3aMXr164ePjQ1BQEM888wzXrl3Tru/cuTNjxoxh3LhxVK9enR49egDw66+/Uq9ePTw8PHjggQdYunSp9nZTZmYmvr6+/PDDD3rn+vnnn/H29ubmzZtlvubbt2/Tq1cv7rvvPu2tra+++oqGDRvi4eFBVFQUn376qXb74cOHs3HjRhISEvSOs3LlSnJzcxk8eHCZYxFCGE+SHSGExbz99ts8/vjjHDlyhN69ezN48GBSU1MBSEtLo0uXLrRo0YL9+/ezdu1arly5wuOPP653jKVLl+Lm5saOHTv4/PPPiY+P59FHH+Xhhx/m8OHDjBo1ijfeeEO7vbe3N4MGDWLx4sV6x1m8eDGPPvooVapUKdO1pKWl8eCDD6JWq1m/fj3+/v4sW7aMadOm8c4773DixAneffdd3nzzTZYuXQpA7969CQoKYsmSJUViGTBgAP7+/mWKRQhhIovPqy6EcDhDhgxRnJ2dFW9vb73HO++8o90GUKZOnap9fevWLQVQ/vjjD0VRFGXmzJlK9+7d9Y578eJFBVBOnTqlKIqidOrUSWnRooXeNpMnT1aaNGmit+yNN95QAOXGjRuKoijKnj17FGdnZyUxMVFRFEW5cuWK4uLiomzZsqXYa+rUqZPy8ssv6y3bvHmzAignTpxQmjZtqgwcOFDJysrSrq9Tp46yfPlyvX1mzpypxMTEaF+/9tprSmRkpKJWqxVFUZS4uDhFpVIpGzZsKBJDeHi48tFHHxUboxCibKRlRwhRJg888ACHDh3Se7zwwgt62zRt2lT73NvbG19fX1JSUgA4fPgwmzdvxsfHR/uIiooC4OzZs9r9WrVqpXfMU6dO0aZNG71lbdu2LfK6cePG2haW//3vf4SHh9OxY8cyXeuDDz5I3bp1+e6773BzcwPy627Onj3L8OHD9a5h1qxZevEPGzaM+Ph4Nm/eDOS36kRERNClS5cyxSKEMF35q/CEEJWSt7c3devWLXEbV1dXvdcqlQq1Wg3ArVu36NevH++9916R/UJCQvTOUxbPP/88CxYs4LXXXmPx4sU899xzqFSqMh2rT58+/Pjjjxw/fpzo6Ght/ABffvkl7dq109tet9C4Xr163H///SxevJjOnTvzzTffMGLEiDLHIoQwnSQ7QgiraNmyJT/++CMREREm9X5q0KABv//+u96yffv2Fdnu6aefZtKkScyfP5/jx48zZMiQMsc6Z84cfHx86Nq1K1u2bKFRo0YEBQURGhrKuXPnSi00Hj58OKNHj+ahhx7i8uXLDB06tMyxCCFMJ7exhBBlkpWVRXJyst5DtydVaWJjY0lNTeXJJ59k3759nD17lnXr1vHcc8+Rl5dX7H6jRo3i5MmTTJ48mdOnT/P9999rC4B1W0uqVq3KgAEDmDhxIt27dy/3GDb/93//x+DBg+nSpQsnT54E8guwZ8+ezfz58zl9+jRHjx5l8eLFfPjhh3r7PvbYY7i6ujJq1Ci6d+9OWFhYuWIRQphGkh0hRJmsXbuWkJAQvUeHDh2M3j80NJQdO3aQl5dH9+7diY6OZty4cfj7++PkVPxHU2RkJD/88AOrVq2iadOmfPbZZ9reWO7u7nrbDh8+nOzsbIYNG1a2iyzko48+4vHHH6dLly6cPn2a559/nq+++orFixcTHR1Np06dWLJkCZGRkXr7eXl5MWjQIG7cuGG2WIQQxlMpiqJYOwghhCiPd955h88//5yLFy/qLf/vf//L+PHjSUxM1BYWF6dz5840b97cqtM1REREMG7cOMaNG2e1GIRwRNKyI4SwO59++in79u3j3Llz/Pe//+X999/Xq8m5ffs2Z8+eZc6cOYwaNarUREf3uD4+Phw9etRSoRv07rvv4uPjU2TwQSGEeUjLjhDC7owfP57vvvuO1NRUateuzTPPPMOUKVO0hc7Tp0/nnXfeoWPHjvzyyy/4+PiUeszLly9z584dAGrXrm10gmQOqamp2sEWa9SogZ+fX4WdW4jKQJIdIYQQQjg0uY0lhBBCCIcmyY4QQgghHJokO0IIIYRwaJLsCCGEEMKhSbIjhBBCCIcmyY4QQgghHJokO0IIIYRwaJLsCCGEEMKh/T8447YWtW/KwAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1806,312 +3269,43 @@ }, { "cell_type": "markdown", - "id": "c5a8d247-5b71-42ae-9706-d16192374686", + "id": "ec675b22", "metadata": {}, "source": [ - "… bevor wir die Minmierung starten, und das Resultat darstellen." + "Außerdem müssen wir noch alle Fitparameter, welche nicht zum Untergrund beitragen, als konstant festhalten" ] }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 510, "id": "4a93a1c2-17df-46c2-b38e-9a509fe16fc7", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Migrad
FCN = 35.17 (χ²/ndof = 0.8) Nfcn = 77
EDM = 4.56e-06 (Goal: 0.0002)
Valid Minimum No Parameters at limit
Below EDM threshold (goal x 10) Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 400 4 yes
1 A_p2 700 7 yes
2 mu_p1 54.0 0.5 yes
3 mu_p2 60.0 0.6 yes
4 sigma_p1 2.00 0.02 yes
5 sigma_p2 2.00 0.02 yes
6 A_bkg 108 12
7 tau_bkg 39.9 3.0 0
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 0 0 0 0 0 0 0 0
A_p2 0 0 0 0 0 0 0 0
mu_p1 0 0 0 0 0 0 0 0
mu_p2 0 0 0 0 0 0 0 0
sigma_p1 0 0 0 0 0 0 0 0
sigma_p2 0 0 0 0 0 0 0 0
A_bkg 0 0 0 0 0 0 152 -36 (-0.963)
tau_bkg 0 0 0 0 0 0 -36 (-0.963) 9.16
" - ], - "text/plain": [ - "┌─────────────────────────────────────────────────────────────────────────┐\n", - "│ Migrad │\n", - "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 35.17 (χ²/ndof = 0.8) │ Nfcn = 77 │\n", - "│ EDM = 4.56e-06 (Goal: 0.0002) │ │\n", - "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", - "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", - "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", - "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", - "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 400 │ 4 │ │ │ │ │ yes │\n", - "│ 1 │ A_p2 │ 700 │ 7 │ │ │ │ │ yes │\n", - "│ 2 │ mu_p1 │ 54.0 │ 0.5 │ │ │ │ │ yes │\n", - "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", - "│ 4 │ sigma_p1 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", - "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", - "│ 6 │ A_bkg │ 108 │ 12 │ │ │ │ │ │\n", - "│ 7 │ tau_bkg │ 39.9 │ 3.0 │ │ │ 0 │ │ │\n", - "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", - "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", - "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", - "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 0 0 0 0 0 0 0 0 │\n", - "│ A_p2 │ 0 0 0 0 0 0 0 0 │\n", - "│ mu_p1 │ 0 0 0 0 0 0 0 0 │\n", - "│ mu_p2 │ 0 0 0 0 0 0 0 0 │\n", - "│ sigma_p1 │ 0 0 0 0 0 0 0 0 │\n", - "│ sigma_p2 │ 0 0 0 0 0 0 0 0 │\n", - "│ A_bkg │ 0 0 0 0 0 0 152 -36 │\n", - "│ tau_bkg │ 0 0 0 0 0 0 -36 9.16 │\n", - "└──────────┴─────────────────────────────────────────────────────────────────────────┘" - ] - }, - "execution_count": 119, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP40lEQVR4nO3deXxTdb4//lf2rknplnRvWRSKZSsKFXcqiNWBaWF0Bh1m5OrVWxfgujGDKOiI4yw6zkUd/XnRuYL+poCgqChUQEfKVmSHyiYtbdMWSpOWNkuT8/0jTaCl0KZNcrK8no9HHtLkpHkfQtqXn+V9JIIgCCAiIiLyI1KxCyAiIiLqigGFiIiI/A4DChEREfkdBhQiIiLyOwwoRERE5HcYUIiIiMjvMKAQERGR32FAISIiIr8jF7uAvrDb7aipqUF0dDQkEonY5RAREVEvCIKA5uZmJCcnQyq98hhJQAaUmpoapKWliV0GERER9UFVVRVSU1OveExABpTo6GgAjhNUq9UiV0NERES9YTQakZaW5vo9fiUBGVCc0zpqtZoBhYiIKMD0ZnkGF8kSERGR32FAISIiIr/DgEJERER+hwGFiIiI/A4DChEREfkdBhQiIiLyOwwoRERE5HcYUIiIiMjvMKAQERGR32FAISIiIr/DgEJERER+hwGFiIiI/A4DChH5lc0V9fi/badgswtil0JEIgrIqxkTUXAytFrxn/9XDnO7Hd8crsMbvxyN6DCF2GURkQg4gkJEfuOzfTUwt9sBAJsqGjDrf3fAzpEUopDEgEJEfqOk/DQA4BdjUxGlkmN3ZRO+OFArclVEJAYGFCLyC0frmrG3qglyqQRP3zEUD944EADwl69/hNVmF7k6IvI1BhQi8gvO0ZNbhyYiPkqF2TdmIS5SiZNnzqNk12mRqyMiX2NAISLRtdvsWL27GgAwPTcVABClkuORWwYBAJZvPyVabUQkDgYUIhLdlh8bcKbFjLhIJW4bmui6v3BMKuRSCQ7WGHG8oUXEConI1xhQiEh0zimcaaNToJBd+LEUG6nEDUPiAQDr9nKxLFEoYUAhIlE1nreg9EgdgAvTOxe7e0QyAODTvdUQBG45JgoVDChEJKq1e6phtQm4JkWNYUnqSx6/fbgWSrkUxxvO44i+WYQKiUgMbgWUzMxMSCSSS27FxcUAAJPJhOLiYsTFxSEqKgpFRUWoq6vr9D0qKytRUFCAiIgIJCYm4qmnnkJ7e7vnzoiIAopzemdGblq3j6vDFLj5qgQAwIZDdd0eQ0TBx62AsnPnTtTW1rpuGzZsAADMmDEDADB37lx89tlnKCkpwZYtW1BTU4PCwkLX8202GwoKCmCxWLB161Z88MEHeP/997Fw4UIPnhIRBYqDNQYcqjVCKZNi6qjkyx53U0dAKTt+1lelEZHI3AooCQkJ0Ol0rtu6deswaNAg3HzzzTAYDHjvvffw17/+Fbfddhtyc3OxbNkybN26Fdu2bQMAfP311zh06BA+/PBDjBo1ClOmTMGLL76IpUuXwmKxeOUEich/OUdPbs/WIiZCednjrh8UBwAorzwHk9Xmk9qISFx9XoNisVjw4Ycf4oEHHoBEIkF5eTmsVivy8/NdxwwdOhTp6ekoKysDAJSVlSEnJwdardZ1zOTJk2E0GnHw4MHLvpbZbIbRaOx0I6LAZmm3Y+2ezr1PLmdgfCQSo1WwtNuxu/KcL8ojIpH1OaCsWbMGTU1N+M1vfgMA0Ov1UCqViImJ6XScVquFXq93HXNxOHE+7nzscpYsWQKNRuO6paV1P1dNRIHjmyN1ONdqRWK0Cjd2bCW+HIlE4hpF2cZpHqKQ0OeA8t5772HKlClITr78vLGnzJ8/HwaDwXWrqqry+msSkXc5p3cKx6RCLuv5R9H1gxwhZisDClFIkPflSadOncLGjRuxevVq1306nQ4WiwVNTU2dRlHq6uqg0+lcx+zYsaPT93Lu8nEe0x2VSgWVStWXUonID9U3m7D5xwYAPU/vOOV1jKDsqWpCq6UdEco+/fgiogDRpxGUZcuWITExEQUFBa77cnNzoVAoUFpa6rqvoqIClZWVyMvLAwDk5eVh//79qK+vdx2zYcMGqNVqZGdn9/UciCjArPmhGja7gNHpMRicGNWr56TFRiAlJhztdgF7qpq8WyARic7tgGK327Fs2TLMmjULcvmF/4PRaDSYPXs25s2bh02bNqG8vBy//e1vkZeXh/HjxwMAJk2ahOzsbNx///3Yu3cvvvrqKyxYsADFxcUcISEKEYIg9Nj75HJGpmkAAPtOGzxeFxH5F7cDysaNG1FZWYkHHnjgksdee+013HXXXSgqKsJNN90EnU7XaRpIJpNh3bp1kMlkyMvLw3333Ydf//rXWLx4cf/OgogCxt7TBhytb0GYQoq7Ria59dwRqTEAgH2nmzxfGBH5FbcncSdNmnTZ62GEhYVh6dKlWLp06WWfn5GRgS+++MLdlyWiIFGyy7HI/Y7hOqjDFG49d0SqYwRlbxVHUIiCHa/FQ0Q+Y7La8OneGgDAdDendwAgJ0UDiQSobmrD2Razp8sjIj/CgEJEPvP1oTo0m9qREhPu6mvijugwBQbGRwLgOhSiYMeAQkQ+45zeKRqTAqlU0qfv4VyHspfrUIiCGgMKEflETVMb/n3sDACgqJe9T7rjXIfCERSi4MaAQkQ+8ckP1RAE4LqsWGTERfb5+1zYycOAQhTMGFCIyOscvU8c0zsz+jF6AgDZSWpIJMCZFjPOcKEsUdBiQCEir9t16hx+OtuKCKUMd+a41/ukq3ClDBmxEQCACn2zJ8ojIj/EgEJEXuccPSnISUKkqv/X0LlaFw0AOMKAQhS0GFCIyKtaLe34fF8tgN5fGLAnV+vUAIAKvdEj34+I/A8DChF51Zf79ThvsSEjLgLXZcV65HsO7RhB4RQPUfBiQCEiryopd0zvTB+TComkb71PunJO8fxY1wK7vftLbxBRYGNAISKvqTzbim0nGiGRAIUemt4BgMy4SKjkUrRZbahsbPXY9yUi/8GAQkRes2r3aQDAhEHxSIkJ99j3lUklGKKNAsCFskTBigGFiLzCbhewstwRUGaM9dzoidPVWudCWQYUomDEgEJEXrHtxFlUN7UhOkyOycN1Hv/+roWyddzJQxSMGFCIyCtKOkZP7h6ZjDCFzOPff3DHFM/x+vMe/95EJD4GFCLyuGaTFV8e8Gzvk64GJzgCyskz52HjTh6ioMOAQkQe9/m+WpisdgxKiMTotBivvEZyTDhUciksNjtOn+NOHqJgw4BCRB5X4locm+ax3iddyaQSZMU7rop8ooHTPETBhgGFiDzqeEMLyk+dg1QCFI5O8eprDeqY5jne0OLV1yEi32NAISKPWtUxenLzVQlIVId59bUGJThGUBhQiIIPAwoReYzNLmD17moAjukdbxvoGkHhFA9RsGFAISKP+e5oA/RGE2IiFJg4LNHrr+ec4jnBERSioMOAQkQe41wcO21UClRyz/c+6SqrY4rnTIsFhlar11+PiHyHAYWIPMLQasWGg3UAvNf7pKsolRy6jnUux89wFIUomDCgEJFHfLq3GhabHUN10RierPbZ6w5K7FgoW8+AQhRMGFCIyCN80fukOwPjO9ahnOFCWaJgwoBCRP1WoW/GvtMGyKUSTBuV7NPXzoiLAABUnmU3WaJgwoBCRP22srwKAHDb0ETERal8+tqZcY4pnp/OcgSFKJgwoBBRv1htdnzyg+96n3SVGe8YQTl1thWCwIsGEgULBhQi6pfNFQ0402JBfJQSt1yd4PPXTx0QAYkEaDG34+x5i89fn4i8gwGFiPqlZJdjeufno1OgkPn+R0qYQoZkTTgA4BSneYiCBgMKEfXZ2RYzvjlSDwCYnuv76R0n50LZn85woSxRsGBAIaI+W7OnBu12ASNSNbhaFy1aHRkdC2U5gkIUPBhQiKhPBEFwTe/M8FHn2MvJdI6gcKsxUdBwO6BUV1fjvvvuQ1xcHMLDw5GTk4Ndu3a5HhcEAQsXLkRSUhLCw8ORn5+Po0ePdvoejY2NmDlzJtRqNWJiYjB79my0tLALJFEgOVhjxBF9M5QyKX42MkXUWjiCQhR83Aoo586dw4QJE6BQKPDll1/i0KFD+Mtf/oIBAwa4jnn11Vfxxhtv4O2338b27dsRGRmJyZMnw2QyuY6ZOXMmDh48iA0bNmDdunX49ttv8dBDD3nurIjI61Z2dI69fbgWmgiFqLU4txpzBIUoeMjdOfiPf/wj0tLSsGzZMtd9WVlZrj8LgoDXX38dCxYswNSpUwEA//znP6HVarFmzRrce++9OHz4MNavX4+dO3di7NixAIC///3vuPPOO/HnP/8Zycm+7UJJRO4zt9uwZk9H7xORp3cAID3WEVAMbVY0tVoQE6EUuSIi6i+3RlA+/fRTjB07FjNmzEBiYiJGjx6Nd9991/X4yZMnodfrkZ+f77pPo9Fg3LhxKCsrAwCUlZUhJibGFU4AID8/H1KpFNu3b+/2dc1mM4xGY6cbEYmn9HA9mlqt0KnDcOMQ3/c+6SpCKYdW7ehgy1EUouDgVkA5ceIE3nrrLQwZMgRfffUVHnnkETz++OP44IMPAAB6vR4AoNVqOz1Pq9W6HtPr9UhMTOz0uFwuR2xsrOuYrpYsWQKNRuO6paWJt52RiC70PikckwKZ1HcXBryS1AGOUZTT5xhQiIKBWwHFbrdjzJgxePnllzF69Gg89NBDePDBB/H22297qz4AwPz582EwGFy3qqoqr74eEV1evdGELT82AACm+8H0jlPqAEeztupzbSJXQkSe4FZASUpKQnZ2dqf7hg0bhsrKSgCATqcDANTV1XU6pq6uzvWYTqdDfX19p8fb29vR2NjoOqYrlUoFtVrd6UZE4lj9QzXsApCbMQADE6LELsclJaYjoDQxoBAFA7cCyoQJE1BRUdHpvh9//BEZGRkAHAtmdTodSktLXY8bjUZs374deXl5AIC8vDw0NTWhvLzcdcw333wDu92OcePG9flEiMj7/Kn3SVcpHEEhCipu7eKZO3curr/+erz88sv4xS9+gR07duCdd97BO++8AwCQSCSYM2cOXnrpJQwZMgRZWVl47rnnkJycjGnTpgFwjLjccccdrqkhq9WKRx99FPfeey938BD5uR+qmnC84TzCFFIUjEgSu5xOOIJCFFzcCijXXnstPvnkE8yfPx+LFy9GVlYWXn/9dcycOdN1zNNPP43z58/joYceQlNTE2644QasX78eYWFhrmOWL1+ORx99FBMnToRUKkVRURHeeOMNz50VEXmFs/fJlGuSEB0mbu+Tri5egyIIAiQS/1i8S0R9IxEEQRC7CHcZjUZoNBoYDAauRyHyEZPVhmv/sBHNpnas+I9xuH5wvNglddJqaUf2wq8AAHsXThK9eRwRXcqd39+8Fg8R9cpXB/VoNrUjdUA4xg+ME7ucS0Qo5YiNdDRoO93ErcZEgY4BhYh6pWSXY3qnaEwqpH7S+6QrbjUmCh4MKETUo+qmNnx//AwA/+p90hUXyhIFDwYUIurR6vLTEARg/MBYpHVc98YfuQIKR1CIAh4DChFdkSAIWLnbMb0zI9e/LzPh6oXCERSigMeAQkRXtONkI06dbUWkUoYpOd13e/YXzhGU0xxBIQp4DChEdEXO3icFI5IQoXSrdZLPcQSFKHgwoBDRZZ03t+Pz/bUAgBlj/Xt6B7hwRePG8xa0WtpFroaI+oMBhYgu64v9tWi12JAVH4mxGQPELqdHmnAFolWOUZ4ajqIQBTQGFCK6rJKO6Z3puakB0zreOc3DdShEgY0BhYi6derseew42QiJBPj56BSxy+k19kIhCg4MKETUrVUdoyc3DI5Hcscv/UCQwm6yREGBAYWILmG3C1i1uxpAYCyOvRi3GhMFBwYUIrrE1uNnUd3UhugwOSZla8Uuxy3cakwUHBhQiOgSK8urAAA/G5mMMIVM5Grc49xqzCkeosDGgEJEnRhNVnx5QA8g8KZ3gAtTPHXNJlja7SJXQ0R9xYBCRJ2s21sLc7sdQxKjMDJVI3Y5bouPUkIll0IQAL3BJHY5RNRHDChE1ElJx/TOjLGB0/vkYhKJ5MJC2aZWkashor5iQCEil2P1LfihsgkyqQTTAqj3SVds1kYU+BhQiMjFeWHAW65KQGJ0mMjV9J2rWRsDClHAYkAhIgBAu82O1bsdAWXG2FSRq+mfVG41Jgp4DChEBAD47ugZ1DebMSBCgduGBlbvk67YTZYo8DGgEBGAC9M7U0elQCkP7B8NKTEdvVA4gkIUsAL7pxAReURTqwUbDtUBCPzpHeDCCEqtoQ02uyByNUTUFwwoRIS1e2pgsdmRnaTG8OTA633SlTZaBZlUAqtNQH0ze6EQBSIGFCLq1PskGMhlUujUjl1IXIdCFJgYUIhC3OFaIw5UG6GQSTB1VOD2PumKFw0kCmwMKEQhzrk4duJQLWIjlSJX4zmpbNZGFNAYUIhCmNVmx5ofqgEEz/SOU2oMR1CIAhkDClEI++ZIPc6etyA+SoWbr0oQuxyPYi8UosDGgEIUwpzTO4VjUiCXBdePA/ZCIQpswfUTiYh67UyLGZuO1AMAZuQG1/QOcPEFA1shCOyFQhRoGFCIQtSaH6rRbhcwMi0GQ7TRYpfjcUkaxzZjk9WOxvMWkashIncxoBCFIEEQULKr48KAQTh6AgBhChkSo1UAOM1DFIgYUIhC0IFqIyrqmqGUS3H3iGSxy/EaLpQlClwMKEQhyNk5dvJwHTQRCpGr8Z4UbjUmClhuBZQXXngBEomk023o0KGux00mE4qLixEXF4eoqCgUFRWhrq6u0/eorKxEQUEBIiIikJiYiKeeegrt7e2eORsi6pHJasPaPTUAgnd6xymFzdqIApbc3ScMHz4cGzduvPAN5Be+xdy5c/H555+jpKQEGo0Gjz76KAoLC/H9998DAGw2GwoKCqDT6bB161bU1tbi17/+NRQKBV5++WUPnA4R9WTj4ToY2qxI0oRhwuB4scvxKmezNgYUosDjdkCRy+XQ6XSX3G8wGPDee+9hxYoVuO222wAAy5Ytw7Bhw7Bt2zaMHz8eX3/9NQ4dOoSNGzdCq9Vi1KhRePHFF/HMM8/ghRdegFIZPG22ifzVxb1PZFKJyNV4F6/HQxS43F6DcvToUSQnJ2PgwIGYOXMmKisrAQDl5eWwWq3Iz893HTt06FCkp6ejrKwMAFBWVoacnBxotVrXMZMnT4bRaMTBgwcv+5pmsxlGo7HTjYjcpzeY8O2PDQCA6blpIlfjfa5mbedaRa6EiNzlVkAZN24c3n//faxfvx5vvfUWTp48iRtvvBHNzc3Q6/VQKpWIiYnp9BytVgu9Xg8A0Ov1ncKJ83HnY5ezZMkSaDQa1y0tLfh/sBJ5w+ofTsMuANdmDkBWfKTY5XidcwTFaGpHs8kqcjVE5A63pnimTJni+vOIESMwbtw4ZGRk4F//+hfCw8M9XpzT/PnzMW/ePNfXRqORIYXITYIgYKWr90lofH6iVHLERCjQ1GpFdVMbhuqCd8cSUbDp1zbjmJgYXHXVVTh27Bh0Oh0sFguampo6HVNXV+das6LT6S7Z1eP8urt1LU4qlQpqtbrTjYjcs7uyCSfOnEe4QoY7RySJXY7PuLYac6EsUUDpV0BpaWnB8ePHkZSUhNzcXCgUCpSWlroer6ioQGVlJfLy8gAAeXl52L9/P+rr613HbNiwAWq1GtnZ2f0phYh6sLKj98mUHB2iVG6vjw9YKdzJQxSQ3Pop9eSTT+Luu+9GRkYGampq8Pzzz0Mmk+GXv/wlNBoNZs+ejXnz5iE2NhZqtRqPPfYY8vLyMH78eADApEmTkJ2djfvvvx+vvvoq9Ho9FixYgOLiYqhUKq+cIBEBbRYbPttbCyB0pnecuJOHKDC5FVBOnz6NX/7ylzh79iwSEhJwww03YNu2bUhISAAAvPbaa5BKpSgqKoLZbMbkyZPx5ptvup4vk8mwbt06PPLII8jLy0NkZCRmzZqFxYsXe/asiKiT9Qdr0WJuR1psOMZlxYpdjk9xiocoMLkVUD7++OMrPh4WFoalS5di6dKllz0mIyMDX3zxhTsvS0T95Ox9UjQmFdIg733SVeoAx1bj0xxBIQoovBYPUZA7fa4VW4+fBeAIKKEmlRcMJApIDChEQW5VeTUEAbh+UBzSYiPELsfnnFM8Z1rMMFltIldDRL3FgEIUxOx2ASt3O3bvzBgbeqMnABAToUCEUgYAqOE0D1HAYEAhCmI7fmpEVWMbolRy3DE8dHqfXEwikXCrMVEAYkAhCmIlHZ1j7xqRhPCOUYRQlNwRUGoNDChEgYIBhShItZjb8cX+jt4nITq94+QMKNVNJpErIaLeYkAhClJf7KtFm9WGgfGRGJM+QOxyRJUSEwYAqOUaFKKAwYBCFKRcvU9yUyGRhFbvk66cIyg1nOIhChgMKERB6Kcz57Hjp0ZIJaHZ+6SrJE1HQOEUD1HAYEAhCkLO0ZMbhyRApwkTuRrxOXfx1DS1QRAEkashot5gQCEKMja7gFW7HQEl1BfHOmk1KkgkgLndjsbzFrHLIaJeYEAhCjJbj59BrcEEdZgc+cO0YpfjF1RyGeKjHFdM5zQPUWBgQCEKMs7eJ1NHpSBMEbq9T7riQlmiwMKAQhREDG1WfHVQD4DTO105txqz3T1RYGBAIQoin+2tgbndjqu10chJ0Yhdjl+5sJOHAYUoEDCgEAUR5+6d6ex9cgnXFA/XoBAFBAYUoiBxrL4Ze6qaIJNKMG10itjl+B3XFA/XoBAFBAYUoiDhXBx769WJSIhWiVyN/+EUD1FgYUAhCgLtNjtW/1ANgItjL8c5xVPfbIal3S5yNUTUEwYUoiDw7dEGNDSbERupxK1XJ4pdjl+Ki1RCKZdCEIA6I9ehEPk7BhSiIOCc3pk2KgVKOT/W3ZFKJUjWcKsxUaDgTzKiANd43oKNh+sAcHqnJ651KFwoS+T3GFCIAtzaPdWw2gRck6LGsCS12OX4NW41JgocDChEAc7V+2QMR096wm6yRIGDAYUogB2qMeJgjRFKmRRTR7H3SU+SYrjVmChQMKAQBbCS8ioAQH52IgZEKkWuxv85p3hqDZziIfJ3DChEAcrSbsfaPTUAgBm5aSJXExicUzzVHEEh8nsMKEQB6psj9Wg8b0FitAo3DokXu5yA4NzF02xqR7PJKnI1RHQlDChEAWplx/TOz8ekQC7jR7k3IlVyaMIVADjNQ+Tv+FONKADVN5uwqaIBAKd33OVch8JpHiL/xoBCFIDW/FANm13A6PQYDE6MErucgMJuskSBgQGFKMAIgnCh90kue5+4y7WTh83aiPwaAwpRgNl32oAf61qgkktx98hkscsJOMnshUIUEBhQiAKMs/fJHdfooA5TiFxN4EnmVmOigMCAQhRATFYbPmXvk35hszaiwMCAQhRAvj5UB6OpHcmaMOQNihO7nIB0IaC0wW4XRK6GiC6nXwHllVdegUQiwZw5c1z3mUwmFBcXIy4uDlFRUSgqKkJdXV2n51VWVqKgoAARERFITEzEU089hfb29v6UQhQSnItji3JTIZNKRK4mMGmjVZBKAKtNwJkWs9jlENFl9Dmg7Ny5E//4xz8wYsSITvfPnTsXn332GUpKSrBlyxbU1NSgsLDQ9bjNZkNBQQEsFgu2bt2KDz74AO+//z4WLlzY97MgCgG1hjZ8d9TR+4S7d/pOLpNCq+7YasxpHiK/1aeA0tLSgpkzZ+Ldd9/FgAEDXPcbDAa89957+Otf/4rbbrsNubm5WLZsGbZu3Ypt27YBAL7++mscOnQIH374IUaNGoUpU6bgxRdfxNKlS2GxWDxzVkRBaPXuaggCcF1WLDLiIsUuJ6BxJw+R/+tTQCkuLkZBQQHy8/M73V9eXg6r1drp/qFDhyI9PR1lZWUAgLKyMuTk5ECr1bqOmTx5MoxGIw4ePNjt65nNZhiNxk43olAiCAJKdjl278zg6Em/MaAQ+T+5u0/4+OOPsXv3buzcufOSx/R6PZRKJWJiYjrdr9VqodfrXcdcHE6cjzsf686SJUuwaNEid0slChq7Tp3DT2dbEaGU4c6cJLHLCXgXuslyiofIX7k1glJVVYUnnngCy5cvR1hYmLdqusT8+fNhMBhct6qqKp+9NpE/cI6e3JmThEiV2/9fQV1wBIXI/7kVUMrLy1FfX48xY8ZALpdDLpdjy5YteOONNyCXy6HVamGxWNDU1NTpeXV1ddDpdAAAnU53ya4e59fOY7pSqVRQq9WdbkShotXSjs/31QLg9I6nuAKKgQGFyF+5FVAmTpyI/fv3Y8+ePa7b2LFjMXPmTNefFQoFSktLXc+pqKhAZWUl8vLyAAB5eXnYv38/6uvrXcds2LABarUa2dnZHjotouDx5X49zltsyIiLwHVZsWKXExSSeMFAIr/n1lhxdHQ0rrnmmk73RUZGIi4uznX/7NmzMW/ePMTGxkKtVuOxxx5DXl4exo8fDwCYNGkSsrOzcf/99+PVV1+FXq/HggULUFxcDJVK5aHTIgoeztb208ekQiJh7xNPSOkYQTnTYoHJakOYQiZyRUTUlccns1977TVIpVIUFRXBbDZj8uTJePPNN12Py2QyrFu3Do888gjy8vIQGRmJWbNmYfHixZ4uhSjgVZ5txbYTjZBIHM3ZyDNiIhQIV8jQZrVBbzAhM57bton8Tb8DyubNmzt9HRYWhqVLl2Lp0qWXfU5GRga++OKL/r40UdBbudvROfaGwfGudRPUfxKJBMkxYTjecB41TW0MKER+iNfiIfJTdruAVR2t7dk51vMuLJTlVmMif8SAQuSnyk6cRXVTG6LD5Jg8vPsdbtR3yRpuNSbyZwwoRH7KeWHAu0cmcxGnF7AXCpF/Y0Ah8kNGkxVfHmDvE29KiuEFA4n8GQMKkR/6fF8tTFY7BidGYVRajNjlBKUUjqAQ+TUGFCI/dPGFAdn7xDsunuIRBEHkaoioKwYUIj9zrL4FuyubIJNK8PPRKWKXE7Sc3WRbLTYY29pFroaIumJAIfIzzsWxN1+VgES17y7KGWrCFDLERSoBANWc5iHyOwwoRH6k3WbH6o7mbFwc633cyUPkvxhQiPzId8fOoL7ZjAERCkwcphW7nKDnnOap5VWNifwOAwqRH1m5yzF6MnVUCpRyfjy9zTmCUt3ErcZE/oY/AYn8RFOrBRsO1QEAZozl9I4vcKsxkf9iQCHyE2v31MBisyM7SY3hyRqxywkJzhEUTvEQ+R8GFCI/UVLu6H3CCwP6jqubLKd4iPwOAwqRHzhca8SBaiMUMgmmsfeJzzinePRGE2x2Nmsj8icMKER+oKRjcezEoVrEdvTmIO9LiFJBIZPAZhdQ38xRFCJ/woBCJDJLux1r9lQD4OJYX5NKJdCqndM8XIdC5E8YUIhEtqmiHo3nLUiIVuHmqxLELifkOBfKnj7HgELkTxhQiETmnN4pHJ0CuYwfSV9LHcCAQuSP+NOQSEQNzWZsqqgHwN07YkkdEAGAAYXI3zCgEIlozQ/VsNkFjEyLwRBttNjlhKQ01whKq8iVENHFGFCIRCIIgqv3CS8MKB7nCEo1R1CI/AoDCpFI9p024Me6FqjkUtw9MlnsckKWaw1KUxvs7IVC5DcYUIhEsrLcsTh28nAdNOEKkasJXUmaMMikElja7TjTYha7HCLqwIBCJAKT1Ya17H3iF+QyKXQdvVCqOM1D5DcYUIhEsOFQHYymdiRrwnD9oHixywl5qVwoS+R3GFCIRFDSMb1TOCYVMqlE5GqIW42J/A8DCpGP1Rra8N3RBgDsfeIvOIJC5H8YUIh8bPXuaggCcF1mLDLjI8UuhwCkxXIEhcjfMKAQ+ZAgCK7dO9O5ONZvsN09kf9hQCHyofJT53DyzHlEKGUoyEkSuxzq4Awo1efYC4XIXzCgEPmQ88KAd+YkIVIlF7kactKpO3qh2Oyob2YvFCJ/wIBC5COtlnas21cDgK3t/Y1cJkWSxtELhQtlifwDAwqRj3y5X4/zFhvSYyNwXVas2OVQF1yHQuRfGFCIfMR5YcDpuamQSNj7xN9c6IXCERQif+BWQHnrrbcwYsQIqNVqqNVq5OXl4csvv3Q9bjKZUFxcjLi4OERFRaGoqAh1dXWdvkdlZSUKCgoQERGBxMREPPXUU2hvb/fM2RD5qcqzrdh2ohESCVDE6R2/lMZmbUR+xa2AkpqaildeeQXl5eXYtWsXbrvtNkydOhUHDx4EAMydOxefffYZSkpKsGXLFtTU1KCwsND1fJvNhoKCAlgsFmzduhUffPAB3n//fSxcuNCzZ0XkZ1btdiyOnTAoHikx4SJXQ93hFA+Rf5EIgtCvPXWxsbH405/+hOnTpyMhIQErVqzA9OnTAQBHjhzBsGHDUFZWhvHjx+PLL7/EXXfdhZqaGmi1WgDA22+/jWeeeQYNDQ1QKpW9ek2j0QiNRgODwQC1Wt2f8om8zm4XcOOrm1Dd1Ia/3TsKU0eliF0SdWP7ibO4551tyIyLwOanbhW7HKKg5M7v7z6vQbHZbPj4449x/vx55OXloby8HFarFfn5+a5jhg4divT0dJSVlQEAysrKkJOT4wonADB58mQYjUbXKEx3zGYzjEZjpxtRoNh24iyqm9oQHSbH5OE6scuhy0jt6CZb3dQGG3uhEInO7YCyf/9+REVFQaVS4eGHH8Ynn3yC7Oxs6PV6KJVKxMTEdDpeq9VCr9cDAPR6fadw4nzc+djlLFmyBBqNxnVLS0tzt2wi0TgvDHj3yGSEKWQiV0OXo41WQS6VwGoTUN9sErscopDndkC5+uqrsWfPHmzfvh2PPPIIZs2ahUOHDnmjNpf58+fDYDC4blVVVV59PSJPMZqs+PJALQBeGNDfyWVSJMU4e6FwHQqR2NxuZalUKjF48GAAQG5uLnbu3Im//e1vuOeee2CxWNDU1NRpFKWurg46nWNYW6fTYceOHZ2+n3OXj/OY7qhUKqhUKndLJRLd5/tqYbLaMSghEqPTYsQuh3qQGhOBqsY2nD7Ximsz2auGSEz97oNit9thNpuRm5sLhUKB0tJS12MVFRWorKxEXl4eACAvLw/79+9HfX2965gNGzZArVYjOzu7v6UQ+Z2SXY7Rvhlj09j7JAC4dvI0cgSFSGxujaDMnz8fU6ZMQXp6Opqbm7FixQps3rwZX331FTQaDWbPno158+YhNjYWarUajz32GPLy8jB+/HgAwKRJk5CdnY37778fr776KvR6PRYsWIDi4mKOkFDQOd7Qgt2VTZBJJSgczZ07gSAtlr1QiPyFWwGlvr4ev/71r1FbWwuNRoMRI0bgq6++wu233w4AeO211yCVSlFUVASz2YzJkyfjzTffdD1fJpNh3bp1eOSRR5CXl4fIyEjMmjULixcv9uxZEfmBlR2LY2++KgGJ6jCRq6HecI6gVLGbLJHo+t0HRQzsg0L+zmYXcP0rpagzmvHWzDGYkpMkdknUCztONuIX/yhDWmw4vnv6NrHLIQo6PumDQkSX9+3RBtQZzYiJUOC2YYlil0O9lBHX0QvlXBss7XaRqyEKbQwoRF6wcpdjemfaqBSo5Ox9EigSo1UIU0hhFxwN24hIPAwoRB7W1GrBhkOO7fPsfRJYJBIJMmIjAQA/nT0vcjVEoY0BhcjD1u6pgcVmx7AkNa5J0YhdDrnJOc1TeZYLZYnExIBC5GHO3TszOHoSkDLjOYJC5A8YUIg86IjeiP3VBihkEkxj75OAlN7RC+UUR1CIRMWAQuRBJR2LYycO1SI2UilyNdQXmXGOEZRTHEEhEhUDCpGHWG12rPmhGgAXxwYy5xqUqsY22OwB1yaKKGgwoBB5yDdH6nH2vAXxUSrccnWC2OVQHyXHhEMhk8Bis6PWwK3GRGJhQCHyEOf0TuGYFMhl/GgFKplUgrQB3MlDJDb+FCXygIZmMzZVOK7Szd07gc85zfMTAwqRaBhQiDxg7Z5q2OwCRqbFYIg2WuxyqJ8yuFCWSHQMKET9JAiCa3qHoyfBwTmCwq3GROJhQCHqp/3VBlTUNUMpl+Lukclil0Me4NxqzGZtROJhQCHqJ+foyeThOmjCFSJXQ56Q7mx339gKQeBWYyIxMKAQ9YPJasPaPY7eJ5zeCR6pA8IhlQCtFhsaWsxil0MUkhhQiPphw6E6GE3tSNKEYcLgeLHLIQ9RyWVIjgkHwHUoRGJhQCHqB+eFAYvGpEImlYhcDXmSa6vxGa5DIRIDAwpRH+kNJnx3tAEAW9sHI+dW48pGjqAQiYEBhaiPVu0+DbsAXJcZi8z4SLHLIQ/LZLM2IlExoBD1gSAIrumd6WM5ehKM0mM7RlC41ZhIFAwoRH1QfuocTp45j3CFDHfmJIldDnlBZjxHUIjExIBC1AfO3id35iQhSiUXuRryhvRYR0AxtFnR1GoRuRqi0MOAQuSmVks71u2rAQDM4PRO0IpQypEYrQLArcZEYmBAIXLT+gN6nLfYkB4bgXFZsWKXQ17ElvdE4mFAIXKTc3pnem4qJBL2PglmWR27s443MKAQ+RoDCpEbqhpbUXbiLCQSoIi9T4LeoERHQDnR0CJyJUShhwGFyA3OrcXXD4pDSkcrdApeA+OjAAAnOIJC5HMMKES9ZLdf6H0yIzdN5GrIFwYldgSUMy2w23lVYyJfYkAh6qVtJ86iuqkN0So5Jg/XiV0O+UDagHAoZBKYrHbUGk1il0MUUhhQiHqppGP05K6RyQhXykSuhnxBLpO6rslzvJ7rUIh8iQGFqBeaTVZ8eaAWAHufhJqB8VwoSyQGBhSiXvh8Xy1MVjsGJURidFqM2OWQD11Yh8KFskS+xIBC1AvO6Z0ZY9PY+yTEDHT1QuEICpEvMaAQ9eB4QwvKT52DVAL8fHSK2OWQj7lGULjVmMinGFCIeuDcWnzzVQnQqsNEroZ8bVBHL5Ragwnnze0iV0MUOtwKKEuWLMG1116L6OhoJCYmYtq0aaioqOh0jMlkQnFxMeLi4hAVFYWioiLU1dV1OqayshIFBQWIiIhAYmIinnrqKbS384NP/sdmF7B694XpHQo9mggF4qOUADjNQ+RLbgWULVu2oLi4GNu2bcOGDRtgtVoxadIknD9/Yehz7ty5+Oyzz1BSUoItW7agpqYGhYWFrsdtNhsKCgpgsViwdetWfPDBB3j//fexcOFCz50VkYd8e7QBdUYzYiIUmDgsUexySCRDEqMBAD/WMaAQ+YrcnYPXr1/f6ev3338fiYmJKC8vx0033QSDwYD33nsPK1aswG233QYAWLZsGYYNG4Zt27Zh/Pjx+Prrr3Ho0CFs3LgRWq0Wo0aNwosvvohnnnkGL7zwApRKpefOjqifnNM700alQCVn75NQNUQbhbITZ3G0rlnsUohCRr/WoBgMBgBAbKzjkvPl5eWwWq3Iz893HTN06FCkp6ejrKwMAFBWVoacnBxotVrXMZMnT4bRaMTBgwe7fR2z2Qyj0djpRuRtTa0WbDjomJ6czgsDhrQhWscIylE2ayPymT4HFLvdjjlz5mDChAm45pprAAB6vR5KpRIxMTGdjtVqtdDr9a5jLg4nzsedj3VnyZIl0Gg0rltaGtcCkPd9urcGFpsdw5LUuCZFI3Y5JKKrOnby/MgRFCKf6XNAKS4uxoEDB/Dxxx97sp5uzZ8/HwaDwXWrqqry+msSlexyTO9w9IScIyinz7VxJw+Rj/QpoDz66KNYt24dNm3ahNTUCz+8dTodLBYLmpqaOh1fV1cHnU7nOqbrrh7n185julKpVFCr1Z1uRN50RG/E/moD5FIJpo1KFrscEllspJI7eYh8zK2AIggCHn30UXzyySf45ptvkJWV1enx3NxcKBQKlJaWuu6rqKhAZWUl8vLyAAB5eXnYv38/6uvrXcds2LABarUa2dnZ/TkXIo9xjp5MHJaIuCiVyNWQP+BOHiLfcmsXT3FxMVasWIG1a9ciOjratWZEo9EgPDwcGo0Gs2fPxrx58xAbGwu1Wo3HHnsMeXl5GD9+PABg0qRJyM7Oxv33349XX30Ver0eCxYsQHFxMVQq/iIg8Vltdqz5oRoAMCOX653IgTt5iHzLrYDy1ltvAQBuueWWTvcvW7YMv/nNbwAAr732GqRSKYqKimA2mzF58mS8+eabrmNlMhnWrVuHRx55BHl5eYiMjMSsWbOwePHi/p0JkYdsOlKPs+ctiI9S4ZarE8Quh/yEcx0KF8oS+YZbAUUQhB6PCQsLw9KlS7F06dLLHpORkYEvvvjCnZcm8hnnhQELx6RALuPVIMhhiGsnD6d4iHyBP32JLnKmxYxNRxzro7h7hy42VOcYQaluaoPRZBW5GqLgx4BCdJE1P1Sj3S5gZKoGV3UM6RMBQEyEEkkax8UiK/Sc5iHyNgYUog6CIFzofcILA1I3hiU5WhwcrmU3ayJvY0Ah6rC/2oCKumYo5VL8bAR7n9ClnNM8h2s5gkLkbQwoRB2cFwacPFwHTYRC5GrIH3EEhch3GFCIAJisNqzdUwMAmMHFsXQZw5IcIygV+mbY7T3vaiSivmNAIQKw8XAdDG1WJGnCMGFwvNjlkJ/KjIuESi5Fm9WGU42tYpdDFNQYUIhwobV94ZgUyKQSkashfyWXSV27u45wmofIqxhQKOTpDSZ8d7QBADCdre2pB85pHq5DIfIuBhQKeat2n4ZdAK7NHICs+EixyyE/51woe4gBhcirGFAopAmC4Nq9wwsDUm9ck6IB4NiWTkTew4BCIW135TmcPHMe4QoZ7hyRJHY5FACyk9SQSIA6oxn1zSaxyyEKWgwoFNKci2PvzElClMqta2dSiIpUyTEowXHhwAMcRSHyGgYUClmtlnas21cLAJgxlr1PqPdynNM8p7kOhchbGFAoZK0/oEeLuR1pseG4LjNW7HIogHAdCpH3MaBQyHJdGHBMGqTsfUJucI6gcIqHyHsYUCgkVTW2ouzEWUgkQFFuitjlUIAZnuxYKKs3mtDQbBa7HKKgxIBCIcm5tfj6QXFIHRAhcjUUaCJVcgzs6JnDURQi72BAoZBjtwtYtZu9T6h/RqbGAAB+qGoStQ6iYMWAQiFn28mzOH2uDdEqOSYP14ldDgWo3MwBAIBdPzWKXAlRcGJAoZCzsmNx7F0jkxCulIlcDQWqazt2fu2paoLVZhe5GqLgw4BCIaXZZMUXBxy9T3hhQOqPwQlRUIfJ0Wqx8cKBRF7AgEIh5fN9tTBZ7RiYEIkx6TFil0MBTCqVYGzHKMrOn86JXA1R8GFAoZBSctGFASUS9j6h/hnbsQ6l/BTXoRB5GgMKhYzjDS0oP3UOUglQOIa9T6j/xmZcGEERBEHkaoiCCwMKhYxVHaMnN1+VAK06TORqKBiMSNVAKZOiodmMysZWscshCioMKBQSbHYBq3dXAwBmjOXiWPKMMIUMOamOtve7uA6FyKMYUCgkfHe0AXqjCTERCkwclih2ORREnOtQdnEdCpFHMaBQSHAujp06MhkqOXufkOdcvA6FiDyHAYWCXlOrBRsO1gHg9A55Xm6GYwTlWH0Lzp23iFwNUfBgQKGg9+neGlhsdgzVRWN4slrscijIxEYqMTgxCgBQfoqjKESewoBCQc955eIZY9n7hLxjbIZzHQoDCpGnMKBQUKvQN2PfaQPkUgmmjUoWuxwKUs6OsrxwIJHnMKBQUCvZVQUAmDgsEXFRKpGroWB1XUdA2Xu6CS3mdpGrIQoODCgUtKw2O9bscfQ+4YUByZvS4yKQFR8Jq03Av482iF0OUVBgQKGgtelIPc60WBAfpcQtVyeIXQ4FuduGOvrrlB6uF7kSouDgdkD59ttvcffddyM5ORkSiQRr1qzp9LggCFi4cCGSkpIQHh6O/Px8HD16tNMxjY2NmDlzJtRqNWJiYjB79my0tLT060SIunL2Pvn56BQoZMzi5F3OgLKpogF2O6/LQ9Rfbv/UPn/+PEaOHImlS5d2+/irr76KN954A2+//Ta2b9+OyMhITJ48GSaTyXXMzJkzcfDgQWzYsAHr1q3Dt99+i4ceeqjvZ0HUxZkWMzYdcfyfLHufkC9cmxmLKJUcZ1rMOFBjELscooAnd/cJU6ZMwZQpU7p9TBAEvP7661iwYAGmTp0KAPjnP/8JrVaLNWvW4N5778Xhw4exfv167Ny5E2PHjgUA/P3vf8edd96JP//5z0hO5k4L6r81P1Sj3S5gZKoGV2mjxS6HQoBSLsWNQ+Lx5QE9Sg/XY0RqjNglEQU0j457nzx5Enq9Hvn5+a77NBoNxo0bh7KyMgBAWVkZYmJiXOEEAPLz8yGVSrF9+/Zuv6/ZbIbRaOx0I7ocQRBcvU+mc/SEfOhW1zQP16EQ9ZdHA4perwcAaLXaTvdrtVrXY3q9HomJnS/WJpfLERsb6zqmqyVLlkCj0bhuaWn8pUOXd6DaiCP6ZijlUvxsBEfkyHeci7H3nTagvtnUw9FEdCUBsXJw/vz5MBgMrltVVZXYJZEfKyl3/PuYlK2FJkIhcjUUShKjwzAyVQMA2HyE242J+sOjAUWn0wEA6urqOt1fV1fnekyn06G+vvPwZ3t7OxobG13HdKVSqaBWqzvdiLpjstqwdk8NAC6OJXE4p3m+OcJpHqL+8GhAycrKgk6nQ2lpqes+o9GI7du3Iy8vDwCQl5eHpqYmlJeXu4755ptvYLfbMW7cOE+WQyFo4+E6GNqsSNKE4YbB8WKXQyHIud34u6MNsLTbRa6GKHC5vYunpaUFx44dc3198uRJ7NmzB7GxsUhPT8ecOXPw0ksvYciQIcjKysJzzz2H5ORkTJs2DQAwbNgw3HHHHXjwwQfx9ttvw2q14tFHH8W9997LHTzUbx9uOwUAKByTApmUFwYk37smWYOEaBUams3YcbIRNwxhUCbqC7dHUHbt2oXRo0dj9OjRAIB58+Zh9OjRWLhwIQDg6aefxmOPPYaHHnoI1157LVpaWrB+/XqEhYW5vsfy5csxdOhQTJw4EXfeeSduuOEGvPPOOx46JQpV5acase1EIxQyCX41LkPscihESaUSTOwYRVm3r0bkaogCl0QQhIBreWg0GqHRaGAwGLgehVx+u2wHNlU04J6xafjj9BFil0MhbPuJs7jnnW2IVMqwc0E+IpRuD1YTBSV3fn8HxC4eop4cqDZgU0UDpBLgkVsGiV0OhbjrsmKRGReB8xYbvtjfffsEIroyBhQKCks3OdZF3T0yGZnxkSJXQ6FOIpG4dpH9axfbIhD1BQMKBbyjdc1Yf9Dxf6nFtw4WuRoih8IxKZBKgB0nG/HTmfNil0MUcBhQKOC9ufk4BAGYPFzL6+6Q30jShOOmqxydZZ2XXiCi3mNAoYB2rL4Zn+517JR49NYhIldD1NkvOqZ5Vpafhs0ecPsRiETFgEIBSxAE/O6TA7DZBeQP0yKno8U4kb+YOCwRAyIU0BtN+O4oW98TuYMBhQJWSflp7DjZiHCFDM/fnS12OUSXUMllmDoqBQBQsovTPETuYEChgHS2xYyXvzgMAJh7+xCkxUaIXBFR95zTPF8d1KOqsVXkaogCBwMKBaSXvziCplYrhiWp8dsJWWKXQ3RZ2clq3DgkHu12AX//5qjY5RAFDAYUCjhbj5/Bqt2nIZEAL//8Gihk/GdM/m3u7VcBAFbtruaWY6Je4k92Cih1RhPm/v97AAD3jcvA6PQB4hZE1Atj0gfg1qsTYLML+FspR1GIeoMBxUtsNhs2b96Mjz76CJs3b4bNZvPJc4OZyWrDQ//chTqjGYMTo/D0HVeLXRJRr8273fHvdc2eahyrbxa5GiL/x4DiBatXr0ZmZiZuvfVW/OpXv8Ktt96KzMxMrF692qvPDWaCIODJkr3Ye9qAmAgF3ps1FtFhCrHLIuq1nFQNJmVrIQjAaxs5ikLUEwaUXurtqMbq1asxffp0nD7deUthdXU1pk+ffsWg0Z/nBrs3So9h3b5ayKUSvH1fLjLieL0dCjzOtSif76vF4VqjyNUQ+TcGlF7ozaiGzWZDaWkpHnzwQQjCpR0jBUGAIAh4+OGHYbFYLnncZrPhiSeeuOxzAWDOnDkhN90jCALe3HwMr238EQDw0rRrMH5gnMhVEfXNsCQ1CkYkAQCeXb0fVptd5IqI/BcDykW6GyW53KjG6dOnUVRUhLlz52Lx4sXIzMxEfn4+Ghsbr/gaDQ0NSE1NvWQ05LvvvrvkNS4mCAKqqqrw3XffuX0OgardZsfvPjmAV9dXAACKbx2Ee69LF7kqov5ZUDAM6jA59lY14e/fHBO7HCK/JRe7AH+xevVqPPHEE51CQkpKCkwmU7ejGk6vv/6626/V0NCA6dOnY+XKlSgsLAQA1NbW9uq5Vzquu3NITU3F3/72N9frBIoWczseXbEbmysaIJUAz989HLOuzxS7LKJ+S9KE46Wf5+Dxj37A0k3HcPNVCcjN4G40oq44goIrr/04e/as11734imbpKSkXj2nrq6u21GRYFm/Ym634f/KfsLEv2zG5ooGhCmk+Mf9YxlOKKj8bGQypo1Khs0uYN6/9uC8uV3skoj8jkS40vCAnzIajdBoNDAYDFCr1f36XjabDZmZmVecXvGmTZs24ZZbbnHVUV1dfcURG+DSUZGezkEikSA1NRUnT56ETCbz+Dl4gtVmx6ry0/j7N8dQ3dQGAEiJCcebM8dgZFqMuMUReYGhzYopr3+LGoMJM3JT8er0EZBIJGKXReRV7vz+DvkRlJ7WfnhbaWkpbDYbZDIZ/va3vwFAjz+kuo6K9Hb9yt///ne/W5NiswtYVX4a+X/dgmdX70d1UxsSo1VYPHU4vnnyZoYTClqacAX+8otRkEgcF77801cVPf7PCVEoCfmA0tu1H97y0ksvuXYEFRYWYuXKlUhJSbnicy7e1WOxWFBaWtqr15o7d65f9FRps9iw86dGvPPtcUx6bQv+u2QvTp1tRVykEgsKhuHbp2/Fr/MyoZL752gPkafkDYrDop8NBwC8ufk4/rrhR4YUog4hP8WzefNm3HrrrR6qrH+SJxRBN+IG6IaMwOmta7Fv5Rs9Pic6JhbNTVfeOXQx5+jMxQt0vcVuF2But6PG0IYfKpuwp+ocfqhswhF9M2z2C//sYiIUeOimgZiVl4lIFddtU+hZ9v1JLPrsEADgiYlDXP1SiIKNO7+/Qz6guLP2w1dk0fGIuHoCmnet9dprKDUJuPbZ5VApFFDKZVDKpVDJpFDKpVDIJFDKpY77O+5TyR2DbSarreNmR5vzz+12mK22C19b7TBZbTC3X77HQ2K0CqPSYnBdVizuuTaNXWEp5P1/353AS58fBgD8alw6FhQMQ4SSgZ2CCwOKm5w7YHrzVxEVFYWWlhZIJJIrHp+Wlubagtx162+PJBLAB2+L9pcvIyx9hNdfRyWXYkSqBqPSYjAqbQBGp8cgSRPGBYFEXbz77Qn84QtHSBkYH4nX7x2FEakx4hbVDzabDd999x1qa2uRlJSEG2+80ScL9cV6XeoZA0ofrF69Gv/5n/+JM2fO9HjsokWL8O67717Sb+TBBx/EkCFDLvlA2Gw2vPDCC3jppZfcqkkmk8Fut3ttZOcPb7yL2wp+Dku73XGz2V1/Nl/0Z8djjsW1YXIZwhQyhCllCJNLHX9WyBCukCFMceHri/8crpBBJmUYIeqNfx89gydL9kJvNEEuleC/bh2M/7gxC+oAG2UUqy9TMPWDCkYMKH20fPly3HfffT0et2LFCvziF79wK6H701oXJ+cWZyLyL02tFvx+zQF8vs+xiD86TI5ZeZn47YRMxEWpRK6uZz2NSi9atAi///3vO/3M7GnUozejIpd7XU+uvQuE0Rl/rtGt399CADIYDAIAwWAwePT7btq0SQDQ423Tpk1uf+/29nYhNTVVkEgkvXoN523OnDlCfHy8W8/p6SaRSIS0tDShvb3do39/ROQ5drtd+GxvtTDxL5uFjGfWCRnPrBOuXvCFMPv9ncL//vuE8KPeKNjtdrHLvITzZ11PP4dSU1OFVatWCYIgCKtWrbrkOe483t7eLmzcuFGIjY3t98+99vZ2YdOmTcKKFSuETZs2CWaz2fX1okWLrliHp/8eL66jtz+ve/q76ukc3XmtvnDn9zdHUC7S04LZ/jY8c6Z7AL2ettm0aROqq6t7NbJzcZ2xsbGu6wJd/Fq+3MVDRP1ntwvYcLgOSzcdw77Thk6PJUarcP2gOFw/OB4TBscj2Q/Wdrk7WnzXXXdh3bp1bj/uPM8nn3wSH330Ua/X+b322mt47LHHOk3BO0cbjh49esn0vUwm61X/qDlz5mDq1KmXTO9fPJJx/fXXY+vWrd1+nZiYCACor6/vto7eTFP1ZgQJuHRdZNdzTElJwUMPPdTtkoX+4hRPP1wuRHjqF3t386PduTgMfffdd73+wPf0D9G5eJfhhCiwCIKAA9VG/PvYGWw9fgY7TjZeslMuXCFDUkwYkjXhSNKEISkmHMmaMOg0YYgOUyBCKUOE0rEuLLzjv3KZZ9thffTRR/jVr37l0e/pac5fwOfOncPy5cvR0NDgse8dHx+P++67DwMGDOgx7PQ2/ACX/g7qGn7GjRuHjIyMK56Lc5OHuzy5hocBpZ+6CxGe/MXu/Ie1du1avP7665fsCOruH2Jvt0J3rdOf5yKJqO/M7TbsPtWE74+dwffHz2DfaUOn/kK9pZRJXWElQnkhuDj/q5RLoZRJIZdJoJBJO26OP8tlUihlEsgvuv/onu146b/u9cIZEwDExsbisccew3vvvdfpd5RUKoXdfvnWDv3hyZF3BhQP8NUv9t6GoZ6mh7obXiSi0GGy2qA3mFBjaENtkwm1hjZUd/xXbzChxdwOk9WGVoujZ5G3fvILdhuq354NW3PPOyIpcHjqmm4MKAGmt2HI2yM7RBQaBMHR5bnNYkOr1YY2i+PWamlHm/PrjjBjtdk7bgKsNjvaO/7r+tpuh6VdQLvdcZylXcDxnaXYvPRZsU+TvKC/uz/d+f3NNoV+QCaT9eoNLywsxNSpUzllQ0T9IpFIXH2KBnjjBWaNxerbhuDxxx9HdXW1N16BROLL69eF/MUCA40zzPzyl7/ELbfcwnBCRH6psLAQp06dwqJFi8QuhTwoKSnJZ6/FgEJERF4hk8mwcOFCrFq1CqmpqT57Xeeizri4ONG3XQcLiUSCtLQ03HjjjT57TVEDytKlS5GZmYmwsDCMGzcOO3bsELMcIiLygsLCQvz000/YtGkT5syZAwCXDQ533XXXFR/vjdTUVKxatQrvvPNOv79X11Hq1NRULFq0yHUewaCnkXjn39/rr7/u21F7DzeJ67WPP/5YUCqVwv/+7/8KBw8eFB588EEhJiZGqKur6/G53uokS0RE3tddt9O0tLQeO8fGxcVdsRt3bGyssHHjxk6dULv7Xle6paamCosWLepVl1V3v7dMJrvi113reP7556/YHfdKt4v/ni73dzZnzpxedcu9+L3pr4DoJDtu3Dhce+21+J//+R8AgN1uR1paGh577DE8++yVV38H2y4eIqJQ05dr76xdu7ZPjTR76habkJCAmTNn9qlVw8V9rbo2fet6EdnedpK9+O+jtx3IuzZ9c+7wBNxv2OnNNht+v83YYrEgIiICK1euxLRp01z3z5o1C01NTVi7dm2n481mM8xms+tro9GItLQ0BhQiohDjiXYL3voF7K3ve7krNF8p/Fyp5b6Yuz/9PqDU1NQgJSUFW7duRV5enuv+p59+Glu2bMH27ds7Hf/CCy90uxKcAYWIKPT40y9cXwmWcw66Pijz58/HvHnzXF87R1CIiCj09LZ3VDAJxXMWJaDEx8dDJpOhrq6u0/11dXXQ6XSXHK9SqaBSqXxVHhEREYlMlG3GSqUSubm5KC0tdd1nt9tRWlraacqHiIiIQpNoUzzz5s3DrFmzMHbsWFx33XV4/fXXcf78efz2t78VqyQiIiLyE6IFlHvuuQcNDQ1YuHAh9Ho9Ro0ahfXr10Or1YpVEhEREfkJXs2YiIiIfMKd39+8Fg8RERH5HQYUIiIi8jsMKEREROR3GFCIiIjI7zCgEBERkd8JiFb3XTk3HhmNRpErISIiot5y/t7uzQbigAwozc3NAMDr8RAREQWg5uZmaDSaKx4TkH1Q7HY7ampqEB0dDYlE4pHv6bwAYVVVVdD2Vgn2cwz28wN4jsGC5xgcgv0cvXF+giCgubkZycnJkEqvvMokIEdQpFIpUlNTvfK91Wp1UP5Du1iwn2Ownx/AcwwWPMfgEOzn6Onz62nkxImLZImIiMjvMKAQERGR32FA6aBSqfD8889DpVKJXYrXBPs5Bvv5ATzHYMFzDA7Bfo5in19ALpIlIiKi4MYRFCIiIvI7DChERETkdxhQiIiIyO8woBAREZHfCemA8sorr0AikWDOnDmu+0wmE4qLixEXF4eoqCgUFRWhrq5OvCL7qbtzvOWWWyCRSDrdHn74YfGKdNMLL7xwSf1Dhw51PR4M72FP5xjo7yEAVFdX47777kNcXBzCw8ORk5ODXbt2uR4XBAELFy5EUlISwsPDkZ+fj6NHj4pYsft6Osff/OY3l7yPd9xxh4gVuyczM/OS+iUSCYqLiwEEx2exp3MMhs+izWbDc889h6ysLISHh2PQoEF48cUXO10vR4zPY0B2kvWEnTt34h//+AdGjBjR6f65c+fi888/R0lJCTQaDR599FEUFhbi+++/F6nSvrvcOQLAgw8+iMWLF7u+joiI8GVp/TZ8+HBs3LjR9bVcfuGfcrC8h1c6RyCw38Nz585hwoQJuPXWW/Hll18iISEBR48exYABA1zHvPrqq3jjjTfwwQcfICsrC8899xwmT56MQ4cOISwsTMTqe6c35wgAd9xxB5YtW+b6OpC2rO7cuRM2m8319YEDB3D77bdjxowZAILjs9jTOQKB/VkEgD/+8Y9466238MEHH2D48OHYtWsXfvvb30Kj0eDxxx8HINLnUQhBzc3NwpAhQ4QNGzYIN998s/DEE08IgiAITU1NgkKhEEpKSlzHHj58WAAglJWViVRt31zuHAVBuOTrQPP8888LI0eO7PaxYHkPr3SOghD47+Ezzzwj3HDDDZd93G63CzqdTvjTn/7kuq+pqUlQqVTCRx995IsS+62ncxQEQZg1a5YwdepU3xTkA0888YQwaNAgwW63B81nsauLz1EQAv+zKAiCUFBQIDzwwAOd7issLBRmzpwpCIJ4n8eQnOIpLi5GQUEB8vPzO91fXl4Oq9Xa6f6hQ4ciPT0dZWVlvi6zXy53jk7Lly9HfHw8rrnmGsyfPx+tra0+rrB/jh49iuTkZAwcOBAzZ85EZWUlgOB6Dy93jk6B/B5++umnGDt2LGbMmIHExESMHj0a7777ruvxkydPQq/Xd3ofNRoNxo0bFzDvY0/n6LR582YkJibi6quvxiOPPIKzZ8+KUG3/WSwWfPjhh3jggQcgkUiC6rPo1PUcnQL5swgA119/PUpLS/Hjjz8CAPbu3Yt///vfmDJlCgDxPo8hN8Xz8ccfY/fu3di5c+clj+n1eiiVSsTExHS6X6vVQq/X+6jC/rvSOQLAr371K2RkZCA5ORn79u3DM888g4qKCqxevdrHlfbNuHHj8P777+Pqq69GbW0tFi1ahBtvvBEHDhwImvfwSucYHR0d8O/hiRMn8NZbb2HevHn43e9+h507d+Lxxx+HUqnErFmzXO+VVqvt9LxAeh97OkfAMb1TWFiIrKwsHD9+HL/73e8wZcoUlJWVQSaTiXwG7lmzZg2amprwm9/8BkDw/Dy9WNdzBAL/5ykAPPvsszAajRg6dChkMhlsNhv+8Ic/YObMmQAg2ucxpAJKVVUVnnjiCWzYsCEg5rD7ojfn+NBDD7n+nJOTg6SkJEycOBHHjx/HoEGDfFVqnzlTPQCMGDEC48aNQ0ZGBv71r38hPDxcxMo850rnOHv27IB/D+12O8aOHYuXX34ZADB69GgcOHAAb7/9tuuXd6DrzTnee++9ruNzcnIwYsQIDBo0CJs3b8bEiRNFqbuv3nvvPUyZMgXJyclil+I13Z1joH8WAeBf//oXli9fjhUrVmD48OHYs2cP5syZg+TkZFE/jyE1xVNeXo76+nqMGTMGcrkccrkcW7ZswRtvvAG5XA6tVguLxYKmpqZOz6urq4NOpxOnaDf1dI4XL/ZyGjduHADg2LFjvi7XI2JiYnDVVVfh2LFj0Ol0Af8edufic+xOoL2HSUlJyM7O7nTfsGHDXNNYzveq646PQHofezrH7gwcOBDx8fEB8z46nTp1Chs3bsR//Md/uO4Lts9id+fYnUD7LALAU089hWeffRb33nsvcnJycP/992Pu3LlYsmQJAPE+jyEVUCZOnIj9+/djz549rtvYsWMxc+ZM158VCgVKS0tdz6moqEBlZSXy8vJErLz3ejrH7oaN9+zZA8DxAzUQtbS04Pjx40hKSkJubm7Av4fdufgcuxNo7+GECRNQUVHR6b4ff/wRGRkZAICsrCzodLpO76PRaMT27dsD5n3s6Ry7c/r0aZw9ezZg3kenZcuWITExEQUFBa77gu2z2N05difQPosA0NraCqm0cxyQyWSw2+0ARPw8em35bYDougL74YcfFtLT04VvvvlG2LVrl5CXlyfk5eWJV6AHXHyOx44dExYvXizs2rVLOHnypLB27Vph4MCBwk033SRukW747//+b2Hz5s3CyZMnhe+//17Iz88X4uPjhfr6ekEQguM9vNI5BsN7uGPHDkEulwt/+MMfhKNHjwrLly8XIiIihA8//NB1zCuvvCLExMQIa9euFfbt2ydMnTpVyMrKEtra2kSsvPd6Osfm5mbhySefFMrKyoSTJ08KGzduFMaMGSMMGTJEMJlMIlffezabTUhPTxeeeeaZSx4Lhs+iIFz+HIPhsygIjt1kKSkpwrp164STJ08Kq1evFuLj44Wnn37adYwYn0cGlC4Bpa2tTfiv//ovYcCAAUJERITw85//XKitrRWvQA+4+BwrKyuFm266SYiNjRVUKpUwePBg4amnnhIMBoO4RbrhnnvuEZKSkgSlUimkpKQI99xzj3Ds2DHX48HwHl7pHIPhPRQEQfjss8+Ea665RlCpVMLQoUOFd955p9PjdrtdeO655wStViuoVCph4sSJQkVFhUjV9s2VzrG1tVWYNGmSkJCQICgUCiEjI0N48MEHBb1eL2LF7vvqq68EAN2+N8HwWRSEy59jsHwWjUaj8MQTTwjp6elCWFiYMHDgQOH3v/+9YDabXceI8XmUCMJFreKIiIiI/EBIrUEhIiKiwMCAQkRERH6HAYWIiIj8DgMKERER+R0GFCIiIvI7DChERETkdxhQiIiIyO8woBAREZHfYUAhIiIiv8OAQkRERH6HAYWIiIj8DgMKERER+Z3/Bz62QkhJlogOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] } ], "source": [ + "mi.fixed[:] = True\n", "mi.fixed[['tau_bkg', 'A_bkg']] = False\n", - "mi" + "print (mi.fixed)" + ] + }, + { + "cell_type": "markdown", + "id": "c5a8d247-5b71-42ae-9706-d16192374686", + "metadata": {}, + "source": [ + "bevor wir die Minmierung starten und das Resultat darstellen." ] }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 511, "id": "3e90c2ed-c282-47c2-b0fe-3063f9545639", "metadata": {}, "outputs": [ @@ -2120,30 +3314,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 35.17 (χ²/ndof = 0.8) Nfcn = 91 FCN = 32.8 (χ²/ndof = 0.8) Nfcn = 98
EDM = 2.29e-12 (Goal: 0.0002) EDM = 4.43e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -2226,8 +3417,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2237,8 +3428,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2331,8 +3522,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2342,24 +3533,823 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - "
6 A_bkg 108 12 137 15
7 tau_bkg 39.9 3.0 34.9 2.3 0 0 0 0 152 -36 (-0.963) 229 -33 (-0.962)
tau_bkg 0 0 0 -36 (-0.963) 9.15 -33 (-0.962) 5.18
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:49.875185\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 35.17 (χ²/ndof = 0.8) │ Nfcn = 91 │\n", - "│ EDM = 2.29e-12 (Goal: 0.0002) │ │\n", + "│ FCN = 32.8 (χ²/ndof = 0.8) │ Nfcn = 98 │\n", + "│ EDM = 4.43e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", @@ -2369,8 +4359,8 @@ "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", "│ 4 │ sigma_p1 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", - "│ 6 │ A_bkg │ 108 │ 12 │ │ │ │ │ │\n", - "│ 7 │ tau_bkg │ 39.9 │ 3.0 │ │ │ 0 │ │ │\n", + "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", @@ -2381,57 +4371,40 @@ "│ mu_p2 │ 0 0 0 0 0 0 0 0 │\n", "│ sigma_p1 │ 0 0 0 0 0 0 0 0 │\n", "│ sigma_p2 │ 0 0 0 0 0 0 0 0 │\n", - "│ A_bkg │ 0 0 0 0 0 0 152 -36 │\n", - "│ tau_bkg │ 0 0 0 0 0 0 -36 9.15 │\n", + "│ A_bkg │ 0 0 0 0 0 0 229 -33 │\n", + "│ tau_bkg │ 0 0 0 0 0 0 -33 5.18 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 120, + "execution_count": 511, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP4UlEQVR4nO3deXxTdb4//lf2rknplnSnLAplpyhU3OmAWB2YFkZn0EHl6tVbUeAOOswgCjriMIuOflFHf170XkEfFhAUFYUK6EjZiuxQ2aSlbdJCSdLSpmmS8/ujTaCl0KZNcrK8no9HHtLkpHkfQtqXn+V9JIIgCCAiIiLyI1KxCyAiIiLqiAGFiIiI/A4DChEREfkdBhQiIiLyOwwoRERE5HcYUIiIiMjvMKAQERGR32FAISIiIr8jF7uAnnA4HKiqqkJ0dDQkEonY5RAREVE3CIKA+vp6JCcnQyq99hhJQAaUqqoqpKWliV0GERER9UBFRQVSU1OveUxABpTo6GgArSeoVqtFroaIiIi6w2w2Iy0tzfV7/FoCMqA4p3XUajUDChERUYDpzvIMLpIlIiIiv8OAQkRERH6HAYWIiIj8DgMKERER+R0GFCIiIvI7DChERETkdxhQiIiIyO8woBAREZHfYUAhIiIiv8OAQkRERH6HAYWIiIj8DgMKERER+R0GFCLyK1vLavB/O87A7hDELoWIRBSQVzMmouBkamzBf/5fKZptDnx71IDXfzMK0WEKscsiIhFwBIWI/MbnB6rQbHMAALaU1WLm/+yCgyMpRCGJAYWI/EZR6VkAwK/HpCJKJcfeciO+PFQtclVEJAYGFCLyC8cN9dhfYYRcKsEzdw3Co7f0AwD8/Zuf0GJ3iFwdEfkaAwoR+QXn6MkdgxIRH6XCrFsyERepxOlzF1G056zI1RGRrzGgEJHobHYH1u6tBABMy04FAESp5Hji9v4AgJU7z4hWGxGJgwGFiES37adanGtoRlykEncOSnTdnz86FXKpBIerzDhZ2yBihUTkawwoRCQ65xTO1FEpUMgu/ViKjVTi5oHxAIAN+7lYliiUMKAQkajqLlpRfMwA4NL0zuXuHZ4MAPhsfyUEgVuOiUIFAwoRiWr9vkq02AUMTVFjcJL6isd/MUQLpVyKk7UXcUxfL0KFRCQGtwJK3759IZFIrrgVFhYCACwWCwoLCxEXF4eoqCgUFBTAYDC0+x7l5eXIy8tDREQEEhMTMX/+fNhsNs+dEREFFOf0zvTstE4fV4cpcNt1CQCATUcMnR5DRMHHrYCye/duVFdXu26bNm0CAEyfPh0AMHfuXHz++ecoKirCtm3bUFVVhfz8fNfz7XY78vLyYLVasX37dnzwwQd4//33sWjRIg+eEhEFisNVJhypNkMpk2LKyOSrHndrW0ApOXneV6URkcjcCigJCQnQ6XSu24YNG9C/f3/cdtttMJlMeO+99/CPf/wDd955J7Kzs7FixQps374dO3bsAAB88803OHLkCD788EOMHDkSkydPxosvvojly5fDarV65QSJyH85R09+kaVFTITyqsfd1D8OAFBafgGWFrtPaiMicfV4DYrVasWHH36IRx55BBKJBKWlpWhpaUFubq7rmEGDBiE9PR0lJSUAgJKSEgwbNgxardZ1zKRJk2A2m3H48OGrvlZzczPMZnO7GxEFNqvNgfX72vc+uZp+8ZFIjFbBanNgb/kFX5RHRCLrcUBZt24djEYjHnroIQCAXq+HUqlETExMu+O0Wi30er3rmMvDifNx52NXs3TpUmg0GtctLa3zuWoiChzfHjPgQmMLEqNVuKVtK/HVSCQS1yjKDk7zEIWEHgeU9957D5MnT0Zy8tXnjT1lwYIFMJlMrltFRYXXX5OIvMs5vZM/OhVyWdc/im7q3xpitjOgEIUEeU+edObMGWzevBlr16513afT6WC1WmE0GtuNohgMBuh0Otcxu3btave9nLt8nMd0RqVSQaVS9aRUIvJDNfUWbP2pFkDX0ztOOW0jKPsqjGi02hCh7NGPLyIKED0aQVmxYgUSExORl5fnui87OxsKhQLFxcWu+8rKylBeXo6cnBwAQE5ODg4ePIiamhrXMZs2bYJarUZWVlZPz4GIAsy6HythdwgYlR6DAYlR3XpOWmwEUmLCYXMI2Fdh9G6BRCQ6twOKw+HAihUrMHPmTMjll/4PRqPRYNasWZg3bx62bNmC0tJSPPzww8jJycG4ceMAABMnTkRWVhYefPBB7N+/H19//TUWLlyIwsJCjpAQhQhBELrsfXI1I9I0AIADZ00er4uI/IvbAWXz5s0oLy/HI488csVjr776Ku655x4UFBTg1ltvhU6nazcNJJPJsGHDBshkMuTk5OCBBx7A7373OyxZsqR3Z0FEAWP/WROO1zQgTCHFPSOS3Hru8NQYAMCBs0bPF0ZEfsXtSdyJEyde9XoYYWFhWL58OZYvX37V52dkZODLL79092WJKEgU7Wld5H7XEB3UYQq3njs8tXUEZX8FR1CIgh2vxUNEPmNpseOz/VUAgGluTu8AwLAUDSQSoNLYhPMNzZ4uj4j8CAMKEfnMN0cMqLfYkBIT7upr4o7oMAX6xUcC4DoUomDHgEJEPuOc3ikYnQKpVNKj7+Fch7Kf61CIghoDChH5RJWxCf8+cQ4AUNDN3iedca5D4QgKUXBjQCEin/j0x0oIAnBjZiwy4iJ7/H0u7eRhQCEKZgwoROR1rb1PWqd3pvdi9AQAspLUkEiAcw3NOMeFskRBiwGFiLxuz5kL+Pl8IyKUMtw9zL3eJx2FK2XIiI0AAJTp6z1RHhH5IQYUIvI65+hJ3rAkRKp6fw2d63XRAIBjDChEQYsBhYi8qtFqwxcHqgF0/8KAXblepwYAlOnNHvl+ROR/GFCIyKu+OqjHRasdGXERuDEz1iPfc1DbCAqneIiCFwMKEXlVUWnr9M600amQSHrW+6Qj5xTPT4YGOBydX3qDiAIbAwoReU35+UbsOFUHiQTI99D0DgD0jYuESi5FU4sd5XWNHvu+ROQ/GFCIyGvW7D0LABjfPx4pMeEe+74yqQQDtVEAuFCWKFgxoBCRVzgcAlaXtgaU6WM8N3ridL3WuVCWAYUoGDGgEJFX7Dh1HpXGJkSHyTFpiM7j39+1UNbAnTxEwYgBhYi8oqht9OTeEckIU8g8/v0HtE3xnKy56PHvTUTiY0AhIo+rt7Tgq0Oe7X3S0YCE1oBy+txF2LmThyjoMKAQkcd9caAalhYH+idEYlRajFdeIzkmHCq5FFa7A2cvcCcPUbBhQCEijytyLY5N81jvk45kUgky41uvinyqltM8RMGGAYWIPOpkbQNKz1yAVALkj0rx6mv1b5vmOVnb4NXXISLfY0AhIo9a0zZ6ctt1CUhUh3n1tfontI6gMKAQBR8GFCLyGLtDwNq9lQBap3e8rZ9rBIVTPETBhgGFiDzm++O10JstiIlQYMLgRK+/nnOK5xRHUIiCDgMKEXmMc3Hs1JEpUMk93/uko8y2KZ5zDVaYGlu8/npE5DsMKETkEabGFmw6bADgvd4nHUWp5NC1rXM5eY6jKETBhAGFiDzis/2VsNodGKSLxpBktc9et39i20LZGgYUomDCgEJEHuGL3ied6Rfftg7lHBfKEgUTBhQi6rUyfT0OnDVBLpVg6shkn752RlwEAKD8PLvJEgUTBhQi6rXVpRUAgDsHJSIuSuXT1+4b1zrF8/N5jqAQBRMGFCLqlRa7A5/+6LveJx31jW8dQTlzvhGCwIsGEgULBhQi6pWtZbU412BFfJQSt1+f4PPXT+0TAYkEaGi24fxFq89fn4i8gwGFiHqlaE/r9M6vRqVAIfP9j5QwhQzJmnAAwBlO8xAFDQYUIuqx8w3N+PZYDQBgWrbvp3ecnAtlfz7HhbJEwYIBhYh6bN2+KtgcAoananC9Llq0OjLaFspyBIUoeDCgEFGPCILgmt6Z7qPOsVfT1zmCwq3GREHD7YBSWVmJBx54AHFxcQgPD8ewYcOwZ88e1+OCIGDRokVISkpCeHg4cnNzcfz48Xbfo66uDjNmzIBarUZMTAxmzZqFhgZ2gSQKJIerzDimr4dSJsUvR6SIWgtHUIiCj1sB5cKFCxg/fjwUCgW++uorHDlyBH//+9/Rp08f1zHLli3D66+/jrfffhs7d+5EZGQkJk2aBIvF4jpmxowZOHz4MDZt2oQNGzbgu+++w2OPPea5syIir1vd1jn2F0O00EQoRK3FudWYIyhEwUPuzsF/+ctfkJaWhhUrVrjuy8zMdP1ZEAS89tprWLhwIaZMmQIA+N///V9otVqsW7cO999/P44ePYqNGzdi9+7dGDNmDADgjTfewN13342//e1vSE72bRdKInJfs82Odfvaep+IPL0DAOmxrQHF1NQCY6MVMRFKkSsiot5yawTls88+w5gxYzB9+nQkJiZi1KhRePfdd12Pnz59Gnq9Hrm5ua77NBoNxo4di5KSEgBASUkJYmJiXOEEAHJzcyGVSrFz585OX7e5uRlms7ndjYjEU3y0BsbGFujUYbhloO97n3QUoZRDq27tYMtRFKLg4FZAOXXqFN566y0MHDgQX3/9NZ544gk89dRT+OCDDwAAer0eAKDVats9T6vVuh7T6/VITExs97hcLkdsbKzrmI6WLl0KjUbjuqWlibedkYgu9T7JH50CmdR3Fwa8ltQ+raMoZy8woBAFA7cCisPhwOjRo/Hyyy9j1KhReOyxx/Doo4/i7bff9lZ9AIAFCxbAZDK5bhUVFV59PSK6uhqzBdt+qgUATPOD6R2n1D6tzdoqLzSJXAkReYJbASUpKQlZWVnt7hs8eDDKy8sBADqdDgBgMBjaHWMwGFyP6XQ61NTUtHvcZrOhrq7OdUxHKpUKarW63Y2IxLH2x0o4BCA7ow/6JUSJXY5LSkxbQDEyoBAFA7cCyvjx41FWVtbuvp9++gkZGRkAWhfM6nQ6FBcXux43m83YuXMncnJyAAA5OTkwGo0oLS11HfPtt9/C4XBg7NixPT4RIvI+f+p90lEKR1CIgopbu3jmzp2Lm266CS+//DJ+/etfY9euXXjnnXfwzjvvAAAkEgnmzJmDl156CQMHDkRmZiaee+45JCcnY+rUqQBaR1zuuusu19RQS0sLnnzySdx///3cwUPk536sMOJk7UWEKaTIG54kdjntcASFKLi4FVBuuOEGfPrpp1iwYAGWLFmCzMxMvPbaa5gxY4brmGeeeQYXL17EY489BqPRiJtvvhkbN25EWFiY65iVK1fiySefxIQJEyCVSlFQUIDXX3/dc2dFRF7h7H0yeWgSosPE7X3S0eVrUARBgETiH4t3iahnJIIgCGIX4S6z2QyNRgOTycT1KEQ+Ymmx44Y/b0a9xYZV/zEWNw2IF7ukdhqtNmQt+hoAsH/RRNGbxxHRldz5/c1r8RBRt3x9WI96iw2pfcIxrl+c2OVcIUIpR2xka4O2s0ZuNSYKdAwoRNQtRXtap3cKRqdC6ie9TzriVmOi4MGAQkRdqjQ24YeT5wD4V++TjrhQlih4MKAQUZfWlp6FIADj+sUire26N/7IFVA4gkIU8BhQiOiaBEHA6r2t0zvTs/37MhOuXigcQSEKeAwoRHRNu07X4cz5RkQqZZg8rPNuz/7COYJyliMoRAGPAYWIrsnZ+yRveBIilG61TvI5jqAQBQ8GFCK6qovNNnxxsBoAMH2Mf0/vAJeuaFx30YpGq03kaoioNxhQiOiqvjxYjUarHZnxkRiT0UfscrqkCVcgWtU6ylPFURSigMaAQkRXVdQ2vTMtOzVgWsc7p3m4DoUosDGgEFGnzpy/iF2n6yCRAL8alSJ2Od3GXihEwYEBhYg6taZt9OTmAfFIbvulHwhS2E2WKCgwoBDRFRwOAWv2VgIIjMWxl+NWY6LgwIBCRFfYfvI8Ko1NiA6TY2KWVuxy3MKtxkTBgQGFiK6wurQCAPDLEckIU8hErsY9zq3GnOIhCmwMKETUjtnSgq8O6QEE3vQOcGmKx1BvgdXmELkaIuopBhQiamfD/mo02xwYmBiFEakasctxW3yUEiq5FIIA6E0Wscshoh5iQCGidorapnemjwmc3ieXk0gklxbKGhtFroaIeooBhYhcTtQ04MdyI2RSCaYGUO+TjtisjSjwMaAQkYvzwoC3X5eAxOgwkavpOVezNgYUooDFgEJEAACb3YG1e1sDyvQxqSJX0zup3GpMFPAYUIgIAPD98XOoqW9GnwgF7hwUWL1POmI3WaLAx4BCRAAuTe9MGZkCpTywfzSkxLT1QuEIClHACuyfQkTkEcZGKzYdMQAI/Okd4NIISrWpCXaHIHI1RNQTDChEhPX7qmC1O5CVpMaQ5MDrfdKRNloFmVSCFruAmnr2QiEKRAwoRNSu90kwkMuk0KlbdyFxHQpRYGJAIQpxR6vNOFRphkImwZSRgdv7pCNeNJAosDGgEIU45+LYCYO0iI1UilyN56SyWRtRQGNAIQphLXYH1v1YCSB4pnecUmM4gkIUyBhQiELYt8dqcP6iFfFRKtx2XYLY5XgUe6EQBTYGFKIQ5pzeyR+dArksuH4csBcKUWALrp9IRNRt5xqaseVYDQBgenZwTe8Al18wsBGCwF4oRIGGAYUoRK37sRI2h4ARaTEYqI0WuxyPS9K0bjO2tDhQd9EqcjVE5C4GFKIQJAgCiva0XRgwCEdPACBMIUNitAoAp3mIAhEDClEIOlRpRpmhHkq5FPcOTxa7HK/hQlmiwMWAQhSCnJ1jJw3RQROhELka70nhVmOigOVWQHnhhRcgkUja3QYNGuR63GKxoLCwEHFxcYiKikJBQQEMBkO771FeXo68vDxEREQgMTER8+fPh81m88zZEFGXLC12rN9XBSB4p3ecUtisjShgyd19wpAhQ7B58+ZL30B+6VvMnTsXX3zxBYqKiqDRaPDkk08iPz8fP/zwAwDAbrcjLy8POp0O27dvR3V1NX73u99BoVDg5Zdf9sDpEFFXNh81wNTUgiRNGMYPiBe7HK9yNmtjQCEKPG4HFLlcDp1Od8X9JpMJ7733HlatWoU777wTALBixQoMHjwYO3bswLhx4/DNN9/gyJEj2Lx5M7RaLUaOHIkXX3wRzz77LF544QUolcHTZpvIX13e+0QmlYhcjXfxejxEgcvtNSjHjx9HcnIy+vXrhxkzZqC8vBwAUFpaipaWFuTm5rqOHTRoENLT01FSUgIAKCkpwbBhw6DVal3HTJo0CWazGYcPH77qazY3N8NsNre7EZH79CYLvvupFgAwLTtN5Gq8z9Ws7UKjyJUQkbvcCihjx47F+++/j40bN+Ktt97C6dOnccstt6C+vh56vR5KpRIxMTHtnqPVaqHX6wEAer2+XThxPu587GqWLl0KjUbjuqWlBf8PViJvWPvjWTgE4Ia+fZAZHyl2OV7nHEExW2yot7SIXA0RucOtKZ7Jkye7/jx8+HCMHTsWGRkZ+OSTTxAeHu7x4pwWLFiAefPmub42m80MKURuEgQBq129T0Lj8xOlkiMmQgFjYwsqjU0YpAveHUtEwaZX24xjYmJw3XXX4cSJE9DpdLBarTAaje2OMRgMrjUrOp3uil09zq87W9fipFKpoFar292IyD17y404de4iwhUy3D08SexyfMa11ZgLZYkCSq8CSkNDA06ePImkpCRkZ2dDoVCguLjY9XhZWRnKy8uRk5MDAMjJycHBgwdRU1PjOmbTpk1Qq9XIysrqTSlE1IXVbb1PJg/TIUrl9vr4gJXCnTxEAcmtn1K///3vce+99yIjIwNVVVV4/vnnIZPJ8Jvf/AYajQazZs3CvHnzEBsbC7VajdmzZyMnJwfjxo0DAEycOBFZWVl48MEHsWzZMuj1eixcuBCFhYVQqVReOUEiApqsdny+vxpA6EzvOHEnD1FgciugnD17Fr/5zW9w/vx5JCQk4Oabb8aOHTuQkJAAAHj11VchlUpRUFCA5uZmTJo0CW+++abr+TKZDBs2bMATTzyBnJwcREZGYubMmViyZIlnz4qI2tl4uBoNzTakxYZjbGas2OX4FKd4iAKTWwHl448/vubjYWFhWL58OZYvX37VYzIyMvDll1+687JE1EvO3icFo1MhDfLeJx2l9mndanyWIyhEAYXX4iEKcmcvNGL7yfMAWgNKqEnlBQOJAhIDClGQW1NaCUEAbuofh7TYCLHL8TnnFM+5hmZYWuwiV0NE3cWAQhTEHA4Bq/e27t6ZPib0Rk8AICZCgQilDABQxWkeooDBgEIUxHb9XIeKuiZEqeS4a0jo9D65nEQi4VZjogDEgEIUxIraOsfeMzwJ4W2jCKEouS2gVJsYUIgCBQMKUZBqaLbhy4NtvU9CdHrHyRlQKo0WkSshou5iQCEKUl8eqEZTix394iMxOr2P2OWIKiUmDABQzTUoRAGDAYUoSLl6n2SnQiIJrd4nHTlHUKo4xUMUMBhQiILQz+cuYtfPdZBKQrP3SUdJmraAwikeooDBgEIUhJyjJ7cMTIBOEyZyNeJz7uKpMjZBEASRqyGi7mBAIQoydoeANXtbA0qoL4510mpUkEiAZpsDdRetYpdDRN3AgEIUZLafPIdqkwXqMDlyB2vFLscvqOQyxEe1XjGd0zxEgYEBhSjIOHufTBmZgjBF6PY+6YgLZYkCCwMKURAxNbXg68N6AJze6ci51Zjt7okCAwMKURD5fH8Vmm0OXK+NxrAUjdjl+JVLO3kYUIgCAQMKURBx7t6Zxt4nV3BN8XANClFAYEAhChInauqxr8IImVSCqaNSxC7H77imeLgGhSggMKAQBQnn4tg7rk9EQrRK5Gr8D6d4iAILAwpRELDZHVj7YyUALo69GucUT019M6w2h8jVEFFXGFCIgsB3x2tRW9+M2Egl7rg+Uexy/FJcpBJKuRSCABjMXIdC5O8YUIiCgHN6Z+rIFCjl/Fh3RiqVIFnDrcZEgYI/yYgCXN1FKzYfNQDg9E5XXOtQuFCWyO8xoBAFuPX7KtFiFzA0RY3BSWqxy/Fr3GpMFDgYUIgCnKv3yWiOnnSF3WSJAgcDClEAO1JlxuEqM5QyKaaMZO+TriTFcKsxUaBgQCEKYEWlFQCA3KxE9IlUilyN/3NO8VSbOMVD5O8YUIgClNXmwPp9VQCA6dlpIlcTGJxTPJUcQSHyewwoRAHq22M1qLtoRWK0CrcMjBe7nIDg3MVTb7Gh3tIicjVEdC0MKEQBanXb9M6vRqdALuNHuTsiVXJowhUAOM1D5O/4U40oANXUW7ClrBYAp3fc5VyHwmkeIv/GgEIUgNb9WAm7Q8Co9BgMSIwSu5yAwm6yRIGBAYUowAiCcKn3STZ7n7jLtZOHzdqI/BoDClGAOXDWhJ8MDVDJpbh3RLLY5QScZPZCIQoIDChEAcbZ++SuoTqowxQiVxN4krnVmCggMKAQBRBLix2fsfdJr7BZG1FgYEAhCiDfHDHAbLEhWROGnP5xYpcTkC4FlCY4HILI1RDR1fQqoLzyyiuQSCSYM2eO6z6LxYLCwkLExcUhKioKBQUFMBgM7Z5XXl6OvLw8REREIDExEfPnz4fNZutNKUQhwbk4tiA7FTKpRORqApM2WgWpBGixCzjX0Cx2OUR0FT0OKLt378a//vUvDB8+vN39c+fOxeeff46ioiJs27YNVVVVyM/Pdz1ut9uRl5cHq9WK7du344MPPsD777+PRYsW9fwsiEJAtakJ3x9v7X3C3Ts9J5dJoVW3bTXmNA+R3+pRQGloaMCMGTPw7rvvok+fPq77TSYT3nvvPfzjH//AnXfeiezsbKxYsQLbt2/Hjh07AADffPMNjhw5gg8//BAjR47E5MmT8eKLL2L58uWwWq2eOSuiILR2byUEAbgxMxYZcZFilxPQuJOHyP/1KKAUFhYiLy8Pubm57e4vLS1FS0tLu/sHDRqE9PR0lJSUAABKSkowbNgwaLVa1zGTJk2C2WzG4cOHO3295uZmmM3mdjeiUCIIAor2tO7emc7Rk15jQCHyf3J3n/Dxxx9j79692L179xWP6fV6KJVKxMTEtLtfq9VCr9e7jrk8nDgfdz7WmaVLl2Lx4sXulkoUNPacuYCfzzciQinD3cOSxC4n4F3qJsspHiJ/5dYISkVFBZ5++mmsXLkSYWFh3qrpCgsWLIDJZHLdKioqfPbaRP7AOXpy97AkRKrc/v8K6oAjKET+z62AUlpaipqaGowePRpyuRxyuRzbtm3D66+/DrlcDq1WC6vVCqPR2O55BoMBOp0OAKDT6a7Y1eP82nlMRyqVCmq1ut2NKFQ0Wm344kA1AE7veIoroJgYUIj8lVsBZcKECTh48CD27dvnuo0ZMwYzZsxw/VmhUKC4uNj1nLKyMpSXlyMnJwcAkJOTg4MHD6KmpsZ1zKZNm6BWq5GVleWh0yIKHl8d1OOi1Y6MuAjcmBkrdjlBIYkXDCTye26NFUdHR2Po0KHt7ouMjERcXJzr/lmzZmHevHmIjY2FWq3G7NmzkZOTg3HjxgEAJk6ciKysLDz44INYtmwZ9Ho9Fi5ciMLCQqhUKg+dFlHwcLa2nzY6FRIJe594QkrbCMq5BissLXaEKWQiV0REHXl8MvvVV1+FVCpFQUEBmpubMWnSJLz55puux2UyGTZs2IAnnngCOTk5iIyMxMyZM7FkyRJPl0IU8MrPN2LHqTpIJK3N2cgzYiIUCFfI0NRih95kQd94btsm8je9Dihbt25t93VYWBiWL1+O5cuXX/U5GRkZ+PLLL3v70kRBb/Xe1s6xNw+Id62boN6TSCRIjgnDydqLqDI2MaAQ+SFei4fITzkcAta0tbZn51jPu7RQlluNifwRAwqRnyo5dR6VxiZEh8kxaUjnO9yo55I13GpM5M8YUIj8lPPCgPeOSOYiTi9gLxQi/8aAQuSHzJYWfHWIvU+8KSmGFwwk8mcMKER+6IsD1bC0ODAgMQoj02LELicopXAEhcivMaAQ+aHLLwzI3ifecfkUjyAIIldDRB0xoBD5mRM1DdhbboRMKsGvRqWIXU7QcnaTbbTaYW6yiVwNEXXEgELkZ5yLY2+7LgGJat9dlDPUhClkiItUAgAqOc1D5HcYUIj8iM3uwNq25mxcHOt93MlD5L8YUIj8yPcnzqGmvhl9IhSYMFgrdjlBzznNU82rGhP5HQYUIj+yek/r6MmUkSlQyvnx9DbnCEqlkVuNifwNfwIS+QljoxWbjhgAANPHcHrHF7jVmMh/MaAQ+Yn1+6pgtTuQlaTGkGSN2OWEBOcICqd4iPwPAwqRnygqbe19wgsD+o6rmyyneIj8DgMKkR84Wm3GoUozFDIJprL3ic84p3j0ZgvsDjZrI/InDChEfqCobXHshEFaxLb15iDvS4hSQSGTwO4QUFPPURQif8KAQiQyq82BdfsqAXBxrK9JpRJo1c5pHq5DIfInDChEIttSVoO6i1YkRKtw23UJYpcTcpwLZc9eYEAh8icMKEQic07v5I9KgVzGj6SvpfZhQCHyR/xpSCSi2vpmbCmrAcDdO2JJ7RMBgAGFyN8woBCJaN2PlbA7BIxIi8FAbbTY5YSkNNcISqPIlRDR5RhQiEQiCIKr9wkvDCge5whKJUdQiPwKAwqRSA6cNeEnQwNUcinuHZEsdjkhy7UGxdgEB3uhEPkNBhQikawubV0cO2mIDppwhcjVhK4kTRhkUgmsNgfONTSLXQ4RtWFAIRKBpcWO9ex94hfkMil0bb1QKjjNQ+Q3GFCIRLDpiAFmiw3JmjDc1D9e7HJCXioXyhL5HQYUIhEUtU3vFGSnQiaViFwNcasxkf9hQCHysWpTE74/XgsAKBjN6R1/wBEUIv/DgELkY2v3VkIQgBv7xqJvfKTY5RCAtFiOoBD5GwYUIh8SBMG1e2caF8f6Dba7J/I/DChEPlR65gJOn7uICKUMecOSxC6H2jgDSuUF9kIh8hcMKEQ+5Lww4N3DkhCpkotcDTnp1G29UOwO1NSzFwqRP2BAIfKRRqsNGw5UAWBre38jl0mRpGnthcKFskT+gQGFyEe+OqjHRasd6bERuDEzVuxyqAOuQyHyLwwoRD7ivDDgtOxUSCTsfeJvLvVC4QgKkT9wK6C89dZbGD58ONRqNdRqNXJycvDVV1+5HrdYLCgsLERcXByioqJQUFAAg8HQ7nuUl5cjLy8PERERSExMxPz582Gz2TxzNkR+qvx8I3acqoNE0tqcjfxPGpu1EfkVtwJKamoqXnnlFZSWlmLPnj248847MWXKFBw+fBgAMHfuXHz++ecoKirCtm3bUFVVhfz8fNfz7XY78vLyYLVasX37dnzwwQd4//33sWjRIs+eFZGfWbO3dXHs+P7xSIkJF7ka6gyneIj8i0QQhF7tqYuNjcVf//pXTJs2DQkJCVi1ahWmTZsGADh27BgGDx6MkpISjBs3Dl999RXuueceVFVVQavVAgDefvttPPvss6itrYVSqezWa5rNZmg0GphMJqjV6t6UT+R1DoeAW5ZtQaWxCf+8fySmjEwRuyTqxM5T53HfOzvQNy4CW+ffIXY5REHJnd/fPV6DYrfb8fHHH+PixYvIyclBaWkpWlpakJub6zpm0KBBSE9PR0lJCQCgpKQEw4YNc4UTAJg0aRLMZrNrFKYzzc3NMJvN7W5EgWLHqfOoNDYhOkyOSUN0YpdDV5Ha1k220tgEO3uhEInO7YBy8OBBREVFQaVS4fHHH8enn36KrKws6PV6KJVKxMTEtDteq9VCr9cDAPR6fbtw4nzc+djVLF26FBqNxnVLS0tzt2wi0TgvDHjviGSEKWQiV0NXo41WQS6VoMUuoKbeInY5RCHP7YBy/fXXY9++fdi5cyeeeOIJzJw5E0eOHPFGbS4LFiyAyWRy3SoqKrz6ekSeYra04KtD1QDY+8TfyWVSJMU4e6FwHQqR2NxuZalUKjFgwAAAQHZ2Nnbv3o1//vOfuO+++2C1WmE0GtuNohgMBuh0rcPaOp0Ou3btavf9nLt8nMd0RqVSQaVSuVsqkei+OFANS4sD/RMiMTItRuxyqAupMRGoqGvC2QuNuKEve9UQianXfVAcDgeam5uRnZ0NhUKB4uJi12NlZWUoLy9HTk4OACAnJwcHDx5ETU2N65hNmzZBrVYjKyurt6UQ+Z2iPa2jfdPHpLH3SQBw7eSp4wgKkdjcGkFZsGABJk+ejPT0dNTX12PVqlXYunUrvv76a2g0GsyaNQvz5s1DbGws1Go1Zs+ejZycHIwbNw4AMHHiRGRlZeHBBx/EsmXLoNfrsXDhQhQWFnKEhILOydoG7C03QiaVIH8Ud+4EgrRY9kIh8hduBZSamhr87ne/Q3V1NTQaDYYPH46vv/4av/jFLwAAr776KqRSKQoKCtDc3IxJkybhzTffdD1fJpNhw4YNeOKJJ5CTk4PIyEjMnDkTS5Ys8exZEfmB1W2LY2+7LgGJ6jCRq6HucI6gVLCbLJHoet0HRQzsg0L+zu4QcNMrxTCYm/HWjNGYPCxJ7JKoG3adrsOv/1WCtNhwfP/MnWKXQxR0fNIHhYiu7rvjtTCYm9EnQoEJg7VdP4H8QkZcWy+UC02w2hwiV0MU2hhQiLxg9Z7W6Z0pI1OglPNjFigSo1UIU0jhEFobthGRePiTk8jDjI1WbDrSun1+GnufBBSJRIKM2EgAwM/nL4pcDVFoY0Ah8rD1+6pgtTswOEmNoSkascshNzmnecrPc6EskZgYUIg8zLl7h51jA1PfeI6gEPkDBhQiDzqmN+NgpQkKmQRT2fskIKW39UI5wxEUIlExoBB5UFHb4tgJg7SIjVSKXA31RN+41hGUMxxBIRIVAwqRh7TYHVj3YyUAYPoYTu8EKucalIq6JtgdAdcmiihoMKAQeci3x2pw/qIV8VEq3HZdgtjlUA8lx4RDIZPAaneg2sStxkRiYUAh8hDn9E7+6BTIZfxoBSqZVIK0PtzJQyQ2/hQl8oDa+mZsKWu9Sjd37wQ+5zTPzwwoRKJhQCHygPX7KmF3CBiRFoOB2mixy6FeyuBCWSLRMaAQ9ZIgCK7pHY6eBAfnCAq3GhOJhwGFqJcOVppQZqiHSi7FvSOSxS6HPMC51ZjN2ojEw4BC1EvO0ZNJQ3TQhCtEroY8Id3Z7r6uEYLArcZEYmBAIeoFS4sd6/e19j7hhQGDR2qfcEglQKPVjtqGZrHLIQpJDChEvbDpiAFmiw1JmjCMHxAvdjnkISq5DMkx4QC4DoVILAwoRL3gvDBgwehUyKQSkashT3JtNT7HdShEYmBAIeohvcmC74/XAuD0TjBybjUur+MICpEYGFCIemjN3rNwCMCNfWPRNz5S7HLIw/qyWRuRqBhQiHpAEATX9M40XhgwKKXHto2gcKsxkSgYUIh6oPTMBZw+dxERShnyhiWJXQ55Qd94jqAQiYkBhagHnL1PJg9NQqRKLnI15A3psa0BxdTUAmOjVeRqiEIPAwqRmxqtNmw4UAUAmM7pnaAVoZQjMVoFgFuNicTAgELkpo2H9LhotSM9NgJjM2PFLoe8iC3vicTDgELkJuf0zrTsVEgk7H0SzDLbdmedrGVAIfI1BhQiN1TUNaLk1HlIJEABe58Evf6JrQHlVG2DyJUQhR4GFCI3OLcWj+8fj5S2VugUvPrFRwEATnEEhcjnGFCIusnhuNT7hItjQ0P/xLaAcq4BDgevakzkSwwoRN2049R5VBqbEK2SY2KWTuxyyAfS+oRDIZPA0uJAtdkidjlEIYUBhaibitpGT+4ZkYxwpUzkasgX5DKp65o8J2u4DoXIlxhQiLqh3tKCrw5VA+D0TqjpF8+FskRiYEAh6oYvDlTD0uJA/4RIjEqLEbsc8qFL61C4UJbIlxhQiLqhyLU4No29T0JMP1cvFI6gEPkSAwpRF07WNqD0zAVIJUD+qBSxyyEfc42gcKsxkU8xoBB1wbm1+LbrEpCoDhO5GvK1/m29UKpNFlxstolcDVHocCugLF26FDfccAOio6ORmJiIqVOnoqysrN0xFosFhYWFiIuLQ1RUFAoKCmAwGNodU15ejry8PERERCAxMRHz58+HzcYPPvkfu0PA2r2Xpnco9GgiFIiPUgLgNA+RL7kVULZt24bCwkLs2LEDmzZtQktLCyZOnIiLFy8Nfc6dOxeff/45ioqKsG3bNlRVVSE/P9/1uN1uR15eHqxWK7Zv344PPvgA77//PhYtWuS5syLykO+O18JgbkZMhAITBieKXQ6JZGBiNADgJwMDCpGvyN05eOPGje2+fv/995GYmIjS0lLceuutMJlMeO+997Bq1SrceeedAIAVK1Zg8ODB2LFjB8aNG4dvvvkGR44cwebNm6HVajFy5Ei8+OKLePbZZ/HCCy9AqVR67uyIesk5vTN1ZApUcvY+CVUDtVEoOXUexw31YpdCFDJ6tQbFZDIBAGJjWy85X1paipaWFuTm5rqOGTRoENLT01FSUgIAKCkpwbBhw6DVal3HTJo0CWazGYcPH+70dZqbm2E2m9vdiLzN2GjFpsOt05PTeGHAkDZQ2zqCcpzN2oh8pscBxeFwYM6cORg/fjyGDh0KANDr9VAqlYiJiWl3rFarhV6vdx1zeThxPu58rDNLly6FRqNx3dLSuBaAvO+z/VWw2h0YnKTG0BSN2OWQiK5r28nzE0dQiHymxwGlsLAQhw4dwscff+zJejq1YMECmEwm162iosLrr0lUtKdtcSxHT0KecwTl7IUm7uQh8pEeBZQnn3wSGzZswJYtW5CaeumHt06ng9VqhdFobHe8wWCATqdzHdNxV4/za+cxHalUKqjV6nY3Im86pjfjYKUJcqkEU0Ymi10OiSw2UsmdPEQ+5lZAEQQBTz75JD799FN8++23yMzMbPd4dnY2FAoFiouLXfeVlZWhvLwcOTk5AICcnBwcPHgQNTU1rmM2bdoEtVqNrKys3pwLkcc4R08mDE5EXJRK5GrIH3AnD5FvubWLp7CwEKtWrcL69esRHR3tWjOi0WgQHh4OjUaDWbNmYd68eYiNjYVarcbs2bORk5ODcePGAQAmTpyIrKwsPPjgg1i2bBn0ej0WLlyIwsJCqFT8RUDia7E7sO7HSgDA9Gyud6JW3MlD5FtuBZS33noLAHD77be3u3/FihV46KGHAACvvvoqpFIpCgoK0NzcjEmTJuHNN990HSuTybBhwwY88cQTyMnJQWRkJGbOnIklS5b07kyIPGTLsRqcv2hFfJQKt1+fIHY55Cec61C4UJbIN9wKKIIgdHlMWFgYli9fjuXLl1/1mIyMDHz55ZfuvDSRzzgvDJg/OgVyGa8GQa0GunbycIqHyBf405foMucamrHlWOv6KO7eocsN0rWOoFQam2C2tIhcDVHwY0Ahusy6HythcwgYkRbjGtInAoCYCCWSNK0XiyzTc5qHyNsYUIjaCILg2r3DzrHUmcFJrS0OjlazmzWRtzGgELU5WGlCmaEeSrkUvxzO3id0Jec0z9FqjqAQeRsDClEb54UBJw3RQROhELka8kccQSHyHQYUIgCWFjvW76sCwMWxdHWDk1pHUMr09XA4ut7VSEQ9x4BCBGDzUQNMTS1I0oRh/IB4scshP9U3LhIquRRNLXacqWsUuxyioMaAQoRLre0LRqdCJpWIXA35K7lMiuvadncd4zQPkVcxoFDI05ss+P54LQDu3qGuOad5uA6FyLsYUCjkrdl7Fg4BuKFvH/SNjxS7HPJzzoWyRxhQiLyKAYVCmiAIrt07vDAgdcfQFA2A1m3pROQ9DCgU0vaWX8DpcxcRrpDh7uFJYpdDASArSQ2JBDCYm1FTbxG7HKKgxYBCIc25OPbuYUmIUrl17UwKUZEqOfontF448BBHUYi8hgGFQlaj1YYNB6oBANPHcHEsdd8w5zTPWa5DIfIWBhQKWRsP6dHQbEN6bATGZsaKXQ4FEK5DIfI+BhQKWZdfGFAiYe8T6j7nCAqneIi8hwGFQlJFXSNKTp2HRALkj04RuxwKMEOSWxfK6s0W1NY3i10OUVBiQKGQ5NxafFP/OKT2iRC5Ggo0kSo5+rX1zOEoCpF3MKBQyHE4BKzZy94n1DsjUmMAAD9WGEWtgyhYMaBQyNlx+jzOXmhCtEqOSUN0YpdDASq7bx8AwJ6f60SuhCg4MaBQyFndtjj2nhHJCFfKRK6GAtUNfVt3fu2rMKLF7hC5GqLgw4BCIaXe0oIvD7H3CfXegIQoqMPkaLTaeeFAIi9gQKGQ8sWBalhaHOifEIlRaTFil0MBTCqVYEzbKMruny+IXA1R8GFAoZBSVOrsfZLG3ifUa2Pa1qGUnuE6FCJPY0ChkHGytgGlZy5Ayt4n5CFjMi6NoAiCIHI1RMGFAYVCxpq20ZPbrkuAVh0mcjUUDIanaqCUSVFb34zyukaxyyEKKgwoFBLsDgFr91YCAKaPYe8T8owwhQzDUlvb3u/hOhQij2JAoZDw/fFa6M0WxEQoMGFwotjlUBBxrkPZw3UoRB7FgEIhwbk4durIFKjk7H1CnnP5OhQi8hwGFAp6xkYrNh02AGi9cjGRJ2VntI6gnKhpwIWLVpGrIQoeDCgU9D7bXwWr3YFBumgMSVaLXQ4FmdhIJQYkRgEASs9wFIXIUxhQKOg5r1w8fQx7n5B3jMlwrkNhQCHyFAYUCmpl+nocOGuCXCrB1JHJYpdDQcrZUZYXDiTyHAYUCmpFeyoAABMGJyIuSiVyNRSsbmwLKPvPGtHQbBO5GqLgwIBCQavF7sC6fW29T7LZ+4S8Jz0uApnxkWixC/j38VqxyyEKCgwoFLS2HKvBuQYr4qNUuO36BLHLoSB356DW/jrFR2tEroQoOLgdUL777jvce++9SE5OhkQiwbp169o9LggCFi1ahKSkJISHhyM3NxfHjx9vd0xdXR1mzJgBtVqNmJgYzJo1Cw0NDb06EaKOnL1PfjUqGQoZszh5lzOgbCmrhcPB6/IQ9ZbbP7UvXryIESNGYPny5Z0+vmzZMrz++ut4++23sXPnTkRGRmLSpEmwWCyuY2bMmIHDhw9j06ZN2LBhA7777js89thjPT8Log7ONTRjy7HW/5Nla3vyhRv6xiJKJce5hmYcqjKJXQ5RwJO7+4TJkydj8uTJnT4mCAJee+01LFy4EFOmTAEA/O///i+0Wi3WrVuH+++/H0ePHsXGjRuxe/dujBkzBgDwxhtv4O6778bf/vY3JCdzpwX13rofK2FzCBiRqsF12mixy6EQoJRLccvAeHx1SI/iozUYnhojdklEAc2j496nT5+GXq9Hbm6u6z6NRoOxY8eipKQEAFBSUoKYmBhXOAGA3NxcSKVS7Ny5s9Pv29zcDLPZ3O5GdDWCILh6n0zj6An50B2uaR6uQyHqLY8GFL1eDwDQarXt7tdqta7H9Ho9EhPbX6xNLpcjNjbWdUxHS5cuhUajcd3S0vhLh67uUKUZx/T1UMql+OVwjsiR79zethj7wFkTauotXRxNRNcSECsHFyxYAJPJ5LpVVFSIXRL5saLS1n8fk4booIlQiFwNhZLE6DCMSNUAALYe43Zjot7waEDR6XQAAIPB0O5+g8Hgekyn06Gmpv3wp81mQ11dneuYjlQqFdRqdbsbUWcsLXas31cFAJjOCwOSCJzTPN8e4zQPUW94NKBkZmZCp9OhuLjYdZ/ZbMbOnTuRk5MDAMjJyYHRaERpaanrmG+//RYOhwNjx471ZDkUgjYfNcDU1IIkTRjGD4gXuxwKQc7txt8fr4XV5hC5GqLA5fYunoaGBpw4ccL19enTp7Fv3z7ExsYiPT0dc+bMwUsvvYSBAwciMzMTzz33HJKTkzF16lQAwODBg3HXXXfh0Ucfxdtvv42WlhY8+eSTuP/++7mDh3rtwx1nAAD5o1Mgk/LCgOR7Q5M1SIhWoba+GbtO1+HmgQzKRD3h9gjKnj17MGrUKIwaNQoAMG/ePIwaNQqLFi0CADzzzDOYPXs2HnvsMdxwww1oaGjAxo0bERYW5voeK1euxKBBgzBhwgTcfffduPnmm/HOO+946JQoVJWeqcOOU3VQyCSYMTZD7HIoREmlEkxoG0XZcKBK5GqIApdEEISAa3loNpuh0WhgMpm4HoVcHl6xC1vKanH/DWl4pWC42OVQCNt56jzue2cHIpUy7F6Yiwil24PVREHJnd/fAbGLh6grhypN2FJWC6kEePy2/mKXQyHuxsxY9I2LwEWrHV8e7Lx9AhFdGwMKBYXlW1rXRf1yRDL6xkeKXA2FOolE4rrEwid72BaBqCcYUCjgHTfUY+Ph1v9L/a87BohcDVGr/NEpkEqAXafrcPrcRbHLIQo4DCgU8N7cehKCAEwaouV1d8hvJGnCcet1rZ1lV5dyFIXIXQwoFNBO1NTjs/2tOyWevGOgyNUQtffrtmme1aVnYXcE3H4EIlExoFDAEgQBf/z0EOwOAbmDtRjW1mKcyF9MGJyIPhEKGMzN+O44W98TuYMBhQJWUelZ7Dpdh3CFDM/fmyV2OURXUMllmDIyBQBQxMWyRG5hQKGAdL6hGS9/eRQAMPcXA5EWGyFyRUSdc07zfHPYgIq6RpGrIQocDCgUkP785VEYG1swOEmNh8dnil0O0VVlJatxy8B42BwC3vj2uNjlEAUMBhQKONtPnMPavZWQSICXfzUUChn/GZN/m/eL6wAAa/ZW4mduOSbqFv5kp4CiN1kw95N9AIAHxmZgVHofcQsi6oZR6X1w56BE2B0C/lnMURSi7mBA8RK73Y6tW7fio48+wtatW2G3233y3GDWZLXjsf/bA4O5GQMSo/DMXdeLXRJRtzlHUdbtq8SJmnqRqyHyfwwoXrB27Vr07dsXd9xxB37729/ijjvuQN++fbF27VqvPjeYCYKA+av348BZE/pEKPDezDGIDlOIXRZRtw1N0WBilhaCALy6maMoRF1hQOmm7o5qrF27FtOmTcPZs2fb3V9ZWYlp06ZdM2j05rnB7vXiE9hwoBpyqQRvPZCNjDheb4cCz9y2UZQvDlTjaLVZ5GqI/BsDSjd0Z1TDbrejuLgYjz76KAThyo6RgiBAEAQ8/vjjsFqtVzxut9vx9NNPX/W5ADBnzpyQm+4RBAFvbj2BVzf/BAB4aepQjOsXJ3JVRD0zOEmNvOFJAIA/rD2IFrtD5IqI/BcDymU6GyW52qjG2bNnUVBQgLlz52LJkiXo27cvcnNzUVdXd83XqK2tRWpq6hWjId9///0Vr3E5QRBQUVGB77//3u1zCFQ2uwN//PQQlm0sAwAU3tEf99+YLnJVRL2zMG8w1GFy7K8w4o1vT4hdDpHfkotdgL9Yu3Ytnn766XYhISUlBRaLpdNRDafXXnvN7deqra3FtGnTsHr1auTn5wMAqquru/Xcax3X2Tmkpqbin//8p+t1AkVDsw1PrtqLrWW1kEqA5+8dgpk39RW7LKJeS9KE46VfDcNTH/2I5VtO4LbrEpCdwd1oRB1xBAXXXvtx/vx5r73u5VM2SUlJ3XqOwWDodFQkWNavNNvs+L+SnzHh71uxtawWYQop/vXgGIYTCiq/HJGMqSOTYXcImPfJPjQ028QuicjvSIRrDQ/4KbPZDI1GA5PJBLVa3avvZbfb0bdv32tOr3jTli1bcPvtt7vqqKysvOaIDXDlqEhX5yCRSJCamorTp09DJpN5/Bw8ocXuwJrSs3jj2xOoNDYBAFJiwvHmjNEYkRYjbnFEXmBqasHk175DlcmCadmp+Ou04ZBIJGKXReRV7vz+DvkRlK7WfnhbcXEx7HY7ZDIZ/vnPfwJAlz+kOo6KdHf9yhtvvOF3a1LsDgFrSs8i9x/b8Ie1B1FpbIJWrcKLU4bg29/fxnBCQUsTrsDffz0SEgmwuvQsln1d1uX/nBCFkpAPKN1d++EtL730kmtHUH5+PlavXo2UlJRrPufyXT1WqxXFxcXdeq25c+f6RU+VJqsdu07X4Z3vTmLiq9vw30X7ceZ8I+KjlHjunixsm38HHszpC5XcP0d7iDwlp38cFv9yCADgra0n8fdvfmJIIWoT8lM8W7duxR133OGhynonaXwBkobfDO3AYaj84TMcWPN6l8+JjolFvfHaO4cu5xyduXyBrrc4HAIsNjuqjBb8WH4B+yqM2FdhxDF9PeyOS//sYiIU+M9b+2PmTRmIUHLdNoWeFT+cxuLPjwAAnp4w0NUvhSjYuPP7O+QDijtrP3xFFh2PiOvHo37Peq+9hlKTgBv+sBIqhQJKuQxKuRQqmRRKuRQKmQRKubT1/rb7VPLWwTZLix2WFjuaWuywtDhav7Y5YLHaYbG1PWZtvc9qu3qPh8RoFUamxWBsvzj8ekwqu8JSyPv/vj+Fl744CgD47dh0LMwbzMBOQYcBxU3OHTDd+auIiopCQ0MDJBLJNY9PS0tzbUHuuPW3SxIJ4IO3RfublxGWPtzrr6OSSzE8VYORaTEYmdYHo9JjkKQJ44JAog7e/e4U/vxla0jpFx+JV+8bGdDrsOx2O77//ntUV1cjKSkJt9xyi08W6ov1utQ1BpQeWLt2Lf7zP/8T586d6/LYxYsX4913372i38ijjz6KgQMHXvGBsNvteOGFF/DSSy+5VZNMJoPD4fDayM6fX38Xd+b9Cta20Q6r3eH6c/Nlf259rHVxbZhchjCFDGFKGcLk0tY/K2QIV8gQprj09eV/DlfIIJMyjBB1x7+Pn8Pvi/ZDb7ZALpXgv27vj/+4tR/UATbKKFZfpmDqBxWMGFB6aOXKlXjggQe6PG7VqlX49a9/7VZC96e1Lk7OLc5E5F+MjVb8ad0hfHGgdRF/tEqO392UgYfHZyI+SiVydV3ralR68eLF+NOf/tTuZ2ZXox7dGRW52ut6cu1dIIzO+HONbv3+FgKQyWQSAAgmk8mj33fLli0CgC5vW7Zscft722w2ITU1VZBIJN16Dedtzpw5Qnx8vFvP6eomkUiEtLQ0wWazefTvj4g8x+FwCBv2Vwm5f98qZDy7Qch4doNw/cIvhVnv7xL+59+nhDK9WXA4HGKXeQXnz7qufg6lpqYKa9asEQRBENasWXPFc9x53GazCZs3bxZiY2N7/XPPZrMJW7ZsEVatWiVs2bJFaG5udn29ePHia9bh6b/Hy+vo7s/rrv6uujpHd16rJ9z5/c0RlMt0tWC2tw3PnOkeQLenbbZs2YLKyspujexcXmdsbKzrukCXv5Yvd/EQUe85HAI2HTXgzS0nsP+sqd1jCdEqjO8fh5sGxGP8gHgk+8HaLndHi++55x5s2LDB7ced5/n73/8eH330UbfX+b366quYPXt2uyl452jD8ePHr5i+l8lk3eofNWfOHEyZMuWK6f3LRzJuuukmbN++vdOvExMTAQA1NTWd1tGdaarujCABV66L7HiOKSkpeOyxxzpdstBbnOLphauFCE/9Yu9sfrQzl4eh77//vtsf+K7+IToX7zKcEAUWQRBwqNKMf584h+0nz2HX6To0d9gpF66QISkmDMmacCRpwpAUE45kTRh0mjBEhykQoZQhQtm6Liy87b9ymWfbYX300Uf47W9/69Hv6WnOX8AXLlzAypUrUVtb67HvHR8fjwceeAB9+vTpMux0N/wAV/4O6hh+xo4di4yMjGuei3OTh7s8uYaHAaWXOgsRnvzF7vyHtX79erz22mtX7Ajq7B9id7dCd6zTn+ciiajnmm127D1jxA8nzuGHk+dw4KypXX+h7lLKpK6wEqG8FFyc/1XKpVDKpJDLJFDIpG03CeTOP0udf259/Pi+nfhz4f1eOGMCgNjYWMyePRvvvfdeu99RUqkUDsfVWzv0hidH3hlQPMBXv9i7G4a6mh7qbHiRiEKHpcUOvcmCKlMTqo0WVJuaUGWyoNrYhGqTBRetNjRZHWiy2tDYYvdaJwPBYUfl27Ngr+96RyQFDk9d040BJcB0Nwx5e2SHiEKDIAhotjnQZG1tuthotV/2Zxssbfc1Wu1osTvabgJa7A7Y2v7r+trhgNUmwOZoPc5qE3BydzG2Lv+D2KdJXtDb3Z/u/P5mm0I/IJPJuvWG5+fnY8qUKZyyIaJekUgkrj5FfbzxAjPHYO2dA/HUU0+hsrLSG69AIvHl9etC/mKBgcYZZn7zm9/g9ttvZzghIr+Un5+PM2fOYPHixWKXQh6UlJTks9diQCEiIq+QyWRYtGgR1qxZg9TUVJ+9rnNRZ1xcnOjbroOFRCJBWloabrnlFp+9pqgBZfny5ejbty/CwsIwduxY7Nq1S8xyiIjIC/Lz8/Hzzz9jy5YtmDNnDgBcNTjcc88913y8O1JTU7FmzRq88847vf5eHUepU1NTsXjxYtd5BIOuRuKdf3+vvfaab0ftPdwkrts+/vhjQalUCv/zP/8jHD58WHj00UeFmJgYwWAwdPlcb3WSJSIi7+us22laWlqXnWPj4uKu2Y07NjZW2Lx5c7tOqJ19r2vdUlNThcWLF3ery6q731smk13z6451PP/889fsjnut2+V/T1f7O5szZ063uuVe/t70VkB0kh07dixuuOEG/L//9/8AAA6HA2lpaZg9ezb+8Idrr/4Otl08REShpifX3lm/fn2PGml21S02ISEBM2bM6FGrhsv7WnVs+tbxIrLd7SR7+d9HdzuQd2z65tzhCbjfsNObbTb8fpux1WpFREQEVq9ejalTp7runzlzJoxGI9avX9/u+ObmZjQ3N7u+NpvNSEtLY0AhIgoxnmi34K1fwN76vle7QvO1ws+1Wu6LufvT7wNKVVUVUlJSsH37duTk5Ljuf+aZZ7Bt2zbs3Lmz3fEvvPBCpyvBGVCIiEKPP/3C9ZVgOeeg64OyYMECzJs3z/W1cwSFiIhCT3d7RwWTUDxnUQJKfHw8ZDIZDAZDu/sNBgN0Ot0Vx6tUKqhUKl+VR0RERCITZZuxUqlEdnY2iouLXfc5HA4UFxe3m/IhIiKi0CTaFM+8efMwc+ZMjBkzBjfeeCNee+01XLx4EQ8//LBYJREREZGfEC2g3HfffaitrcWiRYug1+sxcuRIbNy4EVqtVqySiIiIyE/wasZERETkE+78/ua1eIiIiMjvMKAQERGR32FAISIiIr/DgEJERER+hwGFiIiI/E5AtLrvyLnxyGw2i1wJERERdZfz93Z3NhAHZECpr68HAF6Ph4iIKADV19dDo9Fc85iA7IPicDhQVVWF6OhoSCQSj3xP5wUIKyoqgra3SrCfY7CfH8BzDBY8x+AQ7OfojfMTBAH19fVITk6GVHrtVSYBOYIilUqRmprqle+tVquD8h/a5YL9HIP9/ACeY7DgOQaHYD9HT59fVyMnTlwkS0RERH6HAYWIiIj8DgNKG5VKheeffx4qlUrsUrwm2M8x2M8P4DkGC55jcAj2cxT7/AJykSwREREFN46gEBERkd9hQCEiIiK/w4BCREREfocBhYiIiPxOSAeUV155BRKJBHPmzHHdZ7FYUFhYiLi4OERFRaGgoAAGg0G8Inups3O8/fbbIZFI2t0ef/xx8Yp00wsvvHBF/YMGDXI9HgzvYVfnGOjvIQBUVlbigQceQFxcHMLDwzFs2DDs2bPH9bggCFi0aBGSkpIQHh6O3NxcHD9+XMSK3dfVOT700ENXvI933XWXiBW7p2/fvlfUL5FIUFhYCCA4PotdnWMwfBbtdjuee+45ZGZmIjw8HP3798eLL77Y7no5YnweA7KTrCfs3r0b//rXvzB8+PB298+dOxdffPEFioqKoNFo8OSTTyI/Px8//PCDSJX23NXOEQAeffRRLFmyxPV1RESEL0vrtSFDhmDz5s2ur+XyS/+Ug+U9vNY5AoH9Hl64cAHjx4/HHXfcga+++goJCQk4fvw4+vTp4zpm2bJleP311/HBBx8gMzMTzz33HCZNmoQjR44gLCxMxOq7pzvnCAB33XUXVqxY4fo6kLas7t69G3a73fX1oUOH8Itf/ALTp08HEByfxa7OEQjszyIA/OUvf8Fbb72FDz74AEOGDMGePXvw8MMPQ6PR4KmnngIg0udRCEH19fXCwIEDhU2bNgm33Xab8PTTTwuCIAhGo1FQKBRCUVGR69ijR48KAISSkhKRqu2Zq52jIAhXfB1onn/+eWHEiBGdPhYs7+G1zlEQAv89fPbZZ4Wbb775qo87HA5Bp9MJf/3rX133GY1GQaVSCR999JEvSuy1rs5REARh5syZwpQpU3xTkA88/fTTQv/+/QWHwxE0n8WOLj9HQQj8z6IgCEJeXp7wyCOPtLsvPz9fmDFjhiAI4n0eQ3KKp7CwEHl5ecjNzW13f2lpKVpaWtrdP2jQIKSnp6OkpMTXZfbK1c7RaeXKlYiPj8fQoUOxYMECNDY2+rjC3jl+/DiSk5PRr18/zJgxA+Xl5QCC6z282jk6BfJ7+Nlnn2HMmDGYPn06EhMTMWrUKLz77ruux0+fPg29Xt/ufdRoNBg7dmzAvI9dnaPT1q1bkZiYiOuvvx5PPPEEzp8/L0K1vWe1WvHhhx/ikUcegUQiCarPolPHc3QK5M8iANx0000oLi7GTz/9BADYv38//v3vf2Py5MkAxPs8htwUz8cff4y9e/di9+7dVzym1+uhVCoRExPT7n6tVgu9Xu+jCnvvWucIAL/97W+RkZGB5ORkHDhwAM8++yzKysqwdu1aH1faM2PHjsX777+P66+/HtXV1Vi8eDFuueUWHDp0KGjew2udY3R0dMC/h6dOncJbb72FefPm4Y9//CN2796Np556CkqlEjNnznS9V1qttt3zAul97Oocgdbpnfz8fGRmZuLkyZP44x//iMmTJ6OkpAQymUzkM3DPunXrYDQa8dBDDwEInp+nl+t4jkDg/zwFgD/84Q8wm80YNGgQZDIZ7HY7/vznP2PGjBkAINrnMaQCSkVFBZ5++mls2rQpIOawe6I75/jYY4+5/jxs2DAkJSVhwoQJOHnyJPr37++rUnvMmeoBYPjw4Rg7diwyMjLwySefIDw8XMTKPOda5zhr1qyAfw8dDgfGjBmDl19+GQAwatQoHDp0CG+//bbrl3eg68453n///a7jhw0bhuHDh6N///7YunUrJkyYIErdPfXee+9h8uTJSE5OFrsUr+nsHAP9swgAn3zyCVauXIlVq1ZhyJAh2LdvH+bMmYPk5GRRP48hNcVTWlqKmpoajB49GnK5HHK5HNu2bcPrr78OuVwOrVYLq9UKo9HY7nkGgwE6nU6cot3U1TlevtjLaezYsQCAEydO+Lpcj4iJicF1112HEydOQKfTBfx72JnLz7EzgfYeJiUlISsrq919gwcPdk1jOd+rjjs+Aul97OocO9OvXz/Ex8cHzPvodObMGWzevBn/8R//4bov2D6LnZ1jZwLtswgA8+fPxx/+8Afcf//9GDZsGB588EHMnTsXS5cuBSDe5zGkAsqECRNw8OBB7Nu3z3UbM2YMZsyY4fqzQqFAcXGx6zllZWUoLy9HTk6OiJV3X1fn2Nmw8b59+wC0/kANRA0NDTh58iSSkpKQnZ0d8O9hZy4/x84E2ns4fvx4lJWVtbvvp59+QkZGBgAgMzMTOp2u3ftoNpuxc+fOgHkfuzrHzpw9exbnz58PmPfRacWKFUhMTEReXp7rvmD7LHZ2jp0JtM8iADQ2NkIqbR8HZDIZHA4HABE/j15bfhsgOq7Afvzxx4X09HTh22+/Ffbs2SPk5OQIOTk54hXoAZef44kTJ4QlS5YIe/bsEU6fPi2sX79e6Nevn3DrrbeKW6Qb/vu//1vYunWrcPr0aeGHH34QcnNzhfj4eKGmpkYQhOB4D691jsHwHu7atUuQy+XCn//8Z+H48ePCypUrhYiICOHDDz90HfPKK68IMTExwvr164UDBw4IU6ZMETIzM4WmpiYRK+++rs6xvr5e+P3vfy+UlJQIp0+fFjZv3iyMHj1aGDhwoGCxWESuvvvsdruQnp4uPPvss1c8FgyfRUG4+jkGw2dREFp3k6WkpAgbNmwQTp8+Laxdu1aIj48XnnnmGdcxYnweGVA6BJSmpibhv/7rv4Q+ffoIERERwq9+9SuhurpavAI94PJzLC8vF2699VYhNjZWUKlUwoABA4T58+cLJpNJ3CLdcN999wlJSUmCUqkUUlJShPvuu084ceKE6/FgeA+vdY7B8B4KgiB8/vnnwtChQwWVSiUMGjRIeOedd9o97nA4hOeee07QarWCSqUSJkyYIJSVlYlUbc9c6xwbGxuFiRMnCgkJCYJCoRAyMjKERx99VNDr9SJW7L6vv/5aANDpexMMn0VBuPo5Bstn0Ww2C08//bSQnp4uhIWFCf369RP+9Kc/Cc3Nza5jxPg8SgThslZxRERERH4gpNagEBERUWBgQCEiIiK/w4BCREREfocBhYiIiPwOAwoRERH5HQYUIiIi8jsMKEREROR3GFCIiIjI7zCgEBERkd9hQCEiIiK/w4BCREREfocBhYiIiPzO/w/gNEJJsIlD3gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "mi.migrad()" - ] - }, - { - "cell_type": "markdown", - "id": "4837389e-098b-43a0-ad42-2fd354fa7c6e", - "metadata": {}, - "source": [ - "Now next step first peak..." + "mi.migrad()\n", + "mi.hesse()" ] }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 512, "id": "0b435af3-73ea-42de-9ab7-6a16ae9dbceb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 121, + "execution_count": 512, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6OUlEQVR4nO3deVhUZfsH8O+ZYZFFBkVgwAVwRRQUd9I0FUWztPS1MjNLXy1/uJep5ZKWa4tmmb2VqZVmmWZqpolrKq657wsKCgMqm4Csc35/0BxnYFgGZpiF7+e65ro4c86ccx9xhnue5X4EURRFEBEREdkombkDICIiIjIlJjtERERk05jsEBERkU1jskNEREQ2jckOERER2TQmO0RERGTTmOwQERGRTbMzdwCWQK1WIz4+HjVr1oQgCOYOh4iIiMpBFEU8fPgQvr6+kMlKbr9hsgMgPj4e9evXN3cYREREVAFxcXGoV69eifuZ7ACoWbMmgMJ/LDc3NzNHQ0REROWRnp6O+vXrS3/HS8JkB5C6rtzc3JjsEBERWZmyhqBwgDIRERHZNCY7REREZNOY7BAREZFN45gdIiKyOAUFBcjLyzN3GGRm9vb2kMvllT4Pkx0iIrIYoihCpVIhNTXV3KGQhXB3d4dSqaxUHTwmO0REZDE0iY6XlxecnZ1Z6LUaE0URWVlZSEpKAgD4+PhU+FxMdoiIyCIUFBRIiY6Hh4e5wyEL4OTkBABISkqCl5dXhbu0OECZiIgsgmaMjrOzs5kjIUui+f9QmTFcTHaIiMiisOuKtBnj/wOTHSIiIrJpTHaIiIjIpjHZISIiMgNBELB58+ZSj3nttdfw3HPPlfuct27dgiAIOH36dKViszWcjUVENkutViMpKQmurq5wdXU1dzhkw1577TWkpqaWmbxoS0hIQK1atQAUJikBAQE4deoUWrduLR3z2WefQRRFI0db/bBlh4hs0smTJ9GyZUv4+PjAw8MDc+fORUFBgbnDIpIolUo4OjqWeoxCoYC7u3vVBGTDmOwQkc25ePEiunbtikuXLgEAcnNzMXv2bEyfPt3MkZGhRFFEZmamWR6VaVF56qmnMH78eLzzzjuoXbs2lEol3n//fZ1jtLuxAgICAAChoaEQBAFPPfUUgOLdWDt27ECXLl3g7u4ODw8PPPPMM7hx44ZBsSUkJKBfv35wcnJCQEAA1q1bB39/fyxduhSA/q6w1NRUCIKAffv2Sc+dP38effv2haurK7y9vTFs2DDcv39f2v/rr78iODgYTk5O8PDwQHh4ODIzMwEA+/btQ4cOHeDi4gJ3d3d07twZt2/fNug+DMFkh4hsSk5ODoYMGYKsrCx069YNDx48wDfffAMA+Oijj7Bz504zR0iGyMrKkrohq/qRlZVVqdjXrFkDFxcXHD16FIsXL8bcuXOxa9cuvcceO3YMABAVFYWEhARs2rRJ73GZmZmYPHkyTpw4gd27d0Mmk+H555+HWq0ud1yvvvoq4uPjsW/fPmzcuBFff/21VKW4vFJTU9GjRw+EhobixIkT2LFjBxITE/HCCy8AKEyohgwZghEjRuDSpUvYt28fBg4cCFEUkZ+fj+eeew7dunXD2bNnER0djdGjR5u05ADH7BCRTfnuu+9w9uxZeHp6Yv369ahduzb++9//4vTp01i+fDmmTZuG3r17s5YLmVxISAhmz54NAGjSpAm++OIL7N69G7169Sp2rKenJwDAw8MDSqWyxHMOGjRIZ/u7776Dp6cnLl68iJYtW5YZ0+XLlxEVFYXjx4+jXbt2AIBvv/0WTZo0Kfd9AcAXX3yB0NBQzJ8/XyeW+vXr4+rVq8jIyEB+fj4GDhwIPz8/AEBwcDAAIDk5GWlpaXjmmWfQqFEjAEDz5s0Nur6hmOwQkc3Izc3FggULAACzZs3S+aMxZ84crFmzBqdPn8aWLVswYMAAc4VJBnB2dkZGRobZrl0ZISEhOts+Pj4Gt6AUde3aNcyaNQtHjx7F/fv3pRad2NjYciU7V65cgZ2dHdq0aSM917hxY2mgdHmdOXMGe/fu1Tvw/8aNG+jduzd69uyJ4OBgREREoHfv3vjPf/6DWrVqoXbt2njttdcQERGBXr16ITw8HC+88EKl1r4qC7uxiMhm/PLLL4iLi4OPjw/++9//6uzz8PDAuHHjAABLliwxR3hUAYIgwMXFxSyPyrb+2dvbF7sXQ7qb9Hn22WeRnJyMb775BkePHsXRo0cBFCb6xiKTFaYG2mOWii7VkJGRgWeffRanT5/WeVy7dg1du3aFXC7Hrl278OeffyIoKAiff/45mjVrhpiYGADAqlWrEB0djSeeeAI///wzmjZtiiNHjhjtHordk8nOTERUxVatWgUAePPNN1GjRo1i+8eMGQNBELB//37pQ5fIEjg4OABAqTMGHzx4gCtXrmDGjBno2bMnmjdvjpSUFIOu06xZM+Tn5+PUqVPSc9evX9c5j6ZLLSEhQXquaN2eNm3a4MKFC/D390fjxo11Hi4uLgAKk7vOnTtjzpw5OHXqFBwcHPDbb79J5wgNDcX06dNx+PBhtGzZEuvWrTPoXgzBZIeIbMLt27exZ88eAMDw4cP1HlO/fn306NEDAPDDDz9UWWxEZfHy8oKTk5M00DctLa3YMbVq1YKHhwe+/vprXL9+HXv27MHkyZMNuk5gYCDCw8MxevRoHDt2DKdOncLo0aPh5OQktWQ5OTmhU6dOWLhwIS5duoT9+/djxowZOueJjIxEcnIyhgwZguPHj+PGjRvYuXMnXn/9dRQUFODo0aOYP38+Tpw4gdjYWGzatAn37t1D8+bNERMTg+nTpyM6Ohq3b9/GX3/9hWvXrpl03A6THSKyCWvXrgUA9OjRQxoQqY8mEVq/fn2VxEVUHnZ2dli2bBn+97//wdfXV++YMplMhvXr10s1pCZNmoSPPvrI4Gt9//338Pb2RteuXfH8889j1KhRqFmzpk5r6HfffYf8/Hy0bdsWEydOxIcffqhzDl9fXxw6dAgFBQXo3bs3goODMXHiRLi7u0Mmk8HNzQ0HDhzA008/jaZNm2LGjBn45JNP0LdvXzg7O+Py5csYNGgQmjZtitGjRyMyMhJvvPGG4f9w5SSILM2I9PR0KBQKpKWlwc3NzdzhEFEFdOjQAcePH8fXX3+NUaNGlXhcamoqPD09kZ+fj+vXr0uzQcj8srOzERMTg4CAAL3dkGQad+7cQf369REVFYWePXuaO5xiSvt/Ud6/32zZISKrFx8fj+PHj0MQBDz77LOlHuvu7o4nn3wSALBt27aqCI/IouzZswdbtmxBTEwMDh8+jJdeegn+/v7o2rWruUMzGbMmO/7+/hAEodgjMjISQGE2FxkZCQ8PD7i6umLQoEFITEzUOUdsbCz69esHZ2dneHl5YcqUKcjPzzfH7RCRmWzduhUA0LFjx1JrlGhoEiLN64iqk7y8PLz77rto0aIFnn/+eXh6emLfvn3FZo/ZErMmO8ePH0dCQoL00FSWHDx4MABg0qRJ2Lp1KzZs2ID9+/cjPj4eAwcOlF5fUFCAfv36ITc3F4cPH8aaNWuwevVqzJo1yyz3Q0TmsX37dgAos1VHo1+/fgCAv//+G48ePTJZXESWKCIiAufPn0dWVhYSExPx22+/lTrOzRaYNdnx9PSEUqmUHtu2bUOjRo3QrVs3pKWlYeXKlfj000/Ro0cPtG3bFqtWrcLhw4elufh//fUXLl68iB9//BGtW7dG37598cEHH2D58uWl1hzIyclBenq6zoOIrFN+fr60Xk/v3r3L9ZomTZqgbt26yM3NRXR0tAmjo4rgUFLSZoz/DxYzZic3Nxc//vgjRowYAUEQcPLkSeTl5SE8PFw6JjAwEA0aNJA+nKKjoxEcHAxvb2/pmIiICKSnp+PChQslXmvBggVQKBTSo379+qa7MSIyqZMnTyI9PR3u7u4IDQ0t12u0F1rUXtiQzEvTjVLZNanItmj+P1Smm81ilovYvHkzUlNT8dprrwEAVCoVHBwcii1t7+3tDZVKJR2jneho9mv2lWT69Ok6tQnS09OZ8BBZqd27dwMAunfvDrlcXu7Xde/eHWvXrsXevXtNFRoZSC6Xw93dXVpSwdnZmWuYVWOiKCIrKwtJSUlwd3c36P1dlMUkOytXrkTfvn3h6+tr8ms5OjrC0dHR5NchItPTJCuGTpnVtOwcPXoUjx49gpOTk7FDowrQDDCv7BpSZDvc3d3LNfGgNBaR7Ny+fRtRUVE6S9orlUrk5uYiNTVVp3UnMTFRummlUoljx47pnEszW6uy/zBEZPk0lVoBSNPJy6thw4ZQKpVQqVT4559/0LlzZ1OESAYSBAE+Pj7w8vIqth4TVT/29vaVatHRsIhkZ9WqVfDy8pJmSABA27ZtYW9vj927d0tL2l+5cgWxsbEICwsDAISFhWHevHlISkqCl5cXAGDXrl1wc3NDUFBQ1d8IEVWpS5cu4eHDh3BxcUGLFi0Meq0gCOjUqRM2b96MI0eOMNmxMHK53Ch/5IgACxigrFarsWrVKgwfPhx2do9zL4VCgZEjR2Ly5MnYu3cvTp48iddffx1hYWHo1KkTgMKZF0FBQRg2bBjOnDmDnTt3YsaMGYiMjGQ3FVE1oJmZ2aFDhwr9YdR8lmhah4jINpm9ZScqKgqxsbEYMWJEsX1LliyBTCbDoEGDkJOTg4iICHz55ZfSfrlcjm3btmHMmDEICwuDi4sLhg8fjrlz51blLRCRmWiSHU3SYijN6zTnISLbxLWxwLWxiKxVcHAwzp8/j99//x39+/c3+PWZmZlwc3ODWq3G3bt3q2SCBBEZD9fGIiKbpl1Pq2PHjhU6h/ZYn5MnTxotNiKyLEx2iMgqHT9+HKIoIiAgoFi9LUNoChH+888/xgqNiCwMkx0iskqVHa+j0aZNGwDAqVOnKh0TEVkmJjtEZJWMleywZYfI9jHZISKrI4qi0ZKd1q1bAwDi4uJw//79yoZGRBaIyQ4RWZ07d+7g/v37sLOzQ6tWrSp1Ljc3NzRu3BgAu7KIbBWTHSKyOmfOnAEANG/e3CgFRENCQgAA58+fr/S5iMjyMNkhIqujSXYq26qjoZl+rpnKTkS2hckOEVkdUyU7Fy9eNMr5iMiyMNkhIqtjypYdFpUnsj1MdojIqmRmZuLatWsAjJfsNGnSBHK5HOnp6bh7965RzklEloPJDhFZlfPnz0MURSiVSnh5eRnlnI6OjmjSpAkAjtshskVMdojIqpw+fRqA8Vp1NDhImch2MdkhIqti7PE6Gkx2iGwXkx0isiqmTnY4I4vI9jDZISKroVarcfbsWQCmTXY4I4vItjDZISKrERMTg4yMDDg6OqJZs2ZGPXeTJk1gZ2eH9PR03Llzx6jnJiLzYrJDRFZDs5xDUFAQ7OzsjHpuBwcHzsgislFMdojIamjG02i6nIyNg5SJbBOTHSKyGpokJCgoyCTn15z38uXLJjk/EZkHkx0ishqalh1TJTuabixNhWYisg1MdojIKhQUFODSpUsATJfsNG3aFABw9epVk5yfiMyDyQ4RWYXbt28jOzsbjo6OaNiwoUmuoWnZSUhIQEZGhkmuQURVj8kOEVkFTRdWYGAg5HK5Sa5Rq1YteHh4AACuX79ukmsQUdVjskNEVsGQ8TpZufnwn/YH/Kf9gazc/GLbpeG4HSLbw2SHiKyCqQcnazDZIbI9THaIyCow2SGiimKyQ0QWTxRFJjtEVGFMdojI4sXFxSEzMxP29vZo1KhRpc9X2hgeJjtEtofJDhFZPE2rTtOmTWFvb2/Sa2mSnaSkJKSlpZn0WkRUNZjsEJHFq6ouLABwc3ODl5cXALbuENkKJjtEZPE0a1UFBgZWyfU0lZSZ7BDZBiY7RGTxNMs3NGvWrEqux3E7RLaFyQ4RWbwrV64AeNziYghVWnap2/ow2SGyLXbmDoCIqDTp6elQqVQAyp/sbDx5R/o5/NP96N/KV2d7Tv8Wpb6eyQ6RbTF7y87du3fxyiuvwMPDA05OTggODsaJEyek/aIoYtasWfDx8YGTkxPCw8OLfQAlJydj6NChcHNzg7u7O0aOHMlF/IhshKYLy9vbGwqFoszjE9IeYfaWC9K2WgQ2n47X2dber49mevvNmzcrEjIRWRizJjspKSno3Lkz7O3t8eeff+LixYv45JNPUKtWLemYxYsXY9myZfjqq69w9OhRuLi4ICIiAtnZj5uihw4digsXLmDXrl3Ytm0bDhw4gNGjR5vjlojIyDTJTnlbdWLuZ0Itln6M9n593VqaVdXv3bvHL05ENsCsyc6iRYtQv359rFq1Ch06dEBAQAB69+4tfasSRRFLly7FjBkzMGDAAISEhOD7779HfHw8Nm/eDAC4dOkSduzYgW+//RYdO3ZEly5d8Pnnn2P9+vWIj48v5epEZA0MHZwcUMcFMqH0Y7R3h3+6Hz8fj9XZr1AopC9dMTEx5Y6ViCyTWZOdLVu2oF27dhg8eDC8vLwQGhqKb775RtofExMDlUqF8PBw6TmFQoGOHTsiOjoaABAdHQ13d3e0a9dOOiY8PBwymQxHjx7Ve92cnBykp6frPIjIMhk6ONlH4aQzJkcmAM+1fjxmp2gepBaBdzedR0LaI53nAwICADDZIbIFZk12bt68iRUrVqBJkybYuXMnxowZg/Hjx2PNmjUAIA1K9Pb21nmdt7e3tE+lUkkFwDTs7OxQu3Zt6ZiiFixYAIVCIT3q169v7FsjIiOpyLTzQW3rST9HTe6G+QODpe2PB4egaC9XgSji1v0snec0XVkct0Nk/cya7KjVarRp0wbz589HaGgoRo8ejVGjRuGrr74y6XWnT5+OtLQ06REXF2fS6xFRxYiiaPCYnaKUiho626ENahXr5pILAvzrOOs8x5YdItth1mTHx8enWPn35s2bIza2sP9cqVQCABITE3WOSUxMlPYplUokJSXp7M/Pz0dycrJ0TFGOjo5wc3PTeRCR5UlISEBGRgbkcrnU0lJZSkWNYt1c8we2hI/CSec4tuwQ2Q6zJjudO3eW+uM1rl69Cj8/PwCF36yUSiV2794t7U9PT8fRo0cRFhYGAAgLC0NqaipOnjwpHbNnzx6o1Wp07NixCu6CiExF06oTEBAABwcHo523aDfXi+0bFDuGLTtEtsOsRQUnTZqEJ554AvPnz8cLL7yAY8eO4euvv8bXX38NABAEARMnTsSHH36IJk2aICAgADNnzoSvry+ee+45AIUtQX369JG6v/Ly8jB27Fi89NJL8PX1LeXqRGTpKlM5ubyKdnNpaCc7oihCEMqY4kVEFsusyU779u3x22+/Yfr06Zg7dy4CAgKwdOlSDB06VDrmnXfeQWZmJkaPHo3U1FR06dIFO3bsQI0ajz+g1q5di7Fjx6Jnz56QyWQYNGgQli1bZo5bIiIjqqo1sbJy8xE0aycA4OLcCDg72MHPzw+CICArKwtJSUnFJkoQkfUw+3IRzzzzDJ555pkS9wuCgLlz52Lu3LklHlO7dm2sW7fOFOERkRlVRctOSRwdHVG3bl3cuXMHMTExTHaIrJjZl4sgIipJZWdiVRYHKRPZBrO37BAR6ZOXlyclGYZ2Yzk72OHWwn46z2lvZ+Xml+s8AQEBOHDgAAcpE1k5JjtEZJFu3ryJgoICuLi4VOlkA+3xO6808JNiISLrxW4sIrJI2l1Y5poJ5c/p50Q2gckOEVkkcw5O1vD39wfAZIfI2rEbi4gskikHJxcd01PSGJ6AgMIByrGxscjLy4O9vb3RYyEi02PLDhFZpKqqsVNUYnq29LO3UglHR0eo1WrcuXOnSuMgIuNhskNEFqkqu7E2nnycyDz7+SHpZ5lMhnr16gMAwt5bX+5ZXERkWZjsEJHFSU9Ph0qlAlByspOVmw//aX/Af9oflUpCEtIeYfaWC9K2WtTdX79B4bpZ+Wn3KnwNIjIvJjtEZHE0XVje3t5QKBQmvVbM/cxiCY62Bn7/JjvpSSaNg4hMh8kOEVmcqqycHFDHBbISZrar0rLR4N9aOwXpbNkhslZMdojI4lTl4GQfhRPm9G8hbWvnPeGf7scDRWHClZ9W2LJjrO4zIqo6THaIyOJUZHByZZKQQW3rPd7QynbUIrAjSQF5TQ92YxFZMSY7RGRxzDXtHADEIuN31ADs3H2Rn34PYtGdRGQVmOwQkUURRdGsq50XHb8jE4D81ASgIA9JSWzdIbJGFaqgfO3aNezduxdJSUlQq9U6+2bNmmWUwIioekpISEBGRgbkcjkaNmxY5dd/9+nm+PCPSwAKE505/Vvgv6sUsKvlgzNXYtDb27vKYyKiyjE42fnmm28wZswY1KlTB0qlUmeBPkEQmOwQUaVoWnUCAgLg4OBQrteo0rKhVNQwyvWfC/WVkp2oyd1w6Pp9KF9dAkEmw6SoVMx1YSVlImtjcLLz4YcfYt68eZg6daop4iGiaq68g5O1qx6Hf7pfZ0aVMc3ecgGCrLDHX4SgU4CQiKyDwWN2UlJSMHjwYFPEQkRUrsHJ+qoemyIJuf2geMFB7W1VWjaIyPIZnOwMHjwYf/31lyliISIqV8uOvqrHpVVBrig/j+IFB4vW4fn5eKzxL0xERmVwN1bjxo0xc+ZMHDlyBMHBwbC3t9fZP378eKMFR0TVT3ladjRVj7UTHO1tVVo2Gnq6lvuazg52uLWwHwDo1OhRKmpgTv8WmLH5fOH4RFENCI+/I6pF4N1N59G1qSd8FE7lvh4RVS1BNLBwREBAQMknEwTcvHmz0kFVtfT0dCgUCqSlpcHNzc3c4RBVW3l5eXByckJBQQHu3LmDunXrSvuycvMRNGsnAODi3AhsPHkHM38v7LqSCUD/Vr7YfDpe2l4wMBgvtm9gcAxFrwMAjSO/RfLOL+Hm5Qvn8HHFXvPTqE4Ia+Rh8LWIqHLK+/fb4JadmJiYSgVGRFSSmzdvoqCgAC4uLvD19S312EFt60nJzk+jOmHIN0ekfcZucbFz9UBO3Dkkp8bDtZdui5JcEOBfx7nS1yAi02FRQSKyGNrjdbTLWpQlKze/2JidAlHErftZRolL5ugMmaMLCh4+wOh27o+fF4D5A1uyC4vIwpWrZWfy5Mn44IMP4OLigsmTJ5d67KeffmqUwIio+tEkO4YuE6EZSGyMFhft8TvA4zE8coUX1EkxaCp/AEAOoLAOjyFjg4jIPMqV7Jw6dQp5eXnSzyUx5JsYEVFRFU12NAOJtcfwGLvFxc7NC3lJMYiLiwUQIF2XiCxfuZKdvXv36v2ZiMiYKprsALpjeEzR4mKn8AIAxMbGAvKSJ2oQkeWp1JiduLg4xMXFGSsWIqrmKpPsaDNFi4u8pieAf5MdLVm5+fCf9gf8p/2hM22diCyHwclOfn4+Zs6cCYVCAX9/f/j7+0OhUGDGjBlSVxcRkaFSUlJw7949AGUvFWGOysWalp242NtVfm0iqhyDp56PGzcOmzZtwuLFixEWFgYAiI6Oxvvvv48HDx5gxYoVRg+SiGyfplWnbt26cHUt3gVVdC2sBQOD9Q4kNjbNgOVjxzzR8feFiIuLg33ZLyMiC2JwsrNu3TqsX78effv2lZ4LCQlB/fr1MWTIECY7RFQhpXVh6VsLq6orF/v5+RXGEh+P+gV5EORMeYishcHdWI6OjvD39y/2fEBAABwcHIwRExFVQ6UlO/rWwjJmHZ3y8PT0hKOjI0RRRP7DB1V2XSKqPIOTnbFjx+KDDz5ATk6O9FxOTg7mzZuHsWPHGjU4Iqo+Skt2NGthaavqysUymQwNGhQuP7H2pUa4tbAfnB0MbhwnIjMo1zt14MCBOttRUVGoV68eWrVqBQA4c+YMcnNz0bNnT+NHSETVQmnJjo/CyeR1dMrDz88P165dw+3bHKRMZE3KlewoFAqd7UGDBuls169f33gREVG1U1BQgOvXrwMoedp5WXV0ilY+NgXNuB0mO0TWpVzJzqpVq0wdBxFVY7dv30ZOTg4cHR2lrqLSmKtysSa2kuqLqdKyuXwEkQUy60Kg77//PgRB0HkEBgZK+7OzsxEZGQkPDw+4urpi0KBBSExM1DlHbGws+vXrB2dnZ3h5eWHKlCnIz2dhLyJrounCatKkCeRyuZmjKZmmFVu7sGDRKfE/H48t9joiMi+zr3reokULJCQkSI+DBw9K+yZNmoStW7diw4YN2L9/P+Lj43XGDxUUFKBfv37Izc3F4cOHsWbNGqxevRqzZs0yx60QUQUZq3KyqWladjTJTklT4hPSHpklPiLSz+xTCezs7KBUKos9n5aWhpUrV2LdunXo0aMHgMLutObNm+PIkSPo1KkT/vrrL1y8eBFRUVHw9vZG69at8cEHH2Dq1Kl4//33ORWeyEpYW7ITFxcHURRLnRJf1YOniahkZm/ZuXbtGnx9fdGwYUMMHTpU+sZ08uRJ5OXlITw8XDo2MDAQDRo0QHR0NIDCys3BwcHw9vaWjomIiEB6ejouXLiAkuTk5CA9PV3nQUTmoy/ZscQ1p+rVqwcAyMzMREpKikVMiSeishmU7OTl5aFnz564du2aUS7esWNHrF69Gjt27MCKFSsQExODJ598Eg8fPoRKpYKDgwPc3d11XuPt7Q2VSgUAUKlUOomOZr9mX0kWLFgAhUIhPTibjMi8Ll++DMDyW3acnJzg6fl4QVDNlHgNc02JJ6LSGZTs2Nvb4+zZs0a7eN++fTF48GCEhIQgIiIC27dvR2pqKn755RejXUOf6dOnIy0tTXpw5XYi80lPT0dCQgIAy092gOIzsga1rSfti5rcDS+2L3s2GRFVLYO7sV555RWsXLnSFLHA3d0dTZs2xfXr16FUKpGbm4vU1FSdYxITE6UxPkqlstjsLM22vnFAGo6OjnBzc9N5EJF5XL16FQDg5eVVrCVXm6aOjrkrFxcdpKzNXFPiiah0Bn9i5Ofn47vvvkNUVBTatm0LFxcXnf2ffvpphYPJyMjAjRs3MGzYMLRt2xb29vbYvXu3VMTwypUriI2NlVZbDwsLw7x585CUlAQvLy8AwK5du+Dm5oagoKAKx0FEVUeadt60Kfyn/QEAuDg3wpwhlUrf9HMismwGJzvnz59HmzZtADz+RqYhCIK+l5To7bffxrPPPgs/Pz/Ex8dj9uzZkMvlGDJkCBQKBUaOHInJkyejdu3acHNzw7hx4xAWFoZOnToBAHr37o2goCAMGzYMixcvhkqlwowZMxAZGQlHR0dDb42IzEA72blTxrGWoLSWHSKyTAYnO3v37jXaxe/cuYMhQ4bgwYMH8PT0RJcuXXDkyBFpAOCSJUsgk8kwaNAg5OTkICIiAl9++aX0erlcjm3btmHMmDEICwuDi4sLhg8fjrlz5xotRiIyrUuXLgEAmjYNxN4UMwdTDmVVUSYiy1Phju/r16/jxo0b6Nq1K5ycnCCKosEtO+vXry91f40aNbB8+XIsX768xGP8/Pywfft2g65LRJbj4sWLAIDmQUHAIf3HWNIyDGzZIbI+Bg9QfvDgAXr27ImmTZvi6aeflmZRjBw5Em+99ZbRAyQi25WXlyd1hzdv3lxnn6Uuw6AZs3P37t0yl6axxFpBRNWRwcnOpEmTYG9vj9jYWDg7Py6c9eKLL2LHjh1GDY6IbNv169eRn58PV1dX1NOqd6VKy7bYZRiUSiXs7e2hVquRkJBgMbPEiKhkBic7f/31FxYtWiRVEtVo0qQJbt++bbTAiMj2abqwgoKCdLrBbz8oeRkGc5PJZNLnH7uyiKyDwclOZmamTouORnJyMmdAEZFBNMu6FC0V4exgZ9HLMHD6OZF1MTjZefLJJ/H9999L24IgQK1WY/HixejevbtRgyMi26bdsqM9RmfIN0fQv5WvtG1pyzBwRhaRdTG4g3nx4sXo2bMnTpw4gdzcXLzzzju4cOECkpOTcehQCVMpiIj00CQ7Po2CMKvIGJ0tZ+Kl7ajJ3SxmNhbAGVlE1sbglp2WLVvi6tWr6NKlCwYMGIDMzEwMHDgQp06dQqNGjUwRIxHZoPz8fKmgoIu3f7ExOtrblrYMQ0nJDmdfEVmmCk0dUCgUeO+994wdCxFVIzdv3kRubi6cnZ3RIcgfsm23dBIcmYBiCZClqMiYHUuqFURU3RjcsgMAKSkp+PjjjzFy5EiMHDkSn3zyCZKTk40dGxHZMM3g5ObNm6NuLRfM6d9C2icToLNtaco7ZsdSawURVTcGJzsHDhyAv78/li1bhpSUFKSkpGDZsmUICAjAgQMHTBEjEdkg7cHJADCo7eNyFlGTu+lsWxpNspOcnIyMjAy9x1hyrSCi6sbgZCcyMhIvvvgiYmJisGnTJmzatAk3b97ESy+9hMjISFPESEQ2SJPstGhRvAXH0sboFOXm5gY3NzcAJbfuWHKtIKLqxuBk5/r163jrrbcgl8ul5+RyOSZPnozr168bNTgisl3a3VjWqKyuLD8PF4uuFURUnRic7LRp00ZapVjbpUuX0KpVK6MERUS2LS8vT2rZCQkJMXM0FVOe6edFxyFZUq0gourE4NlY48ePx4QJE3D9+nV06tQJAHDkyBEsX74cCxcuxNmzZ6VjrfVDjIhM6/Lly8jLy4Obmxv8/Pz0HqNZc8pS6Ut2ig5I1k52LK1WEFF1YnCyM2TIEADAO++8o3efIAgQRRGCIKCgoKDyERKRzTlz5gyAwi9E2mtiWZOi088T0h4VG5CsvW3p45CIbJnByU5MTIwp4iCiakST7Fhz13fRMTsx94sPSLbUOkFE1Y3ByU5JTc5EROWlL9mx9G6roop2YwXUcSlWCNGSCyMSVScVKipIRFQZttCyo+nGiouLgyiK8FE4WVVhRKLqhMkOEVUplUqFpKQkCIKgt8aOtahbty4EQUBOTg7u3bsHwLoKIxJVJ0x2iKhKaVp1mjRpAhcXFzNHU3EODg7w8fEBoH/6OQckE1mOCi0ESkRUUZryFNbchaXRoEEDxMfHIzY2Fu3atSu239rGIRHZKoNbduLi4nDnzuNaEseOHcPEiRPx9ddfGzUwIqqYK1euYNy4cWjfvj26dOmCGTNm4O7du+YOS2IL43U0KrL6ORFVPYOTnZdffhl79+4FUNj33qtXLxw7dgzvvfce5s6da/QAiaj8Pv/8c4SEhOCLL77AiRMncOjQIcybNw9BQUH46aefzB0eAN0aO9auvKufE5F5GZzsnD9/Hh06dAAA/PLLL2jZsiUOHz6MtWvXYvXq1caOj4jK6aOPPsL48eORm5uLPn364JdffsHq1avRoUMHpKen4+WXX8aXX35p1hhzcnJw+fJlAIUtO1m5+fCf9gf8p/2BrNx8s8ZWEeVZMoKIzM/gZCcvLw+Ojo4AgKioKPTv3x8AEBgYiISEBONGR0TlsmvXLkydOhUAMGfOHGzfvh2DBw/G8OHDcejQIUyaNAkAEBkZiS1btpgtzjNnziA/Px8eHh5SF5A1YzcWkXUwONlp0aIFvvrqK/z999/YtWsX+vTpAwCIj4+Hh4eH0QMkotKlpqZi2LBhEEURo0ePxqxZs3SWYLCzs8Mnn3yCMWPGAABeeeUV3Lx50yyxHjt2DADQoUMHq10mQlvRbizNgORbC/vB2YHzP4gshcHJzqJFi/C///0PTz31FIYMGSINMtyyZYvUvUVEVWf27NlITExEYGAgli5dqvcYQRDw2WefoXPnznj48CFGjBgBtVpdtYFCN9mxBZpkJyEhATk5OWaOhohKYvBXj6eeegr3799Heno6atWqJT0/evRoq66ZQWSNrl69iuXLlwMoHJzs5ORU4rH29vb4/vvvERISgv3792PVqlUYOXJkVYUKwPaSnTp16qBGjRrIzs7G3bt30bBhQ3OHRER6GNyy06NHDzx8+FAn0QGA2rVr48UXXzRaYERUtnnz5qGgoADPPPMMwsPDyzy+YcOG0qzJGTNmICMjw9QhSlJTU3HlyhUAQPv27avsuqYkCILOshFEZJkMTnb27duH3NzcYs9nZ2fj77//NkpQRFS2mJgYrF27FgAwa9ascr9u7NixaNSoEVQqFT766CNThVfMiRMnAAABAQHw9PSssuuaGmdkEVm+cndjaaqeAsDFixehUqmk7YKCAuzYsQN169Y1bnREVKLly5ejoKAAvXr1MqilxMHBAQsXLsTgwYPx0UcfYfTo0VXy3i2rC0uVlo2Gnq4mj8PYmOwQWb5yJzutW7eGIAgQBAE9evQott/JyQmff/65UYMjIv2ysrKwcuVKAMCECRMMfv2gQYPQuXNnHDp0CHPmzKmSCuj6kp2NJx9XYw//dD8WDAzGi+0bmDwWY+L0cyLLV+5urJiYGNy4cQOiKOLYsWOIiYmRHnfv3kV6ejpGjBhhyliJ6F8///wzUlNTERAQIJV/MIQgCFi0aBEAYPXq1SYfbyKKIo4ePQrgcbKTkPYIs7dckI5Ri8C7m84jIe2RSWMxNlZRJrJ85W7Z8fPzAwCzTFclIl1r1qwBAIwaNQpyubxC5+jcuTO6deuG/fv34+OPP8Znn31mzBB13LlzByqVCnK5HG3atAEAxNzPhFrUPa5AFHHrfhZ8FCXPKrM07MYisnwVqnp17do17N27F0lJScWSH0MGShKR4WJiYrB//34IgoBXXnmlUueaMWMG9u/fj2+++QbvvfcevLy8jBSlLk2rTsuWLeHs7AwACKjjApkAnYRHLgjwr+NskhhMhckOkeUzONn55ptvMGbMGNSpUwdKpVKnCqogCEx2iExMMwOrR48elV5yoWfPnujQoQOOHTuGJUuWYMGCBcYIsRjNTM3OnTtLz/konDCnfwvM/L2wK0smAPMHtrSqVh3g8Zidhw8fIi0tDQqFosRjs3LzETRrJwDg4twIVlkmqiIGTz3/8MMPMW/ePKhUKpw+fRqnTp2SHv/880+FA1m4cCEEQcDEiROl57KzsxEZGQkPDw+4urpi0KBBSExM1HldbGws+vXrB2dnZ3h5eWHKlCnIz7e+BQWJymvjxo0AgJdffrnS5xIEAe+99x6AwtldaWlplT6nPgcOHAAAdOrcRWfhz0Ft60nHRE3uZnWDkwHA2dlZWiqHrTtElsngZCclJQWDBw82ahDHjx/H//73P4SEhOg8P2nSJGzduhUbNmzA/v37ER8fj4EDB0r7CwoK0K9fP+Tm5uLw4cNYs2YNVq9ezdYlslm3bt3C6dOnIZPJ8Oyzz+rsq+gK4s888wxatGiBhw8fmmRWVkpKCs6cOQMA6NzlyRKPUypqGP3aVYVdWUSWzeBkZ/Dgwfjrr7+MFkBGRgaGDh2Kb775Rqcqc1paGlauXIlPP/0UPXr0QNu2bbFq1SocPnwYR44cAQD89ddfuHjxIn788Ue0bt0affv2xQcffIDly5frLXyokZOTg/T0dJ0HkTXYvHkzAODJJ580WmE+mUyGt99+GwCwdOlSo6/xdOjQIYiiiKZNm0KpVBr13JaC08+JLJvByU7jxo0xc+ZMvPbaa/jkk0+wbNkynYehIiMj0a9fv2Kl7k+ePIm8vDyd5wMDA9GgQQNER0cDAKKjoxEcHAxvb2/pmIiICKSnp+PChQsoyYIFC6BQKKRHZcc9EFWV3377DQDw/PPPG/W8L7/8Mnx9fREfH49169YZ9dx79+4FAHTt2tWo57UknH5OZNkMHh339ddfw9XVFfv378f+/ft19gmCgPHjx5f7XOvXr8c///yD48ePF9unUqng4OAAd3d3nee9vb2l6s0qlUon0dHs1+wryfTp0zF58mRpOz09nQkPWbx79+7h4MGDAIABAwYY9dwODg6YNGkSpkyZgo8++gjDhw+HTGbwdyG9NC3BvXr1Msr5LBG7sYgsm8HJTkxMjFEuHBcXhwkTJmDXrl2oUaNq++odHR3h6OhYpdckqqytW7dCrVYjNDQU/v7+Rj//6NGj8cEHH+DSpUv4448/io0Jqoj4+HicP38egiCgZ8+eRojSMlUk2bHW5TGIrJFxvrpVwMmTJ5GUlIQ2bdrAzs4OdnZ22L9/P5YtWwY7Ozt4e3sjNzcXqampOq9LTEyU+v2VSmWx2VmabVsdG0DVl2a8jrG7sDTc3NwwZswYAMDixYuNcs6oqCgAQLt27aQZSxqqtGw4O9jh1sJ+uLWwn1VPwy7vyudFl8f4+ThbgoiqgsGfLmUtCfHdd9+V6zw9e/bEuXPndJ57/fXXERgYiKlTp6J+/fqwt7fH7t27MWjQIADAlStXEBsbi7CwMABAWFgY5s2bh6SkJKkY2q5du+Dm5oagoCBDb43IYuXm5mLPnj0AUK4Wl4q2GowfPx5LlizBwYMHcfjwYTzxxBMGn0Pb9u3bATzuwrKFtbD00bTs3LlzBwUFBXqrWpe0PEbXpp5WV1uIyNpUaOq59iMpKQl79uzBpk2birXClKZmzZpo2bKlzsPFxQUeHh5o2bIlFAoFRo4cicmTJ2Pv3r04efIkXn/9dYSFhaFTp04AgN69eyMoKAjDhg3DmTNnsHPnTsyYMQORkZHspiKbEh0djczMTHh5eRUr0aBhjFYDX19fDBs2DADw0UcfVSzYf+Xm5uLPP/8EUJig2cpaWPr4+PhALpcjPz+/xPGCpS2PQUSmZXDLjmY2iDa1Wo0xY8agUaNGRglKY8mSJZDJZBg0aBBycnIQERGBL7/8Utovl8uxbds2jBkzBmFhYXBxccHw4cMxd+5co8ZBZG67du0CAISHh+sdOGzMVoO3334bK1euxO+//47Lly8jMDCwQjHv27cP6enpUCqV6NChA47EJNvEWlj6yOVy1K1bF7GxsYiLi0PdunWLHWMry2MQWSOjjNmRyWSYPHkylixZUqnz7Nu3D0uXLpW2a9SogeXLlyM5ORmZmZnYtGlTsbE4fn5+2L59O7KysnDv3j18/PHHsLOz3r5/In20kx19jNlqEBgYiP79+0MURXzyyScGv15DM8aof//+kMlk0h97bbb0x76sQcqa5TE0ZALwfv8ghC3YY3AhSCIyjNEGKN+4cYPLNBCZQEpKCk6cOAGg5Onbxk4k3nnnHQDA999/X2oZh5Lk5eXh119/BfB4QLW+P/bWuBZWScozI6vo8hja20RkOgY3gWjXpwEAURSRkJCAP/74A8OHDzdaYERUaO/evVCr1QgMDES9evr/OBp7Uc3OnTvjiSeewOHDh/HRRx8Z3MKzc+dO3Lt3D97e3jqtUYPa1pNijJrczaamXhs6/dyal8cgsjYGt+xoL/x56tQpnD17FgDwySef6HRBEZFxaLqwyirKp91KsHVcZ0zdeE7qHqnIulkzZswAAHzxxRe4deuWQTH/8MMPAIAhQ4aU2K1sa3/syzv9nIiqnsEtO5rS70RUNcqb7Gjzdqt8ItGnTx/06NEDe/bswcyZM6UEpiwJCQnSRIZXX3210nFYC1ZRJrJcFR6zoyldf/DgQdy7d8+YMRHRv2JjY3Hjxg3I5XJ069atSq8tCIJUXPDHH3/EqVOn9B5XtNVoxYoVyMvLwxNPPIHQ0NCqDNmsmOwQWS6Dk53MzEyMGDECPj4+6Nq1K7p27QpfX1+MHDkSWVmsF0FkTH///TcAoE2bNnBzc6vy67dt2xZDhgwBAEyaNAmiKJZ6/MOHD7FixQoAwMSJE00dnkXRdGPdv38fjx4ZXjtIlZZt7JCI6F8GJzuTJ0/G/v37sXXrVqSmpiI1NRW///479u/fj7feessUMRJVC/rG1WiSnSeffLJC426MYf78+XBycsL+/fvx9ddfl3rssqVLcP/+fTRu3Nhky1pYKnd3d7i6Fg64Lu+4HS4fQVQ1DE52Nm7ciJUrV6Jv375wc3ODm5sbnn76aXzzzTfSVFMiMg7tZMdc/P39MX/+fACFX3bOnz+v97i8VBU+W/IpgMIEyc7OrliCZitrYekjCEKZXVna95/2KM9mK0oTWRqDk52srCx4e3sXe97Ly4vdWERGdP/+fVy8eBEA0KVLlzKPLymRKNo9UpHuknHjxiE8PBxZWVkYMGAA7ty5o7NfzM/F/S0fITMzE08++ST+85//GHwNW2DIuB0uH0FUdQxOdsLCwjB79mxkZz/+wHz06BHmzJkjLdBJRJV38OBBAEBQUBDq1Klj0GuLdo+8u+mczrah3SVyuRw//fQTAgICcPPmTTz55JM4cOBAYZ2t+Hgk/ToHuQlX4O7ujh9//BGCIJR9UhtkyPRzW68oTWRJDE52PvvsMxw6dAj16tVDz5490bNnT9SvXx+HDx/GZ599ZooYiaqlsrqwShrDo2+drM2n43W2K9JdUqdOHezduxcNGzbCrVu30K1bN3h5eyOwSSPkJd9BjYbt8OX3G6TWjerIkJYdW68oTWRJDO40b9myJa5du4a1a9fi8uXLAAoLhw0dOhROTnyTEhlLRcfr6OseKaqiC3D6+fnh7+gjaNZ7GDLOR+H+vXtwDemF2hHjIMhkeO9wDmTKWLzYvnomPIZOP7flitJElqRCIwSdnZ0xatQoY8dCRP+6kfAA//zzDwCga9euxfar0rJLrECsb3XtoirTXeLu7g6PPmNRq8dIfN7PBxOjUqGZkV6Z1dZtQWWqKNtaRWkiS2JwN9aCBQvw3XffFXv+u+++w6JFi4wSFFF1pD3Opv+KE3Bq0QN+fn7SH9Ci43C0t7Xp6x55rrWvzrYxVtuWOTjBrW5jFC29U9Ig2+pQR0a7ZaesmkREVHUMTnb+97//ITAwsNjzLVq0wFdffWWUoIiqm6LjbEQAtSPGol3XcL371SJ0tosqurr2/IHBOttFV9uuaA0fP4/SB9lWtzoymoVaHz16hAcPHpg5GiLSMDjZUalU8PHxKfa8p6cnEhISjBIUUXWjb5yNIJOjYUinEveXNS5Ho2j3iDG7S5SKGiUOstWXoNl6HRlHR0colUoAXBCUyJIYnOzUr18fhw4dKvb8oUOH4Ovrq+cVRFQWfdOQRXUBenYILnG/9ra5uohUadnFWpE0g5Orax0ZTbcj18gishwGJzujRo3CxIkTsWrVKty+fRu3b9/Gd999h0mTJnHQMlEFFR1nI6oLkL7nf+jeKVTvfpkA9G/1+MtFVXYRlTZ2SLvVqLrWkTFkRpYtV5QmsiQGJztTpkzByJEj8X//939o2LAhGjZsiHHjxmH8+PGYPn26KWIkqhY0LSSPYk7i7lcj0KJGGhwcHIrtB4CfRnXCljOVr50DlN0qpD2e5+a9jHKPHaqudWS4+jmR5TE42REEAYsWLcK9e/dw5MgRnDlzBsnJyZg1a5Yp4iOqdrKuHkHBwwdo16FjiYOGs3LzK9VFVFrrTGnJz+0Hho0dKqmLy5ZVZvo5EZlGhdtNXV1d0b59e2PGQkQAcuKvAAA6dOyIzaf0H6OZBaWdaGh3EWm6R7RptvUNHJ71++Pt8E/3Y8HAYL2Jib7rllXTR6O61JFhyw6R5TG4ZYeITEedm428e7cAAB06dCzxuNJmQZVF38Bh7c3SusT0XVd7m5jsEFkiJjtEZlS0vk2u6iogqlG3Xj341q1b6msr2kWkb+BwUaV1iRW97rAwfw6y1aJJdhISEpCXl2fmaIgIYLJDZDGcHewwMaQwC3kiLMyg1xrSRVR04LDw70NbeWdNVZeuKUN4enrCwcEBarUa8fHxZb+AiEyuXMlOmzZtkJKSAgCYO3cusrJsu04GkbkcO3YMANChQwed51Vp2UadpqzdOrP7rW6YO6B8XWLVYcmHypLJZKy1Q2RhypXsXLp0CZmZmQCAOXPmICMjw6RBEVVXJ06cAAC0b9++ypZaUCpqlNolVt41ufSprnVkOG6HyLKU69OndevWeP3119GlSxeIooiPP/4Yrq6ueo/lFHSiiklMTERcXBwEQYBPoyC8vvyYtK8qVxN3c7KD/7Q/AAB73upm0JpcVIjTz4ksS7mSndWrV2P27NnYtm0bBEHAn3/+CTu74i8VBIHJDlEFnfrnHwBAs2bNcD9HKLGOjibZ0Te93NhKqqvz06hOCGvkYdJrWzNNy87t27fNHAkRAeVMdpo1a4b169cDKOyP3r17N7y8vEwaGFF1c/DkWQCFXViaGVMl1dGpKmXV8yH9/Pz8ADDZIbIUBs/GUqvVTHSIjER7/MumnBC4hvRCu3btLGaphcrU86nOAgICAAAxMTFmjoSIgApWUL5x4waWLl2KS5cuAQCCgoIwYcIENGrUyKjBEdmyopWMIchQO2IsAlrUBlA4Y2rmv5WNoyZ3Q0NP/ePkKqJoF1jR5Si0mTIOW6VJdm7dugVRFCEIZRQ2IiKTMrhlZ+fOnQgKCsKxY8cQEhKCkJAQHD16FC1atMCuXbtMESORTdJXyViQyVHTJ6DYsaauZ1PSrKmiU81ZV6d86tevD5lMhuzsbKhUKnOHQ1TtGdyyM23aNEyaNAkLFy4s9vzUqVPRq1cvowVHZMv0jcuBWo1mdWubLSag+FRzLgdhOHt7e9SvXx+3b99GTEwMfHx8zB0SUbVmcMvOpUuXMHLkyGLPjxgxAhcvXjRKUETVQdFxOaK6AIEZp8w6HkbfIqGcal4xHLdDZDkMTnY8PT1x+vTpYs+fPn2aA5eJDKQp5pe8dxXufjUC/VvWMWs8+rrWyrOiuUbRtb6qM02yc/PmTTNHQkQGJzujRo3C6NGjsWjRIvz999/4+++/sXDhQrzxxhsYNWqUQedasWIFQkJC4ObmBjc3N4SFheHPP/+U9mdnZyMyMhIeHh5wdXXFoEGDkJiYqHOO2NhY9OvXD87OzvDy8sKUKVOQn1+9P2TJuoiiiMxzu1Dw8AHatWtn1lj0LRIqFwRET+9R7aogVxZbdogsh8GfXDNnzkTNmjXxySefYPr06QAAX19fvP/++xg/frxB56pXrx4WLlyIJk2aQBRFrFmzBgMGDMCpU6fQokULTJo0CX/88Qc2bNgAhUKBsWPHYuDAgTh06BAAoKCgAP369YNSqcThw4eRkJCAV199Ffb29pg/f76ht0ZkFgXp96B+lA47OzuEhIRIz1dF0cCiNF1rmtlXnGpecUx2iCyIWAnp6elienp6ZU5RTK1atcRvv/1WTE1NFe3t7cUNGzZI+y5duiQCEKOjo0VRFMXt27eLMplMVKlU0jErVqwQ3dzcxJycnHJfMy0tTQQgpqWlGe9GiMohMydPrPPcdBGA2Kp1a3OHI4piYUx+U7eJflO3iTeSHlb4tZk5eSaK0DocPHhQBCD6+fmV+zX89yMyTHn/fhvcjaWtZs2aqFmzphFSrsJWmvXr1yMzMxNhYWE4efIk8vLyEB4eLh0TGBiIBg0aIDo6GgAQHR2N4OBgeHt7S8dEREQgPT0dFy6UPKgyJycH6enpOg+iqqBvTEuu6hoAoG1b83Zh6cOp5hWnadmJi4tDXl6emaMhqt4qlewYw7lz5+Dq6gpHR0e8+eab+O233xAUFASVSgUHBwe4u7vrHO/t7S3VrVCpVDqJjma/Zl9JFixYAIVCIT00i/YRVTVnBzt0cE0FAHTq2MG8wRhZ0Ro91Y1SqYSjoyPUajUXBCUyM7MnO82aNcPp06dx9OhRjBkzBsOHDzf5FPbp06cjLS1NevCDiEylrNlJoijixIkTAGD2wcnGULRGz8/HY80YjXnJZDL4+/sD4LgdInMze7Lj4OCAxo0bo23btliwYAFatWqFzz77DEqlErm5uUhNTdU5PjExEUqlEkDhN6eis7M025pj9HF0dJRmgGkeROZw8+ZNpKamwtHRES1aWHfxPn01et7ddB4JaY/MGJV5cZAykWUwKNnJy8tDz549ce3aNVPFA7VajZycHLRt2xb29vbYvXu3tO/KlSuIjY1FWFgYACAsLAznzp1DUlKSdMyuXbvg5uaGoKAgk8VIZAyqtGypVadVq1ZwcHAwc0SFSlo6oiz6avQUiCJu3c8ycoTWo2HDhgAqluxU925AImMyaOq5vb09zp49a7SLT58+HX379kWDBg3w8OFDrFu3Dvv27cPOnTuhUCgwcuRITJ48GbVr14abmxvGjRuHsLAwdOrUCQDQu3dvBAUFYdiwYVi8eDFUKhVmzJiByMhIODo6Gi1OImMp2s3TpqBw2xa6sPQtfyEXBPjXcTZfUGZmaMtO0f8fCwYG48X2DUwSG1F1YnA31iuvvIKVK1ca5eJJSUl49dVX0axZM/Ts2RPHjx/Hzp07pfW1lixZgmeeeQaDBg1C165doVQqsWnTJun1crkc27Ztg1wuR1hYGF555RW8+uqrmDt3rlHiIzImVVp2sW6eE0JTyGt62ESyU3T5C9boMayKMrsBiUzH4KKC+fn5+O677xAVFYW2bdvCxcVFZ/+nn35a7nOVlTTVqFEDy5cvx/Lly0s8xs/PD9u3by/3NYnM5VRsSvGlFwQZ7Nx9bSLZAQqXv9AUJIya3A0NPV3NHJF5GdKyU1o3YHVOGImMweBk5/z582jTpg0A4OrVqzr7BEHQ9xKiaku7W+LtDWchAND+eyaqC2CXnYzmzZtXeWymxho9j5OdpKQkZGZmFvtyqHMsuwGJTMbgZGfv3r2miIPI5hTtlhABaH8dECDiwc4v0KqJH+zsuOaULapVqxYUCgXS0tJw69atUmfccakOItOp8NTz69evY+fOnXj0qLA/WRQNWBqZqBrQ1y2hvdk9az8yzu6ymS4s0s+QrqxBbetJP0dN7sbByURGYnCy8+DBA/Ts2RNNmzbF008/jYSEBADAyJEj8dZbbxk9QCJrpW8Fce3tyycPAwDat29fhVFRVatorR12AxIZj8HJzqRJk2Bvb4/Y2Fg4Oz/uS37xxRexY8cOowZHZM30zU7SbIvqApw5fRqAbUw716hojR5bxsKCROZncLLz119/YdGiRahXr57O802aNMHt27eNFhiRLSjaLaHZznsQh6ysLLi6uqJp06bmCo+qQEWTnbKWGiGi8jM42cnMzNRp0dFITk5mIT+iUmh3S+SqrgMA2rZtC5nM7Ku2kAmxZYfI/Az+lH3yySfx/fffS9uCIECtVmPx4sXo3r27UYMjsjWabp6XAvIA2FYXFumnneyUNZGD3YBEpmHwu2nx4sXo2bMnTpw4gdzcXLzzzju4cOECkpOTcejQIVPESGRzbGmlcyqdJtlJT0/HgwcPUKdOHTNHRFT9GNyy07JlS1y9ehVdunTBgAEDkJmZiYEDB+LUqVNo1KiRKWIksil5eXk4bYODk0k/Jycn1K1bF0BhyQ4iqnoVaidVKBR47733jB0Lkc3RdEtou3DhAnJycqBQKPgFoZpo3Lgx7t69i+vXr0sLGRtClZZd7ZfeIKqMCiU7KSkpWLlyJS5dugQACAoKwuuvv47atWsbNTgiW3T8+HEAha06XGKlemjSpAn2799vUMsOV0AnMh6Du7EOHDgAf39/LFu2DCkpKUhJScGyZcsQEBCAAwcOmCJGIpuiGa/DYoLVR+PGjQGUvxuLK6ATGZfBLTuRkZF48cUXsWLFCsjlcgBAQUEB/u///g+RkZE4d+6c0YMksiXaLTtUPWiSnWvXrpXreK6ATmRcBrfsXL9+HW+99ZaU6ACAXC7H5MmTOfiOqAzZ2dnSFwK27FQfhrbs6FtqhCugE1WcwclOmzZtpLE62i5duoRWrVoZJSgiW3XmzBnk5+fD09MT9evXN3c4VEU0yU5ycjKSk5PLPF7fUiNcAZ2o4srVjXX27Fnp5/Hjx2PChAk6swqOHDmC5cuXY+HChaaJkshGaI/X4eDk6sPFxQU+Pj5ISEjAjRs3yjWZY1Dbepj5e+G4najJ3Tgbi6gSypXstG7dGoIg6FT/fOedd4od9/LLL+PFF180XnRENobjdaqvxo0bIyEhAdeuXTO4C1OpqIGs3HwEzdoJALg4N4IVlokMUK53C9d0ITIOTbLD8TrVT+PGjfH3339zbCORGZQr2fHz8zN1HEQ2LyMjQxrvxpad6qdJkyYAWEWZyBwq1A4aHx+PgwcPIikpCWq1Wmff+PHjjRIYka35559/IIoi6tWrB6VSae5wqIoZOiOraPXtrNx8k8RFVB0YnOysXr0ab7zxBhwcHODh4aEzyFIQBCY7RCXg4p/Vm6G1dkrD5SOIDGPw1POZM2di1qxZSEtLw61btxATEyM9bt68aYoYiWwCx+tUb5pk5/79+0hNTTX49UWXj/j5eKyxQiOyeQYnO1lZWXjppZcgkxn8UqJqjclO9VazZk14e3sDAG7cuGHQa7l8BFHlGJyxjBw5Ehs2bDBFLEQ2KyUlRfoD17ZtWzNHQ+aiad25cuWKQa8rbfkIIiqbwWN2FixYgGeeeQY7duxAcHAw7O3tdfZ/+umnRguOyFZoxus0atSoXAXlyDYFBgbi0KFDBic7muUjtBMeLh9BVH4VSnZ27tyJZs2aAUCxAcpEVBwHJxNQmOwAhrfsaJaP0FRU5vIRRIYxONn55JNP8N133+G1114zQThE1q2kKrccr0PA42Tn8uXLBr+Wy0cQVZzBY3YcHR3RuXNnU8RCZLPYskMApBbxq1evFqtRZgilooaxQiKqFgxOdiZMmIDPP//cFLEQ2aTExETExcVBEAS0adPG3OGQGQUEBMDe3h6PHj1CXFycucMhqjYM7sY6duwY9uzZg23btqFFixbFBihv2rTJaMER2QJNF1ZgYCBq1qxp5mjInOzs7NCkSRNcvHgRly9f5lI8RFXE4GTH3d0dAwcONEUsRDZFU+VW04XF8ToEFCa9mmQnIiKi3K8runwEEZWfwcnOqlWrTBEHkU0oWuV2wcBgqWWH43UIeDxux9AZWURUcRVaCJSIitNf5fYcMi4ULvzIlh0CKjcji4gqxuBkJyAgoNR6Olwfi6or/VVugTS1IxwcHBAaGmqewMiiGCvZKanMAREVZ/C7Y+LEiTrbeXl5OHXqFHbs2IEpU6YYKy4iq6Ovyq0AEfmp8WgXGgpHR0fzBUcWQ9ONlZCQgPT0dLi5uZk5IiLbV6Gp59qPt99+G2vXrsXcuXMN7oNesGAB2rdvj5o1a8LLywvPPfdcsXNkZ2cjMjISHh4ecHV1xaBBg5CYmKhzTGxsLPr16wdnZ2d4eXlhypQpyM/PN/TWiCpFU+VWQyYAwdnnUfDwAcLCwswYGVkShUIBpVIJgON2iKqK0ZYu79u3LzZu3GjQa/bv34/IyEgcOXIEu3btQl5eHnr37o3MzEzpmEmTJmHr1q3YsGED9u/fj/j4eJ3ZYAUFBejXrx9yc3Nx+PBhrFmzBqtXr8asWbOMdWtEpcrKzYf/tD/gP+0P9A1WSs9HTe6Gu38XLprLZIe0cdwOUdUyWifvr7/+avAChzt27NDZXr16Nby8vHDy5El07doVaWlpWLlyJdatW4cePXoAKJwN1rx5cxw5cgSdOnXCX3/9hYsXLyIqKgre3t5o3bo1PvjgA0ydOhXvv/8+HBwcjHWLRAapaVeAM2fOAAA6depk5mjIkgQGBmLfvn1GS3Y0ZQ6ISD+Dk53Q0FCdAcqiKEKlUuHevXv48ssvKxVMWloaAEhJ08mTJ5GXl4fw8HDpmMDAQDRo0ADR0dHo1KkToqOjERwcDG9vb+mYiIgIjBkzBhcuXNA7KDQnJwc5OTnSdnp6eqXiJtLn1D//oKCgAL6+vqhfv765wyELEhQUBAC4cOFCGUeWTF+ZgxfbN6h0bES2yOBk57nnntPZlslk8PT0xFNPPSU1zVaEWq3GxIkT0blzZ7Rs2RIAoFKp4ODgAHd3d51jvb29oVKppGO0Ex3Nfs0+fRYsWIA5c+ZUOFaikqQ/ypcKvy1atAhAYRdWaTMYqfrRfMadP3++Qq/XX+bgPLo29eRK6ER6GJzszJ492xRxIDIyEufPn8fBgwdNcn5t06dPx+TJk6Xt9PR0fvOmCivpG3Z0dDQAdmFRcZpk5+bNm8jMzISLi4tBr9df5kDErftZTHaI9DDaAOXKGDt2LLZt24a9e/eiXr160vNKpRK5ublITU3VOT4xMVGazaBUKovNztJsa44pytHREW5ubjoPoooo6Rt2fGoWjhw5AoCDk6k4T09PeHl5QRRFXLp0yeDXa8ocaJMLAvzrOBspQiLbUu5kRyaTQS6Xl/qwszOsoUgURYwdOxa//fYb9uzZg4CAAJ39bdu2hb29PXbv3i09d+XKFcTGxkp/QMLCwnDu3DkkJSVJx+zatQtubm5SvziRqZT0DfvohZtITEyEvb09VzonvSrTlaWvzMH8gS3ZqkNUgnJnJ7/99luJ+6Kjo7Fs2TKo1WqDLh4ZGYl169bh999/R82aNaUxNgqFAk5OTlAoFBg5ciQmT56M2rVrw83NDePGjUNYWJjUNdC7d28EBQVh2LBhWLx4MVQqFWbMmIHIyEgWcSOT01dIUC4IUF07BwBo3bo1nJz4B4iKa9myJfbs2VPhcTuD2tbDzN8LWxWjJnfjbCyiUpQ72RkwYECx565cuYJp06Zh69atGDp0KObOnWvQxVesWAEAeOqpp3SeX7VqFV577TUAwJIlSyCTyTBo0CDk5OQgIiJCZ9aXXC7Htm3bMGbMGISFhcHFxQXDhw83OBaiitB8w9b80dF8wz70w8cA2IVFJavsIGVtSkWNSp+DyJZVqM5OfHw8Zs+ejTVr1iAiIgKnT5+W3riGEEWxzGNq1KiB5cuXY/ny5SUe4+fnh+3btxt8fSJj0PcN++P/KxyczGSHSmLMZIeISmfQAOW0tDRMnToVjRs3xoULF7B7925s3bq1QokOkS1SKmrg0aNHOH36NADOxKKStWhROObm7t27SElJMXM0RLat3MnO4sWL0bBhQ2zbtg0//fQTDh8+jCeffNKUsRFZpRMnTiA/Px9KpRJ+fn7mDocslJubGxo0KCwCWJHigs4Odri1sB9uLezHFc+JylDud8i0adPg5OSExo0bY82aNVizZo3e4zZt2mS04IiskaZWVOfOnVlMkErVsmVLxMbG4vz58+jSpYu5wyGyWeVOdl599VV+cBPpofmGrXHgwAEAQNeuXc0VElmJli1bYvv27Ry3Q2Ri5U52Vq9ebcIwiKxHVm4+gmbtBABcnBuh04VQUFCAQ4cOAQC7ealMmvGO586dM3MkRLbNIiooE9mKM2fO4OHDh3Bzc0NISIi5wyELFxwcDKDw/015ZqcSUcUw2SEyIk0XVpcuXSCXy80cDVm6oKAgODg4IC0tDTExMeYOh8hmMdkhqgRVWrbO9t9//w2AXVhUPg4ODlJX1qlTp8wcDZHtYrJDZKCiq5z/fDwWQGGRTE2yw8HJVF6atdP++eefSp0nKzcf/tP+gP+0P5CVm2+M0IhsBpMdIgOUtMp5QtojXLlyBffu3UONGjXQrl07M0ZJ1iQ0NBQAW3aITImVqIgMUNIq57fuZ+Hcv+N1OnXqBAcHBzNER9bIWC07RFQytuwQGUCzyrk2uSDAv44z9u7dC4BdWGSYkJAQyGQyJCYmIiEhwSjnLDqWjKi6Y7JDZADNKucamlXOlW41sGfPHgBAz549zRUeWSFnZ2cEBgYCqFzrTkljyYiIyQ6RwQa1rSf9HDW5G15s3wDnz59HUlISnJ2dufgnGUzTlVXRcTuljSUjIiY7RJWiVNQAAOzevRtA4ZRzjtchQ2kGKVe0Zae0sWRExGSHyCg0yQ67sKgiKtuyo28sGQAM+eYIp6ETgckOkcE0C3/eWtgPzg52yM/Px/79+wEw2aGKad26NQDg1q1bePDggcGv1zeWjIgeY7JDVEnHjx/Hw4cPUbt2bemPFpEh3N3d0bRpUwDAsWPHKnQO7bFkW8d1NkpcRLaCyQ5RJWm6sLp37w6ZjG8pqhjNwPbo6OhKn8vbrYb0M6ehEzHZISpTWWX4OV6HjCEsLAwAcOTIkUqfa/OpeOnn8E/344foW1xKgqo1VlAmqoT09HQcPHgQANCrVy8zR0PWTNOyc/ToUajVaoNbCTVjyRLSHqHzwj3S82oROtPSiaojtuwQGaBol0BUVBTy8/PRtGlTNG7c2ExRkS1o2bIlXFxckJ6ejkuXLlX4PPqmoRfdJqpumOwQlaG0yrTbt28HADz99NNVHhfZFjs7O7Rv3x5A5bqy9E1D197mGB6qjpjsEJWitMq0oigy2SGjMsYgZX3T0Pu38pW2uZQEVUdMdohKUVpl2jNnziAhIQHOzs5c/JOMwliDlLWnof80qhO2nHk8YJlLSVB1xGSHqBSlrXKuadUJDw+Ho6OjGaIjW9OxY0cAwMWLF5GWlmaUc2bl5nMpCar2mOwQlaKkVc59FE7swiKj8/b2RkBAAERRxNGjRyt8Hu0q34E+biUm7ETVBZMdojLoW+X8/v370riKvn37mis0skFdunQBAGkJksoqLWEnqi6Y7BAZQLPK+e+//w61Wo3WrVujQYMGZo6KbEn37t0BAHv37jXaOfUl7ETVCZMdogrYtGkTAGDQoEFmjoRsjSbZOX78ODIyMox+fk3CTlSdCKIoVvtyU+np6VAoFEhLS4Obm5u5wyELl5aWBk9PT+Tl5eHixYto3ry5uUMiGxMQEIBbt27hzz//RJ8+fcwdDpHFKu/fb7bsEBlo27ZtyMvLQ2BgIBMdMglTdGURVWdMdoiKKGvhz40bNwJgFxaZjqmTnbL+jxPZGiY7RAbIzMzEjh07ADDZIdPRJDsnT540Wr0douqMyQ5RKYquI/THH3/g0aNH8Pf3R+vWrc0TFNm8evXqoXHjxlCr1fj7779Nei2ulUXVAZMdqpZKa8YvbeHPH374AQAwZMgQCEKRSm1ERqRp3dmzZ4/Rz13a/3EiW2TWZOfAgQN49tln4evrC0EQsHnzZp39oihi1qxZ8PHxgZOTE8LDw3Ht2jWdY5KTkzF06FC4ubnB3d0dI0eONMl0TbJt2slPSQt/JiUlSV1Yw4YNM1eoVE307t0bAKRK3cZS2uK2RLbKrMlOZmYmWrVqheXLl+vdv3jxYixbtgxfffUVjh49ChcXF0RERCA7+3Gz69ChQ3HhwgXs2rUL27Ztw4EDBzB69OiqugWyAUWb8UtaR2j9+vXIz89H+/btOQuLTK53796ws7PDlStXin3Jq4zSFrclslVmTXb69u2LDz/8EM8//3yxfaIoYunSpZgxYwYGDBiAkJAQfP/994iPj5dagC5duoQdO3bg22+/RceOHdGlSxd8/vnnWL9+PeLj44udUyMnJwfp6ek6D6peijbja28X7Z3SrCP0/fffA2CrDlUNNzc3dOvWDUDhWDFjKW1xWyJbZbFjdmJiYqBSqRAeHi49p1Ao0LFjR2lNoujoaLi7u6Ndu3bSMeHh4ZDJZKUuordgwQIoFArpUb9+fdPdCFkcfc34s35/vA2tb72adYRS7sbg5MmTsLOzw0svvVSF0VJ19swzzwAAtm7darRzcq0sqo4sNtlRqVQAClcB1ubt7S3tU6lU8PLy0tlvZ2eH2rVrS8foM336dKSlpUmPuLg4I0dPlkxfM75Yws+adYRWr14NoHCFc09PT1OHSATgcbJz4MABo05B51pZVN1YbLJjSo6OjnBzc9N5UPWhrxm/JEpFDTx69AjfffcdAGDEiBEmjIxIV+PGjdGsWTPk5+fjr7/+Msk1uFYWVQcWm+wolUoAQGJios7ziYmJ0j6lUomkpCSd/fn5+UhOTpaOISqqaDO+8O9Dm1wQED29B5wd7PDzzz/jwYMHaNCggfRNm6iqaP7Pbdu2zWjndHaww62F/XBrYT84O9ixojLZPItNdgICAqBUKrF7927pufT0dBw9ehRhYWEAgLCwMKSmpuLkyZPSMXv27IFarUbHjh2rPGayHtrN+Lvf6oa5A/SPYRBFEZ9//jkA4P/+7/8gl8urPFaq3rTH7eTm5po5GiLrZGfOi2dkZOD69evSdkxMDE6fPo3atWujQYMGmDhxIj788EM0adIEAQEBmDlzJnx9ffHcc88BAJo3b44+ffpg1KhR+Oqrr5CXl4exY8fipZdegq+vr5nuiixRVm4+gmbtBABcnBshfbPVUCpqYOa/g5SjJndDQ09XAMDRo0fxzz//wNHRESNHjqz6wKnae/LJJ+Ht7Y3ExET89ddfJm9dVKVlS///iWyFWVt2Tpw4gdDQUISGhgIAJk+ejNDQUMyaNQsA8M4772DcuHEYPXo02rdvj4yMDOzYsQM1ajzuY167di0CAwPRs2dPPP300+jSpQu+/vprs9wPWQd95fG1m/W1P+i/+OILAMBLL72EOnXqVFmMRBpyuVyaAbhu3TqTXIMVlcnWCaIoimUfZtvS09OhUCiQlpbGwco26ofoW1LLjUwAFgwMLnMGys2bN9G0aVMUFBTg+PHjOiUOiKrSsWPH0LFjRzg7OyMpKQkuLi5GO3dC2iN0XrhHZ4aiXBBwcFp3Tkcni1fev98WO2aHyFgqWh5/4cKFKCgoQEREBBMdMqv27dujUaNGyMrKwpYtW4x6blZUpuqAyQ7ZvIp8mMfGxkq1dWbOnGnC6IjKJggChgwZAgD46aefjHpuVlSm6oDJDtm8inyYL1q0CHl5eejRowc6d+5s4giJyvbyyy8DAP7880/cu3fPaOdlRWWqDpjskM0z9MP81q1b+PbbbwGwVYcsR/PmzdG+fXvk5+dj5cqVRj03KyqTrWOyQ9WCIR/mU6ZMQW5uLnr06CEtxEhkCSIjIwEAK1asQEFBgdHOW9JsRCJbwdlY4Gwsemzfvn3o3r07ZDIZTp8+jeDgYHOHRCTJzs5GvXr18ODBA2zevBkDBgwwd0hEZsXZWEQGKigowIQJEwAAb775JhMdsjg1atTAf//7XwDA8uXLzRwNkfVgskP0r88++wxnz56Fu7s75syZY+5wiPR68803IQgCdu3ahcuXL5s7HCKrwGSHbJKhCxteuHAB7777LoDCmVislkyWyt/fH/379wdQWAuKiMrGZIdsnr7lIbTl5uZi2LBhyMnJwdNPP41Ro0ZVUWREFfPee+8BAH744QdcvXrVqOfW/qJw816GUc9NZC5MdsgmGbLWz7vvvotTp07Bw8MD3377LQRBKPFYIkvQvn17PPvss1Cr1Zg7d65Rz811ssgWcTYWOBvLnPStRl5Zhqz1s2rVKowYMQIAsHHjRgwcOLDS1yeqCqdOnUKbNm0gCAIuXLiA5s2bV/qc+t47MgHStrHeo0TGwtlYNsjQcSjGem1VKau7qbzKuzzE33//jTfeeAMAMGvWLCY6ZFVCQ0Px/PPPQxRFTJ061Sjn1Pfe0d421nuUqKox2bFSlfnQsaQPLFM0mZdneYgjR47gmWeeQV5eHl544QXMnj270tclqmoffvgh7OzssHXrVmzevLnS59P33tHeZLcWWSsmO2ZmyGDAyiQGpuyHr+iAxoquRl7WdctaHuLgwYPo1asX0tPT0aVLF6xatQoyGd8KZH2CgoIwZcoUAMC4cePw8OHDSp2v6Hun6Og1fe9RDmgma8BPeDMrbxKiLzGYvulcuT5kKptUlKWiiVRFViMv7bra/xbDwvwRPb0HfhrVCYem9ZCWh1i3bh169+6NjIwMdO/eHTt27ICzM1d3Jus1Y8YMBAQE4M6dO5g1a1alz6e9tMrHg0NQdFBn0fdo0ffhD9G3mPyQxWGyY2KlfevRl4RM3XhOOlb7tYev3y+1L720JKOySUVpKpNIVWQ18tKuq6H5t/BROCGskQd8FE7IycnBxIkTMXToUDx69Ah9+/bFtm3b4OLiUvZNElkwZ2dnfPnllwCApUuX4o8//qjc+bTWyXqicZ1S36P63oezfn+8XfRLCJG5MNkxsdJaPfQlIdrHvrvpnLT99oazxZqUtZWWZFQmqQBKT9gqk0gZuhp5WdfVKPpvsXfvXrRq1QqfffYZgMIaJVu3bmWLDtmMPn36SIuEDhs2DLdu3TLKefW9R9/vH4SwBXtK/BKmvVneL2REpsZkx4TKavXQl4RoH7v5dLy0XfTvur6XlZRklPWBVZmxQoYmUkUTp5K6m8pS2r8dUPhv8dfhUxg4cCB69OiBK1euQKlUYsuWLfjwww8hl8vLdR0ia/HJJ5+gQ4cOSElJwX/+8x9kZmYa5bxF36PayvoSps3Y3edEhmCdHZiuzs6gMdNxUtGl2PO95BfR0DUfzs7OuJhTGzse1Cp3IbsvhoTCw9URzg4yPP/l4XLVktFISHuEW/ez4F/HGVEXEzHz3+ZmmQAsGBisN9EoT82aH6Jvletchh6rXYNnz1vdoFTU0Nk+dP2+dK5iRDXurHgdBQ8fQBAEjBkzBvPmzYO7u7v+44lswO3bt9GmTRskJyejV69e2LJlC2rUqGG08+v7PBDw+MuY5lOstD8qP43qhLBGHkaLiaq38v79ZnUoEzp7OApixBMQtGb6iOoCrPpyEQoePpCek9f0gINPIDwHTNU9VhR1kiBRXYDXnu0KJzEHzs7OcGzcBVktnit8jahG2oX9CBrwKwa0qAVvVzs4OTnB2dm52CNO5oRZB3Ol82oGO3ds4AY/L4XONUvrptIkO4Pa1pOSjqjJ3dDQ01Xvv0dJLV1dm3rCR+FULLk5dP2+dGz4p/vRv5Wvzvac/i0g5uciL1WFLvUdcTTTE4JMBlFdgOSdX0DMTMErr7yC6dOnIygoqJTfFJFt8PPzw7Zt29CrVy/s2rULL7zwAn799Vc4ODgY5fz6Pg+0N3eX8SXEkO5zImNiyw5M17KzZcsW/HntIbYnuUEQZBAgop14DYpHd/EgVw4h4z4KHt5HVlYWsrKykOweiKwWAyDI5BDVBXh0+QCcArtK28k7v0DG2V0615DX9ICduy8cfBqjVrfX//1jr0byzs+LHavh2CAYyiELij2vWjcduXfO6yRGNWr7ILvXu4Cg1eMpqpFycB1kDs4YEOQOT2cZatSogRo1akBu74CP9ydA7uyGd/s0Rv1aztK+GxlyzDtcvMvsswEBaFOvJjafv4+P992Vki3tb4z/Xhg6HXhqNRK+GYXc1ESdfwtfN3u89sIAvPrqq/D39y/7F0VkY/bu3Yunn34a2dnZ6Nq1KzZu3GiUxW3LW51c04p88nYyPv6rcO2uslpyiSqivH+/mezA9MtFGNJ9pH2sj8IJd1MycTU+BZ5OAmrK86XESPuhSsvG4ss1IWolAoIoolPmIWTl5kN4eA/5WklVhtoOGd2n6iQworoAd78aIbU4yWt6wK6WL/JT4uEU0Aa1I8ZKSVfmhb1wadFDb2LlGtILtSPG6d0nr+mBum+uKtbSdferwuUaiu4rD9W66aj5KAHt27dH9+7d0adPH7Rs2ZLrW1G1t2vXLgwaNAgPHz5EQEAANm7ciNDQ0Eqf15CuaKD4ZxqRMTHZMUBVrY1lyJpNhjh84z5e/uZoifv1fSAV/cD6cEAQ2tVzxbWEVJy8/QArj9+HIAgQALzcBGjonI349HyIedlYdcejWGLV89E+5OTk4G/3CEA70RDVqHVwCfLSkpCdnY3sum0h7zhUSpwe7vkaWeejYFc3CHUGf1D6jYqizrllAH55NRBtmzdkckOkx8WLF/Hss8/i5s2bsLOzw9SpUzFjxoxKj+OpigSmaLd2Sd3jVL0x2TFAVSU7JSUllR2wpy+JKqq0puaiLU6lvba0exAh6t33xZBQ1HZ1QEAdF/gonPR+UJY08FH4dxFCuSDguVBfbD4VjwJRhFwQMH9gSzaJE5XhwYMHeOONN7Bx40YAQEBAAGbOnIlhw4bBzs5yh23qa0Hq2tQTMfczpc+SqpKQ9sgs16WyMdkxgLW37AC6HwzFx7oUKimpKk+ypHltafcAoNSZGhWZqdW1qadOYsQmcaKK2bRpE8aOHYuEhAQAhUnPqFGjMHz4cPj6+pbxauMpT+JQ1qyvqhz/Y2i3HVUtJjsGqKpkBzDtG0eTCBg6Lb2sbrCir/35eCze3XRebwtL0aQL0E28DJkez2SGyLgyMzOxYsUKLF68GPfu3QMAyGQyhIWF4ZlnnsFTTz2F0NBQODo6muT65fn8S0h7hG1n4zHvj8ulnstYXxRLY8ovqNrXYKtRxTHZMUBVJjtA1fxBNySpKq1lp6TuotLuQbPvQWYOxq47VeycrLNBZF6ZmZnYsGEDVq5ciYMHD+rss7e3R+vWrdGmTRs0adIEjRs3RqNGjeDj44PatWtXeHycoTW7DFF0TE9Z433KOx7IGEMPiiYz2tvlrXdmDBVNqioydqoqEzgmOwao6mSnqhiSVBVNjqb2CURIPfdKJWRV8a2IiConNjYW27Ztw59//okjR47g/v37JR5rZ2cHLy8veHt7o3bt2qhZsyZcXV1Rs2ZN6eHq6gonJyc4OjrC0dERDg4OcHR0REymPT45lV/snHMi/OBZswZqOjlg+I/n9H7pkqGwhVh7l75uLc2Ynn9upxSb8q493qc8s2Jj7mfCxUGut5V80/+FITO3oMQ/5prXF42jfytfqTJ+RVu+S0qcim4DMEpSVd7WOHMkcACTHYPYarJjKFO0OLG/m8h6iKKIW7du4ejRo7hw4QKuXbuG69ev4+bNm0hJSanUufWXnlADgFSqQl/piYy/V0N9+x84+rWGQ+fhEGRyQK0unL1QZOanCEAQZMVmbkJUA/j3eM2fPK39AkQMc7+KWo4Czj9SICrN69/ZqCJCFLk4neogbXfykeFIgihV/RrTToG+zRSws7ODnZ0d/rqegU8OxJc6BrI02hM6gJITludD6+K3U3ehFotvaydS5U2q9LXGlPSFVTvZ045L37VkAJa9HIq2frVM8iWXyY4BmOyYFsfhEFm/3NxcJCUlITExEYmJiUhJSUFGRgYePnwoPTTb2dnZyMnJ0Xnk5uYiU9kK+a3+A/xbegKCUJic/Etf1fhi9b/cfSF3doPnc9ONen9Jvy0ABMCz/9RitcBUP7wFwd4JYt4jKId9qn+/gxPE3OL7DaGd/OkmaFo/SwcXTeiKbJfhafcE1LQXUKeGiNs5zvgjyQ0iChO6wQH5aFFbhrMpcmy8Wfy1RZcIKU8SYaovu0x2DMBkh4ioapQ1pk/2b7kJmQC83a0uIprURF5eHvLz85GXl4e8vDyo0nMwISq9XH9ky0VfMqHF89w6yB/cQJZrPaS3e734y0U1BKHk1qnHxxVN5tQARKnuWNHkz1SKtqgV3noJLW5FYy6ybQiZABya1sOoX3q5NhYREVkcH4WTNL5Ek9hoaLpIsnLVZbYEP1I8nhWqb0yPRknjfTQ1vGQAREFWYuIkFwRsWfetFLO+yRyaRKG0REcmAE+38MT2i/elZG5SNx+0VtZAXMojPMjMwyfRhnQVFlk+p9i29i6trjtRXZisaJbl0ROz9nOCputPEAB1QWE3YmlRaSVwRalF6KyrWJWY7BARUZXzUThhwcDgYmUsWtWvVa7Xv9i+gU4drgNX7+mc650+zaRJFkX3zR/YUnptSS1MwOPZqJo/zkVjlgFQ63mdJokrGkdptcIS0h5hyZGS650VL7JaV6fIqva28O8LxH+PnT8ouFz3WyJBwMx+zdHOv1axAdu6cQEfDAzGEwHuOHErGVM2X4J235FMgNkWgmU3FtiNRURkLsYc01eekhj6koyirTUyAJ+/HIo2JQyqLaumWXlbp4rSrmFWLGHRStBKSpy0twGU+36LtXSh5AHN+uqsFY1L3/2Yqup9tRuzs3z5cnz00UdQqVRo1aoVPv/8c3To0KFcr2WyQ0RUfVXmj7Kx/6CXJ2GprLISFn0tYaUtWF3e++FsrEr6+eef8eqrr+Krr75Cx44dsXTpUmzYsAFXrlyBl5dXma9nskNEVL1V5o+yNc44LStma7mnapXsdOzYEe3bt8cXX3wBAFCr1ahfvz7GjRuHadOmlfl6JjtERETWp7x/v00/x83EcnNzcfLkSYSHh0vPyWQyhIeHIzo6Wu9rcnJykJ6ervMgIiIi22T1yc79+/dRUFAAb29vnee9vb2hUqn0vmbBggVQKBTSo379+lURKhEREZmB1Sc7FTF9+nSkpaVJj7i4OHOHRERERCZi9XV26tSpA7lcjsTERJ3nExMToVQq9b5Gs0AdERER2T6rb9lxcHBA27ZtsXv3buk5tVqN3bt3IywszIyRERERkSWw+pYdAJg8eTKGDx+Odu3aoUOHDli6dCkyMzPx+uvF1zAhIiKi6sUmkp0XX3wR9+7dw6xZs6BSqdC6dWvs2LGj2KBlIiIiqn5sos5OZbHODhERkfWpNnV2iIiIiErDZIeIiIhsGpMdIiIismlMdoiIiMimMdkhIiIim2YTU88rSzMhjQuCEhERWQ/N3+2yJpYz2QHw8OFDAOCCoERERFbo4cOHUCgUJe5nnR0ULi8RHx+PmjVrQhAEo503PT0d9evXR1xcnM3W77H1e7T1+wNs/x5t/f4A279HW78/wPbv0VT3J4oiHj58CF9fX8hkJY/MYcsOAJlMhnr16pns/G5ubjb5n1ebrd+jrd8fYPv3aOv3B9j+Pdr6/QG2f4+muL/SWnQ0OECZiIiIbBqTHSIiIrJpTHZMyNHREbNnz4ajo6O5QzEZW79HW78/wPbv0dbvD7D9e7T1+wNs/x7NfX8coExEREQ2jS07REREZNOY7BAREZFNY7JDRERENo3JDhEREdk0JjtGtnDhQgiCgIkTJ0rPZWdnIzIyEh4eHnB1dcWgQYOQmJhoviArSd89PvXUUxAEQefx5ptvmi9IA73//vvF4g8MDJT2W/vvsKz7s/bfHwDcvXsXr7zyCjw8PODk5ITg4GCcOHFC2i+KImbNmgUfHx84OTkhPDwc165dM2PEhivrHl977bViv8c+ffqYMWLD+Pv7F4tfEARERkYCsP73YVn3Z+3vw4KCAsycORMBAQFwcnJCo0aN8MEHH+isW2Wu9yErKBvR8ePH8b///Q8hISE6z0+aNAl//PEHNmzYAIVCgbFjx2LgwIE4dOiQmSKtuJLuEQBGjRqFuXPnStvOzs5VGVqltWjRAlFRUdK2nd3jt4ct/A5Luz/Aun9/KSkp6Ny5M7p3744///wTnp6euHbtGmrVqiUds3jxYixbtgxr1qxBQEAAZs6ciYiICFy8eBE1atQwY/TlU557BIA+ffpg1apV0rY1TWU+fvw4CgoKpO3z58+jV69eGDx4MADrfx+WdX+Adb8PFy1ahBUrVmDNmjVo0aIFTpw4gddffx0KhQLjx48HYMb3oUhG8fDhQ7FJkybirl27xG7duokTJkwQRVEUU1NTRXt7e3HDhg3SsZcuXRIBiNHR0WaKtmJKukdRFIttW5vZs2eLrVq10rvPFn6Hpd2fKFr/72/q1Klily5dStyvVqtFpVIpfvTRR9JzqampoqOjo/jTTz9VRYiVVtY9iqIoDh8+XBwwYEDVBFQFJkyYIDZq1EhUq9U28T4sSvv+RNH634f9+vUTR4wYofPcwIEDxaFDh4qiaN73IbuxjCQyMhL9+vVDeHi4zvMnT55EXl6ezvOBgYFo0KABoqOjqzrMSinpHjXWrl2LOnXqoGXLlpg+fTqysrKqOMLKuXbtGnx9fdGwYUMMHToUsbGxAGznd1jS/WlY8+9vy5YtaNeuHQYPHgwvLy+Ehobim2++kfbHxMRApVLp/A4VCgU6duxoNb/Dsu5RY9++ffDy8kKzZs0wZswYPHjwwAzRVl5ubi5+/PFHjBgxAoIg2Mz7UKPo/WlY8/vwiSeewO7du3H16lUAwJkzZ3Dw4EH07dsXgHnfh+zGMoL169fjn3/+wfHjx4vtU6lUcHBwgLu7u87z3t7eUKlUVRRh5ZV2jwDw8ssvw8/PD76+vjh79iymTp2KK1euYNOmTVUcacV07NgRq1evRrNmzZCQkIA5c+bgySefxPnz523id1ja/dWsWdPqf383b97EihUrMHnyZLz77rs4fvw4xo8fDwcHBwwfPlz6PXl7e+u8zpp+h2XdI1DYhTVw4EAEBATgxo0bePfdd9G3b19ER0dDLpeb+Q4Ms3nzZqSmpuK1114DYDufpRpF7w+w/s/RadOmIT09HYGBgZDL5SgoKMC8efMwdOhQADDr+5DJTiXFxcVhwoQJ2LVrl1X0+1dEee5x9OjR0s/BwcHw8fFBz549cePGDTRq1KiqQq0wzTcPAAgJCUHHjh3h5+eHX375BU5OTmaMzDhKu7+RI0da/e9PrVajXbt2mD9/PgAgNDQU58+fx1dffSUlAtauPPf40ksvSccHBwcjJCQEjRo1wr59+9CzZ0+zxF1RK1euRN++feHr62vuUExC3/1Z+/vwl19+wdq1a7Fu3Tq0aNECp0+fxsSJE+Hr62v29yG7sSrp5MmTSEpKQps2bWBnZwc7Ozvs378fy5Ytg52dHby9vZGbm4vU1FSd1yUmJkKpVJonaAOVdY/aA+40OnbsCAC4fv16VYdrFO7u7mjatCmuX78OpVJp9b/DorTvTx9r+/35+PggKChI57nmzZtLXXWa31PRmTvW9Dss6x71adiwIerUqWM1v0eN27dvIyoqCv/973+l52zpfajv/vSxtvfhlClTMG3aNLz00ksIDg7GsGHDMGnSJCxYsACAed+HTHYqqWfPnjh37hxOnz4tPdq1a4ehQ4dKP9vb22P37t3Sa65cuYLY2FiEhYWZMfLyK+se9TWPnz59GkDhB7Q1ysjIwI0bN+Dj44O2bdta/e+wKO3708fafn+dO3fGlStXdJ67evUq/Pz8AAABAQFQKpU6v8P09HQcPXrUan6HZd2jPnfu3MGDBw+s5veosWrVKnh5eaFfv37Sc7b0PtR3f/pY2/swKysLMpluWiGXy6FWqwGY+X1o0uHP1VTREfVvvvmm2KBBA3HPnj3iiRMnxLCwMDEsLMx8ARqB9j1ev35dnDt3rnjixAkxJiZG/P3338WGDRuKXbt2NW+QBnjrrbfEffv2iTExMeKhQ4fE8PBwsU6dOmJSUpIoitb/Oyzt/mzh93fs2DHRzs5OnDdvnnjt2jVx7dq1orOzs/jjjz9KxyxcuFB0d3cXf//9d/Hs2bPigAEDxICAAPHRo0dmjLz8yrrHhw8fim+//bYYHR0txsTEiFFRUWKbNm3EJk2aiNnZ2WaOvvwKCgrEBg0aiFOnTi22z9rfh6JY8v3Zwvtw+PDhYt26dcVt27aJMTEx4qZNm8Q6deqI77zzjnSMud6HTHZMoGiy8+jRI/H//u//xFq1aonOzs7i888/LyYkJJgvQCPQvsfY2Fixa9euYu3atUVHR0excePG4pQpU8S0tDTzBmmAF198UfTx8REdHBzEunXrii+++KJ4/fp1ab+1/w5Luz9b+P2Joihu3bpVbNmypejo6CgGBgaKX3/9tc5+tVotzpw5U/T29hYdHR3Fnj17ileuXDFTtBVT2j1mZWWJvXv3Fj09PUV7e3vRz89PHDVqlKhSqcwYseF27twpAtD7u7H296Eolnx/tvA+TE9PFydMmCA2aNBArFGjhtiwYUPxvffeE3NycqRjzPU+FERRq7QhERERkY3hmB0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIpjHZISIiIpvGZIeIiIhsGpMdIiIATz31FARBgCAI0ppE+/btgyAIxRafNLb3339fuvbSpUtNei2i6ojJDhEZ7LXXXpP+OGs/+vTpY+7QKmXUqFFISEhAy5YtK32uxMRE2NvbY/369Xr3jxw5Em3atAEAvP3220hISEC9evUqfV0iKo7JDhFVSJ8+fZCQkKDz+Omnn0x6zdzcXJOe39nZGUqlEnZ2dpU+l7e3N/r164fvvvuu2L7MzEz88ssvGDlyJADA1dUVSqUScrm80tclouKY7BBRhTg6OkKpVOo8atWqJe0XBAHffvstnn/+eTg7O6NJkybYsmWLzjnOnz+Pvn37wtXVFd7e3hg2bBju378v7X/qqacwduxYTJw4EXXq1EFERAQAYMuWLWjSpAlq1KiB7t27Y82aNVJ3U2ZmJtzc3PDrr7/qXGvz5s1wcXHBw4cPK3zPWVlZ6Nu3Lzp37ix1bX377bdo3rw5atSogcDAQHz55ZfS8SNHjsTu3bsRGxurc54NGzYgPz8fQ4cOrXAsRFR+THaIyGTmzJmDF154AWfPnsXTTz+NoUOHIjk5GQCQmpqKHj16IDQ0FCdOnMCOHTuQmJiIF154Qecca9asgYODAw4dOoSvvvoKMTEx+M9//oPnnnsOZ86cwRtvvIH33ntPOt7FxQUvvfQSVq1apXOeVatW4T//+Q9q1qxZoXtJTU1Fr169oFarsWvXLri7u2Pt2rWYNWsW5s2bh0uXLmH+/PmYOXMm1qxZAwB4+umn4e3tjdWrVxeLZeDAgXB3d69QLERkIJOvq05ENmf48OGiXC4XXVxcdB7z5s2TjgEgzpgxQ9rOyMgQAYh//vmnKIqi+MEHH4i9e/fWOW9cXJwIQLxy5YooiqLYrVs3MTQ0VOeYqVOnii1bttR57r333hMBiCkpKaIoiuLRo0dFuVwuxsfHi6IoiomJiaKdnZ24b9++Eu+pW7du4oQJE3Se27t3rwhAvHTpkhgSEiIOGjRIzMnJkfY3atRIXLdunc5rPvjgAzEsLEzanjZtmhgQECCq1WpRFEXx+vXroiAIYlRUVLEY/Pz8xCVLlpQYIxFVDFt2iKhCunfvjtOnT+s83nzzTZ1jQkJCpJ9dXFzg5uaGpKQkAMCZM2ewd+9euLq6So/AwEAAwI0bN6TXtW3bVuecV65cQfv27XWe69ChQ7HtFi1aSC0sP/74I/z8/NC1a9cK3WuvXr3QuHFj/Pzzz3BwcABQOO7mxo0bGDlypM49fPjhhzrxjxgxAjExMdi7dy+AwlYdf39/9OjRo0KxEJHhKj8Kj4iqJRcXFzRu3LjUY+zt7XW2BUGAWq0GAGRkZODZZ5/FokWLir3Ox8dH5zoV8d///hfLly/HtGnTsGrVKrz++usQBKFC5+rXrx82btyIixcvIjg4WIofAL755ht07NhR53jtgcZNmjTBk08+iVWrVuGpp57C999/j1GjRlU4FiIyHJMdIjKLNm3aYOPGjfD39zdo9lOzZs2wfft2neeOHz9e7LhXXnkF77zzDpYtW4aLFy9i+PDhFY514cKFcHV1Rc+ePbFv3z4EBQXB29sbvr6+uHnzZpkDjUeOHIkxY8agf//+uHv3Ll577bUKx0JEhmM3FhFVSE5ODlQqlc5DeyZVWSIjI5GcnIwhQ4bg+PHjuHHjBnbu3InXX38dBQUFJb7ujTfewOXLlzF16lRcvXoVv/zyizQAWLu1pFatWhg4cCCmTJmC3r17V7qGzccff4yhQ4eiR48euHz5MoDCAdgLFizAsmXLcPXqVZw7dw6rVq3Cp59+qvPawYMHw97eHm+88QZ69+6N+vXrVyoWIjIMkx0iqpAdO3bAx8dH59GlS5dyv97X1xeHDh1CQUEBevfujeDgYEycOBHu7u6QyUr+aAoICMCvv/6KTZs2ISQkBCtWrJBmYzk6OuocO3LkSOTm5mLEiBEVu8kilixZghdeeAE9evTA1atX8d///hfffvstVq1aheDgYHTr1g2rV69GQECAzuucnZ3x0ksvISUlxWixEFH5CaIoiuYOgoioMubNm4evvvoKcXFxOs//8MMPmDRpEuLj46WBxSV56qmn0Lp1a7Mu1+Dv74+JEydi4sSJZouByBaxZYeIrM6XX36J48eP4+bNm/jhhx/w0Ucf6YzJycrKwo0bN7Bw4UK88cYbZSY62ud1dXXFuXPnTBW6XvPnz4erq2ux4oNEZBxs2SEiqzNp0iT8/PPPSE5ORoMGDTBs2DBMnz5dGuj8/vvvY968eejatSt+//13uLq6lnnOu3fv4tGjRwCABg0alDtBMobk5GSp2KKnpycUCkWVXZuoOmCyQ0RERDaN3VhERERk05jsEBERkU1jskNEREQ2jckOERER2TQmO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZtP8HT5fzm3qeqIIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7p0lEQVR4nO3dd3hTddsH8O9JujeUTuhilkJZBaEvyiwgS7Q8ioiAwAOOIksFUUBFkeHjQlEUBXHgQFGGyF4KBcrepZRCgTYtUJpCd5vz/lFzSNq0TdqkGf1+riuXzTkn59yHmvTOb92CKIoiiIiIiGyUzNwBEBEREZkSkx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIptmZOwBLoFKpkJaWBnd3dwiCYO5wiIiISA+iKOLu3bsIDAyETFZ5+w2THQBpaWkICgoydxhERERUA9euXUOTJk0q3c9kB4C7uzuAsn8sDw8PM0dDRERE+sjJyUFQUJD0d7wyTHYAqevKw8ODyQ4REZGVqW4ICgcoExERkU1jskNEREQ2jckOERER2TSO2SEiIotTWlqK4uJic4dBZmZvbw+5XF7r8zDZISIiiyGKIhQKBbKzs80dClkILy8v+Pv712odPCY7RERkMdSJjq+vL1xcXLjQaz0miiLy8vKQmZkJAAgICKjxuZjsEBGRRSgtLZUSHW9vb3OHQxbA2dkZAJCZmQlfX98ad2lxgDIREVkE9RgdFxcXM0dClkT9/0NtxnAx2SEiIovCrivSZIz/H5jsEBERkU1jskNEREQ2jckOERGRGQiCgD/++KPKY5555hk8+uijep/zypUrEAQBJ06cqFVstoazsYjIZqlUKmRkZMDd3R1ubm7mDods2DPPPIPs7OxqkxdN6enpaNCgAYCyJCUsLAzHjx9Hhw4dpGM+/vhjiKJo5GjrH7bsEJFNSkhIQEREBAIDA+Ht7Y358+ejtLTU3GERSfz9/eHo6FjlMZ6envDy8qqbgGwYkx0isjlnzpxBz549kZiYCEEQUFRUhDfeeAOzZ882d2hkIFEUkZuba5ZHbVpUevXqhSlTpmDmzJlo2LAh/P398eabb2odo9mNFRYWBgDo2LEjBEFAr169AFTsxtqyZQsefPBBeHl5wdvbG0OGDEFycrJBsaWnp2Pw4MFwdnZGWFgY1qxZg9DQUHz00UcAdHeFZWdnQxAE7NmzR9p25swZDBw4EG5ubvDz88Po0aNx69Ytaf+vv/6KyMhIODs7w9vbGzExMcjNzQUA7NmzBw888ABcXV3h5eWF7t274+rVqwbdhyGY7BCRTSkoKMCTTz6J/Px89OnTB7dv38aKFSsAAO+99x62bdtm5gjJEHl5eXBzczPLIy8vr1axr169Gq6urjh06BCWLFmC+fPnY/v27TqPPXz4MABgx44dSE9Px7p163Qel5ubixkzZuDIkSPYuXMnZDIZHnvsMahUKr3jGjNmDNLS0rBnzx789ttv+PLLL6VVivWVnZ2NPn36oGPHjjhy5Ai2bNmCjIwMPPHEEwDKEqqRI0di/PjxOH/+PPbs2YPY2FiIooiSkhI8+uij6NmzJ06dOoX4+HhMmjTJpEsOcMwOEdmUr776CmfPnoWfnx9+/PFHNGjQAP/9739x4sQJLFu2DLNmzUK/fv24lguZXLt27fDGG28AAFq0aIFPP/0UO3fuRL9+/Soc6+PjAwDw9vaGv79/peccPny41vOVK1fCx8cH586dQ9u2bauN6cKFC9ixYwcSEhLQuXNnAGXvmRYtWuh9XwDw6aefomPHjnj33Xe1YgkKCsLFixdx7949lJSUIDY2FiEhIQCAyMhIAEBWVhaUSiWGDBmCZs2aAQBat25t0PUNxWSHiGxGYWEhFi1aBAB444034OvrK+1766238O233+LEiRNYv369QTNcyHxcXFxw7949s127Ntq1a6f1PCAgwOAWlPKSkpIwb948HDp0CLdu3ZJadFJTU/VKdhITE2FnZ4dOnTpJ25o3by4NlNbXyZMnsXv3bp0D/5OTk9G/f3/07dsXkZGRGDBgAPr374///Oc/aNCgARo2bIhnnnkGAwYMQL9+/RATE4MnnniiVrWvqsNuLCKyGT/++CNu3LiBJk2aYPz48Vr7vL298eKLLwKANDaBLJ8gCHB1dTXLo7atf/b29hXuxZDuJl2GDh2KrKwsrFixAocOHcKhQ4cAAEVFRbU6ryaZrCw10ByzVL5Uw7179zB06FCcOHFC65GUlIQePXpALpdj+/bt+OuvvxAREYFPPvkErVq1QkpKCgBg1apViI+Px//93//h559/RsuWLXHw4EGj3UOFezLZmYmI6tjKlSsBAC+88ILOWS7PPfccBEHA3r17pQ9dIkvg4OAAAFXOGLx9+zYSExMxZ84c9O3bF61bt8adO3cMuk6rVq1QUlKC48ePS9suXbqkdR51l1p6erq0rfy6PZ06dcLZs2cRGhqK5s2baz1cXV0BlCV33bt3x1tvvYXjx4/DwcEBv//+u3SOjh07Yvbs2Thw4ADatm2LNWvWGHQvhmCyQ0Q24dKlS/j7778hk8kwZswYnccEBQWhb9++AIDvvvuuLsMjqpKvry+cnZ2lgb5KpbLCMQ0aNIC3tze+/PJLXLp0Cbt27cKMGTMMuk54eDhiYmIwadIkHD58GMePH8ekSZPg7OwstWQ5OzujW7duWLRoEc6fP4+9e/dizpw5WueJi4tDVlYWRo4ciYSEBCQnJ2Pr1q0YN24cSktLcejQIbz77rs4cuQIUlNTsW7dOty8eROtW7dGSkoKZs+ejfj4eFy9ehXbtm1DUlKSScftMNkhIpug/lbYr18/NG7cuNLjxo4dC6Csy4vIUtjZ2WHp0qX44osvEBgYiGHDhlU4RiaT4aeffsLRo0fRtm1bTJ8+He+9957B1/r222/h5+eHHj164LHHHsPEiRPh7u4OJycn6ZiVK1eipKQEUVFRmDZtGt555x2tcwQGBmL//v0oLS1F//79ERkZiWnTpsHLywsymQweHh7Yt28fBg0ahJYtW2LOnDl4//33MXDgQLi4uODChQsYPnw4WrZsiUmTJiEuLg7PPvus4f9wehJELs2InJwceHp6QqlUwsPDw9zhEFENdOrUCcePH8fKlSsxbty4So9TKpVo1KgRSkpKkJSUhObNm9dhlFSVgoICpKSkICwsTOsPL5nW9evXERQUhB07dkgtn5akqv8v9P37zZYdIrJ6qampOH78OGQyGYYMGVLlsZ6enujRowcAYOPGjXURHpFF2bVrFzZs2ICUlBQcOHAATz75JEJDQ6X3hS0ya7ITGhoKQRAqPOLi4gCUZXNxcXHw9vaGm5sbhg8fjoyMDK1zpKamYvDgwXBxcYGvry9eeeUVlJSUmON2iMhMNmzYAADo3r27NLiyKkOHDgXAZIfqp+LiYrz22mto06YNHnvsMfj4+GDPnj0VZo/ZErMmOwkJCUhPT5ce6pUlH3/8cQDA9OnTsXHjRqxduxZ79+5FWloaYmNjpdeXlpZi8ODBKCoqwoEDB7B69Wp88803mDdvnlnuh4jM46+//gIAPPLII3odP3jwYADAP//8U+tVcomszYABA3DmzBnk5eUhIyMDv//+u7Twn62yqDE706ZNw6ZNm5CUlIScnBz4+PhgzZo1+M9//gOgbOXH1q1bIz4+Ht26dcNff/2FIUOGIC0tDX5+fgCA5cuXY9asWbh586Y0la+8wsJCFBYWSs9zcnIQFBTEMTtEVqioqAgNGzZEbm4uTpw4gfbt21f7GlEUERwcjOvXr2P79u2IiYmpg0ipOuqxGaGhoXB2djZ3OGQh8vPzparwVj9mp6ioCN9//z3Gjx8PQRBw9OhRFBcXa30IhYeHIzg4GPHx8QCA+Ph4REZGSokOUJax5uTk4OzZs5Vea+HChfD09JQeQUFBprsxIjKpQ4cOITc3Fz4+PtJy9NURBAG9e/cGAK3ChmRe6m4UtraRJvX/D7XpZrOYchF//PEHsrOz8cwzzwAAFAoFHBwcKpS29/Pzg0KhkI7RTHTU+9X7KjN79myttQnULTtEZH127twJAOjTp4+08qs+evfuje+++w67d+82VWhkILlcDi8vL6mkgouLC2uY1WOiKCIvLw+ZmZnw8vKCXC6v8bksJtn5+uuvMXDgQAQGBpr8Wo6OjjpXVyUi66NOVgydMturVy8AZdWm8/Lyal0HiYxDXQSztjWkyHZ4eXlVWRxVHxaR7Fy9ehU7duzQKmnv7++PoqIiZGdna7XuZGRkSDft7++Pw4cPa51LPVurtv8wRGT5iouLkZCQAAB48MEHDXptaGgoAgMDkZaWhqNHj+Khhx4yRYhkIEEQEBAQAF9f3wr1mKj+sbe3r1WLjppFJDurVq2Cr6+vNEMCAKKiomBvb4+dO3dKJe0TExORmpqK6OhoAEB0dDQWLFiAzMxMqbrx9u3b4eHhgYiIiLq/ESKqU6dPn0Z+fj68vLzQqlUrg14rCAK6deuGdevW4eDBg0x2LIxcLjfKHzkiwAIGKKtUKqxatQpjx46Fnd393MvT0xMTJkzAjBkzsHv3bhw9ehTjxo1DdHQ0unXrBgDo378/IiIiMHr0aJw8eRJbt27FnDlzEBcXx24qonpAXSW5a9euBo3XUVN/lpiy2jIRmZ/ZW3Z27NiB1NRUjB8/vsK+Dz/8EDKZDMOHD0dhYSEGDBiAzz77TNovl8uxadMmPP/884iOjoarqyvGjh2L+fPn1+UtEJGZqJMUddJiKPXr4uPjIYoiB8MS2SiLWmfHXFgbi8g6tWzZEklJSfjrr7/w8MMPG/z6vLw8eHh4oLS0FKmpqZyVSWRlrG6dHSIiQ9y6dQtJSUkAyrqxasLFxQVt27YFABw9etRosRGRZWGyQ0RW6dChQwDKFhtt0KBBjc/TqVMnAMCxY8eMEhcRWR4mO0RklWo7XkdNnewcP3681jERkWViskNEVkmd7KiXoqgptuwQ2T4mO0RkdVQqlbSgaG1bdtq1awdBEJCWllZlmRkisl5MdojI6ly+fBk5OTlwcnKq9QKibm5u0oKEJ06cMEJ0RGRpmOwQkdU5efIkAKBt27Zai5HWlLpa+pkzZ2p9LiKyPEx2iMjqqFtg2rdvb5TztWnTBgBw9uxZo5yPiCwLkx0isjrqlp0OHToY5XxMdohsG5MdIrI66mTH2C07586dg0qlMso5ichyMNkhIquSlZWF1NRUAGUzqYyhefPmsLe3R25urnRuIrIdTHaIyKqcOnUKABAaGgpPT0+jnNPe3l6akcWuLCLbw2SHiKyKscfrqHHcDpHtYrJDRFbF2DOx1JjsENkuJjtEZFWMMTg5r6gEoa/+idBX/0ReUQkAJjtEtozJDhFZjeLiYikZMVU31vnz5zkji8jGMNkhIqtx4cIFFBUVwcPDA6GhoUY9d7NmzeDg4IC8vDxcuXLFqOcmIvNiskNEVkNdzqFt27YQBMGo57azs0N4eDgAdmUR2RomO0RkNc6dOwfgfpeTsXHcDpFtYrJDRFbD1MmOuoL6hQsXTHJ+IjIPJjtEZDXUyY46KTG2Fi1aAACSkpJMcn4iMg8mO0RkFYqKiqQkhMkOERmCyQ4RWYWLFy+itLQUHh4eCAwMNMk11MnOzZs3kZ2dbZJrEFHdY7JDRFZBswvLmDOxFMoC6Wd3d3f4+fsDAFpPXSUtOEhE1o3JDhFZBWMOTv7t6HXp55gP9uLnhPuVzps3bw4AKLmTVuvrEJFlYLJDRFbBWIOT05X5eGPD/anlKhF4bd0ZpCvzAQDN/k12irOY7BDZCiY7RGQV1Gvf1DbZSbmVC5Wova1UFHHlVh4AoFnzsnE7bNkhsh1MdojI4hUXF+PixYsAap/shDVyhazckB+5ICC0kQuA+4OUi+/cqNV1iMhyMNkhIot36dIllJSUwM3NDUFBQbU6V4CnM9565P64H5kAvBvbFgGezgDud2OVZKVBFEWdFdKJyLow2SEii2fsmVjDo5pIP++Y0RMjugRLz5s2bQYAUBXm4vbt27W+FhGZH5MdIrJ46mSndevWeh1vSGuMv6eT1nMXFxfI3RsBAC4lXaxBtERkaZjsEJHFU9eq0jfZqS3HxuFwDI7EsfOX6+R6RGRaduYOgIioOurByS1btjT5tX47eh2NHpkJQZDh0ysi/DTW5CEi68SWHSKyaKIoIjExEQDQqlUrk15LvQaPIKg/GgWtNXmIyDox2SEii5aRkYG7d+9CJpOhWbNmJr2WrjV4yj8nIutj9mTnxo0bePrpp+Ht7Q1nZ2dERkbiyJEj0n5RFDFv3jwEBATA2dkZMTExFSoSZ2VlYdSoUfDw8ICXlxcmTJiAe/fu1fWtEJEJqFt1QkND4ejoWKNz6DtgWdcaPOWfE5H1MWuyc+fOHXTv3h329vb466+/cO7cObz//vto0KCBdMySJUuwdOlSLF++HIcOHYKrqysGDBiAgoL7xftGjRqFs2fPYvv27di0aRP27duHSZMmmeOWiMjI6qoLC7i/Bo8oljXniKpSzOwbavLrEpFpmXWA8uLFixEUFIRVq1ZJ28LCwqSfRVHERx99hDlz5mDYsGEAgG+//RZ+fn74448/8OSTT+L8+fPYsmULEhIS0LlzZwDAJ598gkGDBuF///sfAgMD6/amiMioTDE42cXBDlcWDda5b3hUE8xdfxaZvy9AUfpFRMb+Ke1TKAvQ1MfNaHEQUd0wa8vOhg0b0LlzZzz++OPw9fVFx44dsWLFCml/SkoKFAoFYmJipG2enp7o2rUr4uPjAQDx8fHw8vKSEh0AiImJgUwmw6FDh3Ret7CwEDk5OVoPIrJMtW3ZUSgLqj9IB9W9Oyi9extrj1ReIZ2IrINZk53Lly/j888/R4sWLbB161Y8//zzmDJlClavXg0AUCgUAAA/Pz+t1/n5+Un7FAoFfH19tfbb2dmhYcOG0jHlLVy4EJ6entKjtsvPE5Hp6NuyozkuZ82h+wlJzAd78VsNpo/Lvfwgd/fG+uv3xwmVr5BORNbBrMmOSqVCp06d8O6776Jjx46YNGkSJk6ciOXLl5v0urNnz4ZSqZQe165dM+n1iKhmiouLcfly2cJ+hrTsvLv5vPSzSkSNpo/be/rDrkEgRGiPUNaskE5E1sGsyU5AQECFCsatW7dGamrZtzJ/f38AZVNPNWVkZEj7/P39kZmZqbW/pKQEWVlZ0jHlOTo6wsPDQ+tBRJbn8uXLKCkpgYuLCxo3bqz364wxfdzOyw8ld9IAUaW1XbNCOhFZB7MmO927d5f649UuXryIkJAQAGWDlf39/bFz505pf05ODg4dOoTo6GgAQHR0NLKzs3H06FHpmF27dkGlUqFr1651cBdEZCqaXViGFAA1xvRxOy9/lN69DdnRn7XOo1khnYisg1mTnenTp+PgwYN49913cenSJaxZswZffvkl4uLiAACCIGDatGl45513sGHDBpw+fRpjxoxBYGAgHn30UQBlLUEPP/wwJk6ciMOHD2P//v2YPHkynnzySc7EIrJyNR2c/Nqg+zW0ZALw1iNtpOf6Dli28yxrGb6+7xeIqlIAFSukE5F1MGuy06VLF/z+++/48ccf0bZtW7z99tv46KOPMGrUKOmYmTNn4sUXX8SkSZPQpUsX3Lt3D1u2bIGT0/1KxT/88APCw8PRt29fDBo0CA8++CC+/PJLc9wSERlRTaedP9rx/hedHTN6au3Td0aV3N0bdnZ2KC4uRum92wAqVkgnIutg9kKgQ4YMwZAhQyrdLwgC5s+fj/nz51d6TMOGDbFmzRpThEdEZlRVy05eUQki5m0FAJybP6DK82gOUFbPqOrR0qfK7ihBJkdwcAguX05GSXYG7Dx8Kz2WiCyb2ctFEBFVRt2yU5vVk6/erljvqqoZVeoFB68sGoxmzZoCAEqydS9jQUTWgckOEVmknJwcaa0sQ7uxMnLuj8sJ8a5Y70rfGVXqFd2Z7BBZNyY7RGSR1F1Y/v7+ei0Poblw4NBP9ks/+3s6aQ1QNmRGVdOm/7bsKDOqOZKILBmTHSKySIYMTlYoCyqMy9E0PKqJ9LMhM6rYskNkG5jsEJFFMmTaua5xOZUxZEYVW3aIbAOTHSKySIYMTtY1LscY1MlOae4dnJvXGy4OZp/ASkQ1wGSHiCySumVHn24sXeNyjKFBgwZwd3cHAFy9etU4JyWiOsdkh4gsjkqlMqhlR6EsqDAuRz19XJ/WGM2K6XlFJdJ2QRCk8jXqmn1EZH2Y7BCRxUlLS0NeXh7s7OykQcLlac6+ivlgr9ZzY650HBxcNpiZLTtE1ovJDhFZHHUXVtOmTWFvb19hf7oyv8LsK83nxqRu2VEnO5W1AhGR5WKyQ0QWp7pp5ym3Ks6+0nc2lqHKJztEZH2Y7BCRxalu2nlYo4qzr0wxGwtgskNkC5jsEJHFqW5wcoCnc4XZV5rPy9Osd2Xo9HEmO0TWj8kOEVkcfaadl599pfncmNTJzo0bN1BSwjE6RNaIyQ4RWZTCwkJcuXIFgP7Vzo05+0qhLNB67u/vDwcHB6hUKty4ccNo1yGiulOj5UCTkpKwe/duZGZmQqVSae2bN2+eUQIjovopOTkZKpUK7u7u8PPz0/t16q6qmig/jX1hbKRUP0smkyEoKAjJycm4evUqfAIa1+gaRGQ+Bic7K1aswPPPP49GjRrB398fgnB/VKAgCEx2iKhWNAcna36+mIquaeyvrTuDHi19pMrowcHBUrLTudv/mTwmIjIug5Odd955BwsWLMCsWbNMEQ8R1XOGrJxsDLqmsZeKIq7cypOSncoGKSuUBWjq41YncRJRzRk8ZufOnTt4/PHHTRELEZFBNbGMQdc0drkgILSRi/RcM9kp3+X1cwLLSBBZOoOTnccffxzbtm0zRSxERHXesqNrGvu7sW2lVh3gfrJzKe22zi6vdGV+ncRKRDVjcDdW8+bNMXfuXBw8eBCRkZEVlnKfMmWK0YIjovqnrlt2gLJp7HPXlyUxO2b0rNA1pU52risLq+3yIiLLI4iiaNAi65UV5QPKBihfvny51kHVtZycHHh6ekKpVMLDw8Pc4RDVW1lZWfD29gYA3Lt3D66urnVy3byiEkTM2woAODd/QIWFB5OTk9G8eXO4+jSG74QvtBIemXC/VIWu1xKR6ej799vgd2VKSkqtAiMiqoy6Vadx48Z1lujoo0mTJhAEAbk3b+Cl3sF4b1fZOB31ys3qViEiskxcVJCILIY62QkPD6+wz5zVxh0dHeHv7w8AaOd2T9puypWbich49GrZmTFjBt5++224urpixowZVR77wQcfGCUwIqp/qisAak4hISFIT09HamoqgLIxPcZcuZmITEevZOf48eMoLi6Wfq5MXSwARkS2y9KTnYMHDyL1aiqACHOHQ0QG0CvZ2b17t86fiYiMydKTHQC4lnoVcGeyQ2RNajVm59q1a7h27ZqxYiGieqykpARJSUkALDzZ4WcekdUxONkpKSnB3Llz4enpidDQUISGhsLT0xNz5syRurqIiAx15coVFBcXw8nJCcHBwXV6bXUR0SuLBlc6dVyd7KSmXtW5H6hYMZ2ILIPByc6LL76IL7/8EkuWLMHx48dx/PhxLFmyBF9//TUXFCSiGtNcTFAms7yJove7sbTLQ7B8BJHlM3idnTVr1uCnn37CwIEDpW3t2rVDUFAQRo4cic8//9yoARJR/WDJ43UASK1Nd+7cgVthHmSOLlAoC6qtmE5E5mfw1ydHR0eEhoZW2B4WFgYHBwdjxERE9ZAhyY45uos8PDzg5eUFANg8oTWuLBoMRU5BpeUjiMhyGJzsTJ48GW+//TYKCwulbYWFhViwYAEmT55s1OCIqP64cOECgMqTHUvoLtKsfg7oVzGdiMxPr26s2NhYrec7duxAkyZN0L59ewDAyZMnUVRUhL59+xo/QiKqF6paPTldmW8R3UUhISE4efKklOyoK6ary0XoqphOROanV7Lj6emp9Xz48OFaz4OCgowXERHVO0qlEhkZGQB0VztPuZVrEdXGdU0/r65iOhGZn17JzqpVq0wdBxHVY+pWnYCAAJ2Vi9XdRZoJjzm6i9SDlFNTdXehsXwEkWUy6/zON998E4IgaD00m7ALCgoQFxcHb29vuLm5Yfjw4dK3P7XU1FQMHjwYLi4u8PX1xSuvvIKSkrotEkhEtVPdeB11d5GaubqLqkt2iMgymX0xizZt2iA9PV16/PPPP9K+6dOnY+PGjVi7di327t2LtLQ0rfFDpaWlGDx4MIqKinDgwAGsXr0a33zzDebNm2eOWyGiGtJnJpZmdfEdM3piRJe6XXgQYLJDZK0MXmfH6AHY2cHf37/CdqVSia+//hpr1qxBnz59AJR1p7Vu3RoHDx5Et27dsG3bNpw7dw47duyAn58fOnTogLfffhuzZs3Cm2++WelU+MLCQq3ZZDk5Oaa5OSLSi6Fr7Jiru0g9PvHGjRsoKSmBnZ3ZP0KJSA9mb9lJSkpCYGAgmjZtilGjRknfmI4ePYri4mLExMRIx4aHhyM4OBjx8fEAgPj4eERGRsLPz086ZsCAAcjJycHZs2dRmYULF8LT01N6cIA1kXlVNRPLkvj7+8POzg6lpaVIT083dzhEpCeDkp3i4mL07dtXKtZXW127dsU333yDLVu24PPPP0dKSgoeeugh3L17FwqFAg4ODtIiXmp+fn5QKBQAAIVCoZXoqPer91Vm9uzZUCqV0oOF/YjMp7S01KILgGqSy+Vo0qSsO42fG0TWw6A2WHt7e5w6dcpoFy9fcqJr164ICQnBL7/8Amdn0w08dHR0hKOjo8nOT0T6u3r1KgoLC+Ho6ChN7bZkwcHBuHLlClJTU/F///d/5g6HiPRgcDfW008/ja+//toUscDLywstW7bEpUuX4O/vj6KiImRnZ2sdk5GRIY3x8ff3rzA7S/1c1zggIrI86i6s5s2bQy6Xmzma6pUfpKxPxXQiMi+D35klJSVYuXIlduzYgaioKLi6umrt/+CDD2oczL1795CcnIzRo0cjKioK9vb22Llzp7SIYWJiIlJTUxEdHQ0AiI6OxoIFC5CZmQlfX18AwPbt2+Hh4YGIiIgax0FEdcfSC4CWpx7jxxlZRNbD4GTnzJkz6NSpEwDg4sWLWvsEQdD1kkq9/PLLGDp0KEJCQpCWloY33ngDcrkcI0eOhKenJyZMmIAZM2agYcOG8PDwwIsvvojo6Gh069YNANC/f39ERERg9OjRWLJkCRQKBebMmYO4uDh2UxFZierW2FFTt6CYG6efE1kfg5Od3bt3G+3i169fx8iRI3H79m34+PjgwQcfxMGDB+Hj4wMA+PDDDyGTyTB8+HAUFhZiwIAB+Oyzz6TXy+VybNq0Cc8//zyio6Ph6uqKsWPHYv78+UaLkYhM69y5cwDK1tzSlFdUgoh5W8uOmT/AYrqI1MkOBygTWQ9BFEWx+sMqunTpEpKTk9GjRw84OztDFEWDW3YsRU5ODjw9PaFUKnUuVU9EpiGKIho1aoSsrCwcOJyAkb+Vjbk7N38AAFhksnPmzBlERkaiYcOGuH37trnDIarX9P37bfAA5du3b6Nv375o2bIlBg0aJK01MWHCBLz00ks1j5iI6p3MzExkZWVBEAS0bGkdY3bULTtZWVm4d++emaMhIn0YnOxMnz4d9vb2SE1NhYvL/SJ8I0aMwJYtW4waHBHZNvXin02bNjXpchPG5OHhAU9PTwDsyiKyFgYnO9u2bcPixYulhbXUWrRogatXrxotMCKyfZWN17F0nJFFZF0MTnZyc3O1WnTUsrKyOAOKiAyiTnasbakIzsgisi4GJzsPPfQQvv32W+m5IAhQqVRYsmQJevfubdTgiMi2qbuxrK1lhzOyiKyLwdMblixZgr59++LIkSMoKirCzJkzcfbsWWRlZWH//v2miJGIbJS+LTsKZQGa+rjVRUh6YcsOkXUxuGWnbdu2uHjxIh588EEMGzYMubm5iI2NxfHjx9GsWTNTxEhENigzMxO3bt2CIAgVqp0rlAX47eh16XnMB3vxc4LlJBZMdoisS40WrvD09MTrr79u7FiIqB5Rt+qEhYXBxcUF38Vfkfb1fX+v1rEqEXht3Rn0aOmDAE/zz9piskNkXWqU7Ny5cwdff/01zp8/D6CsCXrcuHFo2LChUYMjItulORMrXZmPNzaclfbpWum0VBRx5VaeRSQ76tlY165dg0qlgkxmcCM5EdUhg9+h+/btQ2hoKJYuXYo7d+7gzp07WLp0KcLCwrBv3z5TxEhENkg9ODkiIgIpt3KhqmYtd7kgILRRxZmg5tC4cWMIgoCioiLcvHnT3OEQUTUMTnbi4uIwYsQIpKSkYN26dVi3bh0uX76MJ598EnFxcaaIkYhskLpl56szxXhqxSHIylWb0XwqE4B3Y9taRKsOANjb2yMwMBCAdldWXlEJQl/9E6Gv/om8ohJzhUdE5Ric7Fy6dAkvvfQS5HK5tE0ul2PGjBm4dOmSUYMjItskiiJOnToFALBvVDb+5bVBraX9MgGYP+z+dPQdM3piRJfgug2yGhy3Q2Q9DE52OnXqJI3V0XT+/Hm0b9/eKEERkW27ceMGsrKyIJfL4fBvsvNox0Bp/44ZPTE86v4q7f6eTnUeY3X0SXbY0kNkGQweoDxlyhRMnToVly5dQrdu3QAABw8exLJly7Bo0SLp2xoAtGvXzniREpHNOHnyJACgZatw5Nk5VNhviclNeSwZQWQ9DE52Ro4cCQCYOXOmzn2CIEAURQiCgNLS0tpHSEQ2R53sRLaLxCEzx1JTXEWZyHoYnOykpKSYIg4iqkekZCeyPQ7lmDmYGuKYHSLrYXCyExISYoo4iKgeud+y0w74p5o55xaKyQ6R9eBKWERUp/Ly8pCUlATg32TnXxk5BeYKqUbUyU5GRgYKCirGrlBa1/0Q2bIaraBMRFRTZ86cgUqlgq+vL/bfuD9Daegn2oWEXRzscGXR4LoOT28NGzaEi4sL8vLycP36dTRv3rxCPa+3HrGuau5EtootO0RUp9RdWBGdu2uViFCJZaskx8/uAxcHy/8eJgiC1oys8iUvVCK0nrOlh8h8mOwQ2Zhbt27hgw8+wIgRIzB27FisXr0aeXl55g5Lok52giOiKpSIUNe/shaaM7J0lbzQfG5plduJ6hODk51r167h+vX7TbWHDx/GtGnT8OWXXxo1MCIy3Lp169CqVSu89NJL+OWXX/Dtt9/imWeeQdu2bXHgwAFzhwfgfrLzQERohRIRllT/Sh+ag5TDGrlWuB9N6srt6cr8OoqOiNQMTnaeeuop7N69GwCgUCjQr18/HD58GK+//jrmz59v9ACJSD/fffcd/vOf/yArKwuRkZFYtGgR5s6diyZNmiAlJQW9e/fG5s2bzRqjZpmIHp3baY1psbT6V/rQTHYCPJ217kdX3mNtLVdEtsLgZOfMmTN44IEHAAC//PKL9I3xhx9+wDfffGPs+IhID4cPH8aECRMgiiImTZqEo0ePYtasWZg/fz7Onj2LYcOGoaioCLGxsTh8+LDZ4kxOTkZOTg4cHR0RHh6uVRLCEutfVaf89HPN+/lpUjerb7kishUGJzvFxcVwdHQEAOzYsQOPPPIIACA8PBzp6enGjY6IqpWbm4sRI0aguLgY//nPf7B8+XLY29tL+z08PLB27VoMGTIEhYWFiI2Nxa1bt8wSqzrR6tixo1aMgHWUiCivqpIRkU08rb7lishWGJzstGnTBsuXL8fff/+N7du34+GHHwYApKWlwdvb2+gBElHVFi5ciCtXriA4OBhfffUVBKFiB4q9vT1++OEHhIeH48aNG5g8ebIZIr2f7Khbh62d5gBlUay4OKK1t1wR2QqDk53Fixfjiy++QK9evTBy5Eip0vmGDRts5gOMyBLpqqB99epVvPfeewCAjz/+GJ6enpW+3sPDA99//z3kcjl+/vlnbNy4sU7i1nToUFklLFv5rGjSpCyZyc3NxZ07d6o81hpbrohshcHJTq9evXDr1i3cunULK1eulLZPmjQJX3zxhVGDI6KqLVy4EEVFRejduzeGDRtW7fFRUVF4+eWXAQAvv/wyiouLTR2ipKioCMePHwcAzNyXJyVs1szZ2Rm+vr4AWDaCyJIZnOz06dMHd+/eRYMGDbS2N2zYECNGjDBaYERUtevXr0tfON566y2d3Ve6vPbaa/Dx8cHFixfr9AvKqVOnUFhYCJmTG+y8AursuqbGGllEls/gZGfPnj0oKiqqsL2goAB///23UYIioup99tlnKC4uRo8ePfDQQw/p/ToPDw+89dZbAIA333wT2dnZJopQm3q8jkNAS70TM2vAZIfI8um9Jrt6bQwAOHfuHBQKhfS8tLQUW7ZsQePGjY0bHRHpVFBQgBUrVgAApk2bZvDrJ06ciE8++QTnz5/H4sWLsXDhQiNHWJE62XEMaCVts/T6V/pQz8i6du1ahfuxha46Ilugd7LToUMHCIIAQRDQp0+fCvudnZ3xySefGDU4ItLt93W/4datWwgKCsLQoUMNfr2dnR0WLVqEYcOG4dNPP8Urr7yChg0bmiDS+9SDkx0CW5r0OnWtqpYdW0jmiGyB3slOSkoKRFFE06ZNcfjwYfj4+Ej7HBwc4OvrC7lcbpIgiUjbd6tXAwD++9//ws6uZkUzhw4divbt2+PkyZNYunQp3nzzTSNGqE2pVOLChQsAAMeA+pPsEJFl0HvMTkhICEJDQ6FSqdC5c2eEhIRIj4CAACY6RHWkNPcO9h89DQAYM2ZMjc8jCAJef/11AMDSpUtx9+5do8SnS0JCAgAgNDQMcpey6fG2UgXckGRH1/IBRGR6NfpKmJSUhN27dyMzMxMqlUpr37x584wSGBFp++1oWQFeuWsDBD63Ej5XtiE0NLRW54yNjUWrVq2QmJiIzz//HDNnzjRCpBWpJy+ExjyFlH+3xXywFwtjI61+oT11spOWlobi4uIKK0MTkfkZPBtrxYoVaN26NebNm4dff/0Vv//+u/T4448/ahzIokWLIAiC1mDLgoICxMXFwdvbG25ubhg+fDgyMjK0XpeamorBgwfDxcUFvr6+eOWVV1BSwm9MZFvSlfl4Y8NZ6bkgk+F20wG1rqAtl8vx2muvAQDef/99FBSYprVl3759kLt744p3N2mbrVQB9/X1hb29PVQqFdLS0swdDhHpYHCy884772DBggVQKBQ4ceIEjh8/Lj2OHTtWoyASEhLwxRdfoF27dlrbp0+fjo0bN2Lt2rXYu3cv0tLSEBsbK+0vLS3F4MGDUVRUhAMHDmD16tX45ptv2LpENiflVi5U5aoRiBCMUkF75MiRCA4ORmZmJr799ttan6+8wsJCHDx4EHYNAiGWqwVuC1XAZTKZ1owsIrI8Bic7d+7cweOPP260AO7du4dRo0ZhxYoVWgsVKpVKfP311/jggw/Qp08fREVFYdWqVThw4AAOHjwIANi2bRvOnTuH77//Hh06dMDAgQPx9ttvY9myZTrXAiKyVmGNXE1WQdve3h4zZswAAPzvf/9DaWlprc+p6fDhwygoKICXvNhmq4BzkDKRZTM42Xn88cexbds2owUQFxeHwYMHIyYmRmv70aNHUVxcrLU9PDwcwcHBiI+PBwDEx8cjMjISfn5+0jEDBgxATk4Ozp49i8oUFhYiJydH60FkyQI8nfHWI20g/jtGToBo1AraEyZMQIMGDZCUlIT169cb5Zxqe/bsAQD06Bxps1XAmewQWTaDByg3b94cc+fOxcGDBxEZGVlhMN6UKVP0PtdPP/2EY8eOSTM1NCkUCjg4OMDLy0tru5+fn7SgoUKh0Ep01PvV+yqzcOFCaQVZImvRI9gRN5ZPgJ2XP7at/xk9OhpvYK+bmxvi4uLwzjvvYPHixXjssceMtsqx+stRTEwMhkc1wdz1ZV9EdszoiaY+bka5hrkx2SGybAYnO19++SXc3Nywd+9e7N27V2ufIAh6JzvXrl3D1KlTsX37djg51W014NmzZ0vN9gCQk5Mj9bkTWarNmzai9O5NyF080LlNC+QVlSBi3lYAwLn5A+DiULP1dtRefPFFvPfeezh8+DD+/vtv9OjRo9Yx5+TkSC2x/fr109pnS1XAa5LsKJQFNpPsEVk6g7uxUlJSKn1cvnxZ7/McPXoUmZmZ6NSpE+zs7GBnZ4e9e/di6dKlsLOzg5+fH4qKiirU7cnIyIC/vz8AwN/fv8LsLPVz9TG6ODo6wsPDQ+tBZOk2btgAAHBuGW2S8/v6+mLcuHEAgCVLlhjlnLt370ZpaSlatGiBsLAwo5zTEuk7QFm9fABQNvX+5wS2BBHVBYOTHWPp27cvTp8+jRMnTkiPzp07Y9SoUdLP9vb22Llzp/SaxMREpKamIjq67MM+Ojoap0+fRmZmpnTM9u3b4eHhgYiIiDq/JyJTKSwsxJ7duwAALs0fMNl1XnrpJQiCgD///BNnzpyp9fm2bNkCoGKrjq3Rp2Wn/PIBtjL1nsgaGNzuPX78+Cr3r1y5Uq/zuLu7o23btlrbXF1d4e3tLW2fMGECZsyYgYYNG8LDwwMvvvgioqOj0a1b2Vod/fv3R0REBEaPHo0lS5ZAoVBgzpw5iIuLg6Ojo6G3RmSxDhw4gPz8fMhcvWDvY7oWkubNm2P48OH49ddf8d5772H1v2UpakKlUmHDv61RQ4YMMVaIFkndspOdnY2cnBydrcW6lg9QT723hUHaRJasRlPPNR+ZmZnYtWsX1q1bV6HLqbY+/PBDDBkyBMOHD0ePHj3g7++PdevWSfvlcjk2bdoEuVyO6OhoPP300xgzZgzmz59v1DiIzG379u0AAOeQDjUaOGxImQL1Kspr1qyp1boxR44cQVpaGgQHZzy3s9CmyyO4u7tLS2dU9m9myuUDiKhqBrfs/P777xW2qVQqPP/882jWrFmtglFPUVVzcnLCsmXLsGzZskpfExISgs2bN9fqukSWTp3sfDZrHMaMKauiXVXyUH7wsiG6dOmC3r17Y/fu3fjoo4/w/vvv1yhm9Yrqzk07Q7Cz/RIKwcHBuHPnDlJTU9GmTZsK+9XLB6hno9nS1HsiS2eUMTsymQwzZszAhx9+aIzTEZGG27dv4+jRowBQYT0qNWMX1VS37nz55Ze4c+eOwa8XRRG//PILAMClxf0SES4OdriyaDCuLBpc69ljlkY9bqeq1rDhUU2kn3fM6Gn1dcGIrIXRBignJyezJhWRCezatQuiKKJNmzYIDAyUtptyZs+AAQMQGRmJe/fu4ZNPPjH49fHx8UhOToarqyucm3c1WlyWTD1uR9/p57Y09Z7I0hn81UpzfRqg7Btceno6/vzzT4wdO9ZogRFRGfWifJozmiqb2dOjpY9RukUEQcBrr72GkSNH4n//+x+ee+45+Pr66v367777DgAw7LHHsN+hfvxR58KCRJbL4JYdzcKfx48fx6lTpwCUVUz+6KOPjB0fUb2VV1SCkFmbsOqXshlNmslOVTN7jOWJJ55AVFQU7t69i7ffflvv1929exdr1qwBAIx86mmjxWPpmOwQWS6DW3Z2795tijiISIcSZQZKczJhb2+Pnj17StvVM3s0Ex59Z/bou3KvTCbDe++9hz59+mD58uWYMmUKWrRoUeVr8opKEBL7CnJyctCyZSv06t0b2LvdoOtaKyY7RJarxmN2bt68iX/++Qf//PMPbt68acyYiOhfhdfKuqo6RUXB1dVV2q6e2aNW1cwehbKgxuN7evfujUGDBqGkpASvvPJKtccXFxfj7pGyQqJxL76I34+n1ei61kid7Fy/fh2qfwu2EpFlMDjZyc3Nxfjx4xEQEIAePXqgR48eCAwMxIQJE5CXZ7wmdCICCq+XJTvdH3yowr6qZvZoJjd939+LeetrvnLv4sWLYWdnh/Xr12Pt2rVVHrvq669Qkq2AzMUTfYY+Xq9WDA4ICIBMJkNxcXGFMjZqtjwbjciSGZzszJgxA3v37sXGjRuRnZ2N7OxsrF+/Hnv37sVLL71kihiJ6q2Ca2UlG7p3f7DK4zRn9pQfvCz++9BkyPietm3bYvbs2QCA5557DlevXtV53K1bt7DgnbKxPV7dR+JmvmjycUWWxM7ODo0bNwbAriwiS2NwsvPbb7/h66+/xsCBA6UimoMGDcKKFSvw66+/miJGonpJoVBALCmEY3A7NI2MqvZ49SrJ0Qt3VUgyyjN05d7XX38dUVFRyMrKwmOPPVZhtXSVSoXx48fj1s2bsPcOglv7hxHiXf9WDOa4HSLLZHCyk5eXBz8/vwrbfX192Y1FZERLNxxC4+dWwX/ku4j96oRB413KJxlCuX1Vrdyrq7SEo6MjfvvtNzRq1AjHjx9Hnz59cPHixbLj8/Iwfvx4bNy4EQ4ODmg09BUIcjv4ezrpPa7IVjDZIbJMBic70dHReOONN1BQcH/F1vz8fLz11ltSNXIiqp10ZT7+uOYIQVb2FjV0vMtrg1pLP8sEYP6w+0lHTVfuDQkJwc6dO+Hj44Pjx48jIiICnTt3RkhICFavXg25XI7lK76Cg19TAGUDo+vbisFMdogsk8HJzscff4z9+/ejSZMm6Nu3L/r27YugoCAcOHAAH3/8sSliJKp3Um7lAuUKfhoy3uXRjvdXWt4xo6dW0lGblXvbtWuHI0eOYODAgSgtLcXRo0dx69YthIaGYsOGDbBrcX8gdcwHe7UGSteHFYP1KRlBRHXP4OkAbdu2RVJSEn744QdcuHABADBy5EiMGjUKzs622zxNVJe87UshqlRSyw5QcbyLemaPWmWFQY2dZAQHB2Pz5s24fPkyjh8/Dh8fH0RHR+NWXgm6L9olHacSoTVQuj4wtGQEEdWNGs19dHFxwcSJE40dCxH9K/nMUWRt/QQNB0yGIJNb5HiXpk2bomnTptLzlFvKCgOjqxsobWvYjUVkmQzuxlq4cCFWrlxZYfvKlSuxePFiowRFVN8dOHAA905tx509qwAYPt4lI8c4VdANqaauXtVZU/nntk6d7Ny8eRP5+ba5nhCRNTI42fniiy8QHh5eYXubNm2wfPlyowRFVN8dPHgQAGDfsGysjT5dUZrjY4Z+sr/G167pasu6VnXWfF4feHl5wc2trCQGx+0QWQ6Du7EUCgUCAgIqbPfx8UF6erpRgiKqz0pLS3Ho0CEAgGPjil8sdNFVBV1T+fE9hpzHkGrqw6OaYO6/qzXvmNETTX3cMDo6VK97sAWCICA4OBjnzp1DamoqWrZsae6QiAg1aNkJCgrC/v0VvzXu378fgYGBOl5BRIY4e/Ys7t27B3d3d9h7B+n1Gl1V0AHgx4nddJYl0LWWTmXnqemqx/Vh9pUu6kHKbNkhshwGt+xMnDgR06ZNQ3FxMfr06QMA2LlzJ2bOnMlyEURGoO7CiurcBSkyuV6vqU0VdEPPk1dUgoh5WwEA5+YPYI2ncjhImcjyGPwp9corr+D27dt44YUXUFRUBABwcnLCrFmzpPo5RFRz8fHxAIAHunZFip6zmdTjZdRdSDWdvWWs89RnTHaILI/ByY4gCFi8eDHmzp2L8+fPw9nZGS1atICjo6Mp4iOqd9TJTo8Hu2Px4OrH2ajpGi9TE8Y6T33FZIfI8tS4/dnNzQ1dunQxZixE9V5WVhYSExMBAN26davxeYw1Xqa+jrupDSY7RJaHne1EFiKvqAStn/0EANC8eQt4e3vXyXUVygKjtd7oO+vLlmmWjBBFEYJQzxYbIrJABs/GIiLTKUwra9V5oFtXk16npmvpUPUaN24MoKxA8u3bt80cDREBTHaILEph+kUAQOfOpusirmwtHX0rqmtSKAsqncZeXzk6OsLf3x8Au7KILIVeyU6nTp1w584dAMD8+fORl2f4mhtEVDVRFFGkSAIARHXubPDr1V1IVxYNrnI6eG3X0infKqT5nMpw3A6RZdEr2Tl//jxyc3MBAG+99Rbu3btn0qCI6qPUq1ehys8BZHaIbNfeZNfRVcNKcy2dqpImXa1C9a2yuT6Y7BBZFr0GKHfo0AHjxo3Dgw8+CFEU8b///U+q/1LevHnzjBogUX1x7NhRyN294dy0M+4UiGjgbprr1GYtHV2tQvWtsrk+NAcpE5H56ZXsfPPNN3jjjTewadMmCIKAv/76C3Z2FV8qCAKTHaIa+u3YDTR+bhUEmQwxH+zFwthIgyqdG6Kma+noWmG5/HO6n+xcuXKlyuO4GjVR3dDrndWqVSv89NNPAACZTIadO3fC19fXpIER1SfpynwcE1pAEMp6lg0twFkbhqylo6tVSPO5MaexW7PQ0FAAQEpKinkDISIANZiNpVKpmOgQGdnlzHuAoP12rGkBTlMbHtVE+nnHjJ5a+ziNvUzTpk0BMNkhshQ1mnqenJyMF198ETExMYiJicGUKVOQnJxs7NiI6g0h9yZElUprW00KeZqDsaax25KwsDAAZSti5+TkmDkaIjI42dm6dSsiIiJw+PBhtGvXDu3atcOhQ4fQpk0bbN++3RQxEtm8K+dOIGvrJ1LCU9cFOGu6Vs7V27Wbxm6r3Nzc0KhRIwBs3SGyBAaPhnv11Vcxffp0LFq0qML2WbNmoV+/fkYLjqi+OHLkCO6d2g6Za0M06DHaagpwhnhXHLBsLS1SphYWFoZbt27h8uXLaN+++qUEON6JyHQMbtk5f/48JkyYUGH7+PHjce7cOaMERVRfqFtUPlu7DQBg3zAQgOkLcOq7AGF1/D2d8NYjbaTndd0iZcnUXVlVteywbAdR3TA42fHx8cGJEycqbD9x4gQHLhPVgKgqRVFG2Zg3B/8WZo6meuUTpfIDlk01Xd7aVDdI2ZhlO4ioagYnOxMnTsSkSZOwePFi/P333/j777+xaNEiPPvss5g4caJB5/r888/Rrl07eHh4wMPDA9HR0fjrr7+k/QUFBYiLi4O3tzfc3NwwfPhwZGRkaJ0jNTUVgwcPhouLC3x9ffHKK6+gpIT1ech6FN++DrG4AC6urrBv2Njc4VRgyHgeU7dIWZPqWnZqW7aDiPRncPv13Llz4e7ujvfffx+zZ88GAAQGBuLNN9/ElClTDDpXkyZNsGjRIrRo0QKiKGL16tUYNmwYjh8/jjZt2mD69On4888/sXbtWnh6emLy5MmIjY3F/v37AQClpaUYPHgw/P39ceDAAaSnp2PMmDGwt7fHu+++a+itEZlFkeISAKB9h45Ik8nNHA3HjhhLdcmOrgUaOd6JyDQMbtkRBAHTp0/H9evXoVQqoVQqcf36dUydOhWCIFR/Ag1Dhw7FoEGD0KJFC7Rs2RILFiyAm5sbDh48CKVSia+//hoffPAB+vTpg6ioKKxatQoHDhzAwYMHAQDbtm3DuXPn8P3336NDhw4YOHAg3n77bSxbtgxFRUWVXrewsBA5OTlaDyJzKVKUVTrv0LGT2WLg2BHj00x2RLHiEtPqBRrVZALw5iMRiF64ixXkiYysRuvsqLm7u8Pd3TgFfEpLS/HTTz8hNzcX0dHROHr0KIqLixETEyMdEx4ejuDgYMTHxwMA4uPjERkZCT8/P+mYAQMGICcnB2fPVl6ccOHChfD09JQeQUFBRrkHouro6hIqVt6EY3AkWnV8wCiDhg3FsSOmERwcDEEQkJ+fX6H7Xa38eCfN50RkPLVKdozh9OnTcHNzg6OjI5577jn8/vvviIiIgEKhgIODA7y8vLSO9/Pzg0KhAAAoFAqtREe9X72vMrNnz5ZapZRKJYv1kdn8fPgqfGPnwH/kQnyU5GWWFhVDxo4olAV1FJX1c3BwQJMmZcmLPmvtcLwTkemYPdlp1aoVTpw4gUOHDuH555/H2LFjTT6F3dHRURoUrX4Q1TWFsgDzN12AICt7G4pmalFRjx3RpDl2pLouLmNNY7dFLBtBZBnMnuw4ODigefPmiIqKwsKFC9G+fXt8/PHH8Pf3R1FREbKzs7WOz8jIgL+/PwDA39+/QvOw+rn6GCJLdfV2LsqP5DDHbBxdY0fUa+Wwi6t21ON2Ll++bPBra7qqNRFVZFCyU1xcjL59+yIpKclU8UClUqGwsBBRUVGwt7fHzp07pX2JiYlITU1FdHQ0ACA6OhqnT59GZmamdMz27dvh4eGBiIgIk8VIZAwh3q5lzTkazDUbp7K1cjg9unb0WViwMhk57DIkMhaD2pzt7e1x6tQpo1189uzZGDhwIIKDg3H37l2sWbMGe/bswdatW+Hp6YkJEyZgxowZaNiwITw8PPDiiy8iOjoa3bp1AwD0798fERERGD16NJYsWQKFQoE5c+YgLi4Ojo6ORouTyFScz/6BvIhHIMjkFrP6sObYEU6Prh1Dkx3NLsOhn+w3SUxE9ZHB3VhPP/00vv76a6NcPDMzE2PGjEGrVq3Qt29fJCQkYOvWrVJ9rQ8//BBDhgzB8OHD0aNHD/j7+2PdunXS6+VyOTZt2gS5XI7o6Gg8/fTTGDNmDObPn2+U+IiMrfz4l7QbN3Bj+XiU5t6xyNWHq+rioupVl+xojndS5hdX6DIkIuMweDRhSUkJVq5ciR07diAqKgqurq5a+z/44AO9z1Vd0uTk5IRly5Zh2bJllR4TEhKCzZs3631NInPRNf7Fq9/zyL+RCJmLl8XOxhke1QRz15fFbS0FSi2FeoDytWvXUFxcDHt7+0qP1dVlSETGYXCyc+bMGXTqVLb42cWLF7X2GbqoIFF9ouuPmSCTw6lpJ6t571hqQmap/P394ejoiMLCQly7dk1KfnTR1WWoxlWtiWrH4GRn9+7dpoiDyObp+mMmqkohd/Y0X1D/UnenkHHJZDKEhoYiMTERKSkpVSY76i5DdSuaAEiz9WI+2IuFsZEW181JZC1qPPX80qVL2Lp1K/Lzy6ag6loOnYjuKz/+BSoVsrZ+Cntvyyv+ScZjyCBlrRWUNRr7OOWfqHYMTnZu376Nvn37omXLlhg0aBDS09MBABMmTMBLL71k9ACJbIn6j5mquBBpX0zAvVPbcfKT57kgnw2r6fTz8t8fOeWfqOYMTnamT58Oe3t7pKamwsXl/vTTESNGYMuWLUYNjshWFWVcQnHOTTRu3BgBAQHmDqdKXCG5dmq6sGBVq1oTkWEMTna2bduGxYsXSzVf1Fq0aIGrV68aLTAiW1aUXrYwZ+fOnc0cCZlaTUtGvDaotfQzp/wT1Y7ByU5ubq5Wi45aVlYWF/Ij0lOhoizZ6dKli5kjIVOraTfWox0DpZ8tcQ0mImticLLz0EMP4dtvv5WeC4IAlUqFJUuWoHfv3kYNjshWFSkuAWDLTn2gTnYyMzNx7969Ko+trMuQU/6JasfgDvglS5agb9++OHLkCIqKijBz5kycPXsWWVlZ2L+fy5sTacorKkHEvK0AgHPzB8DFwQ4nXu2OBotvAACioqLMGR7VgQYNGqBhw4bIyspCcnIy2rdvb+6QiOodg1t22rZti4sXL+LBBx/EsGHDkJubi9jYWBw/fhzNmjUzRYxENuXYsWMAyr7xN2rUyMzRUF1o0aIFgLIlO4io7tVoaoWnpydef/11Y8dCVC8kJCQAYBdWfdK8eXMcOnTIoGSHCz0SGU+Nkp07d+7g66+/xvnz5wEAERERGDduHBo2bGjU4IhskTrZ4eDk+qN58+YAgKSkJDNHQlQ/GdyNtW/fPoSGhmLp0qW4c+cO7ty5g6VLlyIsLAz79u0zRYxENoXJTv3Dbiwi8zK4ZScuLg4jRozA559/DrlcDgAoLS3FCy+8gLi4OJw+fdroQRLZAoWyAG5iHlJTUyEIglRQl2yfMVp2dA12JyL9GPxuuXTpEn799Vcp0QEAuVyOGTNmaE1JJyLgt6PXpZ9jPtiLkWV/89CqVSt4eHiYKSqqa+pkJy0tDbm5uXB1dTVzRET1i8HdWJ06dZLG6mg6f/48p1QSaUhX5uONDWel5yoRWJMkQu7uzS6sesbb2xsNGjQAYHjZCCKqPb1adk6dOiX9PGXKFEydOhWXLl1Ct27dAAAHDx7EsmXLsGjRItNESWSFUm7lQlWumKMIAXZegUx26qHmzZsjISEBSUlJiIyMNHc4RPWKXslOhw4dIAgCRI0yvDNnzqxw3FNPPYURI0YYLzoiKxbWyBUyAVoJj6gqRUl2GpOdeqhFixZISEjgIGUiM9Ar2TG0pgsRAQGeznjrkTaYu76sK0smADe3fgohX8ku33pIPW7HGMmOQlmApj5utT4PUX2hV7ITEhJi6jiIbNLwqCZSsvNKRB5eWLQdHTp0gLMzq1fXN7WdkVV+sPvC2EgWByXSU43mLqalpeGff/5BZmYmVCqV1r4pU6YYJTAia1R+erCmS6e4vk59Vpu1dnQNdn9t3Rn0aOmDAE8mzkTVMTjZ+eabb/Dss8/CwcEB3t7eEARB2icIApMdokocO3oUAJOd+krdsnP9+nXk5eXBxcVF79fqGuxeKoq4ciuPyQ6RHgyeej537lzMmzcPSqUSV65cQUpKivTglEoi3URRhePHmOzUZ97e3vDy8gJg+PRz9WB3TXJBQGgj/RMmovrM4GQnLy8PTz75JGQyg19KVO+oizlun9AKSqUSTk5OaNOmjbnDIjMQBEFq3bl48aJBr1UPdleTCcC7sW3ZqkOkJ4MzlgkTJmDt2rWmiIXIpiiUBdLP6npYHTp0gL29vblCIjMLDw8HACQmJhr82uFRTaSfd8zoycHJRAYweMzOwoULMWTIEGzZsgWRkZEVPrg/+OADowVHZG0qmzHD4p8E3E92Lly4UKvz+Hs6GSMconqjRsnO1q1b0apVKwCoMECZqL6qasYMkx0CIH1u1jbZISLDGJzsvP/++1i5ciWeeeYZE4RDZH00p5uXVyqKSM64i+PHjwNgslPfaXZjiaLIL4hEdcTgZMfR0RHdu3c3RSxEVq98eQi5IKAo6zry8/Ph7u6Oli1bmi84MrvmzZtDJpNBqVQiIyMD/v7+er9WPdidiAxn8ADlqVOn4pNPPjFFLERW77VBraWf1TNmUs6WtepERUVxFmM95+TkhLCwMADsyiKqSwa37Bw+fBi7du3Cpk2b0KZNmwoDlNetW2e04IiszaMdA/HOn+cBlM2Yaerjhue+5ngdui88PBzJycm4cOECevXqZe5wiOoFg5MdLy8vxMbGmiIWIquXkXN/url6xgwHJ5Om8PBw/Pnnn2zZIapDBic7q1atMkUcRFZLc7r50E/2a+3Ly8vDqVOnAAAPPPBAncZFlqk2a+0QUc1wAAFRLeiabq7pyJEjKCkpQUBAAIKDuQgccfo5kTkY3LITFhZW5XRJ1sei+kRXgUYA+HFiN7g42CE+Ph4AEB0dzWnGBOB+y87Vq1cNLghKRDVjcMvOtGnTMHXqVOnxwgsvIDo6GkqlEpMmTTLoXAsXLkSXLl3g7u4OX19fPProoxWadgsKChAXFwdvb2+4ublh+PDhyMjI0DomNTUVgwcPhouLC3x9ffHKK6+gpKTE0FsjMlh1BRo1kx0iAGjUqBEaNmwIURSRlJRk7nCI6gWDW3amTp2qc/uyZctw5MgRg861d+9exMXFoUuXLigpKcFrr72G/v3749y5c3B1dQUATJ8+HX/++SfWrl0LT09PTJ48GbGxsdi/v2xsRGlpKQYPHgx/f38cOHAA6enpGDNmDOzt7fHuu+8aentEBlEXaJy7vqwrS7NAoyiKTHaoAkEQEB4ejgMHDuDChQto3769uUMisn2ikSQnJ4vu7u61OkdmZqYIQNy7d68oiqKYnZ0t2tvbi2vXrpWOOX/+vAhAjI+PF0VRFDdv3izKZDJRoVBIx3z++eeih4eHWFhYqNd1lUqlCEBUKpW1ip/qp9zCYjFk1iYxZNYmMTnzrrQ9OTlZBCDa29uL+fn5ZoyQLM348eNFAOKbb75p7lCIrJq+f7+NNkD5119/RcOGDWt1DqVSCQDSeY4ePYri4mLExMRIx4SHhyM4OFj6xhwfH4/IyEj4+flJxwwYMAA5OTk4e/YsdCksLEROTo7Wg8gYNAs0qv8f7dixI5ycWLiR7ouIiACASj+j9JFXVILQV/9E6Kt/Iq+I3fZEVTG4G6tjx45aAy1FUYRCocDNmzfx2Wef1TgQlUqFadOmoXv37mjbti0AQKFQwMHBAV5eXlrH+vn5QaFQSMdoJjrq/ep9uixcuBBvvfVWjWMl0ge7sKgy6s+4M2fOmDkSovrB4GTn0Ucf1Xouk8ng4+ODXr16SbMMaiIuLg5nzpzBP//8U+Nz6Gv27NmYMWOG9DwnJwdBQUEmvy7ZpspqFjHZocqok52LFy+isLAQjo6OZo6IyLYZnOy88cYbRg9i8uTJ2LRpE/bt24cmTZpI2/39/VFUVITs7Gyt1h3NAnr+/v44fPiw1vnUs7UqK7Ln6OjIDxcyqdzcXJw8eRIAkx2qKDAwEF5eXsjOzkZiYiLatWtn7pCIbJpZFxUURRGTJ0/G77//jl27dkkF8tSioqJgb2+PnTt3StsSExORmpoq/QGJjo7G6dOnkZmZKR2zfft2eHh4SP3iRHXtyJEjKC0tRWBgIFsNqQJBEIzalaVQFlR/EFE9pneyI5PJIJfLq3zY2RnWUBQXF4fvv/8ea9asgbu7OxQKBRQKBfLz8wEAnp6emDBhAmbMmIHdu3fj6NGjGDduHKKjo9GtWzcAQP/+/REREYHRo0fj5MmT2Lp1K+bMmYO4uDi23pDZcDFBqo462Tl9+nSNXq9ZpiTmg734OSHVKHER2SK9s5Pff/+90n3x8fFYunQpVCqVQRf//PPPAaBC5d9Vq1bhmWeeAQB8+OGHkMlkGD58OAoLCzFgwACtgdByuRybNm3C888/j+joaLi6umLs2LGYP3++QbEQGRPH61B1atOyo6tMyWvrzqBHSx8EeDobLUYiW6F3sjNs2LAK2xITE/Hqq69i48aNGDVqlMEJhijqWGe/HCcnJyxbtgzLli2r9JiQkBBs3rzZoGsTmYrIxQRJD7VJdnSVKSkVRVy5lcdkh0iHGo3ZSUtLw8SJExEZGYmSkhKcOHECq1evRkhIiLHjI7I6ly9fxs2bN2Fvb49OnTqZOxyyUOpk58qVK7h7965Br62uTAkRaTMo2VEqlZg1axaaN2+Os2fPYufOndi4caP0piUiSKVMOnXqxMUEqVLe3t4ICAgAAJw7d86g16rLlKhplikhoor0TnaWLFmCpk2bYtOmTfjxxx9x4MABPPTQQ6aMjcgq/f333wCAHj16mDkSsnS16coaHnV/mY4dM3piRJdgo8VFZGv0HrPz6quvwtnZGc2bN8fq1auxevVqncetW7fOaMERWaN9+/YBYLJD1Wvbti22b99e4xlZapplSoioIr2TnTFjxnAKLVE1FAoFLl68CEEQ0L17d3OHQxauttPPiUg/eic733zzjQnDILIN6i6sdu3aoUGDBmaOhiydeuXkkydPQhRFg75QVlamhIgqMusKykS2hl1YZIi2bdtCLpfj9u3buH79evUvqIJmFfRb9wpYEZ1IA5MdIiNiskOGcHJyQps2ZbOqjh07ZuZoiGwXkx0iI8nKypLGXnCmIulLvRYTkx0i02GyQ2Qgze4CzS6C/fv3QxRFtGrVCn5+fmaMkKxJx44dAQDHjx832jkzcu4XBmWRUCImO0RGs3fvXgBs1SHDGKtlR7Mw6JCl+6WfWSSUiMkOkdHs3LkTANCnTx8zR0LWpH379hAEATdu3EBmZmaNzlG+MKhm2Sx1kdB0ZX4tIyWyXkx2iGpB3UVw8+ZNnDhxAgCTHTKMu7s7WrRoAaDmXVm6CoNqUhcJJaqvmOwQGUizu0DdRbB7924AQGRkJMfrkMFq25WlqzCoJhYJpfqOyQ6RAcp3F6i7CP7cVTZGom/fvuYKjayYOtmpactO+cKgmnkPi4QSMdkhMoiu7oJSUcTfJy4AAGJiYswQFVk79Yys2gxS1iwMumnK/VIlLBJKxGSHyCC6ugtkApB67ijs7Oy4mCDViDrZSU5ORnZ2dq3P5+dxvzAoi4QSMdkhMkj57gKZAAzyUaL07m088MADcHd3N2N0ZK28vb3RrFkzAMDhw4fNHA2R7WGyQ2Qgze6CHTN64nbCRgDswqLa6datGwAgPj6+Rq9XFwa9smgwGrk5ST+7OOhd75nIZjHZIaoFHzd7bN++HQCTHaqd6OhoADVPdoiockz5iaqRV1SCiHlbAQDn5g+QvkEDZX+Ybt++DU9PT+mPFVFNqFt2Dh06BJVKBZmM30WJjIXvJqJa2Lx5MwBgwIABsLPjdwequXbt2sHZ2RnZ2dlITEw0dzhENoXJDlEt/PnnnwCAwYMHmzkSsnb29vbo0qULAODgwYNmjobItjDZITKAZgXptLQ0HD9+HIIg4OGHHzZjVGQrajtImYh0Y7JDVA1d5SEAYMuWLQCALl26wNfX1yyxkW1Rj/tiyw6RcTHZIapCZeUh0pX5UhfWoEGDzBUe2Rh1y86ZM2eQk5Nj5miIbAeTHaIqVFYe4pJCKU05Z7JDxuLv74/Q0FCIosjFBYmMiMkOURV0lYeQCwKunT+Gu3fvwt/fH1FRUeYJjmxS9+5lda327t1r5kiIbAeTHaIq6CoP8W5sW+zc+BsAIDY2luuhkFH17t0bALBr1y4zR0JkO/gpTVSN8uUhhncMxPr168v2DR9urrDIRvXp0wdAWY2se/fumTkaItvAZIfIAP6eTti7dy9u376NRo0asco5GV1YWBhCQkJQUlKC/fv3mzscIpvAZIeoGpoFFl0c7PDbb2VdWI8++ihXTSaTUHdl7d692yjnyysqQeirfyL01T+RV1RilHMSWRMmO0QGKC0txbp16wCwC4tMx9jJDlF9x2SHyAD79+9HRkYGvLy8pLEVRMamTnaOHDkCpVJp1HNrrgJOVF8w2SEywPfffw8AeOyxx+Dg4GDmaMhWBQUFoXnz5lCpVPj7779rfb7KVgEnqi+Y7BDpKT8/Hz///DMAYMyYMWaOhmydunVn586dtTpPVauAE9UXZk129u3bh6FDhyIwMBCCIOCPP/7Q2i+KIubNm4eAgAA4OzsjJiYGSUlJWsdkZWVh1KhR8PDwgJeXFyZMmMDpmlQrlQ3m3LBhA3JychASEsJZWGRy/fv3BwBs3ry5VuepbBXwK7fyanVeImti1mQnNzcX7du3x7Jly3TuX7JkCZYuXYrly5fj0KFDcHV1xYABA1BQcL/PedSoUTh79iy2b9+OTZs2Yd++fZg0aVJd3QLZOM3xDd9++y0AYPTo0VxIkEyuf//+sLe3x8WLF3Hx4sUan6eyVcBDG7nUMkIi6yGIoihWf5jpCYKA33//HY8++iiAsladwMBAvPTSS3j55ZcBAEqlEn5+fvjmm2/w5JNP4vz584iIiEBCQgI6d+4MoKwS9aBBg3D9+nUEBgbqvFZhYSEKCwul5zk5OQgKCoJSqYSHh4dpb5QsUl5RCSLmbQUAzBncGu/8eR5A2YrJC2Mj0TPIAU2aNEFpaSkSExPRsmVLc4ZL9US/fv2wY8cOvP/++5gxY0aNz/Nd/BXMXV/WlSUTgLceaSM9Pzd/AFwcuIQCWaecnBx4enpW+/fbYr+epqSkQKFQICYmRtrm6emJrl27Ij4+HgAQHx8PLy8vKdEBgJiYGMhkMhw6dKjScy9cuBCenp7SIygoyHQ3QlZnwebz0s/q8Q1ffPszSktL0a1bNyY6VGeGDBkCANi0aVOtzlNhFXCN55ydRfWBxSY7CoUCAODn56e13c/PT9qnUCjg6+urtd/Ozg4NGzaUjtFl9uzZUCqV0uPatWtGjp6sjeZslfJtnaWiiG9/3wIAeOaZZ+owKqrv1MnO33//jezs7BqfR3NhzKY+bpydRfWOxSY7puTo6AgPDw+tB9Vf5WerlCcDcPVsAjw9PTFq1Ki6C4zqvWbNmiE8PBwlJSXYtm2bUc7J2VlUH1lssuPv7w8AyMjI0NqekZEh7fP390dmZqbW/pKSEmRlZUnHEFVH12wVNZkA+F3bhdK7tzF+/Hi4ubnVbXBU76lbdzZu3GiU83F2FtVHFpvshIWFwd/fX2uNiZycHBw6dAjR0dEAgOjoaGRnZ+Po0aPSMbt27YJKpULXrl3rPGayTrpmq6h9HRuCg2s+gCAIeOGFF+o2MCIAQ4cOBVA2bkdzYkVNcXYW1UdmTXbu3buHEydO4MSJEwDKBiWfOHECqampEAQB06ZNwzvvvIMNGzbg9OnTGDNmDAIDA6UZW61bt8bDDz+MiRMn4vDhw9i/fz8mT56MJ598stKZWETlBXg6461H2kjPNf8Q/PbdCgDAwIED0bx587oOjQjdu3dHYGAgsrOzsWXLllqfT9f/7+/GtkWAp3Otz01ksUQz2r17twigwmPs2LGiKIqiSqUS586dK/r5+YmOjo5i3759xcTERK1z3L59Wxw5cqTo5uYmenh4iOPGjRPv3r1rUBxKpVIEICqVSmPdGlmZ3MJiMWTWJjFk1iYxObPs/59bt26Jbm5uIgBx8+bNZo6Q6rMZM2aIAMQnnnjCKOfT9f87kTXS9++3xayzY076ztMn26W5zo563ZE5c+ZgwYIF6NChA44dOwZBqKSvi8jEjh49is6dO8PJyQmZmZlwd3ev1fl0/f9OZI30/fvNZAdMdqiiO3fuICQkBHfv3sW6devw2GOPmTskqsdEUUR4eDguXryI7777Dk8//bRRz8/kh6yV1S8qSGRKldW/Uvv4449x9+5dREZGYtiwYWaIkOg+QRDw1FNPAQDWrFlj0mtxkUGyRUx2qN4r/+F++/ZtfPTRRwCAuXPnsg4WWQR1srNt27YqF02tCS4ySLaOn+JUL1X14T5v3jwolUq0a9cOw4cPN0d4RBW0aNEC//d//4fS0lKsWLHCaOflIoNUHzDZoXqnqg/3kydPYvny5QDKurLYqkOWZPLkyQCA5cuXo7i42Cjn5CKDVB/wk5zqnco/3HMxdepUqFQqPP744+jVq5dZ4iOqzPDhw+Hn54e0tDT88ccfRjknFxmk+oDJDtU7lX24H927BXv37oWTkxPee+898wRHVAUHBwdMmjQJALBs2TKjnJOLDFJ9wGSH6h1dH+4v9QzA69PjAJQNSg4JCTFXeERVevbZZyGXy7F3716cOnXKKOccHtVE+nnHjJ4Y0SXYKOclshRMdsgmaE4lv3zzXrVTyzU/3LdNewi/LJqOnJwcREdHY+bMmXUZOpFBGjdujNjYWADAggULjHJOFwc7XFk0GFcWDUZTHxa7JdvDZKeeqi4ZsDblZ1dpPte1bojmh/svX3+KvXv3wtXVFd999x3s7LigGlm2OXPmAAB++eUXnD592szREFk+Jjtk9YuI6ZpdNW/9/edVrRvy+++/S384Pv74YzRr1sy0wRIZQbt27fD4448DAN58803zBkNkBZjs1FO2tIiYrtlVmk8rWzfk2LFjePrppyGKIuLi4jBhwgTTB0tkJG+88QYEQcC6detw/Phxc4dDZNGY7NRDtraImK7ZVeWViiKiF+6SxvScPn0aAwcORF5eHvr37y+tmExkLdq0aYORI0cCAF5++WWYq8xh+fFyRJaIyY6JWeIHga0sIqb+t41euAuT+zSXtgv/PjRpPu/7/l70e3YeMjMz0bFjR/zyyy8cp0NW6e2334aTkxN27dqFH374wSwx2FIrMdkuJjsmVv6D4Lv4KzVOfoyVONXlImLGTPbKn0vz3/bTXZekn3e+1BPzh92fWl4+8REBOD44Dp17xGDnzp3w9PSsVVxE5tK0aVPMnTsXADBjxgxkZWXV+pyGvGdtrZWYbBeTHROqzcBZXYz1DcrQRcSq+/Crar8hMVd3Hc1z9X1/r9a/pUosS9jiZ/dBUx83jI4ORfzsPvhxYjd88lRHlG/gF2RyLF62Eg0aNKg0HiJr8PLLLyMiIgI3b97EK6+8UuvzVfee1XyfHrh0yyZaicn2MdkxoZoOnNVFV+I0e93pGreaaCYD+1/tU+UiYtV9+FW239BvfVVdp/y5RKBCAlP+QzbA0xnRzbxRnJYIiCqtY2UC0DqoUSV3TGQ9HBwcpHpuK1euxI8//ljjc+nzntV8n7689lSFllOWmiBLxGTHhP786RugmkGDpaKIB+b9geAZvyEpQ6m1r7pvUJrPa9LSo04GAjydK21VqS7JOnT5doX9s347XeW3Ps2BwprXnVfFh6yuxLG88h+yCQkJiI2NRezAPri95ROIqlIAZYnOwthILodPNuOhhx7C66+/DgCYOHEizp07V6PzVDaeT/2eLf9+L/+WZKkJslSCaK4h/BYkJycHnp6eUCqV8PDwMNp5W7ZsiXTnUDQcMBmCTF72x1YQIAj3c0xRVdbiIMhkEFUq3Nv9BexSE+Du7g67Vj2Q3/axsuNFFQABEDS/R4nQHJEiE4CvhgUgzK8B3Nzc4O7uDkdHRwhCNVOVAHwXfwVz/+0WUicDI7oE40DyLTy14lClrxNQ8QNPcx/K7dc8XiYAj7QPxB8n0qqN7+dJ3TByxUGtD+Ly51oYG4kBLTzw66+/4ttvv8Xff/9ddpwg4Nlnn8WUV+chu8QBoY1c+GFMNqe0tBT9+/fHrl27EB4ejgMHDhjcTZuuzEf3RbsqfZ9V9X4HgF0v9dRagTmvqAQR87bq3EdkDPr+/WayA9MlOx9++CHS0tJw814xbhXJoFJmIEPmjVuh/f5NbnQlP6W4tWEJSpQZ8B/9AQRZ+cRIlBInQSavcM2sHSuQd/EflN69Dbm7Nxy9g+BYnAMXoQi3hAaw926Cdr5yNHKSSQmRzM0bm+2ioZk4CRDxTlcBLs4umLEnr8oPuKqU/6AEqv6wrOy15RMjdXLTtpEcOw+dQlriSRzYuRnx8fEoKSlbEVoul+Ppp5/GrFmz0Lp16xreAZH1yMzMRKdOnXDjxg088MAD2L59u8GfaZpffPR5z8oFAf+82lvnF4jKvkQRGQuTHQOYKtmpTLoyH1du5eF2biEmrzFsMbAHhUSIBTkozLuHI149Ac1ESRQhCAJElQq5Z3fBtU0fqcWo/POsrZ/g3qntAADH4Ej4j1xY4VqKNbNReO003Nr102qd0pVkiSqVVmKm6f9wHl5OcqgcXLElp7Ged1o+RSpLwHoUHILidjYyL59F6oWTOmeftGnTBqNHj8aoUaPQpEmTCvuJbNmZM2fQq1cv3L59Gw899BA2b94MNzfDWlT0/YyqLIFJV+bjyJUsTP3phFYrUVWJEVFNMNkxQF0nO2q6moyrUv6DQvNbk6EEiBjXKAVCfjYy7hZik9BNu4tMVMHt9K8oSU9E3u005MMRhQ6eKMxV6mhxKoXiu5cg9/CDz7BZFfbdWD5eamlq/Nwq7f3/Jmiax9/asAQA4PPo7ApxqxMwTS1atEBUVBR69eqFfv36oWnTpjX6NyGyFceOHUOfPn2gVCrRrl07bNiwASEhIQafR9dnlFwQsO6FaOQVqXR2CVf3ufTjxG6IbuZtcCxEujDZMYC5kh1A/4Slqm9Qf55Kxzt/njf42pofOuWbrsuPhVFft7S0FCv3JeGdLZcgCAJkAvDf9q7o6lOK3Nxc7LhSgPU3XCAIAgSI6Cq7jID8FOTm5iI3Nxep9kFI9e1elvCIKrhknkGuT9uy5yoVnM/+DhfFScjcGuJmtylaLVcQVXhESECzAG+EhYVJD0O/tRLVBwkJCRg6dCgyMjLg4+ODH3/8EX379jX4PIZ0RVX3Ba78FzaO6aHaYrJjAHMmO0DZB8TRK3cw5afjBn2D0ny9IS1E6nOXb06uKg5dx165laczrqr26dpf2fHs7yeqnWvXrmHYsGFS7az//ve/eO+99+Dl5WXQeap7T6tVNaFBLgh4N7YterT0QcqtXIQ1csWOcxl8j1OtMNkxgLmTHbXa/HEv/9ryg3l1De7Vde7KPqzM1fSs74csEemWm5uLmTNn4rPPPgMAeHt7Y+bMmYiLi4Orq6tRr6Xri5cMwCdPdUSnkAZayY2uwc/lv1ilK/OlxIjvf9KFyY4BLCXZAWr3x726FhN9zl1ZHz0HFRJZt3379uHZZ5/FhQsXAJQlPaNHj8aECRPQtm1bo12nsi9t+rZAfzqyIxq6OeDY1Tv437aL0nneeqSNdF59urxMmSjZYhJmrffEZMcAlpTsWAJ2HxHZppKSEqxZswbz589HcnKytL1Vq1YYOnQoevXqha5du6JRo9qtLq7ri1V1a3YB1a/bVdlYwvJq8hmm7x97U38+miPpqO6eLDkRYrJjACY7FbH7iMh2lZaWYuvWrfjqq6+wceNGaW0qtWbNmqFTp05o0aIFWrRogWbNmiEwMBB+fn41nhBQ2YKFglC2YroMusvAVKaysYQ1mfKubwJTk5ZvQxIFQxMpYyQh1d2TpX/51ffvt10dxkRWJMDTmUkOkY2Sy+UYNGgQBg0aBKVSiW3btuGvv/5CfHw8Lly4gOTkZK2WH02urq7w8/ODt7c3PDw84O7uXuG/zs7OcHJygqOjo/RfR0dHjGwpx/cXSqSZnFO7+6J704bIzFMhp0jEqxuS9L6HUlHE0St30NCt4mBnXcdeuZVXITFKuZULVwe5znpgPVr6VPgMrKychmYc6iEDKbdyK3TFVTeTrUJpnt9Ow9XRDlEhDaqc4q8+t+bgb3W81SVCVd2TiCyd/zbh/u7ILSqtcL+W2PKjxpYdsGWHiEjtzp07SEhIwJkzZ5CUlIRLly7h8uXLSE9PR35+9UWLqyN394adVyBKstNQeve21vbK1uHStdo8RFVZwZxKy+ncJ4gq9CxKAOyd0MC+BOlogPiSsH/X+NIuu6P2YptStPFxgL29PRwcyv6bUyLHs5syK5TAUf0bp0wABrf1w4ZTCp1letQzbHUlClm5RZUu4Fg+UTKkrIeuRKh80lfVuapiyOQXU2E3lgGY7BARVU0URdy7dw8ZGRlQKBS4c+cO7t69i5ycnAr/zc/PR2FhIQoLC1FQUKD138q2AaiwWnv23m9QmH4JJdlpcA7rVGWdwUrjVpUi9+xurRXky/Ki6hc3LUy7IC2IatcgECV3qo+j/Lkq/juqpARNfu0YSpp0ktYdqyphg6hCl+y9EOydUGLnhGNOHau9d40XQxQhrX/2dCsZIn3skVUkQ2NPR5zILMZXJ3L/3a9+Rc3U9YQWJjsGYLJDRGQ+oiiitLQURUVFuH77Hi7fvAd/VxkaOAkoKipCcXExioqKoFAW4Fp2AbLyivH5yaLqzor+rtfgXJqH9QWtoKv1RvtwVdkipppJh6iC/PoxlDQuS0hEUYXi/atRePU4VC6NIDq6wmvQSwbdp1ZSVSHJul//UPfryxIlXQmbIcoXoM7a+gnyU47BzisQchcPnavXl71Od7mg8uz2fQpHZSrs7OwguDaE4O4Lx+Ic/LxqeY1W8q4Kx+wQEZFVEAQBdnZ2sLOzQ0sXF7QM8q3y+HRlPr44Vflg57IFDCMxossQHEi+hfXVzAKTCwLWxT2Ia1n52ouqCjKUBnWW0iRBkMH5ofE4+mdvqQtK3wVdBaBCq035FiBBJsPIkDyUlpRg7Q13iFoJmiglN2VdfSL+ba6pvlWofCwaXYWCTAbvAZNR/PtslORkoETMrVDrsMoC1Tpaxa6lXILg4AwH/2Zo8OA4Kalaf/omphg52dEXkx0iIrIqAZ7OWBgbidfWnUGpKGqtzlx+FmlYI1fI/k2C1ComRm3RPqgBcotKq01cNAc764rj0Y6B+ON4mvR85sOt0K6JF1wcZHjsswNVnl8uCJjy1BAEeDojKiFVOq8MgKpCy5SAT5/qCG83R4Q2csG+izel44V/b1LUd5abTI5ft+yTFo79WePacgF4OzYSj765DcXFxfj1WBoWbLtcNoNOAPo298DO5LvS8/8LdsLfYz7Umch9tD8Djz+Ub5ZBzOzGAruxiIiskb5LZGj/8a48MdKnpUaf8jmVxVU+jvKJ0buxbSusb3PlVp7ORKm6OABIP2smQrqSn9qWBKoqzvKMvRp/vRuzs2zZMrz33ntQKBRo3749PvnkEzzwwAN6vZbJDhGRbatpYlRdQlLbOGqTsBkSh+Z1NJMfY9yTWnULR5pi8HK9SnZ+/vlnjBkzBsuXL0fXrl3x0UcfYe3atUhMTISvb9V9vwCTHSIiuq+mCUldx2Up59I8Z2UtY8ZMqjTVq2Sna9eu6NKlCz799FMAgEqlQlBQEF588UW8+uqr1b6eyQ4REVHtlW+BUo9ZMlWiWG9mYxUVFeHo0aOYPfv+VDmZTIaYmBjEx8frfI3mug5A2T8WERER1c6ILsE6x0OZW80m6VuQW7duobS0FH5+flrb/fz8oFAodL5m4cKF8PT0lB5BQUF1ESoREZHNC/B0RnQzb4tJdAAbSHZqYvbs2VAqldLj2rVr5g6JiIiITMTqu7EaNWoEuVyOjIwMre0ZGRnw9/fX+Rp1UToiIiKyfVbfsuPg4ICoqCjs3LlT2qZSqbBz505ER0ebMTIiIiKyBFbfsgMAM2bMwNixY9G5c2c88MAD+Oijj5Cbm4tx48aZOzQiIiIyM5tIdkaMGIGbN29i3rx5UCgU6NChA7Zs2VJh0DIRERHVPzaxzk5tcZ0dIiIi66Pv32+rH7NDREREVBUmO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7REREZNNsYp2d2lLPvmf1cyIiIuuh/rtd3So6THYA3L17FwBY/ZyIiMgK3b17F56enpXu56KCKKullZaWBnd3dwiCYLTz5uTkICgoCNeuXbPZxQpt/R5t/f4A279HW78/wPbv0dbvD7D9ezTV/YmiiLt37yIwMBAyWeUjc9iyA0Amk6FJkyYmO7+Hh4dN/s+rydbv0dbvD7D9e7T1+wNs/x5t/f4A279HU9xfVS06ahygTERERDaNyQ4RERHZNCY7JuTo6Ig33ngDjo6O5g7FZGz9Hm39/gDbv0dbvz/A9u/R1u8PsP17NPf9cYAyERER2TS27BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsGNmiRYsgCAKmTZsmbSsoKEBcXBy8vb3h5uaG4cOHIyMjw3xB1pKue+zVqxcEQdB6PPfcc+YL0kBvvvlmhfjDw8Ol/db+O6zu/qz99wcAN27cwNNPPw1vb284OzsjMjISR44ckfaLooh58+YhICAAzs7OiImJQVJSkhkjNlx19/jMM89U+D0+/PDDZozYMKGhoRXiFwQBcXFxAKz/fVjd/Vn7+7C0tBRz585FWFgYnJ2d0axZM7z99ttadavM9T7kCspGlJCQgC+++ALt2rXT2j59+nT8+eefWLt2LTw9PTF58mTExsZi//79Zoq05iq7RwCYOHEi5s+fLz13cXGpy9BqrU2bNtixY4f03M7u/tvDFn6HVd0fYN2/vzt37qB79+7o3bs3/vrrL/j4+CApKQkNGjSQjlmyZAmWLl2K1atXIywsDHPnzsWAAQNw7tw5ODk5mTF6/ehzjwDw8MMPY9WqVdJza5rKnJCQgNLSUun5mTNn0K9fPzz++OMArP99WN39Adb9Ply8eDE+//xzrF69Gm3atMGRI0cwbtw4eHp6YsqUKQDM+D4UySju3r0rtmjRQty+fbvYs2dPcerUqaIoimJ2drZob28vrl27Vjr2/PnzIgAxPj7eTNHWTGX3KIpihefW5o033hDbt2+vc58t/A6ruj9RtP7f36xZs8QHH3yw0v0qlUr09/cX33vvPWlbdna26OjoKP744491EWKtVXePoiiKY8eOFYcNG1Y3AdWBqVOnis2aNRNVKpVNvA/L07w/UbT+9+HgwYPF8ePHa22LjY0VR40aJYqied+H7MYykri4OAwePBgxMTFa248ePYri4mKt7eHh4QgODkZ8fHxdh1krld2j2g8//IBGjRqhbdu2mD17NvLy8uo4wtpJSkpCYGAgmjZtilGjRiE1NRWA7fwOK7s/NWv+/W3YsAGdO3fG448/Dl9fX3Ts2BErVqyQ9qekpEChUGj9Dj09PdG1a1er+R1Wd49qe/bsga+vL1q1aoXnn38et2/fNkO0tVdUVITvv/8e48ePhyAINvM+VCt/f2rW/D78v//7P+zcuRMXL14EAJw8eRL//PMPBg4cCMC870N2YxnBTz/9hGPHjiEhIaHCPoVCAQcHB3h5eWlt9/Pzg0KhqKMIa6+qewSAp556CiEhIQgMDMSpU6cwa9YsJCYmYt26dXUcac107doV33zzDVq1aoX09HS89dZbeOihh3DmzBmb+B1WdX/u7u5W//u7fPkyPv/8c8yYMQOvvfYaEhISMGXKFDg4OGDs2LHS78nPz0/rddb0O6zuHoGyLqzY2FiEhYUhOTkZr732GgYOHIj4+HjI5XIz34Fh/vjjD2RnZ+OZZ54BYDufpWrl7w+w/s/RV199FTk5OQgPD4dcLkdpaSkWLFiAUaNGAYBZ34dMdmrp2rVrmDp1KrZv324V/f41oc89Tpo0Sfo5MjISAQEB6Nu3L5KTk9GsWbO6CrXG1N88AKBdu3bo2rUrQkJC8Msvv8DZ2dmMkRlHVfc3YcIEq//9qVQqdO7cGe+++y4AoGPHjjhz5gyWL18uJQLWTp97fPLJJ6XjIyMj0a5dOzRr1gx79uxB3759zRJ3TX399dcYOHAgAgMDzR2KSei6P2t/H/7yyy/44YcfsGbNGrRp0wYnTpzAtGnTEBgYaPb3Ibuxauno0aPIzMxEp06dYGdnBzs7O+zduxdLly6FnZ0d/Pz8UFRUhOzsbK3XZWRkwN/f3zxBG6i6e9QccKfWtWtXAMClS5fqOlyj8PLyQsuWLXHp0iX4+/tb/e+wPM3708Xafn8BAQGIiIjQ2ta6dWupq079eyo/c8eafofV3aMuTZs2RaNGjazm96h29epV7NixA//973+lbbb0PtR1f7pY2/vwlVdewauvvoonn3wSkZGRGD16NKZPn46FCxcCMO/7kMlOLfXt2xenT5/GiRMnpEfnzp0xatQo6Wd7e3vs3LlTek1iYiJSU1MRHR1txsj1V9096moeP3HiBICyD2hrdO/ePSQnJyMgIABRUVFW/zssT/P+dLG231/37t2RmJiote3ixYsICQkBAISFhcHf31/rd5iTk4NDhw5Zze+wunvU5fr167h9+7bV/B7VVq1aBV9fXwwePFjaZkvvQ133p4u1vQ/z8vIgk2mnFXK5HCqVCoCZ34cmHf5cT5UfUf/cc8+JwcHB4q5du8QjR46I0dHRYnR0tPkCNALNe7x06ZI4f/588ciRI2JKSoq4fv16sWnTpmKPHj3MG6QBXnrpJXHPnj1iSkqKuH//fjEmJkZs1KiRmJmZKYqi9f8Oq7o/W/j9HT58WLSzsxMXLFggJiUliT/88IPo4uIifv/999IxixYtEr28vMT169eLp06dEocNGyaGhYWJ+fn5Zoxcf9Xd4927d8WXX35ZjI+PF1NSUsQdO3aInTp1Elu0aCEWFBSYOXr9lZaWisHBweKsWbMq7LP296EoVn5/tvA+HDt2rNi4cWNx06ZNYkpKirhu3TqxUaNG4syZM6VjzPU+ZLJjAuWTnfz8fPGFF14QGzRoILq4uIiPPfaYmJ6ebr4AjUDzHlNTU8UePXqIDRs2FB0dHcXmzZuLr7zyiqhUKs0bpAFGjBghBgQEiA4ODmLjxo3FESNGiJcuXZL2W/vvsKr7s4XfnyiK4saNG8W2bduKjo6OYnh4uPjll19q7VepVOLcuXNFPz8/0dHRUezbt6+YmJhopmhrpqp7zMvLE/v37y/6+PiI9vb2YkhIiDhx4kRRoVCYMWLDbd26VQSg83dj7e9DUaz8/mzhfZiTkyNOnTpVDA4OFp2cnMSmTZuKr7/+ulhYWCgdY673oSCKGksbEhEREdkYjtkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIpjHZISIC0KtXLwiCAEEQpJpEe/bsgSAIFYpPGtubb74pXfujjz4y6bWI6iMmO0RksGeeeUb646z5ePjhh80dWq1MnDgR6enpaNu2ba3PlZGRAXt7e/z0008690+YMAGdOnUCALz88stIT09HkyZNan1dIqqIyQ4R1cjDDz+M9PR0rcePP/5o0msWFRWZ9PwuLi7w9/eHnZ1drc/l5+eHwYMHY+XKlRX25ebm4pdffsGECRMAAG5ubvD394dcLq/1dYmoIiY7RFQjjo6O8Pf313o0aNBA2i8IAr766is89thjcHFxQYsWLbBhwwatc5w5cwYDBw6Em5sb/Pz8MHr0aNy6dUva36tXL0yePBnTpk1Do0aNMGDAAADAhg0b0KJFCzg5OaF3795YvXq11N2Um5sLDw8P/Prrr1rX+uOPP+Dq6oq7d+/W+J7z8vIwcOBAdO/eXera+uqrr9C6dWs4OTkhPDwcn332mXT8hAkTsHPnTqSmpmqdZ+3atSgpKcGoUaNqHAsR6Y/JDhGZzFtvvYUnnngCp06dwqBBgzBq1ChkZWUBALKzs9GnTx907NgRR44cwZYtW5CRkYEnnnhC6xyrV6+Gg4MD9u/fj+XLlyMlJQX/+c9/8Oijj+LkyZN49tln8frrr0vHu7q64sknn8SqVau0zrNq1Sr85z//gbu7e43uJTs7G/369YNKpcL27dvh5eWFH374AfPmzcOCBQtw/vx5vPvuu5g7dy5Wr14NABg0aBD8/PzwzTffVIglNjYWXl5eNYqFiAxk8rrqRGRzxo4dK8rlctHV1VXrsWDBAukYAOKcOXOk5/fu3RMBiH/99ZcoiqL49ttvi/3799c677Vr10QAYmJioiiKotizZ0+xY8eOWsfMmjVLbNu2rda2119/XQQg3rlzRxRFUTx06JAol8vFtLQ0URRFMSMjQ7SzsxP37NlT6T317NlTnDp1qta23bt3iwDE8+fPi+3atROHDx8uFhYWSvubNWsmrlmzRus1b7/9thgdHS09f/XVV8WwsDBRpVKJoiiKly5dEgVBEHfs2FEhhpCQEPHDDz+sNEYiqhm27BBRjfTu3RsnTpzQejz33HNax7Rr10762dXVFR4eHsjMzAQAnDx5Ert374abm5v0CA8PBwAkJydLr4uKitI6Z2JiIrp06aK17YEHHqjwvE2bNlILy/fff4+QkBD06NGjRvfar18/NG/eHD///DMcHBwAlI27SU5OxoQJE7Tu4Z133tGKf/z48UhJScHu3bsBlLXqhIaGok+fPjWKhYgMV/tReERUL7m6uqJ58+ZVHmNvb6/1XBAEqFQqAMC9e/cwdOhQLF68uMLrAgICtK5TE//973+xbNkyvPrqq1i1ahXGjRsHQRBqdK7Bgwfjt99+w7lz5xAZGSnFDwArVqxA165dtY7XHGjcokULPPTQQ1i1ahV69eqFb7/9FhMnTqxxLERkOCY7RGQWnTp1wm+//YbQ0FCDZj+1atUKmzdv1tqWkJBQ4binn34aM2fOxNKlS3Hu3DmMHTu2xrEuWrQIbm5u6Nu3L/bs2YOIiAj4+fkhMDAQly9frnag8YQJE/D888/jkUcewY0bN/DMM8/UOBYiMhy7sYioRgoLC6FQKLQemjOpqhMXF4esrCyMHDkSCQkJSE5OxtatWzFu3DiUlpZW+rpnn30WFy5cwKxZs3Dx4kX88ssv0gBgzdaSBg0aIDY2Fq+88gr69+9f6zVs/ve//2HUqFHo06cPLly4AKBsAPbChQuxdOlSXLx4EadPn8aqVavwwQcfaL328ccfh729PZ599ln0798fQUFBtYqFiAzDZIeIamTLli0ICAjQejz44IN6vz4wMBD79+9HaWkp+vfvj8jISEybNg1eXl6QySr/aAoLC8Ovv/6KdevWoV27dvj888+l2ViOjo5ax06YMAFFRUUYP358zW6ynA8//BBPPPEE+vTpg4sXL+K///0vvvrqK6xatQqRkZHo2bMnvvnmG4SFhWm9zsXFBU8++STu3LljtFiISH+CKIqiuYMgIqqNBQsWYPny5bh27ZrW9u+++w7Tp09HWlqaNLC4Mr169UKHDh3MWq4hNDQU06ZNw7Rp08wWA5EtYssOEVmdzz77DAkJCbh8+TK+++47vPfee1pjcvLy8pCcnIxFixbh2WefrTbR0Tyvm5sbTp8+barQdXr33Xfh5uZWYfFBIjIOtuwQkdWZPn06fv75Z2RlZSE4OBijR4/G7NmzpYHOb775JhYsWIAePXpg/fr1cHNzq/acN27cQH5+PgAgODhY7wTJGLKysqTFFn18fODp6Vln1yaqD5jsEBERkU1jNxYRERHZNCY7REREZNOY7BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU1jskNEREQ27f8BnoX1+ZXL7RcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2455,12 +4428,12 @@ "id": "6def3e2b-5edf-48bb-99b8-2b7fdaae51c5", "metadata": {}, "source": [ - "Das Resultat sieht bereits sehr gut aus. Nun können wir uns den eigentlichen Peaks widmen und starten im folgenden mit dem kleineren der Beiden. Zunächst sollten wir den maskierten Bereich entweder neu definieren oder komplett entfernen. " + "Das Resultat sieht bereits sehr gut aus. Nun können wir uns den eigentlichen Peaks widmen und starten im Folgenden mit dem kleineren der beiden. Zunächst sollten wir den maskierten Bereich entweder neu definieren oder komplett entfernen." ] }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 513, "id": "ebd77c40-6fcd-4881-bc1d-e3ca8ae0bf3b", "metadata": {}, "outputs": [], @@ -2473,12 +4446,12 @@ "id": "7850ae53-ae2d-49aa-ac7b-dcef60a2dab7", "metadata": {}, "source": [ - "Außerdem können wir dem Plot entnehmen, dass durch den höheren Unterrund unsere Anfangsstartwerte nicht mehr ganz so gut passen diese können wir wie folgt aktualisieren:" + "Außerdem können wir dem Plot entnehmen, dass durch den höheren Untergrund unsere Anfangsstartwerte nicht mehr ganz so gut passen. Diese können wir wie folgt aktualisieren:" ] }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 514, "id": "823e05a0-516c-4d30-8dc7-5381e0e2e617", "metadata": {}, "outputs": [], @@ -2497,7 +4470,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 515, "id": "3c83690c-103e-47ff-b18f-13ac763ee87d", "metadata": {}, "outputs": [ @@ -2506,30 +4479,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 1416 (χ²/ndof = 12.1) Nfcn = 169 FCN = 1296 (χ²/ndof = 11.1) Nfcn = 177
EDM = 3.27e-05 (Goal: 0.0002) EDM = 2.92e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -2546,8 +4516,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2568,7 +4538,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2590,7 +4560,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2612,8 +4582,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2623,8 +4593,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2645,11 +4615,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2667,11 +4637,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2689,11 +4659,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2731,60 +4701,1181 @@ " \n", " \n", " \n", - "
0 A_p1 345 6 348 7
2 mu_p1 53.47 53.51 0.04
4 sigma_p1 2.138 2.085 0.034
6 A_bkg 108 12 137 15
7 tau_bkg 39.9 3.0 34.9 2.3 0
A_p1 40 42.2 0 0.0064 (0.024) -0.0042 (-0.016) 0 -0.1170 (-0.544) -0.1247 (-0.558) 0 0 0
mu_p1 0.0064 (0.024) -0.0042 (-0.016) 0.0000 0.00171 0.00167 0.0000 0.0003 (0.207) 0.0004 (0.252) 0.0000 0.0000 0.0000
sigma_p1 -0.1170 (-0.544) -0.1247 (-0.558) 0.0000 0.0003 (0.207) 0.0004 (0.252) 0.0000 0.00116 0.00118 0.0000 0.0000 0.0000 0 0
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:50.416590\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 1416 (χ²/ndof = 12.1) │ Nfcn = 169 │\n", - "│ EDM = 3.27e-05 (Goal: 0.0002) │ │\n", + "│ FCN = 1296 (χ²/ndof = 11.1) │ Nfcn = 177 │\n", + "│ EDM = 2.92e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 345 │ 6 │ │ │ │ │ │\n", + "│ 0 │ A_p1 │ 348 │ 7 │ │ │ │ │ │\n", "│ 1 │ A_p2 │ 700 │ 7 │ │ │ │ │ yes │\n", - "│ 2 │ mu_p1 │ 53.47 │ 0.04 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.51 │ 0.04 │ │ │ │ │ │\n", "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", - "│ 4 │ sigma_p1 │ 2.138 │ 0.034 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 2.085 │ 0.034 │ │ │ │ │ │\n", "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", - "│ 6 │ A_bkg │ 108 │ 12 │ │ │ │ │ yes │\n", - "│ 7 │ tau_bkg │ 39.9 │ 3.0 │ │ │ 0 │ │ yes │\n", + "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ yes │\n", + "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ yes │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 40 0 0.0064 0 -0.1170 0 0 0 │\n", + "│ A_p1 │ 42.2 0 -0.0042 0 -0.1247 0 0 0 │\n", "│ A_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", - "│ mu_p1 │ 0.0064 0.0000 0.00171 0.0000 0.0003 0.0000 0.0000 0.0000 │\n", + "│ mu_p1 │ -0.0042 0.0000 0.00167 0.0000 0.0004 0.0000 0.0000 0.0000 │\n", "│ mu_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", - "│ sigma_p1 │ -0.1170 0.0000 0.0003 0.0000 0.00116 0.0000 0.0000 0.0000 │\n", + "│ sigma_p1 │ -0.1247 0.0000 0.0004 0.0000 0.00118 0.0000 0.0000 0.0000 │\n", "│ sigma_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "│ A_bkg │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "│ tau_bkg │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 124, + "execution_count": 515, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfqUlEQVR4nO3deXiU5bk/8O87k43sZF8mJIAIorhBixGDIBQE7MEGtCootVZ+WrQETxWxiqJV1PYUsIdi67FCi2gLSUFT1AKGpRARYlE2kSWQkGSSQMhkgWQyM8/vj+EdMsnsS2b7fq5rLpl5n3nneU1m5s6z3LckhBAgIiIi8iMKX3eAiIiIqCcGKEREROR3GKAQERGR32GAQkRERH6HAQoRERH5HQYoRERE5HcYoBAREZHfYYBCREREfifM1x1whcFgQG1tLeLi4iBJkq+7Q0RERA4QQqC1tRVZWVlQKGyPkQRkgFJbW4ucnBxfd4OIiIhcUF1dDZVKZbNNQAYocXFxAIwXGB8f7+PeEBERkSNaWlqQk5Nj+h63JSADFHlaJz4+ngEKERFRgHFkeQYXyRIREZHfYYBCREREfocBChEREfkdBihERETkdxigEBERkd9hgEJERER+hwEKERER+R0GKEREROR3GKAQERGR32GAQkRERH6HAQoRERH5HQYoRERE5HcCslggEQWnOs0l/OtwPQBg1ugBCFPybyiiUMUAhYj8wrIt32HFtuOm+//8pg5v3X8TMhKifNgrIvIV/nlCRD5X9m2DKTi5eUAiYiPD8OXpJjzwf19AqzP4uHdE5AsMUIjIpxpaO/DL9V8DAH5yax5Kfj4GpU/ehpTYSJxqbMe6vWd83EMi8gUGKETkU38oO4nz7VoMy4jDs1OGAQDyUmKw4AdDAAArth1HS0eXL7tIRD7AAIWIfOaiVofiirMAgEVTr0FUuNJ07MejcjAoNQYXLnbh/3ae8lUXichHGKAQkc9s/E8tWjt1yEuORsFVKWbHwpQKLJh4NQBgfcVZGAzCF10kIh9hgEJEPiGEwF/KTwMAZt+SC4VC6tXmB8PTERcZhjpNB/afudDHPSQiX2KAQkQ+cbBGg2/VrYgKV+CekTkW20SFKzHp2gwAwEdf1/Rl94jIxxigEJFPbD1iTMh2x7A0JESHW203/cYsAMDmg2p06bnlmChUOBWg5OXlQZKkXrd58+YBADo6OjBv3jwkJycjNjYWM2bMQH19vdk5qqqqMG3aNERHRyMtLQ1PP/00dDqd566IiALCtm8bAAAThqXbbHfr4GSkxEagqV2L3SfO9UXXiMgPOBWg7Nu3D3V1dabbli1bAAD33HMPAGDBggX4+OOPsX79euzYsQO1tbUoLCw0PV+v12PatGnQarXYs2cP1qxZg9WrV2Px4sUevCQi8nd1mks4XNsCSQLGDU212TZMqTBN8+z4rrEvukdEfsCpACU1NRUZGRmmW2lpKQYPHozbb78dGo0G7777Ln73u9/hjjvuwMiRI/Hee+9hz549+OKLLwAA//rXv3DkyBGsXbsWN954I6ZMmYJXXnkFK1euhFar9coFEpH/+fzy6MlNOYlIjo202/62yzt8yk+e92q/iMh/uLwGRavVYu3atfjpT38KSZJQUVGBrq4uTJw40dRm2LBhGDBgAMrLywEA5eXlGDFiBNLTrwzpTp48GS0tLTh8+LDV1+rs7ERLS4vZjYgC1+dHL0/vXGN7ekd2y6BkAMC36laca+v0Wr+IyH+4HKBs3LgRzc3N+MlPfgIAUKvViIiIQGJiolm79PR0qNVqU5vuwYl8XD5mzdKlS5GQkGC65eRYXvFPRP6vU6fH7pPGtSTjh6Y59JykmAhckxkPAPjiFEdRiEKBywHKu+++iylTpiArK8uT/bFo0aJF0Gg0plt1dbXXX5OIvONQTQs6ugyXg444h59362DjKMoeTvMQhQSXApQzZ85g69at+NnPfmZ6LCMjA1qtFs3NzWZt6+vrkZGRYWrTc1ePfF9uY0lkZCTi4+PNbkQUmPafbgIAjMrtD0nqnZzNGjlA4ToUotDgUoDy3nvvIS0tDdOmTTM9NnLkSISHh2Pbtm2mx44dO4aqqirk5+cDAPLz83Hw4EE0NDSY2mzZsgXx8fEYPny4q9dARAFk32ljRtjv5SU59bzvD0yCUiGh8lw76jSXvNE1IvIjTgcoBoMB7733HubMmYOwsDDT4wkJCXjkkUfw1FNPoaysDBUVFXj44YeRn5+PW265BQAwadIkDB8+HA8++CC+/vprfPbZZ3j++ecxb948REbaX8lPRIHNYBCoOHN5BCWvv1PPjYsKN00J/aeq2dNdIyI/43SAsnXrVlRVVeGnP/1pr2PLli3DXXfdhRkzZmDs2LHIyMhASUmJ6bhSqURpaSmUSiXy8/Mxe/ZsPPTQQ3j55ZfduwoiCginzrXhwsUuRIUrcG1WgtPPv16VCAD4+myzZztGRH4nzH4Tc5MmTYIQlquKRkVFYeXKlVi5cqXV5+fm5mLz5s3OviwRBQF5eufGnEREhDk/w3yjKhHr9lbhm2qNp7tGRH6GtXiIqM/su7xA9vtOrj+RXZ9jHHU5WKOBwWD5DyUiCg4MUIiozxyobgYA3JTr3PoT2VWpsegXrkRbpw6nzrV5sGdE5G8YoBBRn2jr1KHyXDsAYES28+tPAGNdnuuyjWkGvuY0D1FQY4BCRH3icI0GQgCZCVFIcaD+jjXyQtlvuFCWKKgxQCGiPnGo1lhD6zoXR09kN+QkAgC+PssRFKJgxgCFiPrEoRpjQOHq9I7s+svPP1LXAp3e4Ha/iMg/MUAhoj5x8HKAIq8hcdWApGhERyih1Rlw+vxFT3SNiPwQAxQi8rqLWh1ONhp33bg7xaNQSBiSbswoe0zd6nbfiMg/MUAhIq87UtsCIYC0uEikxUW5fb5hpgClxe1zEZF/YoBCRF530EPrT2RDM4wByrccQSEKWgxQiMjrvq0zBhLXZrm3/kQ27HKAcqyeAQpRsGKAQkRe9+3lQGJohmcCFHkEparpIi5qdR45JxH5FwYoRORVBoPAcVOAEuuRcybHRiIlNhJCAN/VM+U9UTBigEJEXnX2wiVc1OoRoVQgLznGY+c1TfNwoSxRUGKAQkRe9e3lAGJwWizClJ77yJGneY7WcR0KUTBigEJEXvXd5ekdecTDU+QA5TsulCUKSgxQiMir5K3AV6d7NkC5Ks24nuVUY7tHz0tE/oEBChF5lbdGUAanGAMUdUsH2jq5k4co2DBAISKv0eoMphGOqz0coCREhyMlNgIAUMlRFKKgwwCFiLzm1Lk26AwCcZFhyEpwP8V9T4NSjaMocp0fIgoeDFCIyGvkHCVD0mMhSZLHzz841bht+RQDFKKgwwCFiLzmZIMxcJAXtHraYNMICqd4iIINAxQi8poTjX0VoHAEhSjYMEAhIq+RR1DkQMLTBl2e4qk81w69QXjlNYjINxigEJFX6A0Cp84Zp168NYKi6h+NCKUCnToDapsveeU1iMg3GKAQkVfUXLgErc6AiDAFVP2jbbZtb2+HJEmQJAnt7e297lujVEgYmGIcRTnBaR6ioMIAhYi8Ql4XMiglBkqF53fwyORpHnk6iYiCAwMUIvKKE15efyKTR1DOnL/o1dchor7FAIWIvEIeQRnspfUnsrxkY4By+jy3GhMFEwYoROQVJzyYA8XWmpTcZOP6Fo6gEAUXBihE5BWmEZTLa0S8Je/yFM/ZCxeh1Rm8+lpE1HcYoBCRx11o1+LCxS4AwKAU707xpMVFIipcAYMAarjVmChoMEAhIo+T14NkJkShX4TSbnu9Xm/6986dO6HVas3udz/ekyRJXIdCFIQYoBCRx8nrQeT1IbaUlJRg+PDhpvtTp05FSkqK2f3uxy0xrUM5xwCFKFiE+boDRBR85JGM3CTb609KSkowc+ZMCGGept5gMF9LUltba/M8V0ZQuFCWKFhwBIWIPM40gpJifQRFr9dj/vz5vYITS7q32b59e68pn9xkORcKR1CIgoXTAUpNTQ1mz56N5ORk9OvXDyNGjMD+/ftNx4UQWLx4MTIzM9GvXz9MnDgRx48fNztHU1MTZs2ahfj4eCQmJuKRRx5BWxuzQBIFC3kERR7ZsGTXrl04e/as0+e+6667kJeXh5KSEtNjedxqTBR0nApQLly4gDFjxiA8PByffPIJjhw5gv/5n/9B//79TW3efPNNvPXWW3j77bexd+9exMTEYPLkyejo6DC1mTVrFg4fPowtW7agtLQUO3fuxNy5cz13VUTkU1UOrEGpq6tz+fw1NTWYOXOmKUjJvbzVuPrCRej03GpMFAycWoPyxhtvICcnB++9957psYEDB5r+LYTA8uXL8fzzz2P69OkAgL/85S9IT0/Hxo0bcd999+Ho0aP49NNPsW/fPowaNQoA8Pvf/x5Tp07Fb3/7W2RlZXniuojIR1o6unC+3bgLJ9fGCEpmZqbLryGEgCRJKCoqwvTp05EZH4WIMAW0OgPqNB3ISbK/OJeI/JtTIygfffQRRo0ahXvuuQdpaWm46aab8M4775iOV1ZWQq1WY+LEiabHEhISMHr0aJSXlwMAysvLkZiYaApOAGDixIlQKBTYu3evxdft7OxES0uL2Y2I/JM8epISG4nYSOt/AxUUFEClUkGSXCskKIRAdXU1du3aBYVCQk7/fgA4zUMULJwKUE6dOoVVq1ZhyJAh+Oyzz/D444/jF7/4BdasWQMAUKvVAID09HSz56Wnp5uOqdVqpKWlmR0PCwtDUlKSqU1PS5cuRUJCgumWk5PjTLeJqA9dWX9iexRDqVRixYoVAOBykAJcmSrK7m98vZpmBihEwcCpAMVgMODmm2/Ga6+9hptuuglz587Fo48+irfffttb/QMALFq0CBqNxnSrrq726usRkeuu5ECxn+K+sLAQGzZs6DW1q1TaT+4mk6eKshONIyg1F5hNligYOBWgZGZm9kqYdM0116CqqgoAkJGRAQCor683a1NfX286lpGRgYaGBrPjOp0OTU1NpjY9RUZGIj4+3uxGRP7p9DnHRlBkhYWFOHLkiOn+5s2b0djYaPd5kiQhJycHBQUFAADV5Smes0x3TxQUnApQxowZg2PHjpk99t133yE3NxeAccFsRkYGtm3bZjre0tKCvXv3Ij8/HwCQn5+P5uZmVFRUmNp8/vnnMBgMGD16tMsXQkT+4UoOFMeLBHYfMRk7diwiIiJM9+Uqxt3J95cvX256rhygcASFKDg4FaAsWLAAX3zxBV577TWcOHEC69atw5/+9CfMmzcPAEyr6n/961/jo48+wsGDB/HQQw8hKysLd999NwDjiMudd96JRx99FF9++SV2796NJ554Avfddx938BAFAUfXoDhq7dq1vT4bVCoVNmzYgMLCQtNjpikejqAQBQWnthl/73vfwz/+8Q8sWrQIL7/8MgYOHIjly5dj1qxZpjbPPPMM2tvbMXfuXDQ3N+O2227Dp59+iqioKFOb999/H0888QQmTJgAhUKBGTNm4K233vLcVRGRT1zU6tDQ2gnAfpp7R02fPh133XUXEhISABingMaMGWO639bWhpiYGGRfHkFRazqg0xsQpmSibKJAJglH8kz7mZaWFiQkJECj0XA9CpEfOVrXgikrdqF/dDj+s3iSw89rb29HbGwsAJiySjtzPyYmBnqDwNDnP4HOILD72TtMIypE5D+c+f7mnxhE5DFyLZwBDuzg8TSlQkJmonGklutQiAIfAxQi8hi5mrCz609iYmIghIAQAjExMb3uO+rKOhTmQiEKdAxQiMhj5BEUR3KgeEp7e7tpp096bDgAjqAQBQMGKETkMafPuTaC4inZ8hQPd/IQBTwGKETkMVVNjmeRdYderzf9e/fu3aZ/ZyUYA5SzHEEhCngMUIjIIzq69KjVGAMDT4+gdF+T8tlnn5lltO6eCyUzgSMoRMHCqTwoRETWnL1wEUIAcZFhSIqJsP8EF5SUlGDmzJmwlh3h8J6tAFJRc+EShBBuFSEkIt/iCAoReYS8/iQ3JdorgYFer8f8+fOtBicA8ObLzwMGPTp1BoTFJqG9vd3j/SCivsEAhYg84rSdHTzdd9u4Ejjs2rULZ8+etdmmpqYGkY3fAgDCEtKcfg0i8h8MUIjII864mAPFUXV1dQ61q/z7q7h4bA/C4lO90g8i6hsMUIjII+yNoLgrMzPToXZdF1vQuPE1CH2XV/pBRH2DAQoRecSVERTvBCgFBQVQqVQOr2/pqD4MvV7v9tQSEfkGAxQicptWZ8DZC3IOFPtTPK4EDUqlEitWrHC4T6Kz3SxHChEFFgYoROS2muZLMAggKlyBtLhIr71OYWEhNmzYgP79+zvUfvv27WZJ3YgocDBAISK3yetP8pJjrE7BWMv+6qzCwkL89a9/dajtm2++aZbUjYgCBwMUInLbmXPyAlnL0zslJSVWs7+6oqCgwOG2tbW1br0WEfkGAxQicttpGwtk5eyvNTU1Fp+7adMmp19PqVSa/m1v0Wz3xG6c7iEKHAxQiMhtZ6xsMXYk++vChQvdChwyMjIcbrtq1SoGKUQBggEKEbntTJPlJG2OZH89e/Ystm/f7vJrV1RUONz22WefRV5eHkpKSlx+PSLqGwxQiMgteoNAdZNch8d8BMXR7K/33nuvy0FD9+keR9TU1GDmzJkMUoj8HAMUInJLbfMldOkFIsIUyIyPMjvmaPbXpqYmp4KGmJgYCCEghEBMzJWgyJEkbvJ0U1FREad7iPwYAxQicoucQXZAUjQUiisBQnt7O8aPHw/AscAB8EzQ4GiQUl1djV27drn1WkTkPQxQiMgtV3KguFck0BNBw9q1a5GVleVwe0enoIio7zFAISK3WNvB093atWsdzv7qTtAwffp0HDlyBFCGO9Te0SkoIup7DFCIyC1XcqBYH0GZPn26w9lfnQ0aeq5HUSqVgL4Lythkq8+RJAk5OTlOJXwjor7FAIWI3CKPoAywU8XYXjDg6aAh7vuF8ol7vQ4ALF++3OkdQETUdxigEJHLDAZhWiTbcwSl+2LXnTt3mh3ruZDVG0FDeFIWUu9+Dv1T0s0eV6lU2LBhg9vp9onIuxigEJHL6ls70KkzIEwhITuxn+nxnrV3pk6dana/Z/ZXbwQNek09oofeiqf+9Inpsc2bN+PQoUOYMWMGJElCe3u7x16PiDwrzNcdIKLAdfqccfRE1b8fwpTGv3fk2js909t3L9pXUVFh2m2zefNmTJo0yePTLTpNIwBA3dZlemzs2LEefQ0i8h6OoBCRy3ru4LFVe8daPZ6xY8d6NDiRF82u/dNbAIBaTafHzk1EfYcBChG5rOcOHkdq7wDAgQMHvNktAEB2f+OUU62mw+uvRUSexwCFiFzWcwTF0RwmarXaa32SqS6viWlo7QQU3K1DFGgYoBCRy0w7eFKMIyiO5jDpuUjWG1JiIxGhVMAggKrGll51e4jIvzFAISKXCCF6jaAUFBRApVJZrYcj5zoZM2aM1/unUEjISjQWLzx74ZLp8Z7bn1kwkMg/MUAhIpc0tnWiXauHJBl38QCAUqnEihUrANjOdRIfH2+xGrGnyetQapqNAYql7c95eXkOV1Emor7DAIWIXCJvMc5O7IfIsCtrPAoLC7Fhw4ZeRft8kSBNzs1Sc+GSaftzTU2NWZuamhrMnDmTQQqRn3EqQHnppZcgSZLZbdiwYabjHR0dmDdvHpKTkxEbG4sZM2agvr7e7BxVVVWYNm0aoqOjkZaWhqeffho6nc4zV0NEfeb0OeP0zsCU3iMghYWFxqJ9l23evBmVlZV9nr1V1d+4Nqb6fKvd7c9FRUWc7iHyI06PoFx77bWoq6sz3f7973+bji1YsAAff/wx1q9fjx07dqC2ttbsA0mv12PatGnQarXYs2cP1qxZg9WrV2Px4sWeuRoi6jOV560HKADMcpt4OteJo+QRlAP7v7C5/VkIgerqauzatauvukZEdjidSTYsLMziCnyNRoN3330X69atwx133AEAeO+993DNNdfgiy++wC233IJ//etfOHLkCLZu3Yr09HTceOONeOWVV7Bw4UK89NJLiIiIcP+KiKhPVDYaA5Q8O0UCfcmUC6Wm1k5LI0e3SROR9zk9gnL8+HFkZWVh0KBBmDVrFqqqqgAYU1d3dXVh4sSJprbDhg3DgAEDUF5eDgAoLy/HiBEjkJ5+pXjX5MmT0dLSgsOHD1t9zc7OTrS0tJjdiMi3TvcYQWlvbzdN/fpLjRt5BKVFEedQe0e3SROR9zkVoIwePRqrV6/Gp59+ilWrVqGyshIFBQVobW2FWq1GREQEEhMTzZ6Tnp5uSsqkVqvNghP5uHzMmqVLlyIhIcF0y8nJcabbRORhBoMwBSh5VqZ4/EFGQhQUEqDMugaZWdl2tz8XFBT0cQ+JyBqnApQpU6bgnnvuwfXXX4/Jkydj8+bNaG5uxt///ndv9Q8AsGjRImg0GtOturraq69HRLbVt3ago8sApUIybTH2R+FKBTLioyAplFiw+DUAtrc/+2KdDBFZ5tY248TERFx99dU4ceIEMjIyoNVq0dzcbNamvr7etGYlIyOj164e+b6tzJKRkZGIj483uxGR71Re3sGT078fwpWWP0bkon2+zuAqr0MZestEv9n+TET2uRWgtLW14eTJk8jMzMTIkSMRHh6Obdu2mY4fO3YMVVVVyM/PBwDk5+fj4MGDaGhoMLXZsmUL4uPjzZInEZF/k3OgHPlyh1+tObGkey4Uf9n+TET2ObWL55e//CV++MMfIjc3F7W1tXjxxRehVCpx//33IyEhAY888gieeuopJCUlIT4+Hk8++STy8/Nxyy23AAAmTZqE4cOH48EHH8Sbb74JtVqN559/HvPmzUNkZKRXLpCIPE9ef6K74NjuGF+Sc6HUNBuDKn/Y/kxE9jkVoJw9exb3338/zp8/j9TUVNx222344osvkJqaCgBYtmwZFAoFZsyYgc7OTkyePBl/+MMfTM9XKpUoLS3F448/jvz8fMTExGDOnDl4+eWXPXtVRORVpy5vMe5quhKg9KxxM2nSJL/48jelu+9Wj4eI/J9TAcqHH35o83hUVBRWrlyJlStXWm2Tm5uLzZs3O/OyRORneo6gbNq0Cc8884zp+NSpU6FSqbBixQqfT5+YpniaGaAQBRLW4iEip+gNAlXnjdMlcoAye/Zsv61x030ExVKq++78MZcLUahigEJETqltvgSt3oAwyQCdxrgLz59r3MgjKO1aPZovdvnN7iIiso0BChE55fT5dlw8tgdnVz1it60/1LiJClciJdZYRoPTPESBgwEKETll/YZiNG58DZ2aRoef4+saN/IoylkulCUKGAxQiMhher0ea/7nJaef5+saN1mXA5Q6DQMUokDBAIWIHLZr1y60nK+33/Ayf6lxcyVA6bDZrudWaV+unSEKdQxQiMhhzkzV+FONm8yEKACW16B037kzbNgw0+NTp05FXl6ez3chEYUqBihE5LC0tHT7jS7zpxo38hqUWjuLZHsGYP6yVZooFDFAISKH5V03Csq4FLvtSktL/arGjWmKp7n3FI+taRx/2SpNFIoYoBCRw6qaO5A0YS6AK1M4su73x40b5/Npne4yE41TPPWtHejSG8yO7d692+Zz/WGrNFEoYoBCRA6rbGxH9NBb8YMn30RWVpbZsezsbB/1yr6UmEhEKBUQAqhvMR9FUavVDp3D11uliUINAxQicphcg+eOKT/EkSNHTI9v3rwZhw8f9lW37FIoJNMoSm2PaZ60tDSHzuHrrdJEoYYBChE5rPKcMUAZmBJtNoUzduxYv5rSsUTeydN9oWxJSQnmzp1r83n+slWaKNQ4Vc2YiEKbPIKSl9y7ho1c48ZfyQtlay8nayspKcHMmTNt9tmftkoThRqOoBCRQ7Q6A2oup4ofmBJ4Rfa6bzXW6/WYP3++3YAqOzvbb7ZKE4UajqAQkUOqmi7CIICYCCVS4yJx8eJFX3fJKZkJcoDSgV27duHs2bN2n7N69WpMmDDB210jIgsYoBCRQ+T1J3kpMZAkye+ndHrKSryyBsXRHTkNDQ3e7BIR2cApHiJyyOluAUogyuo2xePojhzu3CHyHQYoROSQyssLZAdaWCAbCORdPC0dOtz0/XyoVKpeyea6U6lU3LlD5EMMUIjIIYE+ghIXFY74KOOsdkOrFitWrADQOyOu7I033uDOHSIfYoBCRA453S0HSqCSp3lqmi+hsLAQGzZs6JURNycnB8XFxXjggQd80UUiuowBChHZ1dGlR63GmIF1YEqsj3vjOlPRwMvXUlhY2Csjrj8VOSQKZQxQiMguOUFbfFQY+keH+7g3ruu+k0cWaBlxiUIFAxQiskue3mk8dQQKhQLt7e0+7pFr5FwoNd0CFCLyTwxQiMiuynPGpGy6C7U+7ol75GyydT0KBhKR/2GAQkR2ySMoXQEeoPSsx0NE/ouZZInILjkHSqCPoMi5UOqaO2AwCCgUgZcRlyhUcASFiOwyjaA01fi4J+7JSIiCJAFavQHn27W+7g4R2cAAhYhsauvUoaG1E8Kgh/Z8NQBg586d0Ov1Pu6Z88KVCqTH9d7JQ0T+hwEKEdl0+lw7Lh7bg7o/PgJ0GReXTp06FXl5eSgpKfFx75yXeXmrcR3XoRD5NQYoRGTTur+tR+PG19DVcs7s8ZqaGsycOTPggpQr2WS5k4fInzFAISKr9Ho9Vr3+gsVj8sLSoqKigJruye5W1ZiI/BcDFCKyateuXWhuVFs9LoRAdXU1du3a1Ye9co9pJw+neIj8GgMUIrKqrq7Oo+38Aad4iAIDAxQisiozM9Oj7fxBVgKneIgCgVsByuuvvw5JklBUVGR6rKOjA/PmzUNycjJiY2MxY8YM1NfXmz2vqqoK06ZNQ3R0NNLS0vD0009Dp9O50xUi8oLrR90CZVyK1eOSJCEnJwcFBQV92Cv3yAUDG1s70amzvXamvb0dkiRBkqSArT9EFKhcDlD27duHP/7xj7j++uvNHl+wYAE+/vhjrF+/Hjt27EBtba1Z6XK9Xo9p06ZBq9Viz549WLNmDVavXo3Fixe7fhVE5BVHa5qQNGEuAGMw0p18f/ny5QFVATgpJgKRYcaPvnpNp497Q0TWuBSgtLW1YdasWXjnnXfQv39/0+MajQbvvvsufve73+GOO+7AyJEj8d5772HPnj344osvAAD/+te/cOTIEaxduxY33ngjpkyZgldeeQUrV66EVsvMjhQaAuUv8xON7Ygeeivib70PGRkZZsdUKhU2bNhg9gdIIJAkqds6FE7zEPkrlwKUefPmYdq0aZg4caLZ4xUVFejq6jJ7fNiwYRgwYADKy8sBAOXl5RgxYgTS09NNbSZPnoyWlhYcPnzY4ut1dnaipaXF7EZE3nei0VjFWBkVi4qKCtPjmzdvRmVlZcAFJ7IsJmsj8ntOFwv88MMP8dVXX2Hfvn29jqnVakRERCAxMdHs8fT0dKjValOb7sGJfFw+ZsnSpUuxZMkSZ7tKRG462Xi5Bs+5M2bTOGPHjg2oaZ2euFCWyP85NYJSXV2N+fPn4/3330dUVJS3+tTLokWLoNFoTLfq6uo+e22iUHa8wRigaM9V+bgnnpUpJ2vT2N5q3D0BXaDWHyIKVE4FKBUVFWhoaMDNN9+MsLAwhIWFYceOHXjrrbcQFhaG9PR0aLVaNDc3mz2vvr7eNH+dkZHRa1ePfL/nHLcsMjIS8fHxZjeiQBYIX3yai11oaLmEjqpvoK0/hd27d/u6Sx6TnWi/YGBJSQmGDx9uuh/I9YeIApFTAcqECRNw8OBBHDhwwHQbNWoUZs2aZfp3eHg4tm3bZnrOsWPHUFVVhfz8fABAfn4+Dh48iIaGBlObLVu2ID4+3uzDgChYBcoX3x//sg41bz+C+g+eA/RdKCwshEqlQnFxMWJiYnzdPbdk2Ul3X1JSgpkzZ6Kmpsbs8UCtP0QUkISbbr/9djF//nzT/ccee0wMGDBAfP7552L//v0iPz9f5Ofnm47rdDpx3XXXiUmTJokDBw6ITz/9VKSmpopFixY5/JoajUYAEBqNxt3uE/Wp4uJiIUmSAGB2kyRJSJIkiouLfd1FIYSxn4D/99NVx+tbRe7CUnHd4k97HdPpdEKlUvW69u7/D3JycoROp/NBz4kCmzPf3x7PJLts2TLcddddmDFjBsaOHYuMjAyzvzaUSiVKS0uhVCqRn5+P2bNn46GHHsLLL7/s6a4Q+RW9Xo/58+ebiux1J/yo8J7cT+P3sTl/6qc75F08rZ06tHR0mR3btWsXzp49a/W5IgDrDxEFIqd38fS0fft2s/tRUVFYuXIlVq5cafU5ubm52Lx5s7svTRRQnPniGzduXN91rIdA6ac7oiPC0D86HBcudqG2+RLiM8JNx4Kx/hBRIGItHqI+EihffIHST3dlXt5qXNejaKCjdYV6plMgIs9igELURwKl8F6g9NNd1rLJFhQUQKVS9Urt39OYMWO81jciYoBC1GfsffH5S+G9goICpGZYDz78pZ/usrbVWKlUYsWKFQCs1x+S2xGR9zBAIeoDmotdWLHtBG68twhCWP7ik9d2dHR0+LRWj1KpxPTHfmXxWKAWCLRETtZWZyFZW2FhITZs2ICsrCyzx7Ozs/ukb0TEAIXIq7Q6A/7870rc/tsyvPX5CRwMH4bUuxdBEZts1s7fvvgihuQj9e7nkJhiXpYiUAsEWmKvYGBhYSGOHDliur9582Z88803pvv+mmCPKFi4vYuHiCw70dCGn63Zh9PnjQX3hqTFYsI16didnYBvhoxG59nD0GkasWhmPh6dMRkJCQle71N7eztiY2MBGKuSW0u4drS2BdFDb8XbLz6KKTcNBGD8gp40aVLAj5zIshLsFwzsfq0XLlzAiBEjTPenTp0KlUqFFStWBEXARuRvGKAQeUFHlx7z3v8Kp89fREpsJP570tW4Z6QKYUrjoOVpdRO+//MvETtiAv7vlAK31LX5uMdXtHfqUHneOK00POtK0BToBQJ7kkdQ1JoO6A0CSoXtRbGzZ8/ulcNGziwbLKNKRP6EUzxELrK1TuTNT4/hWH0rUmIj8Mn8Atz//QGm4AQAUuMi0fjRG7hU+RUudRnw2PsHoEw01qLauXMntFqtqW1fTyV8q26FEEBaXCSSYyL67HX7WlpcJJQKCV16gXNtnXbb+3uCPaJgwwCFyMN2fteIP++uBAAcee85RCt0lhvqdWj8x6tIP38AR5fPgb5ZDcA4dZCSkmJq1te1eo7UtQAAhmcFd1HOMKUC6XGRAKzX5ImJiUFZWZnN8zCzLJF3MEAh8qCmdi1+uf5rAEDrV//EpVP7LbaLiYmBEAIbPlyHfe++AH3rObPjBoPB7L6nitTZq6Lc3t6Oopd+AwAYktLP1E8hRMAXCLTkStHA3jt5ZKGSuI7I3zBAIfKg5zceRENrJwYlR+NC2Z9ttrVVm6cnT0wlOFpFOSJjCADgmoxYl14nkNiragyETuI6In/DAIXIRT1HI76pbsLmg2ooFRJe+6+rIXSdpmMtLS291qvYq3nTk6tTCfJamRkzZqCmpsbsWM+RmY4uPSJS8wAAI7KDe4oHADLlZG02dvIESoI9omDDAIXIBZZGI8bcOBwXj+3B0EtHMHPCaLNj3dvKXJ0ScPZ5tkZceo7MHK7VoLPmCFq/2owTX38Z9As/sx0YQXEks2wwJK4j8jcMUIicVFJSgpkzZ/YajWhrqkfjxtfwyfKnex2rra3tdR5XpwScfd7u3bttHpdHZl599VVMH/d91H/wHJq2/KHPF+f6QlaC9Wyy3VnLLBtMieuI/A0DFCInOLNupLvu7eVRCUeL0nWnUqmcnkpQq9UOtXvxxRfR3Gje1lOLc/1VppV6PJZYyixbWVnJ4ITISxigEDnB2XUjlqxatQp6vd7m1IE1b7zxBjo6Opyq05OWluZyX4M9z4c8xXOuTYuOLvvX130aJ9gS1xH5GwYoRE7wxFbSZ5991jR1Ym3qQJIsvzWnT5/u1GuVlJRg7ty5LvcVCO48Hwn9whEdYQwy1HameYiobzFAIXKCp7aSdp86sTR1UPbNKaTf/xqS7/pvvL16nemYM1ll5bUylta/yJyZXgrGPB+SJCHzck0ea0UDicg3GKAQOcGVdSOW9Jw66Tl1MGpgCoReB0VYJH75VJHp2NSpU3HNNdeY7lsLWBxdK5OdnY0lS5Y41OdgzfOR3T8agGMBSrAnriPyJwxQiJzgyJZTS8cssTd10rT1j2jc+BramhrMHu8+ImJtp42ja2VWr16NX/3qV1CpVFbbBHueD1V/4zqUsxc4gkLkTxigEDlJXjfSc0QhOzvb9O+MjAyHz2dp6kSv10PXVGOhdW89d9q0t7dj/PjxDj23oaEBSqUSv/3dMovHQyHPx5UA5aKPe0JE3TFAIXJBYWEhPtjyBdLvfw1Jk59A6T834/Dhw6bjFRUVDp8rMzOz19TBV1995fDz3dlpIwdZA0fdgdS7n0N4fIrZ8VDI86G6PMXDERQi/8IAhchFeyo1iBpwPRSR0Rh3u/mW0+7/diVFurMLUq1NF9maauqeU+XLyvOIHnor5iz/yHQ8VPJ8yCMoNQxQiPwKAxQiB8k1beT8I/8+2QQAuHTK/miJsynSXV2QWldXZzaKIoSw+NqSJGHFihWm195babyW7w9MNrULlTwfcoBSp7mELr3BTmsi6isMUIhc0NSuxeHaVgBAR6VxOqZ7YNA9vfzatWudTpHu6m6h48eP96r70/McPV+7S29AxZkLAIBRAxKcer1gkBobicgwBQwCqGtmLhQif8EAhcgFe05dgAAwPDMeurYmfPbZZ2aBQWFhIVQqFYqLi/HAAw84nSLd2SyzkiQhOTkZL730Uq86QAbDlVEBS6/9dXUzLmr1SIwOx1Vpobd1VpIkZHOhLJHfYYBC5AJ5euf2oalWiwd2313jSop0a1lme5IkybRQ1l7ekzFjxvR67c+/NW5jHjskFXGxsSGZ54MLZYn8DwMUIgd1n8L5dGsZhEGPgsFJVhOieaKOTfcss1EDRyLhtgcQkWC+00be3nz+/Hm757NU2VgOUO4Y5nrNnkDHrcZE/ocBCpEDSkpKzKZwTqx+BrV/fASfrVtlMyGavLvGUmDgKHnEo/PsYQyY8BAy5r6LSNW1AIxTNt23N9vTs7JxTfMlfKtuhUICbr861eU+BrocjqAQ+R0GKER2WJvC0bWcw8svveTQOZqbm92eOhFdHbh/VDYkhRL9JzwKwPmdNgMHDjS7X3Z59OSmAf3RPybCpX4FA2aTJfI/DFCIbHC0po09nqpj8+DobERHKBGZcRX6DbkFAByaPrKWc6WM0zsAOMVD5I8YoBDZ4GhNG2s8Uceme5ZZVWp/zP6+cc1J4m2zsHHjxl7bii31Aeidc6W1owv/PnEOADB+aKgHKMYpHnVLB7Q65kIh8gcMUIhscCajq7PJ2Fz18zuGIi4yDLoLdZj94IO9pp56spZz5ZODanTqDLgqLRbXZMZ5rH+BKCU2wpQLRa1hLhQif8AAhcgGR6dmlixZ4nQyNlclRkfg4VsHoGnbnwA7U0+lpaVWc64Uf2UcGfrRTdlOJ4QLNpIkcZqHyM8wQCGywV5GV3kK51e/+pXTydjcMVSqgb71nN12CoXC4uhNddNF7K1sgiQBd9+UbeGZoUee5qlmgELkFxigENnQPaMr7EzhuJKMzVUt5xsdatdzW7Fs43+M00L5g5KRndjPY/0KZNzJQ+RfnApQVq1aheuvvx7x8fGIj49Hfn4+PvnkE9Pxjo4OzJs3D8nJyYiNjcWMGTNQX19vdo6qqipMmzYN0dHRSEtLw9NPPw2dTueZqyHyAjmja0Ky+UJSb03hOMLRqaeMjIxej3V06fHXL84AAO66NtWsAGIoYzZZIv/iVICiUqnw+uuvo6KiAvv378cdd9yB6dOnmxJFLViwAB9//DHWr1+PHTt2oLa21uzDW6/XY9q0adBqtdizZw/WrFmD1atXY/HixZ69KiIPKywsxIQX/4b0+19DZO6NFqdwuu+28XaaeHnqCbA99TRp0qRex/6+vxoNrZ3ISojClOtCe/dOd1yDQuRnhJv69+8v/u///k80NzeL8PBwsX79etOxo0ePCgCivLxcCCHE5s2bhUKhEGq12tRm1apVIj4+XnR2djr8mhqNRgAQGo3G3e4TOURzSSsGL/qnyF1YKsIS0kVbW5uvuySKi4uFJEkCgNlNkiQhSZIoLi7u9ZzOLr3If22ryF1YKv6yp1K0tbWZnucP1+RLX51pErkLS8Utr211+Dn8/0fkHGe+v11eg6LX6/Hhhx+ivb0d+fn5qKioQFdXFyZOnGhqM2zYMAwYMADl5eUAgPLycowYMQLp6emmNpMnT0ZLS4vNdN2dnZ1oaWkxuxF5W3t7u2n64/NDNdAZBLrOn4VOU2//yX1AnnrKzHR899CaPadRq+lAenwk7hmVY5bkbefOnS7XDAoGzIVC5F+cDlAOHjyI2NhYREZG4rHHHsM//vEPDB8+HGq1GhEREUhMTDRrn56eblqop1arzYIT+bh8zJqlS5ciISHBdMvJyXG220RukasXz/2v2/yq0m9hYSG+/fYoIjKvRsoPn0b6/a/h/a37LAYnh2o0ePOzbwEARROvxuaPN5kleZs6dSry8vJQUlLSZ/33JymxEYgKV0AIoE7DdShEvuZ0gDJ06FAcOHAAe/fuxeOPP445c+aYba/0hkWLFkGj0Zhu1dXVXn09op7kAMUfC+oplUpo676DQXsRUQOux8/XHcCeE+ZbkOs0l/DkB/9Bl15g0vB0RFTvs1hfqKamBjNnzgzJIMWYC8W5hbIcgSLyHqcDlIiICFx11VUYOXIkli5dihtuuAErVqxARkYGtFotmpubzdrX19ebdhJkZGT02tUj37e020AWGRlp2jkk34g8rfuUTnt7u+nLRhmXjNOH9iFCIXDLoGQf99K6C5+/i5tzEtDaocNDf/4SL246hJ3fNeKvX5zB1BW7UHmuHZkJUXjt7mtRVFRksb6Q/FhRUVFIftk6s1C2Z4XrUB+BIvI0t/OgGAwGdHZ2YuTIkQgPD8e2bdtMx44dO4aqqirk5+cDAPLz83Hw4EE0NDSY2mzZsgXx8fF264kQ9aVNm65Mf+hbz6P+g+dQ8/Yj2PzxJh/3rDd595BBewnr5ubjhzdkQWcQWFN+Bg/9+Uu8sPEQLlzswnXZ8fhw7i049NVem/WFhBCorq7Grl27+vAq/IMcoFQ32R5BsVbhOpRHoIg8LcyZxosWLcKUKVMwYMAAtLa2Yt26ddi+fTs+++wzJCQk4JFHHsFTTz2FpKQkxMfH48knn0R+fj5uucVYdXXSpEkYPnw4HnzwQbz55ptQq9V4/vnnMW/ePERGRnrlAolcMXv27F4jDBcvNGLmzJk+y33iiKhwJd6670bMHKnC3/ZV4XBtC1T9+2H0wGT8v9sHITJMiT0O1hdypg5RsLgyxWN9BMVWhWshBCRJQlFREaZPn+7VZH1Ewc6pAKWhoQEPPfQQ6urqkJCQgOuvvx6fffYZfvCDHwAAli1bBoVCgRkzZqCzsxOTJ0/GH/7wB9PzlUolSktL8fjjjyM/Px8xMTGYM2cOXn75Zc9eFZELuk9pWPryMe4m9f8vH0mScPvVqVbXyzia5M3RdsHEkWyy9ipcdx+BGjdunKe7SBQynApQ3n33XZvHo6KisHLlSqxcudJqm9zcXGzevNmZlyXyupKSEvziF7+w2y4YvnzkJG81NTUWAzFJkqBSqVBQUOCD3vmWPIJS1WR9BMXRkaVQHIEi8iTW4qGQZ209gS2B/OXTvb5QzyKIPesLhZq8ZGOA0tDaiYtayyU4OAJF1DcYoFBIs7WewJZA//KRk7xlZTme5C0UJEZHIKFfOADroyiOVrgOxREoIk9igEIhzd56gp6C6cunsLDQLIeRpfpCoSj38ijKmfOWAxSOQBH1DQYoFNKcmaoJxi+f7tcxduzYoLkud+QmG7MEnzlvvbozR6CIvI8BCoU0Z6Zq+OUTGnKTjCMop62MoMg4AkXkXU7t4iEKNvZ2tAAAJAmlH3+MO++8M+hGGOQkb3SFPMVTZSdAAcxHoEaOHImwMONHaltbm9/UayIKVBxBoZBmaz2BiRAYN25c0AUnZFleijGwOG1jioeIvI8BCoU8a+sJlHEpiL1xio96Rb4iT/HUNl+CVmew2VYegfKnCtdEwYIBChF6rye4Ye7/IPuxd7H+r+/yyyfEpMZFol+4EgbhWNFAGSsbE3kWAxSiy+QpnLCEdDT3H4rwsDDcelWKj3tFfU2SJLtbjXtiZWMiz2OAQnSZPFz/50++AADcnNsf8VHhPu4V+cKVAMX+OhRWNibyDgYoRD1sP9YIABg31HKxPQp+ecnyQlnbIyj2KhsDQFFREad7iFzAAIWom06dHntOngcAq9WAKfgNSLZfNBBwrrIxETmHAQpRN/sqL+BSlx6pcZEYnhnv6+6Qj1wZQbE9xcPKxkTewwCFqJsd3zUAMI6eWM2LQkFvwOWtxmebLkFvsJ7IjpWNibyHAQpRN1x/QgCQldgP4UoJWr0BdZpLVtuxsjGR9zBAIbqspvkSjje0QSEBt3F7cUhTKiTkJNnfaszKxkTewwCF6LIdl0dPbsxJRGJ0hI97Q76W60CAAljPRJydnQ0hBGbMmIH2dqbNJ3IWAxSiy+T1J+OGpvm4J+QPci8vlHUkF4qlysaHDx/2Wt+IQgGrGRMB0OoM2H2C24vpCmezyXafxhk7dqxX+kQUSjiCQgTgq6oLaOvUISkmAiOyE3zdHfIDjm41lvUsHMjaPETuYYBCBGDHd8b1J2OHpECh4PZiujKCUtV00WKmWFtYm4fIfQxQiADsvByg3M7txXSZqn80FBJwUatHY1unw89jbR4iz2CAQiGvsbUTh2tbAAC3XcUAhYwiwhTISuwHwPF1KKzNQ+Q5DFAo5P37hHH0ZHhmPFLjIn3cG/In8jqUynOOrUNhbR4iz2GAQiFv13fnAABjuXuHehiY4lyAwto8RJ7DAIVCmsEgsPO4HKAweyyZG5RqDFBONrQ51J61eYg8hwEKhbSvKutxrq0TBm0Hrknh9A6ZG5waCwA45eAICmvzEHkOAxQKaXtOXQAAdFR9g4gwvh3InDyCcuZ8O3R6g932rM1D5Dn8RKaQtut4IzqqvkFrxcdMpkW9ZCX0Q1S4Al16geoL1qsad2etNo9KpcKGDRtQWFjoja4SBR0GKBSyPvj7evzj2Rmo/+A5dJz+D5NpUS8KhYSBKZeneRodW4cCWK7NU1lZyeCEyAkMUCgklZSU4IH7fgx96zmzx5lMi3oaLC+UdSJAAXrX5uG0DpFzGKBQyJGTaYHJtMgBg+SFso2OLZSV9azNQ0TOYYBCIYfJtMgZ8giKswEKEbmHAQqFHCbTImfIW42dneIhIvcwQKGQw2Ra5Aw5m+z5di2aL2pdPk97ezskSYIkSWhv52gMkT1OBShLly7F9773PcTFxSEtLQ133303jh07Ztamo6MD8+bNQ3JyMmJjYzFjxgzU19ebtamqqsK0adMQHR2NtLQ0PP3009DpdO5fDZEDCgoKEJOUZvU4k2lRdzGRYchKiAIAnHAwo6wl3dc0cUs7kX1OBSg7duzAvHnz8MUXX2DLli3o6urCpEmTzP4aWLBgAT7++GOsX78eO3bsQG1trdnWOr1ej2nTpkGr1WLPnj1Ys2YNVq9ejcWLF3vuqoisaG9vR1h4BKLyZxsfYDItcsCQ9DgAwHEXA5SSkhIMHz7cdJ9b2okcINzQ0NAgAIgdO3YIIYRobm4W4eHhYv369aY2R48eFQBEeXm5EEKIzZs3C4VCIdRqtanNqlWrRHx8vOjs7HTodTUajQAgNBqNO92nENTW1iYisoaJ3IWlYsC9z4usrGwBwHTLyckRxcXFvu4m+ZlXPj4scheWipc+OuT0c4uLi4UkSWa/ZwCEJElCkiT+vlFIceb72601KBqNBgCQlJQEAKioqEBXVxcmTpxoajNs2DAMGDAA5eXlAIDy8nKMGDEC6enppjaTJ09GS0sLDh8+bPF1Ojs70dLSYnYjcoVer0d4Ujbaj+zAiIFZOHTooOkYk2mRNVfLIyj1zo2gyFvaBbe0EznN5QDFYDCgqKgIY8aMwXXXXQcAUKvViIiIQGJiolnb9PR0qNVqU5vuwYl8XD5mydKlS5GQkGC65eTkuNptCmHyMHv7oW049/Fv8M83fo4RI0aYjjOZFllzVbpxJ8/xhlannsct7USuczlAmTdvHg4dOoQPP/zQk/2xaNGiRdBoNKZbdXW111+TgktJSQlmzpyJmpoas8dra2shSRKKi4uZTIusGpJmDFDqWzqhudTl8PO4pZ3IdS4FKE888QRKS0tRVlYGlUplejwjIwNarRbNzc1m7evr65GRkWFq03NXj3xfbtNTZGQk4uPjzW5EjuIwO7krLiocmZd38hyvd3wUhVvaiVznVIAihMATTzyBf/zjH/j8888xcOBAs+MjR45EeHg4tm3bZnrs2LFjqKqqQn5+PgAgPz8fBw8eRENDg6nNli1bEB8fb7bKnchTOMxOnuDKTp6CggKoVCrT7rCeuKWdyDqnApR58+Zh7dq1WLduHeLi4qBWq6FWq3HpkrEMeUJCAh555BE89dRTKCsrQ0VFBR5++GHk5+fjlltuAQBMmjQJw4cPx4MPPoivv/4an332GZ5//nnMmzcPkZGRnr9CCnkcZidPkKd5vnNiBEWpVGLFihUA0CtI4ZZ2ItucClBWrVoFjUaDcePGITMz03T729/+ZmqzbNky3HXXXZgxYwbGjh2LjIwMs73+SqUSpaWlUCqVyM/Px+zZs/HQQw/h5Zdf9txVEXXDYXbyhKvlhbJO7uQpLCzEhg0bkJWVZfa4SqXChg0buGuMyApJWJqY93MtLS1ISEiARqPhehSyS6/XIy8vD2fP1sCYgsKcJElQqVSorKzkX7JkVcWZC5ixag9S4yKx71cT7T+hB/lzCzBuaZ80aRJ/3yjkOPP9zVo8FPSuDLNbDk4ADrOTfUMzjGtQGls7cb6t0+nnd//94pZ2IvsYoFBImPZf05E983ko41LMHucwOzkqNjIMA5KiAQDH1M7lQwGAmJgYCCEghOCWdiIHMEChkLD/9AWEDb4FN/zyr6bHmDmWnHVNpnEU5Ugds1kTeVuYrztA1Bd2Hm8EANw+LAMVgbfsivzEsIx4fHa4Ht+6MIJCRM7hCAoFtfb2dkiShN//fSsA4ParU33cIwpk12QaF/Ud5QgKkddxBIWCml6vhxQVg67z1TB0tuGWgeN93SUKYPIUz/H6Nuj0BoQp+Tcekbfw3UVBSy4OKDrace7j36D+g+cw6rqhZnl5iJyR0z8aMRFKaPUGVJ5r93V3iIIaAxQKStaKA9bU1GDmzJkMUsglCoVk2m7MhbJE3sUAhYIOiwOSN8nrULhQlsi7GKBQ0GFxQPImOUA5XOveCEpLSwskSYIkSfjkk08YMBP1wACFgg6LA5I3XZdtTFd/qEZjcZTOEfL6KNnUqVORl5fHqUeibhigUNBhcUDypmEZcQhTSGhq16JW0+H087k+isgxDFAo6BQUFEClUvUqby+TJAk5OTkoKCjo455RMIgKV2JIunGh7MGzGqeey/VRRI5jgEJBRy4OaGnwncUByRNGZBvXoRyqcS5A4fooIscxQKGgVFhYiHue+R2LA5JXjLi8DuWgkwEK10cROY4BCgWtcyk3IvuxdxGRbVyMyOKA5CmuLpR1dN1TYmKiK90iCipMdU9BqbrpIk6da0dYWBgaTxxAfFS4r7tEQeSazHgoFRLOt2tRp+lAVmI/h54nr4+qqamxGdgYDAbo9XpOQ1JI4wgKBSW5evFNOYkMTsjjosKVGJIWC8C5aR55fRQAq4u4AeCuu+7itmMKeQxQKCjt+u4cAGAsqxeTl9ygSgQAHKhudup5hYWF2LBhA7Kysmy247ZjCnUMUCiotLe3Q1IosbniBAAGKOQ9I/P6AwD2n25y+rmFhYU4cuSIzTbcdkyhjgEKBRW9Xo/wZBUunaqAUn0YwzNifd0lClLfy0sCAHx9VoNOnfMBRHx8PMrKymy2kbcdb9++3ZUuEgU0BigUNOT04V3nqnDu49/g1JqFGDxoIIfIySvykqOREhsBrc7gdD4UmaPbie+9917+HlPIYYBCQYHpw6mvSZKEkbnGaZ59py+4dA5Htx03NTXx95hCDgMUCnhMH06+Ik/zuLIOBbBflqEn/h5TKGGAQgGP6cPJV+QRlIozF2AwOF/ZuPu2Y3v4e0yhhgEKBTymDydfuTYrAVHhCly42IVT59pcOoe87bh///4OtefvMYUKBigU8Bydx3e0HZGjIsIUuDEnEYDr61AAY5Dy17/+1aG2/D2mUMEAhQKePI8PK/P4kiQhJycHBQUFfdwzCgWjcuV1KK4HKABw55132lyPwt9jCjUMUCjgmebxLSySlT/sly9fzrom5BWj5IRtZ1xbKCuzlQafv8cUihigUFAYN/kupBc+B2VcitnjKpUKGzZsYAVj8pqbc/tDkoAz5y+iobXDrXNZS4PP32MKRaxmTEHhn9/UImrIrZhU8AM8c6NxIWFmZiYKCgr4Fyd5VXxUOIamx+FbdSsqTl/AlBHurREpLCzExIkTkZCQAADYvHkzJk2axN9jCjkMUCgolPzHmKCtcOQAjCsY5OPeUKj5Xl4SvlW3Yp8HAhTAmAbfUl4folDCKR4KeCfrW1D+7524eHQHkltOMJEV9TlPrUOxRq/XY/v27fjggw+wfft2/o5TSGCAQgGtpKQEI6+7GvUfPIfGj36DwrsmIy8vjynBqU/JGWUP1WjQfFHr0XOXlJQgNzcX48ePxwMPPIDx48fzd5xCAgMUClhy/R3NuXqzx1l/h/paVmI/DE2Pg0EAO75r9Nh5WWOKQhkDFPJ7loa3WX+H/M34YWkAgM+/bfDI+fg7TqHO6QBl586d+OEPf4isrCxIkoSNGzeaHRdCYPHixcjMzES/fv0wceJEHD9+3KxNU1MTZs2ahfj4eCQmJuKRRx5BW5traaIpuFka3s7NzcXPfvYz1t8hv3LH5QBlx3eN0LtQl6cn1piiUOd0gNLe3o4bbrgBK1eutHj8zTffxFtvvYW3334be/fuRUxMDCZPnoyOjiv5AWbNmoXDhw9jy5YtKC0txc6dOzF37lzXr4KCkq3h7dWrVzt0DtYtob5y84BEJPQLR/PFLvynyr2ssgBrTBE5vc14ypQpmDJlisVjQggsX74czz//PKZPnw4A+Mtf/oL09HRs3LgR9913H44ePYpPP/0U+/btw6hRowAAv//97zF16lT89re/7ZWgiEKTreFtZ7BuCfWVMKUCY69Oxcdf1+Lzbxsw6vLCWVexxhSFOo+uQamsrIRarcbEiRNNjyUkJGD06NEoLy8HAJSXlyMxMdEUnADAxIkToVAosHfvXovn7ezsREtLi9mNgpu94W17WLeEfOGOYakAPLMORa4xxdo8FKo8GqCo1WoAQHp6utnj6enppmNqtRppaWlmx8PCwpCUlGRq09PSpUuRkJBguuXk5Hiy2+SH3Bm2Zt0S8pXbr06DJAHfqltR23zJrXOxNg+FuoDYxbNo0SJoNBrTrbq62tddIi9zZ9iadUvIV5JiInDzAGPStrJj7o+isDYPhTKPBigZGRkAgPp687wU9fX1pmMZGRloaDB/4+p0OjQ1NZna9BQZGYn4+HizGwU3e8Pb1ixbtgyVlZX84CafkXfzlHlou3FhYSHOnDmDsrIyrFu3DmVlZThx4gSSkpKYWZaCmkcDlIEDByIjIwPbtm0zPdbS0oK9e/ciPz8fAJCfn4/m5mZUVFSY2nz++ecwGAwYPXq0J7tDAczW8LYl8nz8k08+ySFv8qnxQ40Byr9PnENHl2cCB6VSiXHjxuH+++9HU1MTBg0axMyyFPScDlDa2tpw4MABHDhwAIBxYeyBAwdQVVUFSZJQVFSEX//61/joo49w8OBBPPTQQ8jKysLdd98NALjmmmtw55134tFHH8WXX36J3bt344knnsB9993HHTwEwBjUSpKEGTNm4LnnnrM73cP5ePIn12TGITMhCh1dBpSfOu/RczOzLIUU4aSysjIBoNdtzpw5QgghDAaDeOGFF0R6erqIjIwUEyZMEMeOHTM7x/nz58X9998vYmNjRXx8vHj44YdFa2urw33QaDQCgNBoNM52n/xccXGxyM7ONvvdys7OFkuWLBHr1q0T1//Xo0IZm2x2PCcnRxQXF/u660Qmz5V8I3IXlooFf/uPx86p0+mESqWy+PkLQEiSJHJycoROp/PYaxJ5mjPf35IQgVfTu6WlBQkJCdBoNFyPEkTkvw57/krKIySv/u97+GNVCsIkA17LD4e+/QIyMzNRUFDAkRPyK19VXUDhH/YgKlyBfb+aiLiocLfPuX37dowfP95uu7KyMowbN87t1yPyBme+v51O1EbkDfbqjkiShFeefwapP3sH9986CPf+13U+6CWRY27KScTg1BicbGxH6Td1uP/7A9w+JzPLUqgJiG3GFPwcqTty6UIDDHVH8cQdV/Vhz4icJ0kS7h1lzNe0fr9n0iIwsyyFGgYo5Bcc/atvTKYS6fFRXu4Nkft+dHM2lAoJX1U140RDq9vnY2ZZCjUMUMgvOPpX36zxN3i5J0SekRYXZdpyvH6/62UbZMwsS6GGAQr5BUcSs/VPy8TUSXf0Ya+I3HPvKBUAoPirGnTpDW6fT84sm52dbfY4M8tSMGKAQn7BkcRsf1r5e/51SAFl/LA0pMRG4FxbJ7Yfa/TIOQsLC3H69GmzzLLMnkzBiAEK+Q1rfx2Gxafg9++uxcyZM3zUMyLXhCsV+NFNxt9nTy2WBcwzy44bN46BOwUlbjMmn9Pr9di1axfq6uqQmZmJkydP4pNt2zH/z2XoCI/Hsz/5EZ6YNMzX3SRyyb2jcvDOrkps+7YBlefaMTAlxtddIgoIDFDIp0pKSjB//nyzLcYqlQpDf/QkMPg23JgRh3kTrvZhD4ncMyQ9DncMS8Pn3zbgrW3HsezHN3r8NXoG+UxeSMGAUzzkM3Lm2J75T86ercG23y+E9ng5fjPzBoQr+WtKge2pHxiD7I0Hajyy5bi7kpIS5ObmsnggBR1+8pPD9Ho9tm/f7pES77YyxxpLiwDa3e9heGasy69B5C+uy07ApOHpEAJYvvW4x85rrXjg2bNnMWPGDCxYsMDt9yqRrzBA8RJ3vsw9GQh4SklJCfLy8jz2V5q9zLEAcL6+Frt27XLp/ET+ZsHlUZTSb+rwrbrF7fPZDvKNli9fzhEVClgMULzAnS9zTwcCnmBtKsadEu+sK0Kh5prMeEwbYUxIuHyL+6MojgT5Mnfeq0S+wmrGDnJ0EZq9iry2kim581xPXkPP5+Tl5Vn9IJQkCSqVCpWVlTbP1fO19Xo9Jk6caLfPrMxKweR4fSsmLd8JIYDSJ2/DddkJLp/rgw8+wAMPPOBwe/m9euLECezZs4cLasknnPr+FgFIo9EIAEKj0fTJ6xUXFwuVSiVgXBwhAAiVSiWKi4tNbXQ6ndi6datISkoya9fzlpqaKjo7O3u9hk6n6/Ua3W+SJImcnByh0+m8dg2WlJWV2bwe+VZWVubUa2dlZYn4+HivXS+Rv5r/wVcid2GpmLpip+js0rt8Hkffm5Y+g7rfz87OFkuWLBHr1q0TZWVlfM+RVznz/c0ApRudTifKysrM3qjFxcVCkiSrb/aioiKxZMkSm8GFpQ+InoGBJwIBZ69BkiQhSZLNIGXdunUO9WvdunUWn2/v/5+14MRev4gCVb3mkrhxyWcid2GpeP2Toy6fR/6jxtn3l70bAxbyJgYoLrD0V352drZITk726Ju/+5dw9y9gdwMBV6/B3kiFO4GTvVEha7ecnBwGJxTUPjlYJ3IXloq8Z0vF3lPnXT6P/AeAp4OU7jdHRlqJHOXM9zcXycL2ItDz58977XWLiopMO3QcreZbX19vcVePq9cghEB1dbXF3TJ6vR56vR5JSUlWny+XeL/11lvNdh5ptVr8/ve/d3gRnyw1NRUnTpxgXREKandel4F7RqogBLDgbwfQ2tHl0nmslYfwJC6wJZ/xfrzkeZ4cQXH1r3xP3eSRB2eGay2tf3H3GnqOzFgajel5k/9ye/rpp3u1VSqVbv8/IQpmrR1d4rY3tonchaWi6MP/CIPB4PK55KndoqIi03vTk59TXBNGnsIRFCc4s1XPG7Zt2wa9Xu9QNV9Zz79oPHEN3UdwrI3G9JSSkoJp06bhN7/5Ta+27uRu4dZiCgWxkWFYdu+NUEjAP/5Tg1f/edRmThNb5OKBy5YtQ3FxMbKysjzaV2FjpJXIW0I+QPH1l+Gvf/1rU54TR4dr5Q+xoqIiaLVabNu2za0+JCUlmaZzHEn+FBsbi5SUFDQ2NqK0tNSt17bE0ekuokA3Ki8Jr/5oBADg//5didc//dblIEVWWFiINWvWeKJ7vfj685JCS8gXC/SHL0M5LXVafiHSrhuDIU/+GXFffISj//hfq8+R/6JJTstEm6bJrddvamrCxIkTkZWdjTkPP2J35KStrQ1tbW1uvaYlcp6GgoICj5+byF/d//0B0BkEXth4CH/ccQpKScLTk4faHUm1paGhwYM9vMLe5yWLFpInhXyiNjkRWU1Njdt/uXiKMi4F0UPHoHX/Jl93pc94KhkdUaBas+c0XvzoMADgnpEqvPRf1yIm0rW/Ibdv347x48d7rG+OJGS0Vpl8xYoVfE+TiTPf3yE/xdN97YcjYmONxevs/XWTk5OD4uJiFBcXQ6VSOdUnfdv5oA5OHn744V7/T1QqFYMTCmlzbs3Diz8cDkkC1lecxdS3duGrqgsunaugoAAqlcrm51RSUhJefPFFu59P8jmWL19uMzixXJncN0UL/bGeGbnAe2t1vcdbeVBSUlIcWtFuKTGbSqWymtxIp9OJ559/3umV80ql0qv5Dfr61n0ngKWEckQkRPnJc+LWpcbdPYMW/VO88clR0dyudfo81nKk9EyE2P296Oxnm/x8R3cR9kVOFVezZlPfYKI2F61du9ahN9m6deuc/oJ1NS11sNyYHZbIcZpLWlH04X9E7sJSkbuwVAx/4RPx2uYjoqGlw6nzWPqytpcI0ZGApXtws2zZMqc/D5YsWWIx0LH1merIZ647WbMdFQh/XPlzHxmguMhT6eYtcTUtdVFRkcMjO96+qVQqkZyc7NA19MyDwuywRM775GCdmLxshylQGfKrzeInf94r3tl5Uhyp1Qi93n7uFFe/rOx92VvKf+Ts54n8mWBv1MPecUdqoTmay6Xn/6/Ozk6HAzZPcufn5kjtOGvX6O2Axpnv75BfJNudvQWzjlbutUaepwXg8ILcsrIy1NTUYPbs2Q6/jiRJSEpKQlNTk1OvZcuyZcvw5JNPYtOmTTavoaioCNOnT8ett97KiqlEHiCEwOffNuB/y07gP1XNZsdSYiOQPzgFYwYnY8xVKVD17+fW7h+ZvSrmnnTXXXfZTFdg7bh8nb/85S/xwQcfONxX+bNM/jzqvvPo+PHjeOedd8zOpVQqHVrDIn/2df+s67mrqefnYvf7aWlpAIw7sCz1w5EFx/J3TM/P5u6bEAD0Wszc8xqzs7Mxd+5cDBkyxOOf3858fzNA6cFaEOGpXSaWVrpb0j0Y2rVrl8Mr8u39Iubk5OC+++7Db3/7WwCOBy/r1q3D/fffb/UacnJysHz5ci5yJfISIQSO1rVi94lz2H3yHPaeasKlLvMvzsgwBTITopCZ0A+ZiVHI6vbfuKgw9ItQIjoiDP3ClZf/rUS4svdeCU/vAvI38hfwhQsX8P7776OxsdFj505JScHs2bPRv39/u8GOo8EP0Ps7qGfwM3r0aOTm5tq8ltjYWJdSRHhyNxYDFDd5+wtY/sXatGkTli9fDkmSbAZDzmyF7tlPa3kJHA2UZGVlZRg3blyva+AICZFvaHUGHKhuNgYsJ87hQHUzdAbnP87DFBL6RSjRL9wYsPSLCMO5r7dh/3tLvNBrcldSUhKefPJJvPvuu2af3wqFAgaDwSuv6ck0EAxQPKCvvoAdDYbsTQ9ZGl60R96Kd++995qmg3pyd1qLiPpGp06Pek0najWXUKe5hNrmDtRpLqGuuQN1mg60a3W4pNXjklaPi1166G0EMx1V36D+g+f6sPfk7zz1XcAAJcA4Ggx5a2TH29NaRORfhBDo0gtjwNKlx0WtDhe1enR06XFRq0dbhxYP/eB7ON+ghnGdJZFRz9F0ZzFACWLeGtnhuhIi6s7agkt75L+0f/e736GoqAg1NTVe6iH5Qvf1iK5ggEIu4boSIuqupKQE/+///T+cO3fOofaW1s+9+uqrePHFF73ZTepDHEGxgwEKEVHf0Gq1UKlUDu10sTbq6uyifHfJGw+Sk5PR1NTkN3XWApkv1qD4tBbPypUrkZeXh6ioKIwePRpffvmlL7tDREQ9RERE4O2334YkSVZzrBQVFaGsrAyVlZUWp4QLCwtx+vRplJWVoaioCID1emZ33XWXzeOOUKlUKC4uxp/+9Ce3z9Xzy1ilUmHJkiWm6wgG9gIOR+oxeYX7eeFc8+GHH4qIiAjx5z//WRw+fFg8+uijIjExUdTX19t9rrcyyRIRkWWupM139VzWsqHay2SdlJQktm7dapYJ1dK5bN161h6ylWXV2XP3zLDd837Pfrz44os2s+PaunX//2Tt/1lRUZFD2XI9mQk8IDLJjh49Gt/73vfwv//7vwAAg8GAnJwcPPnkk3j22WdtPpdTPEREfc+T69TsncvScWuZrO3tOLSXLTY1NRWzZs1yOlVD93Nv2rSpV9I3lUqFRx991JSR1dFMsj1zVjmSgbxn0jd5ug2wnLDT1gYIb65H9Ps1KFqtFtHR0diwYQPuvvtu0+Nz5sxBc3MzNm3aZNa+s7MTnZ2dpvstLS3IyclhgEJEFGI8sePQW1/AfbnL0l7wYyvlvi83QPh9gFJbW4vs7Gzs2bMH+fn5psefeeYZ7NixA3v37jVr/9JLL2HJkt5ZDRmgEBGFHn/6wu0rwXLNzgQoYX3UJ7csWrQITz31lOm+PIJCREShR6lUurXVNRCF4jX7JEBJSUmBUqlEfX292eP19fXIyMjo1T4yMhKRkZF91T0iIiLyMZ9sM46IiMDIkSOxbds202MGgwHbtm0zm/IhIiKi0OSzKZ6nnnoKc+bMwahRo/D9738fy5cvR3t7Ox5++GFfdYmIiIj8hM8ClB//+MdobGzE4sWLoVarceONN+LTTz9Fenq6r7pEREREfoKp7omIiKhPBEyqeyIiIiJLGKAQERGR32GAQkRERH6HAQoRERH5HQYoRERE5HcCItV9T/LGo5aWFh/3hIiIiBwlf287soE4IAOU1tZWAGA9HiIiogDU2tqKhIQEm20CMg+KwWBAbW0t4uLiIEmSR84pFyCsrq4O2twqwX6NwX59AK8xWPAag0OwX6M3rk8IgdbWVmRlZUGhsL3KJCBHUBQKBVQqlVfOHR8fH5S/aN0F+zUG+/UBvMZgwWsMDsF+jZ6+PnsjJzIukiUiIiK/wwCFiIiI/A4DlMsiIyPx4osvIjIy0tdd8Zpgv8Zgvz6A1xgseI3BIdiv0dfXF5CLZImIiCi4cQSFiIiI/A4DFCIiIvI7DFCIiIjI7zBAISIiIr8T0gHK66+/DkmSUFRUZHqso6MD8+bNQ3JyMmJjYzFjxgzU19f7rpNusnSN48aNgyRJZrfHHnvMd5100ksvvdSr/8OGDTMdD4afob1rDPSfIQDU1NRg9uzZSE5ORr9+/TBixAjs37/fdFwIgcWLFyMzMxP9+vXDxIkTcfz4cR/22Hn2rvEnP/lJr5/jnXfe6cMeOycvL69X/yVJwrx58wAEx3vR3jUGw3tRr9fjhRdewMCBA9GvXz8MHjwYr7zyilm9HF+8HwMyk6wn7Nu3D3/84x9x/fXXmz2+YMEC/POf/8T69euRkJCAJ554AoWFhdi9e7ePeuo6a9cIAI8++ihefvll0/3o6Oi+7Jrbrr32WmzdutV0Pyzsyq9ysPwMbV0jENg/wwsXLmDMmDEYP348PvnkE6SmpuL48ePo37+/qc2bb76Jt956C2vWrMHAgQPxwgsvYPLkyThy5AiioqJ82HvHOHKNAHDnnXfivffeM90PpC2r+/btg16vN90/dOgQfvCDH+Cee+4BEBzvRXvXCAT2exEA3njjDaxatQpr1qzBtddei/379+Phhx9GQkICfvGLXwDw0ftRhKDW1lYxZMgQsWXLFnH77beL+fPnCyGEaG5uFuHh4WL9+vWmtkePHhUARHl5uY966xpr1yiE6HU/0Lz44ovihhtusHgsWH6Gtq5RiMD/GS5cuFDcdtttVo8bDAaRkZEhfvOb35gea25uFpGRkeKDDz7oiy66zd41CiHEnDlzxPTp0/umQ31g/vz5YvDgwcJgMATNe7Gn7tcoROC/F4UQYtq0aeKnP/2p2WOFhYVi1qxZQgjfvR9Dcopn3rx5mDZtGiZOnGj2eEVFBbq6usweHzZsGAYMGIDy8vK+7qZbrF2j7P3330dKSgquu+46LFq0CBcvXuzjHrrn+PHjyMrKwqBBgzBr1ixUVVUBCK6fobVrlAXyz/Cjjz7CqFGjcM899yAtLQ033XQT3nnnHdPxyspKqNVqs59jQkICRo8eHTA/R3vXKNu+fTvS0tIwdOhQPP744zh//rwPeus+rVaLtWvX4qc//SkkSQqq96Ks5zXKAvm9CAC33nortm3bhu+++w4A8PXXX+Pf//43pkyZAsB378eQm+L58MMP8dVXX2Hfvn29jqnVakRERCAxMdHs8fT0dKjV6j7qoftsXSMAPPDAA8jNzUVWVha++eYbLFy4EMeOHUNJSUkf99Q1o0ePxurVqzF06FDU1dVhyZIlKCgowKFDh4LmZ2jrGuPi4gL+Z3jq1CmsWrUKTz31FJ577jns27cPv/jFLxAREYE5c+aYflbp6elmzwukn6O9awSM0zuFhYUYOHAgTp48ieeeew5TpkxBeXk5lEqlj6/AORs3bkRzczN+8pOfAAiez9Puel4jEPifpwDw7LPPoqWlBcOGDYNSqYRer8err76KWbNmAYDP3o8hFaBUV1dj/vz52LJlS0DMYbvCkWucO3eu6d8jRoxAZmYmJkyYgJMnT2Lw4MF91VWXyVE9AFx//fUYPXo0cnNz8fe//x39+vXzYc88x9Y1PvLIIwH/MzQYDBg1ahRee+01AMBNN92EQ4cO4e233zZ9eQc6R67xvvvuM7UfMWIErr/+egwePBjbt2/HhAkTfNJvV7377ruYMmUKsrKyfN0Vr7F0jYH+XgSAv//973j//fexbt06XHvttThw4ACKioqQlZXl0/djSE3xVFRUoKGhATfffDPCwsIQFhaGHTt24K233kJYWBjS09Oh1WrR3Nxs9rz6+npkZGT4ptNOsneN3Rd7yUaPHg0AOHHiRF931yMSExNx9dVX48SJE8jIyAj4n6El3a/RkkD7GWZmZmL48OFmj11zzTWmaSz5Z9Vzx0cg/RztXaMlgwYNQkpKSsD8HGVnzpzB1q1b8bOf/cz0WLC9Fy1doyWB9l4EgKeffhrPPvss7rvvPowYMQIPPvggFixYgKVLlwLw3fsxpAKUCRMm4ODBgzhw4IDpNmrUKMyaNcv07/DwcGzbts30nGPHjqGqqgr5+fk+7Lnj7F2jpWHjAwcOADB+oAaitrY2nDx5EpmZmRg5cmTA/wwt6X6NlgTaz3DMmDE4duyY2WPfffcdcnNzAQADBw5ERkaG2c+xpaUFe/fuDZifo71rtOTs2bM4f/58wPwcZe+99x7S0tIwbdo002PB9l60dI2WBNp7EQAuXrwIhcI8HFAqlTAYDAB8+H702vLbANFzBfZjjz0mBgwYID7//HOxf/9+kZ+fL/Lz833XQQ/ofo0nTpwQL7/8sti/f7+orKwUmzZtEoMGDRJjx471bSed8N///d9i+/btorKyUuzevVtMnDhRpKSkiIaGBiFEcPwMbV1jMPwMv/zySxEWFiZeffVVcfz4cfH++++L6OhosXbtWlOb119/XSQmJopNmzaJb775RkyfPl0MHDhQXLp0yYc9d5y9a2xtbRW//OUvRXl5uaisrBRbt24VN998sxgyZIjo6Ojwce8dp9frxYABA8TChQt7HQuG96IQ1q8xGN6LQhh3k2VnZ4vS0lJRWVkpSkpKREpKinjmmWdMbXzxfmSA0iNAuXTpkvj5z38u+vfvL6Kjo8WPfvQjUVdX57sOekD3a6yqqhJjx44VSUlJIjIyUlx11VXi6aefFhqNxreddMKPf/xjkZmZKSIiIkR2drb48Y9/LE6cOGE6Hgw/Q1vXGAw/QyGE+Pjjj8V1110nIiMjxbBhw8Sf/vQns+MGg0G88MILIj09XURGRooJEyaIY8eO+ai3rrF1jRcvXhSTJk0SqampIjw8XOTm5opHH31UqNVqH/bYeZ999pkAYPFnEwzvRSGsX2OwvBdbWlrE/PnzxYABA0RUVJQYNGiQ+NWvfiU6OztNbXzxfpSE6JYqjoiIiMgPhNQaFCIiIgoMDFCIiIjI7zBAISIiIr/DAIWIiIj8DgMUIiIi8jsMUIiIiMjvMEAhIiIiv8MAhYiIiPwOAxQiIiLyOwxQiIiIyO8wQCEiIiK/wwCFiIiI/M7/B1Ra7TVK0ZztAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -2803,7 +5894,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 516, "id": "264a9891-423c-479a-8906-c048aac2fd2e", "metadata": {}, "outputs": [ @@ -2812,30 +5903,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 133.6 (χ²/ndof = 1.1) Nfcn = 232 FCN = 137 (χ²/ndof = 1.2) Nfcn = 226
EDM = 3.64e-06 (Goal: 0.0002) EDM = 1.24e-06 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -2852,8 +5940,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2863,7 +5951,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2874,7 +5962,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2885,8 +5973,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2896,7 +5984,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2907,8 +5995,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2918,8 +6006,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2929,8 +6017,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2954,7 +6042,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2963,11 +6051,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2976,7 +6064,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2984,21 +6072,21 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3007,11 +6095,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3020,7 +6108,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3031,66 +6119,1146 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - "
0 A_p1 345 6 348 7
1 A_p2 572 584 7
2 mu_p1 53.47 53.51 0.04
3 mu_p2 60.652 0.032 60.605 0.031
4 sigma_p1 2.138 2.085 0.034
5 sigma_p2 2.710 0.027 2.666 0.026
6 A_bkg 108 12 137 15
7 tau_bkg 39.9 3.0 34.9 2.3 0 0 0 0 0.000 0e-3 0 0 0
A_p2 0 50 55.2 0 0.0065 (0.029) 0.7e-3 (0.003) 0 -112.0e-3 (-0.586) -110.5e-3 (-0.563) 0 0
0 0 0 0.000 0e-3 0 0 0
mu_p2 0.000 0.0065 (0.029) 0.000 0.00103 0.000 -0.2e-3 (-0.217) 0.000 0.000 0e-3 0.7e-3 (0.003) 0e-3 0.000983 0e-3 -0.2e-3 (-0.210) 0e-3 0e-3
sigma_p1 0 0 0 0.000 0e-3 0 0 0
sigma_p2 0 -112.0e-3 (-0.586) -110.5e-3 (-0.563) 0 -0.2e-3 (-0.217) -0.2e-3 (-0.210) 0 0.00073 0.000697 0 0
0 0 0 0.000 0e-3 0 0 0 0 0 0 0.000 0e-3 0 0 0 0
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:50.691377\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 133.6 (χ²/ndof = 1.1) │ Nfcn = 232 │\n", - "│ EDM = 3.64e-06 (Goal: 0.0002) │ │\n", + "│ FCN = 137 (χ²/ndof = 1.2) │ Nfcn = 226 │\n", + "│ EDM = 1.24e-06 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 345 │ 6 │ │ │ │ │ yes │\n", - "│ 1 │ A_p2 │ 572 │ 7 │ │ │ │ │ │\n", - "│ 2 │ mu_p1 │ 53.47 │ 0.04 │ │ │ │ │ yes │\n", - "│ 3 │ mu_p2 │ 60.652 │ 0.032 │ │ │ │ │ │\n", - "│ 4 │ sigma_p1 │ 2.138 │ 0.034 │ │ │ │ │ yes │\n", - "│ 5 │ sigma_p2 │ 2.710 │ 0.027 │ │ │ │ │ │\n", - "│ 6 │ A_bkg │ 108 │ 12 │ │ │ │ │ yes │\n", - "│ 7 │ tau_bkg │ 39.9 │ 3.0 │ │ │ 0 │ │ yes │\n", + "│ 0 │ A_p1 │ 348 │ 7 │ │ │ │ │ yes │\n", + "│ 1 │ A_p2 │ 584 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.51 │ 0.04 │ │ │ │ │ yes │\n", + "│ 3 │ mu_p2 │ 60.605 │ 0.031 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 2.085 │ 0.034 │ │ │ │ │ yes │\n", + "│ 5 │ sigma_p2 │ 2.666 │ 0.026 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ yes │\n", + "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ yes │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 0 0 0 0.000 0 0 0 0 │\n", - "│ A_p2 │ 0 50 0 0.0065 0 -112.0e-3 0 0 │\n", - "│ mu_p1 │ 0 0 0 0.000 0 0 0 0 │\n", - "│ mu_p2 │ 0.000 0.0065 0.000 0.00103 0.000 -0.2e-3 0.000 0.000 │\n", - "│ sigma_p1 │ 0 0 0 0.000 0 0 0 0 │\n", - "│ sigma_p2 │ 0 -112.0e-3 0 -0.2e-3 0 0.00073 0 0 │\n", - "│ A_bkg │ 0 0 0 0.000 0 0 0 0 │\n", - "│ tau_bkg │ 0 0 0 0.000 0 0 0 0 │\n", + "│ A_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ A_p2 │ 0 55.2 0 0.7e-3 0 -110.5e-3 0 0 │\n", + "│ mu_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ mu_p2 │ 0e-3 0.7e-3 0e-3 0.000983 0e-3 -0.2e-3 0e-3 0e-3 │\n", + "│ sigma_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ sigma_p2 │ 0 -110.5e-3 0 -0.2e-3 0 0.000697 0 0 │\n", + "│ A_bkg │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ tau_bkg │ 0 0 0 0e-3 0 0 0 0 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 125, + "execution_count": 516, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbJUlEQVR4nO3deXiTZbo/8O/bdKM7XdM2hQIiO4igULEIUkGBOTihrqDoMKAeVIozjOIoLjOKo79zBOd4QB1HmVHgSImiDC6ABQpUhCoOAiJLsaXQlgJN20C35Pn9ERObNs3WJG+W7+e6cl0k75PkfmmWO892S0IIASIiIiIfEiJ3AEREREQdMUEhIiIin8MEhYiIiHwOExQiIiLyOUxQiIiIyOcwQSEiIiKfwwSFiIiIfA4TFCIiIvI5oXIH4AqDwYAzZ84gNjYWkiTJHQ4RERE5QAiBhoYGZGRkICTEdh+JXyYoZ86cQVZWltxhEBERkQsqKiqgUqlstvHLBCU2NhaA8QTj4uJkjoaIiIgcUV9fj6ysLPP3uC1+maCYhnXi4uKYoBAREfkZR6ZncJIsERER+RwmKERERORzmKAQERGRz2GCQkRERD6HCQoRERH5HCYoRERE5HOYoBAREZHPYYJCREREPocJChEREfkcJihERETkc5igEBERkc9hgkJEREQ+hwkKERER+RwmKEQkO51OB0mSIEkSdDpdp+tEFHyYoBAREZHPYYJCREREPocJChEREfkcJihERETkc5igEJHP46RZouDDBIWIiIh8DhMUIiIi8jlMUIiIiMjnMEEhItnp9Xrzv3fu3ImWlhaL6+2PE1FwYIJCRLLSaDQYPHiw+frUqVORnJxscb39cSIKDqFyB0BEwUuj0SA/Px9CCIvbDQaDxfUzZ854Mywi8gHsQSEiWej1eixcuLBTcmJN+zYc7iEKDk4nKJWVlZg9ezaSkpLQo0cPDBs2DPv37zcfF0Jg6dKlSE9PR48ePZCXl4djx45ZPMaFCxcwa9YsxMXFISEhAXPnzkVjY2P3z4aI/EZxcTFOnz7t9P1WrlzJJIUoCDiVoFy8eBHjxo1DWFgYPv30Uxw+fBj/9V//hZ49e5rbvPzyy3jttdewatUq7N27F9HR0ZgyZQqamprMbWbNmoVDhw5hy5Yt2LRpE3bu3In58+e776yIyOedPXvWpfs98cQTyM7OhkajcXNERORLJOFI/+rPnnjiCezevRvFxcVWjwshkJGRgd/97nf4/e9/DwDQarVIS0vDu+++izvvvBNHjhzB4MGDsW/fPowePRoA8Nlnn2Hq1Kk4ffo0MjIy7MZRX1+P+Ph4aLVaxMXFORo+EfmQ7du3Y+LEiS7dV5IkAEBhYSHUarU7wyIiD3Lm+9upHpSPP/4Yo0ePxm233YbU1FSMHDkSb731lvl4WVkZqqqqkJeXZ74tPj4eY8aMQUlJCQCgpKQECQkJ5uQEAPLy8hASEoK9e/c6Ew4R+bHc3FyoVCpzsuEM0++qgoICDvcQBSinEpSTJ09i5cqV6N+/Pz7//HM89NBDePTRR7F69WoAQFVVFQAgLS3N4n5paWnmY1VVVUhNTbU4HhoaisTERHObjpqbm1FfX29xISL/plAosGLFCgBwOUmpqKjoskeXiPybUwmKwWDA1VdfjRdffBEjR47E/PnzMW/ePKxatcpT8QEAli1bhvj4ePMlKyvLo89HRN6hVqtRWFjYaWhXoVA4/BiuzmUhIt/mVIKSnp7eacOkQYMGoby8HACgVCoBANXV1RZtqqurzceUSiVqamosjre1teHChQvmNh0tWbIEWq3WfKmoqHAmbCLyYWq1GocPHzZf37x5M86dO+fw/dPT0z0RFhHJzKkEZdy4cTh69KjFbT/++CN69+4NAOjTpw+USiW2bdtmPl5fX4+9e/ciJycHAJCTk4O6ujqUlpaa23z55ZcwGAwYM2aM1eeNiIhAXFycxYWIAkf7HpPx48cjPDzceEWy/REVGpeMtpQBngyNiGTiVIKyaNEifPXVV3jxxRdx/PhxrFmzBm+++SYWLFgAwDiOXFBQgD//+c/4+OOPcfDgQdx7773IyMjArbfeCsDY43LzzTdj3rx5+Prrr7F79248/PDDuPPOOx1awUNEwUEKDUfChPutH/t5zkrPG+dj0Qf/RsWFS94MjYi8wKkE5ZprrsGHH36ItWvXYujQofjTn/6E5cuXY9asWeY2f/jDH/DII49g/vz5uOaaa9DY2IjPPvsMkZGR5jbvv/8+Bg4ciEmTJmHq1Km4/vrr8eabb7rvrIjI7/W8cR7ir/01+tz5NJTplj9eVCoVPli/HrmTp6GhuQ0L132LNr2hi0ciIn/k1D4ovoL7oBAFFp1Oh5iYGABAY2Mjviq7iLnvfQchDPjb7KswprdxgjxgnKMyefJkKBQKVFy4hKmvFaOhqQ1PTh2I+eP7yXkaRGSHx/ZBISLyNIMQ+O9tJwAADd9sxnV9EzvNUWlqaoIkSeiVFI3Fecak5H+3n0BDU6ssMROR+zFBISKf8vnhczh0thGG5kvQ7llrt/2MEWnomxKNukut+FtxmRciJCJvYIJCRL5DCsGKopMAgPqvNTBc0tq9S2hICB676UoAwNu7ynBR1+LREInIO5igEJHsoqOjIYTAx99WoOJiE3pGhaHyy39CCIHo6Gi79586NB0DlbFobG7D+lLuk0QUCJigEJFPEEJg1Q7j3JM512UjOiLUofvpdDooFCHY/e6LAIA1e8thMPjd3H8i6oAJChH5hF3Ha3HoTD16hCkwJyfb6fvrDm9HTIQCp85fwu4Tte4PkIi8igkKEfmEN3YY557ccU0WekaHO31/0dqM/xhuLJfx3lc/uTU2IvI+JihEJLuDp7XYdbwWihAJc6/v0+m4aY6KaU6KXq83H9u9e7f533dcbdzQbeuRGpxvbPZ84ETkMUxQiEh2q3Ya5578ang6shKjbLbVaDQWRUvVarX531ekRmNIRhz0BoHPD1VbuzsR+QkmKEQkq5/O6/DpwbMAYHcnWI1Gg/z8fFRWVlo9vnHjRkwfbuxF2fTvM+4NlIi8igkKEcnqreKTMAjghitTMDij662v9Xo9Fi5cCFvVOR5//HHc0Me4Zf7uYzX4qfqi2+MlIu9ggkJEXqHT6SBJEiRJgk6nAwDUNjZj/f7TAIAHb7Dde1JcXIzTp0/bbHP69Gn8dPgbNJ85CilEgS+OnHNP8ETkdUxQiEg2q/ecQnObASOyEjC2b6LNtmfPnnXoMc+cOQPdD8UAgC+O1HQ7RiKSBxMUIpKFrrkN/ygxLgd+cHxfSJJks316erpDj/vEE09Ad6gIAPBNuRbayywgSOSPmKAQkSzWfl0O7eVW9EmOxuQhSrvtc3NzoVKp7CYy58+fh+GSFtr9G6EXwNaDpzsNLRGR72OCQkRe16I34O1dxsrD88f3hSLEdtIBAAqFAitWrLDbzjSJVrtrDYRBj53Hz3cvWCKSBRMUIvK6j76pwFltE/SNFzFlQILD91Or1SgsLERycrLdtqJZh+bTh7DrxAUA9hMgIvItTFCIyMsk/HNfFQCgfv9GRIQqnLq3Wq3GX/7yF4fahjVrcV7XivD0/k5HSUTyYoJCRF5h2p4+LLUPDn+7F/rLjWg48KlLj+XohFlVRDOEQY8efUe79DxEJB/H6pkTEXWDRqPBo48+CgBorTmJ6rVPQoqIgmi+5NLjjRs3zqF2X61dDkXse4i56maXnoeI5MMeFCLyqK62pzclJxs3bnT6MRWKX4aF7K3q0TfUQlv8HqDg7zEif8IEhYg8xtHt6dtXJ3aWUml/iTIAwCCwffv2bj0XEXkPExQi8hhHt6cvLi52+TlKS0sdayj0mD59OrKzs6HRaFx+PiLyDiYoROQxjm5P31V1Yke0H+5x9Lny8/OZpBD5OCYoROQxjq62WbRokdcSBtNwU0FBAYd7iHwYExQi8gidToeJEyf+fM32RNba2lqnejWio6MhhIAQAtHR0ebb7U2YNRFCoKKioltDS0TkWUxQiMizQiMAdD1JFnBvr4ajSQrg+BAUEXkfExQi8qi4Ub9Cyq1PIiw63mY7d/RqvPfee8jIyHC4vaNDUETkfUxQiMhzFGGIGz0DUQOuw7zfLXXoLt3p1ZgxYwYOHz5st50kScjKykJubq7Lz0VEnsUEhYg8JmbojVDE9IQyLgI3XzvQofs426vRcT5Kx03cOg75mK4vX77c6RVAROQ9TFCIyCP0BoG4a9UAgHvHqHBD7vU223uiV8PakE/PFCUKCwuhVqvd9jxE5H7c+5mIPGLb0VqEJWZCf7kB+Vend+rZaL+7rKd6NWbMmIHp06cjPj4ePfrnIG70r3Db9JugVrN4IJGvYw8KEbmdEAJv7ykHADR++y9Eh1v+Fuq4Pb1KpfJYr4Yp4REtlxDZazi+rah3+3MQkfsxQSEit/vq5AUcPF2HSydLod27ATt37rRYPtx+e/rNmzejrKzM40MuzWd/hATg9MXLUMT0hCRJ0Ol0Hn1OInIdh3iIyO2W/PffUPnP/wd9Qy0AYOrUqcjMzDQfbz+MM378eK9MVhUtl9E/NRo/1ugQkTEIl4+VePw5ich17EEhIrd67e33sON/nzAnJyZnzpzxyvN3tcssAFyligMARGQ6tqKIiOTDBIWI3Eav1+OPf/id1WNCCPNKncjISC9HZjRCZdwsjgkKke9jgkJEbrPhX1vQeKGmy+Om3WJ3797txah+MdLUg6LsD4RwhJvIlzFBISK3+b+dBx1qV1VV5eFIrOuV2AM9o8IghYYjPK2vLDEQkWOYoBCRW1zUtWBfte2igCYdlxl7Uvs5KTExMRieyXkoRP6ACQoRucXqklOQ0gciMiGly4rCpjko48aN83J0vxiRHo2m8n8DQnRa/kxEvoMJChF126WWNqzecwpSiAIFT78IADZr4MTFxXW50saTNBoNXvrNFFSvfRINpZ9g6tSpyM7Ohkaj8VoMROQYJihE1G3r95/GxUutyErsgT8t/A0KCws71cDx5G6xjtBoNMjPz8e5astqyZWVlcjPz2eSQuRjnEpQnn32WXN1UNNl4MBfxnGbmpqwYMECJCUlISYmBjNnzkR1dbXFY5SXl2PatGmIiopCamoqFi9ejLa2NvecDRF5XZvegLeKTwIA5uf2RagiBGq1GocPHza38dZusV3R6/VYuHChRf0fE9NtBQUFHO4h8iFO96AMGTIEZ8+eNV927dplPrZo0SJ88sknWL9+PXbs2IEzZ85YfCDp9XpMmzYNLS0t2LNnD1avXo13330XS5cudc/ZEJHX/evgWZy+eBlJ0eG4bXSW+XY5dovtSnFxMU6fPt3lcdPy5+LiYi9GRUS2OL0RQGhoqNUZ+FqtFm+//TbWrFmDG2+8EQDwzjvvYNCgQfjqq68wduxYfPHFFzh8+DC2bt2KtLQ0XHXVVfjTn/6Exx9/HM8++yzCw8O7f0ZE5DVCCKzaYew9mXNdNiLD5EtCbDl79qz9Rk60IyLPc7oH5dixY8jIyEDfvn0xa9YslJcbK5aWlpaitbUVeXl55rYDBw5Er169UFJirHlRUlKCYcOGIS0tzdxmypQpqK+vx6FDh7p8zubmZtTX11tciEh+O4/V4sjZekSFK3BvTm+5w+lSenq6W9sRkec5laCMGTMG7777Lj777DOsXLkSZWVlyM3NRUNDA6qqqhAeHo6EhASL+6SlpZk3ZaqqqrJITkzHTce6smzZMsTHx5svWVlZXbYlIu9Ztf0EAODOa3ohTLSa56b5WpXg3NxcqFQqu8ufc3NzvRwZEXXFqQTllltuwW233Ybhw4djypQp2Lx5M+rq6vDBBx94Kj4AwJIlS6DVas2XiooKjz4fEdn3XUUdSk6eR2iIhLm5feQOxyaFQoEVK1YA6Lz8Ge2WP8s5T4aILHVrmXFCQgKuvPJKHD9+HEqlEi0tLairq7NoU11dbZ6zolQqO63qMV23tbNkREQE4uLiLC5EJK83dhp7T/5jRAYyE3rIHI19arXa6vLnxBSlrMufici6biUojY2NOHHiBNLT0zFq1CiEhYVh27Zt5uNHjx5FeXk5cnJyAAA5OTk4ePAgamp+KSa2ZcsWxMXFYfDgwd0JhYi8qKxWh0+/Nw7LPnBDP6tt2m8x783N2Gxpv/y5x5XXIe2uF3Hvik1MToh8kFMJyu9//3vs2LEDp06dwp49e/DrX/8aCoUCd911F+Lj4zF37lw89thjKCoqQmlpKe6//37k5ORg7NixAIDJkydj8ODBuOeee/Ddd9/h888/x1NPPYUFCxYgIiLCIydIRO73VvFJCAFcOv41BqbH+dycE1vMwziGNkT2Go4jVY3yBkREVjm1zPj06dO46667cP78eaSkpOD666/HV199hZSUFADAq6++ipCQEMycORPNzc2YMmUK/vd//9d8f4VCgU2bNuGhhx5CTk4OoqOjMWfOHDz//PPuPSsi8piahiYUlhr3FKnfu0HmaFzXUm0cojpW04imVr3PLpEmClZOJSjr1q2zeTwyMhKvv/46Xn/99S7b9O7dG5s3b3bmaYnIh7y7+xRa2gwYkRmHn053vT2Ar9M3nEdiVBguXGrFD1UNuCorQe6QiKgd1uIhIoc1Nrfhn1/9BACYe53lcv/228T7S5XgQekxAIDvK7UyR0JEHTFBISKHrd1bjoamNvRNicbEAcnm2zdu3Ggx0d1fqgQPVsYCAA6dYYJC5GuYoBCRQ1raDHh7VxkA4IHxfRHSbj+R2bNno7Ky0qK9P1QJHqQ09aAYd6fW6XQ+u9kcUbBhgkJEDvnoQCWq6puQGhuBW0dmWhzzpyrB7Zc/j+qbCgA4WtWAVr1B5siIqD0mKERkl8Eg8OZOY1HA31zfBxGhCoeSDl+vEtwrMQqxkaFo0RtwrJrLjYl8CRMUIrJr2w81OF7TiNiIUNw9phc0Go1Tmyv6apVgSZIwON24MzXnoRD5FiYoRGTXqh3GPUNmje2NrZs/QX5+fqc5J7b4cpXggT9PlD1Wwx4UIl/i1D4oRBR89p+6gNKfLiJcEYI5Y7Nw7fCbrM45sUaSJKhUKp+uEjxAaexB+aGqQeZIiKg99qAQkU2m3hP11Zk4+t0+nD592qH7SX5SJbhXvPF32pelR1BfX2++3V/2ciEKVExQiKhLP1Y3YOuRGkgSMH98X6fmkqhUKr+oEnxFirGQYcuZH3H1qFHm2/1lLxeiQMUEhYi6ZFq5M2WwEn1TYhyeS/LSSy+hrKzM55MTAIiNDEXDgU9x7qMXUdUhAfOHvVyIAhUTFCKy6qz2MjYeME6EfeCGvgCA3NxcqFQq8/BNVx566CGfHtZpT6/Xo27nP60e89W9XIiCARMUIrLq7eIytOoFxvRJxMhePQEYK5KvWLECADolKe2v+0tyAgC7d++G4XJ9l8d9fS8XokDFBIWIOtFeasXar8sBAA9O6GdxTK1Wo7CwEBkZGRa3Z2Za7i7rL6qqqhxq56t7uRAFKiYoRNTJe3t/gq5Fj4HKWEy4MqXTcbVajcOHD5uvb968GYcOHfJmiG6jVCodaufLe7kQBSLug0JEFppa9Xhn989FAW/o2+V8k/bDOOPHj/dKbJ4wduxYm8f9YS8XokDEHhQislBYehq1jS3ITOiB6cMz7N/Bj2k0GgwbNqzL4/6ylwtRIGIPChGZ6Q0CbxUblxbPvb4PwhSO/4YxVQn2FxqNBvn5+TZjVqlUWL58uV8slyYKNExQiMjss++r8NP5S0iICsOd12bJHY7H6PV6LFy40GZykpycjOPHjyM8PNyLkRGRCYd4iAiAcTmtaVv7e3OyERUeuL9fiouL7W7ZX1tbiz179ngpIiLqiAkKEQEASk6cx8FKLSLDQjAnp7fc4XiUo0uGubSYSD6B+xOJiJyy8ufek9tHZyEpJsJue3+bc9Keo0uGubSYSD7sQSEifF+pRfGxWihCJMzL7St3OB7nyJb9XFpMJC8mKERkLgo4bVg6shKjZI7G82xt2W/yl7/8hUuLiWTEBIUoyFVcuIRN/z4DAJg/PvB7T0y62rJfEZuM2NG3YsaMGTJFRkQA56AQBb23ik/CIIDc/skYmhkvdzhepVarkZeXh/h443n/5a11eP3HHhiQHo/o6GiZoyMKbuxBIQpi5xub8cH+CgDAQzf0s9M6MLUfxlFPzYMUosDJczq0tBlkjIqImKAQBbHVJT+hqdWAYZnxyOmXJHc4slPGRSA2IhRtBoGTtY1yh0MU1JigEAWpSy1t+EfJKQDAgzf0s7miJVhIkoQrlbEAgKNVDTJHQxTcmKAQBan/21eBukutyE6Kws1DlXbb63Q6SJIESZKg0+m8EKE8BjBBIfIJTFCIglCr3oC/FZcBAOaN7wtFCHtPTAakGROUH6uZoBDJiat4iILQpn+fQWXdZSTHhGPm1Sq5w5FVxx1xr0xrAgAcZYJCJCv2oBAFGSEE3thh3Jjt/nF9EBnGzcjaMw3xVFy4DF1zm8zREAUvJihEQWb7j+fwQ1UDosMVmD0msIsCuiIxOhwpscZaRBzmIZIPExSiILNqu7Eo4F3X9kJ8VJjM0fgmzkMhkh8TFKIg8m35Rewtu4AwhYS5uX2cuq9erzf/e+fOnRbXA82VaaaVPNwLhUguTFCIgohp7smMqzKRHt/D4ftpNBoMHjzYfH3q1KnIzs6GRqNxe4y+YKCSPShEcmOCQhQkTpxrxOeHqwAADzhRFFCj0SA/Px+VlZUWt1dWViI/Pz8gkxTTZm0/cC8UItkwQSEKEm/tPAkhgLxBqej/8xCGPXq9HgsXLrRYhmtiuq2goCDghnv6p8YAAGobm3G+sVnmaIiCExMUoiBQU98EzTfGHpAHnSgKWFxcjNOnT3d5XAiBiooKFBcXdztGXxIdEYpeiVEAgB+rOQ+FSA5MUIiCwN93n0KL3oBRvXtidHaiw/c7e/asW9v5k18mytbLHAlRcGKCQhTg6pta8f5XPwFwrvcEANLT093azp8MUBqHeY6yB4VIFkxQiALc2r3laGhuQ//UGEwamOrUfXNzc6FSqbqsdCxJErKyspCbm+uOUH3KldwLhUhW3UpQXnrpJUiShIKCAvNtTU1NWLBgAZKSkhATE4OZM2eiurra4n7l5eWYNm0aoqKikJqaisWLF6OtjVtKE7lbc5seb+8yFgWcP74vQpwsCqhQKLBixQoA6JSkmK4vX74cCkXgbZc/UBkHANj34+mAr+BM5ItcTlD27duHN954A8OHD7e4fdGiRfjkk0+wfv167NixA2fOnIFarTYf1+v1mDZtGlpaWrBnzx6sXr0a7777LpYuXer6WRD5GZ1OB0mSPP7F99G3lahpaIYyLhIzrsp0+v46nQ4zZ86EEAJKpdLimEqlQmFhocX7O5D0SY5GaIiEkIhoKGJT5A6HKOi4lKA0NjZi1qxZeOutt9CzZ0/z7VqtFm+//Tb++7//GzfeeCNGjRqFd955B3v27MFXX30FAPjiiy9w+PBhvPfee7jqqqtwyy234E9/+hNef/11tLS0uOesiAgGg8AbO40bs829vg/CQ7s3oltaWmr+9+bNm1FWVhawyQkAhIeGIDvJuJldeAprFhF5m0ufWAsWLMC0adOQl5dncXtpaSlaW1stbh84cCB69eqFkpISAEBJSQmGDRuGtLQ0c5spU6agvr4ehw4dsvp8zc3NqK+vt7gQkW1bjlTj5DkdYiNDcdeYXt1+vPbDOOPHjw/IYZ2O+qdEAwDCkrv//0dEzgl19g7r1q3DN998g3379nU6VlVVhfDwcCQkJFjcnpaWhqqqKnOb9smJ6bjpmDXLli3Dc88952yoREFLCIFVO4xFAe8Z2xsxEU6/1QlA35RoAOcQlpwldyhEQcepHpSKigosXLgQ77//PiIjIz0VUydLliyBVqs1XyoqKrz23ET+6OuyC/i2vA7hoSG4f5xzRQHpF9k9I9BU/m+01dcGfIFEIl/jVIJSWlqKmpoaXH311QgNDUVoaCh27NiB1157DaGhoUhLS0NLSwvq6uos7lddXW2eYKdUKjut6jFd7zgJzyQiIgJxcXEWFyLqmmnuSf4oFVJiI1x+nPZfyLt37+52XP5Eo9HgkV+PR/XaJ6Hd9X7AF0gk8jVOJSiTJk3CwYMHceDAAfNl9OjRmDVrlvnfYWFh2LZtm/k+R48eRXl5OXJycgAAOTk5OHjwIGpqasxttmzZgri4OItqqUSBrP0Xv7t/mR+tasCXP9RAkoB5uY4XBeyoYwXjQJ4Q25GpQGJ1leUOuYFcIJHI1ziVoMTGxmLo0KEWl+joaCQlJWHo0KGIj4/H3Llz8dhjj6GoqAilpaW4//77kZOTg7FjxwIAJk+ejMGDB+Oee+7Bd999h88//xxPPfUUFixYgIgI13/pEfmLjl/87v5l/sbPc09uGapEn+Rol2O0VsHYtDT6888/73acvipYCyQS+Rq37yT76quvYvr06Zg5cybGjx8PpVJp8cGrUCiwadMmKBQK5OTkYPbs2bj33nvx/PPPuzsUIp/T1Re/u36ZV9ZdxsffnQEAPDDeuW3tTYL9CzpYCyQS+RpJWPsU8nH19fWIj4+HVqvlfBTyG3q9HtnZ2V1++UmSBJVKhbKyMpeX8D7/yWH8fXcZcvomYe38sS49xvbt2zFx4kS77YqKijBhwgSXnsOXrV27FnfffbfddmvWrMFdd93lhYiIAocz39+sxUPkJZ7+ZV53qQXr9pUDAB6c4FrvCRDcFYyB4C6QSORLmKAQeYmnv/j/WfITLrXoMTg9DuP7J7v0GAC/oO0VSDS5+uqrvRQRUXBigkLkJZ784m9q1ePdPacAAA/c0Nful6stwVzBGHCsQKKpHRF5DhMUIi/x5Bf/+v0VOK9rgapnD0wb1r2ejWCuYGyiVqtRWFiIjIwMi9uT06zv1URE7scEhchLPPXF36Y34M1i48Zs83L7IlTR/bd1V1/QgV7BuD21Wo3Dhw8DAGJHz0DaXS/i2X9slTkqouDBBIXIi7r64s/MzIQQAjNnzoROp4NOpzPvOaLT6Ww+5qffV6HiwmX0jArD7aPdVzOm/Rc0EBwVjDsyJYshPWIR2Ws4yi42yRwRUfBggkLkZda++Luq5G1P+6KAc67LRo9w9w67BGMFY2taa42ro46fs50sEpH7MEEhkoG7vvh3Ha/FoTP16BGmwJycbLvtnemZoV+01hoLlB6vbjDfxuKBRJ7FBIXIj72xwzj35I5rstAzOlzmaAJX28VKXP5xD44sn2O+jcUDiTyLCQqRi+TujTh4Wotdx2uhCJEw9/o+Xn/+YCLaWlDz4YvQN9Ra3M7igUSewwSFyAOcTV46VjduaWmxuG5tKGHVTuPck18NT0dWYpQboqaOoqOj0dbWBpVKZfV4MNQmIpILExQimW3cuLFTdePk5GSL6x2HEn46r8OnB407zj5wg+vb2nfUMbGKjo6GEAJCCERHu1YZ2d+xeCCRPJigEMnA9MW/YcMGzJ49u1N1Y4PBYHG941DCW8UnYRDADVemYFC64wUzO/bU8Fe/fcFem4hILkxQiGSi1+uxcOFCOFJQvP1QQrX2EtbvN/6if9CJ3hONRtOpp4aTPO0L9tpERHJhgkLkImd6I6zNSbE3dNCRaSjh2TcL0dxmwIisBIztm2j3fqbnnjlzZqeeGk7ytC/YaxMRyYUJCpEL7PVGOJK8uDok8K+9RwAADzlYFNBW4sRJnva1L1HQUbDUJiKSAxMUIidpNBrk5+d32Rvxhz/8oVPy0v66iatDAi3hceiTHI2bBjtWuG737t02j7ef5Mk5KtaZShRE9Uy1uD2YahMReRsTFCIn2Jo3Ylrt8sorr3RKXs6cOdOpvb2hA2vC41MQoRqC+eP7QhHi2P2qqqocamdtNRHnqPxCrVZj8d8+Q9pdLyJ66KSgrE1E5E1MUIic4Oy8EZP2CY2pV8JWdeOuxE+ch+TYSNx93RUO77GiVDrW07J8+XLOUbGjvzIOkb2GI2bojUFdm4jIG5igEDnBHUtJV65caU5SuqpubO2LL2HiXEQNuA6zr1UB+laHn2/s2LF223T1Rcs5Kpb6pRg3xAtL6iVzJESBjwkKkRPcsZT0iSeesBg6sVbd+Ny5c+brGo0GEdkjEX/tr9EjLAR3jMro9Jhd0Wg0GDZsWJfHTT039ibSciMyo77JxgRFEdMTdZccTxKJyHlMUIic4Mq8EWs6Dp10rG4cHv5L4b9x48Yhfkw+ACD/6gzE9whz6Dm6mszbnkqlQkFBgUOPx43IgOjwULRpqwEAJ2pZDZrIk5igEDnBlXkj1jgzdPL9mXpIIRIaDxVhgP6UQ0MtjmwCl5ycjOPHj2PGjBkOxcyNyIw7AOddOxQAUFHfJnM0RIGNCQqRk7qaN5KVlYXFixebN2Szx9Ghk/+4cRyq1z6J85v+C/fcdisGDRpkPtbVUmBHJvPW1tZiz5493IjMSf1TYwAAx6obZY6EKLAxQSFygbV5I99//z1eeeUVCCEcXjkD2B860V2ssbjefsmytaXAOp0OEydOdPi5bfUKcSOyzvqnxgIAjtcwQSHyJCYoRC7qOG+k/fXS0lKHHyc9Pb1T1eDIyEioVCqH7t+dpcCmYZuueoW4EVlnV6T93INS0yBzJESBjQkKkQe0T1ZcGTpxZr8VW/NZbA01qVQqi+e21ivEjcg6Mw3xVNc3Q3uZK3mIPIUJCpEXODt04uyKGVvzWaw9tyRJWLFiRafnttUrREaxkWFIj48EABxnLwqRxzBBIXKQtYrEjnjvvfecHjpJTE61ers9Z8+etehFefLJJzutvuGwTfddwYmyRB7HBIXIRR3njbRPDNoX6JsxY4bTQydVPbKhiE12OqZjx45Z1NN54YUXLI5z2MY9TBNlj3GiLJHHMEEhcgONRmORGKjVaqhUKmzYsAHR0dFODZ206Q14e085EifNB+DYkmVJkpCUlIRnn32208Zs7YeLOGzjHv3NE2WZoBB5ChMUom7qasdWV1fXfHaoCuUXLiFz5A1Y838fdBoe6kiSJPNE2a6qLJvY2+StY68QWXflzwnK8WrOQSHyFCYoRN1ga8dWVwrtCSHwxo6TAIB7c7Jx1+35FsNDf/zjHzslLJmZmQCA8+fP23389kNP5LorUoxDPGe0TWho4koeIk9ggkLkoPZJhmkHV3vLgU2raxxNDEpOnsfBSi0iw0Jwb05vAJYra5YsWYIjR46Yr2/evBmHDh1y+Byqqqocbktdi48KQ2psBABu2EbkKUxQiBzQcY6JaQfXjRs3OnT/uro6h4ZOTL0nt4/OQlJMhNU23VkK3KdPH4fbkm3meShcyUPkEUxQiOywNcdk+fLlDj2GI4X2jpytx44fzyFEAn57fV9XQmU9HS/6ZSUP56EQeQITFCIbHJljolAo3JIYvLXT2Htyy7B09EqKcirG9jGxno53XJlmTFCOsgeFyCOYoBDZ4MiW83q9vtuJQWXdZXz8nbEI4APjLXtPbK2s2bhxo8XQU/vnNeHGbJ4xQGka4mEPCpEnMEEhssHRLecLCgq6VWjv77vK0GYQyOmbhOGqBJttTQnLhg0bMHv27E5DTwaDwfxvbszmOVf8PMRzVtvEmjxEHsAEhcgGR+aOAK7tFmuivdSKdV+XAwAeuMGxuSe2hp7aGzduHId1PCS+B2vyEHkSExQiG3Jzc6FSqRyaY+Lq6pr39v4EXYseA5WxuOHKFIfu42i1Y+574ln9TfNQqjgPhcjdmKAQ2aBQKLBixQoAzlckdkRTqx7v7D4FwNh74si29oDjQ0/c98SzBvy81PhHzkMhcjsmKER2qNVqFBYWdmuOSVc+/LYStY3NyIiPxPThtre0b8/RoSelUmnzuKsVmsnI1IPCBIXI/ZxKUFauXInhw4cjLi4OcXFxyMnJwaeffmo+3tTUhAULFiApKQkxMTGYOXMmqqurLR6jvLwc06ZNQ1RUFFJTU7F48WK0tbW552yIPEStVrs8x6QrBoMwLy3+zfV9EKZw/O3o6NDT5MmTXY6P7BtgTlA4xEPkbk4lKCqVCi+99BJKS0uxf/9+3HjjjZgxY4Z5q+1Fixbhk08+wfr167Fjxw6cOXPG4gNcr9dj2rRpaGlpwZ49e7B69Wq8++67WLp0qXvPisgD7M0xcbbQ3pYj1ThZq0NcZCjuvLaX07F4cuiJHHNFqnGIp7axGRd0LTJHQxRgRDf17NlT/O1vfxN1dXUiLCxMrF+/3nzsyJEjAoAoKSkRQgixefNmERISIqqqqsxtVq5cKeLi4kRzc7PDz6nVagUAodVquxs+kcMaGxsFAAFANDY2dvvxfv36LtH78U3iL58ecfkxNmzYIDIzM81xARBZWVliw4YNDt3f3ecUbBobG0XGA38TvR/fJIoOnZY7HCKf58z3t8tzUPR6PdatWwedToecnByUlpaitbUVeXl55jYDBw5Er169UFJSAgAoKSnBsGHDkJaWZm4zZcoU1NfX2yx41tzcjPr6eosLkad5cn7G/lMX8E15HcIVIbhvXLbLj9PdoSdrBRDJOa21xiXix89xDg+ROzmdoBw8eBAxMTGIiIjAgw8+iA8//BCDBw9GVVUVwsPDkZCQYNE+LS3NvJKgqqrKIjkxHTcd68qyZcsQHx9vvmRlZTkbNlG3OTuEY8uqn4sCzhyVidTYyG49lqvLm7sqgKjRaLoVT7BpPfcTAOBYDRMUIndyOkEZMGAADhw4gL179+Khhx7CnDlzLH7BecKSJUug1WrNl4qKCo8+H5EnHa9pwNYj1ZAk4Le5rhUF7C5bBRDz8/OZpDihtdaYoJxgDwqRWzmdoISHh+OKK67AqFGjsGzZMowYMQIrVqyAUqlES0sL6urqLNpXV1eblzoqlcpOq3pM120th4yIiDCvHDJdiNzNW0tu3/x55c5Ng9LQLyXGY8/TFUcKIBYUFHC4xwF6vR5NZ36A7vAOfPv1Hq5IJHKjbu+DYjAY0NzcjFGjRiEsLAzbtm0zHzt69CjKy8uRk5MDAMjJycHBgwdRU1NjbrNlyxbExcV1KnhGJDdPzM+orm/CR9/+XBTwhn7dfjxX2NuFVgiBiooKFBcXezEq/2MaItPXVaH2k1dwcvXj6NWbQ2RE7uJUgrJkyRLs3LkTp06dwsGDB7FkyRJs374ds2bNQnx8PObOnYvHHnsMRUVFKC0txf3334+cnByMHTsWADB58mQMHjwY99xzD7777jt8/vnneOqpp7BgwQJERER45ASJXNGxSrC75me8s/sUWvQGXJPdE6N69+xumACcnxvj6C60jrYLRl0NkZ09e4ZDZERu4lSCUlNTg3vvvRcDBgzApEmTsG/fPnz++ee46aabAACvvvoqpk+fjpkzZ2L8+PFQKpUWb1SFQoFNmzZBoVAgJycHs2fPxr333ovnn3/evWdF1E3WqgR3d35GQ1Mr3v/KOF9h/nh5ek8Ax3ehdbRdsLFZqJFDZERuIwmr7zLfVl9fj/j4eGi1Ws5HIbcxva5skSQJKpUKZWVlTm+C9tbOk3hh8xH0S4nGlkU3ICTEsbo77qbX65GdnY3KykqrX7LdOcdgsH37dkycONFuu6KiIkyYMMHzARH5EWe+v1mLhwidl9x2xdX5GS1tBry9qwwA8MD4frIlJwB3oe0uDpEReQcTFAp6Xc0nsMXZL5+PvzuDqvompMZGYMZIx4sCeoonCyAGOg6REXkHExQKajbnE9jgzJePEAJv7jwBALh/XB9EhPpGz4QnCiAGA0cLNebm5no5MqLAwgSFgpq9JbcdufLls/3oOfxY3YiYiFDcPca5ooCe5uoutMHM1hAZYCxsxCEyou5jgkJBzZmhGlfnZ6zaYew9uXtML8T3CHMuQPJJXQ2RKWKTMfeZ19gLReQGTFAoqDkzVOPK/IwDFXXYW3YBoSES7u9GUUDyPR2HyB555V1kPvg2IvpfJ2NURIGDCQoFNXvzCUw2bdrk0vwM09yTGVdlIj2+h8txeoo7CyAGo/Y9adMm3wgpRIGjVQ0yRkQUOJigUFBzZMktAEyYMMHpOQWnanX49Htjle754+UpCkjeo4oxvl6OVWlxQVsvczRE/o8JCgW9ruYTZGZmdutx3yo+CSGAiQNSMEAZ263HIt+XHB0G/SUtpBAFTpy7JHc4RH6PCQoRrC+5PXTokMuPV9vYjMJS4+oguYoCkue1HyKLiYlB67lTAICjNY3yBkYUAJigEP2s45LbuLg4l+dn/GPPKTS3GTAiKwFj+iS6O1TyUS3njLWWjtXoZI6EyP+Fyh0AUaDRNbdhdYnxi+rB8X3tTsClwKDX63G5rBSKqHgUt/SC/ldDuRcKUTewB4XIzT7YXwHt5VZkJ0Vh8hCl3OGQF5hqOTWdLEXtJ6+g6NVHkJ2d7XLlayJigkJk5o4lt216A/5WbCwK+NvcvlDIWBSQvKOrWk6VlZXIz89nkkLkIiYoRG70r4NnUVl3GUnR4cgfpZI7HPIwW7WcTLcVFBRAr9d7OzQiv8cEhchNhBB4Y8dJAMCc67IRGcb5B4HOXi0nIQQqKipQXFzsxaiIAgMTFCI32X38PA6frUePMAXuGdtb7nDICxyt5eRMzSciMmKCQuQmb/y8rf0d12ShZ3S4zNGQNzhay8mZmk9EZMQEhcgNvq/UovhYLRQhEuZe30fucMhL7NVykiQJWVlZyM3N9XJkRP6PCQqRG7y50zj3ZNqwdGQlRskcDXmLrVpOJsuXL+d+KEQuYIJC1E0VFy7hXweNcwxYFDD4dFXLSRGbjMf/35tOV8AmIiMmKETd9PauMugNArn9kzE0M17ucEgGHWs53f70G8h88G2s2rgLkiRBp+PW90TOYoJC1A0XdS34v30VANh7EuzaD+NMnjQBUogC4Wl8TRC5igkKUTe899VPuNyqx+D0OFx/RbLc4ZCPGKSMAQAmKETdwASFyEVNrXq8u+cUAOCBG1gUkH5xZVoMJKFH6/kKSBHR2LlzJ3eTJXISExQiFxWWnsZ5XQsyE3pg2jDucxHs2tdy2vnlVpx947eoXvskRLMOU6dOZfFAIicxQSFygd4g8FaxcWnxb3P7IFTBtxIZmYoHNmvPWdzO4oFEzuGnKpELvjhUhZ/OX0JCVBjuuCZL7nDIR7B4IJH7MEEhcpIQAqt2GLe1v3dsb0SFh8ocEfkKFg8kch8mKERO2lt2Ad+d1iIiNAT3XpctdzjkQ1g8kMh9mKAQOcm0rX3+KBWSYyJkjoZ8CYsHErkPExQiJxytasCXP9RAkoB5udzjgiyxeCCR+zBBoaCm0+kgSZLD25Gbek9uHqJEdnK0p8MjP2OreKDpOosHEjmGCQqRg85qL2PjgUoA3NaeutZV8UCVSoXCwkIWDyRyEJcfEDnond2n0GYQGNMnESN79ZQ7HPJharUaeXl56KnMQmLeAwiL6Ykjf/8doiPD5Q6NyG+wB4WCWvv9KGxtR6693Io1e8sBAA/e0M8rsZF/UygUMFyuR2T2VQjvNRzHzl2SOyQiv8IEhYKWRqPB4MGDzddtbUe+Zm85GpvbcGVaDCYMSPFmmOTnWqqNe+YcOqOVORIi/8IEhYKSaTvyyspKi9utbUfe3KbHO7vLAADzx/djUUByyi8JSr3MkRD5FyYoFHSc3Y5847dnUNPQDGVcJP5jREan+xBZYyoe+I8VLwJggkLkLCYoFHSc2Y7cYBB4Y6fxF/Bvrs9GeCjfMuScIRlxAIAfztajVW+QORoi/8FPWwo6zmxH/uUPNThxTofYiFDcdW0vD0dGgSg7KRqxEaFobjPgx+oGucMh8htMUCjoOLMduan3ZNbY3oiNDPNkWBSgQkIkDM+KBwCMnXqHw5sCEgU7JigUdBzdjjyq1xDsO3URYQoJ94/L9m6QFFBGqBIAAOHpV8obCJEfcSpBWbZsGa655hrExsYiNTUVt956K44ePWrRpqmpCQsWLEBSUhJiYmIwc+ZMVFdXW7QpLy/HtGnTEBUVhdTUVCxevBhtbW3dPxsiBzi6Hfnfdv0EAPj1yEykxUV6N0gKKCOyEgAAEUxQiBzmVIKyY8cOLFiwAF999RW2bNmC1tZWTJ482aK7ctGiRfjkk0+wfv167NixA2fOnLHY2lmv12PatGloaWnBnj17sHr1arz77rtYunSp+86KqAum2jszZ87Ee++91+V25CNyJ2PLEWNizW3tqbtGqBIgDHroL2kBRajNTQGJ6GeiG2pqagQAsWPHDiGEEHV1dSIsLEysX7/e3ObIkSMCgCgpKRFCCLF582YREhIiqqqqzG1Wrlwp4uLiRHNzs0PPq9VqBQCh1Wq7Ez4FocbGRgFAABCNjY3m1xIAsXnzZtHW1iaEEOKJDd+J3o9vEnPf3SdzxBQINmzYIMLiks2vNQBCpVKJDRs2yB0akVc58/3drTkoWq1xZ8TExEQAQGlpKVpbW5GXl2duM3DgQPTq1QslJSUAgJKSEgwbNgxpaWnmNlOmTEF9fT0OHTpk9Xmam5tRX19vcSFyh/ZVZcePHw+FQoGahiZsKDVu4PbADew9oe4xbQrYWl9rcbu1TQGJ6BcuJygGgwEFBQUYN24chg4dCgCoqqpCeHg4EhISLNqmpaWhqqrK3KZ9cmI6bjpmzbJlyxAfH2++ZGVluRo2BTlHau+s3nMKLXoDru6VgNG9WRSQXOfspoBE9AuXE5QFCxbg+++/x7p169wZj1VLliyBVqs1XyoqKjz+nBR4rNXeGTJkCDZs2AAhBKKjo9HY3IZ/lhgnxz5wA7e1p+5xZlNAIrLkUoLy8MMPY9OmTSgqKoJKpTLfrlQq0dLSgrq6Oov21dXVUCqV5jYdV/WYrpvadBQREYG4uDiLC5EzHK29s+7rctQ3taFvcjRuGpRm7aGIHObMpoBEZMmpBEUIgYcffhgffvghvvzyS/Tp08fi+KhRoxAWFoZt27aZbzt69CjKy8uRk5MDAMjJycHBgwdRU1NjbrNlyxbExcVZ/LolchdHu9mbWlrx913GooDzxvdFSAh7T6h7nNkUkIgshTrTeMGCBVizZg02btyI2NhY85yR+Ph49OjRA/Hx8Zg7dy4ee+wxJCYmIi4uDo888ghycnIwduxYAMDkyZMxePBg3HPPPXj55ZdRVVWFp556CgsWLEBERIT7z5CCnqPd7K+s/ghntFFIjonAr0dmejFCClSmTQErKyutJsiSJEGlUiE3N1eG6Ih8m1M9KCtXroRWq8WECROQnp5uvvzf//2fuc2rr76K6dOnY+bMmRg/fjyUSqXFLHWFQoFNmzZBoVAgJycHs2fPxr333ovnn3/efWdF1I6j3eeFxQcBAPePy0ZkmMJOayL7HN0UsP1qMiIykoS1tN7H1dfXIz4+HlqtlvNRyK7t27dj4sSJdtul3fUiEq8YiZInJiE+inV3yH00Gg0effRRizlQWVlZWL58ucVGlkSBzpnvb6eGeIj8kSPd7D0SUhChGoK7ru3F5ITcTq1WIy8vD/E9E5F0y0KExiWj+LWH0Ts5Vu7QiHwWiwVSwHOkmz36ht8iLDQUv7m+T6f7E7mDQqEADHqEJWUhstdwfH+mUe6QiHwaExQKCmq1GoWFhVZr70xe+DKiBlyHX43IQGZCD5kipEAXHR0NIQTm/noSAOCb8osyR0Tk25igUNBQq9U4fPiw+frmzZuxY/8h/Bg5CACLApJ3jO5tLA2y/ycmKES2MEGhoNKx9s47JT/BIIAbrkzBoHROuCbPG51tLJ9wqFKLSy1tMkdD5LuYoFBQMXWzCyHQJELxwX5j2QQWBSRvyUzogfT4SLQZBA5U1MkdDpHPYoJCAU2n00GSJEiSBJ1OZ3HsHyU/oanVgGGZ8cjpmyRThBRsJEnC6Oyfh3lOcZiHqCtMUCgoXW7R4x8lpwAYe09YFJC86Zqfh3n2nbogcyREvosJCgW09mXsd+7cab6+vrQCFy+1oldiFG4eYr1IJZGnmCbKflteB73B7/bKJPIKJigUsDQajUUByqlTpyI7OxvrCwvxVvFJAMBvc/sgVMG3AXnXAGUsYiNC0djchh+q6uUOh8gn8ZOZApJGo0F+fr7F1uIAUFlZidtvvx1HS7ahZ1QYbhuVJVOEFMwUIRKu7m0c5uE8FCLrmKBQwNHr9Vi4cKHVbe2FEIAQuLDtTdwzJgs9wlmkjeQxPCMaAPD7v6zsNIGbiJigUAAqLi7G6dOnbbbRN9TiCoPtNkSedHVWPAAgQjXEajJNFOyYoFDAOXv2rEPtdHW1Ho6EqGuDldG4XPYtmiu+x4efbrOY0E1ETFAoAKWnp7u1HZG7aTQajBoxDDUfPI3aT17BvbffiuzsbGg0GrlDI/IZTFAo4OTm5kKlUtnc2yQrKwu5ublejIrIyNYE7vz8fCYpRD9jgkIBR6FQYMWKFQBgNUmRJAnLly+3qMtD5A12J3ADKCgo4HAPEZigUIBSq9UoLCxERkaGxe1RPVNRWFgItVotU2QUzOxN4BZCoKKiAsXFxV6Misg3hcodAJGnqNVq5OXlISE5DT3zHkBYQhrWPH0/bhzEnWNJHo5O4Ha0HVEgY4JCAU2hUCB21K8QO/wmXJkajYkD0+QOiYKYoxOzExISPBsIkR/gEA8FNEV4JPpPmw8AeGjiFSwKSLJyZAI3AIwbN85LERH5LiYoFNA+/LYStY3NyIiPxPThGfbvQORB9iZwm+zevZsTZSnoMUGhgKU3CLy101gUcG5uX4SxKCD5gK4mcEP65fVpKmzJJccUzPiJTQFry+FqnKzVIS4yFHdew6KA5DvUajUOHz5seaMwWFzlvigU7JigUEDR6XSQJAmSJGFl0TEAwD05vREdwfng5Fvs7cMjhIAQAgsXLuRwDwUlJigUUEwf5KE9M7G3ZBfCQgTmXJctb1BEVkRHR6OoqMhuu9OnT2P79u2eD4jIxzBBoYCh0WgwePBgAEDbxUpUr30S1W/+Fru2bJY5MiLrHN3v5Pbbb+dQDwUdJigUELqqb9J4oYbj+OSzHN0X5cKFC3wdU9CRhLWiED6uvr4e8fHx0Gq1iIuLkzsckpler0d2dnaXW4hLkgSVSoWysjLW3yGfYnrtVlZWWq3P0x5fxxQInPn+Zg8K+T3WNyF/1X5fFHv4OqZgwwSF/B7rm5A/M+2L0rNnT4fa83VMwYJrL8nvOTqO72g7Im9Tq9WIiIjA9OnT7bbl65iCBXtQyO/Zq28iSRKysrKQm5vr5ciIHHfzzTcjIzOzy+N8HVOwYYJCfs80jm9tjqEpaVm+fDknFpJPUygU+Otrr1k9xtcxBSMmKBQQ1Go1rv7N81DEJlvcrlKpUFhYCLVaLVNkRI5Tq9VY8ML/8nVMBM5BoQBx+uIlnE8ZiayH3sZPy++CaLmEzZs3Y/LkyfzFSX7liYfm4JO6TDSVH8Q5zQv418YNfB1TUGKCQgFhy+FqAMC1fVNQ1qyTORoi16l6RmFgehyOhlyFqCtzMH78eCYnFJQ4xEMB4YtDxgRl8hClzJEQdd+UIcaVOrMffxnR0dEyR0MkDyYo5Pcu6lrw9akLAIDJg9Nkjoao+24abEy0dx47h6ZWVjKm4MQEhfzev745Bd2p76AtWY/v9+5gaXrye0Mz46CMi8SlFj1KTpxHfX09JEmCJEn49NNP+RqnoMAEhfyaRqPBgzNyUb32SdTtXI2pU6ciOzubRdXIr0mShLzBqQCA/3nnfXOVbgB8jVPQYIJCfstUwVh3scbi9srKSlZ+Jb+XNygNl47ugeblxzpV6eZrnIIBqxmTz9PpdIiJiQEANDY2Ijo6mhWMKeBdam5BfGom2uprrR7na5z8kUerGe/cuRO/+tWvkJGRAUmS8NFHH1kcF0Jg6dKlSE9PR48ePZCXl4djx45ZtLlw4QJmzZqFuLg4JCQkYO7cuWhsbHQ2FAoS7cfbd+7cifr6eoSGhrKCMQW0r0v2dJmcAHyNU+BzOkHR6XQYMWIEXn/9davHX375Zbz22mtYtWoV9u7di+joaEyZMgVNTU3mNrNmzcKhQ4ewZcsWbNq0CTt37sT8+fNdPwsKWBqNptP4+6BBgxy+Pyu/kr9ilW4KeqIbAIgPP/zQfN1gMAilUileeeUV8211dXUiIiJCrF27VgghxOHDhwUAsW/fPnObTz/9VEiSJCorKx16Xq1WKwAIrVbbnfDJx23YsEFIkiQAuHwpKiqS+zSIXFJUVMTXOAUcZ76/3TpJtqysDFVVVcjLyzPfFh8fjzFjxqCkpAQAUFJSgoSEBIwePdrcJi8vDyEhIdi7d6/Vx21ubkZ9fb3FhQKbXq/HwoULIVycIsXKr+TvTFW6AVbppuDk1gSlqqoKAJCWZrlZVlpamvlYVVUVUlNTLY6HhoYiMTHR3KajZcuWIT4+3nzJyspyZ9jkg4qLi23OMbGFlV8pEJiqdEtW8hO+xikY+MUy4yVLlkCr1ZovFRUVcodEHtadcXVWfqVAoVarUVhYiIj4FIvb+RqnYODWYoFKpXF75urqaqSnp5tvr66uxlVXXWVuU1NjuW9FW1sbLly4YL5/RxEREYiIiHBnqOTj2r9+nPGHP/wBL774In9VUsBQq9V4OfpKvLj6E1z+6SDWPXUPqxtTUHBrD0qfPn2gVCqxbds282319fXYu3cvcnJyAAA5OTmoq6tDaWmpuc2XX34Jg8GAMWPGuDMc8mOm8XfJWv+2Dbfccgs/uCng3D72CvToPRw9c2dh6Jgb+BqnoOB0gtLY2IgDBw7gwIEDAIwTYw8cOIDy8nJIkoSCggL8+c9/xscff4yDBw/i3nvvRUZGBm699VYAwKBBg3DzzTdj3rx5+Prrr7F79248/PDDuPPOO5GRkeHOcyM/Zhp/B+BQksIJgxTIlPGRuK5fEgDgw28rWZuHgoLTCcr+/fsxcuRIjBw5EgDw2GOPYeTIkVi6dCkAYxf7I488gvnz5+Oaa65BY2MjPvvsM0RGRpof4/3338fAgQMxadIkTJ06Fddffz3efPNNN50S+Tu9Xo/t27ejubkZzz77rN3hHk4YpGCQP0oFAHj97+9b7AXE2jwUqLjVPfkUjUaDRx991KL2SGZmJubPn4/+/fvjjY93Y9emddA3njcfz8rKwvLlyzlhkAJac5seg+95HifXPd/pmClJ58RZ8nXOfH8zQSGfYSr+1/ElafrwXf3+Orx4OA6Xmlvw+xECySGXkJ6ejtzcXPacUMDT6/VIUqqgrbW+HQNr85A/YIJCfseR4n/xyUrE3bcKgzN7YvOj1zs9gZbIn23fvh0TJ060266oqAgTJkzwfEBELvBosUAiT7C3MZsQAnXnzqL59CHMH9+HyQkFHdbmoWDDBIV8gqMfqjH6RkwfztVeFHwc3RvI1T2EiHwNExTyCY5+qP5HzmCEKfiypeBjb28gLrWnQMNPevIJjmzMFhqXgqd+O9OLURH5jvZ7A3UsIMil9hSImKCQT3BkY7a7H30aiTGRVo8RBQNTbZ6MDMseR9bmoUDEVTzkU6ztg6KITUb29P/Ed+88jegIt5aPIvJLer0eT61aj799/g2SUtKw/38eQUyPcLnDIrKLy4zJr+n1ehQXF+NYWQVe3HEWhtSBeOW2kbj9miy5QyPyGS1tBkz8f9tRWXcZT04diPnj+8kdEpFdXGZMfk2hUGDChAk4nTgSQjkEgzN7YubP23wTkVF4aAgW5vUHAKzcfgINTa0yR0TkXkxQyCcdr2nEe3vLAQBPTxsERQj3PSHqSD0yE31TonHxUiv+vuuU3OEQuRUH9El2piGds2fPIj09HePGXY9nPv4eeoNA3qA0XHdFstwhEvmkUEUIFuVdiYff34/l//wQ0RXpuKJPFss/UEBggkKysjYpNiFFibBxv0Hi0Ovxx2mDbNybiJqPlaD6zYfQrD2Hef8w3qZSqbBixQqu6iG/xiEeko2pOGD75AQA6s5V4dxHL2JqTDn6JEfLFB2R79NoNLj99tvQrD1ncXtlZSXy8/Oh0Whkioyo+7iKhxzWcSimO93I9ooDAkBWVhYrsxJ1wZH3UGJiIj744ANMmDCB7yPyCVzF4wP0ej22b9+OtWvXYvv27dDr9V65r6doNBr07t0bEydOxN13342JEyciOzvb5V9o9ooDAkBFRQWKi4tdenyiQOfIe+jChQvIy8vr1nuVSC5MUDygO1/m7k4E3KGroZjudCOzMitR9zjz3uCQD/kjDvE4yNHhDdOXecf/VtP27ba2o+7Ofd15Dh3vY6sbWZIkqFQqu0MxHZ9br9cjLy/PbsxFRUWYMGGC3XZEwWb79u2YOHGiw+1N79Xjx49jz549bhmqJXKWU9/fwg9ptVoBQGi1Wq8834YNG4RKpRIAzBeVSiU2bNhg0a6tra1Tu46XlJQU0dzc3Ok57N1XkiSRlZUl2traPHoOHRUVFdk8H9OlqKjIqefOyMgQcXFxHjtfokBn+syQJMmh92j7z6D21zMzM8Vzzz0n1qxZI4qKivieI49y5vubCUo7bW1toqioyOKNumHDBpsfAAUFBaKoqEg0NzeLV1991eEPiI6JgTsSga50dQ6SJAlJkmwmKWvWrHEorjVr1jj13LYujsRFRL+8v5x9j9m6MGEhT2KC4gJrv/IzMzNFUlKSQ2/qkJAQp7+E238BdzcRMOmYZDU3N3erZ6Y7iZMjPUrWLllZWUxOiBxk7bPLnRdHelqJHMUExUmu/Mrv7qVjYuCpoZTk5ORuPa69bmRbCY6j59T+0tUQGBF1ra2tTWzdulUkJiZ65LOKPZrkLs58fwf9Kh69Xo+FCxd2mpjqaUIIi2W0ubm5UKlU5gmx1iQmJkKv11tddmyaYNtxMmttba1D8VhbEWCa2GqauNsxNtP15cuXA4DF0uiWlhZs27bNoedu79y5c9izZ4/T9yMKZgqFApMmTcJbb70FSZJsfo44y/TZWFBQ4BNbHlDwCPoExZG9BDzJlBgoFAqsWLECALr8cOlqTwN3JFnp6ekW19svdzYlICEhli8XlUqFwsJCAEB2drbF0uioqCj8+c9/dikWLi0mco1arUZhYSEyMzPd+rgdf1AReUPQJyhyfxlWV1ebf5U4+uHScU+D7iRZkiQhK8tYXMykq31PTHEWFBRg69ateOedd1BcXIyZM2d2ev7u/NLqmCwRkePUajVOnDiBlJQUtz+23J+XFFyCPkGR+8tw0aJF6J2djQ0bNgAwfricOnUKW7duRWJiotX7dOxy7c6HhhACM2fORHFxsXn4yFZvjCRJ+Oc//4n77rsPeXl55t4Vd7CWLBGR8/bs2YNz587Zb+gkuT8vKbgEfTVj09yPyspK20MkUgggDB6JofL0aeTn5yPx2luRPHQckq8YgaaKQ7hw4UKX9zF1uT7+P+tQfeqoS8+rUCig1+uxfPlyLF++HCqVCvPmzbPZGyOEwPnz5116Plvaz2fhplFE3ePung7TJm/88UDexJ1k8cuQBgC78zhumnILtnz+KSBJgM22xi/ckdPvwY+7P4PuYo3D8ShikxE1YBwa9m+02zYkMgaGpkaHH9sX5Ofn46uvvrJIhLKysrB8+XKWhydyA0d3mY0eOglhVYdQV1vVZRtndrJ2Z0FRCkzcSdYFGzZsEJmZmQ4tDV6/fn2n5bwKhcLievu9PNra2hzexM30PI629ceLafOnjpviEZF7OLI9QHyyUvRavFH0WrxRTHtilfjvlW+L5557rtNnm6P7Erm6WzUFF2e+v9mD0s62bdscrg+Tm5tr8Uvhuuuus1nfYu3atbj77rudikehUMBgMHh9CbSnOFq3h4i6r6ue4fY9IvVpI/H8psMwCCBEAtRXq/DwhL44dajUqV6QruqImRQUFGDGjBle61FhT47vYg+Ki9y1m6s1rmxaZroEQo8KN3si8j5rvRode0R+OFsv5v9jn+j9+CbR+/FN4oon/yWWfnRQVNdfFkJYLwHSnjM7RnujR4U9Ob6NPSgucnTc1pUKu6aqwHYn43ZQUFCA9evXd1ryKweVSoXLly/jwoULds/BNAHXhHNMiOThaG/CgYo6/NcXR1F8zLi5Y2RYCEaLY/jynZdx9swvnz8qlQorVqyAWq2GXq/HX//6VyxatMipmJ577jn88Y9/tIjDXpyOnIenK8I7GofcfDlG9qC4qDvbujvClcJeRUVFYuvWrbL2viQmJoqtW7daFE/s6nHbF0/kHBMi/7P7+Dlx6+u7RMqtT9rsDV28eHG3agC179Ww1+th77gjW/07+vltrZ6Z6bq1OTqe6p1xdZ6eIz1Its7R05/XrMXTDV19AbtriMLRwl7t30yODj11vK+1ybxZWVli8eLFLiVKts6BBf6IAkdra6tITkvv9o8bRy7Tp0936biridKrr75q8QXc/svaWgLScQFEV3FY+/yzlwi0v75161axdevWbiVCjlSut/b53fEcPTkkxgSlmzz9BWx60RYUFJhfPLZe8M7MX+l4366ycGcroHacd8NVOESBqztz5vzhYvoCdmcl6PY9zUJY/4ztmAjYS35sfbZ3ZG8ukCRJIikpyakfpqYecXd+vjNBcQNvfQE7kgzZG3qydV975+jo8mdbVZSJKLA422vLyy+X5ORku71Crl7a96x3/I764osvPHZO7uxR4SRZP+PM5C8AVieourqMz97kXS4NJgo+ji4YIHncf//92LJli8Vml5IkeWxLCndOMnbm+5sJih/RaDRYuHCh23dgdWS/BK6+IQoerq46pMDlrh+rznx/B32xQH9iKiRYVFSENWvWoKioCGVlZd1OHrqqoqxSqZicEAUhhUKBFStWuHRfU9HP9evX263MTv5D/Fz/rbi42GvPyR4UMvPltfNE5H0ajQYPPPAAamtrHWrfsddVr9fjhRdewDPPPOPJMMmL1qxZg7vuusvl+3OIh4iI3KKlpQUqlQrnzp2z27arIWdrw9OeZJqPkZSU5NDGkuQ4VzYqbY9DPERE5Bbh4eFYtWoVJEky95B0VFBQYHPIuf3wdEFBAQB0+VjTp0+3edwRKpUKGzZswJtvvtntx+rYi6xSqfDMM88gMTHR5cf0NY70lJuG7nJzc70Q0c/csm7Iy7yxzJiIiH7hzv2h7D2WteMpKSkOLYntuBGbs3udZGZmiueee87uLqtdbYpm6+LMPigqlUrcd999Hl0Sbdq7xXSOju7N1R1+s8z49ddfxyuvvIKqqiqMGDECf/3rX3HttdfavR+HeIiIvM+d89Scrb1z3XXXoV+/fi5tiWB6rI0bN2L58uVdLsm1ViPIFkeHrkzbQHSset/+empqKgCgpqbG/P8BwOXVVO3PseP52lqh6anVoiZ+UYtn3bp1Ijw8XPz9738Xhw4dEvPmzRMJCQmiurra7n3Zg0JEFHzcUYrE3TuFt98ZvGMvjzt2IHe0hlvH3hjTc7tyvp7cqNQvelDGjBmDa665Bv/zP/8DADAYDMjKysIjjzyCJ554wuZ92YNCRBSc3PEL31MrFj31uNbOWaVSYd68eejfv3+n3piOz+1LKzR9fhVPS0sLoqKiUFhYiFtvvdV8+5w5c1BXV4eNGzdatG9ubkZzc7P5en19PbKyspigEBEFIV/6wvWWQDlnZxKUUC/FZKG2thZ6vR5paWkWt6elpeGHH37o1H7ZsmV47rnnvBUeERH5MIVC0a2lrv4oGM/ZL5YZL1myBFqt1nypqKiQOyQiIiLyIFl6UJKTk6FQKFBdXW1xe3V1NZRKZaf2ERERiIiI8FZ4REREJDNZelDCw8MxatQobNu2zXybwWDAtm3bkJOTI0dIRERE5ENk6UEBgMceewxz5szB6NGjce2112L58uXQ6XS4//775QqJiIiIfIRsCcodd9yBc+fOYenSpaiqqsJVV12Fzz77rNPEWSIiIgo+LBZIREREXsFigUREROTXmKAQERGRz2GCQkRERD6HCQoRERH5HNlW8XSHaV5vfX29zJEQERGRo0zf246sz/HLBKWhoQGAsYIlERER+ZeGhgbEx8fbbOOXy4wNBgPOnDmD2NhYSJLklsc0VUiuqKgI2KXLgX6OgX5+AM8xUPAcA0Ogn6Mnzk8IgYaGBmRkZCAkxPYsE7/sQQkJCYFKpfLIY8fFxQXkC629QD/HQD8/gOcYKHiOgSHQz9Hd52ev58SEk2SJiIjI5zBBISIiIp/DBOVnEREReOaZZxARESF3KB4T6OcY6OcH8BwDBc8xMAT6Ocp9fn45SZaIiIgCG3tQiIiIyOcwQSEiIiKfwwSFiIiIfA4TFCIiIvI5QZ2gvPTSS5AkCQUFBebbmpqasGDBAiQlJSEmJgYzZ85EdXW1fEF2k7VznDBhAiRJsrg8+OCD8gXppGeffbZT/AMHDjQfD4S/ob1z9Pe/IQBUVlZi9uzZSEpKQo8ePTBs2DDs37/ffFwIgaVLlyI9PR09evRAXl4ejh07JmPEzrN3jvfdd1+nv+PNN98sY8TOyc7O7hS/JElYsGABgMB4L9o7x0B4L+r1ejz99NPo06cPevTogX79+uFPf/qTRb0cOd6PfrmTrDvs27cPb7zxBoYPH25x+6JFi/Cvf/0L69evR3x8PB5++GGo1Wrs3r1bpkhd19U5AsC8efPw/PPPm69HRUV5M7RuGzJkCLZu3Wq+Hhr6y0s5UP6Gts4R8O+/4cWLFzFu3DhMnDgRn376KVJSUnDs2DH07NnT3Obll1/Ga6+9htWrV6NPnz54+umnMWXKFBw+fBiRkZEyRu8YR84RAG6++Wa888475uv+tGR137590Ov15uvff/89brrpJtx2220AAuO9aO8cAf9+LwLAX/7yF6xcuRKrV6/GkCFDsH//ftx///2Ij4/Ho48+CkCm96MIQg0NDaJ///5iy5Yt4oYbbhALFy4UQghRV1cnwsLCxPr1681tjxw5IgCIkpISmaJ1TVfnKITodN3fPPPMM2LEiBFWjwXK39DWOQrh/3/Dxx9/XFx//fVdHjcYDEKpVIpXXnnFfFtdXZ2IiIgQa9eu9UaI3WbvHIUQYs6cOWLGjBneCcgLFi5cKPr16ycMBkPAvBc7an+OQvj/e1EIIaZNmyZ+85vfWNymVqvFrFmzhBDyvR+DcohnwYIFmDZtGvLy8ixuLy0tRWtrq8XtAwcORK9evVBSUuLtMLulq3M0ef/995GcnIyhQ4diyZIluHTpkpcj7J5jx44hIyMDffv2xaxZs1BeXg4gsP6GXZ2jiT//DT/++GOMHj0at912G1JTUzFy5Ei89dZb5uNlZWWoqqqy+DvGx8djzJgxfvN3tHeOJtu3b0dqaioGDBiAhx56COfPn5ch2u5raWnBe++9h9/85jeQJCmg3osmHc/RxJ/fiwBw3XXXYdu2bfjxxx8BAN999x127dqFW265BYB878egG+JZt24dvvnmG+zbt6/TsaqqKoSHhyMhIcHi9rS0NFRVVXkpwu6zdY4AcPfdd6N3797IyMjAv//9bzz++OM4evQoNBqNlyN1zZgxY/Duu+9iwIABOHv2LJ577jnk5ubi+++/D5i/oa1zjI2N9fu/4cmTJ7Fy5Uo89thjePLJJ7Fv3z48+uijCA8Px5w5c8x/q7S0NIv7+dPf0d45AsbhHbVajT59+uDEiRN48sknccstt6CkpAQKhULmM3DORx99hLq6Otx3330AAufztL2O5wj4/+cpADzxxBOor6/HwIEDoVAooNfr8cILL2DWrFkAINv7MagSlIqKCixcuBBbtmzxizFsVzhyjvPnzzf/e9iwYUhPT8ekSZNw4sQJ9OvXz1uhusyU1QPA8OHDMWbMGPTu3RsffPABevToIWNk7mPrHOfOnev3f0ODwYDRo0fjxRdfBACMHDkS33//PVatWmX+8vZ3jpzjnXfeaW4/bNgwDB8+HP369cP27dsxadIkWeJ21dtvv41bbrkFGRkZcofiMdbO0d/fiwDwwQcf4P3338eaNWswZMgQHDhwAAUFBcjIyJD1/RhUQzylpaWoqanB1VdfjdDQUISGhmLHjh147bXXEBoairS0NLS0tKCurs7iftXV1VAqlfIE7SR759h+spfJmDFjAADHjx/3drhukZCQgCuvvBLHjx+HUqn0+7+hNe3P0Rp/+xump6dj8ODBFrcNGjTIPIxl+lt1XPHhT39He+doTd++fZGcnOw3f0eTn376CVu3bsVvf/tb822B9l60do7W+Nt7EQAWL16MJ554AnfeeSeGDRuGe+65B4sWLcKyZcsAyPd+DKoEZdKkSTh48CAOHDhgvowePRqzZs0y/zssLAzbtm0z3+fo0aMoLy9HTk6OjJE7zt45Wus2PnDgAADjB6o/amxsxIkTJ5Ceno5Ro0b5/d/QmvbnaI2//Q3HjRuHo0ePWtz2448/onfv3gCAPn36QKlUWvwd6+vrsXfvXr/5O9o7R2tOnz6N8+fP+83f0eSdd95Bamoqpk2bZr4t0N6L1s7RGn97LwLApUuXEBJimQ4oFAoYDAYAMr4fPTb91k90nIH94IMPil69eokvv/xS7N+/X+Tk5IicnBz5AnSD9ud4/Phx8fzzz4v9+/eLsrIysXHjRtG3b18xfvx4eYN0wu9+9zuxfft2UVZWJnbv3i3y8vJEcnKyqKmpEUIExt/Q1jkGwt/w66+/FqGhoeKFF14Qx44dE++//76IiooS7733nrnNSy+9JBISEsTGjRvFv//9bzFjxgzRp08fcfnyZRkjd5y9c2xoaBC///3vRUlJiSgrKxNbt24VV199tejfv79oamqSOXrH6fV60atXL/H44493OhYI70Uhuj7HQHgvCmFcTZaZmSk2bdokysrKhEajEcnJyeIPf/iDuY0c70cmKB0SlMuXL4v//M//FD179hRRUVHi17/+tTh79qx8AbpB+3MsLy8X48ePF4mJiSIiIkJcccUVYvHixUKr1cobpBPuuOMOkZ6eLsLDw0VmZqa44447xPHjx83HA+FvaOscA+FvKIQQn3zyiRg6dKiIiIgQAwcOFG+++abFcYPBIJ5++mmRlpYmIiIixKRJk8TRo0dlitY1ts7x0qVLYvLkySIlJUWEhYWJ3r17i3nz5omqqioZI3be559/LgBY/dsEwntRiK7PMVDei/X19WLhwoWiV69eIjIyUvTt21f88Y9/FM3NzeY2crwfJSHabRVHRERE5AOCag4KERER+QcmKERERORzmKAQERGRz2GCQkRERD6HCQoRERH5HCYoRERE5HOYoBAREZHPYYJCREREPocJChEREfkcJihERETkc5igEBERkc9hgkJEREQ+5/8DxsjmUp4bg04AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -3104,12 +7272,12 @@ "id": "32d67543-870f-4bd9-bba4-2d01086c671a", "metadata": {}, "source": [ - "Bevor wir ein letztes mal wieder alle Parameter freigeben und einen letzten fit durchführen. " + "Zum Schluss geben wir wieder alle Parameter frei und führen einen letzten Fit durch. " ] }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 517, "id": "72d43004-cd80-418a-996a-f1e7a7133ce9", "metadata": {}, "outputs": [ @@ -3118,30 +7286,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 110.2 (χ²/ndof = 1.0) Nfcn = 490 FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 500
EDM = 7.62e-06 (Goal: 0.0002) EDM = 4.26e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -3158,7 +7323,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3169,7 +7334,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3180,8 +7345,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3191,8 +7356,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3202,8 +7367,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3213,7 +7378,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3224,8 +7389,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3235,8 +7400,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3257,146 +7422,1250 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - "
0 A_p1 314 317 7
1 A_p2 568 580 7
2 mu_p1 53.27 0.08 53.24 0.07
3 mu_p2 60.53 0.06 60.43 0.05
4 sigma_p1 2.13 0.06 1.99 0.05
5 sigma_p2 2.81 2.80 0.04
6 A_bkg 109 12 147 14
7 tau_bkg 39.7 2.8 34.1 2.0 0
A_p1 48.4 10 (0.147) 0.138 (0.254) 0.1230 (0.316) -0.0575 (-0.144) -0.1117 (-0.373) -0 (-0.039) 1 (0.040) 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.147) 49.5 0.001 0.0227 (0.058) -0.0262 (-0.065) -0.1235 (-0.407) -0 (-0.020) 0 (0.018) 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.138 (0.254) 0.001 0.00612 0.0033 (0.749) 0.0031 (0.684) -0.0023 (-0.684) -0.057 (-0.064) 0.018 (0.080) 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1230 (0.316) 0.0227 (0.058) 0.0033 (0.749) 0.00313 0.0021 (0.646) -0.0017 (-0.696) -0.0529 (-0.082) 0.0118 (0.074) 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.624) -0.0015 (-0.680) -0.0515 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0575 (-0.144) -0.0262 (-0.065) 0.0031 (0.684) 0.0021 (0.646) 0.00331 -0.0013 (-0.528) -0.1336 (-0.203) 0.0273 (0.167) -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.624) 0.00297 -0.0012 (-0.518) -0.1413 (-0.179) 0.0156 (0.142)
sigma_p2 -0.1117 (-0.373) -0.1235 (-0.407) -0.0023 (-0.684) -0.0017 (-0.696) -0.0013 (-0.528) 0.00186 0.0695 (0.141) -0.0218 (-0.177) -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0818 (0.137) -0.0143 (-0.172)
A_bkg -0 (-0.039) -0 (-0.020) -0.057 (-0.064) -0.0529 (-0.082) -0.1336 (-0.203) 0.0695 (0.141) 131 -32 (-0.966) -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0515 (-0.068) -0.1413 (-0.179) 0.0818 (0.137) 209 -28 (-0.965)
tau_bkg 1 (0.040) 0 (0.018) 0.018 (0.080) 0.0118 (0.074) 0.0273 (0.167) -0.0218 (-0.177) -32 (-0.966) 8.11 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0156 (0.142) -0.0143 (-0.172) -28 (-0.965) 4.03
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:51.042163\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 110.2 (χ²/ndof = 1.0) │ Nfcn = 490 │\n", - "│ EDM = 7.62e-06 (Goal: 0.0002) │ │\n", + "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 500 │\n", + "│ EDM = 4.26e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 314 │ 7 │ │ │ │ │ │\n", - "│ 1 │ A_p2 │ 568 │ 7 │ │ │ │ │ │\n", - "│ 2 │ mu_p1 │ 53.27 │ 0.08 │ │ │ │ │ │\n", - "│ 3 │ mu_p2 │ 60.53 │ 0.06 │ │ │ │ │ │\n", - "│ 4 │ sigma_p1 │ 2.13 │ 0.06 │ │ │ │ │ │\n", - "│ 5 │ sigma_p2 │ 2.81 │ 0.04 │ │ │ │ │ │\n", - "│ 6 │ A_bkg │ 109 │ 12 │ │ │ │ │ │\n", - "│ 7 │ tau_bkg │ 39.7 │ 2.8 │ │ │ 0 │ │ │\n", + "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 48.4 10 0.138 0.1230 -0.0575 -0.1117 -0 1 │\n", - "│ A_p2 │ 10 49.5 0.001 0.0227 -0.0262 -0.1235 -0 0 │\n", - "│ mu_p1 │ 0.138 0.001 0.00612 0.0033 0.0031 -0.0023 -0.057 0.018 │\n", - "│ mu_p2 │ 0.1230 0.0227 0.0033 0.00313 0.0021 -0.0017 -0.0529 0.0118 │\n", - "│ sigma_p1 │ -0.0575 -0.0262 0.0031 0.0021 0.00331 -0.0013 -0.1336 0.0273 │\n", - "│ sigma_p2 │ -0.1117 -0.1235 -0.0023 -0.0017 -0.0013 0.00186 0.0695 -0.0218 │\n", - "│ A_bkg │ -0 -0 -0.057 -0.0529 -0.1336 0.0695 131 -32 │\n", - "│ tau_bkg │ 1 0 0.018 0.0118 0.0273 -0.0218 -32 8.11 │\n", + "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", + "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", + "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", + "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0515 0.0062 │\n", + "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1413 0.0156 │\n", + "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0818 -0.0143 │\n", + "│ A_bkg │ -0 -0 -0.057 -0.0515 -0.1413 0.0818 209 -28 │\n", + "│ tau_bkg │ 0 0 0.010 0.0062 0.0156 -0.0143 -28 4.03 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 126, + "execution_count": 517, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXdklEQVR4nO3deXhTdb4/8PdputF9o2taCohAEZRNrFgE6YCAXpxSRxHcr/50QFocEXFGXGYUlzsjOOPg6DjqHQVHIA7CVEfAAh2oCHhRpFgBq13TUqBJG+iWfH9/lMSmTdMkTXKyvF/Pk+ch55wkn0OW8+l3+0hCCAEiIiIiDxIgdwBEREREPTFBISIiIo/DBIWIiIg8DhMUIiIi8jhMUIiIiMjjMEEhIiIij8MEhYiIiDwOExQiIiLyOIFyB+AIg8GA2tpaREZGQpIkucMhIiIiGwgh0NzcjNTUVAQEWG8j8coEpba2Funp6XKHQURERA6oqqqCUqm0eoxXJiiRkZEAuk4wKipK5miIiIjIFlqtFunp6abruDVemaAYu3WioqKYoBAREXkZW4ZncJAsEREReRwmKERERORxmKAQERGRx2GCQkRERB6HCQoRERF5HCYoRERE5HGYoBAREZHHYYJCREREHocJChEREXkcJihERETkcZigEBERkcdhgkJEREQehwkKEREReRwmKEQkO51OB0mSIEkSdDpdr/tE5H+YoBAREZHHYYJCREREHocJChEREXkcJihERETkcZigEJHH46BZIv/DBIWIiIg8DhMUIiIi8jhMUIiIiMjjMEEhItnp9XrTv/fu3Yv29naz+933E5F/YIJCRLJSqVTIysoy3Z87dy4SEhLM7nffT0T+IVDuAIjIf6lUKuTn50MIYbbdYDCY3a+trXVnWETkAdiCQkSy0Ov1KCgo6JWcWNL9GHb3EPkHuxOUmpoaLF68GPHx8Rg0aBDGjh2LQ4cOmfYLIbB69WqkpKRg0KBByM3NxYkTJ8ye4+zZs1i0aBGioqIQExODe++9Fy0tLQM/GyLyGiUlJaiurrb7cevXr2eSQuQH7EpQzp07h6lTpyIoKAgff/wxysrK8Pvf/x6xsbGmY1588UW88soreO2113DgwAGEh4dj9uzZaG1tNR2zaNEiHDt2DDt27MD27duxd+9e3H///c47KyLyeHV1dQ497rHHHkNmZiZUKpWTIyIiTyIJW9pXL3rsscewb98+lJSUWNwvhEBqaip+9atf4ZFHHgEAaDQaJCUl4e2338att96K48ePIysrCwcPHsSkSZMAAJ988gnmzp2L6upqpKam9huHVqtFdHQ0NBoNoqKibA2fiDzI7t27MWPGDIceK0kSAGDz5s3Iy8tzZlhE5EL2XL/takH56KOPMGnSJNx8881ITEzE+PHj8cYbb5j2V1RUQK1WIzc317QtOjoaU6ZMQWlpKQCgtLQUMTExpuQEAHJzcxEQEIADBw7YEw4RebGcnBwolUpTsmEP499VhYWF7O4h8lF2JSjff/891q9fjxEjRuDf//43HnzwQSxbtgzvvPMOAECtVgMAkpKSzB6XlJRk2qdWq5GYmGi2PzAwEHFxcaZjempra4NWqzW7EZF3UygUWLduHQA4nKRUVVX12aJLRN7NrgTFYDBgwoQJeO655zB+/Hjcf//9uO+++/Daa6+5Kj4AwJo1axAdHW26paenu/T1iMg98vLysHnz5l5duwqFwubncHQsCxF5NrsSlJSUlF4LJo0ePRqVlZUAgOTkZABAfX292TH19fWmfcnJyWhoaDDb39nZibNnz5qO6WnVqlXQaDSmW1VVlT1hE5EHy8vLQ1lZmel+UVERTp8+bfPjU1JSXBEWEcnMrgRl6tSpKC8vN9v23XffYciQIQCAoUOHIjk5Gbt27TLt12q1OHDgALKzswEA2dnZaGpqwuHDh03HfPbZZzAYDJgyZYrF1w0JCUFUVJTZjYh8R/cWk2nTpiE4ONh0v6/uH0mSkJ6ejpycHJfHR0TuZ9dKssuXL8fVV1+N5557Dr/4xS/wxRdf4PXXX8frr78OoOsHo7CwEL/73e8wYsQIDB06FE888QRSU1Nx0003Aehqcbn++utNXUMdHR1YunQpbr31Vptm8BCR/1BEJUKvbbCwpytpWbt2rV3dQUTkPexKUCZPnowPP/wQq1atwjPPPIOhQ4di7dq1WLRokemYRx99FDqdDvfffz+amppwzTXX4JNPPkFoaKjpmPfeew9Lly7FzJkzERAQgAULFuCVV15x3lkRkdcLHTYRg/9rJVp/OIKzu16HvrnRtE8RGY/Jty7HnBvmyxghEbmSXeugeAqug0LkW3Q6HSIiIgAALS0tOFzZhNvfOgwpQIEpmTFY818jMTxtMADgiVffw4fqGDS3C8y5LBmv3jYBAQH2zwIiIvdz2TooRESu1nShA49+eBxSgAK68n147bZxSIoeZNq/8s75eHXh5RCdHfj4GzX+55NjMkZLRK7CBIWIPMqT28uh1rah42wNzhStRbCi98/UxIwYnPnkjwCA1/9TiZMNrOVF5GuYoBCRxwhOHYmd3zYiMEBC40cvQrRf6PNY3bHPcP7kF+g0CDz10TGbqiITkfdggkJEsgsPD4cQArf97n8BAD8fn4Y29UkIIRAeHt7n487teh3BCgn/OdmIfx+r7/M4IvI+TFCIyCMcrdaguPw0AiRgyYxLbHpMZ5Mat03sWuDx7pfeR0sLu3qIfAUTFCLyCH/87AQA4L8uT0VmQt+tJj0tnJAEQ0crQlJG4MAPTS6KjojcjQkKEcnueJ0Wn5bVQ5KApdfZ1npiFBsWhJavdwIA3txf6YrwiEgGTFCISHZ/Kj4JAJh7WQouSYzstd84RsU4JkWv15v27du3D9ovVBAGPfZ/fw7l6ma3xU1ErsMEhYhkdbKhBUVHuyoS29J6olKpzIqW5uXlQa9tQNOergG2/zxS45pAicitmKAQkaze/fxHCAHkjk7C6BTrK0uqVCrk5+ejpqZ3EqL9YgvOl+/HR0dqYTBwyjGRt2OCQkSy0RsE/nWx9WThlenWj9XrUVBQYHW9k3OfvYHqsy0IyxgDSZKg0+mcGi8RuQ8TFCJyC51OB0mSzBKHz78/g9PNbYgeFIScEYOtPr6kpATV1dVWj+nUnkZb9TGEjb7WaXETkTyYoBCRbD46UgsAmDs2GcGB1n+O6urqbHrOzuYzCB91DRCgGHB8RCQfJihEJIu2Tj0+/qYr6bjx8tR+j09JSbHpeZs++yvaqssQOuTyAcVHRPJigkJEstj7XSO0rZ1IjAzBlKHx/R6fk5MDpVIJSZKsHqc/r8Hpfz6HwNiupMdS1xIReT4mKEQki4++6ureuWFcKhQB1pMOAFAoFFi3bp3Nz3/hu1LoWtsdjo+I5MUEhYjcrrFJi60HvwcA/GxkrM2Py8vLw+bNm5GQkNDvsfqWM3ht0ycOx0hE8mKCQkRut/dUEwKCQ9FxrhZjU3uvHGtNXl4eXnjhBZuOLT5y0pHwiMgDMEEhIrfovjz9/27dCWHQ4/zxvf2OKbHE1gGzxyuq0dbRYffzE5H8AuUOgIh8n0qlwrJly0z3d/5hGRSR/XfT9GXq1Kk2HVf/6esYNXqbw69DRPJhCwoRuVRfy9Prmxuhb27E1q1b7X5OheKnNU76a4E5rVbb/fxEJD8mKETkMrYsT79y5Uqz7h97JScn93PET6+9e/fuAb0WEbkPExQichlblqevrq5GSUmJw69x+PBhm4+94YYbkJmZCZVK5fDrEZF7MEEhIpexdXl6S9WJbdW9u8fW18rPz2eSQuThmKAQkcvYOttm+fLlbksYjN1NhYWF7O4h8mBMUIjIJXQ6HWbMmAGg/4GsjY2NdrVqhIeHQwgBIQTCw8NN222dsiyEQFVV1YC6lojItZigEJHsnNmqYc+6KrZ2QRGR+zFBISKXe/fddxEVG2f1GGe0arz77rtITe2/MrKRrV1QROR+TFCIyOXmz5+PmXf+yqZjB9KqMX/+fJSVlfV7nCRJSE9PR05OjsOvRUSuxZVkicgtfmwdZNNx9rZqGMejGOl0OtO/JUnqWgWl235jF9DatWvtngFERO7DFhQicrk6TSsaI4dDERHf5zGuaNV49913kdoj4VEqldi8eTPy8vKc9jpE5HxMUIjI5fZ9fxZSgAIRE+YB6D2Q1VWtGvPnz8fx48cRM+1OJNy4Asv/8A4qKiqYnBB5ASYoRORyByqauv6h7wTQe3l6V7ZqKBQKiI5WhGddiwsJo9mtQ+QlmKAQkUt0ny782e49EAY9WquOAjBfnr6oqMjlrRptNccBAEeqNdDpdJAkCZIkmY1XISLPwkGyROR0KpUKy5YtM90v/9sKKCIToNc1ATBfnn7atGkub9Voq/sOwqBHnaYNam2rS1+LiJyDCQoROZVKpUJ+fn6vCsb65ka3vL6lWT2ioxXtDRUISb4EX1Vr3RIHEQ0Mu3iIyGn0ej0KCgp6JSdGxpk6oaGhbo4MaKv5FgBwhAkKkVdggkJETlNSUoLq6uo+9xtXi923b58bo+rSXmtMUDRuf20ish8TFCJyGltXgVWr1S6OpDfjQNmyuhZIgcFuf30isg8TFCJyGltXge05zdiVjGNS2s/VYXBkCDoNAsFJl7jt9YnIMUxQiMhpcnJyoFQq+6wobByDMnXqVDdH1vXaEzNiIQx6KCK7VrTdu3fvgKsnE5FrMEEhIqdRKBRYt24dAOurxUZFRUEIASEEwsPD3RfgjwdQ89q9OP9tV8XkuXPnIjMzEyqVyn0xEJFNmKAQkVPl5eVh8+bNSEr2rBo4KpUKf1m9tNd055qaGuTn5zNJIfIwdiUoTz31lGkFRuNt1KhRpv2tra1YsmQJ4uPjERERgQULFqC+vt7sOSorKzFv3jyEhYUhMTERK1asQGdnp3POhog8Ql5eHv6waTeSFj6H6Jzb3bJarDXG6c+wMP3ZOCW6sLCQ3T1EHsTuFpQxY8agrq7OdPvPf/5j2rd8+XJs27YNmzZtwp49e1BbW2v2g6TX6zFv3jy0t7dj//79eOedd/D2229j9erVzjkbIvIYX9Y0IzRjHAICg92yWqw1tk5/LikpcWNURGSN3SvJBgYGWhyBr9Fo8Oabb2LDhg247rrrAABvvfUWRo8ejc8//xxXXXUVPv30U5SVlWHnzp1ISkrCFVdcgd/+9rdYuXIlnnrqKQQHc+ofka84/GPXeiPG+jtysnX6s63HEZHr2d2CcuLECaSmpmLYsGFYtGgRKisrAXQV/+ro6EBubq7p2FGjRiEjIwOlpaUAgNLSUowdOxZJSUmmY2bPng2tVotjx471+ZptbW3QarVmNyLyXGda2vD9mfMAgLbqMpmjsX36s63HEZHr2ZWgTJkyBW+//TY++eQTrF+/HhUVFcjJyUFzczPUajWCg4MRExNj9pikpCTTokxqtdosOTHuN+7ry5o1axAdHW26paen2xM2EblB9yrB+7/r+j63N/4IQ2uLzJHZPv05JyfHzZERUV/sSlDmzJmDm2++GePGjcPs2bNRVFSEpqYmfPDBB66KDwCwatUqaDQa062qqsqlr0dEA2NcTt5Y/0Zutk5/lnOcDBGZG9A045iYGFx66aU4efIkkpOT0d7ejqamJrNj6uvrTWNWkpOTe83qMd63trJkSEgIoqKizG5E5LmMBfmMy8t7AuP059TUVLPtck9/JiLLBpSgtLS04NSpU0hJScHEiRMRFBSEXbt2mfaXl5ejsrIS2dnZAIDs7GwcPXoUDQ0NpmN27NiBqKgoZGVlDSQUIvIUAQp8U9sMADiy80P3L8ZmRV5eHsrKyhA+9mdIuHEFbn7iL7JOfyaivtk1i+eRRx7BjTfeiCFDhqC2thZPPvkkFAoFFi5ciOjoaNx77714+OGHERcXh6ioKDz00EPIzs7GVVddBQCYNWsWsrKycPvtt+PFF1+EWq3Gb37zGyxZsgQhISEuOUEicg2dToeIiAgAXX+sGAUnDkNbpwExYUEYluAZiUl3CoUChrYWhGddi+a4CHbrEHkouxKU6upqLFy4EGfOnMHgwYNxzTXX4PPPP8fgwYMBAC+//DICAgKwYMECtLW1Yfbs2fjzn/9serxCocD27dvx4IMPIjs7G+Hh4bjzzjvxzDPPOPesiEg2IWmjAQATMmIREGB5UKrc2tUnAQAnGnRo69QjJJBJCpGnsStBef/9963uDw0NxauvvopXX321z2OGDBmCoqIie16WiLxISFrX6tITMmLkDcQKvfY09Oc1QFg0ytXNGKeMkTskIuqBtXiIyCmMy8TrzzehtfJrXK707MHs7fWnAABHazQyR0JEljBBIaIB27p1q2mg+7mdr6N+4+NYeN0kjy7AZ+zm+YYJCpFHYoJCRAO2ePFi1NTUmG2rrfXsKsHGBKV7C0r3xeZ0Op1coRERmKAQkRMIL6oSHB4eDiEEvi3dAQAoVzejrdNz4iOiLkxQiMghtiQdnlwlWBk7CDFhQejQC3ynln85fiIyxwSFiOymUqnsWlzRE6sES5KEsWnRADhQlsgTMUEhIruoVCrk5+f3GnNijadWCb6MCQqRx7JrHRQi8m96vR4FBQUWx5xYIkkSlEqlx1YJNragcCYPkedhCwoR2aykpATV1dU2HesNVYKNCcrXPzZCUgRBq9Wa9u3du9ejBvcS+RsmKERkM3vGknhDlWBl7CBEhQZCCgxCYGQ8Jk6caNo3d+5cZGZmeuw0aSJfxwSFiGxm61iS559/3iuqBEuShKyUCJwv349OTX2vBKymxrPXciHyZUxQiMhmOTk5UCqVpu6bvjz44IMe263T04iEQTi763WL+zx1LRcif8AEhYhsplAosG7dOgCwmqR4S3ICAIa649A3N/a535PXciHyZUxQiMgueXl52Lx5M1JTU822KyITEJwyUqaoHDeoQ9v/QfDMtVyIfBkTFCKyW15eHsrKyrruKIKQvPA5pD3wJvTNp+UNzAHjRmTYdJynruVC5KuYoBCRQ4zdOKHKLIRkjENabBj0LWdljsp+OVOvhhQa0ed+SZKQnp7usWu5EPkqJihENCAhaaMBAJcro2WOxH4qlQpjx46FaLVci8cb1nIh8lVMUIhoQELSRgEApgxLgBACQgiEh4fLHFX/bFmy3xvWciHyVVzqnogGQEJwaleCMnFInMyx2M6WJfsTEhJw8uRJBAcHuzEyIjJiCwoROSwoXglFaARCAwMwKiVS7nBsZsuS/Y2Njdi/f7+bIiKinpigEJHDjONPxqZFIkjhPT8ntk4Z5tRiIvl4zy8KEXmU8PBwPPjEiwCAyUMTZI7GPrZOGebUYiL5MEEhIocd/vEcAGBCRqzMkdjHliX7lUolpxYTyYgJChE55JyuHadO6wAAE4Z4V4Jiy5L9L7zwAqcWE8mICQoROeTQxdaTYYPDERfufTNd+lyyP6JrNtL8+fPlCIuILmKCQkQOOfRD16qxV2Z6z/Tinnou2Z+08DmkPfgWzrS0ecVaLkS+jAkKETnki4sJymQvTlCAbpWX9R0YcfmVkAIU+FZtWwFBInIdJihEZLcL7XocrdYA8P4EpbtLE7tq8nxb1yxzJETEBIWI7HakqgmdBoGkqBCkxw2SOxynuTSxq1uHLShE8mOCQkQ20el0kCQJkiRh33dqAMCkzDirU3W9zQhTgsIWFCK5MUEhIrt9WdXVvePNA2QtGZnU1cVTrm6G3tB3nR4icj0WCyQi+0gBOFLd1QXiC+NPwsPDTUUD9QaB0KAAtHYY8MMZHYYPjpA5OiL/xRYUIrJLcOJQnG/XIzIkECOTvadAoC0UARJGJnWdUzm7eYhkxQSFiOwSohwDAJiYGQtFgO+MPzEalRwFAPi2jgNlieTEBIWI7BKS3pWg+EL3jiWjUrpaUI6zBYVIVkxQiMgmer0eAGA4r0Fr5deYkB4tc0SuYWpB4VRjIlkxQSGifqlUKmRlZQEAzn76Z9RvfBw3T58AlUolc2TON+riuJqqsxfQ3NohczRE/osJChFZpVKpkJ+fj5qaGrPttbU1yM/P97kkJTY8GMlRoQCA7+rZzUMkFyYoRNQnvV6PgoIC0zTc7ozbCgsLTd0/vsI4O+k4l7wnkg0TFCLqU0lJCaqrq/vcL4RAVVUVSkpK3BiV6xkHynIcCpF8mKAQUZ/q6uqcepy3GG2aaswWFCK5MEEhoj6lpKQ49ThvYWxBKVc3W+zeIiLXY4JCRH3KycmBUqnssyCgJElIT09HTk6OmyNzrWEJEQhSSGhu60RN0wW5wyHySwNKUJ5//nlIkoTCwkLTttbWVixZsgTx8fGIiIjAggULUF9fb/a4yspKzJs3D2FhYUhMTMSKFSvQ2dk5kFCIyAUUCgXWrVtncZ8xaVm7di0UCoU7w3K54MAAUx2eSyfPgCRJ0Ol0MkdF5F8cTlAOHjyIv/zlLxg3bpzZ9uXLl2Pbtm3YtGkT9uzZg9raWuTl5Zn26/V6zJs3D+3t7di/fz/eeecdvP3221i9erXjZ0HkZXQ6HSRJ8vgLn06nw4IFCyAUQVBEJpjtUyqV2Lx5s9n325eMTukahxKUmClvIER+yqEEpaWlBYsWLcIbb7yB2NhY03aNRoM333wTf/jDH3Dddddh4sSJeOutt7B//358/vnnAIBPP/0UZWVlePfdd3HFFVdgzpw5+O1vf4tXX30V7e3tzjkrInKq0PTLkPbAm4i/8REAQFFRESoqKnw2OQF+WrAteHCmvIEQ+SmHEpQlS5Zg3rx5yM3NNdt++PBhdHR0mG0fNWoUMjIyUFpaCgAoLS3F2LFjkZSUZDpm9uzZ0Gq1OHbsmMXXa2trg1arNbsRkfuEKrMgBSgAgwEAMG3aNJ/r1unJuBZKcOJQmSMh8k+B9j7g/fffx5dffomDBw/22qdWqxEcHIyYmBiz7UlJSVCr1aZjuicnxv3GfZasWbMGTz/9tL2hEpGTGCsYt1Vb/iPCFxm7eAJjUyEFBsscDZH/sasFpaqqCgUFBXjvvfcQGhrqqph6WbVqFTQajelWVVXlttcm8nuKQASnXAoAaK3ynwQlMTIE0SES2qqPISAsBnv37vW5FXOJPJldCcrhw4fR0NCACRMmIDAwEIGBgdizZw9eeeUVBAYGIikpCe3t7WhqajJ7XH19PZKTkwEAycnJvWb1GO8bj+kpJCQEUVFRZjcicj29Xo+g2BRcOPE5AtXH0Hm271Vlfc2HH36IE6/chfqNj0OvbcDcuXORmZnpc7WHiDyVXQnKzJkzcfToURw5csR0mzRpEhYtWmT6d1BQEHbt2mV6THl5OSorK5GdnQ0AyM7OxtGjR9HQ0GA6ZseOHYiKijJVSyXydd3/EvfUv8yNFYw7GqvQuO0lnHpnpdwhuY2xQOKFptNm22tqfLNAIpFHEgN07bXXioKCAtP9Bx54QGRkZIjPPvtMHDp0SGRnZ4vs7GzT/s7OTnHZZZeJWbNmiSNHjohPPvlEDB48WKxatcrm19RoNAKA0Gg0Aw2fyO22bNki0tLSBADTTalUii1btsgdmsmWLVuEJElmMQIQkiQJSZI8KlZn6+zsFEqlste5d/8/SE9PF52dnXKHSuR17Ll+O30l2Zdffhk33HADFixYgGnTpiE5Odnsrw2FQoHt27dDoVAgOzsbixcvxh133IFnnnnG2aEQeRzjX+Y1NTVm2z3pL3N/rWBs5K8FEok8jSQs/Qp5OK1Wi+joaGg0Go5HIa+h1+uRmZnZ58VPkiQolUpUVFTIOoV39+7dmDFjRr/HFRcXY/r06a4PyM02btyI2267rd/jNmzYgIULF7ohIiLfYc/1m7V4iNzEW/4y99cKxkb+WiCRyNMwQSFyE2+58Pv7Bbq/AolGEyZMcFNERP6JCQqRm3jLhd9fKxgbdS+Q2PP/oPt9X19Jl0huTFCI3MRbLvzGC7SlwWm+XMG4u7y8PGzevBmpqalm29PS0mSKiMj/MEEhchNb/jL3lAt/Xl4eFqz4vd9VMO4uLy8PZWVlUMSkIOHGFRh25wv45ptv5A6LyG8wQSFyI2t/mQshsGDBAuh0Ouh0OkiSBEmSoNPp3B6nEALquMuR9sCbCE4dCcA/Khj3pFAoYGg5g7BR10CfPAbnLvjm1GoiT8QEhcjNjH+ZGxUVFfVZyVsuFY06VJ+7gOCgQHSc/hGAf1QwtkR0tqPzXNfA5ROn3Z8sEvkrJihEMuh+oXfnhd/Wlpk933Ut8T4xIxqio9UtsXmy9sauJK28Tmva5qklCoh8BRMUIurFmKBcMzxO5kg8Q0fjjzhfvh+rFl5n2sbigUSuxQSFyEFyjxNxldYOPT7//gwAJihGF77/Eqf/+RxazjaYbfekEgVEvoYJCpEL2Ju89Kxu3N7ebnbfnV0JB384i9YOA5KjQnHJ4HC3va4nCg8PR2dnJ+KE1uJ+f6hNRCQXJihEbtChN+Ave07hgb8fxiObvsKaf59A9NW3IjA2FVu3bkVWVpbp2Llz5yIhIcHsvru6EnQ6HeY/8DgA4OphMYiIiIAQAkIIhIf7Z7JSUlICdV1tn/s9pUQBka8JlDsAIl936rQOv972fzhaozHbHpOzGGEpw7Fo0WKgx7JoBoPB7L6xK2Gga5D0bKmZNWuW2QBdIQTCLr0aADDtkniHX8eXeEuJAiJfwxYUIheKnPhfuPmvh3G0RoPoQUFYMXskHr1+JB6cPhyTh0Sj4dO/oGdyYokzuhJUKlWvlpqeLTNf1WgRGJ0IQ9t55FzC8SeA95QoIPI1TFCIHNSzNaJn4hB11c2Iy70fbZ0GTB0ei2P/sxBLrxuBOyenYOX1o/DLUR3QNzfa/HqOdiUYx8MsWLAANTU1Zvt6DvL8+FjXINDzJz5HaJD/rXliibFEAeDZJQqIfA0TFCIH9NcaUVarQWjGOOjK9uDGhEb8+RdjoG85a/YcarXaode2tyvBWotL95aZ9o5OfFLWNb34/PG9DsXmi0wlCizkJ55WooDIlzBBIbKTSqVCfn5+n60Rv1qxAjmTr0DDB0+gcdtL+NOKuzBmzJhez+Nol4C9j9u3b5/V/caWmdc/+BdOay9Ad+IALlR8yYXIusnLy8Nf3nrPr2sTEbmbJIx/QnkRrVaL6OhoaDQaREVFyR0O+RG9Xo/MzExUV1fb9ThJkkytFS0tLQgPDzc9V01NDWz9GiqVSvzwww92/bX+1ltv4Z577un3uEk3LMb/7fnErNtJqVRi3bp1vAADMBgExqwuwrnvv8bpbf+D7R+822uQMRFZZ8/1my0oRHYoKSmxOzkBYJaAGFslrFU37ssLL7yA1tZWu9ZYSU5Otum5D21/t9eYGC5E9pOAAAkjkiIRmjEOoWmj/bY2EZG7MEEhsoMzppKuX7/elKT0Vd0YkuWv5vz58+1+vauuuqrfYwICLL8eFyIzN+LiwnVBg4fIHAmR72OCQmQHZ0wlfeyxx8wG1FqqbvzIe/uRtPA5xP7sQbyz8QOHX0ulUmHs2LF97je23PRcd6U7LkT2k0sSLyYoCUxQiFyNCQqRHYxTTm3tkulLz66TntWNH5szGgFh0YiaMA87tKl9PY1VfQ3m7U6pVGLpsgKbno8Lkf3UghLMBIXI5ZigENnBkXEjlvTXdRIapEDjR/8D0dmBvSfPIHT4lQBsr8uj1+tRUFBgdfBtQkICTp48ibjRV9sUMxciA8ZlDgYAhCQooQgOlTkaIt/GBIXITn2NG1FEJmDcnNtNA1j701/XScfpCjT88znUvHYvWk99AaBrvZXRo0ebjukrYbFlMG9jYyP+85992Nscf3H6LBci68/giBDEhgXBIICTDS1yh0Pk05igEDmg+7gRKSgU6YufR9oDb6L8m/+DEMLmmTOA9a6T1lMHe82sqa39qXCdpeXqdTodZsyYYdNr7zj8LSrOtCJ1zgOQpN6tQlyIzJwkSbg0KRIA8F19s8zREPk2JihEDjJesCMn3ICAtMswOiUabVXfAAAOHz5s8/OkpKQgPDzcrGpwaGjoxeXV+zeQqcD7artaX5bcvchiqxAXIuttZHJXglLOBIXIpZigEA1EgAKRE28AANwx5aeEontrQ1/dPda6TuxZb8XaeBZrXU2Jyan4MSgDwYoA3D010+JsooqKCiYnPZhaUNRMUIhciQkK0QCEXXo1AiMTEB8ehDljEvs8zt6uE3tnzFgbz2LptSVJwtj8AkgBCiyYmIbEyK4Bnz1nE7FbpzdjC8p39RyDQuRKTFCIbGSsCtx9BdfwMV1jPfLHpyI40PLX6d1337W768TRGTN1dXVmrSiPP/54r+dSKpV45a9/x8nwMZAk4L6cYQ69lr+6NLErQalpuoDm1g6ZoyHyXUxQiBzUGRCMmJFdq7QumDzELDHoXqBv/vz5dnedOLreyokTJ8yqLD/77LNm+4uKivD999/jm6BRAIDZWckYNjjCrtfwd9FhQUiO6mpxYisKkeswQSFy0M6yerTrDRiRGIFv9u0wSwzy8vKgVCqxZcsWhIeH2911Yu96K5IkIT4+Hk899VSvhdm6dxdNmzYNm76sxSfH1AgMkLD0uktsOlcyd2kyZ/IQuRoTFCIHFR3tuvCna45aXLF1oIX2+qzT00P3SsmWFmbrvu3bOg2e+ugYAGDF7JG4LC3a7Nies4nIspFJXa1O5RwoS+QyTFCIHKBt7cDeE6chDHp8/MYaq4nBQArt9ZxZ8+tf/7pXwhIUlQApJBxnzpzp9/nu+/0/0NZpwLRLB3PsyQBwLRQi12OCQmSj7knGqxv/hfaOTgzWfQ91XW2fjzHOruk+JsVe3buDVq1ahePHjwMApKAQjL3/90i+/6+InXGPTc9VVVOHxMgQ/OEXlyMgYGD1hPzZSHbxELkcExQiG6hUKvPBpw8tRs1r9yJCfcSmxzc1NTmt68SYsIiONvzzqbswPiMWQbG2zfpRRMRi7S1XICEiZEAx+LtLEiMgSUBjSzsaW9rkDofIJzFBIepHX1WB9c2N2KN6x6bncFWhvaSoELx1xxVoq//+Yj2dvgVGDcZLS2/B1ZdYP476FxYciIy4MABsRSFyFSYoRFbYUhVYoVA4tFqssygg0PTZXyEFWmsVkfD6q6/g9qs57sRZjONQOFCWyDWYoBBZYcuS83q9HkIIlxXaszazZuvWraaup85zXS08AQHmX+vk1DRs2bIZdy++1eEYqLdRyUxQiFyJCQqRFbYuOV9YWOi2QnvGhGXLli1YvHhxr64ng8Fg+ndRURGqK39kPR0XGJUcBQA4zgSFyCWYoBBZYevYEUdWix0IW7qeAGDq1Kmsp+Mixpk8J+qbYTBYfx+IyH5MUIis6G/J+e5jTNxZaM/WascDmd5M1mXGhyE4MADn2/WoOnde7nCIfA4TFCIrrC0576wxJo6wtetJrVa7OBL/FagIwKUXV5Q9XsduHiJnY4JC1A/jkvOJyb2rArtijIktbO16Sk5OtrrfUoVmst3IpK5xKBwoS+R8diUo69evx7hx4xAVFYWoqChkZ2fj448/Nu1vbW3FkiVLEB8fj4iICCxYsAD19fVmz1FZWYl58+YhLCwMiYmJWLFiBTo7O51zNkQukpeXh6f+vgNJC59DVPYvXD7GpD+2dj3NmjXLzZH5l9EpXeNQvlVrZY6EyPfYlaAolUo8//zzOHz4MA4dOoTrrrsO8+fPx7FjXcXHli9fjm3btmHTpk3Ys2cPamtrzX7A9Xo95s2bh/b2duzfvx/vvPMO3n77baxevdq5Z0XkAqU/aBCaMQ7Q6y2OMXFnoT1P7XryNyM51ZjIdcQAxcbGir/+9a+iqalJBAUFiU2bNpn2HT9+XAAQpaWlQgghioqKREBAgFCr1aZj1q9fL6KiokRbW5vNr6nRaAQAodFoBho+kU1aOzrFqN8UiSErt4ugwUNFS0uL3CEJIYTYsmWLSEtLEwBMt/T0dLFlyxabHt/S0mJ6nKeckzepUJ8RQ1ZuFxkrtorT5/h7RNQfe67fDo9B0ev1eP/996HT6ZCdnY3Dhw+jo6MDubm5pmNGjRqFjIwMlJaWAgBKS0sxduxYJCUlmY6ZPXs2tFqtqRXGkra2Nmi1WrMbkat1H5/xn2/rcKHDgM6Ws+g4XSF3aCY9qx3b2/XUvQDi3r17Ha667K8SwoOh1zVBClDg1GmO4SFyJrsTlKNHjyIiIgIhISF44IEH8OGHHyIrKwtqtRrBwcGIiYkxOz4pKck0k0CtVpslJ8b9xn19WbNmDaKjo0239PR0e8MmGpD/nDoLALhl2ji3dOHYw9HpzT0LIM6dOxeZmZlQqVROj9FXSZKE9tM/AgBONDBBIXImuxOUkSNH4siRIzhw4AAefPBB3HnnnWZ/wbnCqlWroNFoTLeqqiqXvh5RT/suJijXjhwscyTO0VcBxJqaGuTn5zNJsUNH4w8AgHImKEROZXeCEhwcjEsuuQQTJ07EmjVrcPnll2PdunVITk5Ge3s7mpqazI6vr683TXVMTk7uNavHeN/adMiQkBDTzCHjjcjZ+ppyq4iIw3cNOkgSkOMDlYCtrUJr3FZYWMjuHhvo9Xpc+P5L6Mr2YF8Ju8iInGnA66AYDAa0tbVh4sSJCAoKwq5du0z7ysvLUVlZiezsbABAdnY2jh49ioaGBtMxO3bsQFRUlFlTM5EnMF5sAmNS0Fr5NcamRiI2PFjmqAauv1VohRCoqqpCSUmJG6PyPsYustaKw2jc9hKKX17GLjIiJ7IrQVm1ahX27t2LH374AUePHsWqVauwe/duLFq0CNHR0bj33nvx8MMPo7i4GIcPH8bdd9+N7OxsXHXVVQCAWbNmISsrC7fffju++uor/Pvf/8ZvfvMbLFmyBCEh1krFE7lX9yrBbdXHUL/xcex95haPvPjYO73Z1lVobT3OH7GLjMgN7JkedM8994ghQ4aI4OBgMXjwYDFz5kzx6aefmvZfuHBB/PKXvxSxsbEiLCxM/PznPxd1dXVmz/HDDz+IOXPmiEGDBomEhATxq1/9SnR0dNgTBqcZk0t0n3IrSZLZ1F0AApIkJEmyeQqvpyouLu59bhZuxcXFcofqkTo7O4VSqezz/02SJJGeni46OzvlDpXI49hz/ZaE6KccqgfSarWIjo6GRqPheBRyGuPnyhpJkqBUKlFRUeG1i6Dp9XpkZmaipqbG4jgUXzhHV9q9ezdmzJjR73HFxcWYPn266wMi8iL2XL9Zi4cIvafc9kX4wPgMrkI7MOwiI3IPJijk9/oaT2CNt198jAUQU1NTzbbLWQDRW9haqNHW44jIMnbxkF8zdndYm9Viia8033fv1ioqKsKsWbPYctIPdpEROY5dPEQ26m/KbU/GKsE5OTkujMp9HF2F1p9Z6yIzYhcZ0cAxQSG/Zk9XDcdnkFFfXWSKyAQ8+tJf2EVG5ARMUMiv2TNOgOMzqLuehRpvffJ1pD3wJqJHXyNjVES+gwkK+bWcnBwolco+m+oBAJIC27dvt6tKsLewd5E3Mte9JW3WzOmQAhQoq2O1dSJnYIJCfs2W8QSQJEyfPp3dOmRVZlTX52P3kRNmtZyIyDFMUMjvWRtPEJ1zO2DolCky8ibDEwZBGPRQhMfidEub3OEQeT0mKEToPZ7g54+/hrQH3kTX6uVElnXvIouPiULnuVoAwLfqFpkjI/J+TFCILurehVMbPhxSgAL/+tvLHJ9BNmtvqAAAfFvPBIVooJigEPUQGJ0EtbYNgQESJmTEyh0OeQm9Xo/zJz6HrmwPPtu9F3q9Xu6QiLwaExSiHkKUXTV5xiqjMSiYA2Opf8ZaTueP70Xjtpewbc2DyMzMhEqlkjs0Iq/FBIXoIuN4goee6ZrVMzkzTuaIyBv0VcuppqYG+fn5TFKIHMQEhaiHQz+cBQBMGsLuHbJOr9ejoKDAYk0e47bCwkJ29xA5gAkKUTfndO040dA1wHESW1CoH/3VchJCoKqqCiUlJW6Misg3MEEh6ubQj+cAAJckRiAuPFjmaMjT2VrLyZ6aT0TUhQkKUTfG7p3Jmezeof7ZWsvJnppPRNSFCQpRN1+Yxp+we4f6118tJ0mSkJ6ejpycHDdHRuT9mKAQXXShXY9vajQAOIOHbGNLLae1a9eyjhORA5igEF30VXUTOvQCSVEhSI8bJHc45CWs1XJa9fs3fK4CNpG7MEEhuuhgxcXuncy4visbE1nQs5bTzU/8BWkPvIk/f7gHkiSxujGRA5igEF108OIMnslc/4Qc0L0bZ/bM6ZACFAhOvkTGiIi8GxMUIgB6g8CXFxMUrn9CA5WVEgkATFCIBoAJChGAb9VatLR1IiIkEKNTouQOh7zcyKRwKGBAR+OPkEIjsXcviwcS2YsJChF+Gn8yYUgsFAEcf0L2M9ZyEkJg966dqHntXtRvfByitRlz585l8UAiOzFBIcJP409Yf4cGylg8sE1z2mw7iwcS2YcJCvk9IQQO/2Acf8IEhRzH4oFEzsMEhfxeTdMFqLWtCAyQcEV6jNzhkBdj8UAi52GCQn7v0MXWkzGpUQgLDpQ5GvJmLB5I5DxMUMjvHfqxa4DsRNbfoQFi8UAi52GCQn7P2ILCCsY0UCweSOQ8TFDIr9WdacLxuq4CgaMTQ2SOhrydteKBxvssHkhkGyYo5Ne+qtZCkgLQca4WgyOYoNDA9VU8UKlUYvPmzSweSGQjjggkv/Z/VVoAQFv1cZkjIV+Sl5eH3NxcRMfGI35uAQIj47H/Tw9BGRchd2hEXoMtKOTXDv94Fq2VX6Plm11cjpycSqFQAIZOBA/ORGjGOJTVtcgdEpFXYYJCfuuDzZuxddUC1G98HG2VX3M5cnKJ9vqTAIBvajQyR0LkXZigkF9SqVS49Re/QGdzo9l2LkdOztauPgUAOMoEhcguTFDI73A5cnIHY/HAYtX/AgCO1mgtfuaIyDImKOR3uBw5udOY1CgEBkhobGlDraZV7nCIvAYTFPI7XI6c3Ck0SIFRKZEAgCOVTfIGQ+RFmKCQ3+Fy5ORu49O7Vim+vfAJSJIEnU4nc0REno8JCvmdnJwcxCf2nXxwOXJyNmOV7ODUS+UNhMiL2JWgrFmzBpMnT0ZkZCQSExNx0003oby83OyY1tZWLFmyBPHx8YiIiMCCBQtQX19vdkxlZSXmzZuHsLAwJCYmYsWKFejs7Bz42RDZQKFQ4Jo7Hrl4j8uRk+uNz4gBAAQnXQIEcH1MIlvYlaDs2bMHS5Ysweeff44dO3ago6MDs2bNMmuuXL58ObZt24ZNmzZhz549qK2tNVvaWa/XY968eWhvb8f+/fvxzjvv4O2338bq1audd1ZEfdDpdJAkCQc1ERh80+NISEo228/lyMkVhiaEIzJYQntdORSR8VwUkMgWYgAaGhoEALFnzx4hhBBNTU0iKChIbNq0yXTM8ePHBQBRWloqhBCiqKhIBAQECLVabTpm/fr1IioqSrS1tdn0uhqNRgAQGo1mIOGTH2ppaREB4TFiyMrtInPldlFV3ygACACiqKhIdHZ2yh0i+aAtW7aIsNhE02cNgFAqlWLLli1yh0bkVvZcvwc0BkWj6Vp4KC4uDgBw+PBhdHR0IDc313TMqFGjkJGRgdLSUgBAaWkpxo4di6SkJNMxs2fPhlarxbFjxyy+TltbG7RardmNyFGhyjEAgBGJ4YgNDzVtnzZtGrt1yOlUKhXy8/Nx/lyD2XYuCkhkncMJisFgQGFhIaZOnYrLLrsMAKBWqxEcHIyYmBizY5OSkqBWq03HdE9OjPuN+yxZs2YNoqOjTbf09HRHwyY/p9frERAeC13ZHiQ0n2AzO7kUFwUkcpzDCcqSJUvwzTff4P3333dmPBatWrUKGo3GdKuqqnL5a5LvUalUyMrKQsuX29G47SVsfOp+jBkzBlu2bIEQAuHh4XKHSD6GiwISOc6hBGXp0qXYvn07iouLoVQqTduTk5PR3t6OpqYms+Pr6+uRnJxsOqbnrB7jfeMxPYWEhCAqKsrsRmQPYzN7TU2N2XY2s5MrcVFAIsfZlaAIIbB06VJ8+OGH+OyzzzB06FCz/RMnTkRQUBB27dpl2lZeXo7KykpkZ2cDALKzs3H06FE0NPzUH7tjxw5ERUUhKytrIOdCZBGb2UkuXBSQyHGSsPSr3Ydf/vKX2LBhA7Zu3YqRI0eatkdHR2PQoEEAgAcffBBFRUV4++23ERUVhYceeggAsH//fgBdF4srrrgCqampePHFF6FWq3H77bfjv//7v/Hcc8/ZFIdWq0V0dDQ0Gg1bU6hfu3fvxowZM/o9rri4GNOnT3d9QOQ39Ho9MjMzUVNTYzFBliQJSqUSFRUVHKBNfsGe67ddLSjr16+HRqPB9OnTkZKSYrr94x//MB3z8ssv44YbbsCCBQswbdo0JCcnmzWfKxQKbN++HQqFAtnZ2Vi8eDHuuOMOPPPMM3aeJpFt2MxOclEoFFi3bh2AnxYBNOKigETW2dWC4inYgkL2YAsKyU2lUmHZsmVmY6BSUtPwpz++wkUBya/Yc/1mgkI+z9jMXl1TA7CZnWRi/N2KunohBg0Zi3UFC3HLlEy5wyJyK5d18RB5I1Mzu4VUnM3s5C7Gz1dAcChCM8bhSA0XnCSyhgkK+YW8vDxc+8s1UEQmmG1n7R1yl/DwcAgh8MGrawAAX1SclTkiIs/GBIX8QofegNPxlyPtgTehiO5ab6eoqAgVFRVMTsitJmfGAgBOndahsaVN5miIPBcTFPILR2s00LXrERMeAr2ma2FA1t4hOcSEBWNkUiQA4NAPbEUh6gsTFPILn39/BgBw1bB4CGHg0vYkqyuHdhVYPcBuHqI+MUEhn6bT6SBJEp5evxFAV4JCJLfJFxOUg2xBIeoTExTyfQGBCEnrKqOQPZwJCsnvysyuBKWsVovm1g6ZoyHyTExQyKfp9XoExaXgwskDCKwvw/D4MLlDIkJydCgy4sJgEMDhH8/JHQ6RR2KCQj5LpVIhKysLHY1VaNz2Ek69/SiGDRvKysXkEYzjUDjdmMgyJijkk1QqFfLz882WFgeAmpoa5OfnM0kh2Rm7eZigEFnGBIV8jl6vR0FBgcXqscZthYWF0Ov17g6NyOSy5FAAwMFTDTjTxFVliXpigkI+p6SkBNXV1X3uF0KgqqoKJSUlboyKyFxG7CB0tpyFFBiEo7XNcodD5HGYoJDPqaurc+pxRK5gMBjQ/H9F0JXtwT+2f8oWPaIemKCQz0lJSXHqcUTOZhzArd3/Phq3vYTXVt6DzMxMjo0i6oYJCvmcnJwcKJVKU6XiniRJQnp6OnJyctwcGREHcBPZigkK+RyFQoF169ah9xBZmJKWtWvXsg4PuR0HcBPZjgkK+aS8vDzctmotFJEJZtuVSiU2b97MCsYkCw7gJrIdExTyWWcGX4G0B95ESMY4AEBRUREqKiqYnJBsOICbyHZMUMgnNWhb8a26GQEBCnSc/gEAMG3aNHbrkKxsHZgdExPj2kCIvAATFPJJe080AgDGKqOhP6+BEALh4eEyR0X+rr8B3EZTp051U0REnosJCvmkkhOnAQDTRgyWORKinxgHcAOwmqTs27ePA2XJ7zFBIZ9jMAiUXGxBmXYpExTyLHl5edi8eTNSU1PNd0g//RzPnTuX66KQ32OCQj7nWK0WZ3XtiAgJxPiMGLnDIeolLy8PZWVl5huFwewu10Uhf8cEhXyKTqfDNTffBwCYkhmDIAU/4uSZ+huwLYSAEAIFBQXs7iG/xF9v8il6vR6KsBjoyvYgXvsdf9jJY4WHh6O4uLjf46qrq7F7927XB0TkYZigkM9QqVQYNXo0zn32Bhq3vYSXCu9gPz55NFvXO/nFL37BzzH5HSYo5BOM9U3qamvNtrMfnzyZreuinD17lp9j8juSsFQUwsNptVpER0dDo9EgKipK7nBIZnq9HpmZmX0uIS5JEpRKJSoqKrhQG3kU42e3pqbGYn2e7vg5Jl9gz/WbLSjk9VjfhLxV93VR+sPPMfkbJijk9VjfhLyZcV2U2NhYm47n55j8RaDcARANlK39+LYeR+RueXl5CAkJwQ033NDvsfwck79gCwp5PWN9k75IkoT09HTk5OS4MSoi+1x//fUXP8eWl8Dn55j8DRMU8noKhQKrnnne4j5jvZO1a9dyYCF5NON4FEslevg5Jn/EBIV8gjT0Kgy+6XGExZrX3lEqldi8eTPy8vJkiozIdsbxKCHR/BwTcQwK+YRPy9QIG3k1nlu2GPddlwUAKCoqwqxZs/gXJ3mVvLw8/DpgGF794GOcL9+Pf/zul/wck19igkJer0Hbiv+rbAIA3DhxaL/rSRB5utysJLyZMQ7BSZfgqquvYXJCfoldPOT1Pi2rBwCMz4hBUlSozNEQDdyUS5KRGBmCgJAwfF3fKnc4RLJggkJez5igzMpKljkSIucICJCQm5UEANhRppY5GiJ5MEEhr6Zt7cC+7+rRWvk1lt4wGR9//DErGJNP+JkpQalHk0YDSZIgSRI/4+Q3mKCQV3v6lbfw45/vQf3Gx2HQncPcuXNZwZh8wtXD4xEZEoiKg8W4dORo03Z+xslfMEEhr6VSqfCHlf8P+uZGs+2sYEy+ICRQgeHnj+H0P5/D6Xrz5e35GSd/wGrG5PF0Oh0iIiIAAC0tLQgPD4der0d6xhDU1dZYfAwrv5K30+v1SFFm4LS61uJ+fsbJG7m0mvHevXtx4403IjU1FZIk4Z///KfZfiEEVq9ejZSUFAwaNAi5ubk4ceKE2TFnz57FokWLEBUVhZiYGNx7771oaWmxNxTyE9372/fu3QutVovAwMA+kxOAlV/J+5WUlPSZnAD8jJPvsztB0el0uPzyy/Hqq69a3P/iiy/ilVdewWuvvYYDBw4gPDwcs2fPRmvrT1PlFi1ahGPHjmHHjh3Yvn079u7di/vvv9/xsyCfpVKpkJWVZbo/d+5cjB492sojzLHyK3krVukmvycGAID48MMPTfcNBoNITk4WL730kmlbU1OTCAkJERs3bhRCCFFWViYAiIMHD5qO+fjjj4UkSaKmpsam19VoNAKA0Gg0AwmfPNyWLVuEJEkCgMO34uJiuU+DyCHFxcX8jJPPsef67dRBshUVFVCr1cjNzTVti46OxpQpU1BaWgoAKC0tRUxMDCZNmmQ6Jjc3FwEBAThw4IDF521ra4NWqzW7kW/T6/UoKChweFVYVn4lb2es0i1Zqh4IfsbJ9zk1QVGruxYUSkpKMtuelJRk2qdWq5GYmGi2PzAwEHFxcaZjelqzZg2io6NNt/T0dGeGTR6opKQE1dXVDj2WlV/JFxirG3cxT1L4GSd/4BXTjFetWgWNRmO6VVVVyR0SudhA+tVZ+ZV8hbG6cXJKitl2fsbJHzi1WGByctdS4/X19Ujp9oWqr6/HFVdcYTqmoaHB7HGdnZ04e/as6fE9hYSEICQkxJmhkodL6fGDbKtHH30Uzz33HP+qJJ+Rl5eH3NxcDJlfiMDIBORdPRp/XnEHP+Pk85zagjJ06FAkJydj165dpm1arRYHDhxAdnY2ACA7OxtNTU04fPiw6ZjPPvsMBoMBU6ZMcWY45MX663/vy5w5c/jDTT4nKioKb/3htwjPuhZHDOkwwL7vBZE3sjtBaWlpwZEjR3DkyBEAXQNjjxw5gsrKSkiShMLCQvzud7/DRx99hKNHj+KOO+5AamoqbrrpJgDA6NGjcf311+O+++7DF198gX379mHp0qW49dZbkZqa6sxzIy/Wvf/dliSFAwbJ180Zm4yEiGDUa9ug+uJ71uYhn2d3gnLo0CGMHz8e48ePBwA8/PDDGD9+PFavXg2gq4n9oYcewv3334/JkyejpaUFn3zyCUJDQ03P8d5772HUqFGYOXMm5s6di2uuuQavv/66k06JvJ1er8fu3bvR1taGp556qt/uHg4YJH8QEqjAbVdm4Hz5ftw192rTdtbmIV/Fpe7Jo6hUKixbtgw1NT+tEpuWlob7778fNYZo/GPXF2g9+inaND/V30lPT8fatWs5YJB83t/efR/33r6w13Zjks6Bs+Tp7Ll+M0Ehj6FSqZCfn99r7RPjj+/oxU9ClzoJz9w4Ghkdlairq0NKSgpycnLYckI+T6/XIzMzs8/p96zNQ97Anuu3U2fxEDnK2sJsQghAklD+zz8ha/n/In9yBsKCh8kQJZF8+lsbSHSrzTN9+nT3BUbkIl6xDgr5vn4XZhMC+uZGXBV+GmHBzKvJ/7A2D/kbJijkEWz9Ub0i3ut6JImcwta1gRxdQ4jI0zBBIY9g649q1vAhLo6EyDOxNg/5GyYo5BFsWZgtNU3JH1/yW9bWBuJUe/JFTFDII/S/MJuEP76yjj++5NeMtXl6LmoZm5jMKcbkczjNmDyKpXVQgqIG483X/oTbF/5CxsiIPIder0dJSQk27v4KW787j6FjJmL3ypkICWQCT56N66CQV9Pr9dhVvBtL/1oMbUA4nrh3AZbMvFTusIg8TmuHHte+VIx6bRuemT8Gd2Rnyh0SkVX2XL/ZxUMeR6FQ4MfgoWjPzMbQsVfi3mnD5Q6JyCOFBimwdMYlAIA/fXYSrR2syUO+gwkKeZwfGnX4w47vAADLf3YpQoPYbE3Ul19MTkdazCA0NLfh76U/yh0OkdNwxSuSnbE/va6uDolJyXj1eCAudOhx1bA45E9Qyh0ekUcLCVTgoenDUPjKRjyzrgTx2uswf85MDignr8cEhWRlaVCsIjIBqdc/gP9ZuQoBAX1POyairu/Qr5YtQ/3F79AC1QtQKpVYt24dZ/WQV2MXD8nGWBywe3ICAPrmRlRtehZfFH8iU2RE3sH4Hart8R2qrqlBfn4+VCqVTJERDRxn8ZDNunfFDLSKMCuzEg1Mf98hAIiLi8MHH3yA6dOn83tEHoGzeDyAXq/H7t27sXHjRuzevRt6ve2j6wfyWFdRqVQYMmQIZsyYgdtuuw0zZsxAZmamw3+h2VOZlYh667fAJoCzZ88iNzd3QN9VIrkwQXGBgVzMnZ0IOENfXTE1A2hGZmVWooGx57sxkO8qkVzYxWMjW7s3jBfznv+txuXbrS1HPZDHOvMcej7GGV0xPV9br9cjNze335iLi4sxffr0fo8j8je7d+/GjBkzbD7e+F09efIk9u/f75SuWiJ72XX9Fl5Io9EIAEKj0bjl9bZs2SKUSqUAYLoplUqxZcsWs+M6Ozt7HdfzNnjwYNHW1tbrNfp7rCRJIj09XXR2drr0HHoqLi62ej7GW3FxsV2vnZqaKgaFR7jsfIl8nfE3Q5Ikm76j3X+Dut9PS0sTTz/9tNiwYYMoLi7md45cyp7rNxOUbjo7O0VxcbHZF3XLli1WfwAKCwtFcXGxaGtrEy+//LLNPxA9EwNnJAJ96escJEkSkiRZTVI2bNhgU1wbNmyw67Wt3WyJi4h++n7Z+x2zdmPCQq7EBMUBlv7KT0tLE/Hx8TZ9qQMCAuy+CHe/AA80ETDqmWS1tbUNqGVmIImTLS1Klm7p6elMTohsZOm3y5k3W1paiWzFBMVOjvyVP9Bbz8TAVV0pCQkJA3re/pqRrSU4tp5T91tfXWBE1LfOzk6xc+dOERcX55LfKrZokrPYc/32+1k8er0eBQUFvQamuproMY02JycHSqXSNCDWkri4OOj1eovTjo0DbHsOZm1sbLQpHkszAowDW40Dd3vGZry/du1aADCbGt3e3o5du3bZ9NrdnT59Gvv377f7cUT+TKFQYObMmXjjjTcgSZLV3xF7GX8bCwsLPWLJA/Iffp+g2LKWgCsZEwOFQoF169YBQJ8/Ln2taeCMJCslJcXsfvfpzsYEJCDA/OOiVCqxefNmAEBmZqbZ1OiwsDD87ne/cygWTi0mckxeXh42b96MtLQ0pz5vzz+oiNzB7xMUuS+G9fX1pr9KbP1x6bmmwUCSLEmSkJ6ejpycHNO2PpegvxhnYWEhdu7cibfeegslJSVYsGBBr9cfyF9aPZMlIrJdXl4eTp06hcGDBzv9ueX+vST/4vcJitwXw+XLl5u1iOTl5eGHH37Azp07ERcXZ/ExPZtcB/KjIYTAggULUFJSYuo+stYaI0kS/v73v+Ouu+5Cbm6uqXXFGSwlS0Rkv/379+P06dNOf165fy/Jv/h9NWPj2I+amhrrXSRSACAMLomhuroaCxYsQGJ2HpLHXYPkS6+A7scynD17ts/HGJtcV7/2AdQV5Q69rkKhgF6vx9q1a7F27VoolUrcd999/S5Bf+bMGYdez5ru41m4aBTRwDi7pcO4yBv/eCB34kqy+KlLA0C/4zhm/Gw2inf8G5AkwOqxXRfcy65fjFMH/o0L5xpsjkcRmYCwkVPRfGhrv8cGhEbA0Npi83N7gvz8fHz++edmiVB6ejrWrl3L8vBETmDrKrPhl81E6w9HoG/p+48Oe1aydmZBUfJNXEnWAVu2bBFpaWk2TQ3etGlTr+m8CoXC7H73tTw6OzttXsQNgICbpzy7+2Zc/KnnonhE5By2Lg/w/oEfxLCVH4mkhc+J5PmPipmLl4rUHr+Dtq5L5Ohq1eRf7Ll+swWlm127dtlcHyYnJ8fsL4Wrr77aan2LjRs34rbbbrMrHoVCAYPB4PYp0K5ia90eIhq4vlqGe7aInKhvxjPby1ByomtJgviwQMxLbMLISD3S0lJtagXpq46YUWFhIebPn++2FhW25HgutqA4yFmruVriyKJlxpu7F5FzxY2LPRG5n6VWDUstIgaDQewsU4vpLxWLISu3iyErt4t5r+wVB74/029rpz0rRrujRYUtOZ6NK8k6yJX1cBwt7FVYWNhv15O7bkqlUsTHx9t0Dta6vIjIfezpTm3r0Is39p4Sl63+RAxZuV0MvulxMSg2sc+Lvd3d1xdvTz/9tMVEp79EqL/zGEjdMVf8f8rFk2NkguKggSzrbgtHCnsVFxeLnTt3OpxUOKP1JS4uTuzcudOseGJfz9u9eKKnfkGIyLrTza3i5yv+0MdvQtf3f8WKFQOqAdQ90emv1aO//bYs9W/r77elembG+08//bTbWmccTTJsaUGydo6u/r1mgjIAfV2AnZWB21rYq/uXydaup56PtTSYNz09XaxYscKhRMnaObCFhMh3OFro05HbDTfc4NB+42+YvYnSyy+/bHYB7n6xtpSA9GwN7isOS79//SUC3e/v3LlT7Ny5c0CJkC0tSJZ+v3ueoyu7xJigDJCrL8DGD21hYaHpw2PtA2/P+JWej+0rC7e3AmrPcTee3IRIRAMzkDFz3nAzXoCdWQm6e0uzEJZ/Y3smAv0lP9Z+23vqL6mUJMnmLnrjzdgi7szfdyYoTuCuC7AtyZA941fsSaTs6T92ZNwNEXkne1ttefvplpCQ0G+rkKO37i3rPa9Rn376qcvOyZktKpxm7GVsmRLX32Jyjk7j0+v1yMzM7HMlXU4NJvI/ti70RvK4++67sWPHDrPFLiVJctmSFPYs1tcfe67fTFC8iEqlQkFBgdNXYLV1vQQi8g/9/eFC/sdZf6zac/32+2KB3sRYSLC4uBgbNmxAcXExKioqBpw89FVFWalUMjkh8kMKhQLr1q1z6LHGop+bNm3qtzI7eQ9xsf5bSUmJ216TLShkwtUXiag7lUqF//f//h8aGxttOr5nq6ter8ezzz6LJ5980pVhkhtt2LABCxcudPjx7OIhIiKnaG9vh1KpxOnTp/s9tq8uZ0vd065kHI8RHx+Ps2fPspvKiYqLizF9+nSHH88uHiIicorg4GC89tprkCTJ1ELSU2FhodUu5+7d04WFhQDQ53PdcMMNVvfbQqlUYsuWLXj99dcH/Fw9W5GVSiWefPJJxMXFOfycnsaWlnJj111OTo4bIrrIKfOG3Mwd04yJiOgnzlwfqr/nsrR/8ODBNk2J7bkQm71rnaSlpYmnn36631VW+1oUzdrNnnVQlEqluOuuu1w6Jdq4dovxHG1dm2sgvGaa8auvvoqXXnoJarUal19+Of74xz/iyiuv7Pdx7OIhInI/Z45T6++5eu6/+uqrMXz4cIeWRDA+19atW7F27do+p+Q+/fTT+PWvf23zOdnadWVcBqJn1fvu9xMTEwEADQ0Npv8PAA7Ppup+jj3P19oMTVfNFjXyimrG77//vggODhZ/+9vfxLFjx8R9990nYmJiRH19fb+PZQsKEZH/cUYpEmevFN59ZfCerTzOWIHc1hpufRVodeR8XblQqVe0oEyZMgWTJ0/Gn/70JwCAwWBAeno6HnroITz22GNWH8sWFCIi/+SMv/BdNWPRVc9r6ZyVSiXuu+8+jBgxoldrTM/X9qQZmh4/i6e9vR1hYWHYvHkzbrrpJtP2O++8E01NTdi6davZ8W1tbWhrazPd12q1SE9PZ4JCROSHPOmC6y6+cs72JCiBborJTGNjI/R6PZKSksy2JyUl4dtvv+11/Jo1a/D000+7KzwiIvJgCoViQFNdvZE/nrNXTDNetWoVNBqN6VZVVSV3SERERORCsrSgJCQkQKFQoL6+3mx7fX09kpOTex0fEhKCkJAQd4VHREREMpOlBSU4OBgTJ07Erl27TNsMBgN27dqF7OxsOUIiIiIiDyJLCwoAPPzww7jzzjsxadIkXHnllVi7di10Oh3uvvtuuUIiIiIiDyFbgnLLLbfg9OnTWL16NdRqNa644gp88sknvQbOEhERkf9hsUAiIiJyCxYLJCIiIq/GBIWIiIg8DhMUIiIi8jhMUIiIiMjjyDaLZyCM43q1Wq3MkRAREZGtjNdtW+bneGWC0tzcDKCrgiURERF5l+bmZkRHR1s9xiunGRsMBtTW1iIyMhKSJDnlOY0Vkquqqnx26rKvn6Ovnx/Ac/QVPEff4Ovn6IrzE0KgubkZqampCAiwPsrEK1tQAgICoFQqXfLcUVFRPvlB687Xz9HXzw/gOfoKnqNv8PVzdPb59ddyYsRBskRERORxmKAQERGRx2GCclFISAiefPJJhISEyB2Ky/j6Ofr6+QE8R1/Bc/QNvn6Ocp+fVw6SJSIiIt/GFhQiIiLyOExQiIiIyOMwQSEiIiKPwwSFiIiIPI5fJyjPP/88JElCYWGhaVtrayuWLFmC+Ph4REREYMGCBaivr5cvyAGydI7Tp0+HJElmtwceeEC+IO301FNP9Yp/1KhRpv2+8B72d47e/h4CQE1NDRYvXoz4+HgMGjQIY8eOxaFDh0z7hRBYvXo1UlJSMGjQIOTm5uLEiRMyRmy//s7xrrvu6vU+Xn/99TJGbJ/MzMxe8UuShCVLlgDwje9if+foC99FvV6PJ554AkOHDsWgQYMwfPhw/Pa3vzWrlyPH99ErV5J1hoMHD+Ivf/kLxo0bZ7Z9+fLl+Ne//oVNmzYhOjoaS5cuRV5eHvbt2ydTpI7r6xwB4L777sMzzzxjuh8WFubO0AZszJgx2Llzp+l+YOBPH2VfeQ+tnSPg3e/huXPnMHXqVMyYMQMff/wxBg8ejBMnTiA2NtZ0zIsvvohXXnkF77zzDoYOHYonnngCs2fPRllZGUJDQ2WM3ja2nCMAXH/99XjrrbdM971pyurBgweh1+tN97/55hv87Gc/w8033wzAN76L/Z0j4N3fRQB44YUXsH79erzzzjsYM2YMDh06hLvvvhvR0dFYtmwZAJm+j8IPNTc3ixEjRogdO3aIa6+9VhQUFAghhGhqahJBQUFi06ZNpmOPHz8uAIjS0lKZonVMX+cohOh139s8+eST4vLLL7e4z1feQ2vnKIT3v4crV64U11xzTZ/7DQaDSE5OFi+99JJpW1NTkwgJCREbN250R4gD1t85CiHEnXfeKebPn++egNygoKBADB8+XBgMBp/5LvbU/RyF8P7vohBCzJs3T9xzzz1m2/Ly8sSiRYuEEPJ9H/2yi2fJkiWYN28ecnNzzbYfPnwYHR0dZttHjRqFjIwMlJaWujvMAenrHI3ee+89JCQk4LLLLsOqVatw/vx5N0c4MCdOnEBqaiqGDRuGRYsWobKyEoBvvYd9naORN7+HH330ESZNmoSbb74ZiYmJGD9+PN544w3T/oqKCqjVarP3MTo6GlOmTPGa97G/czTavXs3EhMTMXLkSDz44IM4c+aMDNEOXHt7O959913cc889kCTJp76LRj3P0cibv4sAcPXVV2PXrl347rvvAABfffUV/vOf/2DOnDkA5Ps++l0Xz/vvv48vv/wSBw8e7LVPrVYjODgYMTExZtuTkpKgVqvdFOHAWTtHALjtttswZMgQpKam4uuvv8bKlStRXl4OlUrl5kgdM2XKFLz99tsYOXIk6urq8PTTTyMnJwfffPONz7yH1s4xMjLS69/D77//HuvXr8fDDz+Mxx9/HAcPHsSyZcsQHByMO++80/ReJSUlmT3Om97H/s4R6OreycvLw9ChQ3Hq1Ck8/vjjmDNnDkpLS6FQKGQ+A/v885//RFNTE+666y4AvvN72l3PcwS8//cUAB577DFotVqMGjUKCoUCer0ezz77LBYtWgQAsn0f/SpBqaqqQkFBAXbs2OEVfdiOsOUc77//ftO/x44di5SUFMycOROnTp3C8OHD3RWqw4xZPQCMGzcOU6ZMwZAhQ/DBBx9g0KBBMkbmPNbO8d577/X699BgMGDSpEl47rnnAADjx4/HN998g9dee8108fZ2tpzjrbfeajp+7NixGDduHIYPH47du3dj5syZssTtqDfffBNz5sxBamqq3KG4jKVz9PbvIgB88MEHeO+997BhwwaMGTMGR44cQWFhIVJTU2X9PvpVF8/hw4fR0NCACRMmIDAwEIGBgdizZw9eeeUVBAYGIikpCe3t7WhqajJ7XH19PZKTk+UJ2k79nWP3wV5GU6ZMAQCcPHnS3eE6RUxMDC699FKcPHkSycnJXv8eWtL9HC3xtvcwJSUFWVlZZttGjx5t6sYyvlc9Z3x40/vY3zlaMmzYMCQkJHjN+2j0448/YufOnfjv//5v0zZf+y5aOkdLvO27CAArVqzAY489hltvvRVjx47F7bffjuXLl2PNmjUA5Ps++lWCMnPmTBw9ehRHjhwx3SZNmoRFixaZ/h0UFIRdu3aZHlNeXo7KykpkZ2fLGLnt+jtHS83GR44cAdD1g+qNWlpacOrUKaSkpGDixIle/x5a0v0cLfG293Dq1KkoLy832/bdd99hyJAhAIChQ4ciOTnZ7H3UarU4cOCA17yP/Z2jJdXV1Thz5ozXvI9Gb731FhITEzFv3jzTNl/7Llo6R0u87bsIAOfPn0dAgHk6oFAoYDAYAMj4fXTZ8Fsv0XME9gMPPCAyMjLEZ599Jg4dOiSys7NFdna2fAE6QfdzPHnypHjmmWfEoUOHREVFhdi6dasYNmyYmDZtmrxB2uFXv/qV2L17t6ioqBD79u0Tubm5IiEhQTQ0NAghfOM9tHaOvvAefvHFFyIwMFA8++yz4sSJE+K9994TYWFh4t133zUd8/zzz4uYmBixdetW8fXXX4v58+eLoUOHigsXLsgYue36O8fm5mbxyCOPiNLSUlFRUSF27twpJkyYIEaMGCFaW1tljt52er1eZGRkiJUrV/ba5wvfRSH6Pkdf+C4K0TWbLC0tTWzfvl1UVFQIlUolEhISxKOPPmo6Ro7vIxOUHgnKhQsXxC9/+UsRGxsrwsLCxM9//nNRV1cnX4BO0P0cKysrxbRp00RcXJwICQkRl1xyiVixYoXQaDTyBmmHW265RaSkpIjg4GCRlpYmbrnlFnHy5EnTfl94D62doy+8h0IIsW3bNnHZZZeJkJAQMWrUKPH666+b7TcYDOKJJ54QSUlJIiQkRMycOVOUl5fLFK1jrJ3j+fPnxaxZs8TgwYNFUFCQGDJkiLjvvvuEWq2WMWL7/fvf/xYALL43vvBdFKLvc/SV76JWqxUFBQUiIyNDhIaGimHDholf//rXoq2tzXSMHN9HSYhuS8UREREReQC/GoNCRERE3oEJChEREXkcJihERETkcZigEBERkcdhgkJEREQehwkKEREReRwmKERERORxmKAQERGRx2GCQkRERB6HCQoRERF5HCYoRERE5HGYoBAREZHH+f8TGhv9bZckpwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -3404,33 +8673,25 @@ "mi.migrad()" ] }, - { - "cell_type": "markdown", - "id": "1510691d-6fbc-466f-a802-647bbc5e9fd2", - "metadata": {}, - "source": [ - "TODO: Add indivdiual components to the plot..." - ] - }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 518, "id": "067fbf6f-14c4-4a46-afb3-71753d06af23", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 127, + "execution_count": 518, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgrElEQVR4nOzdd3xT9frA8c9J2nQPulsoLVAKFMpGKCAgoCCoKLhxc9GrOHGBV7lulHvFq17H1avg/Tlw4UJlKiB7yB5l00IXhe6VJjm/P2IOTRdNmzYdz/v1yovmnJNznrQkefIdz1dRVVVFCCGEEKKV0rk6ACGEEEKIxiTJjhBCCCFaNUl2hBBCCNGqSbIjhBBCiFZNkh0hhBBCtGqS7AghhBCiVZNkRwghhBCtmpurA2gOLBYLaWlp+Pn5oSiKq8MRQgghRB2oqkpBQQFRUVHodDW330iyA6SlpREdHe3qMIQQQghRD6mpqXTo0KHG/ZLsAH5+foD1l+Xv7+/iaIQQQghRF/n5+URHR2uf4zWRZAe0rit/f39JdoQQQogW5kJDUGSAshBCCCFaNUl2hBBCCNGqSbIjhBBCiFZNxuwIIYQQNTCbzZSXl7s6jDbL3d0dvV7f4PNIsiOEEEJUoqoqGRkZ5ObmujqUNi8wMJCIiIgG1cGTZEcIIYSoxJbohIWF4e3tLQVnXUBVVYqLi8nKygIgMjKy3ueSZEcIIYSowGw2a4lOcHCwq8Np07y8vADIysoiLCys3l1aMkBZCCGEqMA2Rsfb29vFkQg4/3doyNgpSXaEEEKIakjXVfPgjL+DJDtCCCGEaNUk2RFCCCFEqybJjhBCCCEaxbPPPkt4eDiKovDdd99xxx13cPXVVzd5HJLsCCGEEK3EHXfcgaIo2i04OJjx48eze/dup13j2WefpW/fvhc87sCBAzz33HP85z//IT09ncsvv5w33niDhQsXaseMGjWKhx9+2Gmx1USSHSGEEKIVGT9+POnp6aSnp7Nq1Src3Ny44oormjyOo0ePAjBp0iQiIiLw8PAgICCAwMDAJo9Fkh0hRKtTbDQRO+snYmf9RLHRVOW+EI5SVZWioiKX3FRVdShWDw8PIiIiiIiIoG/fvsyaNYvU1FTOnDmjHZOamsr1119PYGAgQUFBTJo0iRMnTmj7V69ezUUXXYSPjw+BgYEMGzaMkydPsnDhQp577jl27dqltR5VbKmxefbZZ7nyyisB0Ol02oyqit1Yd9xxB2vWrOGNN97QzlUxBmeSooJCCCHEBRQXF+Pr6+uSaxcWFuLj41Pvx37yySfExcVpBRLLy8sZN24cSUlJ/P7777i5ufHiiy9q3V06nY6rr76a6dOn8/nnn2M0GtmyZQuKonDDDTewd+9eli5dysqVKwEICAioct3HHnuM2NhY7rzzTtLT06uN7Y033uDQoUP06tWL559/HoDQ0NB6Pc8LkWRHCCGEaEWWLFmiJWZFRUVERkayZMkSdDprZ84XX3yBxWLhv//9r9bismDBAgIDA1m9ejUDBw4kLy+PK664gi5dugDQo0cP7fy+vr64ubkRERFRYwy+vr5ad1VNxwUEBGAwGPD29q71XM4gyY4QQghxAd7e3hQWFrrs2o645JJLePfddwHIycnhnXfe4fLLL2fLli3ExMSwa9cujhw5gp+fn93jSktLOXr0KJdddhl33HEH48aN49JLL2Xs2LFcf/31DVqbytUk2RFCtDnFRhMJc5YBsP/5cXgb5K1Q1E5RlHp3JTU1Hx8f4uLitPv//e9/CQgI4IMPPuDFF1+ksLCQAQMG8Omnn1Z5rK0bacGCBTz44IMsXbqUL774gqeffpoVK1YwZMiQJnseziSvcCGEEKIVUxQFnU5HSUkJAP379+eLL74gLCwMf3//Gh/Xr18/+vXrx+zZs0lKSuKzzz5jyJAhGAwGzGazU2Jz5rlqI7OxhBBCiFakrKyMjIwMMjIyOHDgAA888ACFhYXa7KipU6cSEhLCpEmT+P333zl+/DirV6/mwQcf5NSpUxw/fpzZs2ezceNGTp48yfLlyzl8+LA2bic2Npbjx4+zc+dOsrOzKSsrq3essbGxbN68mRMnTpCdnY3FYnHK76AySXaEEEKIVmTp0qVERkYSGRnJ4MGD2bp1K1999RWjRo0CrGOA1q5dS8eOHZk8eTI9evRg2rRplJaW4u/vj7e3NwcPHmTKlCnEx8dz9913M2PGDO655x4ApkyZwvjx47nkkksIDQ3l888/r3esjz32GHq9noSEBEJDQ0lJSXHGr6AK6cYSQgghWomFCxdWW/emsoiICD7++ONq9/n7+/Ptt9/W+FgPDw++/vrrC17j6quvrlIjqHJs8fHxbNy48YLnaihp2RFCCCFEqybJjhCiVcvIK631vhCi9ZNuLCFEq/PN9lPaz2Pnr+GqPlF295+7qqcrwhJCuIi07AghWpX0vBL+/sM+7b5Fhe92ptndr7hfiJo4uiaVaBzO+Du4PNk5ffo0t9xyC8HBwXh5eZGYmMi2bdu0/aqqMmfOHCIjI/Hy8mLs2LEcPnzY7hznzp1j6tSp+Pv7ExgYyLRp01xW6VII4VrHs4uwXOC98UL7Rdvm7u4OWNfDEq5n+zvY/i714dJurJycHIYNG8Yll1zCL7/8QmhoKIcPH6Zdu3baMfPmzePNN9/k448/plOnTjzzzDOMGzeO/fv34+npCVhrBqSnp7NixQrKy8u58847ufvuu/nss89c9dSEEC7SKcQHnVJ7QlNxf0ZeKZ1DXbPAo2ie9Ho9gYGBZGVlAdap2rY1pETTUVWV4uJisrKyCAwMRK/X1/tciurCdrpZs2axfv16fv/992r3q6pKVFQUjz76KI899hgAeXl5hIeHs3DhQm688UYOHDhAQkICW7duZeDAgYC1xsCECRM4deoUUVFR1Z67ovz8fAICAsjLy6u1mqQQomX4v40neOZ7a1eVToGr+kRpXVnV3Z87OZEbBnV0Wbyi+VFVlYyMDHJzc10dSpsXGBhIREREtQlnXT+/Xdqy88MPPzBu3Diuu+461qxZQ/v27bnvvvuYPn06AMePHycjI4OxY8dqjwkICGDw4MFs3LiRG2+8kY0bNxIYGKglOgBjx45Fp9OxefNmrrnmmirXLSsrs6v4mJ+f34jPUgjR1KYM6KAlOytnjiQiwFNLbj6fPoSbPtikHWtR4anFexkRH0pkgJdL4hXNj6IoREZGEhYWRnl5uavDabPc3d0b1KJj49Jk59ixY7z77rvMnDmTp556iq1bt/Lggw9iMBi4/fbbycjIACA8PNzuceHh4dq+jIwMwsLC7Pa7ubkRFBSkHVPZ3Llzee655xrhGQkhmpuIAE+7+8VGU5UuLrOqciK7WJIdUYVer3fKh61wLZcOULZYLPTv35+XX36Zfv36cffddzN9+nTee++9Rr3u7NmzycvL026pqamNej0hRPMRE2wd01ORXlGIDfF2TUBCiEbn0mQnMjKShIQEu209evTQ1saIiIgAIDMz0+6YzMxMbV9ERIQ2iMzGZDJx7tw57ZjKPDw88Pf3t7sJIdqGiABPnhzbSZvOqlPg5cm9pFVHiFbMpcnOsGHDSE5Ottt26NAhYmJiAOjUqRMRERGsWrVK25+fn8/mzZtJSkoCICkpidzcXLZv364d8+uvv2KxWBg8eHATPAshREthLs7j3numc//4Ppx+9w4yPptN4WePkLrmS8xms6vDE0I0EpeO2XnkkUcYOnQoL7/8Mtdffz1btmzh/fff5/333wesA8QefvhhXnzxRbp27apNPY+KiuLqq68GrC1B48eP17q/ysvLuf/++7nxxhvrNBNLCNE2GM+cJOvr5/hfvrUlWI+O8jPHOVNayOOPP87q1av58ssv8faW7iwhWhuXtuwMGjSIb7/9ls8//5xevXrxwgsv8K9//YupU6dqxzzxxBM88MAD3H333QwaNIjCwkKWLl2q1dgB+PTTT+nevTtjxoxhwoQJDB8+XEuYhBAiNSWFrC+fwZyfRZcucaxavYYO9y2gwwOf8u933sXT05OffvqJqVOnSguPEK2QS+vsNBdSZ0eI1qXYaCJhzjIAdj0zmjGjRrB92zbcgztybO9WgoKCtP37nx/Hut9/Z9y4cWAuZ86zz/Hc3+e4MnwhRB3V9fPb5ctFCCFEY5r3yly2b9uGzsOHsOueJSgoqMoxwy++mODx9wMw96UX2blzZxNHKYRoTJLsCCFarfKcNP4571UAgi67D7eAsBqP9ek5Gu/4odq4P2n0FqL1kGRHCNHqeBvcOPHKRAZl/oTRaGTcuHFkff8qJ16ZiLeh+nkZiqLQbuzdeHl5sX79ehYvXtzEUQshGoskO0KIVmnLli18//336PV65s+fX6eFHN38QrjvwYcBuOmemRSWGhs5SiFEU5BkRwjRKr3wwgsATJ06tUrx0trc98BDKAZvys+m8POSJY0VnhCiCUmyI4Rodfbu3cuSJUvQ6XT87W9/c+ix/gEB+PWfCMBr/5zXGOEJIZqYJDtCiFbnjTfeAGDy5MnEx8dX2W8b01PTGB7/gVeBzo0tmzfzxx9/NHq8QojGJcmOEKJVOXv2LJ988gkADz30UL3Oofdph3e3YQC88847TotNCOEakuwIIVqVzz77jNLSUvr27cuwYcNqPK6kpISCggIsFovd9sz8UgD8+k/QzldQUNB4AQshGp1L18YSQghn+/jjjwG48847a52BtWLFCnbs2EHHjh1x636Jtv3Kt9YD4NE+ga5d4zl8+BCdbpyDb+JY9j8/rsap60KI5ktadoQQLVKx0UTsrJ+InfUTxUYTAPv27WP79u24ublx00032R2vqqpdocAuXboAEBYbz99/2Kdtt/x5iKIoTL31VgAK965qzKcihGhkkuwIIVoNW6vOxIkTCQ0Ntdu3bt06VqxYoSU8PXv25Omnn8a/fZyW4FR2081TURSFspQ9mPKzGzV2IUTjkWRHCNEqmEwmbWDy7bffbrfvyJEj/Prrr2zcuJHTp09r2/V6PXHh/uiq9HZZs58O0dEMSUoCoPjwxkaLXQjRuCTZEUK0CqtWrSI9PZ3g4GAmTpyobS8rK+OHH34AYMCAAXTo0MHucZEBXjx3VU9sCY6CShDFAGTklXLVpKsBKPkz2amu+0wI0bxJsiOEaBU+/fxzAMo6DsFU4a3t119/paCggKCgIMaNG1ftY6cM6AAodNadZYDbKc7hDcDY+Wvw6GEdvFyaspfsbOnKEqIlkmRHCNHimUwmbWkH725Dte3nzp1j27ZtgHUcj7u7e63nOW5px3aTNfEB62DltzZk4hHbH1QLP/8ky0cI0RJJsiOEaPE2btjA2bNn0Xn64RndS9u+Zs0aLBYLXbp0oXPnzhc8j4oOFfsBPBYVfBNGAvDj9987N3AhRJOQZEcI0eL98P13AHjFXYSi0wOQk5PDnj17ABg9enSdz1V5sLJOAUOUdcmJVStXSIFBIVogSXaEEC2aqqos+dE6ANm76xBt++bNm1FVlc6dOxMVFVXn8z01oQcVBys/M7E77kEd8E64BJPBl5Urljs1fiFE45NSoEKIFs2Uk0bmuUK8vLzw7NQPsM7A2rFjBwBJf04dr6ur+0Xx4k/7GeF+jAh9Aelp/iiKQuiVj6JaLPzf7zvBr7+zn4YQohFJsiOEaJG+2X4KAPeg9rT/6wKiM9dxyt0TgAP792E0GgkJCdEqJTtG4azqTQQFfPBHPrYBy4pOxwGfPqCqtS5FIYRoXqQbSwjR4qTnldgt8aDodJyOvFi7v3untVWnf//+9U5KDptCKMS7yoBlRafHXCBT0IVoSSTZEUK0OMezi6os8WBLStopxWRmZKDT6ejTp0+9r2HEjT5xHVCwv5BqMVN6+gBgLToohGj+JNkRQrQ4nUJ8qp01BVCkGhg7bjzDhw/H29u7QdcZPrA3Q91PagmPgkrRvt/w6T4csBYd/GJrSoOuIYRofJLsCCFahIrLNAR4ufPcVT1RLRYAFFX9c8kHa4tMZJeeXHLJJXU+t7fBjROvTOTEKxPxNpwfyhgTG8vsm8Zoyc6zo9rh03M0imJ967So8NTivaTnlTjraQohGoEkO0KIFumaflGkL3yQjM9m88oIL7t9zmpx0el0dI6Lw/LnW2V0TBcUnf3bpllVOZFd3OBrCSEajyQ7QogWaeeOPyg/cwJj5hH69e9vN2C5cVpcVGKCfUC12G3VKwqxIQ3rLhNCNC5JdoQQLdLKFSsA8Izpw+k8Y5UBy85scUl0S2eyx17K8zIZH5qHajED1nFCL0/uRWSA1wXOIIRwJamzI4RokWyVjL069Scm2DpguWLCU98WF9v4HZtiowl/pYwAXRmHkpO57/IB/DfpYtyCo9nx+0p6dAhu8HMRQjQuadkRQrQ4BQUFbNq4EQDPTv2JCPDUBiiD81tcDppCWW3szIiRo+gSFwcWC2UndpKavNsp5xdCNC5JdoQQLc7GDRswm83oA8JxD4wAYMqADtr+lTNHcsOgjk673lnVh+PmIAweHiiKgkcHa2K1ft3vTruGEKLxSLIjhGhxfl+7BgDP6EQAiouL2b9vLx6UAxAR4Nmo1/eItiU76xr1OkII55AxO0KIFkdLdmKsyc6xo0f4ZcmPXOrhzZKyhEa5piflbFj3OwUF+XhG9wJg08YN5BeX0vv5VQDsf36cXZ0eIUTzIK9KIUSLYjGWsiv5BHC+Zef40aMApJkDGu26OlTW/74WAN/Q3ug8fCgqKmLXn+twCSGaL+nGEkK0CLZVznUGTyLu/i+xo2/i1Lt3cuzlyzl54jgApyz+Tr+ubXbW/leuISwsDIAot0I8OlhbkKQrS4jmT5IdIUSzV90q5+rAm0jPKyEtLY2SkhI8PD05Y/Ft1Dg6d+4MQHtdPh5/dmVJsiNE8yfJjhCi2atulXMUHSeyizl8+DAAsbGdtJXPG0tcXBwA7XV5eP7ZsrNp4wZUtXJwQojmRJIdIUSzV9Mq57Eh3hw7dsx6zJ+tLo2pY8eOuLm54aMrJyyyAwaDgezsbEy5GY1+bSFE/UmyI4Ro9iIDvKyrnNtaUCxm5k5OJNhLT1paGgAdY2IbPQ53d3diYmIAeO+aGPr37w9AWdrBRr+2EKL+JNkRQrQIUwZ0IG/TV2R8NpvB2b9ww6COpKamYrFYCAwMJDIshBOvTOTEKxMbdfq3bdzOiRMnGDJkCADGtORGu54QouEk2RFCtBglhzdTlrqHSy8eDFgTDkBrbWkKsbGxAKSkpDB4sDWOMkl2hGjWJNkRQrQIBQUFGDOsg5EvvngEACdPngTOJyBNISIiAoPBQGlpKd26dQPAXJyHxWQkI6+0yeIQQtSdS5OdZ599FkVR7G7du3fX9peWljJjxgyCg4Px9fVlypQpZGZm2p0jJSWFiRMn4u3tTVhYGI8//jgmk6mpn4oQopFt3LABVAtugRFEd+yI0Wjk9OnTQNMmOzqdjujoaACMRiORw6fQ/p7/onMzMHb+Gr7YmtJksQgh6sblLTs9e/YkPT1du62rULPikUce4ccff+Srr75izZo1pKWlMXnyZG2/2Wxm4sSJGI1GNmzYwMcff8zChQuZM2eOK56KEKIRbdywHgCPDtb6NrbxOgEBAQQGBjZpLLZus91HUjEMvR1FZ30rtajw1OK9pOeVNGk8QojauXy5CDc3NyIiIqpsz8vL48MPP+Szzz5j9OjRACxYsIAePXqwadMmhgwZwvLly9m/fz8rV64kPDycvn378sILL/Dkk0/y7LPPYjAYmvrpCCEayaaNGwDw6NADAE9PT3r27Imfn1+Tx2JLdvadzALFfryQWVU5kV1MZIBXk8clhKiey1t2Dh8+TFRUFJ07d2bq1KmkpFibgLdv3055eTljx47Vju3evTsdO3Zk48aNAGzcuJHExETCw8O1Y8aNG0d+fj779u2jJmVlZeTn59vdhBDNS7HRROysn4id9RN5RSVs3bIFAM/21mJ+7du359prr2XcuHFNHltUVBSjRo3i5qsurVLGUK8oxIZ4N3lMQoiauTTZGTx4MAsXLmTp0qW8++67HD9+nIsvvpiCggIyMjIwGAxVmqfDw8PJyLAW8MrIyLBLdGz7bftqMnfuXAICArSbrf9dCNE87dm9i5KSEnSevrgFt3d1OLi5uTFy5Egu6tWVp8bHoVrMgLXQ4cuTe0mrjhDNjEu7sS6//HLt5969ezN48GBiYmL48ssv8fJqvDeL2bNnM3PmTO1+fn6+JDxCNGMbN/zZhdW+B4qio7CwkGKLieDgYBSlcZeIuJCpQ7vwwO3Xg6ry1qvPccOgji6NRwhRlcu7sSoKDAwkPj6eI0eOEBERgdFoJDc31+6YzMxMbYxPREREldlZtvvVjQOy8fDwwN/f3+4mhGi+Nm/aBMDTd13NiVcmcvjAPt5++22+/fZbl8VUXl7O/v37Wf/7Wtz8QylL3cPxfX+4LB4hRM2aVbJTWFjI0aNHiYyMZMCAAbi7u7Nq1Sptf3JyMikpKSQlJQGQlJTEnj17yMrK0o5ZsWIF/v7+JCQkNHn8QgjnU1WVjX8OTh42bBhgLUtR0+SGpmKxWPj666/ZsO532nWMB2DHH5LsCNEcubQb67HHHuPKK68kJiaGtLQ0/v73v6PX67npppsICAhg2rRpzJw5k6CgIPz9/XnggQdISkrSSrRfdtllJCQkcOuttzJv3jwyMjJ4+umnmTFjBh4eHq58akIIBxUbTSTMWQbA/ufPDzo2F5wh7fRp3NzcGDRoEABjxoxh1KhRmM1ml8QK1hbihIQE3A0eeBw/AMCOHZLsCNEcuTTZOXXqFDfddBNnz54lNDSU4cOHs2nTJkJDQwF4/fXX0el0TJkyhbKyMsaNG8c777yjPV6v17NkyRLuvfdekpKS8PHx4fbbb+f555931VMSQjhZ2SlrItGvXz+8vc/PctLr9ej1eleFBcC1115LsdGEcY0RFB2ZGRmkpaURFRXl0riEEPZcmuwsWrSo1v2enp68/fbbvP322zUeExMTw88//+zs0IQQzUTZaWuyM3ToUMDareXqQcmV6dw9cQ/uQHl2Ctu3b5dkR4hmplmN2RFCiMpsyY5tvM4vv/zCO++8U2straZkMpkI1RXiGdkVsNYIE0I0L5LsCCGaLYuxBMXTF71fsNayk5qaypkzZ1wcmZWqqrz/zr+5wuMgUZ2t6/pVTHYqFkYsNsqafUK4iiQ7Qohm6Zvtp1DcPYm48SXa37uAdWlmjEajVl6iOdTGUhSFsHDrjLAO7a1dV9KyI0TzI8mOEKLZycgr5e8/7NPG5iiKjqcW72XnoZOoqtqs6mPFdLQmXXePjEOn02mLGgshmg9JdoQQzc7Js0VYVPttZlVl97E0wLouVnPRoUMHwLpETffuVbuyhBCuV6/ZWIcPH+a3334jKysLi8Vit2/OnDlOCUwI0XZ5G9zQKdglPHpFgULrWJ3mNNvJlnjl5OQwaNAg9u/fz/bt27niiitcHJkQwsbhZOeDDz7g3nvvJSQkhIiICLspoIqiSLIjhKiXb7af0n6+6YNNXNzRi9XHC1F0em2BzcyN3wHNK9nx9PQkJCSE7OxsevXqBUjLjhDNjcPJzosvvshLL73Ek08+2RjxCCHaoPS8Ev7+w/mp5BYV1p4sJuP/HsUjuhc7f/o/In31zPs5B4DIyEhXhVqtqKgosrOzCQ8PByTZEaK5cXjMTk5ODtddd11jxCKEaKOOZ1cdo6OioLh7oXP3IiLAUxv0265dO7y8vFwQZc1syZf1OSikpaVxLOVUrY8RQjQdh5Od6667juXLlzdGLEKINqpTiA+6ykWRLRZMuWl4tLcO+k1Lsw5Obk5dWDa2mM6cycI92DpgeacsCipEs+FwN1ZcXBzPPPMMmzZtIjExEXd3d7v9Dz74oNOCE0K0DZEBXjx3VU+e+d7alaVT4MyytzAXnGsRyU5kZCSKolBUWEi72ASyzqayY8cfjJ8wQTsmI6+UzqG+LoxSiLbL4WTn/fffx9fXlzVr1rBmzRq7fYqiSLIjhKiXKQM6aMnOEz1LuPeVFbiHxqLz8AGad7Lj7u5OaGgoWVlZdOgUR9b2ZezZvdtu0PXY+WuYOzmRGwZ1dGGkQrRNDic7x48fb4w4hBBCc2D7BgA82vcAoLi4iLy8PKD5DU62iYqKIisri8jwMAB2Hz7J7kqDrp9avJcR8aFEBjSvMUdCtHZSVFAI0exs2mif7Hh6enHvvfdy7bXX4uHh4crQahQVFYVer8fLNwCAtILyagsjnsgudkF0QrRtdWrZmTlzJi+88AI+Pj7MnDmz1mPnz5/vlMCEEG2TajKy48/BvbZkR6fTERYWRlhYmCtDq1Xfvn3p3qs3ic+tRO8bhCknDQWomO/oFYXYEG9XhShEm1WnZGfHjh2Ul5drP9ekYoFBIYSoj7KMI5SXlxMWHo5bYISrw6kzd3d3ylXryuaGsM6UHNvGmIAzrMwLBdAKI0oXlhBNr07Jzm+//Vbtz0II4Wxlpw8AMGzoUBa/al1y4eeffyY4OJi+ffs2226sirzikzCeOY56dD2EXA3AypkjZTaWEC5Sr7WxbFJTUwGIjo52SjBCCGFLdoYOHQpAQUEBW7duRVEU+vXr58rQLuiN7zYCKn59xuGbeClbDi2BEOu+iABPl8YmRFvm8ABlk8nEM888Q0BAALGxscTGxhIQEMDTTz+tdXUJIUR9qKp6vmVn2DDAOl5n5MiRDBgwAIPB4MrwapWeV8L7f+QD1u58RacjP34iqsXs2sCEEI637DzwwAMsXryYefPmkZSUBMDGjRt59tlnOXv2LO+++67TgxRCtA2m3HQsxXkYDAb69+8PgI+PD6NGjXJtYHVwPLuISpOvUHR6THlncAsIdUlMQggrh5Odzz77jEWLFnH55Zdr23r37k10dDQ33XSTJDtCiHrxNrgxd5gHt78PAwcObBFjcyqyLXlRcbq5ajFjzDomyY4QLuZwN5aHhwexsbFVtnfq1KlZNzELIZq/DRus9XVs43UAjh49Sn5+Pqpaud2kebEteaFRLZxb9m/K0pNdF5QQAqhHsnP//ffzwgsvUFZWpm0rKyvjpZde4v7773dqcEKItqVyslNcXMwnn3zC66+/jtFodGVodTJlQAcCKaaLLpvb2h2lcPcKyjOPuTosIdq8OnVjTZ482e7+ypUr6dChA3369AFg165dGI1GxowZ4/wIhRBtQl5eHnv37gXOJzuZmZkAtGvXrsV0a0W75THQ/TQh/tYCiMYsWWJHCFerU7ITEBBgd3/KlCl292XquRCioTZt2oSqqnTp0oXw8HAAMjIyAIiIaDnFBc9arBWSTX/OTjUXnmX740PwNjSo0ocQogHq9OpbsGBBY8chhGjjqhuv0xKTnXN/Jju5uTnEx8dz6NAhdu3axejRo10cmRBtlywEKoRoFmpLdmwtPS1BKe4Uq+4ADBo0CICdO3e6MCIhhCQ7QgiXM5vNbNq0CTif7JhMJrKzs4GW1bIDcM5iXf+qa9eugHVcoxDCdaQTWQjhMsVGEwlzlmHMOkZhYSF+fn707Gmdvn3mzBksFgteXl74+/u7OFLHnLV400GfT3BwMCDJjhCuJi07QgiXKzt9EIAhQ4ag1+sB+/E6iqK4LLb6sI3bsdm/f78spyOECzmU7JSXlzNmzBgOHz7cWPEIIdqgyot/Qsscr+NtcOPEKxNZ/NhEwDqd3s/Pj/Lycg4dOuTi6IRouxxKdtzd3dm9e3djxSKEaKMqL/4JLXMmlk27du0wGAyYTCYGDx4MwJ49e1wclRBtl8PdWLfccgsffvhhY8QihGiDzIU5mHIzUBRFSwxUVdUKCrbEZEdRFC3uhIQEAK1gohCi6Tk8QNlkMvHRRx+xcuVKBgwYgI+Pj93++fPnOy04IUTrZ2vV6dmrlzYQOTc3l7KyMvR6PSEhIa4Mr97Cw8NJSUkhKioKkJYdIVzJ4WRn79699O/fH6BKH3RLG0QohHC90tP7ARg8eIi2zTYzy9fXVxuw3NJERkYC4OnpCUiyI4QrOZzs/Pbbb40RhxCijSo7tQ+AYRdfrG2Ljo5m5syZLWLxz5pERUURHx+vTT8/fvw4BQUF+Pn5uTgyIdqeek89P3LkCMuWLaOkpASw9rELIYQjCgoKMBfm4tExkfg+g6vsNxgMLojKOcLDw7npppu47LLLtPE7+/btc3FUQrRNDic7Z8+eZcyYMcTHxzNhwgTS09MBmDZtGo8++qjTAxRCtF7/+m4j7f/6IRE3zeXWRYf5YmuKq0NqFImJiYAMUhbCVRxOdh555BHc3d1JSUnB2/t84awbbriBpUuXOjU4IUTrlZ5XwueHLSg669uQRYWnFu/leGYOr732Gp9++ilms9nFUTaMqqoUFBTQu3dvQMbtCOEqDo/ZWb58OcuWLaNDhw5227t27crJkyedFpgQonU7nl0E2E9qMKsqu46mUVhYyJkzZ1rs4GSb9evXs2rVKq0woiQ7QriGw8lOUVGRXYuOzblz5/Dw8HBKUEKI1i/SV49qOd+yA6BXFPrHd2RA9F2Ulpa6MDrnCAkJQVEUbVDynj17UFVVZq4K0cQc7sa6+OKL+d///qfdVxQFi8XCvHnzuOSSS5wanBCi9Uo5uJtzy95CtVi7qnQKvDy5Fx1D/IiOjtZWDG/J4uLimD17NrfddhuKopCdna0VSxRCNB2HW3bmzZvHmDFj2LZtG0ajkSeeeIJ9+/Zx7tw51q9f3xgxCiFaobVr11K4ewXo3Akedx8rZ46kc6ivq8NyKjc361usu7s7cXFxHD58mD4Pf4hXbF/2Pz8Ob4PDb8FCiHpwuGWnV69eHDp0iOHDhzNp0iSKioqYPHkyO3bsoEuXLvUO5JVXXkFRFB5++GFtW2lpKTNmzCA4OBhfX1+mTJlS5VtRSkoKEydOxNvbm7CwMB5//HFMJlO94xCipSo2moid9ROxs36i2Ng8XwMVY/xt9RoADKExAEQEeKKqKsuXL2f79u2tbpXwXr16AVB+5oRrAxGiDarX14qAgAD+9re/OS2IrVu38p///EebsWDzyCOP8NNPP/HVV18REBDA/fffz+TJk7UWJLPZzMSJE4mIiGDDhg2kp6dz22234e7uzssvv+y0+IQQzqWaTWzetBEAj+ie2vb8/Hw2btyITqejb9++LorOuXbv3s3WrVtJTEzk22+/xSjJjhBNrl7JTk5ODh9++CEHDljXtElISODOO+8kKCjI4XMVFhYydepUPvjgA1588UVte15eHh9++CGfffYZo0ePBmDBggX06NGDTZs2MWTIEJYvX87+/ftZuXIl4eHh9O3blxdeeIEnn3ySZ599tsaCZGVlZZSVlWn38/PzHY5bCFF/xsyjFBcXExQUhHtIR217VlYWAMHBwS1+JpZNaWkpp06d0tb9Kj8js1aFaGoOd2OtXbuW2NhY3nzzTXJycsjJyeHNN9+kU6dOrF271uEAZsyYwcSJExk7dqzddlszdsXt3bt3p2PHjmzcaP1GuHHjRhITE7VpnQDjxo0jPz+/1kqlc+fOJSAgQLtFR0c7HLcQov5KU63F9YYOG46inH8bsnVTV3xNt3S252KxWAAoz05BVS2uDEmINsfhlp0ZM2Zwww038O6772rfvMxmM/fddx8zZsxwqI7EokWL+OOPP9i6dWuVfRkZGRgMBgIDA+22h4eHk5GRoR1T+U3Rdt92THVmz57NzJkztfv5+fmS8AjRhMr+THaGDR/OnnPnt9tadsLCwlwRVqOwvScVFxfj7+9Pfn4+ptya35+EEM7ncMvOkSNHePTRR+2amPV6PTNnzuTIkSN1Pk9qaioPPfQQn376qbYqcFPx8PDA39/f7iaEaBqqxUzpKetK58OGD7fb1xqTHU9PT+09ZuDAgYAMUhaiqTmc7PTv318bq1PRgQMH6NOnT53Ps337drKysujfvz9ubm64ubmxZs0a3nzzTdzc3AgPD8doNJKbm2v3uMzMTG1RvYiIiCqzs2z3bccIIZoXY8YR1LIiAgIC6Nuvv7bdbDZz5swZoHV1Y8H559Ote3f0fsFYjCVk5LX8oolCtBQOd2M9+OCDPPTQQxw5coQhQ4YAsGnTJt5++21eeeUVdu/erR1beXZVRWPGjKnS5XXnnXfSvXt3nnzySaKjo3F3d2fVqlVMmTIFgOTkZFJSUkhKSgIgKSmJl156iaysLO2b4IoVK/D39ychIcHRpyaEaAJl6Yfw6JjIkIGJ+Hl5cOKViYC1VcdisWAwGAgICHBxlM4VHh7O4cOHyQ/uSfu/LkDR6Rg7fw1zJydyw6COFz6BEKJBHE52brrpJgCeeOKJavcpiqKVQ69tET8/Pz+t7oSNj48PwcHB2vZp06Yxc+ZMgoKC8Pf354EHHiApKUlLsi677DISEhK49dZbmTdvHhkZGTz99NPMmDFDlq4QbVpGXmmzLND3zfZT+PWfiP+AK0lG5YutKdqHfcUurNa2nEJYWBhFqjvrjR1RdNbnZlv4dER8KJEBXi6OUIjWzeFk5/jx440RR7Vef/11dDodU6ZMoaysjHHjxvHOO+9o+/V6PUuWLOHee+8lKSkJHx8fbr/9dp5//vkmi1GI5uKb7ae0n5tjq0F6Xgl//2GfNvtKRbH7sLd1Qbem8To24eHh5Fs8UatZ+PREdrEkO0I0MoeTnZiYmMaIA4DVq1fb3ff09OTtt9/m7bffrjWen3/+udFiEqIlsCUSNs2x1eB4dhEW1X5bxQ/71jg42SY4OJhAvREF1S7h0SsKsSFVF1YWQjiXwwOUhRDNT22JRHPRKcQHVPsgK37Y25Kd1jY4Gayt0LHhgQx1Pwl/1thRUHn2qgSS5v7arJf4EKI1kGRHiFagU4gPukrDXJpbq0FkgBc++7+vssp5ZIAXZWVl2szL1tiyA9YkLt4tm9hTy8n4bDaXGTcwZUAHV4clRJsgyY4QrUBkgBfPXXV+jamKiURzcfbsWQ789CGn37sLc0k+K2eO1MYUlZeX07dvX+Li4vD2bj4JmjPZkrj2Qb6Upe7h+L4/XByREG2HJDtCtBIVWwl+fGAYT36zR+seaQ4roq9YsQJVVdF5+KD38ici4HwxUV9fXyZNmsTUqVNdEltT6Nq1K2MvG8eu4kAA9u3b69qAhGhDHE52UlNTOXXq/KyPLVu28PDDD/P+++87NTAhRP2F+zdtVfK6+OmnnwDw6jLIxZG4RlhYGP0GDCTfvxMAaadPk5OT4+KohGgbHE52br75Zn777TfAuv7UpZdeypYtW/jb3/4mU76FENUym8388ssvQPXJTk5OTq11uVoTnYcPev9QAPbtldYdIZqCw8nO3r17ueiiiwD48ssv6dWrFxs2bODTTz9l4cKFzo5PCNHM1aWLbMuWLZw9e5bAwEA82vew26eqKh988AEvv/yyNiOrtTp7Nps4fTYdu1uX1tm3t+4LJwsh6s/hZKe8vFyrTrxy5UquuuoqALp37056erpzoxNCtAq2Lqyxl16GotPb7SstLcVisaCqKu3atXNFeE1m5/btXGw4Qc/u3QH7lh1ZK0uIxuNwstOzZ0/ee+89fv/9d1asWMH48eMBSEtLIzg42OkBCtFWXKiFpDkMMq4vW7Jz2Z/vFxV5eXnx5JNP8sgjj+Du7t7UoTWp2JiOdOrUicsHW1u3tp49X9d17Pw1fLE1xVWhCdGqOVxB+dVXX+Waa67hH//4B7fffru20vkPP/ygdW8JIRqfqqrs27ePXbt2YTKZiI7thGoxV2k5caVio4n4Rz7l9M6dKIrCZePG89KhqlOuFUXBz8/PBRE2rcTERBITE9m9ezd6v2By4y7X6ik3x6rXQrQWDic7o0aNIjs7m/z8fLsm57vvvhsfHx+nBieEqN7aNWv426wn+OMP+8QhPDycxx57DDcu0bZl5JXaTfNu6kVCS45uA2DgoEHEtI/UVjlvy7p3745HSDSKzr5xXdbKEqJxONyNNXr0aAoKCqr0rQcFBXHDDTc4LTAhRFWqqpK77lMuv2wsf/zxBx4eHowYMYJLL72UoKAgMjMzefzxx0m64QHUP5dmGDt/DU8tPj8Qtqm7S4qT1wMw8Yorq93/5Zdf8sUXX3DmzJkmi8nVLBYLXUL9UC0Wu+3Nreq1EK2Fw8nO6tWrMRqNVbaXlpby+++/OyUoIUT1clcvIG/95wDcc889nD59mjVr1rB8+XIyMjL48MMPCYmOo7jn1SiKtYPEosJ3O9O0c9i6S9LzSho93uzsbEpP7gJg8pRrq+y3WCwcPnyYgwcPotO1jRqn33//Pa+++irD+vfk3LK3UP9cK6s5Vr0WorWoczfW7t27tZ/3799PRkaGdt9sNrN06VLat2/v3OiEEJoP/vMe+VsWA/DGW//mL3ffQ8KcZQDsf34c3gZ37rrrLsJ6Def+xYdrPVdDukuKjSa761ZUuYtsyQ/fg2rBEN6FLnFxVc6Vk5ODyWTCzc2t1c/EsrGNTYqMjKRw93so7p4Ejb2HlTNHNmn3ohBtSZ2Tnb59+6IoCoqiMHr06Cr7vby8eOutt5wanBDCateuXTzx2KMABI64jb/cfU+Nxw7oFo1OOVxlFfSKnNld8s328xXVx85fw9zJidqaV998/TUA3t2GVfvYzMxMAEJDQ9tMy45tjSwvL2uiWZpqnX5ecVyVEMK56pzsHD9+HFVV6dy5M1u2bCE0NFTbZzAYCAsLQ69vPrNAhGjJKraQlJeXc+utt2I0GvFJHIv/kOuqDDquyLYo6NPf7UVRFOsMrZNbUWMHoygKOgWevSqBpLm/ArZWIYfnKmhx/v2Hfdr9ijOK3MuLWLPaWm3du/vwah9vKyIYHh5er+u3RLbnajQaURSF8rOpqOaWVUpAiJamzl+lYmJiiI2NxWKxMHDgQGJiYrRbZGSkJDpCNFDlFhLbIOJ33nmHPXv2EJ50DcGXP4SiKIydv8bu+MqmDOiAoiiYSwpRfvw7J798kbM/v46qWlg5c6TdoqFQ/xo+J88WVWlBsnWRffvtt5jNZjw79ce9XVS1RfNsyY6ttaMtCAoKQq/XYzKZiIyMBLMJU44UZBWiMdXr69zhw4f57bffyMrKwlJpNsGcOXOcEpgQbUl6Xkm1LSSJoW7MmTMHvV8wXiPuQuX8oOOKx9dE7+XLpwv/w5iRIyja+yvu7doTEXC50+KOCfZBp2CX8Ni6yP72+ef49r6UoPEPAlW7uOB8N1ZbSnb0ej0hISFkZmbSr18/0tLSMJ454eqwhGjVHO4k/+CDD+jRowdz5szh66+/5ttvv9Vu3333XSOEKETrdzy7+haSf7y7kPz8fLoPGqElOja1jcmpqF+//rz+pnU8Xe66T1nnxFmTEQGePHdVT+2+bUZR0ZnTrN22m6BxD9jNCqs4C6y8vJxz584BbasbC84/X9ug7XJJdoRoVA4nOy+++CIvvfQSGRkZ7Ny5kx07dmi3ygXOhBB10ynE2kJSkU6Brxa8A8CsGdOq3W9zoXWVbr/jTnwSx4Jq4a47btOSjIbKyCu16xJbOXMkNwzqyH//+1/c2kXVWDQP0OrqeHt7t7mCpLaWLNvYR2P2SVeGI0Sr53Cyk5OTw3XXXdcYsQjRZtkGFdvoFBjqfoKiM6cZNGgQU6+ZUGX/VX2itPt1KRQYNPYe3ILac/rUKWb89R6t6KCjKo8tqng/IsCT8vJyFi5ciCknDQX7a1ScBVZxvI6t9aetsCU7HgYDAFGWM/UeJC6EuDCHk53rrruO5cuXN0YsQrRpFVtIfnkgiVUfvAjAI488gqIodvs/nz6EH3Y5VihQZ/Ai5MrHcXd354fvv6Nw11KHY6xubFHlsUM//vgjmZmZhHi7MeeKHuevX6loXlscr2Nj68YqKSlBr9dz7NgxioqKXByVEK2Xw18l4uLieOaZZ9i0aROJiYlVVil+8MEHnRacEG3VuuU/kpGRgd43iFl/eDNpiv0MqWKjqcZZULUVCvSIiOO5F17iqVlPkL95MZ6x/Wqdxm67lq2I4II7Bla5buX7H3zwAQB33nknN1wUw3NLDgJUKZrXFqed2/j5+eHp6UlpaSnx8fEcOHCAffv2yWLKQjQSh5Od999/H19fX9asWcOaNWvs9imKIsmOEA2kqirv/Ns6oNiv30QUfdWXaW2zoC7kgYce4tudaWRGj0bR6Rg7f41dF1ltC4VWd92K95MPHmTZMmtiNG3aNLvHVk6o2uK0cxtFUQgLCyMlJYU+ffpw4MAB9u7dK8mOEI3E4WTn+PHjjRGHEOJPZacP8sf27Xh4eODbd3y1x9hmQT3zvbULqXIXkbfBrcrq4rb76XklZMeORfkzQbGoMOf7811R1U0Rr+26Fe+/8a/5qKrKpEmTiIuLq7Fmj6qqjB8/nqysrDaZ7ABashMTEwPAnj17LvAIIUR9tY367EK0IIW7rWPirrvhBvTeATUeV90sqLqobpp7xbsXGv9T+bq2+6b8M3z+6acAPPHEE7XGoCgKPXv25JJLLsHw5yDdtmbYsGE8+OCDxP05/VySHSEaj8MtO3fddVet+z/66KN6ByNEW1NxPMy2p8dgKS+jOHk9ALfedge/ryiu03kcWVfJNs29tjo9dV0oNCLAU2tFmj59Ov81Ghk5ciRDhw6tczxtVWBgIAC9e/cGYO/evS6MRojWrV5TzyvesrKy+PXXX1m8eDG5ubmNEKIQbUfJ0a2oxmKiO3Zk6LDqF89sqMrT3FEtqKp9JXRHFwo9cOAACxYsAODll1++4PFHjhzhyJEjlJTUPHusrUhISACss9NstYeEEM7lcMvOt99+W2WbxWLh3nvvpUuXLk4JSoi2yNvgxlB1Pz8At0ydWmUV8MrjcBxZw6qyKQM6aONs/ju5Izfc/zd8L7kbRaevMv7nQlRVZcaMGZjNZq666qo6teqsXr2a06dPM2XKFHr16lXv59HSbd26lZMnTzJw4EC2bdvGnj17GD16tKvDEqLVccqYHZ1Ox8yZM3n99dedcToh2qTs7Gx+/vlnAG655Ra7fReqkNwQQ/v15MXpkzj93l1kfP4UT/QsqXH8T3VxLFiwgN9++w0vLy/+9a9/2e2zJWgnXploVzQvNDSU0NDQNjntvKLDhw+zb98++vTpA0hXlhCNxWkDlI8ePYrJVP9vmkK0dYu//gqTyUT//v1JSEiocRX0xnDb7Xfg1XkgZSm7eWjaVMJvellbAb22isnJBw9q5SaeffZZOnXqVKfrTZo0ifvuu09bLqGt6tOnD2PHjrWufo4MUhaisTjcjTVz5ky7+6qqkp6ezk8//cTtt9/utMCEaGu+/upLAKZOnVrjKugj4kPr3L3kCEVRCLrsPiwlBRQf2sCZxS8Ses3fyMgbWWPFZHNhDpMnPUBRURGjR4/msccec3pcrV3PntaxU6dOWRNISXaEaBwOJzs7duywu6/T6QgNDeW111674EwtIUT1zEW5bNywAbAuyVLTKugVZ0hVV0unIRSdnpArH6fTH2+x5rdfyfrq78zvGYBFtW+tsajw6rgonr77YY6cOE7nzp357LPPqowxqklZWRkGg6HNrYdVm8TERAD27duHxWKp8+9SCFE3Dic7v/32W2PEIUSbVpZ+GMWnHQPiY4mOjsYtr6TeFZIbQnFz59OvFhM/YhLF+9fw3j+epcO9C0A5/+GrqCp3XjeRkrPpxMbGsmzZMofG3ixZsoTk5GQmTJhA3759G+FZtCzZ2dmUl5cTEBBAXl4eJ0+erHN3oBCibur99eHMmTOsW7eOdevWyXRJIerJNv7FO24Q7f+6gB4Tra2j1a2C7sgMqYbw8PAg5IrHCBp3P746E2eXvoVqMQOgWsxkL32TkrPpXHbZZWzatEkrildXmZmZlJeX4+Pj0xjhtzhffvkl3333HYMHDwakK0uIxuBwslNUVMRdd91FZGQkI0aMYMSIEURFRTFt2jSKi+tWAE0IUXUFcUWnY70xRqtcXN8KyXVR0ywpLRZFwa/vePYlH2bWjWM4892rnPl2Lvqfn2N8fABLlixh6dKlDs+mMpvNnD17Fmiba2JVx/Y7jI+PB2RGlhCNoV4DlNesWcOPP/7IsD+Lnq1bt44HH3yQRx99lHfffdfpQQrRGlU3LseiUm3lYkcqJNdHxfE/Fev3lOm8eOTRR/kgz1oLZ+/z46pNjuoqOzsbi8WCh4cH/v7+DQu6lbAlfbZ/pWVHCOdzuGXnm2++4cMPP+Tyyy/H398ff39/JkyYwAcffMDXX3/dGDEK0SrZlm2oqK7jck6ePMmXX37J0aNHnR5XbVPNGyozMxOwtmbIAGUrW5Lj4eEBSLIjRGNwONkpLi6utuk6LCxMurGEcEBkgBdzruihjYfRUfO4nMOHku1eX0eOHOHAgQN88sknLF682Gk1rqqb8l7xfkPZkh3pwjrP9n5aVlaGTqcjOTkZo9Ho4qiEaF0cTnaSkpL4+9//Tmnp+UqqJSUlPPfccyQlJTk1OCFau+jyVE6/dxdZXz/PskeGVzsup5P+HN8v/obvv/8eVbX2e/Xq1YvBgwej0+nYs2cPn3/+OWazucHx1NS15ixZWVkAbb5yckUBAQEYDAYsFguxsbGYTCaSk5NdHZYQrYrDyc4bb7zB+vXr6dChA2PGjGHMmDFER0ezYcMG3njjjcaIUYhWa8Xy5ZgLzqIYPGnfrurspBCliIvdj6OqKj4+PlqyEx4ezvjx47nlllswGAwcO3ZMW2qiIarrWqt8vzbFRhOxs37Sqi9XVrEbS1gpiqK1dPXr1w+QriwhnM3hZKdXr14cPnyYuXPn0rdvX/r27csrr7zC4cOHtWqgQoi6WbF8GQBenQZU2WcsK2OU4Sh6RaVrfDeuvPLKKsXmOnXqxJQpUwD4448/OHDgQIPiqW7K+9zJibXO3KqrkpISCgoKAOnGqsz2+7DV15FkRwjnqledHW9vb6ZPn85rr73Ga6+9xl/+8he8vByv//Huu+/Su3dvbaBzUlISv/zyi7a/tLSUGTNmEBwcjK+vL1OmTNG+GdqkpKQwceJEvL29CQsL4/HHH5c1ukSLkJWVxR/btwPg2alflf1bNq7HT2ckICCAyddcXeOA3vj4eIYPHw7Apk2btNaf+mqsKe+2125AQIA2GFdY2Vq62rVrB8j0cyGczeFkZ+7cuXz00UdVtn/00Ue8+uqrDp2rQ4cOvPLKK2zfvp1t27YxevRoJk2axL591gGRjzzyCD/++CNfffUVa9asIS0tjcmTJ2uPN5vNTJw4EaPRyIYNG/j4449ZuHAhc+bMcfRpCdHkVqxYAYB7WGfcfIPs9p05c4ZNmzYBMHHiRDw9a596PnLkSEaPHs0tt9zi1FlOzpzyLl1YNbO17Nha7n5Zu6XabkAhRP04nOz85z//oXv37lW29+zZk/fee8+hc1155ZVMmDCBrl27Eh8fz0svvYSvry+bNm0iLy+PDz/8kPnz5zN69GgGDBjAggUL2LBhg/YhsHz5cvbv388nn3xC3759ufzyy3nhhRd4++23a53NUFZWRn5+vt1NiKZQcUzLkj/H2Hh17l/luN9++w1VVenWrRtdu3a94Hnd3Ny4+OKLcXd3d3rMzmIbnCxdWFVVnJHl4eGBOT9L3peEcCKHk52MjAwiIyOrbA8NDSU9Pb3egZjNZhYtWkRRURFJSUls376d8vJyxo4dqx3TvXt3OnbsyMaNGwHYuHEjiYmJdt8Ux40bR35+vtY6VJ25c+cSEBCg3aKjo+sdtxD1oaoWVv7ZsvPDK/dXGQ9zySWXkJCQwOjRo+txbpWMjAynxeos0rJTMy8vL/z8/ACIiOkCwIH9zpvyL0Rb53CyEx0dzfr166tsX79+PVFRUQ4HsGfPHnx9ffHw8OCvf/0r3377LQkJCWRkZGAwGAgMDLQ7Pjw8XHsjz8jIqPLGabtf25v97NmzycvL026pqakOxy1EQxgzj5F95gx+fn7VlmwIDQ3luuuuc7gVpKSkhHfffZf//ve/Lm8ZyMgrtbt/yy23cOedd9K5c2cXRdS8RURE0K5dEF6h1i9fe3bvdnFEQrQeDk+tmD59Og8//DDl5eXat85Vq1bxxBNP8OijjzocQLdu3di5cyd5eXl8/fXX3H777axZs8bh8zjCw8NDBkiKJlFsNJEwxzrjav/z47TtpSd3AjBq1CgMBoPTrufl5YWXlxdms5ktW7bYtYw2hcrVl+dOTtQGOHt6etKxo/PW92ptbrrpJkrKzTzzmfX9T5IdIZzH4WTn8ccf5+zZs9x3333auBhPT0+efPJJZs+e7XAABoNBWzV5wIABbN26lTfeeIMbbrgBo9FIbm6uXetOZmYmERERgPWb0JYtW+zOZ2sqtx0jRHNUetL6QTZmzBi77atWraKoqIjhw4cTFBRU3UMvKCkpiZSUFP744w9GjhzZZON4qqu+/NTivYyID22S1dpbOtvAckOYteVrzx5JdoRwFoe7sRRF4dVXX9Vmi+zatYtz5845bQaUxWKhrKyMAQMG4O7uzqpVq7R9ycnJpKSkaM3+SUlJ7NmzRxv4CNYZLv7+/iQkJDglHiGcTTWXU3bKmhRUHJNjNpv5448/2LFjB9nZ2fU+f3x8PAEBAZSUlNRrCvOFVkSvSXXVl82qyonsYnbv3s3SpUs5ceKEw/G0Ne4RXfDomMj+Y6exWCyuDkeIVqHeFcJ8fX0ZNGhQgy4+e/ZsLr/8cjp27EhBQQGfffYZq1evZtmyZQQEBDBt2jRmzpxJUFAQ/v7+PPDAAyQlJTFkyBAALrvsMhISErj11luZN28eGRkZPP3008yYMUO6qUSzVZZ5FENkPP5KGb169dK2Hzp0iOLiYnx9fbXWzvrQ6XQMHDiQVatWsXPnTq0qb2OzVV+umPDYFjZd90cy+/fvx9/fn9jY2CaJp6VRVZUn3/4KQ1B7Im6ai2qx8PYvf/DAxIGuDk2IFq9eRQWdJSsri9tuu41u3boxZswYtm7dyrJly7j00ksBeP3117niiiuYMmUKI0aMICIigsWLF2uP1+v1LFmyBL1eT1JSErfccgu33XYbzz//vKuekhC1+mb7KTwiuxFx01y8b/gnX247Pzh+x44dAPTp06dKpWRH9enTB0VRSElJIScnp0Hnqqvqqi/bFjZNTExkyJAhkujUIiO/lCWZfoC1O0vR6Zj/ewbpeSWuDUyIVqD+td+d4MMPP6x1v6enJ2+//TZvv/12jcfExMQ4ZU0gIRpbRl4pf/9h3/mif4pOG9Pio5Rz5MgRAKe0xPj5+dG5c2eOHj3KgQMHGDp0aIPPWRdTBnTgme+tXXQrZ46kc6gvYC0bUV19LnHe8ewiVOwLQqoonMguljFPQjSQS5MdIdqSHSk5NY5pMaXtR1VVOnbsSHBwsFOuN3LkSC6++GKXzYByZvXltqC6bkBUC7Eh3i6LSYjWok5t5f3799eawp9//nmKi4sbNSghWouKU7Ef+6rq7Bq9ohAT7MWuXbsA57Tq2ERHRxMTE+PU5SPqIzs7m5MnT1JaWnrhg9uwyt2AqsWMZfOn0qojhBPUKdk5cOAARUVFADz33HMUFhY2alBCtAaVp2KrAKqKajED58e0hPt50KNHD8LCwujRo0ejxNLQxUEbYvv27SxcuJDffvvNZTG0FJP6RNBVl0VP5RTp//kLqWu+4Ny5c64OS4gWr07dWH379uXOO+9k+PDhqKrKP//5T3x9fas9VhbhFMKquqnYKApnvpuHX5/L2Pj2TG1My5gxY6rU3HGGsrIyVq1axbFjx7jvvvsaPPC5PmylIWSZiAvT6/UMNpzCXbFwKjaK3bvPsHv3bkaNGuXq0IRo0eqU7CxcuJC///3vLFmyBEVR+OWXX3Bzq/pQRVEk2RHiT9WNwVAtZozpB3EbdUeTjGlxd3dn7969lJSUkJKS4pLZULImVt0pikKu6kWoUkSfvn3ZvXsXO3fulGRHiAaqU7LTrVs3Fi1aBFhreKxatUpWLhbiAmxjMGyzk3TAmWX/BlXFLdBa4TsvL4+MjAy6dOlS7ReIhtLpdNqSLAcOHGj0ZMdWkNCmqKhI6wIPDQ1t1Gu3FjkWL0J1RcTGxgBo47mEEPXncJu2xWKRREeIOpoyoIP282TP3RTuXoFHh57aoOHdu3ezaNEivv7660aLoVu3boC1AnlTj92xteoEBQU5dQ2w1izHYh2Q7OfnD8Bnv/xOsdHkypCEaPHq9VXy6NGj/Otf/+LAgQMAJCQk8NBDD9GlSxenBidEa7JzvXWArkeH80uZ2F5D8fHxjXbdLl264O7urrUiRUZGNtq1KrON15EvSHWXo9rPvjJmn6S8vBwcWLpDCGHP4ZadZcuWkZCQwJYtW+jduze9e/dm8+bN9OzZkxUrVjRGjEK0eKrFzOZNGwHw7GCdXpyXl0d6ejqKomitL43B3d1dW37Cllw1FVvLjiQ7deNtcGPl364CoLioEINPAJhNJCcfdHFkQrRsDic7s2bN4pFHHmHz5s3Mnz+f+fPns3nzZh5++GGefPLJxohRiBbPmHWcwsJC/P39Sf3vfZx4ZSKnThwDrPVwfHx8GvX6tmTq4MGm/dC0JTsRERFNet2WzMfHR/v/EBWfCMCe3bICuhAN4XCyc+DAAaZNm1Zl+1133cX+/fudEpQQrY1tlfNhw4ah1+sBtOUhGrLoZ13Fx8cTGhpK586dMZvNjX49sK7ibuvGkmTHMbaZa5Ex1v8bu2WQshAN4nAncGhoKDt37qRr165223fu3ClN1ULUoCzVmuxcfPHFAJhMJo4ds7bsVH4tNQYvLy/uu+++Rr9ORWfPnsVsNuPh4UFgYGCTXrulCwsL49ixY1rSIy07QjSMw8nO9OnTufvuuzl27Ji2uOD69et59dVXmTlzptMDFKIl8za4cXzuBCIW3EUx55OdlJQUTCYTfn5+rbb+TEZGBmBtpXD1khUtja0lzD+wHR4dE9l7NBVVVeX3KEQ9OZzsPPPMM/j5+fHaa68xe/ZsAKKionj22Wd58MEHnR6gEC3d4cOHycrKwsPDg0GDBgHQqVMn7rvvPvLz85v0A8xkMpGamkp0dHSj1PWpqGKyIxwTERHBIVMI64kh4qa5qBYL76/cyz2XJro6NCFaJIfH7CiKwiOPPMKpU6fIy8sjLy+PU6dO8dBDD8m3DiGq8fvvvwMwaNAgPDw8AOvrKDQ0tMnLNbz77rv873//IyUlpdGvZbFYMBgMMl6nHsrdfdlQHgNY31MVnY5XV6WQnlfi2sCEaKEa9NXOz8/PWXEI0WqtW7cOON+F5UodO3bk3LlzHDlyhM6dOzfqtcaPH8+4ceOwWCyNep3WKCWnBBX7L48W4ER2sayCLkQ9NP2qgEK0MbaWHVuys2PHDr7++muOHj3a5LHYWpKa6tqKomizz0Td2dZVs6NaiA3xdkk8QrR0kuwI0YjS09M5evQoiqJoA/qTk5PZt28f6enpTR5P586dURSFrKws8vPzG+06Tb0sRWtjW1fNRrWYcdv5lbTqCFFPkuwI0YhsrTp9+vQhICAAi8XCiRMnAOsg5abm7e1N+/btgcZt3Vm/fj3//ve/2bx5c6Ndo7WbMqADesz4Gc9y+r27OLbiEwoKClwdlhAtkkPJTnl5OWPGjOHw4cONFY8QrUrlLqz09HTKysrw9PRs0jWqKrIlWcePH2+0a2RkZHD27FlMJlnAsr6MRiO3eO7g2oDjdAwNQFVVdu7c6eqwhGiRHEp23N3d2S3FrYSoM1uyM3z4cACtkGBsbCw6nWsaVismO43V3XT55Zdzyy23kJCQcOGDRbUMBgOFqgdFqjsDBgwEYNKz/0fsrJ9kFXQhHOTwu+0tt9zChx9+2BixCNGq5OXlaV8ObC07ttYUV3Rh2URHRzN27FhuvvnmRruGj48PXbp0oV27do12jbbg+7IEviztQ/cePQAwZh5xcURCtEwOTz03mUx89NFHrFy5kgEDBlRZwHD+/PlOC06IlmzDhg2oqkqXLl2IjIzUCvqBa5MdNzc3hg0b5rLri7ozYZ3J1q9ffwCMGU0/g0+I1sDhZGfv3r3072994R06dMhunxQVFOK8yuN1CgoKCAsLo7CwkJCQEFeG1qgOHz5MSkoKcXFxxMTEuDqcFsvb4MaJVyYCaDP3ys+dwmIsdWVYQrRIDic7v/32W2PEIUSrUznZadeuHdOnT8dkMrn8i4HJZGL//v2kpqYyYcIEp8aTnJzM9u3bUVVVkp0GKisr46uvvuLMmTNEtW9P2unTGLOOuTosIVqceo+QPHLkCMuWLaOkxFq+XOpqCHFeaWkpW7ZsAapWTm7sNanqQlEUlixZwrZt28jMzHTquW3nk2UiGs5gMHD69Gny8/NJShqK3i8Yc1EOGXnSuiOEIxxOds6ePcuYMWOIj49nwoQJWvPqtGnTePTRR50eoBAt0bZt2zAajYSHhxMXF4fJZMJoNLo6LI1er9daXZw5Bd1isWjJjiwA2nCKomhJo1v8xbT/6wJ8ug1j7Pw1fLG18dc3E6K1cDjZeeSRR3B3dyclJQVv7/Oly2+44QaWLl3q1OCEaKkqTjlXFIWjR4/y6quvsnjxYhdHdp5tkLStyKEznD17lvLyctzd3QkODnbaeduyiIgIilR3Nps7ofxZrsCiwlOL98rCoELUkcPt6cuXL2fZsmV06NDBbnvXrl05efKk0wIToiWrPF7n+PHj2irgzUXFZMdisTil7o+tpTciIsJldYRam4iICPItnlUWBjWrqiwMKkQdOfxuVFRUZNeiY3Pu3Dk8PDycEpQQLZnZbGb9+vXA+WTHlUtE1CQ8PBxPT0+MRiNpaWlOOact2XFVdejWKCIiAn9dKQr24yL1iiILgwpRRw4nOxdffDH/+9//tPuKomCxWJg3bx6XXHKJU4MToiXas2cP+fn5+Pn50adPH0pKSrRxLM1pdpJOpyM2NhZw3rgdSXacLzQ0lAB3laHuJ1FVCwAKKi9P7iWtOkLUkcPdWPPmzWPMmDHaAMwnnniCffv2ce7cOe3brBBtVbHRxOjH3wNg8JAk9Hq9VkgwODgYX19fV4ZXRadOnTh48CDnzp1r8LlUVZVkpxHodDrCw8MxnT5N8qFk9m5czaSxw7hh0BWuDk2IFsPhZKdXr14cOnSIf//73/j5+VFYWMjkyZOZMWOGvMEJAZSd2g/AsD/Xw7KNZWtOrTo2vXv3pmfPnlUqodfHuXPnMBqNuLm5ERoa6oTohE1kZCSnT5+mQ2g7tqfuYf82V0ckRMtSr4IfAQEB/O1vf3N2LEK0eKqqUnZqHwBJQ61LMjTnZMfT09Np57K16oSHh8vgZCeLiooCIPzPbqsD+/dTUlKCl5d0YwlRF/VKdnJycvjwww85cOAAAAkJCdx5550EBQU5NTghWprjx45hLjwHOjcGDhoEQJ8+ffD392+WyY4z2QY5Swuv89mSnRD3cnTegZiLc9m1axdDhgxxcWRCtAwOf/1au3YtsbGxvPnmm+Tk5JCTk8Obb75Jp06dWLt2bWPEKESLsX79OgA8Irtq37oHDRrE9ddfT0BAgCtDq1Fqair/93//1+AaQLaWHdsHs3Ce0NBQ3NzcMCgWIuL7AmgVuoUQF+ZwsjNjxgxuuOEGjh8/zuLFi1m8eDHHjh3jxhtvZMaMGY0RoxAtxob169D7BePTa0yLKemv0+k4duwYR44cadCyL927d6dHjx5VanCJhrMNUga45xrrrNfNmze7MiQhWhSHu7GOHDnC119/jV6v17bp9XpmzpxpNyVdiLZo3SkT7f+6AEWnY+z8NTw0LIxbkjoTFBTk8sU/axIREYG7uzslJSWcOXOGsLCwep1n8ODBDB482MnRCZtRo0ahqiqHDx8GJNkRwhEOt+z0799fG6tT0YEDB+jTp49TghKiJdp9JBVTv+vtSvr/a10mr771H86ePevi6Gqm1+uJjo4GkCrozVhcXBxdu3Zl6NChABw9epTs7GwXRyVEy1Cnlp3du3drPz/44IM89NBDHDlyRBsct2nTJt5++21eeeWVxolSiBbgl9+3oejsl4NQUTAaApv9OlEdO3bk2LFjpKSkMOjPgdWOyMrKwt3dncDAwGbbgtVaBAYG0q1bN5KTk9myZQsTJkxwdUhCNHt1Snb69u2Loih2/flPPPFEleNuvvlmbrjhBudFJ0QLcmzXJlTDcK1lB6yVbhM6hjb7BMA2U+zkyZOoqupwvMuWLePYsWNceeWV9O/fvzFCFMChQ4dITU1l6NChJCcnc/NLnxC4VmX/8+PwNtRrcq0QbUKdXh3OKiUvRGu27feVnDPtIGj8gyiKgoK1xH+frgNdHdoFtW/fHp1OR0FBATk5OfUqI6HT6YiIiGiE6ITN2rVrOX36NL169QKgLD3ZxREJ0TLUKdlprPogc+fOZfHixRw8eBAvLy+GDh3Kq6++Srdu3bRjSktLefTRR1m0aBFlZWWMGzeOd955R5uZAJCSksK9997Lb7/9hq+vL7fffjtz587FzU2+6YjGV2w00f3Jb0ndsRNUCwEX34qbbztu9juIwVTUIurruLu707lzZwDKy8sdfvytt96KyWSSYoKNrHv37oSFhWmLMRvTDzVoBp0QbUW9soG0tDTWrVtHVlYWFovFbt+DDz5Y5/OsWbOGGTNmMGjQIEwmE0899RSXXXYZ+/fv18rXP/LII/z000989dVXBAQEcP/99zN58mRtHS6z2czEiROJiIhgw4YNpKenc9ttt+Hu7s7LL79cn6cnhMPK0g6CaiEmNhZ8gwhWijCYivDw8Kj37KamNnXq1AY9Xr5cNL7hfy5BUl5ejqenJ6WlhZhynLNivRCtmcPvTgsXLuSee+7BYDAQHBxs17evKIpDyc7SpUurnDssLIzt27czYsQI8vLy+PDDD/nss88YPXo0AAsWLKBHjx5s2rSJIUOGsHz5cvbv38/KlSsJDw+nb9++vPDCCzz55JM8++yzGAyG6i4thFOVpVqXiBicNIzNQLiuELAO/G3trR31GeMjGsbd3Z2+/fqxde8hTHmZZOSV0jm0eS0yK0Rz4vC78DPPPMOcOXPIy8vjxIkTHD9+XLsdO3asQcHk5eUBaOMFtm/fTnl5OWPHjtWO6d69Ox07dmTjxo0AbNy4kcTERLturXHjxpGfn8++ffuqvU5ZWRn5+fl2NyEaovTP9bCG/Lke1hFzMNdcex1JSUmuDKteCgoKMBqNdT7+k08+4T//+Y+2urtoXGazmfT0dMKSrqH9Xxfg1ak/Y+ev4YutKa4OTYhmy+GWneLiYm688Uanf1u1WCw8/PDDDBs2TBt8l5GRgcFgIDAw0O7Y8PBwMjIytGMqJjq2/bZ91Zk7dy7PPfecU+MXbVdpaSlladaBoqNHjeSRXgkujqj+Fi1aRHJyMlOmTNFeh7WxWCykpqZSXl6Oh4dHE0Qo/ve//3HgZDq73XujYG1Rs6jw1OK9jIgPJTJAFgcVojKHM5Zp06bx1VdfOT2QGTNmsHfvXhYtWuT0c1c2e/Zs8vLytJt8IxUNsX3bNvTe/njHD8U3LNrV4TSIbf2uuhYXPHPmDOXl5RgMBkJCQhozNPGniIgI8i2eqNh3HZpVlRPZxS6KSojmzeGWnblz53LFFVewdOlSEhMTcXd3t9s/f/58h4O4//77WbJkCWvXrrVbVyciIgKj0Uhubq5d605mZqY2xTUiIqLKgniZmZnavup4eHjIt1DhNAt+26ctEXHp62t5aFgYvX0K6datW4tbFDMmJoYtW7aQklK3LpHTp08D1sU/W/vYpOaiQ4cO+Ot2oKDaJTx6RSE2xNuFkQnRfNUr2Vm2bJk2PbzyAGVHqKrKAw88wLfffsvq1avp1KmT3f4BAwbg7u7OqlWrmDJlCgDJycmkpKRoYyGSkpJ46aWXyMrK0ma9rFixAn9/fxISWm53gmgZ0vNK2GDsWGWJiOs8d6MoSotMdsBaEbmkpERbub0mtmSnffv2jR6bsOrQoQM+SjnDPVJYWxKNotOhoPLy5ETpwhKiBg4nO6+99hofffQRd9xxR4MvPmPGDD777DO+//57/Pz8tDE2AQEBeHl5ERAQwLRp05g5cyZBQUH4+/vzwAMPkJSUpC1Vcdlll5GQkMCtt97KvHnzyMjI4Omnn2bGjBnSeiMa3ZGMfFDsWzRUFPItni2ivk5lPj4+BAcHc/bsWVJSUuxqXlVHkp2mFxgYiLe3N3HFZ9h66AAn/ljDZUP7c8OgK1wdmhDNlsPtzh4eHgwbNswpF3/33XfJy8tj1KhRREZGarcvvvhCO+b111/niiuuYMqUKYwYMYKIiAgWL16s7dfr9SxZsgS9Xk9SUhK33HILt912G88//7xTYhSiNgXpR1Er1ZpSUAnUG+26ZFuSiktH1MZoNJKVlQVIstOUFEXR/m9FR4VTlrqHbb+vkOKCQtTC4WTnoYce4q233nLKxVVVrfZWsdXI09OTt99+m3PnzlFUVMTixYurjMWJiYnh559/pri4mDNnzvDPf/5TCpyJJrFv63rOLXtLS3h0Cgx1P0nXDqFVxrO1FLZk50LjdtLT01FVFT8/P/z9/ZsiNPEnW3IZGeQLOj3paWmyYr0QtXA4I9iyZQu//vorS5YsoWfPnlXe0Cu2ugjR2q1Zs4bC3SswRHbDr+94nu5bTurBbDp2HOrq0OotNjaWAQMGEBsbW+txp06dAmixLVgtmS3ZCdWXYgjvgjH9EOvWrbvg30yItsrhZCcwMJDJkyc3RixCtChms5l169YBYIiIA6Awy1rGoCWO17Hx9/fniisuPP5Dxuu4ju137q8rI7BzIlnph1i/fj233HKLiyMTonlyONlZsGBBY8QhRIuzZ88e8vLy8PPzwxDWCXfMlBRb65x07NjRxdE1Pkl2XMfT05OQkBCys7OZN/1K7lj/jZZ4CyGqkoEtQtTTmjVrAEgaOoxknZ5y4P6HZ1JSkIenp6drg2sgs9lMWloaOTk59O7du8r+goIC8vPzW+T0+taiQ4cOZGdna8vr7N27l5ycHNq1a+fiyIRofhxOdjp16lRrPZ2Gro8lREuxdu1aAC4ZNZJlsyZq2308Wn4l4ZycHD766CP0ej0JCQlVBvzbWnVCQ0NlsV0Xad++PTt37iQ3N5euXbty+PBhNm7cyIQJE1wdmhDNjsPJzsMPP2x3v7y8nB07drB06VIef/xxZ8UlRLNVbDTR45mlnPplJQAjRoxwcUTOFxwcjI+PD0VFRZw+fbrKGKSuXbty9913U1ZW5qIIRYcOHdDpdKiqyvDhwzl8+DDr1q2TZEeIajic7Dz00EPVbn/77bfZtm1bgwMSoiUozz6JpSQfb29vBg4cSElJCe+//z4dO3Zk0qRJLX7pBEVRiImJYf/+/Zw8ebJKsqPX64mMjHRRdAIgLCyMWbNm4e7uTnl5OQsWLJBxO0LUwGnvyJdffjnffPONs04nRLNWemIXAEOHDcdgMHDy5Elyc3NJS0tr8YmOTV3r7QjX0Ol0WumP4cOHA9bSIKWlpa4MS4hmyWnvyl9//bU2UE6I1q705E4ARl0yGjhfbbglTzmvrGKyYzabte1ZWVl8//337Nmzx1WhiUri4uKIiIigrKyMTZs2uTocIZodh7ux+vXrZzdAWVVVMjIyOHPmDO+8845TgxOiOTKZTJTnpOHRMZHEJOt4ndaY7ISFheHp6UlpaSkZGRnaFPNjx46xc+dOCgsLSUxMdHGUbZst8TSbzYwaNYpFixaxevVqRo0a5erQhGhWHE52rr76arv7Op2O0NBQRo0aRffu3Z0VlxDN1uvfbiBq2rsoOh0PLztHvuGYtohta0p2bON2kpOTOXnypJbsxMTEcPHFFxMaGuriCIWPjw9paWkADBk6jEWLFvHKR9/wxFNP422QyiJC2CiqrB5Hfn4+AQEB5OXlyRo/olbpeSUMnbsKlfOtmzoFrvXYRYcgXx588EEXRud8p0+fxmKxEBUVhV6vd3U4ohoHDx4kMjKSE6mn6ZvYE/TunD13jiB/X1eHJkSjq+vnd+sYSSlEEzmeXWSX6ABYVMi3eLaqVh2b9u3bEx0dLYlOM9a9e3cCAgKI69oVvW8QmMvZsnmzq8MSolmpc7Kj0+nQ6/W13mSlcdHaRfrqtRXObXQKdA7zaxOLMGZkZHDo0CFKSkpcHYqoRFEUPKKtY6h+X7vGxdEI0bzUOTv59ttva9y3ceNG3nzzTSyVPgSEaG2O7tnOuWVvETTufhSdHp0CcycncsOgiRd+cAt14sQJ9u3bR0xMDCdPnmTbtm0MGTKEcePGuTo0gXVpj40bN3IyJRXfuIGYi87x26btrg5LiGalzsnOpEmTqmxLTk5m1qxZ/Pjjj0ydOpXnn3/eqcEJ0dysWrWKwt0rUAxeBI25m5UzR9I5tHWPjUhNTWXbtm0UFxeTnZ0NtI2FTlsKnU7Hpk2b2JHnhVePUXglXMJpi4VPNhzjlqGdXR2eEM1CvcbspKWlMX36dBITEzGZTOzcuZOPP/64VY5ZEKKiVatWAWAI7wKAN2WYTCZXhtTobK/rEydOkJWVBUB0dLQrQxIVKIqCf0QMG8pj4M+yIIpOx5wfDpCeJ92NQoCDyU5eXh5PPvkkcXFx7Nu3j1WrVvHjjz/Sq1evxopPiGYjNzeX7dut3QOeMX0A+OnHH3jllVdITk52ZWiNKioqCjc3N4qLiwHrulm+vq27Naul0QdEVB04D5zILnZNQEI0M3VOdubNm0fnzp1ZsmQJn3/+ORs2bODiiy9uzNiEaFZWr16NxWIhPr4bbn4h6LGQnnYas9lMSEjLX+m8Jm5ubnTo0EG7Ly24zc+A+GgU7KuIqBYLN32wiWJj6255FKIu6jxmZ9asWXh5eREXF8fHH3/Mxx9/XO1xixcvdlpwQjQny5cvB+DSS8fy71cmcvLkSRYu/ANfX99Wv1RKTEwMJ06cAGgTs85amt5dOzLCaylrSzqgoqBazJxb9jaBI293dWhCNAt1TnZuu+02u2UihGhLVFXll19+AWD8+PEA2od/TExMq39tVFzhXAYnNz86nY6xXXwJP7KbLcZoslb9h5Td6//sbr3e1eEJ4XJ1TnYWLlzYiGEI0bwdOnSIEydOYDAYuOSSS4DWuR5WTWxlJSqutC2al+iYWI4dPUoXt7P0TBrIoeSDmPKzycgrbfUzBoW4EKmgLEQdLF26FIARI0bg4+OD2Wzm1KlTQNtIdmzPtU+fPnh7e7s4GlGdjh2t/w/DdYV49hxD+78uIGDIFMbOX8MXW1NcHJ0QriXJjhAXUGw0MeuN/wNg9NjLAOuHf3l5Od7e3m1iQUwZr9P8hYWHU6bqMaFj8XEdis769m5RYfbiPcTO+onYWT/JgGXRJsn6DkJcQElJCWWpewC4bLy1anC7du249NJLUVW11Y/XKSsrIz09HbC2YpnNZnQ6Xat/3i2Nr6eBxG5dWHMgncqrO1va/HLPoq2TZEeIC/h97VpUkxG9Xyjdu/cAwN/fn6FDh7o4sqaRkpKCqqq0a9eOlStXcujQIe666y7Cw8NdHZqoJDY2lh3Jx1FQ7eru6BRJeETbJt1YQlzA8mVL0fsF4zfwKjLzy1wdTpMzGAzEx8fTrVs3SktLMRqNHDt2zNVhiWrExsbio5QzwusUqmrNblSLmdnj4rRjMvJKXRWeEC4jyY4QtVBVlZ/3n7UO9rzoGsbOX8P7K/eyc+dO8vPzXR1ek4iJieGmm25i3LhxdOrUCTg/hkc0L+Hh4QwfPpzHrx+FgsqZH/7B6ffu4uCBA9oxMmBZtEWS7AhRizVbdqEOvMlusOcrK0/y2Xc/s3r1atcG5wIVkx3bdHTRfOh0OsaMGUPnLnGg6NB7+wPwzYnzIxYsKjy1eK+smyXaFEl2hKjF18vWaImOjQXIt3jSuXPrX1H63Llz5OXlafcjIiLw9PTEaDSSlpbmwshEXXh1GYRbuyhtgVAbs6rKulmiTZFkR4habFr5I2qlFgwFFX9dqdbK0ZqtXbuWf/3rX6xbtw6wrrBte94ybqd5UlWVE8ePM9AtFb/oBAyluVX+D+sVhdgQqZck2g5JdoSoQXp6Ott/X8W5ZW9pgz11Cgx1P0nniCB8fHxcHGHjMxqNKIpCVFSUts1Wa0fG7TRPiqKwavlSEt0z+Wl6L8YMHfDn/+E/q2Ar8PLkXkQGeLk4UiGajkw9F6IGS5YsAaC7Ry5n/uwGeKafiZQD2XTqNMSVoTWZ66+/ntLSUrslIjp37kxsbCxdunRxYWSiNomJieTl5eHr68sVV1zBd3/5C6aCs4Rf/zwrZ46U5SNEmyPJjhA1+P777wG44sqrWFBk3ZaXfgKgTXRh2Xh6etrdDwkJ4fbbZTXt5mzUqFHaz1dddRU6nY7S439QnptBRIBnzQ8UopWSbiwhqlFQUMDKlSsBmHDFFQB4YyQvNxedTtcm1sMyGo2uDkE4QWhoKMMvvhiAkkMbXRyNEK4hLTtCVOPHH3+krKyMbt26MbBvH0706wtAUdFlZGRk4OHh4doAG1l5eTn//Oc/CQ8P5+abb8bLq+r4juLiYlJTU+nWrZsLIhQXoqqqtszHtVOmsHbNGnqUHcDbIG/7ou2Rlh0hqvHll18C1jErFdeA8vHxaRNjVY4fP055eTkFBQVVurHAul7Wa6+9xqJFi9pMccWWZuPGjXzwwQesXbuWyZMnA7BhwwYtARKiLZFkR4hK8vPz+eWXXwBrstMWHTp0CICuXbtWu+Cnh4eHNkPryJEjTRqbqBtbHahjx44RFhbGkCHWQfXffvutK8MSwiUk2RGikq8Wf4vRaMQ9OJpOXa1dNKmpqSxcuJCtW7e6OLrGp6qqlsB07dq1xuNsLVyS7DRP4eHh+Pv7U15ezokTJ7TWnW+++YZio4nYWT8RO+snio0mF0cqROOTZEeIShZ//TUA3t2Ga60ahw4d4uTJk6SktP41hc6cOUNeXh5ubm61zjqzJULHjh3DbDY3VXiijhRF0f5Ghw4dYsqUKQCsXr2ajIwMV4YmRJOTZEeICnJzc1m5Yjl6v2B8EsdoK0TbWi/i4uJqe3ircPjwYcBaPLBifZ3KoqKi8Pb2pqysjFOnTjVVeMIB8fHxgPVv2qlTJwYPHozFYuGbr77UjpFV0EVbIMmOaJNqasb/+uuvMXQfSfu/LsA9MIKx89fw8e+HtW/CbSnZqa0LC6wtB9KV1bx16tQJNzc38vLyyMrK4pZbbgHg4zUHtWNkFXTRFrg02Vm7di1XXnklUVFRKIrCd999Z7dfVVXmzJlDZGQkXl5ejB07Vnsjtjl37hxTp07F39+fwMBApk2bRmFhYRM+C9Ea2JKfB+d9RNC4B+xWOX/u50MUqe5ERka2+iUiioqKtK46W6tAbWzJnyQ7zZO7u7vWFXno0CGuv/56DAFhFHS/UjtGVkEXbYFLk52ioiL69OnD22+/Xe3+efPm8eabb/Lee++xefNmfHx8GDduHKWl55tdp06dyr59+1ixYgVLlixh7dq13H333U31FEQrYGvGL89Jw1JWWHWVc9W6ynlbaNVJTk5GVVUiIyMJDAy84PFxcXFcddVV3HzzzY0fnKgXW9KanJxsnZV16VVV/o/LKuiitXNpsnP55Zfz4osvcs0111TZp6oq//rXv3j66aeZNGkSvXv35n//+x9paWlaC9CBAwdYunQp//3vfxk8eDDDhw/nrbfeYtGiRaSlpTXxsxEtyTfbz48xGTt/Dd9sP0XxoU3ovPxBrX6V8wt167QGBw4cAKBHjx51Ot7b25t+/frh5+fXmGGJBrAVfTx9+jR5eXncMPESWQVdtDnNdszO8ePHycjIYOzYsdq2gIAABg8ezMaN1pLnGzduJDAwkIEDB2rHjB07Fp1Ox+bNm2s8d1lZGfn5+XY30Xak55Xw9x/2afctKsz5fh/+g64m7OrZUKGujE6BydFltG/nQ4cOHVwRbpMpLS3l2LFjQN2THdH8+fn50bFjR8CazN5+3SQKf3sf1WKdQSeroIu2oNnWDbcNCA0PD7fbHh4eru3LyMggLCzMbr+bmxtBQUG1Tq2cO3cuzz33nJMjFi3F8ewiLKr9NhUqNO2fT3ZsK0RbLJZqi+u1JocPH8ZisRASEkJISEidH2c2m9m2bRtHjx7l+uuvx82t2b6ttFk9evQgJSWFAwcOMGTIECYkBPH5e3fh1+9Ktn/9lqyCLlq9Ztuy05hmz55NXl6edktNTXV1SKIJdQrxQVfHvMW2QrRO1/pfKiUlJXh4eDjcqqPT6Vi/fj2HDx/m+PHjjRSdaAjb3zQlJYXCwkLuvGsa5oKz5G34HC/KXBydEI2v2b6DR0REAJCZmWm3PTMzU9sXERFBVlaW3X6TycS5c+e0Y6rj4eGBv7+/3U20HZEBXjx3VU/tvgKolcbpAHhSTm5OThNG5loXXXQRjz/+OMOGDXPocYqiaONCDh48eIGjhSsEBASQmJjIxX+ufj54SBLuwR1RTWV8uehzF0cnRONrtslOp06diIiIYNWqVdq2/Px8Nm/eTFJSEgBJSUnk5uayfft27Zhff/0Vi8XC4MGDmzxm0XJMGXB+/M0Uz92cW/qWNmhTp8CrUxL5z+Xt+OC9d/j5559dFWaT0+v19VrRvXv37sD52Vyi+Zk8eTKjR4/G19cXHw935j39CAAfL/hIlo8QrZ5Lk53CwkJ27tzJzp07Aeug5J07d5KSkoKiKDz88MO8+OKL/PDDD+zZs4fbbruNqKgorr76asDaNDt+/HimT5/Oli1bWL9+Pffffz833nijtkihELVRLWYWffgOhbtXUHx4E2Adp3PDoI4kJycDEBkZ6coQm8TZs2cblKTExsbi4eFBUVGRVFNuIW699VYMBgM7duxgxx/bL/wAIVowlyY727Zto1+/fvTr1w+AmTNn0q9fP+bMmQPAE088wQMPPMDdd9/NoEGDKCwsZOnSpXh6emrn+PTTT+nevTtjxoxhwoQJDB8+nPfff98lz0c0XzV9cy05vJnTp04REhqKd5dBgHWcTm5uLunp6cCFKwm3dCUlJbzzzju89dZblJTUr7CcXq/Xfk/SldV8mUwmDh48yKFDhwgODubaa68F4L1339GOkeUjRGvk0mRn1KhRqKpa5bZw4ULAOhbg+eefJyMjg9LSUlauXFmlqmtQUBCfffYZBQUF5OXl8dFHH+HrKzMLRO28DW6ceGUiPc6tA+DOu6ahuJ1fB2r//v2AtcWitf9/ysjIQK/XYzAY8PKq//RjW1fWwYMHpSurmdqxYwdffPEFq1evBuCBBx4A4Mc9Z7S/mSwfIVojmSMq2pyMvFI6h/qyYcMG1q5di7u7Ow/eP4N5Fero7NtnrcOTkJDgqjCbTKdOnXjsscfIy8tr0Hni4uIwGAwEBwdjNBrrNfZHNK6EhATWr19PbGwsFouFIUOGMGjEpWQOvlcrrWBbPmJEfKjU3hGthiQ7ok2oXDF57uREPpk7F4Dbb7/drmBgbm4uaWlpKIrSZorrGQwGQkNDG3QODw8PHnvssVpXSheu5ePjw0MPPWRXM+rq2+7m/cPVLx8hyY5oLZrtbCwhnKW6ismzF+/hlzUb0el0PPHEE3bH27qwYmJiWn0XVlFRkVO7nCTRaf4qF8e89erxVUovyPIRorWRlh3R6lVXMdmigltgFFdPGFtlAPKgQYMIDAxs9d0wqqry4Ycf4u7uzrXXXtvglp2KcnNz0el0UsOqmbJYLBw9ehR/f3+iw8MZ6Z3OmqIIFJ1elo8QrZIkO6LVs1VMrpjwqBYzptw0Zs36X5Xj3d3d28RYnZMnT5KTk4PBYCAgIMBp5/3tt99Yu3YtQ4YMYdy4cU47r3CeVatWsWHDBhITE5k8eTLzZlxLxx790HkF8OqzT3LDoI6uDlEIp5JuLNHqVa6YjGrh3LJ/c824S+jbt6/L4nK1P/74A4BevXphMBicdl5bjat9+/bJrKxmqmdP6+th//79FBcX4+/vj3ePEZSl7uG9f7yE2Wx2cYRCOJckO6JNsFVMNmYc5dS7d1K6/zdefvllu2NUVeWTTz5h9erVlJa27lojJSUl2tik/v37O/XcXbp0wcPDg4KCAk6cOOHUcwvniIqKIjIyErPZzK5du/A2uHHyx38TGBjIwYMH+Prrr10dohBOJcmOaDNU1cLZZf/GXHCWe+65p8pYndTUVI4ePcqGDRta/cKfe/bswWw2Ex4e7vRq425ublrLwa5du5x6buE8tiR3+/btqKpKQEAAjzxiXULi+eefl9Yd0aq07nd0If7kbXDj2e7ZGDMO4+vrq1Xprsj2wZyQkODUbp3mRlVVtmzZAkC/fv2qzM5xBlv34L59+ygrk1W1m6PExETc3d05e/YsJ0+eBODBBx+kXbt27N+/nwULFrg4QiGcR5Id0SZkZWXx6KOPAjBnzhzCwsLs9peXl2uFBPv06dPk8TWlo0ePcvbsWTw8PBptzFKHDh0ICQnBZDJpv1fRvHh4eJCYmAigJb+BgYHaF4Gnn36agoICl8UnhDNJsiPahIcffpicnBz69u2rNdVXlJycTFlZGQEBAcTGxjZ9gE1o0ybrgqd9+/ZttOn1iqLYte6I5mnw4MGAdYmPnJwcAO677z7i4uLIzMxk3rx5rgxPCKeRZEe0ShUX/lz83Q98/vnn6HQ6/vvf/+LmVrXiwvbt1lWf+/Tp0yjdOs3FmTNnOHr0KHD+g66x9OnTh2uuuYYbb7yxUa8j6i8sLIwuXbqgqqqWBBsMBi3J+ec//6l1cQnRkkmyI1o1c3Eef334ccDaujNgwIAqx5w5c4YTJ06gKIrTZyY1N5s3bwasi3a2a9euUa/l6+tL7969papyM5eUlARYFwktLS2l2Gji4U3ueET3orS0lPvuu09KCIgWT5Id0Sp9s/0Uqqqi9w7A6/p/0mPiNF566aVqj9Xr9fTt25eePXs6tbhec1NYWKgNwm7sVp3KVFWV2T3NVOfOnQkLC6O8vFxr4VQUhZCJM/EMiuTnn3/miy++cHGUQjSMJDvCpSp2NxUbTU45p20tLFt3lKLTUZp4DTll1X87DQoKYtKkSUyePNkp12+uNmzYgMlkokOHDsTExDTZdffs2cO///1vduzY0WTXFHWnKApDhgwBrOO5vthi7bZyCwgjfPr7+Pa+lKnT7iX6oUVOe40K0dQk2RHNRkaecwr51bQW1ons4lof15rH6gAMGTKEwYMHM3LkyCZ9rkVFRZw7d44tW7ZId0gz1bt3bwIDA8kuMvH8Twcr7FEIHvcAbv4hFGz/kfTcEpfFKERDSLLTglRsBTl2prDJHtuYvtl+Svt57Pw1fLE1pcHnPL57M6rlwqs4q6rK8uXLyczMbPA1WwJ/f3/Gjx9PXFxck163b9++uLu7a2OjRPOj1+uZPHkyY66+iSr5qE5HxG3zCRx+s9Neo0I0NUl2WpCGJAaNkVQ0lK27ycaiwlOL95KeV/9vj0uXLmX61Os4t+wtLeGpaRXnQ4cOsXHjRhYsWEB5eXm9r9ncuXqsjKenp1a7yDbjRzQ/0dHR9IwJRVdNo5+iWD8qVBRmL97ToNeoEK4gyY6L1bXFpSGJQWMkFRXVt9Wouu4ms6pesLupput+9dVXXHXVVZSUlHBxBwOo1mRn5cyRVVZxVlWVdevWATBw4MBWPWNo+fLlfPLJJ5w5c8ZlMdgGRB86dKjNtKS1ROcXzbW+MKvr7LSosO9klna/ubYaC1GRJDsuVtcWl5oSg6S5v15wcG9Dk4oLqW+rUacQnyrfIqvrbqrLdUe/tpq7XvyQ8vJyrr3uer77djEn/zGJE69MpHOob5XHpqSkcOrUKfR6vTY4szUqKSlhx44dHD16lMJC130QhYSEaOtl/f777y6LQ1xYcF4y13vupqvuDIvuHlLlNapazLzy9KOYTNb3nMqv///beMLpkw6EaChJdhpZbbONqmtxefKbPdqxFR+rV5QqbzoV79c2uLehSUVtGtJqdP5bpFVN3U11uS4oBI27j6DxD/DyW+9fcG0rW6tO37598fWtmgy1Fl5eXvz1r39lzJgxdOrUyaWxXHzxxYC1onJubq5LYxE16xwbg6/OxMyLwxncObjKa7Tg1/dZ9eM3zJw5k7Tc4iqv/4r3j2cXSuIjmgVJdppQ5YSkuhaXisdW/MZ00webuKrP+dWpdQp292trUWlIUgG1N1M3tNVoyoAO2s/VdTfV5PiZqtdVdHr8+oxj3L/W1dq6lJqaypEjR1AUhaFDh9bpei1ZUFAQw4cPd3UYhIeHM2rUKO644w4CAwNdHY6oQbdu3bj//vu5/PLLgaqv0bceuxWAt956i2f+8U61Mx9trnxrvfazs2ZbClEfkuw0stq6eKprcbEZ89oa5nxv/43ph11p2v3Ppw+xu3+hFpXKb1hX9omq8zcuR59Dba1GlVu6vA1unHhlYo3dTZWpqsrSpUt5aNpNVWZc2dT2u1BVlZUrVwLWVp2goKALXrMlMplMnDp16sIHNrGRI0c2aY0f4ThFUexeF5Vfo9dMnkLQ+Afw6JjIJx/9B4WaywlUTHyay8QI0TZJstOIPv32J+Z8v1e7b1Fh9uI9nMjMBaq2uFSkQpW3EItqTXJOvDIRs6o61KJSW1JR2zeuC3VTNaTV6ELf9ComRrtPZPD2u+/hHTeIq+95gh07dlD4239Q1eoTnpp+F6qq0qNHD/z9/Rk1atQFY2yp1q9fz4cffsiqVatcHUqNioqKXB2CuIDs7GwWL15sN1vxm+2n8Oszjoib5hJx63wK9qzSXoe1VW9y9sQIIRxRdUVE4TRL1/2B6m6/1pJFhVfe/ohQNQeTyYTJZGKsUU+qEkKyZ49az6egsm7ptxzx98Do5o2Cp11CpFOgY5BnnWKr3Fozd3JitV1ItXVT2RKaKQM68MyfrVArZ46stYWmrtdVVZV3ft6OqqooisKV72ylaF8yYVP+jqLTgary2CXR/HO19XyKgl19kJpal3Q6HUOGDOGiiy5Cp2uduX52drY2CDg8PNzF0VRv9erVrF+/nptuuonOnTu7OhxRDYvFwmeffUZOTg5+fn5ceumlVb78KDodPj0vIeN/M/GOH86SD+Zy64LtNXbPV37vEKKpSLLTiHwsRdZP4ArVahVU/HWluClu2urbvkCQauRQqYpq993Iek9FQUFlqPtJirOzOZZt3TvUPYQN5THa/v76Uzw3/128TYUYzMWYzWYsFotWtVZRFHQ6HWV6L5bohmD7HmZRYdY3u8nY8Rvh/h54eXnh7e2Nj48PJYpHlURCp1jHEAH8+qg1uTnxysQL/j6qayWavXgPsR4lFGWf5kDyIf62aCOW0iI8co/jPelZa2KD9U3Vt9eY879LReH1NafZOHs0kQFe/N/GE1rCVVPrki1xAlptomM2m/n+++8xm83ExcVpM6Cam5KSEkwmE8uXL+fuu+9utX+Plkyn0zFu3DgWLVrExo0bSUhI4GSpR7Vj5fQe3uSuXcisaUd45Kk3eW1NWrXndNbECCEcpahSv538/HwCAgLIy8vD39/fqeeu/CH8t8u78tK329FbTPzjyk74KWUUFhZSVFTE2jQLS88EgmJNXgbrj5ObdgKLuxedfc14qee7fRRFQa/XU6b3oljnS67On+2mDnaJUbxbdrUxpZv9WGrsVmX7eEMykfqCKtsPmeyTqo6WDE4qEVpzSmLpHjoYU7BYLJgtFk4VQrHeh0i3EgzmYiwWC0ajkbP6YI7FXlnl/HnfPk/JyV0Yuo+i3WUzUHQ6VItFS3Rq8/n0ISR1CbY+r7wSTmQXExviXSXRKSws5JNPPmH06NHEx8df8Lwt1a+//srvv/+Oh4cHf/3rX5vtQODi4mLefPNNysrKuPzyy7noootcHZKowTfffMPevXtp164dk268nUteX2eX8OgVhWcHWrj/rqnk5+cTGhrKmx/8j5heg9h+8hz/XH4IsL7/1dSSK0R91fXzW5IdGjfZAfsP4ZX7M+2Sn8ov/to+sGs7/7BXfrV7A9IBj/aFvKISfCzFuJcXUlpaSllZGTllKl+W9qZiD7uiqowzrsNbMaLT6SjReVGq96Wdezl+ejNFqjv5Fk/cFDM/lfWwa4FSULnOczc+SnmVxKhi0lWkuvNVae9qHwtU2WcdtVTzfR3w2ihvwv09cHd3124Gg8HuvpubG8uXLyc5OZnIyEj+8pe/tMqWhBMnTvDxxx8DMGXKFHr16uXiiGq3detWfv75ZwwGA/fee2+zTczaupKSEv7zn/+Ql5dHr169KIrsz5wf9gP272FHjhzh2muvZdeuXQDceeedvPbaa5TqPB1+TxOiriTZcUBjJzs21SUlekVh3axLGvQmsOFoNjd/sLnG/dUlVZVbnCrur7zvxUk9uapXCIWFhaw7lMVjP6dWucadMXn4K2W8eSK0SjJzR9BRfPXWGV97S/xZXRipJUMXe56ii5JZY2uTLcFRUOmiP8tRc3CdWq8uxJYEVUyIqttW2zF1eby7uzs6na7RF94sKCjggw8+oKCggL59+zJp0qRGvZ4zqKrKwoULSUlJIS4ujptvvrnVL8baUqWmprJgwQJUVeWKK64gKi6h2gSmpKSEWbNm8dZbb6GqKqGhoTz77LNMnz7d4SrlxUYTCXOWAee7y4WoTJIdBzRVslNTUlKxK6Y+qkuiKqsuqarYihTg5a69sVQ32Nf22NoStuPZRXV6fpVbr1RV5dS5Ikb+c41965QCb10VQ2FpOWHe4O9mISO/lNN5RoIMFvz0JsrLy6vcjEaj3c8lJa6d/aEoSp2TpLomVBVvAN9++y2ZmZmEhIQwbdo0PD3rNlDd1bKzs3nvvfcwm81cddVV9OvXz9UhiRqsW7eOVatWodPpuPXWW4mNja3x2PXr1/OXv/yFgwetK6jHx8cze/Zsbr755gsW/LSp7QuZEDaS7DigpbfsgP0bg3VQc1W1JVUVH1+dio+t6U2o2u405XytjQt9O3P2m5uqqnz22WccOXJESwLAWoPGlgzZfnZ0W12OcSVFUewSouqSpPreLnQuvV7vUAvNunXrWL16NRMmTKB///4XfoBwCVVV+frrr9m/fz+enp785S9/ITi45i9p5eXlvP/++zz77LNkZ1tbYNu3b8/06dO5/fbba02WGvpe4kzSwtS8SbLjgKZKdqBxv63YWky8DTqueWdDnZOqC7UMXahVqOL2ys/vqj5RfLczTbt/oedbnzFLNdmwYQMrVqzAzc2N6dOnExYW1qDzOUJVVcxmc4MSKtvP1SVYtltRUZG2RlFz4kjSpNfrMZlM+Pr6avcrJk713dYax2W5Wnl5OR9//DGnT5+mXbt23HHHHRd8z8zPz+e9997j9ddfJyMjA71fMG7tohjQPYY7rr2KCRMm0L59e7vH1KdrvrFIC1PzJsmOA5oy2QHnfqDXxJEXaG1vLPV5cdc36XK2X375hS1btjBhwgQGDRrU6NdraraZVwBXX301vXv3tkuEqrtVTpYacqt8rubGNmPxQolR5X2OHOvIttYyHqmwsJAPP/yQ3NxcgoKCuOOOO/Dz87vg40pLS3nsve/4Md0HRbHOuDy37C0Kd6+gd+/ejB8/noEXDWHmmhL03gFVutMr0ysKi+9LoshoplOIT5X3lPS8Eo5nF1W7ry77bcc0Vms8tJxWo7r8rlylrp/fUmfHBSIDvBr9P8ytSbGMTQivU1JlW/Kh8myut27uR/+Ydg7Hant+G45mX7AgYWMaP3488fHxrbZoXXR0NG5ubowfP54+ffoAaON7mpqqqlgslnolVBWPLygo4ODBgwQEBBAREYHZbNb22X6u/G/Fnyt+d1NVtVklYjqdrtrEquKtpu2OHnuh81S3v64tYb6+vtx+++0sXLiQc+fOsWnTJi699NILPi6nTOXnTL/zpbJ0OoLHP0Dp8R3s3r2b3bt349v7UoLGPQCAarFYJyMoSrVd82ZVZdLbG6y/2wtMsnBkggac/3A/V2Rs0HtY5WQmIsDT7v76I+cnWNRWZLWhGpJU1eWLc8VkqOL4z+aUwEnLDk3fstMcfbE1hacW78WsqugVhZcn92rwi66xvxVV59y5c/j5+bnkA98V8vPzW9X/2b179/LNN98AMGbMGIcXMLUlXHVJjBzZVt/HtyS2lrC6Jk4Wi4W8vDyioqK0bsPakqwD58w8uyanynUfSwok4+RRjiTvZ5PvMFDOJ12qxUzh8jcpz82g3fVz7WtvVVOw9dmhPhTrvZn3e7ZdclSxFcjHoK+1xbny+EegxnNdqNXoj5M5dnWGKnbr13Tu2t4fK7ew1HYf0H6+UMmTmtTlPbyhQxcaSrqxHCDJjlVjdK81RhJVk6ysLP73v/8RHh7OTTfdpM1Uai3y8/NZsmQJl156KaGhoa4Op9Fs3LiR5cuXAzBq1ChGjBjRIruAKrZ21ZZEVXerbX/FfRXP7+h5mjoZq67O1vmPelvbTdW/s63YacUaXjUdWzkBqnZfDceMNO8kQF/GD1xE5fpeFSvZ9/QtZm+Bt1b89YbOZkZ0OF/fa/UpMwt2F9ccxwX8+6Z+BPkaLpiwVE4qKidSFX+zcOGkqrquqpqGONhirC5xrEwHvHlzPwbUo5egLiTZcYAkO42rKcYopaSk8MUXX1BcXExERAS33XYbXl7Nq2+5oWyVbMPDw7nnnntaZAJQV6tXr2bNmjUADB48mHHjxrXq5+sKtmTM0QSrpv0HDhwgLS2NDh060L59+2qP23xGx7envCokLFBb4VAFles99+CtGAFqLW5aYwJU7b6q17nOczf5Fs9q632Ncj+Kp2KqsajqRI8DmFR9DXE5wPZxXHHAUuWfKx5b2/0LuDniDF38zLi5ubE915Mf0ny0BG5qvI7EUDdOFul4d2eZXaKkYP2/Qw3dizVprFYeGbMjmo3GHqO0bds2fvnlFywWC1FRUdxyyy2tLtEB6xgko9HI+PHjW/0H/6hRo/Dy8mLp0qVs3ryZ7Oxsrr322hZTP6glqNht1VCqqlJaWkp6ejojR44kLi6u2uNuAB7/88vP2aIy7v9sR+WotPGD1pbgRG4YdAUWi8UuMbNYLPTemsrLy45iLTpKjQlG9fvOt/AoqAz3SAGg2KyjSiKkqngWpeOllpKlBKIa7M+lorCktEetrUYVj66p1QjUP3edX//vfBDVnLPyNgfeExRU8nPOsPXc+QTN9ngVhU8OWeCQkaptRKr1nnZs9c+puqTTthbiiPhQlwxylpYdpGWnpSouLuaXX35h7969APTs2ZOrrrqqzkXLmjOLxcIff/xBZmYmEydeeJHV1mrPnj388MMPREZGcvvttzvlg1k0nrNnz9rV3jl48CCRkZEEBARUObam8SCL70ui2GipU0twbTM/bZMsOrTzqnaMTsXrVOwiqvjxXrk1oi4FXGuiU+DyHkH8cuAcFtV6/68DAugZrHA6z8jZonL+s8eR+lx1SzKsu863DCmqSgdzGqn6qDomaNZzDyMZRaewzlL3SvfVaWgR3cqkZUe0eosXL+bo0aMoisLo0aMZNmxYi2/xMJvN7N27l3Xr1mmF2OLj4+natauLI3ONxMREwsLC8PLy0hKdsrIyTCYTPj4+Lo5OVFYx0SksLGTx4sVYLBYGDRpEUlKS3YdRZIAXz13V024cysuTe9Enul2dr1ex1Xju5MQq4wMn9o4CqPU66Xkl/P2H8wVVVWqejVo55gt14+gUeHJ8d3p3CNSSt5q69dPzSvhgb82JlII1J7G1el1ZZcxO+2rH7OgUmDulNyPiQ+0Sw/MNNnV5z1S4f/odxIZ4V1vs8b0pcRSUGAn1hABDNOm5JezPKuGt7cV2vx+dgstWvZeWHaRlp6VQVZXy8nKt5SYjI4MffvjBulZPVJSLo2uY/Px8du3axbZt28jPzwfAy8uLkSNHMnDgQGnRqOCXX35h586dXHTRRQwdOrRVdlm2BmfPnuXHH3/k5MmTgHXqfUJCAv379ycmJkab6u7MMX21naumffVZxudCtcQcaZ2qqOKEDluPlqp16fXSEpaaEqeK9wGHnq+t+9DWkVfTgGZHJp00xQQVGaDsAEl2mreioiL27NnD1q1b6dy5s123jqqqLbY1Jzc3l+TkZJKTkzlx4oRWI8bHx4fBgwczaNAgGaNSidls5qOPPiItzfoN1t3dnV69ejFgwACioqJa7P+F1kpVVY4ePcq6deu0pAfAz8+Pnj17kpCQQPv27V1a7bqhJTKc/YFel4SlIerSfbj20Jlan5MjCWpjT1Bpc8nO22+/zT/+8Q8yMjLo06cPb731FhdddFGdHivJTvOiqirZ2dkcO3aMQ4cOcfz4cS0R8PPz46GHHmqxLR3Hjx9n//79nDx5kjNnztjti4mJoW/fvvTq1avVTZt3JlVVSU5OZvXq1WRmZmrbAwMDGTx4MEOGDHFhdKIm6enpbNu2jf3791NaWqpt9/DwIDY2VrtFREQ0eWwNTViaYsapM9Xl+baU59Smkp0vvviC2267jffee4/Bgwfzr3/9i6+++ork5OQ6rYckyY5rqKpKUVERubm5tG/fXvtWvmjRIpKTk+2OjYqKom/fvvTp06fZDkCu3Mq0efNm0tPTGTFiBEFBQQD8/vvv/Prrr4B1NkzHjh2Jj4+ne/fu2jGiblRVJTU1lW3btnHgwAFMJhMjR45k1KhRgHUA+6+//kpoaCghISGEhITg5+cna2a5mMlk4ujRo+zZs4ejR4/aJT79+vXjqquuAqxjs9auXUu7du0YMGBAo7fatZQPd2dpLc+3TQ1Qnj9/PtOnT+fOO+8E4L333uOnn37io48+YtasWS6NLT09nfLycq1lomJuqSiK3R+noKAAk8mEwWDAy8tLW0yysLAQRVHslj04ffo0xcXFVM5VbfdDQkK0nwsKCigrK8NgMODt7a3V18jLywOge/fu2gdASkqKNmbEdr6K1wgLC9PedPLy8igpKcHNzQ0fHx+t9P/Zs2cxmUwMGTJE64bZunUrR48epaysjLKyMoqLiyksLNQKm9122214enqiqioGgwGdTkdUVBTdu3enR48eBAUFkZmZSXZ2NiEhIVrCU1BQUCXeC9Hr9URGRmr3MzIyKCkpISIiQhv/cfbsWVJTU6tUxi0rK6O0tFR7HqWlpZSWllJSUoLBYODBBx/Uzrtnzx5Onz5NfHy8lsjExcVRXFxMdHQ0nTp1kvEmDWBLFjt27IjRaOTIkSN2f9eTJ0+yffv2Ko/z9fXFz8+Piy++mB49egDWytv79+/Hw8MDg8GgVQS2Tc0ODQ3VXqtlZWXk5ORoMVT+19fXV/u7lpeXk5+fX+1xAJ6entprxGw2U1BQUOPz9fDw0M7ryLEWi8XuNVKZ7X0BrK8f2/tCQ491d3e3G0Sem5ur/RweHk54eDijR4/mzJkznD59moyMDG0l9Ly8PDIzM9mwYQNeXl52U9m///57cnNz8fHxwdPTE51Oh7v7+aJ+tp9t1Z99fHwICwsjPDyc/Px8jEYjmZmZ6PV6u1YkY14esd4GKDaSUZJHcXExFovF7m9m+1mn0+Hn54enpyfe3t4UFhZiNBq1v4m/v792bElJiV13dHFxca1LmPj7+2MwGPDx8aGoqEj7PwTW/7u292rbeW3XudB5/fz8cHNzw8/Pj+Li4v9v796DojrvPoB/l2V3BZZbRRdQQUAiXqCKNAz1hqAIoWkaEpUWHVQ0muoESKNorLdY1DSdJrVtNI0NkoiJmtho0sZUqGQmhrFgXm+jgiCtRAEvSAC5rLLP+4ez5+UAC3Jz3z1+PzM7suc859nfz4fn7I9zzu6BgzBiuLYR976/i9v3nWQfANBoNNLrNDc3w2g0WuzXyckJGo0GLi4uaGpqQktLCxoaGmAymeDo6CgdpXZxcbHqHxo2X+wYjUacOnUKa9eulZbZ2dlh5syZKCgo6HQb8xuVWVc7gr567733+u3ePBs3bpR+zsnJQVNTU7/0m5GRIU3Gv/3tb7KdUl8EBgZKdzP+9ttvUVVVZbHt+++/32GZEAKTJ0+Wnu/btw91dXV44YUXpDe1M2fOIC8vr0dxubu7y4qSw4cPo6qqCvPnz0dAQAAA4D//+Q8+//zzHvXb3NwsO7ozYcIEPPHEE7JvO/by8pK9IVP/0Gq1GDt2rGyZm5sbpkyZglu3buHmzZuoqamBEAINDQ1oaGiQzcsbN250+XsUHx+PsLAwAEBFRQVycnIstp09e7Z0Kq2yshJZWVkW20ZFRWHq1KkAgJs3b+Kdd96x2HbKlCmIjo4G8KBw+NOf/mSxbXh4OGJjYwE8+FTUH/7wB4ttQ0ND8fTTTwN4sG/sqm1wcDASEhIAPCiiumo7evRoJCYmSs//+Mc/wmQyddrW398fCxYskJ7v3LlT2kc3NTXJXsfe3h7379/v0X5q6tSpMBgMyM7ORk1NTadtzP32xKRJk/CTn/wE+/fvx3fffddpGzs7O4t5WzJmzBjMnTsXn332WYej3H3h4+ODRYsWITc3F//zP+2/46j3Bg8ejJUrV+Kbb77B119/3Wmb9PR0q545sfli59atW2htbYXBYJAtNxgMuHTpUqfbbNu2DZs3b34U4XVbyba9h5P5RoZqtVpabjKZYDQaOxzC7e6ajrZ/Sdy7dw+tra3QaDTScvNOv32/Wq22y8PFDg4O0nqj0Yj79+9Do9HA1dVVusGh+eLRtrkPHToUNTU10l9HKpUKdnZ2Hf5/2r52+48WOzs7S9uZ6XQ62Xd4dBW7eV37Cefm5obW1lbZ/6mbmxsCAwM73N9Hp9NBp9NJf5Gbf3ZwcOhw52fzmyNZR/vC0mQyobGxEfX19aivr5etc3Z2xoQJE9DS0gKj0djhm3/b/i7a29tDr9d3uOmo+d+2v0cqlQo6na7DkV3zv+1//7ua1+2vU+uqbdt+VSpVv/Xb17aW3vTb96PRaCzezsJgMGD27Nm4e/cumpub8c9//hMtLS2dHtXVarXw9vaWjqya791l7rvt66rVaumIOgDpyI4l5qNHnfWrVqtl+6K2/xftb1jbnkajkdqbj06Zi7C2/bbfZ5m/bLGrfs3tu+rXZDLJfn/MX+hoiXm/D0C6P5q538728dZi89fsXL9+HcOGDcM333yDiIgIafnq1avx1Vdf4eTJjh+x6+zIzogRI3jNDhERkQ15bK7Z8fDwgFqtln0qAwCqq6stXtVv/uuciIiIlO//x/GlPtBqtZg0aZLsfLvJZEJeXp7sSA8RERE9nmz+yA4AvPzyy0hOTkZYWBiefPJJvPXWW7h796706SwiIiJ6fCmi2Jk3bx5u3ryJDRs2oKqqChMmTMDRo0c7XLRMREREjx+bv0C5P/BLBYmIiGzPw75/2/w1O0RERERdYbFDREREisZih4iIiBSNxQ4REREpGosdIiIiUjQWO0RERKRoLHaIiIhI0VjsEBERkaKx2CEiIiJFU8TtIvrK/CXSdXV1Vo6EiIiIHpb5fbu7m0Gw2AFQX18PABgxYoSVIyEiIqKeqq+vh6urq8X1vDcWAJPJhOvXr8PZ2Rkqlarf+q2rq8OIESNQUVGh2HtuKT1HpecHKD9HpecHKD9HpecHKD/HgcpPCIH6+np4e3vDzs7ylTk8sgPAzs4Ow4cPH7D+XVxcFPnL25bSc1R6foDyc1R6foDyc1R6foDycxyI/Lo6omPGC5SJiIhI0VjsEBERkaKx2BlAOp0OGzduhE6ns3YoA0bpOSo9P0D5OSo9P0D5OSo9P0D5OVo7P16gTERERIrGIztERESkaCx2iIiISNFY7BAREZGisdghIiIiRWOx08+2b98OlUqFtLQ0aVlzczNWrFiBwYMHQ6/X47nnnkN1dbX1guyjznKMjIyESqWSPZYvX269IHto06ZNHeIPCgqS1tv6GHaXn62PHwBcu3YN8+fPx+DBg+Hg4IDg4GAUFRVJ64UQ2LBhA7y8vODg4ICZM2fi8uXLVoy457rLceHChR3GMTY21ooR98zIkSM7xK9SqbBixQoAtj8Pu8vP1udha2sr1q9fDz8/Pzg4OCAgIABbtmyR3bfKWvOQ36DcjwoLC/HOO+8gJCREtjw9PR1///vfcfDgQbi6umLlypVISEjAiRMnrBRp71nKEQCWLl2K1157TXru6Oj4KEPrs3HjxiE3N1d6bm//f9NDCWPYVX6AbY/fnTt3MHnyZMyYMQNffPEFhgwZgsuXL8Pd3V1q89vf/hY7duxAdnY2/Pz8sH79esyePRsXLlzAoEGDrBj9w3mYHAEgNjYWWVlZ0nNb+ihzYWEhWltbpefnz5/HrFmzMGfOHAC2Pw+7yw+w7Xn4+uuvY+fOncjOzsa4ceNQVFSERYsWwdXVFS+99BIAK85DQf2ivr5eBAYGimPHjonp06eL1NRUIYQQtbW1QqPRiIMHD0ptL168KACIgoICK0XbO5ZyFEJ0eG5rNm7cKH74wx92uk4JY9hVfkLY/vhlZGSIKVOmWFxvMpmEp6eneOONN6RltbW1QqfTiQ8//PBRhNhn3eUohBDJycnimWeeeTQBPQKpqakiICBAmEwmRczD9trmJ4Ttz8P4+HixePFi2bKEhASRlJQkhLDuPORprH6yYsUKxMfHY+bMmbLlp06dwr1792TLg4KC4OPjg4KCgkcdZp9YytEsJycHHh4eGD9+PNauXYvGxsZHHGHfXL58Gd7e3vD390dSUhKuXr0KQDljaCk/M1sevyNHjiAsLAxz5szB0KFDMXHiRLz77rvS+vLyclRVVcnG0NXVFeHh4TYzht3laJafn4+hQ4di9OjRePHFF3H79m0rRNt3RqMRe/fuxeLFi6FSqRQzD83a52dmy/Pwxz/+MfLy8lBSUgIAOHPmDL7++mvExcUBsO485GmsfvDRRx/h22+/RWFhYYd1VVVV0Gq1cHNzky03GAyoqqp6RBH2XVc5AsAvfvEL+Pr6wtvbG2fPnkVGRgaKi4tx6NChRxxp74SHh2PPnj0YPXo0KisrsXnzZkydOhXnz59XxBh2lZ+zs7PNj9+VK1ewc+dOvPzyy3j11VdRWFiIl156CVqtFsnJydI4GQwG2Xa2NIbd5Qg8OIWVkJAAPz8/lJWV4dVXX0VcXBwKCgqgVqutnEHPfPrpp6itrcXChQsBKGdfatY+P8D296Nr1qxBXV0dgoKCoFar0draiszMTCQlJQGAVechi50+qqioQGpqKo4dO2YT5/1742FyfOGFF6Sfg4OD4eXlhejoaJSVlSEgIOBRhdpr5r88ACAkJATh4eHw9fXFgQMH4ODgYMXI+kdX+aWkpNj8+JlMJoSFhWHr1q0AgIkTJ+L8+fPYtWuXVAjYuofJMTExUWofHByMkJAQBAQEID8/H9HR0VaJu7f++te/Ii4uDt7e3tYOZUB0lp+tz8MDBw4gJycH+/btw7hx43D69GmkpaXB29vb6vOQp7H66NSpU7hx4wZCQ0Nhb28Pe3t7fPXVV9ixYwfs7e1hMBhgNBpRW1sr2666uhqenp7WCbqHusux7QV3ZuHh4QCA0tLSRx1uv3Bzc8MTTzyB0tJSeHp62vwYttc2v87Y2vh5eXlh7NixsmVjxoyRTtWZx6n9J3dsaQy7y7Ez/v7+8PDwsJlxNPvvf/+L3NxcLFmyRFqmpHnYWX6dsbV5uGrVKqxZswaJiYkIDg7GggULkJ6ejm3btgGw7jxksdNH0dHROHfuHE6fPi09wsLCkJSUJP2s0WiQl5cnbVNcXIyrV68iIiLCipE/vO5y7Ozw+OnTpwE82EHbooaGBpSVlcHLywuTJk2y+TFsr21+nbG18Zs8eTKKi4tly0pKSuDr6wsA8PPzg6enp2wM6+rqcPLkSZsZw+5y7Mx3332H27dv28w4mmVlZWHo0KGIj4+XlilpHnaWX2dsbR42NjbCzk5eVqjVaphMJgBWnocDevnzY6r9FfXLly8XPj4+4l//+pcoKioSERERIiIiwnoB9oO2OZaWlorXXntNFBUVifLycnH48GHh7+8vpk2bZt0ge+BXv/qVyM/PF+Xl5eLEiRNi5syZwsPDQ9y4cUMIYftj2FV+Shi/f//738Le3l5kZmaKy5cvi5ycHOHo6Cj27t0rtdm+fbtwc3MThw8fFmfPnhXPPPOM8PPzE01NTVaM/OF1l2N9fb145ZVXREFBgSgvLxe5ubkiNDRUBAYGiubmZitH//BaW1uFj4+PyMjI6LDO1uehEJbzU8I8TE5OFsOGDROff/65KC8vF4cOHRIeHh5i9erVUhtrzUMWOwOgfbHT1NQkfvnLXwp3d3fh6Ogonn32WVFZWWm9APtB2xyvXr0qpk2bJn7wgx8InU4nRo0aJVatWiW+//576wbZA/PmzRNeXl5Cq9WKYcOGiXnz5onS0lJpva2PYVf5KWH8hBDis88+E+PHjxc6nU4EBQWJv/zlL7L1JpNJrF+/XhgMBqHT6UR0dLQoLi62UrS901WOjY2NIiYmRgwZMkRoNBrh6+srli5dKqqqqqwYcc99+eWXAkCnY2Pr81AIy/kpYR7W1dWJ1NRU4ePjIwYNGiT8/f3FunXrREtLi9TGWvNQJUSbrzYkIiIiUhhes0NERESKxmKHiIiIFI3FDhERESkaix0iIiJSNBY7REREpGgsdoiIiEjRWOwQERGRorHYISIiIkVjsUNEBCAyMhIqlQoqlUq6J1F+fj5UKlWHm0/2t02bNkmv/dZbbw3oaxE9jljsEFGPLVy4UHpzbvuIjY21dmh9snTpUlRWVmL8+PF97qu6uhoajQYfffRRp+tTUlIQGhoKAHjllVdQWVmJ4cOH9/l1iagjFjtE1CuxsbGorKyUPT788MMBfU2j0Tig/Ts6OsLT0xP29vZ97stgMCA+Ph7vvfdeh3V3797FgQMHkJKSAgDQ6/Xw9PSEWq3u8+sSUUcsdoioV3Q6HTw9PWUPd3d3ab1KpcLu3bvx7LPPwtHREYGBgThy5Iisj/PnzyMuLg56vR4GgwELFizArVu3pPWRkZFYuXIl0tLS4OHhgdmzZwMAjhw5gsDAQAwaNAgzZsxAdna2dLrp7t27cHFxwccffyx7rU8//RROTk6or6/vdc6NjY2Ii4vD5MmTpVNbu3fvxpgxYzBo0CAEBQXh7bffltqnpKQgLy8PV69elfVz8OBB3L9/H0lJSb2OhYgeHosdIhowmzdvxty5c3H27Fk89dRTSEpKQk1NDQCgtrYWUVFRmDhxIoqKinD06FFUV1dj7ty5sj6ys7Oh1Wpx4sQJ7Nq1C+Xl5Xj++efxs5/9DGfOnMGyZcuwbt06qb2TkxMSExORlZUl6ycrKwvPP/88nJ2de5VLbW0tZs2aBZPJhGPHjsHNzQ05OTnYsGEDMjMzcfHiRWzduhXr169HdnY2AOCpp56CwWDAnj17OsSSkJAANze3XsVCRD004PdVJyLFSU5OFmq1Wjg5OckemZmZUhsA4te//rX0vKGhQQAQX3zxhRBCiC1btoiYmBhZvxUVFQKAKC4uFkIIMX36dDFx4kRZm4yMDDF+/HjZsnXr1gkA4s6dO0IIIU6ePCnUarW4fv26EEKI6upqYW9vL/Lz8y3mNH36dJGamipbdvz4cQFAXLx4UYSEhIjnnntOtLS0SOsDAgLEvn37ZNts2bJFRERESM/XrFkj/Pz8hMlkEkIIUVpaKlQqlcjNze0Qg6+vr3jzzTctxkhEvcMjO0TUKzNmzMDp06dlj+XLl8vahISESD87OTnBxcUFN27cAACcOXMGx48fh16vlx5BQUEAgLKyMmm7SZMmyfosLi7Gj370I9myJ598ssPzcePGSUdY9u7dC19fX0ybNq1Xuc6aNQujRo3C/v37odVqATy47qasrAwpKSmyHH7zm9/I4l+8eDHKy8tx/PhxAA+O6owcORJRUVG9ioWIeq7vV+ER0WPJyckJo0aN6rKNRqORPVepVDCZTACAhoYGPP3003j99dc7bOfl5SV7nd5YsmQJ/vznP2PNmjXIysrCokWLoFKpetVXfHw8PvnkE1y4cAHBwcFS/ADw7rvvIjw8XNa+7YXGgYGBmDp1KrKyshAZGYn3338fS5cu7XUsRNRzLHaIyCpCQ0PxySefYOTIkT369NPo0aPxj3/8Q7assLCwQ7v58+dj9erV2LFjBy5cuIDk5ORex7p9+3bo9XpER0cjPz8fY8eOhcFggLe3N65cudLthcYpKSl48cUX8dOf/hTXrl3DwoULex0LEfUcT2MRUa+0tLSgqqpK9mj7SarurFixAjU1Nfj5z3+OwsJClJWV4csvv8SiRYvQ2tpqcbtly5bh0qVLyMjIQElJCQ4cOCBdANz2aIm7uzsSEhKwatUqxMTE9Pk7bH73u98hKSkJUVFRuHTpEoAHF2Bv27YNO3bsQElJCc6dO4esrCz8/ve/l207Z84caDQaLFu2DDExMRgxYkSfYiGinmGxQ0S9cvToUXh5eckeU6ZMeejtvb29ceLECbS2tiImJgbBwcFIS0uDm5sb7Ows75r8/Pzw8ccf49ChQwgJCcHOnTulT2PpdDpZ25SUFBiNRixevLh3Sbbz5ptvYu7cuYiKikJJSQmWLFmC3bt3IysrC8HBwZg+fTr27NkDPz8/2XaOjo5ITEzEnTt3+i0WInp4KiGEsHYQRER9kZmZiV27dqGiokK2/IMPPkB6ejquX78uXVhsSWRkJCZMmGDV2zWMHDkSaWlpSEtLs1oMRErEIztEZHPefvttFBYW4sqVK/jggw/wxhtvyK7JaWxsRFlZGbZv345ly5Z1W+i07Vev1+PcuXMDFXqntm7dCr1e3+HLB4mof/DIDhHZnPT0dOzfvx81NTXw8fHBggULsHbtWulC502bNiEzMxPTpk3D4cOHodfru+3z2rVraGpqAgD4+Pg8dIHUH2pqaqQvWxwyZAhcXV0f2WsTPQ5Y7BAREZGi8TQWERERKRqLHSIiIlI0FjtERESkaCx2iIiISNFY7BAREZGisdghIiIiRWOxQ0RERIrGYoeIiIgU7X8BDj4+hM4l8scAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuwElEQVR4nOzdeVxU9frA8c+ZgWFnkH0TcFfccBe1cis1LUtvq+3+slsuldpVb7Zoi91uWta1um1aN223Mi3XFMs9FcUdVAQVBBTZYWDm/P4YZ2QElVFgWJ7368XrNnPOnPOMV4dnvt/n+3wVVVVVhBBCCCEaKI2jAxBCCCGEqEmS7AghhBCiQZNkRwghhBANmiQ7QgghhGjQJNkRQgghRIMmyY4QQgghGjRJdoQQQgjRoDk5OoC6wGQycfr0aby8vFAUxdHhCCGEEKIKVFUlLy+P0NBQNJrLj99IsgOcPn2apk2bOjoMIYQQQlyD1NRUwsPDL3tckh3Ay8sLMP9heXt7OzgaIYQQQlRFbm4uTZs2tf4evxxJdsA6deXt7S3JjhBCCFHPXK0ERQqUhRBCCNGgSbIjhBBCiAZNkh0hhBBCNGhSsyOEEKLOMRqNlJaWOjoM4WDOzs5otdrrvo4kO0IIIeoMVVVJT0/n/Pnzjg5F1BE+Pj4EBwdfVx88SXaEEELUGZZEJzAwEHd3d2n02oipqkphYSEZGRkAhISEXPO1JNkRQghRJxiNRmui4+fn5+hwRB3g5uYGQEZGBoGBgdc8pSUFykIIIeoES42Ou7u7gyMRdYnl78P11HBJsiOEEKJOkakrUV51/H2QZEcIIYQQDZokO0IIIYRo0CTZEUIIIRqYl19+maCgIBRF4aeffuKRRx7hjjvucHRYDiPJjhBCCHGdHnnkERRFsf74+fkxdOhQ9u7dW233ePnll4mJibnqeQcPHmTWrFn897//JS0tjWHDhjF//nwWLVpkPad///4888wz1RZbXSfJjhBCCFENhg4dSlpaGmlpaaxbtw4nJydGjBhR63EcPXoUgJEjRxIcHIyLiwt6vR4fH59aj6WukGRHCNHoFBrKiJq+gqjpKyg0lDk6HHEFqqpSUFDgkB9VVe2K1cXFheDgYIKDg4mJiWH69OmkpqaSmZlpPSc1NZW7774bHx8ffH19GTlyJMnJydbjGzZsoGfPnnh4eODj40Pfvn05ceIEixYtYtasWezZs8c6elR+pMbi5Zdf5rbbbgNAo9FYVzKVn8Z65JFHiIuLY/78+dZrlY+hIZKmgkIIIeqswsJCPD09HXLv/Px8PDw8rvm1X375JS1btrQ2SCwtLWXIkCHExsbyxx9/4OTkxKuvvmqd7tJoNNxxxx08/vjjfPXVVxgMBrZv346iKNxzzz3s27ePlStXsnbtWgD0en2F+06dOpWoqCgeffRR0tLSKo1t/vz5HDlyhA4dOjB79mwAAgICrul91heS7AghhBDVYPny5dbErKCggJCQEJYvX45GY55E+eabbzCZTHzyySfWEZeFCxfi4+PDhg0b6N69Ozk5OYwYMYIWLVoA0K5dO+v1PT09cXJyIjg4+LIxeHp6WqerLneeXq9Hp9Ph7u5+xWs1JJLsCCGEqLPc3d3Jz8932L3tMWDAAD744AMAsrOzef/99xk2bBjbt28nMjKSPXv2kJSUhJeXl83riouLOXr0KLfccguPPPIIQ4YM4eabb2bw4MHcfffd17UnlDCTZEcIIUSdpSjKNU8l1TYPDw9atmxpffzJJ5+g1+v5+OOPefXVV8nPz6dbt24sXry4wmst00gLFy5k0qRJrFy5km+++YaZM2eyZs0aevfuXWvvoyGSZEcIIYSoAYqioNFoKCoqAqBr16588803BAYG4u3tfdnXdenShS5dujBjxgxiY2NZsmQJvXv3RqfTYTQaqyW26rxWfSCrsYQQQohqUFJSQnp6Ounp6Rw8eJCJEyeSn59vXR01ZswY/P39GTlyJH/88QfHjx9nw4YNTJo0iZMnT3L8+HFmzJjBli1bOHHiBKtXryYxMdFatxMVFcXx48eJj48nKyuLkpKSa441KiqKbdu2kZycTFZWFiaTqVr+DOoqSXaEEEKIarBy5UpCQkIICQmhV69e7Nixg++++47+/fsD5hqgjRs3EhERwahRo2jXrh1jx46luLgYb29v3N3dOXToEKNHj6Z169aMGzeO8ePH88QTTwAwevRohg4dyoABAwgICOCrr7665linTp2KVqslOjqagIAAUlJSquOPoM5SVHsbCTRAubm56PV6cnJyrji0KIRoGAoNZUS/uAqAA7OH4K6TGf26oLi4mOPHj9OsWTNcXV0dHY6oI67096Kqv79lZEcIIcqRhoNCNDyS7AghGrX0nGJHhyCEqGGS7AghGp0fdp60/vfgeXF8s6Nh1ysI0dhJsiOEaFTScop4adl+62OTCv9cuo+0nCIHRiWEqEmS7AghGpXjWQWYLlmWYVRVkrMKHROQEKLGSbIjhGhUmvl7oFFsn9MqClH+9m0NIISoPyTZEUI0KiF6N2bd3t76WKPA66M6EKJ3c2BUQoiaJMmOEKLRGd0t3PrfayffxD09Ii57rixFF6L+k2RHCNHg2JOgBOuleZ2oH/r3788zzzzj6DDqJUl2hBBCiOv0yCOPoCgKiqKg0+lo2bIls2fPpqzMsaOBkyZNolu3bri4uBATE+PQWBxJkh0hhLgMaTgo7DF06FDS0tJITExkypQpvPzyy/z73/92dFg89thj3HPPPY4Ow6Ek2RFCiHIubThY/rEQV+Li4kJwcDCRkZE8+eSTDB48mGXLlgHmHdGnTp1KWFgYHh4e9OrViw0bNlhfe/bsWe677z7CwsJwd3enY8eOV93oc8WKFej1ehYvXnzZc959913Gjx9P8+bNq+U91ley+50QQlxQWcPB8o+F4xgMhsse02g0ODk5VelcRVFwdna+6rk6ne4aorTl5ubG2bNnAZgwYQIHDhzg66+/JjQ0lB9//JGhQ4eSkJBAq1atKC4uplu3bkybNg1vb29WrFjBgw8+SIsWLejZs2eFay9ZsoS///3vLFmyhBEjRlx3rA2dJDtCCHFBZQ0HL30sHGPOnDmXPdaqVSvuv/9+6+O33nqL0tLSSs+NjIzkkUcesT6eP38+hYUVG0q+9NJL1xyrqqqsW7eOVatWMXHiRFJSUli4cCEpKSmEhoYCMHXqVFauXMnChQt5/fXXCQsLY+rUqdZrTJw4kVWrVvHtt99WSHYWLFjA888/zy+//MJNN910zXE2JpLsCCEavEJDGdEvrkJVTXw4yI29e+LJ25OCa0RHm/MsDQfLJziXPhbicpYvX46npyelpaWYTCbuv/9+Xn75ZTZs2IDRaKR169Y255eUlODn5weA0Wjk9ddf59tvv+XUqVMYDAZKSkpwd7dtdvn999+TkZHBpk2b6NGjR629t/rO4cnOqVOnmDZtGr/99huFhYW0bNmShQsX0r17d8CcIb/00kt8/PHHnD9/nr59+/LBBx/QqlUr6zXOnTvHxIkT+eWXX9BoNIwePZr58+fj6enpqLclhKhjSk4f5uzK97j1zeRyzyqMzd/ARx9+iJeXl7Xh4As/m6euNAo2j4XjzJgx47LHNBrb8tPyIySXUhTb9tlPP/309QVWzoABA/jggw/Q6XSEhoZap9by8/PRarXs3LkTrVZr8xrL76l///vfzJ8/n3feeYeOHTvi4eHBM888U2GarUuXLuzatYvPPvuM7t27V3g/onIOLVDOzs6mb9++ODs789tvv3HgwAHmzp1LkyZNrOe8+eabvPvuu3z44Yds27YNDw8PhgwZQnHxxVUSY8aMYf/+/axZs4bly5ezceNGxo0b54i3JISog5YvW0b6kumUZibj7e3NyDvuxKVpB0Dl6yVL6N27NxkZGUDFhoPlH8vqLMfR6XSX/Slfr3O1c8vX61zp3Gvh4eFBy5YtiYiIsImpS5cuGI1GMjIyaNmypc1PcHAwAJs2bWLkyJE88MADdO7cmebNm3PkyJEK92jRogXr16/n559/ZuLEidcUZ2Pk0JGdf/3rXzRt2pSFCxdan2vWrJn1v1VV5Z133mHmzJmMHDkSgC+++IKgoCB++ukn7r33Xg4ePMjKlSvZsWOHdTTovffe49Zbb+Wtt96yzo+WV1JSQklJifVxbm5uTb1FIYSDbdu6hYceuB+Mpbi17Mn+P34hPDgQgC1btvC3v/2NAwcOMGLECPPqGKeLv+iC9a4VVmfNGdXxih2XhbhU69atGTNmDA899BBz586lS5cuZGZmsm7dOjp16sTw4cNp1aoV33//PZs3b6ZJkybMmzePM2fOEB0dXen11q9fT//+/XFycuKdd9657L2TkpLIz88nPT2doqIi4uPjAYiOjq6WIuz6wqEjO8uWLaN79+7cddddBAYG0qVLFz7++GPr8ePHj5Oens7gwYOtz+n1enr16sWWLVsA84eVj4+PNdEBGDx4MBqNhm3btlV63zlz5qDX660/TZs2raF3KISoLZV1TTYainjg/56kpKQEt5Y9CbjzeXx9fa2viY2N5ffff8fPz48dO3Ywffp0m2um5xRXWJ31z6X7SMspqp03JRqMhQsX8tBDDzFlyhTatGnDHXfcwY4dO4iIMCfOM2fOpGvXrgwZMoT+/fsTHBzMHXfccdnrtWnTht9//52vvvqKKVOmXPa8//u//6NLly7897//5ciRI3Tp0oUuXbpw+vTp6n6LdZpDR3aOHTvGBx98wOTJk/nnP//Jjh07mDRpEjqdjocffpj09HQAgoKCbF4XFBRkPZaenk5gYKDNcScnJ3x9fa3nXGrGjBlMnjzZ+jg3N1cSHiEakJ92mz/ItTo3NHfMofnubyntOBJFo61wbps2bVi8eDFDhw41jwrfNtJ67MTZiquzjKpKclahbBwqbCxatOiKx52dnZk1axazZs2q9Livry8//fTTFa9Rvi8PQLt27Thz5oxdr2msHDqyYzKZ6Nq1K6+//jpdunRh3LhxPP7443z44Yc1el8XFxe8vb1tfoQQDcfrvx60/rei0aB2uxeN7vLJyZAhQ6x1fs9NeRbVZAQg0s+8Oqs8raIQ5e9+6SWEEHWYQ5OdkJCQCvOR7dq1IyUlBcBauHVp5nrmzBnrseDgYGthoUVZWRnnzp2zniOEaFwq9Mqpwmtef/11fHx82JeQQMG+dYC5ZmfW7e2t52gUeH1UBxnVEaKecWiy07dvXw4fPmzz3JEjR4iMjATMxcrBwcGsW7fOejw3N5dt27YRGxsLmOfcz58/z86dO63n/P7775hMJnr16lUL70IIUdco2GY7l47OVMbPz4/nn38egJwt31pHdy5dnSXFyULUPw5Ndp599lm2bt3K66+/TlJSEkuWLOGjjz5i/PjxgLkfwjPPPMOrr77KsmXLSEhI4KGHHiI0NNRauNWuXTuGDh3K448/zvbt29m0aRMTJkzg3nvvrXQllhCiYVNVFc9DK6zJiqVXjsWVlo8/+eST+Pv7U3Y+nYKDGyscD9a7Vn/AQoga59Bkp0ePHvz444989dVXdOjQgVdeeYV33nmHMWPGWM/5xz/+wcSJExk3bhw9evQgPz+flStX4up68UNn8eLFtG3blkGDBnHrrbfSr18/PvroI0e8JSGEg5WcOsS+nz/k1EdPYCzKZe1k23b6g+fF8c2OlEpf6+HhwfiJkwDI2/ETqiqtk4VoCBzeQXnEiBFX3MRMURRmz57N7NmzL3uOr68vS5YsqYnwhBB1lGULCIADs4dYn8/fsxIA14gOaN3Miw8qWz5+Y+uASmtvxj4+jlmzX8Fw5ig7tm+jZ6/eNfk2hBC1wKEjO0IIUZ2MxfkUHvoDAK+YYcCVl49XpmlIEA8/YN5U8tOP/ltzwQohao0kO0KIBqNg/3rUMgPtO3REF2LedLGy5eMaBTzUypMdgKeeegowb7qYk5NTY/EKIWqHJDtCiAZBVVUKj2zFJaIjdz40zrpB4sXl4+bhHQWVWKdkSnMyLnutHj160K5dO4qLi/nxh+9rI3whRA2SZEcI0SC89f1Ggu55heD75rD4XDObY0Na6xmiO8xQ3WHuct3LwChX/P39rcfPnTtHZmam9bGiKDzyyCMALP7yf7USvxBX079/f5555hlHh1EvSbIjhKj30nOKWbi3CEVj/kgrX6NTWlrKD999Q6g2H29NMeMeHsPYsWOt/bwyMzP57LPP+N///kdeXp71dWPGjEFRFDZv2kRZXlatvh9R/zzyyCMoioKiKOh0Olq2bMns2bMpKytzWEx79uzhvvvuo2nTpri5udGuXTvmz5/vsHgcSZIdIUS9dzwzD5TKOweuW72KjDNnKFKd+LWkLaFhYTbHPTw8cHd3x93dHYPBYH0+LCyMPn36AFCUuLXmghcNxtChQ0lLSyMxMZEpU6bw8ssv8+9//9th8ezcuZPAwEC+/PJL9u/fz/PPP8+MGTP4z3/+47CYHEWSHSFEvZdxdD+qqeKmEIFKHgl79wCwwdCcfNWlwjnu7u48+OCD/N///R9+fn42x0aNGgVAjPEIyW8Mx13n8G4dog5zcXEhODiYyMhInnzySQYPHsyyZcsAKCkpYerUqYSFheHh4UGvXr1sNuk8e/Ys9913H2FhYbi7u9OxY0e++uqrK95vxYoV6PV6Fi9eXOnxxx57jPnz53PTTTfRvHlzHnjgAR599FGWLl1abe+5vpBkRwhR78X9upRzq96zJjwaBebc2YEHQ811OF27dSfddPkNf7UubrScuYqo6SsoNFycdrjzzjvN14+LIytLprIcyWAw2P1jKpcAm0wmDAYDpaWlVbpudXBzc7Nea8KECWzZsoWvv/6avXv3ctdddzF06FASExMBKC4uplu3bqxYsYJ9+/Yxbtw4HnzwQbZv317ptZcsWcJ9993H4sWLbRrxXk1OTg6+vr7X/+bqGfmaIoSo11STkZ9WbyD/2EHc2/XHLaozayffRHbKYY6cO4eHhwf9buoPf2646rW0GNn0x0a0CgwcOJBmzZoRExNDfHw8v/zyC48++miNvx9RuTlz5tj9mr/97W+0b2/eKuTgwYN8//33REZGWovPAebPn09hYcU2BC+99NI1x6qqKuvWrWPVqlVMnDiRlJQUFi5cSEpKinUbo6lTp7Jy5UoWLlzI66+/TlhYGFOnTrVeY+LEiaxatYpvv/2Wnj172lx/wYIFPP/88/zyyy/cdJNth/Ar2bx5M9988w0rVqy45vdWX0myI4Sol37YeRIARaPFZfS/CNj4Ka5NowHw93Dip7g4AG644QZcXCpOX1UmSJPP5j934+TkRK9evfDw8GDUqFHEx8ezdOlSSXbEFS1fvhxPT09KS0sxmUzcf//9vPzyy2zYsAGj0Ujr1q1tzi8pKbFOnRqNRl5//XW+/fZbTp06hcFgoKSkBHd3d5vXfP/992RkZLBp0yZ69OhR5dj27dvHyJEjeemll7jllluu/83WM5LsCCHqnbScIpstIBSNBvebxoJinpk/uH8feXl5eHl50a1bNwwVy3kqddrkTXBwCOnpaWzZsoXBgwczatQoXnzxRVavXk1ubi7e3pefDhM1Z8aMGXa/xsnp4q+4du3aMWPGDGv/JYunn376umOzGDBgAB988AE6nY7Q0FDr/fPz89FqtezcuROtVmvzGk9PTwD+/e9/M3/+fN555x06duyIh4cHzzzzTIUptS5durBr1y4+++wzunfvXuH9VObAgQMMGjSIcePGMXPmzGp6t/WL1OwIIeqd41kVt4CwJDoARw4fAqBXr142v/CuTqF3376AeSVLaWkp0dHRtGrVCoPBwLp16yg0lBE1fUWF+h5Rs3Q6nd0/Gs3FvxMajQadToezs3OVrnstPDw8aNmyJRERETZ/77p06YLRaCQjI4OWLVva/AQHBwOwadMmRo4cyQMPPEDnzp1p3rw5R44cqXCPFi1asH79en7++WcmTpx41Zj279/PgAEDePjhh3nttdeu6X01BJLsCCHqnWb+lW8BYXHn3+7mrrvuolu3bnZfu0XLVvj4+FBcXExCQgKKojB06FAAVq9efT1hi0aqdevWjBkzhoceeoilS5dy/Phxtm/fzpw5c6z1M61atWLNmjVs3ryZgwcP8sQTT3DmzJnLXm/9+vX88MMPV2wyuG/fPgYMGMAtt9zC5MmTSU9PJz093aaBZmMhyY4Qot4J0bsx6/b2qOqF+SnVdGFLCDONRkN0dDSurq4AuOucSH5jeJWWj2s0GmstxI4dOwCsNQ6S7IhrtXDhQh566CGmTJlCmzZtuOOOO9ixYwcREREAzJw5k65duzJkyBD69+9PcHAwd9xxx2Wv16ZNG37//Xe++uorpkyZUuk533//PZmZmXz55ZeEhIRYf+yp9WkoFFVVLx0MbnRyc3PR6/Xk5OTIfLwQ9UShoYyAzgMxFpxn2oT/Y9ozT9Hxxd8wobB/9lC7euIUGsqIfnEVAAdmD0ExljJ37lyMRiNPPPEEnp6e+Pr6UlpaSsKBQ4z4PMl6rvTeqT7FxcUcP36cZs2aWRNVIa7096Kqv79lZEcIUS/l5+dTeGQLJakJjB5+MwCttVnc5bqXPfG7r+vabm5utGnTBoD4+Hg8PT2t3ZTXrV1zfYELIWqdJDtCiHppw++/g6kMJ58QWrZqBUBT7Xk8lFJKr6MpXHpOMQAxMTEAJCQkYDKZrFNZ69auvb7AhRC1TpIdIUS9tHrVSgDcmpuLkN11Trz/4kTuueceunTuZNe1LD17AAbPi+ObHSm0aNECNzc3CgsLOXHihDXZiduwHtUoq7CEqE8k2RFC1DuqqrJ6tbnGxq15d+vzTk5OtG3bFi8vrypf69KePSYV/rl0H2fySqxTWQcOHKBLly74+fmRm5tLSVrFJcFCiLpLkh0hRL2TlJREakoKaJ1wiehwXdeqrGePUVVJziokOtrckfnQoUNoNBoGDx4MQHFy/HXdUwhRuyTZEULUO7///jsALmHt0Di7kpuby3/+8x/Wr1+PvQtMK+vZo1UUovzdadasGS4uLmi1WnJycujfvz8ApWdTgIv1PUKIuk2SHSFEvWNJdlwjzLU5Rw4d5OzZs5w4caJK7fPLs/TssdAo8PqoDoTo3XBycuLvf/87Tz/9ND4+Ptx44414droZ/9v+AVys7xFC1G2S7Agh6hWTycT69esBcI3sDEBSYiJg3v/oWozuFm7977WTb+KeHhHWxz4+PtYEyic0Ct8hE1EubENgqe9Jyym6pvsKIWqHJDtCiHpl//79ZGZm4uHhQcpnT3N41mBOnUwFzC33r1ewvvJmdiaTiaNn8qyJjoVRVYmd87vslSVEHSbJjhCiXrFMYd1www3odDqOHTuGyWTC19cXX1/fGrnn5s2beeuttzh34hAKtjVBl9b7CFFToqKieOeddxwdRrVatGgRPj4+NX4fSXaEEPWKJdkZOHAgYF6ZBdCyZcsau6eTkxNFRUXkZ57k/7p4oZqMgDnRKV/vIxqvRx55BEVRrD9+fn4MHTqUvXv3Ojo0AcimLkKIeqHQUEa7mb+SutLcwXjgwIGoqloryU50dDTBwcGEh4dTUFLKy0+1QOvhy/f/+5iB3cJ54ef9V7+IaPCGDh3KwoULAUhPT2fmzJmMGDGClJS6W8RuMBjQ6XSODqPGyciOEKLeMJw5imooxMfHh5iYGDIzM8nNzcXJyYmoqKgau6+npycRERFoNBq0Wi1OPsGUpCZwaOfmGrunqH9cXFwIDg4mODiYmJgYpk+fTmpqKpmZmQBMmzaN1q1b4+7uTvPmzXnhhRcoLS21ucYvv/xCjx49cHV1xd/fnzvvvPOy9/vkk0/w8fFh3bp1AOTl5TFmzBg8PDwICQnh7bffpn///jzzzDPW10RFRfHKK6/w0EMP4e3tzbhx4wD44YcfaN++PS4uLkRFRTF37lybeymKwk8//WTznI+PD4sWLQIgOTkZRVFYunQpAwYMwN3dnc6dO7Nlyxab1yxatIiIiAjc3d258847OXv2bJX/fK+HJDtCiHqjJHUfAH369kOr1VpHdaKionB2dq61OFzDzVNXm/78s9bu2VipqorBYHDIj709m8rLz8/nyy+/pGXLlvj5+QHg5eXFokWLOHDgAPPnz+fjjz/m7bfftr5mxYoV3Hnnndx6663s3r2bdevW0bNnz0qv/+abbzJ9+nRWr17NoEGDAJg8eTKbNm1i2bJlrFmzhj/++INdu3ZVeO1bb71F586d2b17Ny+88AI7d+7k7rvv5t577yUhIYGXX36ZF154wZrI2OP5559n6tSpxMfH07p1a+677z7KysyF+9u2bWPs2LFMmDCB+Ph4BgwYwKuvvmr3Pa6FTGMJIeqN4pMHAHOyA7VTr2ORn5/Phg0byDp7Dpdwc2fl7du31fh9G7vS0lLmzJnjkHvPmDHDrime5cuX4+npCUBBQQEhISEsX74czYUVfDNnzrSeGxUVxdSpU/n666/5xz/MfZtee+017r33XmbNmmU9r3PnzhXuM23aNP73v/8RFxdH+/bmxDsvL4/PP/+cJUuWWJOfhQsXEhoaWuH1AwcOZMqUKdbHY8aMYdCgQbzwwgsAtG7dmgMHDvDvf/+bRx55pMrvH2Dq1KkMHz4cgFmzZtG+fXuSkpJo27Yt8+fPZ+jQodb327p1azZv3szKlSvtuse1kJEdIUS9YDKZKLmQ7PTt15eysjJrLUSLFi1q/P7Ozs7s3r2bE8nH8QuJAEXD6VOnOJmaWuP3FvXDgAEDiI+PJz4+nu3btzNkyBCGDRvGiRMnAPjmm2/o27cvwcHBeHp6MnPmTJt6nvj4eGuicjlz587l448/5s8//7QmOgDHjh2jtLTUZiRIr9db93crr3v37jaPDx48SN++fW2e69u3L4mJiRiNxqr/AQCdOl3chDckJASAjIwM63169eplc35sbKxd179WMrIjhKgXDh8+hKkoF8XJhZguXTl58iRGoxFPT0/rNEFNcnFxoWnTppw4cYJwl2KSApthOHP0wuhO1TceFfZxdnZmxowZDru3PTw8PGxGGT/55BP0ej0ff/wxw4cPZ8yYMcyaNYshQ4ag1+v5+uuvbWpj3NzcrnqPG264gRUrVvDtt98yffp0u+IrH6e9FEWpMK13ab0R2P6ZWZpxmkwmu+9X3STZEULUC5sv1MfoQtug0+ms34ijoqLs3iLiUu46J5LfGH7V85o1a8aJEycI1uSjC21rTna2bQNX8wah6TnFNA/wvK5YhC1FUertaiFFUdBoNBQVFbF582YiIyN5/vnnrcctIz4WnTp1Yt26dTz66KOXvWbPnj2ZMGECQ4cOxcnJialTpwLQvHlznJ2d2bFjBxER5g7gOTk5HDlyhBtvvPGKcbZr145NmzbZPLdp0yZat26NVqsFICAggLS0NOvxxMRECgsLq/CnYHufbdtsp363bt1q1zWulSQ7Qoh6YdMmc7JjKQ6+4YYbaN269XUnOvaIjIwEIFibh0toG/J3ryAupRham48PnhfHnFEdbbabEI1HSUkJ6enpAGRnZ/Of//yH/Px8brvtNnJzc0lJSeHrr7+mR48erFixgh9//NHm9S+99BKDBg2iRYsW3HvvvZSVlfHrr78ybdo0m/P69OnDr7/+yrBhw3BycuKZZ57By8uLhx9+mOeeew5fX18CAwN56aWX0Gg0V/03MmXKFHr06MErr7zCPffcw5YtW/jPf/7D+++/bz1n4MCB/Oc//yE2Nhaj0ci0adPsHvmaNGkSffv25a233mLkyJGsWrWqVup1QGp2hBD1xOZNm9B6+eHWqhfpOcUoikJwcDBBQUG1FkNYWBharRZ3pZSAiJZovfw43/JW63HZK6txW7lyJSEhIYSEhNCrVy927NjBd999R//+/bn99tt59tlnmTBhAjExMWzevNlaEGzRv39/vvvuO5YtW0ZMTAwDBw5k+/btld6rX79+rFixgpkzZ/Lee+8BMG/ePGJjYxkxYgSDBw+mb9++tGvXDlfXyrdAsejatSvffvstX3/9NR06dODFF19k9uzZNsXJc+fOpWnTptxwww3cf//9TJ06FXd3d7v+fHr37s3HH3/M/Pnz6dy5M6tXr7Yp2q5Jino9a+saiNzcXPR6PTk5OXh7ezs6HCHEJVJSUmh/2/9ZN+HUKDhsBGXhwoWkpKRw2223MezhSbgNr1hP8tXjvYltUfN1RA1NcXExx48fp1mzZlf9BS2urqCggLCwMObOncvYsWMdHc41u9Lfi6r+/paRHSFEnbf89z8r7DY+/Ye9bN+XWOuxWKayUlJSiGkRhnpJ8aVWUYjyt+8brxDVYffu3Xz11VccPXqUXbt2MWbMGABGjhzp4MgcT5IdIUSdF7fzYIXdxlUUDqZm1noslmTnxIkT3NC9I+dWvWdNeDQKvD6qAyH6q6+qEaImWBoGDh48mIKCAv744w/8/f0dHZbDSYGyEKLOO7RjI+qNPW0SHg3QK7p5rcfStGlTFEXh/PnzdO/enfwXXsCQlUrIg2+xdvJNshpLOEyXLl3YuXOno8Ook2RkRwhRp+Xn57Nvx5/mEZQLJYYaBeaM7kjbyOBaj0en01m70lr6+xhOH8JYmEOwXupMhKiLHJrsvPzyyyiKYvPTtm1b6/Hi4mLGjx+Pn58fnp6ejB49mjNnzthcIyUlheHDh+Pu7k5gYCDPPfecdR8OIUT9t2PHDkwmE/pzB61LaNdOvsmhy7stU1kZGRm0bNkKAEN6ksPiaWhk3Yworzr+Pjh8ZKd9+/akpaVZf/4st7Hes88+yy+//MJ3331HXFwcp0+fZtSoUdbjRqOR4cOHYzAY2Lx5M59//jmLFi3ixRdfdMRbEULUAMuuyb169QaghfYs+RkplJSUOCwmS9O21NRUunTrBph3ZBfXx9K3xd5mdaJhs/x9uJ7Nfh1es+Pk5ERwcMWh6JycHD799FOWLFnCwIEDAfOSz3bt2rF161Z69+7N6tWrOXDgAGvXriUoKIiYmBheeeUVpk2bxssvv1xvu24KIS6yJDs9e/Vi51mV7s6p/Pj9cR599FFr0lHbIiIiuO2222jatCm5+YV8983XMrJTDbRaLT4+Pta9lNzd3Wu1aaSoW1RVpbCwkIyMDHx8fKzdnK+Fw5OdxMREQkNDcXV1JTY2ljlz5hAREcHOnTspLS1l8ODB1nPbtm1LREQEW7ZsoXfv3mzZsoWOHTvaNBUbMmQITz75JPv376dLly6V3rOkpMTmW2Fubm7NvUEhxDVTVdXaTr5X797879cM3JUyNBpNpbs51xY3Nze6du0KQJcL/1uSXvvL4Bsiy5dfS8IjhI+PT6WDIvZwaLLTq1cvFi1aRJs2bUhLS2PWrFnccMMN7Nu3j/T0dHQ6HT4+PjavCQoKsrbjTk9Pr9A91fLYck5l5syZw6xZs6r3zQghqt3Ro0fJyspCp9PROaYLgSt/ACAoOBgnJ4d/VwOgc0wMAMbcTLKysogIrf2i6YZEURRCQkIIDAysdKNJ0bg4Oztf14iOhUM/LYYNG2b9706dOtGrVy8iIyP59ttvq7T767WaMWMGkydPtj7Ozc2ladOmNXY/IcS1sUxhdevWDRcXFwI1+QCEhoU7MizAvErswIEDFBQV49QklLLs0+zetYuI0Fuv/mJxVVqttlp+yQkBdaBAuTwfHx9at25NUlISwcHBGAwGzp8/b3POmTNnrMNZwcHBFVZnWR5facjLxcUFb29vmx8hRN1jSXZiY2MBrMlOWB1IdvLy8vjtt9/YtmUzumDziqz43bscHJUQojLXNLKTmJjI+vXrycjIwHRJq/TrWQmVn5/P0aNHefDBB+nWrRvOzs6sW7eO0aNHA3D48GFSUlKsH3yxsbG89tprZGRkEBgYCMCaNWvw9vYmOjr6muMQQtQN5ZMdg8FAE8W8wWZoWJgjwwIgMDCQ1q1bExoayiwnJ557Lo698bsdHZYQohJ2Jzsff/wxTz75JP7+/gQHB9tUyiuKYleyM3XqVG677TYiIyM5ffo0L730Elqtlvvuuw+9Xs/YsWOZPHkyvr6+eHt7M3HiRGJjY+nd27wE9ZZbbiE6OpoHH3yQN998k/T0dGbOnMn48eNxcXGx960JIeqQ/Px89u7dC5h3S047fRqNAvkmHV51YDTW8lkFF/uA/PXXX44MSQhxGXYnO6+++iqvvfYa06ZNu+6bnzx5kvvuu4+zZ88SEBBAv3792Lp1KwEBAQC8/fbbaDQaRo8eTUlJCUOGDOH999+3vl6r1bJ8+XKefPJJYmNj8fDw4OGHH2b27NnXHZsQwrEszQTDw8MJDw/njz/+AKBXx1a46+pGcbKFZeVnSkoKWVlZsheREHWM3Z8Y2dnZ3HXXXdVy86+//vqKx11dXVmwYAELFiy47DmRkZH8+uuv1RKPEKLu2LhpMwDnPKIoNJRx+vRpAIcuOa9MXl4eWVlZtGrVisTERHbu3MmQIUMcHZYQohy7C5TvuusuVq9eXROxCCEasUJDGVHTVxA1fQWFhjK2X+iv4xJm3kLm1KlTAITVgXodi4KCAubNm8eXX35Jjx49AGQjRiHqILtHdlq2bMkLL7zA1q1b6dixY4X2zZMmTaq24IQQjZOqqmzfdiHZCW1Lfn4eeXl51h4sdYWHhwdeXl7k5eXRuXNnlixZInU7QtRBdic7H330EZ6ensTFxREXF2dzTFEUSXaEENft2IVmgmid0AW1ID0tDQB/f/86tw1MaGgohw8ftk6vyciOEHWP3cnO8ePHayIOIYSw2mYZ1QlqieLkjIuLC23atMHX19fBkVVkSXYso9xSpCxE3VO3ljQIIQRY63V0F+p1mkZE0qZlC0eGdFmWabXMzEwpUhaijqpSsjN58mReeeUVPDw8bLZZqMy8efOqJTAhROO1rVy9Tl1nmb46e/YsPXr0IDExkd27d0uyI0QdUqVkZ/fu3dYN2XbvvnyH0PINBoUQ4lqYDMXs37cPMCc7ThjJzc3Fza9JnfyM8fDwwNvbm9zcXNq3bw9AfHy8Y4MSQtioUrKzfv36Sv9bCCGqmyE9EaPRSFh4OE7e/vhrcpn3nw/p1DKCBx54wNHhVSo0NJTc3FzrlNaePXscHJEQorzr2gg0NTWV1NTU6opFCCEoyz+H1suP5oPNiU26yZvvijtxsKSJgyO7PMtUlqVI+ciRIxQWFjoyJCFEOXYnO2VlZbzwwgvo9XqioqKIiopCr9czc+ZM61SXEELY64edJwHwjL6JsL8vJCWor/WYisJXSZCWU+So8K7IMqKTnZ1NYGAgJpOJfRem4oQQjmd3sjNx4kQ++ugj3nzzTXbv3s3u3bt58803+fTTT6XHjhDimqTlFPHSsv3Wx4pGA9jW55hUSM6qm6MllpGdc+fO0bVrV0CmsoSoS+xeer5kyRK+/vprhg0bZn2uU6dONG3alPvuu48PPvigWgMUQjR8x7MKMKlXPkerKET5u9dOQHZyd3dHr9eTk5ND586dWblypRQpC1GH2J3suLi4EBUVVeH5Zs2a1bnOpkKI+qGZvwcaBZuERwFUVEBBA7w+qgMhejcHRXh1oaGhmEwmgoODARnZEaIusXsaa8KECbzyyiuUlJRYnyspKeG1115jwoQJ1RqcEKJhs2z+GTvnd/55aztU1WQ+oJqYPbI9HbTpDNUdZmaXUu7pEeHYYK9i1KhR/H3CJGZtNwKwd+9eTCaTg6MSQkAVR3ZGjRpl83jt2rWEh4fTuXNnwPwNxmAwMGjQoOqPUAjRKNzRJZRJY8dgKi7g9ZlTGd0tnLjf8gnR5tE6ItjR4V2Vk5MTBkMZzn7hoHUmLy+PA4cTGfF5EgAHZg/BXSdN64VwhCr9y9Pr9TaPR48ebfO4adOm1ReREKJRMhgMFB3bCcZSBvftAYCfxlyQHBRU95MdC0WjQRcQiSE9iYSEvUDdrDMSojGpUrKzcOHCmo5DCNHI7U/YC8ZSNK5etGjZkvz8fNyVUlQVAgIDHR1elaz67VfucU3gl+gYDqYnsXfPHiDW0WEJ0ehdV1NBIYSoLjv/2gGALrQ1iqKQcSYdgBzVtd4sfiguLsJdKSO0qbm+KGHvXgdHJIQASXaEEHXEzh3bgYubf2acOQPAWVP9mQbqHduH5cVtOVQWAMDevbIiS4i6QJIdIUSd8Jc12WkDwJl088jOObX+JDtBwSFkqp5oApoDkJqSgrE438FRCSEk2RFCOJyxMIfkY8cAcAlpDcCZC9NY9Wlkx0Lj4kFkZBQApRnHHRuMEMK+ZKe0tJRBgwaRmJhYU/EIIRqh0uw0tF5+OPmGo3H1pKS4mJzz5wH4/YU76tWS7aaabNpp0+kc2x8AQ8YxxwYkhLCvg7KzszN7peBOCFFNLJt/uoa1JezvC2mbt4tVbwwnOTkZMLe9cHOru12TL/XDzpOkmnwABSJH49npFGW5mQCk5xTTPMDTofEJ0VjZPY31wAMP8Omnn9ZELEKIRqSyzT+P6LuRllNEWloacHE38frg4vuxbGCq4DtkIk0GPAbA4HlxfLMjxWHxCdGY2T02XFZWxmeffcbatWvp1q0bHh4eNsfnzZtXbcEJIRquyjb/VFFIziok/UJxsmWfqfqgsvdj3r3dzKTCP5fu48bWAXV6jy8hGiK7k519+/bRtWtXAI4cOWJzTFGUyl4ihBAVVLb5p0aBKH93mvfpQ3h4eL3qzl7Z+7mUUVVJziqUZEeIWmZ3srN+/fqaiEMI0ciE6N2YdXt7Zv60z/xFSTUxZ3RncyKgdyMoKMjRIdrF8n5e+Hkflj3bzZu2X/wSqFUUovzr3+oyIeq7a156npSUxKpVqygqKgJAVa/wdUYIISoxuls45zcsJH3JDIaZttX5nc2vZnS3cEChj3Myd7vupWNJAqrJvAu6RoHXR3WQUR0hHMDuZOfs2bMMGjSI1q1bc+utt1oLCceOHcuUKVOqPUAhRMNWdHwXJakJ9O/ZBYBTp06xa9cuMjMzHRzZtVNQ8VBK6R0Ipz58jOw//sfayTfV+2ROiPrK7mTn2WefxdnZmZSUFNzdLw7H3nPPPaxcubJagxNCNGx5eXmUZplXKHXv2RMw1wX+8ssv/PXXX44M7bqcu9AI0dPTA2PeWQoPbiRY7+rgqIRovOyu2Vm9ejWrVq0iPDzc5vlWrVpx4sSJagtMCGGr0FBG9IurADgwe0i9arR3Obt27gTVhNY7wLrM3N/fn+bNm9er4uRLWba4KC0tBaAsO52CggLcdXpHhiVEo2X3p2VBQYHNiI7FuXPncHFxqZaghBAN06UJ2/bt24CLm38CdOvWjW7dujkkvuqSbTLX5RTk5+PuG0ThuTMcPLCfgL59HByZEI2T3dNYN9xwA1988YX1saIomEwm3nzzTQYMGFCtwQkhGrYd2y4kOxf2w2ooDDih15tHccJbdQRg/759jgxJiEbN7pGdN998k0GDBvHXX39hMBj4xz/+wf79+zl37hybNm2qiRiFEA2Qqqps3bIZAJfwaACKi4sBcHWt//UtAUFB5OTkEBwRxZFt5lokIYRj2J3sdOjQgSNHjvCf//wHLy8v8vPzGTVqFOPHj69Xrd2FEI515PBhzp49i6urKyc+mYBO58TWrX+xatUqunTpwu233+7oEO3mrnMi+Y3hAOzatQs3Vzd+OpgHyMiOEI50TRWOer2e559/vrpjEUI0IpZRnV69eqHT6QA4c+YMAF5eXg6Lq7p07dqVth06Mf6nZAD275dkRwhHuaZkJzs7m08//ZSDBw8CEB0dzaOPPoqvr2+1BieEaLg2bzZPe/ft29f6XEZGBkC96558Oe46J45+MA7P/00mKzOTM2fONJj3JkR9YneB8saNG4mKiuLdd98lOzub7Oxs3n33XZo1a8bGjRtrIkYhRAO0dfMWAPr16weAyWRqcMmO0WgkLy+P6GhzTVJCQoKDIxKicbJ7ZGf8+PHcc889fPDBB2i1WsD8D/qpp55i/Pjx8o9ZiFqQnlNM8wBPR4dxzYwF2ZxISkRRFGJjYwHziHFZWRlOTk40adLEwRFWj88//5zU1FR69uzJ/v372bk7nv9bWwI0nF5JQtQHdo/sJCUlMWXKFGuiA6DVapk8eTJJSUnVGpwQ4qIfdp60/vfgeXF8syPFgdFcn9Jzp9B6+dGhQwd8fHyAi/U6gYGBaDTXvG1fneLv74+LiwsREeZtIqRuRwjHsPsTpWvXrtZanfIOHjxI586drzmQN954A0VReOaZZ6zPFRcXM378ePz8/PD09GT06NHWD0SLlJQUhg8fjru7O4GBgTz33HOUlZVdcxxC1EVpOUW8tGy/9bFJhX8u3UdaTpEDo7KfJWFzbdqBsL8vJKL/vdZjlimswMBAh8RWE4YNG8a0adPo2FF67QjhSHaPoU6aNImnn36apKQkevfuDcDWrVtZsGABb7zxBnv37rWe26lTpypdc8eOHfz3v/+tcP6zzz7LihUr+O6779Dr9UyYMIFRo0ZZ+/kYjUaGDx9OcHAwmzdvJi0tjYceeghnZ2def/11e9+aEHXW8awCTKrtc0ZVJTmrsN7son1pwqZoNOx370RaThEhercGmew4OzsDWJOdgwcOEDDQiKLRXullQohqZneyc9999wHwj3/8o9JjiqKgqiqKomA0Gq96vfz8fMaMGcPHH3/Mq6++an0+JyeHTz/9lCVLljBw4EAAFi5cSLt27di6dSu9e/dm9erVHDhwgLVr1xIUFERMTAyvvPIK06ZN4+WXX7YuZxWivmvm74FGwSbh0SoKUf4Vt26pqypL2FQUa8JmGbVtKMXJ5bVo0QI3NzeKioooO5+Os2+Yo0MSolGxexrr+PHjV/w5duyY9X+rYvz48QwfPpzBgwfbPL9z505KS0ttnm/bti0RERFs2WJexbFlyxY6duxo8+E4ZMgQcnNz2b9/P5dTUlJCbm6uzY8QdVmI3o1Zt7e3PtYo8PqoDvVmVAcuJmzlaRWI8nfHYDBw7tw5oOElO7/88gsLFiygTx/zvlilmbJhshC1ze6RncjIyGq7+ddff82uXbvYsWNHhWPp6enodDpr8aJFUFAQ6enp1nMu/WC0PLacU5k5c+Ywa9as64xeiNo1uls4L/xsTuLXTr6p3q3GsiRsM39KQFE0oJp4fXRnQvRunDp1CgAPDw88PDwcHGn1ysnJITs7m3bt2rFu3ToMmcm4t5ENQYWoTQ5b8pCamsrTTz/N4sWLa30fnBkzZpCTk2P9SU1NrdX7C3G9gvWuFBrKiJq+gqjpKyg01I+i/NHdwsla8TbpS2bwiH8y9/Qwr1JqyFNYlhoky3Y6xryzgLl9gBCidjgs2dm5cycZGRl07doVJycnnJyciIuL491338XJyYmgoCAMBgPnz5+3ed2ZM2cIDg4GIDg4uMLqLMtjyzmVcXFxwdvb2+ZHCFHzTCYTRUnbKUlN4OYbe1mfz8rKAhpWcbKFJYFzc3PDs9PN+A4ZD9T/9gFC1CcOS3YGDRpEQkIC8fHx1p/u3bszZswY6387Ozuzbt0662sOHz5MSkqKtQlZbGwsCQkJ1lUcAGvWrMHb29vasVQIUXckJOxFLSlA0bnRsePF1Zc333wzTz/9tHWFZ0NiSXbOFhnxHTIR5UIPofraPkCI+shh7Tu9vLzo0KGDzXMeHh74+flZnx87diyTJ0/G19cXb29vJk6cSGxsrPUD8ZZbbiE6OpoHH3yQN998k/T0dGbOnMn48eNxcXGp9fckhLiyjRs2AOASHo2T08WPH0VRKtTnNRT+/v4oikJWscaa6FjUt/YBQtRXdic7qampKIpCeHg4ANu3b2fJkiVER0czbty4ag3u7bffRqPRMHr0aEpKShgyZAjvv/++9bhWq2X58uU8+eSTxMbG4uHhwcMPP8zs2bOrNQ4hRPXYGBcHgGtE1XpwNQROTk74+fmRn5kDqgmUiwlPfWsfIER9ZXeyc//99zNu3DgefPBB0tPTufnmm2nfvj2LFy8mPT2dF1988ZqD2XDhW5+Fq6srCxYsYMGCBZd9TWRkJL/++us131OIxqDQUEb0i6uA2t2Tqfx9E14azKY//wBsk53U1FS2bt1Ks2bN6N69e63EVduCgoLIysqim5rIX2pLFI22XrYPEKK+srtmZ9++ffTs2ROAb7/9lg4dOrB582YWL17MokWLqjs+IcQF7jonkt8YTvIbw6+arNTFlVp74neTk5OD4uKBLqi59fnU1FQOHDjA8ePHHRhdzbIUXvfwK+XUh49x7vdPWTv5JutqNCFEzbL7611paam1Hmbt2rXcfvvtgLnhX1paWvVGJ4SokvqwC/rGuI0AjLhlIMvevN36fIsWLQDw9fV1SFy1wVKk7OTkhDHvLAUH1hOsr92WG0I0ZnaP7LRv354PP/yQP/74gzVr1jB06FAATp8+jZ+fX7UHKISoXH3bBX1j3AYABgwYYPN8UFAQffr0oW3btg6IqnZYRnaKCgvRaDSYCs6TmZnp4KiEaDzsTnb+9a9/8d///pf+/ftz3333WXc6X7ZsmXV6SwhRs+rbLuiqycjmTX8C0L9/f8cG4wA+Pj7odDpMJhOBUW0A2QFdiNpk9zRW//79ycrKIjc3lyZNmlifHzduXINr8y6EI12pqLi+7YJuSE8iLy+PJk2aWL8ggXkj4OPHjxMcHExAQIADI6xZiqIQGBjIyZMnCW3ehvRjB9m/L4Fbh9zs6NCEaBTsHtkZOHCg9UOrPF9fX+65555qC0wIcXmVb6pZd5cxFyXvBsxfljTles2cOHGCpUuX8vPPPzsqtFrTr18/br9zFGll5i+F+/fLyI4QtcXuZGfDhg0YDIYKzxcXF/PHH39US1BCiCsL0bvxwvC2qKp5eMeeZcw1uSfT5VaBmQpy0Hr5WWv8LBrynliXatOmDW3atqNU3xSQaSwhalOVp7H27t1r/e8DBw7Y7CpuNBpZuXIlYWFh1RudEKKC/Px85syZw3vvvUchOpx8QjHlpPPZri60eO21Cr1q0nOK2ZSUZX08eF4cc0Z1rJVlzz/sPImqqvje/ARNBj1OWUS4zXHLVi8NcU+syrjrnPjjjYdp9/MbHDxwAJPJZDPSJYSoGVVOdmJiYlAUBUVRGDhwYIXjbm5uvPfee9UanBDC1vHjx7ntttvYv99cnKxx8aDsfBrGvCxWr17NmjVreOWVV2g64H7rawbNjbO5hqWY+cbWATVa35OeU8xLy/ajKOb5NkWjYW5cGnfGtrXetzGN7KiqSlJSEpmZmXh5eZGXl8fx48etS++FEDWnysnO8ePHUVWV5s2bs337dptiQp1OR2BgIFqttkaCFEKY2zsMGDCAEydOEBISwtvz3+Mff+lQFA0rHmnFa7Nf5quvvuKlf71NeG5nuJBkqJVcqzaKmU+cvXIRdUlJCefPnwcaR7KjKArLly8nNzeXnj17sm7dOhISEiTZEaIWVDnZiYyMBMBkMtVYMEKIypWWlnLHHXdw4sQJWrZsyYYNG2gSEMS0nebVWs2aN+eTRV+w6pwvBQf/sCY6l1MbxcyRfuYi6vIJT/n7WqawvLy8cHOreyvIakLr1q0pKiri5Elzj6SEhATuuOMOxwYlRCNwTRvkJCYmsn79ejIyMiokP9ezN5YQonLPv/IGO3bsoEmTJqxatYqwsLBKt4HwihmGxtUL1WSy2WFb4eIIz9WKmatrH61gvStPdG/C+9uyKt0LqjFNYVkMHz4cgOTkZMCc7Aghap7dn2Iff/wxTz75JP7+/gQHB1vn48E8TCvJjhDVo3yH5F9M3fHsdDMfvTCO5s2bX+FV4NG2Hz00x9heFmlNMmbd3p4XfjbX+aydfFOtbS1hStrEqQ//hXu7m4hf/rnNfRtbcXJ5HTt2BCTZEaK22J3svPrqq7z22mtMmzatJuIRQlCxQ7Ki0eA3dCJ9bx5cpdcvmD6WZr2GYSzIplWIDyP++RsvXGhlU1t7MqXnFPPbr8sx5p3Fycuvwn0tIzuNLdlRVZWICPNKuMTERIqLi3F1lX2yhKhJdic72dnZ3HXXXTURixDigso6JKNobIqKLbugW5Sf1tJoNDQZOJa0hRPZl5rArJdeBF3FVZTV7dL9urJyLsTaKtbmPFVVrSM7jWkay2Qy8eabb1JSUkJERAQpKSkcPHiQLl26ODo0IRo0uxs83HXXXaxevbomYhFCXFAdHZKdvPzwG/Y0AO/Nf4eS9KTqDLGCyvbranLLU7g274aT3nb0Ji8vj+LiYhRFwd/fv0bjqks0Gg3e3t4A1n5IMpUlRM2ze2SnZcuWvPDCC2zdupWOHTvi7Oxsc3zSpEnVFpwQjVWI3o372zjxvwMllRb3Xs2ZXHOXZPdWvfjb3ffw/bffcG7VAoIffKvGYq5sNErRaPGI7l8xvgtTWP7+/jg5XVsBdH0VFBREZmamdcm5JDtC1Dy7P2U++ugjPD09iYuLIy7OtlmZoiiS7AhRTeJ/WMCpuM149biTnV+/fdWi4vJTSLe9t8n63//691usWbWSnPRE8nb/Ctxa5RjSc4qrXMxsGY0qn/CoJiMuoW0qnGs0GvHz8yM4OLjKsTQUlholPz8/QJIdIWqD3cnO8ePHayIOIUQ5R48e5dcVy1FVFffm3a9aVFzZFJJFcHAwc+bM4amnnqJs2xJyzr6Ee0jIZa91ad1NVbeWCNG72az6Uk1GXPb+wImVn1c4t23btrRte3Fvr8bEUqNkGdEqvxWPEKJmyKYsQtRBn332Gaqq4tqsK85+4Vc9v9KCZuCrx3vjrnPiiSeeoGfPnuTl5TFjxozLXqeypOmfS/eRllNUpbhHdzPHev7PxZz68DHu7t70iucrV2l+2BBZRnYKCwvRarWkpaVx9uxZB0clRMNm98jOY489dsXjn3322TUHI4QwT/F88cUXAHh2uqVKr6lsCql8QbNGo+G9996jV69efP755zz82Fge/TUXsG0cWFnSZO/WEqbifHK3/YBaZmDUqFEVjltGcxpjogOg1+txcXGhpKSEjh07Eh8fT0JCAv3793d0aEI0WHaP7GRnZ9v8ZGRk8Pvvv7N06VLrPjdCiGu3fv16Tp48iY+PD+4te1bpNZYpJIvKCpp79uxp/bIy5dlnUE3GCtepyiqwQkMZUdNXEDV9RaVdnAsObkQtM9C+Q4dKl1RnZGTwxhtvsHjx4iq9t4ZGURTr6E6nTp0AqdsRoqbZPbLz448/VnjOZDLx5JNPyoZ2QlSDzz8317j87a67WeOkq/LrRncLv2qX5Ndff53vv/+e3bt24Ru4Fq/OQ2yOX1p3Y+8qMID8hDUAPPjQw5WO3pw5cwaDwUBJSUmVr9nQBAYGkpqaat1zUJIdIWpWtdTsaDQaJk+ezNtvv10dlxOi0crLy2Pp0qUA/N/Yx0h+YzjJbwy3e3+qyxU0BwUFMWvWLADOx32OsTi/wjmWuhswJ01VKU622L9/H4a0RNBouff+MZWe0759e5566imGDh1a5es2NJYiZUvPHUl2hKhZ1VagfPToUcrKKg5pCyGq7vvvv6ewsJA2bdrQs2fVprDsNX78eNq1i8ZUlEvOn1eeSrJ3a4n/XRiVcmvZk4CAgErP0Wq1BAQEEBoaate1GxJLsmPZSHnfvn0VNlUWQlQfu6exJk+ebPNYVVXS0tJYsWIFDz/8cLUFJkRj9O233wLw0EMP1VgBr7OzM/+e9zYjhg0hb9cK9u1LoGfX69+uwGAw8PUSc/L07dx/XvNu6Y2BpWanqKgIT09P8vPzOXHiBM2aNXNwZEI0THZ/Gu3evdvmsUajISAggLlz5151pZYQ4vLSMs+ycvVaAG69bWSN3mvAwIF4dhpC6fnTPDv9Bf5c9ct1J1fffPMNmZmZhISEXHaKqqioiFWrVhEUFETv3r0b7YosV1dXvL29yc3NpVu3bsTFxZGQkCDJjhA1xO5kZ/369TURhxCN3upVK8FUhpNvOK3bVOw6XJ1+2HkS36ETUBSFkyYTz33wI289VXGZeFWpqsrcuXMBmDhx4mW3gMjIyGDPnj3o9XpiY2MrPaexeOCBB/D29iYxMREw1+3cfvvtDo5KiIbpmmt2MjMz+fPPP/nzzz/JzMyszpiEaJR++flnANxb12wSYGkcaBlVUTQavkt24kDyabuvlZ5TTKGhjOB7XmHPnj24u7vzxBNPXPZ8y55YjWmn88sJCAjAxcWFjh07AlKkLERNsjvZKSgo4LHHHiMkJIQbb7yRG2+8kdDQUMaOHUthYWFNxChEg1dSUsKqlb8B4N6q9zVdw13nVKXVW5fbsPMfs/9dpftcup3E93+lcv6PLwF47P8ex9fX97KvtSQ7lpoVIb12hKgNdic7kydPJi4ujl9++YXz589z/vx5fv75Z+Li4pgyZUpNxChEg7du3Try8/PRevqiC2lVo/eqrHGgajKy8vv/sXTp0ismTZVtJ/HSsv0YC86hOLsy5bl/XPHeGRkZgIzsABQXF/Pbb79x+rR5RO3w4cONuveQEDXJ7mTnhx9+4NNPP2XYsGF4e3vj7e3Nrbfeyscff8z3339fEzEK0eD99NNPALi1ikVRanbLusq6LffWHseYd5YnnniCkydPXva1lY0KqSg4+YTi3eOOK47YqKpqTXZkZMe8Ku6vv/7i5MmTNG3aFKPRyKFDhxwdlhANkt2fqoWFhZV+KwsMDJRpLCGugaqq/PLLLwC4t+0HmGthatKljQO/ePnvxMTEkJWVxV133UVxceX3v9yokFpmwLv33654z/Pnz2MwGNBqtfj5+V33e6jvtFot/W7qzx+GKHKczX8eMpUlRM2wO9mJjY3lpZdesvkwLCoqYtasWY1+dYUQ1yIhIYH09HR8uw/HtWkHwFwL882OlFq5f7DeFRcXF77//nt8fHzYunUrDz30EEZjxb2zLh0VUk1Gzq36Dz5970XjfOUGhJZRHX9/f7RabfW+iXqqV+9Ykoz+mPRhgCQ7QtQUu5Od+fPns2nTJsLDwxk0aBCDBg2iadOmbN68mfnz59dEjEI0aKtWrULr5YfXwCesK6RMKvxz6T7ScopqLY4WLVrwww8/4OzszHfffceYMWMqrSEZ3S2ckrREznz7Iqc+fIwHb2iDW4sewJVHpGQl1uXpAmSPLCFqkt3JTocOHUhMTGTOnDnExMQQExPDG2+8QWJiIu3bt7/6BYQQNlatWoVTk1C4pFbHqKokZ5mnhk0mE1u3bsVgMFiPnz17llOnTlVrLAMHDuSrr77C2dmZb775hj59+rBz586LMRmNLPz0E84smUbx8V3079WVHvc8bT1+pREpSXYqKisrI0iTR3Rz87SiJDtC1Ixr6ufu7u7O448/Xt2xCNHoFBYW8scff2B08UIBytf+ahWFKH93SktL+frrrzl27Bje3t5ER0cDsHXrVnbt2sWIESPo0uX6t3uwGD16NCtWrOC+++5j165ddO/enc6dOxMWFsbevXutBcyuzbvx9if/Y+SHf1lfaxmRurF1QIWd0iXZqaiwsJBbXQ5jCoItWi0nT54kOzubJk2aODo0IRoUu0d25syZw2effVbh+c8++4x//etf1RKUEI1FXFwcBoOBsCYezLo92vq8RoHXR3UgyMuFb7/9lmPHjuHs7GxT61JaWorJZGLZsmUcPHjwuuIoNJQRNX0FUdNXUGgo4+abb2bPnj08+OCDaDQa9uzZw6+//srJkydp0qQJPv0fI3D0i2QVUWF1VvkRqfKxnjt3DpCVWOV5eXlRomrRKNC+g7lea9++fQ6OSoiGx+5k57///S9t27at8Hz79u358MMPqyUoIRqLVatWAXDLLbfwt+5Nrc+vnXwT9/SI4I8//iApKQlnZ2ceeOAB2pTbRmLkyJF069YNgB9//NGaTFRFVRoQhoWF8cUXX5CWlsZ3333HJ598wqpVqzhyLBl9r1EoGi2RfhVXZ1lGpMrLzMxEVVXc3d3x9PSscpwNnaIonDZ6kWb0ok3nXgDs3bvXwVEJ0fDYPY2Vnp5OSEhIhecDAgJIS0urlqCEaCxWrVoNwE+Z/swxlFmfD9a7kp6eTlxcHAAjRowgIiLC5rWKonDrrbeSlZXFiRMn+Pnnn3nkkUeqfXPNwMBA/va3i8vKCy+Jc9bt7XnhZ3OjQcuI1KVTWC4uLvTq1QtFURrt5p+V+WHnSTaUtgAUCGmNZ6fjUrcjRA2we2SnadOmbNq0qcLzmzZtIjQ0tFqCEqIxOHnyJIcOHQRFg2tUjM0xVVX57bffUFWV6Oho65YCl9JoNIwcORJnZ2dSUlLYv39/peddj0unuC4dFbq0Z889PSIqXMPPz4+hQ4cyZMiQao+vvrrYjdqS/Cn4DplA/OFkB0YlRMNkd7Lz+OOP88wzz7Bw4UJOnDjBiRMn+Oyzz3j22WftLlr+4IMP6NSpk7UTc2xsLL/99pv1eHFxMePHj8fPzw9PT09Gjx5tLXK0SElJYfjw4bi7uxMYGMhzzz1HWVnZpbcSos6xjNroglqgdbWd2jl1MpWUlBScnJy45ZZbrnidJk2a0K+fuRnhunXrKu2PU1uC9VfutSMuutweZYnp51FVtfIXCSGuid3TWM899xxnz57lqaeesi6DdXV1Zdq0acyYMcOua4WHh/PGG2/QqlUrVFXl888/Z+TIkezevZv27dvz7LPPsmLFCr777jv0ej0TJkxg1KhR1pElo9HI8OHDCQ4OZvPmzaSlpfHQQw/h7OzM66+/bu9bE6JWbdiwAcDaSLC88KYRjB07lnPnzqHX6696rdjYWM6fP0/37t3rXMM+VVU5efIkgYGBuLi4ODqcOsPSjbp8wqOajOScSiIlJYXIyEjHBSdEA2P3yI6iKPzrX/8iMzOTrVu3smfPHs6dO8eLL75o981vu+02br31Vlq1akXr1q157bXX8PT0ZOvWreTk5PDpp58yb948Bg4cSLdu3Vi4cCGbN29m69atAKxevZoDBw7w5ZdfEhMTw7Bhw3jllVdYsGCBTT8SIeoiy8iOS0THSo+Hh4dfdvrqUs7Oztx+++3VMpVc3VtVFBQUWFdrlpaWVuu167NLu1ErqPgnr8GYd5YeUz61qY0SQlyfa95x0NPTkx49etChQ4dq+bZmNBr5+uuvKSgoIDY2lp07d1JaWsrgwYOt57Rt25aIiAi2bNkCwJYtW+jYsaNN344hQ4aQm5t7xdqFkpIScnNzbX6EqA2W+pfw8V+QmJiIoii4hpuXnFtqYY7MvvmyK6Sqyt5pkB92Xtz8s7q3qsjLy8Pb2xtfX1+cnZ2r7boNgaXeqavTSe5y3UuvABMAhjPHHBmWEA3O9X2iVoOEhARiY2MpLi7G09OTH3/8kejoaOLj49HpdPj4+NicHxQURHp6OmBeGXZpgzLLY8s5lZkzZw6zZs2q3jcihB1KUs29VDrHxJB9oV4nPacYb6WYjz76iM6dO3PrrbfavXIpJyeHP/74g/z8fO69994qveZioazZlRoDXouQkBCeffZZGdW5Cg+lFK8Q88hcacZxB0cjRMPi8GSnTZs2xMfHk5OTw/fff8/DDz9sHd6vKTNmzGDy5MnWx7m5uTRt2vQKrxCiehWnmpcXR/S/l+wLzw2eF8eY1gpOpaXk5eVd8xLtXbt2oaoqWVlZ+Pv7X/X8ygplLY0BL0120nOKaR5gW0xtGZG6GhnVubxs1dyXyM3N/OdtkGRHiGp1zdNY1UWn09GyZUu6devGnDlz6Ny5M/Pnzyc4OBiDwcD58+dtzj9z5gzBwcEABAcHV1idZXlsOacyLi4u1hVglh8halNxyj60Xn7s1V3smmxS4cvDJgpUZ2uzQHvp9XpatWoFwO7du6v0GkuhbHnlGwPW5BSXMMs2mZOckpJiFEWh7HwaZ7LO2Sz5F0JcuyolO127diU72/z9c/bs2RQWFl7lFdfOZDJRUlJCt27dcHZ2Zt26ddZjhw8fJiUlhdjYWMC8AiUhIYGMjAzrOWvWrLHZP0iIusaYn03ZuZM4+4ahYptlqCiUuTahRYsW13z9zp07A7B///4q1e5cWihbvjHg5aa4qrobu9Fo5J133uF///sfxcXVW/jckOSoLhfaZwTh7meeytq/T5oLClFdqpTsHDx4kIKCAgBmzZpFfn5+tdx8xowZbNy4keTkZBISEpgxYwYbNmxgzJgx6PV6xo4dy+TJk1m/fj07d+7k0UcfJTY2lt69ewPmFvvR0dE8+OCD7Nmzh1WrVjFz5kzGjx8vS1xFnVV8oV6nRZB3hREVBZXeHVqi0Vz7oGurVq3Q6XTk5OSQmppapddcrjHglaa4quLs2bPk5ORw8uRJ+Td5BSoanpr0DGMeehiC2+AS0ZGt8QccHZYQDUaVanZiYmJ49NFH6devH6qq8tZbb112fxt7lqBnZGTw0EMPkZaWhl6vp1OnTqxatYqbb74ZgLfffhuNRsPo0aMpKSlhyJAhvP/++9bXa7Vali9fzpNPPklsbCweHh48/PDDzJ49u8oxCFHbDBnHcInoSM9evRlQbqsFBZU+zie4qcffrnKFK3N2dqZdu3bs2bOHhISECttMXE35xoCV9YKpbO+ryym/07lsE1HRpfVO/9uSjN+tz6AoGr48q4L8kQlRLaqU7CxatIiXXnqJ5cuXoygKv/32G05OFV+qKIpdyc6nn356xeOurq4sWLCABQsWXPacyMhIfv311yrfUwhH+mHnSXxueBBFo2E9KgMuPB+syeFGXTIR/t7Vsit4hw4d2LNnDwcOHGDo0KHX3GjQMsV1tb2vLseS7MhO51dnmTJUlAujepIcClFtqpTstGnThq+//how78Wzbt06+fASwk7WX2YXpqhUFGs9TL7qyi03xqL38qyWEZDmzZsTFhZGs2bNKCsru66uyqO7hVuTnbWTb6qwGutKLPV0l7aIEBXtPJxaYcpQCFE97F56bjKZaiIOIRq8yupfLI/zVRf69LvhupsJWmg0Gv7v//6vWq5Vnr17X5WfxhJX1jq0CQqqTdG6qqooilLpkn8hRNVdUxXk0aNHmThxIoMHD2bw4MFMmjSJo0ePVndsQjQozfw94JLVUZcWKDvKpTuZV4eioiJrd3IZCb66VmH+TOobDJj/jqjlvljKkn8hro/dyc6qVauIjo5m+/btdOrUiU6dOrFt2zbat2/PmjVraiJGIRqEEL0bHgeXoZrMu5JrFJh1e3vaac8QpTlXI/u5lZaWcuTIEbKysqr92ldjmcLS6/W4uspu6FejKApPDIkBFPL2rLI+B/Yv+RdC2LL7K9z06dN59tlneeONNyo8P23aNOtKKiGErYKCAg7/+hlsWErIw+/w+4t3ENHElZMbzmAwGCjIycbHs2qrnKpqxYoV7Nmzhz59+tT6v02Zwrp2Wo8m1toui8t1tRZCXJ3dIzsHDx5k7NixFZ5/7LHHOHBA+kIIcTk7duzAaDSCChp3H4L1rqSkpGAwGPD09KyWHcsv1bJlSwASExOr/dpXIyux7Jdz/jxdnU7SvamXzTQW2LfkXwhhy+5kJyAggPj4+ArPx8fHy4eaEFewefNmAFzC2lmnJ5KSkgBzUlITfWhatGiBoihkZmZau6Db61rreWRkx34lhhI6O6cToy8ie/UCmylPe5b8CyFs2T2N9fjjjzNu3DiOHTtGnz59ANi0aRP/+te/bDbXFELYsiY74e2sz5VPdmqCm5sbkZGRJCcnc+TIEXr16lUj97mUyWSq0j51wpafnz9GVcFFMdHK6Sx7PnyMgJH/ZNO8cbIaS4jrYHey88ILL+Dl5cXcuXOZMWMGAKGhobz88stMmjSp2gMUoiEwmUxs2bIFMI/sAOTm5JCZmYmiKDRv3rzG7t2qVataT3bOnTtHWVkZzs7O+Pr61so9GwIvNxfCQoJIT08npksMu3b+RXHKHruX/AshbNmd7CiKwrPPPsuzzz5LXl4eAF5eXtUemBANyeHDhzl37hxubm6kfDIBZ2dn/vrrLwDCw8Nxc6u56YnWrVuzZs0akpOTMRgM6HS6GruXhbe3N2PGjCE/P/+69vlqjIKDg0lPTycyIhIAQ8ZxB0ckRP13XQ01JMkR4soKDWVEv7iKvD2rAejRowfOzs4AZGZmAjU3hWXh5+eHXq+3bgx6PTuqV5VOp6vx99VQWab9vL3Nn6+S7Ahx/aqne5gQ4opKTh0EsNa5AQwbNow+ffpc11YOVaEoCrfffjteXl74+/vX6L3E9bMkO2WlZeb/PXeKgoIC3HV6R4YlRL0m48tC1AJLstO3b1+b5/V6PZ6eNV942rx5cwICAmpl53FVVYmLi2P//v2UlZXV+P0aGsvqtYKCfKKiogCVo4cPOjQmIeo7SXaEqGHGolzKzp0EoHfv3oA5IWio8vPz2bBhAz/88EODfp81xdXVFR8fHwB69uwJUGm7DyFE1dmV7JSWljJo0CCHNCgTor4qOXUIgNat21inkRYvXszixYuty7Nrw6FDh/j+++85dOhQjd7HZDLRtWtXoqOjrfVJwj6WqaxWrVoBsGfPHkeGI0S9Z1fNjrOzM3v37q2pWIRokAyZJ3CJ6EjMhSksg8HA8ePHMZlM3HrrrbUWR0pKCvv378fZ2Zm2bdvW2H30ej233XZbjV2/MQgODubQoUP4+fkBsGvXLgdHJET9Zvc01gMPPMCnn35aE7EI0eD8sPMk+t6jCb5vDtsDh/PNjhRSUlIwmUzo9XrrdEVtsPTyOXbsmEwv1XGWkR3Lsv09e/aQU1BE1PQVRE1fQaFBaqGEsIfdq7HKysr47LPPWLt2Ld26dcPDw8Pm+Lx586otOCHqs7ScIl5ath9FMf/CUlH459J9vN7H/M+uWbNmtVIwbBEZGYlWqyU3N5dz585ZRw2qW0ZGBr6+vjg5yWLPa2VJdnJzc/H19eXcuXMcOLDfwVEJUX/Z/Wm0b98+unbtCsCRI0dsjtXmB7cQdd3xrAJMlwygGFWVhONpOGNOdmqTs7Mz4eHhnDhxguTk5BpJdgwGAx988AEajYapU6fWaLPEhszb25tOnTrh5+fHH3/8wZo1a4jftQsIc3RoQtRLdic769evr4k4hGhwmvl7oKCicvFLgEaB0nOncVa4sKy4dkVGRnLixAlSUlLo1q1btV/fUnDt4eEhic51UBSFO++8E4CYmBjWrFnDrp07wVeSHSGuxTUvPU9KSmLVqlUUFRUBDXsprRDXIkTvRkTGZpudqyfFBuCuGPDz88Pb27vWY4qMNG9BcOLEiRq5fnp6OiCbf1an7t27A7B7txQpC3Gt7E52zp49y6BBg2jdujW33noraWlpAIwdO5YpU6ZUe4BC1GdH1/yPUx8+hiH9KGsn38SIaF+aN29O69atHRJPeHg4Wq0WDw8PSkpKqv36lmTH0hhPXDtVVcnOziY8PByAfQkJqMZSANJzih0ZmhD1jt3TWM8++yzOzs6kpKTQrl076/P33HMPkydPZu7cudUaoBD1VWpqKqdOngRFg5NvGMF6V9wDWjp0zyidTse0adNqrP+NjOxUn4yMDD788ENcXFzw8fGhLKIHaMwf2YPnxTFnVEfu6RHh4CiFqB/sTnZWr17NqlWrrN82LFq1alVjQ+NC1BeWjT8BZnfMAUAX2AyNztWRYdmoqUTHZDKRkZEBSLJTHfz9/dHpdDRp0oSu/QaS1O4R6yIQkwr/XLqPG1sHEKKX2ighrsbuZKegoAB3d/cKz587dw4XF5dqCUqIhmDrli0AuISZR0ALCwtQS50qtGtwlNLS0mpNfLKysigrK0On0+Hr61tt122stFot06ZNQ6PRsOXYWY4qtlUHRlUlOatQkh0hqsDump0bbriBL774wvpYURRMJhNvvvkmAwYMqNbghKjPtm/bCoBLmLlb8Z7du3nrrbdYuXKlI8PCZDLx2Wef8cYbb5CXl1dt17XU7wUHB0sbimpiaSrYp2MrVJPJ5phWUYjyr/jFUwhRkd3JzptvvslHH33EsGHDMBgM/OMf/6BDhw5s3LiRf/3rXzURoxD1jqm0hD0XNm/c8e54kt8YTtop82agjh710Gg0lJaWYjKZqnXq+fTp0wCEhIRU2zWF2cDeXTi36j2blX2vj+ogozpCVJHdyU6HDh04cuQI/fr1Y+TIkRQUFDBq1Ch2795NixYtaiJGIeodQ3oiZWVlBAcHExkZiclk4uRJc7LTtGlTB0cHERHmwtbqTHYsIzuhoaHVds3GLjs7m48++ogVK1bgnPqXeWXfuVOsnXyTFCcLYYdr6ueu1+t5/vnnqzsWIRqMsryzaL386NOnD4qicObMGUpKStDpdHViWXZkZCTbt28nJSWlWq5nMpmsK7FkZKf6eHh4kJ6ejqqq9OjZi9WrVlKSkkCwvu4UvAtRH1xTspOdnc2nn37KwYMHAYiOjubRRx91+PC8EI72w07z6I1n9E14tL0Bvbc5AUhNTQXMfW4sdRiOZGkumJGRQWFhYaWLDuyRlZVlLXiuqT23GiOdToe/vz+ZmZnExMSwetVKDOlJjg5LiHrH7k/djRs3EhUVxbvvvkt2djbZ2dm8++67NGvWjI0bN9ZEjELUC5aNPy0UjYYNBaGk5RRZR1As00eO5uHhgb+/P0C1jO5kZ2ej1WoJCQmpE8lcQ2KZFgwLM28VYUhPdGQ4QtRLdo/sjB8/nnvuuYcPPvgArVYLgNFo5KmnnmL8+PEkJCRUe5BC1GXle+tcyqRCclahNaGoC/U6FpGRkWRlZXHixAnatm17Xddq06YNM2bMoLCwsJqiExYhISHs2bMHV1dzaw9D5glKSkpw18mu8kJUld1fwZKSkpgyZYo10QFzP4jJkyeTlCTDq6Jx01yy4lqrKET6uTFgwAC6du1aoRmnI7Vs2ZJ27dpZRwyul1arxcvLq1quJS6yjOzk5eaaSwVMZSQe3H+VVwkhyrM72enatau1Vqe8gwcP0rlz52oJSoj66p+3tkNVzf1QFFXl9VEdCPVxJyYmhttuuw2dTufgCC9q27Ytd999Nx06dHB0KOIKLH2L8vPz6devHwDbtm1zcFRC1C9VGgfdu3ev9b8nTZrE008/TVJSEr179wZg69atLFiwgDfeeKNmohSinrijSygTHvobGMuY9+rMRrE8ODMzk6VLlxIZGcnQoUMdHU6D4+zsTEBAABkZGXTt2pVly5axdetWJk6c6OjQhKg3qpTsxMTEoCgKqqpan/vHP/5R4bz777+fe+65p/qiE6KeOXb6LCUn9oBqYsiN5i8D8fHxBAQE1MniXcvO2gaD4Zr3szp9+jTp6el1atSqoQkNDSUjI8M65bh161YHRyRE/VKlZOf48eM1HYcQ9ZZluTnAPZ/F49lxEEXJ8YSEhlJSUsKyZctQVZXJkyfXuZqWXbt2sXz5clq0aMEDDzxwTddo2bIld999t00dn6heoaGhxMfH4+Rk/sg+duwYmZmZBAQEODgyIeqHKiU7lp4cQghbly43VwHfIRM4t/a/AJw8eRJVVfHx8alziQ5cXM6cmpqKyWS6ppEnDw8P2rVrV92hiXIsjRozMzNp27Ythw4dYtu2bYwYMcLBkQlRP1zT2sXTp0/z559/kpGRgemSzekmTZpULYEJUR8czyrApNo+p2i0/P2+kbjrnOpcf51LBQYGotPpMBgMZGRkXPNUlqhZQUFBaDQaCgsL6du3L4cOHWLr1q2S7AhRRXYnO4sWLeKJJ55Ap9Ph5+dns7uxoiiS7IhGpZm/BxoFm4RHNRkZ3Mu8MtHSObku9dcpT6PR0LRpU44ePUpKSordyc758+fZu3cv4eHhNG/evIaiFM7OzgQGBpKenk7Hjh0BqdsRwh52j1m/8MILvPjii+Tk5JCcnMzx48etP8eOHbPrWnPmzKFHjx54eXkRGBjIHXfcweHDh23OKS4uZvz48fj5+eHp6cno0aM5c+aMzTkpKSkMHz4cd3d3AgMDee655ygrK7P3rQlhtxC9G7Nub299rJqM5P3+EQNju2I0Gq2bf9bVkR24GNu1dFI+ceIE69evJy4urrrDEpcYMmQI48aN48YbbwRg+/btGI1GB0clRP1gd7JTWFjIvffeWy2rSuLi4hg/fjxbt25lzZo1lJaWcsstt1BQUGA959lnn+WXX37hu+++Iy4ujtOnTzNq1CjrcaPRyPDhwzEYDGzevJnPP/+cRYsW8eKLL153fEJUxehu5kaBhUk7OPXhY3T0yMPZ2ZkzZ85QWlqKq6trnS4ktYw6paSk2Ky4rIpTp04BsvlnbYiKiiIkJISOHTvi4eFBXl4ehw4dcnRYQtQLdmcsY8eO5bvvvquWm69cuZJHHnmE9u3b07lzZxYtWkRKSgo7d+4EICcnh08//ZR58+YxcOBAunXrxsKFC9m8ebN1CHf16tUcOHCAL7/8kpiYGIYNG8Yrr7zCggULMBgM1RKnEFVRlLgFY95Z+vTpA2CzRUT56d66JiwsDI1GQ15eHjk5OXa91pLs1KXO0A2dk5MT3bt3B2QqS4iqsrtmZ86cOYwYMYKVK1fSsWNHnJ2dbY7PmzfvmoOxfNBadk/fuXMnpaWlDB482HpO27ZtiYiIYMuWLfTu3ZstW7bQsWNHgoKCrOcMGTKEJ598kv3799OlS5cK9ykpKaGkpMT6ODc395pjFsKi5JS5s3hsbCwA3bp1q5O9dS6l0+m4+eab8fHxsWv387KyMtLTzbu6S7JTO3bv3k1qaiqxsbHExcWxdetWxo4d6+iwhKjzrinZWbVqFW3atAGoUKB8rUwmE8888wx9+/a1tq+3NCrz8fGxOTcoKMj6IZuenm6T6FiOW45d7j3MmjXrmmMV4lLG4nxKz5qLkS3JjrOzc71p22Dphm6PtLQ0TCYTHh4e6PX6GohKXGrnzp2cOnWK1q1bA/D5z2tZ47eCA7OHyMagQlyB3f865s6dy2effcYjjzxSrYGMHz+effv28eeff1brdSszY8YMJk+ebH2cm5tbZ1fLiPrBcMpcO9GiRcs6XZ9TnSzF1+Hh4XV6mq4h6dy5M82aNbOumivNPIGpRHaaF+Jq7E52XFxc6Nu3b7UGMWHCBJYvX87GjRtthsODg4MxGAycP3/eZnTnzJkz1n/swcHBbN++3eZ6ltVal1tG6+LigouLS7W+B9F4ueuceKKdkVeAvn3N9TqJiYkkJSXRpk2berMk+9ixY5w4cYLevXvj5uZ21fMt9TrVtWu6uLoePXpY/zsiMpKUEycoSU90YERC1A92FxM8/fTTvPfee9Vyc1VVmTBhAj/++CO///47zZo1sznerVs3nJ2dWbdunfW5w4cPk5KSYp0qiI2NJSEhgYyMDOs5a9aswdvbm+jo6GqJU4irsYxIWv5eHj58mO3bt5OUlOTIsOyyYsUKNm7caO0NdDWWkR1JdhyjR4+ewMVRRSHE5dk9srN9+3Z+//13li9fTvv27SsUKC9durTK1xo/fjxLlizh559/xsvLy1pjo9frcXNzQ6/XM3bsWCZPnoyvry/e3t5MnDiR2NhYa43BLbfcQnR0NA8++CBvvvkm6enpzJw5k/Hjx8vojagVBoPBuirmhhtuAGxXYtUXERERnDt3jtTUVGtNyOXk5+dbFxRIslO7ioqKOHnyJD179eKnVb9jNBSSnlNM8wBPR4cmRJ1ld7Lj4+Nj0+fmenzwwQcA9O/f3+b5hQsXWmuC3n77bTQaDaNHj6akpIQhQ4bw/vvvW8/VarUsX76cJ598ktjYWDw8PHj44YeZPXt2tcQoxNXs2rWLoqIi/Pz8aNeuHUVFRWRmZgJ1u5ngpSIiIoiPj69Sc0HLFFZAQIB8qahlP//8M4cPHybHvwNhf1+IotEweF4cc0Z15J4e9efvmxC1ye5kZ+HChdV286o0MHN1dWXBggUsWLDgsudERkby66+/VltcQtjjjz/+AKBfv35oNBrr9I6vry8eHh6ODM0ulsTs1KlTlJWVWXfYrkz54mRRu8LDw9l16Bg/prqgaMyF4SYV/rl0Hze2DiBEf/V6KyEam7rdAESIemDjxo1AxSms+jSqA+bkzN3dHaPRSFpa2hXPleJkxwkPDyfX5IqK7Qo4o6qSnCUrs4SojN0jO82aNbviMlN798cSoj4zmUxs2rQJuJjs1PXNPy9HURQiIiI4dOgQKSkpV4y/RYsWaDSaepfQNQShoaHoNSUoqDYJj1ZRiPKvelNIIRoTu5OdZ555xuZxaWkpu3fvZuXKlTz33HPVFZcQ9cL+/fvJzs7Gw8ODLl26oKoq+fn5QP0b2QFzgnbo0CFOnz59xfP69u1b7S0oRNXodDqaBTehz6kTbDJEgqKgmoy89rcYmcIS4jLsTnaefvrpSp9fsGABf/3113UHJER9YqnXiY2Nta5MnDBhAjk5OXh7ezsytGvSsWNHWrRo0WgaI9ZX4eHhtD6zk9wyLWu++i9l51Lp9eQOR4clRJ1VbTU7w4YN44cffqiuywlRL1xar2Oh1+vrZVdhLy8vgoKCrrifV3p6unX0SjiGpTA83LkAtbQIY95Za+IthKio2pKd77//3rqBpxCNgaqq1l8wlyY7DdmPP/7I3LlzSUyUzr2OYkl2/DWFuDdtD1ArW+0IUV/ZPY3VpUsXm2+sqqqSnp5OZmamTf8bIRq648ePc/r0aZydnenVqxeqqvL+++/j6+vLiBEj8PLycnSI1+TUqVNs374dLy8vBg8ebHPMaDRa//2HhIQ4IjwB+Pn54erqSnFxMaEt23N+21Li4uIcHZYQdZbdyc4dd9xh81ij0RAQEED//v1p27ZtdcUlRJ1nGdXp3r077u7unD17lqysLLKzs6u0t1RdVVRUxN69e2nSpEmFZEer1fL3v/+d4uJiXF1dHRShUBSF8PBwkpKSeP/xQQz86jWOHDnC6dOnCQ0NdXR4QtQ5dic7L730Uk3EIUS9c7n+OmFhYVdsyFfXWaZIsrOzycvLq3SEShIdx7MkO1lZWXTp0oWdO3fS6Yl5eLYfwF8zB9H9VfOeggdmD8FdV3//PgpRHaSpoBDX6NJ6nfq4H1ZlXF1dCQoKAqiwKajJZHJESKISltYGJ06cYMCAAQCUpCQ4MiQh6qwqJzsajQatVnvFn/r8bVYIe6SlpZGYmIiiKNZ+M5ZkJzIy0pGhVQvLL9Ly+2SVlZXx73//m4ULF1JUVOSo0MQF4eHheHh4EBISwo033ghAccpeB0clRN1U5ezkxx9/vOyxLVu28O6778q3PtEoFBrK6PTEPAA6x8TQpEkT8vPzOXfuHFD/R3bA/B527NhhM7KTlpZGcXExWVlZMo1VBzg7OzNlyhQURSEvLw+tVkvZ+XTKcjMcHZoQdU6Vk52RI0dWeO7w4cNMnz6dX375hTFjxshO46LRKD5h/gZ9U3/z9IFlBCQoKKhBJAKWkZ20tDQMBgM6nc5mz6/62EOoIbL8/+Dl5UXXbt3YdfAopVknOZNbbD0nPaeY5gGejgpRiDrhmmp2Tp8+zeOPP07Hjh0pKysjPj6ezz//vEEM3wtRFcUn9gAXkx1nZ2ciIyNp3ry5I8OqNnq9Hh8fHwIDA8nLywPq7wanjUFeXh5Nb7qXsL8vxK15V0a8u8l6bPC8OL7ZkXKFVwvR8NlVZJOTk8Prr7/Oe++9R0xMDOvWrWtUzdSEADiRnIxqKsMlsjMtOnUHoFWrVrRq1crBkVWv8ePHW+vwVFW1TmlJslN3lJWVsWDBAk5lF7BL0wnlwsagarlzTCr8c+k+bmwdIHtniUaryiM7b775Js2bN2f58uV89dVXbN68WRId0Si9+8s2wv6+kOB7X+OO/+5ssN+ayy84yMzMpKioCGdnZ4KDgx0YlSjPyckJnU5HnupqswP6pYyqSnJWYS1GJkTdUuWRnenTp+Pm5kbLli35/PPP+fzzzys9b+nSpdUWnBB1TVpOEb9l6FE05l8sJhVmLE2gZ4QXzYKaODi6mlFWVsbx48cBc+GyVqt1cESivLvuuovhqo5V8/7ApFZ+jlZRiPJ3r93AhKhDqpzsPPTQQ1KUKBq945kFcMm/A5MK/1qwkL/d2KlCx+H67quvvuLo0aPWqauoqCjHBiQq8Pf3B2DW7e2Z+VMCiqIB1QSKeeBeo8DrozrIFJZo1Kqc7CxatKgGwxCifjDlnkE1mVDK7QquoOKtKaZJk4Y3smMymTAajZw8eRKQZKcuG90tnGmfrODcmv+iM+TQ5MH5KFpn1k6+SVZjiUZPOigLYYc9WzZwbtV7qBd6SmkU6OeSiodS2iALdy3vqbS0FGdnZ9l3qY7aunUr/1v4Gc2DvCk9m0LemRRKTh0CIFhf/1shCHG9JNkRwg4rV64kf+8a8uJ/A2Dx/W1oqcnAzc3NOp3QkJRP4KRep+46e/Ys6elphGnzcYvqAkBR8m4HRyVE3SHJjhBVZDAYWL9+PQCuYe0AKMlOAxpuo73yIzmyCqvuskwv9g+F96c9CkArw1GS3xgum4AKgSQ7QlTZpk2bKCgoIDAoCOfAKABOnWzYvWecnJysozmy913dZUl2MjIy6NevHwC7du0iMzPTgVEJUXdIsiNEFa1atQqAQYMHm1e8oHIy1Vy421CTHUVR6N7d3DjR0klZ1D0eHh4EBgYCUFRURKdOnVBV1fp3VojGTr6qCXEVhYYyol9cxemF3wEwfNgwlowZjtFoZO/eMFJSUggJCXFwlDWnVatWnD9/vsEmdA1Fs2bNyMjIIDk5meHDh7N3716WL1/OAw884OjQhHA4RVXVy7Shajxyc3PR6/Xk5OTg7e3t6HBEHVNoKKPNlK85+Z8HAThz5oz1W7QQdcWhQ4f45ptv8PPzo1u3bvTp0we9Xk9mZibOzs6ODk+IGlHV398yjSVEFRQdN69sienSpdEkOmVlZXz00Uf89ttvlJaWOjoccRVRUVEoisLZs2dp06YNAQEB5OTk8Oeffzo6NCEcTpIdIaqg5PRhXCI60ufmEYC52d62bdtIT0+noQ6OpqamkpaWxoEDB9BqtZw/f5709HRHhyUuw9XVlbCwMACSk5O59dZbAfjll18cGZYQdYIkO0JcxTfbT+A7+AmC75vDr0ovvtmRQnp6OitXrmTRokUNNtkJDQ3lrrvuYuDAgezfv5/58+fz66+/OjoscQUtWrQA4OjRo9x2220ALF++3JEhCVEnSLIjxBWk5RQxe/kh6/YQKvDPpfv468BRACIjI9FoGuY/IxcXF6Kjo+nSpYt1xODUqVMYDAYHRyYux5LsHDt2jMGDB+Ps7ExiYiKHDx92cGRCOFbD/JQWopoczyrg0nEbo6qy5+hpoPHsFdWkSRP0ej0mk4mUlBRHhyMuIywsDFdXV4qLi8nLy6N///4ALFu2zLGBCeFgkuwIcQVRfu7mHaTL0ShQlGn+hd+sWTNHhFXjjh07xoYNG6w1OoqiWN/rsWPHHBmauAKNRkPz5s0B8/9PI0eOBGDp0qWODEsIh5NkR4grOHfyGGdXvodqMgLmROe5/uG4GAtxc3MjKCjIwRHWjISEBOLi4ti7d6/1Ocsv0ePHjzsqLFEF/fr14//+7//o168fd955J4qisHXrVlJTUx0dmhAOI8mOEFewbNky8veu4exv8wFYO/kmOrjnAheX+jY0qqqSmJgIQMuWLa3PW0Z20tPTKSgocEhs4upCQkIICwtDo9EQGhpK3759ARndEY2bJDtCXMHPP/8MgEtYNADBeldOnDgBNNx6ndOnT1NQUIBOpyMyMtL6vKenp3UkS0Z36o+//e1vAHz//fcOjkQIx5EOykgHZVG55ORkmjVrhqIonDp1yrolRGlpKampqQQEBODl5eXgKKvf+vXr2bhxI9HR0dx11102xw4cOACYp7RcXV0dEZ6ogoyMDLZs2YKLiwsdOnSgadOmgELYU4s48vb9shO6aDCkg7IQ18nyTfimm26y2fvK2dmZ5s2bN8hEB+DIkSOAeU+sS0VHRxMdHS2JTh1XVFREfHw8e/bsITQ0lF69ewMqRYlbHB2aEA4hyY4Ql/Htt98CcPfddzs4ktqTm5trXYFVWbIj6oemTZsSGxtrHZm7485RaL38KD13mvScYgdHJ0Ttk7FMISpx7NgxduzYgUajYfTo0dbnly5dioeHB7GxsQ1yytNSmBweHo6Hh0el55w5c4ZDhw4RHBxMmzZtajM8UUUajYZbbrnF+tit/SDC/t4WRaNh0Lw43hjVkXt6yC72ovGQkR0hKvHdd98BMGDAAOvGn4WFhSQkJLB169YGuQoLLk5htW7d+rLnHDp0iA0bNtgsSxd1V1pOEfP/TLvYBVw1dwFPyylycGRC1B5JdoS4RKGhjBff/hiAO0ZdHNU5etS8RURgYGCDrNcxGAzWhoFXmsIq329H1jfUbSdOnODbXzdguuT/JqOqkpxV6JighHAAhyY7Gzdu5LbbbiM0NBRFUfjpp59sjquqyosvvkhISAhubm4MHjzYOsxuce7cOcaMGYO3tzc+Pj6MHTuW/Pz8WnwXoqE5fOgQhjNHQdFw+x13Wp+3JDvle880JElJSZSVldGkSZMrNksMDQ1Fp9NRVFREWlpaLUYo7LVx40ZOHd7NpeOQGgWi/N0dEpMQjuDQZKegoIDOnTuzYMGCSo+/+eabvPvuu3z44Yds27YNDw8PhgwZQnHxxQK7MWPGsH//ftasWcPy5cvZuHEj48aNq623IBqg/33xOQBuLbrj7+8PmBNvS7Jj2WyxoTl48CAA7dq1u+I0nVartTYYTEpKqpXYxLVp27YtHkopwwLOW59TTUY6Fu8jRO/muMCEqGUOLVAeNmwYw4YNq/SYqqq88847zJw507q/yxdffEFQUBA//fQT9957LwcPHmTlypXs2LGD7t27A/Dee+9x66238tZbbxEaGlrptUtKSigpKbE+zs3NreZ3JuqbQkMZ0S+uQjUZKf7yS7Refnj3HEV6TjHNAzzJyMggPz8fZ2dnIiIaXmFnWVmZtV6nXbt2Vz2/VatWHD58mMTERG688caaDk9co3bt2vHrr78SlJ+EGx05f+o4mT/PodBFIdKpDYrWmQOzh0jfHdHg1dmanePHj5Oens7gwYOtz+n1enr16sWWLeZeEVu2bMHHx8ea6AAMHjwYjUbDtm3bLnvtOXPmoNfrrT/mhltCQNHxXRQGdSTs7wtxbdqBwfPi+GZHinUEIyoqCienhveLQavV8tBDD3HTTTcRFhZ21fMtNT0nT56ksFBqP+oqT09Paxfs5k7Z6EJa4e/hTFZWFoWJl/+MFKKhqbPJjqXXx6W1A0FBQdZj6enp1pUyFk5OTvj6+lrPqcyMGTPIycmx/sgGecKiNCsV3yETrStXTBdWrmSXmH9xNNQpLEVRCAsLo3///lVaaebt7U1QUBAuLi5kZmbWQoTiWkVHm7c6idJmo2i0PPTwIwAUHt4MIH13RKPQ8L6iVoGLiwsuLi6ODkPUIT/sPImqquh7japwzKiq+EW2ZfKAPhiNRgdEVzfde++9eHl5odVqHR2KuIJ27drx22+/EagpYM+MfmRnt+eD33bhO2QCAIPnxTFH+u6IBq7OjuwEBwcD5gZm5Z05c8Z6LDg4mIyMDJvjZWVlnDt3znqOEFeTllPES8v2X3ZEQ6soRPm7oyhKg5zCOnr0KD///DMpKSl2vc7Hx0cSnXrAy8vLWmd24MABXJoE4Td0QoXRS+m7IxqyOpvsNGvWjODgYNatW2d9Ljc3l23bthEbGwtAbGws58+fZ+fOndZzfv/9d0wmE7169ar1mEX9dDyroEIfEguNAs8PaUawd8PdCyo+Pp74+HjrJp/2UlWVsrKyao5KVCfLVNb+/fs5nlUAiu1Hv/TdEQ2dQ5Od/Px86wctmIuS4+PjSUlJQVEUnnnmGV599VWWLVtGQkICDz30EKGhodxxxx2AeXh26NChPP7442zfvp1NmzYxYcIE7r333suuxBLiUs38PVCoPNtZ9Uw/zmz5iblz53L+/PnaDayW9OzZk27dutG5c2e7X7tnzx7effdd1q9fXwORierSvn17FEXh1KlT+GgNaC4ZxLSMXgrRUDk02fnrr7/o0qULXbp0AWDy5Ml06dKFF198EYB//OMfTJw4kXHjxtGjRw/y8/NZuXKlzY7Lixcvpm3btgwaNIhbb72Vfv368dFHHznk/Yj6KUTvhk/ib6gmcz1O+V8EpefPYDAYUBQFvV7voAhrVtOmTRkxYoTNzu5V5eTkxPnz5zl48KB0U67DyhfXnzl+mFm3t0dVTeaDqonX7uwgfXdEg+bQAoT+/ftf8QNSURRmz57N7NmzL3uOr68vS5YsqYnwRCOxe/du4pe+j9b7e0IefpvfX7id5gGeAPz666+Aea+ohrof1vVo1aoVWq2W7OxsMjIyrth5WThW586dSUpKYu/evfzf3/vxz6+3kvXLvynNOkHALd8AUqAsGq46W7MjRG156623AHAJa4fWXU+w3jxyqKoqhw8fBq68MWZ9lZuby4oVK66r9YJOp7Nun3GtNT+idrRp0wYXFxfOnz/PmfR0tG5eODcJxZh3lrlz5zo6PCFqlCQ7olE7dOgQX3/9NQB/fDmP5DeGW7vJnjx5ktzcXHQ6XYPsr5OQkMBff/3FmjVrrus6lo7Lhw4dqo6wRA1xdnZm5MiRTJgwgeaRTUl+Yzi7v30HRVH47bffCB27gKjpKyg0SLG5aHgk2RGN2iuvvILJZGLkyJF07drV5tj+/fsB8/5CDW3Juaqq7Nq1C4CYmJjrulbr1q3RaDRkZGRw9uzZaohO1JR27drh5+dnfdyiRQtGjTL3lsrfswqQJoOiYZJkRzRKhYYywh7/kCVLvgLgpZdesjmuqqp1WsaybLchSU5O5ty5c+h0Ojp06HBd13Jzc7NuDGrZTFTUfSaTuUB5+vTpeHa6mSYDHwewbpEiREPSsL6uCmGH3J2/4BLRgf7dO1pXBJZ39913c/DgwQY5hWXpTdWxY0d0Ot11Xy8mJoYmTZpYkx5Rd2VnZ7N27Vpyc3MZO3YsYa3a4zd0orX3jqXJ4I2tA2SFlmgwJNkRjdK/v4vDd/DfUTQaDgPf7EixaZevKArh4eGEh4c7LsgaUlBQYB2B6datW7Vcs0OHDtc9QiRqh06n4/DhwxiNRjIzMzmeq1y2yaAkO6KhkGRHNDonzxWwcG+htV2+SuP6Jrtnzx5MJhOhoaHX1FtH1G8eHh7WvkoBAQGU6YrQKNh0EZcmg6KhkZod0eh8+OUPV2yXn5yczM8//3xdS7LrKpPJxI4dO4DqG9WxUFWVlJQU1q5dKw0G67iYmBhrT6QQvduFJoPm/89Uk5FHO7o2isRfNB6S7IhGJSsri4/mvop6oTjTovw32V27dhEfH8+ePXscEWKNOnToEOfPn8fNzY2OHTtW67XLyspYvHgxmzZtapCJYkNlNBoZ3S0cRVHI2b6UUx8+xk/z/mEtYBaiIZBkRzQaqqoybtw4MlMScdm71PpNVqPA66PM7fKLi4ut9SyVFS3Xd1u3bgWge/fuODs7V+u1nZ2drSvX9u7dW63XFtWvsLCQn376iQULFmA0mrdK8Ww/EA+llJ07d/L55587OEIhqo8kO6JBKDSUETV9hbUp2qWPARYtWsSPP/6Is7Mzn78y3rr9w9rJN1mLk/fv309ZWRn+/v4NbjPZkydPkpqailarpWfPnjVyD8tokeXPUdRdOp2OpKQksrOzOZ54mOQ3hpP63hheeOEFAGbMmNFgN78VjY8kO41UZclAQ3FpU7T0nGKSkpKYNGkSYG4kGNujO8lvDCf5jeHWfbAA69RVTExMg9sLa8uWLYA5IfH09LzK2dcmKioKb29vmxEyUTc5OTnRq1cvADZv3mwd6Zw0aRKtW7fmzJkzPPfcc44MUYhqI8mOaBAdU3/YedL634PnxfHPpQk2j4eNf4X8/HxuuOEGpk6dWuk1zp49S2pqKoqi0KlTpxqPuTaZTCZKS0sB6N27d43dR6PRWDtR//XXXzV2H1E9LNOZZ86c4dixY4B5xOeTTz4B4JNPPmHt2rWODFGIaiHJTiN1aXJQnzumpuUU8dKy/dbHJhV+ij9t89jQeTRhrdrzzTffoNVqK72OZZVSy5Yt8fLyqtmga5lGo+H+++9n/PjxNb4zedeuXVEUhZSUFDIyMmr0XuL6uLm5WZPTjRs3Wkd3brjhBsaPHw/A448/Tn5+vsNiFKI6SLLTCFWWHPxz6T7ScoocGNW1O55VYNMjpDKKRovafxKx83dddtrOz88PvV5fY/UsdYG/v3+N38PLy4u2bdui1+vJzc2t8fuJ69O3b1+cnJxISUnh6NGj1ufnzJlDREQEycnJTJw40YERCnH9JNmpYXWxNqay5KB8n5n6wvJne//H29BcpbxGQcXZNwy4/LRdjx49mDRpUoPbHmLPnj21/s18xIgRTJo0iZYtW9bqfYX9vLy86N69OwDr16+3ju54eXnxxRdfoNFoWLRoEYsWLar09eU/445lygiQqJsk2alFdaU2ppm/R4XkoL53TJ0w8OIvVY0CTc4fQTWZl9MqqIyMCbMev9K0nUajaVCFyRkZGfz000/Mnz+/VhMed3d3NBr5eKkv+vXrh7OzM6dPn2bv/gPW5KVHbF9mzZoFwFNPPcX+/fsrvLYhTYmLhks+jWrYpR8E/9uSfM3fgqrrG5SlY6pF+T4z1c2emK82Cnbptcr/2f7n9yQAynIy0a18lfj/TubUf8dRfPIAX4+LZdke2xqe8tN2J0+eZN++fdZeIw2JqqqEhYXRqlWrGluBdSVGo5F9+/ZJg7o6zsPDw7oy68+4OMybqJi/oM2YMYObb76ZoqIibr/9dk6cSrP5d9iQpsRFwyXJTg2qrDbmxZ8vPrb3W1B1foMa3e3iBpfl+8xU5moJy5WOX2vMlY2Clb/WoLlxNn+WJtU8gpP340scjt9KSEgIG39bSvqXz2FU1StO261fv54ffviB9evXVym2+iQoKIixY8cycuTIWr+3qqp8+umn/PDDDxw4cKDW7y/s06dPH9zc3NicfvEfy+B5cXy/6xSLFy+mWbNmHDt2jHvvGo1aZgBgd0p2g5gSFw2fJDs1aN7HX1b4ICj/0J5vQZUlTjOWJlzzSI+7zqnSPjOVuVrCcrnj9hZCX+k+l15LxfbP0vycQolOz0033cSuXbvo06cPcOVpu9TUVI4dO4ZGo7HWLTQ0iqLg4uLikPu2adMGgE2bNsl+WXWcm5sbnXrdyObSSMD8D8byb7ZM58mKFSvw8fFhX4EnaM17SE/9bi+XTvrW9ylx0TApqnwCkZubi16vJycnB29v72q77pNT/slK5z6oFT4ObPU27UdTVoyXqQA3StBoNGi1WjRaLTvTyyh08qJT8zBW5layQ7WqgqKgUWDOqI5XHKG5kkJDGdEvrgLg9yk3WROgtJwi+r7xu03SVn6H5G/G9ea+j7dWuhpq7l2dmPLd5bcN+H3KTQTrXa33VRTz27HQKgp/Th9AiN6NzUezuP/jbVd8D6rJyITIDKY8+ViFepH/bUnmhQsjQeX/rBYvXkxSUhIxMTEOGf2oKTt27CA3N5d+/fo5JNGxKCws5J133qG0tJQxY8ZIwXIdtykxkzGfbr/s8enddczZXoxS7t+XwsUvHtf7OSSEvar6+9upFmNqdHxdFWKKD7Lbqa15l23Lb3KbAliVrZpo0CkoqPRxPkFrpywAjpT5czQ4EhWF07mWsQzb11quZVJh+vd7Wb/kfVzVYhRFQaPR4OTkhE6nw9XVFTc3Nzw8PPD09ESv1+Pt7Y1er6dJkyasOlaEqqooisLgeXHWD6zKVm6Vf3zvR1srjLBYWL71lT9e/vHgeXHc3vnilgyXpt1GVSV2zu+AOakqn2QBFzbzVFE0WlBVnr+lOeMG315pLA/GRjE4OojkrEKi/N0J0btx6tQpkpKSUBSFG2644TLvov7Jzs5mzZo1lJaW4uvr69A9vtzd3enatSvbtm0jLi6OFi1aNKgC8IameaBnhX9n5f/N/usvg02iA7b/vtdOvslmpPhyX6KEqG0yskPNjexYpOUUWX/Jrj1wxjrCYPnIt/k/QFXxz95P7xAty0vaYpPc2CRLlyY+Zj2cUmjmlI2HUlrhWIHqTK7JFW9Nsc3xAtWZ74o72YxAKarKzcUbAVjtemOFBK1C0nWZ0avyH5SVvt8rUi8MXCmgmsjf9zse7QeYe+aYjKjbFzO6b3sG33EfXVuH211gvWTJEhITE+ncuTN33HGHXa+tq1RV5csvv+TYsWNERkby8MMPOzy5yM/P591336W0tJS77rrLulmoqJvKj4JW6d+samLV+J60iajYrPJyI6pCVJeq/v6Wmp1aEKJ3I7aFHyF6N5vC4Lfu6lTxQ0RRyPLtwIqSdlRIIBTFmnR8My62Ym8ZVWVHWQTfFXfihFM4vx8vZF2qiaxCI3vyPPi2qBMrDW34tqgTe/I8KCwspLS0lFyTa4WpNlVR0OiDCfP1oK/uBIo10soSm0vHb8pdB+hStIuuOX8SnbOtyomOajJaR5rMt9Dg0X4AmT+/Se7O5bzWx4Xj65bw9msvMrxHK7sTnaNHj5KYmNjgRnXi4+M5duwYTk5O3HbbbQ5PdAA8PT2JjY0FYN26dQ1y1VtD8mBsFFtmDOSrx3vz7zvbXfHfrGoycnble9w5dACJiYk2xxpa81JRv8k0Vi2zFAaD+cPg0iFji8o+YMrXsADMur299VsTYE2EVBTW5wWjBgcDkAq2/08rCnuco1lw4VopWXmsnrvxkqFrlfaRgTgZ3HDLL+D0gT9QnV1p5evMGjXGZqRHUVVuMu2i1MmDTWobyidDCir/396Zx0dVnf//c2fNvpCQyUZCCGEREiQskS2EsBikSkEDVLABAgWLhWBVUIs7iNqvWloVlRqogAhIgYKAEA19ASkGNCw/QkJCIJANsodsM5k5vz/iXOfOlsnGMJfn/XpduPfcc859njk5dz5z1ghvKVw5J9QzOS41MSNhZdpKFCdvXcU1XSMc38FJpPhj8u8R7q5Fc8VNbN++HQqFwuSQy+Vmww0PJycnBAcHIygoCD4+PmY+bcejoqIChw8fBgDExcXdU36NHj0aZ86cgbe3NxobG+0yDZ6wnQBPZ7hLtTi0ay849BPUWSnHYc8fR6FBrUN92TXM334J2UVFiI6OxsaNGzEjcTbfdWWMfqZWdyxzQRDWILFjR/Tr3QgEiwXMrYXz+LBgi2mZhXM9hi+dEF93gR2tAozD/13xxvd//i369HTDCwZpTZqmH4/C7BG/AQD861RB65TwXwZNPxPjg7GBk9DQ0IDGxkZorzXim2sKgGsdoxTl0YxztUoArddTvCswQKFDRaMWnEYojDgwSBrKcavRtIuuI0gkEpSXlyM7O7vDosk4rlwut8tiei0tLdi9ezfUajVCQ0P5lpR7BaVSiaVLl4puzzEx4+bmhqH9w3DrSiUOV/YAwPHvoSG9vFsjhfvgxx9/xJNPPonjx49j3rx5GP99NpjvQ2ZbFc3N1CqpaURBeT3CfF1JBBHdBo3ZQfeP2WmLkppGnL1WheU7fha0rhj+gtIPqrWU3njGVFsYtxIZDiRcPrEvNqS1LtJnqZ/dcBySoV22DEg0Tmspr3+dKsAr+/8f9C/ZFyf1xtT+nlCr1e06NBqN4LqlpXu37ZBKpQLxY3xuLsyWc/21OTH17bffIjMzEy4uLliyZIld/o4J8aFWq9Go0WLIm60TBSzVaa1Wi7feegtr3/8IAUv+aTKIGTD/LqExPURnsfX7m8QO7C929HSm4rc1qNDW6aHmhJOxMLpbdPVMDsYYdu/eDQ8PD4wZMwY6na7DgsnccbfQiym9+NFoNPyGm8HBwfD29m6XiJLJZAJBJZPJunWsT2NjI7777jsMHjxYdPuQiZ1bt27Bz8/P4v3Nh07hteNVJuEvP9IfvxkSBE9nOV+nzS1bYa93DeG40NRzB8Tc9OiOpjWc9aUXN7H9eraZt7VNQu/2C8hwfFNXcOHCBVy6dAkSiQQPPvggVCrT2SMdhTGGlpYWaDQaXhjpz42vLZ1buzYUU1qtFlqtFk1NpqtM37x5Ezdv3jQJby+GgspYELX33Pj69OnTyMrKQkFBAZYsWQJnZ/picwQyMjLw3Xff4Te/+Q2GDRtmNs7Do4fijf9+b7REhBbrnp6FxiXzoXhgIh9ubtkKw3cNTVsnuhISO/cYAZ7OHRYVhmktCae28tavNmz8a8vRV0Stra3FoUOHAADjx4/vUqEDtE6P13+ZdweMMWi1WoEYKi4uxoEDB6DRaBAaGoqhQ4faJKjMhbW0tAhmSVkTVF1FTU0N3n33XV5Y2SKWjOMYhps7LN27F2apORrNzc0AgIMHD8Ld3R39+vUziWM8DpEDQ9OJzSi79DOe/UshgpaG8V1cliZhuCgkOJVfjp+u/9pCNOn944J87S1+aJyR40HdWLh3urHuFcTWj67RaLB582YUFxcjMDAQycnJDr8jN2MMn376KcrKyhAaGop58+ZBJuvcbxedTidonbJ0bu3a1vT2nn4ulUrbFET6cEMx1h5BZS5cKpU6rNBijGH//v3IysqCVCrF7NmzERERYTau4Tg8TznDli1b8I+d36E+ZpHZfLlfJjQ8NiQQe7OKzeTYvpWau7NVqLvfj/YQUo7cikZjdtoBiR1TLA0adjQYY9i7dy/Onz8PZ2dnLF68GN7e3vY2q0uorKxEWloaHnvsMbtuCdERGGM4ceIEvv/+e0gkEsyYMQO+vr4WBZWxWNILppaWFoHQMj4Mw++VV505UWQovozPzd2zFt/W+x0R/FqtFrt378bly5chlUqRmJjI73/WFiU1jRj99vfCmaI6LUq//DM4uTNclDJ4zHy9dbV5GzA3vkcvFH66XoW/fpcLwDZBYuuXfXePabTXD01rz73XhRCN2SE6RWe60+4lTp06hfPnz4PjOCQmJjq80KmtreUrdI8ePZCYmGhnizoGx3EYO3YsSkpKkJ2djYMHD2LBggXo1atXtz3TUBxZEkTtudceoWWIuTB7oN+Drz1CSSqVwtXVFT169EBlZSV27NiB/v37IzQ01Kqw0h/Px4fg3e+vQz/DMtatFMWRYTh16hQafcPhYaPQAVrH9xzIuITgnl4YFOqH41cqzC7FoV/MMLZfT4vvNONNiC2JDFvHNOpFl7+HE+L/7ziAtoWC2c2ev7kAV6UMw0K9TWw3J0I60ipkafHHAf7uqFdrTboTLc3Ovde79ahlB9SyI2auXr2Kr776CpMmTUJMTIy9zekUGRkZSEtLw5w5c0SzoaZarcaXX36JmpoazJs3z+pMH0eFMQadTmdVFBkKsbbOLf3fVvx7QWAB7du2Rr/RMZgOACdYzFQQZu6+EWOQDVc54Ktk8HGWQC11QYPUDS4KCT4r8BQ8V8IBG6f5IcjbBc7OzvxRo+Yw4YMTZpcIqVdrEebrarIlkK1db9Y2O7Zl2r5hF6CEA1YlDEBksCcvQCwJEls2WTbEmr/2GPZA3VjtgMSOuKmuroaXl5e9zeg0Bw8exJkzZxATE4OEhAR7m9NlNDY2orm5WRRldC+jF10dEVaWzm/evImioiIAgLOzM1QqFSQSiSCepcNc12Juiy9OaVo3P+bAMEx2E76SBnhImlCk9eTvme6416b3fHwODOHSCuRrfQzyMs0nQZGDAGkdAKFAu6Fxx/+0Ya02MoYQVorrnP8vosvcZs+/wjGGOO1Z6DgZPCRNcJO0oIlzQr3EFQopw8HmgSZb9/BpwbCodzWYVAEXuQR/v2y6zY/QZcYv7jptsAr/uVAKfYuaoSDpyDptv9r0y6MMwu728gEkdtoBiR3xoNVqcfToUQwZMgQBAQH2NqdTMMagVqv58TgajQaXLl1CVFSUww5ytYXs7Gy4uLggNDTU3qYQNpCdnY19+/ahubkZCoUCkydPRnR0tE1jgnQ6nUCAabVaFFc14FpFAwI95PB1kQruldY242Z1EyobNHj3REUbuetFjBlhpG8xsnQNhrGSXPjLGlDCvAUCbLT8OoKkNajVOUHGaa0KFGt2GYsuUxHWlk/tf6YeDgyTkAWNTgIXXT1K4Y2fpQPA9ILN2vulrfsAHnW9ihCnJkilUjRyStTqnODrxJCU+FiXt96S2GkHJHbEQW1tLfbu3YuCggJ4enpi2bJl3TYVvLu5ffs2jh49iqamJixYsEDU4saQoqIipKamgjGGCRMmYMyYMfeN745MTU0N9uzZg8LCQkilUixbtqxbx8eZa43g0PodrGOtrQsvJPRHVLAXKuqb8cz2n9vMU7/khjl5xIzipc4Ihpu0BWdv1mFdRn07LDfdC1AgQn5p+alnCvwoi7QuyMwItI4IINsEnO0iiwPDNGU2WpgU5ToXnG0J5sXckmgPrJ4V2w4b24YGKBP3DYwxnDt3DocPH0ZzczPkcjkSEhIcUuiUl5fjxIkTOH/+PBhjkEgkKCkpQWBgoL1Nuyv4+flh4MCBuHjxItLS0pCfn49p06bB19fX3qYRVvD09ERSUhIyMzOh0WgEQqe8vLzLyy/A0xlvz4zES3suQssYpByHdTMHm1041dqGy3r041BuVDZi+Y6f+d4oc0l0DFD4BGNYuA8C+zZi/f8siy7ulwDGAAkAnYlQEF4zjsMfnn4Go8J98HVmIe+fBIDOWPT/0kWlF3e/HRqEvT8XQ2tz+8WvG0ef0oTi5YGt3WpqtRpcRS0OlHnwImWUyy30lDZAomvB3vq+JkKI++VffbfegaaBv3brGWxQ/dnPdUh6uNEug5ipZQfUsuPIXLt2DWlpafyqwUFBQZg+fTp69uxpZ8tsR6fTIT8/H5mZmbhy5QofPnDgQMTHx993X/SMMWRlZeHQoUPQaDSQSCQYOXIkxo4dC1dXV3ubR7SDGzdu4IsvvkCfPn0wb968Lm+ls3WJDEPh0CoMAnlhoBdKs0eE2DRY13hMinHexqILAK6VN8BFIcGMj0+1KboM89b7Zy6tub0T9fHPF1Xj3UM5Zv1tFV2mfLX4IYwK92nzs7Xmry0+Gj+ns1A3VjsgseOYVFRU4B//+AcAQC6XIzY2FqNHj3aIBQNbWlpw7do15Obm4tKlS6iv/7UpvF+/foiNjUVQUJAdLbQ/lZWVOHLkCHJzW9dLcXd3R0pKikOUL9FKRkYGjh07hqioKEyfPh1Aq5jNy8tD796972rrqy0bENvSPaYXRtbytoStosuWtNbiWvPXknBqz6BiS/62JRa7Y/DyfSd2PvroI7z33nsoLS3FkCFD8Pe//x0jR460KS2JnXsftVqN69evo7KyUjCFfMuWLfD19cX48ePh5nZvLXZljsuXL+Onn37CtWvXoNH8Ou3WxcUFkZGRGDFiBHx8uu5Xjxi4cuUK0tPT0adPH0yc2Lq3kk6nw+nTpxEWFgaVSkXjeu5h6urqoNPp4OnpCQAoLi7G559/DqlUiqCgIPTu3RuhoaHw9/eHi4v9t6Vpq6Wms1/UtoguW9N2lPYKJ1uxNrOrK59jyH0ldr7++mv8/ve/x8aNGxETE4MPP/wQu3btQk5Ojk0jv0ns3Fs0NTXh9u3bKCsrQ1lZGUpKSlBcXAzGGKRSKZ577jk4OTkBaP3Suxd+6TPGoNFooFAo+LD09HQUFxdjypQpfFfUiRMnkJaWBqC1pSIiIgL9+/dHeHg4pFKpXWx3BPTTpvWfUX5+PrZu3QqgVSgGBgYiICAAgYGB8PHxgbe3d6e3zyC6h5ycHBw6dAg1NTUm9zw8PKBSqdCjRw94e3vDy8sL3t7e8PT0vKurhItlBXlrdJePxkJKP1C8uz7L+0rsxMTEYMSIEXyXhk6nQ69evfCnP/0Jq1evbjN9d4qdkpISaDQafj0Jw4+b4zjB8+rq6qDVaiGXy/mdoLVaLerq6iCRSBAWFsbHLSoqQkNDg+BZjDE+f8PWgdraWqjVaigUCri6uvJfHPqXTf/+/XnBcOPGDdTW1lpcWt/Hx4ePW1tbi8bGRsjlcri7u/M2VFZWgjGGgQMH8i+ovLw8lJSU8NNI9ZtRNjc3o6mpCePGjePj/ve//0VOTo7Js93d3REUFITJkyejR48e/Gdm7qVp/LkYIpPJBNPSS0pK0NTUBJVKxf+yrKioQGFhoWBNkObmZjQ3Nwvsbm5uRkNDA+7cuQNXV1ekpKTw+W7atAlFRUVITEzEAw88AAC4desW8vLyEB4eDj8/P2qR6CAFBQX43//+h4KCAkELmZ4ZM2YgKioKAFBYWIizZ8/yC8MpFArB3lUhISF8Payvr0dlZSUkEgk4jjM5PDw8eKGtVqsF3Y/GuLi4CJYNuHPnjsW4zs7OfL4tLS2oq6uzOa61fJVKpcm7xJa4Op0OtbW1FuMqFAq+rrQnLmMMNTU1/P83b97EzZs3UVpaarUeu7q6YtGiX/fVOn78OBoaGhAfH89v6puXl4fCwkK+XCUSCX/I5XK4urry142NjQBa3wWGY+Jqamqg1WoRGBjIf8a3b98WfG6GdVYqlfItyhzHob6+Hjpd64gYw3d7Q0MDdDodevbsyf9NVFVVWSwPjuP4d6o+vX5RSDc3N/4d3NjYCI1GAz8/P97e2tpaVFdXW/ws3d3deR8M83V1deV/TOjfdT4+Pvw4uTt37qCystJivoZ2Fd6uRUH5HQR5KtHbzxMymQweHh7d8sP0vpmNpVarcfbsWbz44ot8mEQiwaRJk5CRkWE2jb4g9VirqJ3liy++6LKVS1999VX+fNu2bXyF7SyrVq3iK8qePXusVpT24Ovri+DgYABAWloaSktLLcYtKCgwCVMqlRg2bBhUKhVCQkKQmpqKy5cvIzb216mL586d41tKbMXb2xvLly/nr/fv34/S0lLMmzcP4eHhAFoHPh84cKBd+d65c4ff1BBoFeHNzc0CYeXn5yfKVYLvNmFhYQgLC0NLSwtKS0v51r/S0lJUVVUJZgPdunUL58+ft5jXrFmz+Jdkfn4+/v3vf1uMO3PmTERGRvJxd+7caTHuo48+iujoaADA9evXsW3bNotxExIS+O7ZoqIibN682WLc+Ph4jBs3DkDrF/Fnn31mMe64ceMQHx8PoPXL9aOPPrIY96GHHsLDDz8MoPVHxN/+9jeLcaOjo/Hoo48CaH2fWosbFRWFGTNmAGgVXNbihoSEYPDgwaiqqkJ1dTWys7MBtIpQc+keeugh/nzHjh1dtsHsE088gUGDBgFo7Sq3Jmrbw9SpU/nhFdu3b0d5eXmX5Dt+/HjExcUBaH2HX79+vUvyNSznI0eO4OLFi+1Kn2VwvnLlSrv2nDi82CkvL4dWq+XVvR6VSoXLly+bTfP222/j9ddfvxvmtalkDQfo6VcU1e8pA/y6sJxxC0BbTfR68QKAX45eJpPx4YwxsxVYoVBYbW1wdnbm76vVarS0tEAmk/Hqn+M4/peboe/u7u64ffs2n9b4F7NcLjd5bkBAACZPnsxfe3h4tO6ObJCvUqk0WXm3rdYS/dgBPV5eXtDpdILP1MvLCxEREYJ9fZRKpdnD2dkZ7u7ucHNzEzxb/6VIdB8ymQzBwcG8qAZMW/KCg4MxefJkNDQ08L9kDfeuMvwFLZfL4e3tzbd+6ltL9deGfyMSiUTQbWmM4d+pvnXBlrj6+mAJ4+5Oa+8Cw7gcx1mNa2yDrfm2ZYPxO9BaXHd3d4wYMYK/XrduHf/5G9YtnU4HHx8fQQu2TCbjW1X06P8WFAoFevToAa1WC51Oh6qqKj6uoT1ardbEd2vvcMOyYowJVoU2ztf4ndhWt7W59Pp0+s+iu/LVL/Zo/DdsDXN2GYfbE4fvxiouLkZQUBBOnTqFUaNG8eEvvPACjh8/jtOnTUeGm2vZ6dWrF43ZIQiCIAgH4r7pxvL19YVUKkVZWZkgvKysDP7+/mbT6H+REwRBEAQhfuw/jaWTKBQKDBs2TDBuQ6fTIS0tTdDSQxAEQRDE/YnDt+wAwLPPPoukpCQMHz4cI0eOxIcffoj6+nosWLDA3qYRBEEQBGFnRCF2Zs+ejdu3b+OVV15BaWkpHnzwQRw+fNhk0DJBEARBEPcfDj9AuSugRQUJgiAIwvGw9fvb4cfsEARBEARBWIPEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQokYU20V0Fv0i0rW1tXa2hCAIgiAIW9F/b7e1GQSJHQB1dXUAgF69etnZEoIgCIIg2ktdXR08PT0t3qe9sQDodDoUFxfD3d0dHMd1Wb61tbXo1asXbty4Ido9t8Tuo9j9A8Tvo9j9A8Tvo9j9A8TvY3f5xxhDXV0dAgMDIZFYHplDLTsAJBIJgoODuy1/Dw8PUf7xGiJ2H8XuHyB+H8XuHyB+H8XuHyB+H7vDP2stOnpogDJBEARBEKKGxA5BEARBEKKGxE43olQq8eqrr0KpVNrblG5D7D6K3T9A/D6K3T9A/D6K3T9A/D7a2z8aoEwQBEEQhKihlh2CIAiCIEQNiR2CIAiCIEQNiR2CIAiCIEQNiR2CIAiCIEQNiZ0uZv369eA4DikpKXxYU1MTli1bBh8fH7i5ueHxxx9HWVmZ/YzsJOZ8jIuLA8dxgmPp0qX2M7KdvPbaayb2DxgwgL/v6GXYln+OXn4AUFRUhHnz5sHHxwfOzs6IjIzEmTNn+PuMMbzyyisICAiAs7MzJk2ahCtXrtjR4vbTlo/z5883KceEhAQ7Wtw+evfubWI/x3FYtmwZAMevh2355+j1UKvVYs2aNQgLC4OzszPCw8Px5ptvCvatslc9pBWUu5DMzEx8+umniIqKEoSvXLkSBw8exK5du+Dp6YlnnnkGM2fOxMmTJ+1kacex5CMALF68GG+88QZ/7eLicjdN6zSDBg3CsWPH+GuZ7NfqIYYytOYf4NjlV1VVhTFjxmDChAk4dOgQevbsiStXrsDb25uP8+6772LDhg3YsmULwsLCsGbNGjz88MO4dOkSnJyc7Gi9bdjiIwAkJCQgNTWVv3akqcyZmZnQarX89cWLFzF58mQkJiYCcPx62JZ/gGPXw3feeQeffPIJtmzZgkGDBuHMmTNYsGABPD09sXz5cgB2rIeM6BLq6upYREQEO3r0KBs/fjxbsWIFY4yx6upqJpfL2a5du/i42dnZDADLyMiwk7Udw5KPjDGTa0fj1VdfZUOGDDF7TwxlaM0/xhy//FatWsXGjh1r8b5Op2P+/v7svffe48Oqq6uZUqlkX3311d0wsdO05SNjjCUlJbHp06ffHYPuAitWrGDh4eFMp9OJoh4aY+gfY45fD6dNm8YWLlwoCJs5cyabO3cuY8y+9ZC6sbqIZcuWYdq0aZg0aZIg/OzZs9BoNILwAQMGICQkBBkZGXfbzE5hyUc927Ztg6+vLwYPHowXX3wRDQ0Nd9nCznHlyhUEBgaiT58+mDt3LgoLCwGIpwwt+afHkctv//79GD58OBITE+Hn54ehQ4fi888/5+8XFBSgtLRUUIaenp6IiYlxmDJsy0c96enp8PPzQ//+/fH000+joqLCDtZ2HrVaja1bt2LhwoXgOE409VCPsX96HLkejh49GmlpacjNzQUAnDt3DidOnMDUqVMB2LceUjdWF7Bjxw789NNPyMzMNLlXWloKhUIBLy8vQbhKpUJpaeldsrDzWPMRAJ588kmEhoYiMDAQ58+fx6pVq5CTk4M9e/bcZUs7RkxMDDZv3oz+/fujpKQEr7/+OsaNG4eLFy+Kogyt+efu7u7w5Xf16lV88sknePbZZ/HSSy8hMzMTy5cvh0KhQFJSEl9OKpVKkM6RyrAtH4HWLqyZM2ciLCwM+fn5eOmllzB16lRkZGRAKpXa2YP2sXfvXlRXV2P+/PkAxPMu1WPsH+D479HVq1ejtrYWAwYMgFQqhVarxdq1azF37lwAsGs9JLHTSW7cuIEVK1bg6NGjDtHv3xFs8fEPf/gDfx4ZGYmAgABMnDgR+fn5CA8Pv1umdhj9Lw8AiIqKQkxMDEJDQ7Fz5044Ozvb0bKuwZp/ycnJDl9+Op0Ow4cPx7p16wAAQ4cOxcWLF7Fx40ZeCDg6tvg4Z84cPn5kZCSioqIQHh6O9PR0TJw40S52d5R//vOfmDp1KgIDA+1tSrdgzj9Hr4c7d+7Etm3bsH37dgwaNAhZWVlISUlBYGCg3eshdWN1krNnz+LWrVuIjo6GTCaDTCbD8ePHsWHDBshkMqhUKqjValRXVwvSlZWVwd/f3z5Gt5O2fDQccKcnJiYGAJCXl3e3ze0SvLy80K9fP+Tl5cHf39/hy9AYQ//M4WjlFxAQgAceeEAQNnDgQL6rTl9OxjN3HKkM2/LRHH369IGvr6/DlKOe69ev49ixY1i0aBEfJqZ6aM4/czhaPXz++eexevVqzJkzB5GRkXjqqaewcuVKvP322wDsWw9J7HSSiRMn4sKFC8jKyuKP4cOHY+7cufy5XC5HWloanyYnJweFhYUYNWqUHS23nbZ8NNc8npWVBaD1Be2I3LlzB/n5+QgICMCwYcMcvgyNMfTPHI5WfmPGjEFOTo4gLDc3F6GhoQCAsLAw+Pv7C8qwtrYWp0+fdpgybMtHc9y8eRMVFRUOU456UlNT4efnh2nTpvFhYqqH5vwzh6PVw4aGBkgkQlkhlUqh0+kA2Lkeduvw5/sU4xH1S5cuZSEhIez7779nZ86cYaNGjWKjRo2yn4FdgKGPeXl57I033mBnzpxhBQUFbN++faxPnz4sNjbWvka2gz//+c8sPT2dFRQUsJMnT7JJkyYxX19fduvWLcaY45ehNf/EUH4//vgjk8lkbO3atezKlSts27ZtzMXFhW3dupWPs379eubl5cX27dvHzp8/z6ZPn87CwsJYY2OjHS23nbZ8rKurY8899xzLyMhgBQUF7NixYyw6OppFRESwpqYmO1tvO1qtloWEhLBVq1aZ3HP0esiYZf/EUA+TkpJYUFAQO3DgACsoKGB79uxhvr6+7IUXXuDj2KsektjpBozFTmNjI/vjH//IvL29mYuLC5sxYwYrKSmxn4FdgKGPhYWFLDY2lvXo0YMplUrWt29f9vzzz7Oamhr7GtkOZs+ezQICAphCoWBBQUFs9uzZLC8vj7/v6GVozT8xlB9jjP3nP/9hgwcPZkqlkg0YMIB99tlngvs6nY6tWbOGqVQqplQq2cSJE1lOTo6drO0Y1nxsaGhgU6ZMYT179mRyuZyFhoayxYsXs9LSUjta3H6OHDnCAJgtG0evh4xZ9k8M9bC2tpatWLGChYSEMCcnJ9anTx/28ssvs+bmZj6Oveohx5jB0oYEQRAEQRAig8bsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBAIiLiwPHceA4jt+TKD09HRzHmWw+2dW89tpr/LM//PDDbn0WQdyPkNghCKLdzJ8/n/9yNjwSEhLsbVqnWLx4MUpKSjB48OBO51VWVga5XI4dO3aYvZ+cnIzo6GgAwHPPPYeSkhIEBwd3+rkEQZhCYocgiA6RkJCAkpISwfHVV1916zPVanW35u/i4gJ/f3/IZLJO56VSqTBt2jR88cUXJvfq6+uxc+dOJCcnAwDc3Nzg7+8PqVTa6ecSBGEKiR2CIDqEUqmEv7+/4PD29ubvcxyHTZs2YcaMGXBxcUFERAT2798vyOPixYuYOnUq3NzcoFKp8NRTT6G8vJy/HxcXh2eeeQYpKSnw9fXFww8/DADYv38/IiIi4OTkhAkTJmDLli18d1N9fT08PDywe/duwbP27t0LV1dX1NXVddjnhoYGTJ06FWPGjOG7tjZt2oSBAwfCyckJAwYMwMcff8zHT05ORlpaGgoLCwX57Nq1Cy0tLZg7d26HbSEIwnZI7BAE0W28/vrrmDVrFs6fP49HHnkEc+fORWVlJQCguroa8fHxGDp0KM6cOYPDhw+jrKwMs2bNEuSxZcsWKBQKnDx5Ehs3bkRBQQGeeOIJ/Pa3v8W5c+ewZMkSvPzyy3x8V1dXzJkzB6mpqYJ8UlNT8cQTT8Dd3b1DvlRXV2Py5MnQ6XQ4evQovLy8sG3bNrzyyitYu3YtsrOzsW7dOqxZswZbtmwBADzyyCNQqVTYvHmziS0zZ86El5dXh2whCKKddPu+6gRBiI6kpCQmlUqZq6ur4Fi7di0fBwD7y1/+wl/fuXOHAWCHDh1ijDH25ptvsilTpgjyvXHjBgPAcnJyGGOMjR8/ng0dOlQQZ9WqVWzw4MGCsJdffpkBYFVVVYwxxk6fPs2kUikrLi5mjDFWVlbGZDIZS09Pt+jT+PHj2YoVKwRhP/zwAwPAsrOzWVRUFHv88cdZc3Mzfz88PJxt375dkObNN99ko0aN4q9Xr17NwsLCmE6nY4wxlpeXxziOY8eOHTOxITQ0lH3wwQcWbSQIomNQyw5BEB1iwoQJyMrKEhxLly4VxImKiuLPXV1d4eHhgVu3bgEAzp07hx9++AFubm78MWDAAABAfn4+n27YsGGCPHNycjBixAhB2MiRI02uBw0axLewbN26FaGhoYiNje2Qr5MnT0bfvn3x9ddfQ6FQAGgdd5Ofn4/k5GSBD2+99ZbA/oULF6KgoAA//PADgNZWnd69eyM+Pr5DthAE0X46PwqPIIj7EldXV/Tt29dqHLlcLrjmOA46nQ4AcOfOHTz66KN45513TNIFBAQIntMRFi1ahI8++girV69GamoqFixYAI7jOpTXtGnT8M033+DSpUuIjIzk7QeAzz//HDExMYL4hgONIyIiMG7cOKSmpiIuLg7/+te/sHjx4g7bQhBE+yGxQxCEXYiOjsY333yD3r17t2v2U//+/fHtt98KwjIzM03izZs3Dy+88AI2bNiAS5cuISkpqcO2rl+/Hm5ubpg4cSLS09PxwAMPQKVSITAwEFevXm1zoHFycjKefvppPPbYYygqKsL8+fM7bAtBEO2HurEIgugQzc3NKC0tFRyGM6naYtmyZaisrMTvfvc7ZGZmIj8/H0eOHMGCBQug1WotpluyZAkuX76MVatWITc3Fzt37uQHABu2lnh7e2PmzJl4/vnnMWXKlE6vYfPXv/4Vc+fORXx8PC5fvgygdQD222+/jQ0bNiA3NxcXLlxAamoq3n//fUHaxMREyOVyLFmyBFOmTEGvXr06ZQtBEO2DxA5BEB3i8OHDCAgIEBxjx461OX1gYCBOnjwJrVaLKVOmIDIyEikpKfDy8oJEYvnVFBYWht27d2PPnj2IiorCJ598ws/GUiqVgrjJyclQq9VYuHBhx5w04oMPPsCsWbMQHx+P3NxcLFq0CJs2bUJqaioiIyMxfvx4bN68GWFhYYJ0Li4umDNnDqqqqrrMFoIgbIdjjDF7G0EQBNEZ1q5di40bN+LGjRuC8C+//BIrV65EcXExP7DYEnFxcXjwwQftul1D7969kZKSgpSUFLvZQBBihFp2CIJwOD7++GNkZmbi6tWr+PLLL/Hee+8JxuQ0NDQgPz8f69evx5IlS9oUOob5urm54cKFC91lulnWrVsHNzc3k8UHCYLoGqhlhyAIh2PlypX4+uuvUVlZiZCQEDz11FN48cUX+YHOr732GtauXYvY2Fjs27cPbm5ubeZZVFSExsZGAEBISIjNAqkrqKys5Bdb7NmzJzw9Pe/aswnifoDEDkEQBEEQooa6sQiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDX/Hzi9oo2CGWatAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -3446,9 +8707,9 @@ "\n", "x = np.arange(40, 80, 0.1)\n", "plt.plot(x, fit_model(x, *mi.values), color='k', label='Best fit')\n", - "plt.plot(x, peak(x, *mi.values['A_p1', 'mu_p1', 'sigma_p1']), color='gray', ls='--')\n", - "plt.plot(x, peak(x, *mi.values['A_p2', 'mu_p2', 'sigma_p2']), color='gray', ls='-.')\n", - "plt.plot(x, bkg(x, *mi.values['A_bkg', 'tau_bkg']), color='gray')\n", + "plt.plot(x, peak(x, *mi.values['A_p1', 'mu_p1', 'sigma_p1']), color='gray', ls='--', label='Peak 1')\n", + "plt.plot(x, peak(x, *mi.values['A_p2', 'mu_p2', 'sigma_p2']), color='gray', ls='-.', label='Peak 2')\n", + "plt.plot(x, bkg(x, *mi.values['A_bkg', 'tau_bkg']), color='gray', label='Background')\n", "plt.legend()\n" ] }, @@ -3457,12 +8718,12 @@ "id": "7ef19633-0947-4568-b537-a1c69e42b7c2", "metadata": {}, "source": [ - "Das Ergebnis sieht sehr gut aus. Alle Kacheln sind grün und die Daten scheinen durch die Funktion gut beschrieben zu werden. Natürlich können wir auch das Gesamte Fitverfahren etwas kompakter in einer Zelle darstellen:" + "Das Ergebnis sieht sehr gut aus. Alle Kacheln sind grün und die Daten scheinen durch die Funktion gut beschrieben zu werden. Natürlich können wir das gesamte Fitverfahren auch etwas kompakter in einer Zelle darstellen:" ] }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 519, "id": "2311f135-8410-4f35-8d58-b9bcef0fed53", "metadata": {}, "outputs": [ @@ -3471,30 +8732,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 110.2 (χ²/ndof = 1.0) Nfcn = 536 FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 530
EDM = 3.81e-07 (Goal: 0.0002) EDM = 1.61e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -3511,7 +8769,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3522,7 +8780,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3533,8 +8791,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3544,8 +8802,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3555,8 +8813,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3566,7 +8824,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3577,8 +8835,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3588,8 +8846,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -3610,146 +8868,1250 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - "
0 A_p1 314 317 7
1 A_p2 568 580 7
2 mu_p1 53.27 0.08 53.24 0.07
3 mu_p2 60.53 0.06 60.43 0.05
4 sigma_p1 2.13 0.06 1.99 0.05
5 sigma_p2 2.81 2.80 0.04
6 A_bkg 109 12 147 14
7 tau_bkg 39.7 2.8 34.1 2.0 0
A_p1 48.4 10 (0.147) 0.138 (0.254) 0.1230 (0.316) -0.0575 (-0.144) -0.1117 (-0.373) -0 (-0.039) 1 (0.040) 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.147) 49.5 0.001 0.0227 (0.058) -0.0262 (-0.065) -0.1235 (-0.407) -0 (-0.020) 0 (0.018) 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.138 (0.254) 0.001 0.00611 0.0033 (0.749) 0.0031 (0.684) -0.0023 (-0.684) -0.057 (-0.064) 0.018 (0.080) 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1230 (0.316) 0.0227 (0.058) 0.0033 (0.749) 0.00313 0.0021 (0.646) -0.0017 (-0.696) -0.0529 (-0.082) 0.0118 (0.074) 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.623) -0.0015 (-0.680) -0.0513 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0575 (-0.144) -0.0262 (-0.065) 0.0031 (0.684) 0.0021 (0.646) 0.00331 -0.0013 (-0.528) -0.1338 (-0.203) 0.0273 (0.167) -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.623) 0.00297 -0.0012 (-0.518) -0.1409 (-0.179) 0.0155 (0.142)
sigma_p2 -0.1117 (-0.373) -0.1235 (-0.407) -0.0023 (-0.684) -0.0017 (-0.696) -0.0013 (-0.528) 0.00186 0.0696 (0.141) -0.0218 (-0.178) -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0816 (0.137) -0.0142 (-0.172)
A_bkg -0 (-0.039) -0 (-0.020) -0.057 (-0.064) -0.0529 (-0.082) -0.1338 (-0.203) 0.0696 (0.141) 131 -32 (-0.966) -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0513 (-0.068) -0.1409 (-0.179) 0.0816 (0.137) 209 -28 (-0.965)
tau_bkg 1 (0.040) 0 (0.018) 0.018 (0.080) 0.0118 (0.074) 0.0273 (0.167) -0.0218 (-0.178) -32 (-0.966) 8.12 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0155 (0.142) -0.0142 (-0.172) -28 (-0.965) 4.01
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:51.617180\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 110.2 (χ²/ndof = 1.0) │ Nfcn = 536 │\n", - "│ EDM = 3.81e-07 (Goal: 0.0002) │ │\n", + "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 530 │\n", + "│ EDM = 1.61e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 314 │ 7 │ │ │ │ │ │\n", - "│ 1 │ A_p2 │ 568 │ 7 │ │ │ │ │ │\n", - "│ 2 │ mu_p1 │ 53.27 │ 0.08 │ │ │ │ │ │\n", - "│ 3 │ mu_p2 │ 60.53 │ 0.06 │ │ │ │ │ │\n", - "│ 4 │ sigma_p1 │ 2.13 │ 0.06 │ │ │ │ │ │\n", - "│ 5 │ sigma_p2 │ 2.81 │ 0.04 │ │ │ │ │ │\n", - "│ 6 │ A_bkg │ 109 │ 12 │ │ │ │ │ │\n", - "│ 7 │ tau_bkg │ 39.7 │ 2.8 │ │ │ 0 │ │ │\n", + "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 48.4 10 0.138 0.1230 -0.0575 -0.1117 -0 1 │\n", - "│ A_p2 │ 10 49.5 0.001 0.0227 -0.0262 -0.1235 -0 0 │\n", - "│ mu_p1 │ 0.138 0.001 0.00611 0.0033 0.0031 -0.0023 -0.057 0.018 │\n", - "│ mu_p2 │ 0.1230 0.0227 0.0033 0.00313 0.0021 -0.0017 -0.0529 0.0118 │\n", - "│ sigma_p1 │ -0.0575 -0.0262 0.0031 0.0021 0.00331 -0.0013 -0.1338 0.0273 │\n", - "│ sigma_p2 │ -0.1117 -0.1235 -0.0023 -0.0017 -0.0013 0.00186 0.0696 -0.0218 │\n", - "│ A_bkg │ -0 -0 -0.057 -0.0529 -0.1338 0.0696 131 -32 │\n", - "│ tau_bkg │ 1 0 0.018 0.0118 0.0273 -0.0218 -32 8.12 │\n", + "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", + "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", + "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", + "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0513 0.0062 │\n", + "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1409 0.0155 │\n", + "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0816 -0.0142 │\n", + "│ A_bkg │ -0 -0 -0.057 -0.0513 -0.1409 0.0816 209 -28 │\n", + "│ tau_bkg │ 0 0 0.010 0.0062 0.0155 -0.0142 -28 4.01 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 128, + "execution_count": 519, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXfElEQVR4nO3deXxTdb4//tdputF9b9qmpYAKFEERFCuWAemAgP5wSh1FcL96dVBanGEQZ8RlRnD5zgjccXB0vOq9Co5AFGGQEbBAByoCXhQoVsBq1xQKNGkD3ZLP74+S2LRpmqRJTpbX8/HI40HOOUnehyzn3c/2loQQAkREREReJEjuAIiIiIh6YoJCREREXocJChEREXkdJihERETkdZigEBERkddhgkJERERehwkKEREReR0mKEREROR1guUOwBlGoxF1dXWIjo6GJElyh0NERER2EEKgubkZ6enpCAqy3UbikwlKXV0dMjMz5Q6DiIiInFBdXQ2VSmXzGJ9MUKKjowF0nWBMTIzM0RAREZE9dDodMjMzzddxW3wyQTF168TExDBBISIi8jH2DM/gIFkiIiLyOkxQiIiIyOswQSEiIiKvwwSFiIiIvA4TFCIiIvI6TFCIiIjI6zBBISIiIq/DBIWIiIi8DhMUIiIi8jpMUIiIiMjrMEEhIiIir8MEhYiIiLwOExQiIiLyOkxQiEh2er0ekiRBkiTo9fpe94ko8DBBISIiIq/DBIWIiIi8DhMUIiIi8jpMUIiIiMjrMEEhIq/HQbNEgYcJChEREXkdJihERETkdZigEBERkddhgkJEsjMYDOZ/79mzB+3t7Rb3u+8nosDABIWIZKVWq5GTk2O+P3PmTCQlJVnc776fiAJDsNwBEFHgUqvVKCwshBDCYrvRaLS4X1dX58mwiMgLsAWFiGRhMBhQVFTUKzmxpvsx7O4hCgwOJyi1tbWYP38+EhMTMWjQIIwePRoHDx407xdCYNmyZUhLS8OgQYOQn5+PEydOWDzHuXPnMG/ePMTExCAuLg4PPvggWlpaBn42ROQzSktLUVNT4/Dj1qxZwySFKAA4lKCcP38eEydOREhICD799FOUl5fjT3/6E+Lj483HvPzyy1i9ejVef/117N+/H5GRkZg+fTpaW1vNx8ybNw/Hjh3D9u3bsWXLFuzZswcPP/yw686KiLxefX29U4978sknkZ2dDbVa7eKIiMibSMKe9tVLnnzySezduxelpaVW9wshkJ6ejl//+tf4zW9+AwDQarVITU3FO++8gzvvvBPHjx9HTk4ODhw4gPHjxwMAtm3bhpkzZ6Kmpgbp6en9xqHT6RAbGwutVouYmBh7wyciL7Jr1y5MmTLFqcdKkgQA2LBhAwoKClwZFhG5kSPXb4daUD755BOMHz8et99+O1JSUjB27Fi8+eab5v2VlZXQaDTIz883b4uNjcWECRNQVlYGACgrK0NcXJw5OQGA/Px8BAUFYf/+/Y6EQ0Q+LC8vDyqVypxsOML0d1VxcTG7e4j8lEMJyvfff481a9bg8ssvx7/+9S88+uijWLhwId59910AgEajAQCkpqZaPC41NdW8T6PRICUlxWJ/cHAwEhISzMf01NbWBp1OZ3EjIt+mUCiwatUqAHA6Samuru6zRZeIfJtDCYrRaMQ111yD5cuXY+zYsXj44Yfx0EMP4fXXX3dXfACAFStWIDY21nzLzMx06+sRkWcUFBRgw4YNvbp2FQqF3c/h7FgWIvJuDiUoaWlpvRZMGjlyJKqqqgAASqUSANDQ0GBxTENDg3mfUqnE6dOnLfZ3dnbi3Llz5mN6Wrp0KbRarflWXV3tSNhE5MUKCgpQXl5uvr9161acOXPG7senpaW5IywikplDCcrEiRNRUVFhse27777D4MGDAQBDhgyBUqnEzp07zft1Oh3279+P3NxcAEBubi6amppw6NAh8zGff/45jEYjJkyYYPV1w8LCEBMTY3EjIv/RvcVk0qRJCA0NNd/vq/tHkiRkZmYiLy/P7fERkec5tJLsokWLcMMNN2D58uX45S9/iS+//BJvvPEG3njjDQBdPxjFxcX44x//iMsvvxxDhgzB008/jfT0dNx2220Aulpcbr75ZnPXUEdHBx577DHceeedds3gIaLAoYhJhUHXYGVPV9KycuVKh7qDiMh3OJSgXHvttfjoo4+wdOlSPP/88xgyZAhWrlyJefPmmY/57W9/C71ej4cffhhNTU248cYbsW3bNoSHh5uPef/99/HYY49h6tSpCAoKwpw5c7B69WrXnRUR+bzwoeORPHsJWiv/D+d2vgFDc6N5nyI6EdfeuQgzbpktY4RE5E4OrYPiLbgOCpF/0ev1iIqKAgC0tLTgUFUT7n77EKQgBXKHxGP5/3cFhqYnAwCefu19fKSJQ3O7wM2jlPjrvGsQFOT4LCAi8jy3rYNCRORuTRc68NuPjkMKUkD/7b+xZu5opMQMMu9fcu9svDb3KojODmw7psErnx6TMVoichcmKETkVZ7ZUgGNrg0d52px9tNVCFH0/pkalxWHs9u6uoXf3FuFk6dZy4vI3zBBISKvEZo+HDsqGhEcJOHMppcg2i/2eaz+WAkunPwSnUaBZz85ZldVZCLyHUxQiEh2kZGREELgrj/+DwDgF2Mz0N5wCkIIREZG9vm48zvfQKhCwr9PNuJfx6zN9iEiX8UEhYi8wpEaLUoqziBIAhZMucyux3Q2aXDXuK4FHu9/5QO0tLCrh8hfMEEhIq/wX5+fAAD8f1elIzup71aTnu4alwpjRyvC0i7H/h+a3BQdEXkaExQikt3xeh0+K2+AJAGP3WRf64lJ3KAQtHyzHQDw1r4qd4RHRDJggkJEsvvL5ycBADOvTMNlKdG99pvGqJjGpBgMBvO+vXv3QrtfDWE0YN/351GhafZY3ETkPkxQiEhWJ083Y+vRrorE9rSeqNVqi6KlBQUFMDafQdPurgG2Hx+udU+gRORRTFCISFbvfVEFIYD8kakYmWZ7ZUm1Wo3CwkLU1vZOQnRfbsSFin345HAdjEZOOSbydUxQiEg2nQYjtnzT1Xoy97pMm8caDAYUFRXZXO/k/OdvouZcCyKyRkGSJOj1epfGS0SewwSFiDxCr9dDkiSLxGF/5Tk0trQhdlAI8i5Ptvn40tJS1NTU2DymU3cGbTXHEDHyZy6Lm4jkwQSFiGTzyeE6AMDM0UqEBtv+Oaqvr7frOTubzyJyxI1AkGLA8RGRfJigEJEs2joN+PTS4Nhbr0rv9/i0tDS7nrfp87+jraYc4YOvGlB8RCQvJihEJIs93zVC19qJlOgwTBiS2O/xeXl5UKlUkCTJ5nGGC1qc+Xg5guO7kh5rXUtE5P2YoBCRLD75uqt755Yx6VAE2U46AEChUGDVqlV2P//F78qgb213Oj4ikhcTFCLyuMYmHTYd+B4A8PPh8XY/rqCgABs2bEBSUlK/xxpazuL19ducjpGI5MUEhYg8bs+pJgSFhqPjfB1Gp/deOdaWgoICvPTSS3YdW3L4pDPhEZEXYIJCRB7RfXn6/9m0A8JowIXje/odU2KNvQNmj1fWoK2jw+HnJyL5BcsdABH5P7VajYULF5rv7/jzQiii+++m6cvEiRPtOq7hszcwYuRmp1+HiOTDFhQicqu+lqc3NDfC0NyITZs2OfycCsVPa5z01wJzRqNx+PmJSH5MUIjIbexZnn7JkiUW3T+OUiqV/Rzx02vv2rVrQK9FRJ7DBIWI3Mae5elrampQWlrq9GscOnTI7mNvueUWZGdnQ61WO/16ROQZTFCIyG3sXZ7eWnVie3Xv7rH3tQoLC5mkEHk5JihE5Db2zrZZtGiRxxIGU3dTcXExu3uIvBgTFCJyC71ejylTpgDofyBrY2OjQ60akZGREEJACIHIyEjzdnunLAshUF1dPaCuJSJyLyYoRCQ7V7ZqOLKuir1dUETkeUxQiMjt3nvvPcTEJ9g8xhWtGu+99x7S0/uvjGxibxcUEXkeExQicrvZs2fjpnt/bdexA2nVmD17NsrLy/s9TpIkZGZmIi8vz+nXIiL34kqyROQRVa2D7DrO0VYN03gUE71eb/63JEldq6B022/qAlq5cqXDM4CIyHPYgkJEblevbUVj9DAoohL7PMYdrRrvvfce0nskPCqVChs2bEBBQYHLXoeIXI8JChG53d7vz0EKUiBq7EwAvQeyuqtVY/bs2Th+/DhiJ92LpFsXY9Gf30VlZSWTEyIfwASFiNxuf2VT1z+MXTN0ei5P785WDYVCAdFxEZE5P8PFxBHs1iHyEUxQiMgtuk8X/nzXbgijAa1VRwBYLk+/detWt7dqtNd+CwA4XKuDXq+HJEmQJMlivAoReRcOkiUil1Or1Vi4cKH5fsV/L4YiOgkGfRMAy+XpJ02a5PZWjbb67yCMBtRr26DRtbr1tYjINZigEJFLqdVqFBYW9qpgbGhu9MjrW5vVIzpa0X66EmHKy/B1jc4jcRDRwLCLh4hcxmAwoKioqFdyYmKaqRMeHu7hyIC2S908/8cEhcgnMEEhIpcpLS1FTU1Nn/tNq8Xu3bvXg1F1aas9DgD4ukbr8dcmIscxQSEil7F3FViNRuPmSHprr+tqQSmvb4EUHOrx1ycixzBBISKXsXcV2J7TjN3JNCal/Xw9kqPD0GkUCE29zGOvT0TOYYJCRC6Tl5cHlUrVZ0Vh0xiUiRMnejiyrtcelxUPYTRAEd21ou2ePXsGXD2ZiNyDCQoRuYxCocCqVasA2F4tNiYmBkIICCEQGRnpsfikH79E7esP4sK3XRWTZ86ciezsbKjVao/FQET2YYJCRC5VUFCADRs2IFXpXTVw1Go1Xl+2oNd059raWhQWFjJJIfIyDiUozz77rHkFRtNtxIgR5v2tra1YsGABEhMTERUVhTlz5qChocHiOaqqqjBr1ixEREQgJSUFixcvRmdnp2vOhoi8QkFBAf68fhdS5y5HbN7dHlkt1hbT9GdYmf5smhJdXFzM7h4iL+JwC8qoUaNQX19vvv373/8271u0aBE2b96M9evXY/fu3airq7P4QTIYDJg1axba29uxb98+vPvuu3jnnXewbNky15wNEXmNr2qbEZ41BkHBoR5ZLdYWe6c/l5aWejAqIrLF4ZVkg4ODrY7A12q1eOutt7B27VrcdNNNAIC3334bI0eOxBdffIHrr78en332GcrLy7Fjxw6kpqbi6quvxh/+8AcsWbIEzz77LEJDOfWPyF8c/LEJANBafUTeQGD/9Gd7jyMi93O4BeXEiRNIT0/H0KFDMW/ePFRVVQHoKv7V0dGB/Px887EjRoxAVlYWysrKAABlZWUYPXo0UlNTzcdMnz4dOp0Ox44d6/M129raoNPpLG5E5L3OtrSh8uxFAEBbTbnM0dg//dne44jI/RxKUCZMmIB33nkH27Ztw5o1a1BZWYm8vDw0NzdDo9EgNDQUcXFxFo9JTU01L8qk0WgskhPTftO+vqxYsQKxsbHmW2ZmpiNhE5EHdK8SvO+7ru9ze+OPMLa2yByZ/dOf8/LyPBwZEfXFoQRlxowZuP322zFmzBhMnz4dW7duRVNTEz788EN3xQcAWLp0KbRarflWXV3t1tcjooE5fGk5eVP9G7nZO/1ZznEyRGRpQNOM4+LicMUVV+DkyZNQKpVob29HU1OTxTENDQ3mMStKpbLXrB7TfVsrS4aFhSEmJsbiRkTe6/Clgnym+jfewDT9OT093WK73NOfici6ASUoLS0tOHXqFNLS0jBu3DiEhIRg586d5v0VFRWoqqpCbm4uACA3NxdHjhzB6dOnzcds374dMTExyMnJGUgoROQtghQ4WtcMADi84yOPL8ZmS0FBAcrLyxE5+udIunUxbn/6b7JOfyaivjk0i+c3v/kNbr31VgwePBh1dXV45plnoFAoMHfuXMTGxuLBBx/EE088gYSEBMTExODxxx9Hbm4urr/+egDAtGnTkJOTg7vvvhsvv/wyNBoNfv/732PBggUICwtzywkSkXvo9XpERUUB6PpjxSQ0ZSjaOo2IiwjB0CTvSEy6UygUMLa1IDLnZ2hOiGK3DpGXcihBqampwdy5c3H27FkkJyfjxhtvxBdffIHk5GQAwKuvvoqgoCDMmTMHbW1tmD59Ov7617+aH69QKLBlyxY8+uijyM3NRWRkJO699148//zzrj0rIpJNWMZIAMA1WfEICrI+KFVu7ZqTAIATp/Vo6zQgLJhJCpG3cShB+eCDD2zuDw8Px2uvvYbXXnutz2MGDx6MrVu3OvKyRORDwjK6Vpe+JitO3kBsMOjOwHBBC0TEokLTjDGqOLlDIqIeWIuHiFzCtEy84UITWqu+wVUq7x7M3t5wCgBwpFYrcyREZA0TFCIasE2bNpkHup/f8QYa1j2FuTeN9+oCfKZunqNMUIi8EhMUIhqw+fPno7a21mJbXZ13Vwk2JSjdW1C6Lzan1+vlCo2IwASFiFxA+FCV4MjISAgh8G3ZdgBAhaYZbZ3eEx8RdWGCQkROsSfp8OYqwar4QYiLCEGHQeA7jfzL8RORJSYoROQwtVrt0OKK3lglWJIkjM6IBcCBskTeiAkKETlErVajsLCw15gTW7y1SvCVTFCIvJZD66AQUWAzGAwoKiqyOubEGkmSoFKpvLZKsKkFhTN5iLwPW1CIyG6lpaWoqamx61hfqBJsSlC++bERkiIEOp3OvG/Pnj1eNbiXKNAwQSEiuzkylsQXqgSr4gchJjwYUnAIgqMTMW7cOPO+mTNnIjs722unSRP5OyYoRGQ3e8eSvPjiiz5RJViSJOSkReFCxT50aht6JWC1td69lguRP2OCQkR2y8vLg0qlMnff9OXRRx/12m6dni5PGoRzO9+wus9b13IhCgRMUIjIbgqFAqtWrQIAm0mKryQnAGCsPw5Dc2Of+715LRcif8YEhYgcUlBQgA0bNiA9Pd1iuyI6CaFpw2WKynmDOnT9HwTvXMuFyJ8xQSEihxUUFKC8vLzrjiIEyrnLkfHIWzA0n5E3MCeMuTzLruO8dS0XIn/FBIWInGLqxglX5SAsawwy4iNgaDknc1SOy5t4A6TwqD73S5KEzMxMr13LhchfMUEhogEJyxgJALhaFStzJI5Tq9UYPXo0RKv1Wjy+sJYLkb9igkJEAxKWMQIAcN3QJAghIIRAZGSkzFH1z54l+31hLRcif8Wl7oloACSEpnclKOMGJ8gci/3sWbI/KSkJJ0+eRGhoqAcjIyITtqAQkdNCElVQhEdhUEgQRqRFyx2O3exZsr+xsRH79u3zUERE1BMTFCJymmn8yZXp0QhR+M7Pib1Thjm1mEg+vvOLQkReJTIyEo8+/TIA4NohSTJH4xh7pwxzajGRfJigEJHTDv14HgAwbnC8zJE4xp4l+1UqFacWE8mICQoROeW8vh2nzugBAGOzfCtBsWfJ/pdeeolTi4lkxASFiJxy8FLrybDkSCRE+t5Mlz6X7I/qmo00e/ZsOcIiokuYoBCRUw7+0LVq7LXZvjO9uKeeS/anzl2OjEffxtmWNp9Yy4XInzFBISKnfOkHCQrQrfKyoQOXX3UdpCAFvtXYV0CQiNyHCQoROexiuwFHarQAfD9B6e6KlK6aPN/WN8scCRExQSEihx2ubkKnUSA1JgyZCYPkDsdlrkjp6tZhCwqR/JigEJFd9Ho9JEmCJEnY+50GQFfria2pur7mcnOCwhYUIrkxQSEih31V7X/dOwAwPLWri6dC0wyDse86PUTkfiwWSESOkYJwuKarC8QfEpTIyEhz0UCDUSA8JAitHUb8cFaPYclRMkdHFLjYgkJEDglNGYIL7QZEhwdjuNJ3CgTaQxEkYXhq1zlVsJuHSFZMUIjIIWGqUQC6lrdXBPnP+BOTEcoYAMC39RwoSyQnJihE5JCwzK4ExR+6d6wZkdbVgnKcLShEsmKCQkR2MRgMAADjBS1aq77BNZmxMkfkHuYWFE41JpIVExQi6pdarUZOTg4A4Nxnf0XDuqdw++RroFarZY7M9UZcGldTfe4imls7ZI6GKHAxQSEim9RqNQoLC1FbW2uxva6uFoWFhX6XpMRHhkIZEw4A+K6B3TxEcmGCQkR9MhgMKCoqMk/D7c60rbi42Nz94y9Ms5OOc8l7ItkwQSGiPpWWlqKmpqbP/UIIVFdXo7S01INRuZ9poCzHoRDJhwkKEfWpvr7epcf5ipHmqcZsQSGSCxMUIupTWlqaS4/zFaYWlApNs9XuLSJyPyYoRNSnvLw8qFSqPgsCSpKEzMxM5OXleTgy9xqaFIUQhYTmtk7UNl2UOxyigDSgBOXFF1+EJEkoLi42b2ttbcWCBQuQmJiIqKgozJkzBw0NDRaPq6qqwqxZsxAREYGUlBQsXrwYnZ2dAwmFiNxAoVBg1apVVveZkpaVK1dCoVB4Miy3Cw0OMtfhueLaKZAkCXq9XuaoiAKL0wnKgQMH8Le//Q1jxoyx2L5o0SJs3rwZ69evx+7du1FXV4eCggLzfoPBgFmzZqG9vR379u3Du+++i3feeQfLli1z/iyIfIxer4ckSV5/4dPr9ZgzZw6EIgSK6CSLfSqVChs2bLD4fvuTkWld41BCUrLlDYQoQDmVoLS0tGDevHl48803ER8fb96u1Wrx1ltv4c9//jNuuukmjBs3Dm+//Tb27duHL774AgDw2Wefoby8HO+99x6uvvpqzJgxA3/4wx/w2muvob293TVnRUQuFZ55JTIeeQuJt/4GALB161ZUVlb6bXIC/LRgW2hytryBEAUopxKUBQsWYNasWcjPz7fYfujQIXR0dFhsHzFiBLKyslBWVgYAKCsrw+jRo5Gammo+Zvr06dDpdDh27JjV12tra4NOp7O4EZHnhKtyIAUpAKMRADBp0iS/69bpybQWSmjKEJkjIQpMwY4+4IMPPsBXX32FAwcO9Nqn0WgQGhqKuLg4i+2pqanQaDTmY7onJ6b9pn3WrFixAs8995yjoRKRi5gqGLfVWP8jwh+ZuniC49MhBYfKHA1R4HGoBaW6uhpFRUV4//33ER4e7q6Yelm6dCm0Wq35Vl1d7bHXJgp4imCEpl0BAGitDpwEJSU6DLFhEtpqjiEoIg579uzxuxVzibyZQwnKoUOHcPr0aVxzzTUIDg5GcHAwdu/ejdWrVyM4OBipqalob29HU1OTxeMaGhqgVCoBAEqlstesHtN90zE9hYWFISYmxuJGRO5nMBgQEp+Giye+QLDmGDrP9b2qrL/56KOPcGL1fWhY9xQMutOYOXMmsrOz/a72EJG3cihBmTp1Ko4cOYLDhw+bb+PHj8e8efPM/w4JCcHOnTvNj6moqEBVVRVyc3MBALm5uThy5AhOnz5tPmb79u2IiYkxV0sl8nfd/xL31r/MTRWMOxqr0bj5FZx6d4ncIXmMqUDixaYzFttra/2zQCKRVxID9LOf/UwUFRWZ7z/yyCMiKytLfP755+LgwYMiNzdX5Obmmvd3dnaKK6+8UkybNk0cPnxYbNu2TSQnJ4ulS5fa/ZparVYAEFqtdqDhE3ncxo0bRUZGhgBgvqlUKrFx40a5QzPbuHGjkCTJIkYAQpIkIUmSV8Xqap2dnUKlUvU69+7/B5mZmaKzs1PuUIl8jiPXb5evJPvqq6/illtuwZw5czBp0iQolUqLvzYUCgW2bNkChUKB3NxczJ8/H/fccw+ef/55V4dC5HVMf5nX1tZabPemv8wDtYKxSaAWSCTyNpKw9ivk5XQ6HWJjY6HVajkehXyGwWBAdnZ2nxc/SZKgUqlQWVkp6xTeXbt2YcqUKf0eV1JSgsmTJ7s/IA9bt24d7rrrrn6PW7t2LebOneuBiIj8hyPXb9biIfIQX/nLPFArGJsEaoFEIm/DBIXIQ3zlwh/oF+j+CiSaXHPNNR6KiCgwMUEh8hBfufAHagVjk+4FEnv+H3S/7+8r6RLJjQkKkYf4yoXfdIG2NjjNnysYd1dQUIANGzYgPT3dYntGRoZMEREFHiYoRB5iz1/m3nLhLygowJzFfwq4CsbdFRQUoLy8HIq4NCTduhhD730JR48elTssooDBBIXIg2z9ZS6EwJw5c6DX66HX6yFJEiRJgl6v93icQghoEq5CxiNvITR9OIDAqGDck0KhgLHlLCJG3AiDchTOX/TPqdVE3ogJCpGHmf4yN9m6dWuflbzlUtmoR835iwgNCUbHmR8BBEYFY2tEZzs6z3cNXD5xxvPJIlGgYoJCJIPuF3pPXvjtbZnZ/V3XEu/jsmIhOlo9Eps3a2/sStIq6nXmbd5aooDIXzBBIaJeTAnKjcMSZI7EO3Q0/ogLFfuwdO5N5m0sHkjkXkxQiJwk9zgRd2ntMOCL788CYIJicvH7r3Dm4+VoOXfaYrs3lSgg8jdMUIjcwNHkpWd14/b2dov7nuxKOPDDObR2GKGMCcdlyZEee11vFBkZic7OTiQIndX9gVCbiEguTFCIPKDDYMTru0/h4f85iCc+PIzl204gduJcBCdkYNOmTcjJyTEfO3PmTCQlJVnc91RXgl6vx+xHngIA3DA0DlFRURBCQAiByMjATFZKS0uhqa/rc7+3lCgg8jfBcgdA5O9OntHjd5u/wtFay7/C426chwjlUMybNx/osSya0Wi0uG/qShjoGiQ9W2qmTZtmMUBXCIGIK24AAEy6LNHp1/EnvlKigMjfsAWFyG0kRI+fjdvfPIijtTrERYRgyc0j8OSMEVgwZRgmZMfh9Gd/Q8/kxBpXdCWo1epeLTU9W2a+rtUhODYFxrYLyLuM408A3ylRQORvmKAQOalna0TPxCEm93YkTH0I7QaBvMsScPTlO/GrKZfh7vFKLJ4+Ao8Mb4ehudHu13O2K8E0HmbOnDmora212NdzkOenx7oGgV448QXCQwJvzRNrTCUKAO8uUUDkb5igEDmhv9aIY7VahGeOhr58N2YnN+Ivt+fAoD9v8Rwajcap13a0K8FWi0v3lpn2jk5sK++aXnzh+B6nYvNH5hIFVvITbytRQORPmKAQOUitVqOwsLDP1ohfL16MSdddjdMfPo3Gza9g9W/uw6hRo3o9j7NdAo4+bu/evTb3m1pm3vjwnzijuwj9if24WPkVFyLrpqCgAH97+/2Ark1E5GmSMP0J5UN0Oh1iY2Oh1WoRExMjdzgUQAwGA7Kzs1FTU+PQ4yRJMrdWtLS0IDIy0vxctbW1sPdrqFKp8MMPPzj01/rbb7+NBx54oN/jxt8yH/+3e5tFt5NKpcKqVat4AQZgNArkPP1PNFUewZnN/w9bPnyv1yBjIrLNkes3W1CIHFBaWupwcgLAIgExtUrYqm7cl5deegmtra0OrbGiVCrteu6DW97rNSaGC5H9JChIwuWpMQjPGoPwjJEBW5uIyFOYoBA5wBVTSdesWWNOUvqqbgzJ+ldz9uzZDr/e9ddf3+8xQUHWX48LkVm6IqVrLZiQ5MEyR0Lk/5igEDnAFVNJn3zySYsBtdaqGy9eW4bUucuR8PNf4d11Hzr9Wmq1GqNHj+5zv6nlpue6K91xIbKfXGZKUJKYoBC5GxMUIgeYppza2yXTl55dJz2rGy+5eQSCBsUi+pqZ2K5L7+tpbOprMG93KpUKjy0ssuv5uBAZcPmlpf9DmaAQuR0TFCIHODNuxJr+uk7CQxRo3PwKRGcH9pw8i/Bh1wGwvy6PwWBAUVGRzcG3SUlJOHnyJBJG3mBXzFyIDBiTnQwACEtSQREaLnM0RP6NCQqRg/oaN6KITsKYGXebB7D2p7+uk44zP+D0xy+g9vUH0XrqSwBd662MHDnSfExfCYs9g3kbGxvx73/vxZ7mxEvTZ7kQWX+So8IQHxECowBOnm6ROxwiv8YEhcgJ3ceNSCHhyJz/IjIeeQsVR76CEMLumTOA7a6T1lMHe82sqav7qXCdteXq9Xo9pkyZYtdrbz/0LSrPtiJ9xiOQpN6tQlyIzJIkSbgiNRoA8F1Ds8zREPk3JihETjJdsKPH3YqgjCuRkx6LtppjAIBDhw7Z/TxpaWmIjIy0qBocHh5+aXn1/g1kKvDeuq7WlwX3z7PaKsSFyHobruxKUCqYoBC5FRMUooEIUiD6mlsAAHdf91NC0b21oa/uHltdJ46st2JrPIutrqYUZTp+DMlCqCII90/MtjqbqLKykslJD+YWFA0TFCJ3YoJCNAARwyciODoRSVGhmDEqpc/jHO06cXTGjK3xLNZeW5IkjC4sghSkwJxxGUiJ7hrw2XM2Ebt1ejO1oHzXwDEoRO7EBIXITqaqwN1XcI3MmQwAKBybhtBg61+n9957z+GuE2dnzNTX11u0ojz11FO9nkulUmH13/8XJyNHQZKAh/KGOvVageqKlK4EpbbpIppbO2SOhsh/MUEhclJnUChih08AAMwZP9giMeheoG/27NkOd504u97KiRMnLKosv/DCCxb7t27diu+//x5HQ0YAAKbnKDE0Ocqh1wh0sREhUMZ0tTixFYXIfZigEDlpe3kDOgwCV6RG4cje7RaJQUFBAVQqFTZu3IjIyEiHu04cXW9FkiQkJibi2Wef7bUwW/fuokmTJmH9V3XYdkyD4CAJj910mV3nSpauUHImD5G7MUEhctLWI10XflXTEasrtg600F6fdXp66F4p2drCbN23fVuvxbOfdM00Wjx9OK7MiLU4tudsIrJueGpXq1MFB8oSuQ0TFCIn6Fo7UHriDITRgE/fXGEzMRhIob2eM2t+97vf9UpYQmKSIIVF4uzZs/0+30N/+gfaOo2YdEUyx54MANdCIXI/JihEduqeZPxl3T/R3tGJZP330NTX9fkY0+ya7mNSHNW9O2jp0qU4fvw4AEAKCcPoh/8E5cN/R/yUB+x6ruraeqREh+HPv7wKQUEDqycUyIazi4fI7ZigENlBrVZbjDFZ/vh81L7+IKI0h+16fFNTk8u6TkwJi+how8fP3oexWfEIibdv1o8iKh4r77gaSVFhA4oh0F2WEgVJAhpb2tHY0iZ3OER+iQkKUT/6qgpsaG7EbvW7dj2HuwrtpcaE4e17rkZbw/eX6un0LTgmGS8vuAM3XGb7OOpfRGgwshIiALAVhchdmKAQ2WBPVWCFQuHUarGuooBA0+d/hxRsq1VEwhuvrcY9EznuxFVM41A4UJbIPZigENlgz5LzBoMBQgi3FdqzNbNm06ZN5q6nzvNdLTxBQZZfa2V6BjZu3ID759/pdAzU2wglExQid2KCQmSDvUvOFxcXe6zQnilh2bhxI+bPn9+r68loNJr/vXXrVtRU/ch6Om4wQhkDAPiWCQqRWzBBIbLB3rEjzqwWOxD2dD0BwMSJE1lPx026z+QxGm2/D0TkOCYoRDb0t+R89zEmniy0Z2+144FMbybbshMjEBochAvtBlSfvyB3OER+hwkKkQ22lpx31RgTZ9jb9aTRaNwcSeAKVgThiksryh6vZzcPkasxQSHqh2nJ+RRl76rA7hhjYg97u56USqXN/dYqNJP9hqd2jUPhQFki13MoQVmzZg3GjBmDmJgYxMTEIDc3F59++ql5f2trKxYsWIDExERERUVhzpw5aGhosHiOqqoqzJo1CxEREUhJScHixYvR2dnpmrMhcpOCggI8+z/bkTp3OWKu/6Xbx5j0x96up2nTpnk4ssBimsnzrUYncyRE/sehBEWlUuHFF1/EoUOHcPDgQdx0002YPXs2jh3rKj62aNEibN68GevXr8fu3btRV1dn8QNuMBgwa9YstLe3Y9++fXj33XfxzjvvYNmyZa49KyI3KPtRi/CsMYDRYHWMiScL7Xlr11OgGZHGqcZEbiMGKD4+Xvz9738XTU1NIiQkRKxfv9687/jx4wKAKCsrE0IIsXXrVhEUFCQ0Go35mDVr1oiYmBjR1tZm92tqtVoBQGi12oGGT2SX1o5OMeL3W8XgJVtESHK2aGlpkTskIYQQGzduFBkZGQKA+ZaZmSk2btxo1+NbWlrMj/OWc/IllZqzYvCSLSJr8SZx5jx/j4j648j12+kxKAaDAR988AH0ej1yc3Nx6NAhdHR0ID8/33zMiBEjkJWVhbKyMgBAWVkZRo8ejdTUVPMx06dPh06nM7fCWNPW1gadTmdxI3K37uMz/v1tPS52GNHZfBYdZ36QOzSzntWOHe166l4Acc+ePU5XXQ5USZGhMOibIAUpcOoMx/AQuZLDCcqRI0cQFRWFsLAwPPLII/joo4+Qk5MDjUaD0NBQxMXFWRyfmppqnkmg0WgskhPTftO+vqxYsQKxsbHmW2ZmpqNhEw3Iv0+dAwDcOfkqj3ThOMLZ6c09CyDOnDkT2dnZUKvVLo/RX0mShPYzPwIATpxmgkLkSg4nKMOHD8fhw4exf/9+PProo7j33nst/oJzh6VLl0Kr1Zpv1dXVbn09op72XkpQJl2RLHMkrtFXAcTa2loUFhYySXFAR+MPAIAKJihELuVwghIaGorLLrsM48aNw4oVK3DVVVdh1apVUCqVaG9vR1NTk8XxDQ0N5qmOSqWy16we031b0yHDwsLMM4dMNyJX62vKrSIqAd+d1kOSgDw/qARsaxVa07bi4mJ299jBYDDg4vdfQV++G3tL2UVG5EoDXgfFaDSira0N48aNQ0hICHbu3GneV1FRgaqqKuTm5gIAcnNzceTIEZw+fdp8zPbt2xETE2PR1EzkDUwXm+D4dLRWfYPR6dGIjwyVOaqB628VWiEEqqurUVpa6sGofI+pi6y18hAaN7+CklcXsouMyIUcSlCWLl2KPXv24IcffsCRI0ewdOlS7Nq1C/PmzUNsbCwefPBBPPHEEygpKcGhQ4dw//33Izc3F9dffz0AYNq0acjJycHdd9+Nr7/+Gv/617/w+9//HgsWLEBYmK1S8USe1b1KcFv1UTSsewp7nr/DKy8+jk5vtncVWnuPC0TsIiPyAEemBz3wwANi8ODBIjQ0VCQnJ4upU6eKzz77zLz/4sWL4le/+pWIj48XERER4he/+IWor6+3eI4ffvhBzJgxQwwaNEgkJSWJX//616Kjo8ORMDjNmNyi+5RbSZIspu4CEJAkIUmS3VN4vVVJSUnvc7NyKykpkTtUr9TZ2SlUKlWf/2+SJInMzEzR2dkpd6hEXseR67ckRD/lUL2QTqdDbGwstFotx6OQy5g+V7ZIkgSVSoXKykqfXQTNYDAgOzsbtbW1Vseh+MM5utOuXbswZcqUfo8rKSnB5MmT3R8QkQ9x5PrNWjxE6D3lti/CD8ZncBXagWEXGZFnMEGhgNfXeAJbfP3iYyqAmJ6ebrFdzgKIvsLeQo32HkdE1rGLhwKaqbvD1qwWa/yl+b57t9bWrVsxbdo0tpz0g11kRM5jFw+RnfqbctuTqUpwXl6eG6PyHGdXoQ1ktrrITNhFRjRwTFAooDnSVcPxGWTSVxeZIjoJv33lb+wiI3IBJigU0BwZJ8DxGdRdz0KNdz7zBjIeeQuxOTfKGBWR/2CCQgEtLy8PKpWqz6Z6AICkwJYtWxyqEuwrHF3kjSx1b0mbNnUypCAFyutYbZ3IFZigUECzZzwBJAmTJ09mtw7ZlB3T9fnYdfiERS0nInIOExQKeLbGE8Tm3Q0YO2WKjHzJsKRBEEYDFJHxONPSJnc4RD6PCQoReo8n+MVTryPjkbfQtXo5kXXdu8gS42LQeb4OAPCtpkXmyIh8HxMUoku6d+HURQ6DFKTAP//7VY7PILu1n64EAHzbwASFaKCYoBD1EBybCo2uDcFBEq7Jipc7HPIRBoMBF058AX35bny+aw8MBoPcIRH5NCYoRD2Eqbpq8oxWxWJQKAfGUv9MtZwuHN+Dxs2vYPOKR5GdnQ21Wi13aEQ+iwkK0SWm8QSPP981q+fa7ASZIyJf0Fctp9raWhQWFjJJIXISExSiHg78cA4AExTqn8FgQFFRkdWaPKZtxcXF7O4hcgITFKJuzunbcfJ01wDHcYM5/oRs66+WkxAC1dXVKC0t9WBURP6BCQpRN4d+PA8AuCwlCgmRoTJHQ97O3lpOjtR8IqIuTFCIuvmpe4etJ9Q/e2s5OVLziYi6MEEh6saUoIwfzPEn1L/+ajlJkoTMzEzk5eV5ODIi38cEheiSi+0GHK3VAgCuG8IEhfpnTy2nlStXso4TkROYoBBd8nVNEzoMAqkxYVDFD5I7HPIRtmo5Lf3Tm35XAZvIU5igEF1yoPJS9052Qt+VjYms6FnL6fan/4aMR97CXz/aDUmSWN2YyAlMUIguOXBpBs+1nF5MTujejTN96mRIQQqEKi+TMSIi38YEhQiAwSjwlSlB4fgTGqCctGgAYIJCNABMUIgAfKvRoaWtE1FhwRihjJE7HPJxw1MjoYARHY0/QgqPxp49LB5I5CgmKET4afzJNYPjoQji+BNynKmWkxACu3buQO3rD6Jh3VMQrc2YOXMmiwcSOYgJChF+Gn8ynuNPaIBMxQPbtGcstrN4IJFjmKBQwBNC4NAPlxIUriBLA8DigUSuwwSFAl5t00VodK0IDpJwdWac3OGQD2PxQCLXYYJCAe/gpdaTUekxiAgNljka8mUsHkjkOkxQKOAd/PGnBdqIBoLFA4lchwkKBTxTCwoHyNJAsXggkeswQaGAVn+2CcfruwoEjkwJkzka8nW2igea7rN4IJF9mKBQQPu6RgdJCkLH+TokRzFBoYHrq3igSqXChg0bWDyQyE4cEUgB7avqrtaTtprjMkdC/qSgoAD5+fmIjU9E4swiBEcnYt9fHocqIUru0Ih8BltQKKB99eN5tFZ9g5ajO7kcObmUQqEAjJ0ITc5GeNYYlNe3yB0SkU9hgkIB68MNG7Bp6Rw0rHsKbVXfcDlycov2hpMAgKO1WpkjIfItTFAoIKnVatz5y1+is7nRYjuXIydXa9ecAgAcrdPJHAmRb2GCQgGHy5GTJ5iKB5ao/wcA8E2N1upnjoisY4JCAYfLkZMnjUqPgSJIQmNLG+q0rXKHQ+QzmKBQwOFy5ORJ4SEKjEyLBgAcrmqSNxgiH8IEhQIOlyMnTzMVoby7+GlIkgS9Xi9vQEQ+gAkKBZy8vDwkpvSdfHA5cnK1sZldZRRC06+QORIi3+FQgrJixQpce+21iI6ORkpKCm677TZUVFRYHNPa2ooFCxYgMTERUVFRmDNnDhoaGiyOqaqqwqxZsxAREYGUlBQsXrwYnZ2dAz8bIjsoFArceM9vLt3jcuTkfmOz4gAAoamXAUH8XBHZw6EEZffu3ViwYAG++OILbN++HR0dHZg2bZpFc+WiRYuwefNmrF+/Hrt370ZdXZ3F0s4GgwGzZs1Ce3s79u3bh3fffRfvvPMOli1b5rqzIuqDXq+HJEk4oI1C8m1PISlVabGfy5GTOwxJikR0qIT2+gooohK5KCCRPcQAnD59WgAQu3fvFkII0dTUJEJCQsT69evNxxw/flwAEGVlZUIIIbZu3SqCgoKERqMxH7NmzRoRExMj2tra7HpdrVYrAAitVjuQ8CkAtbS0iKDIODF4yRaRvWSLqG5oFAAEALF161bR2dkpd4jkhzZu3Cgi4lPMnzUAQqVSiY0bN8odGpFHOXL9HtAYFK22a2XEhIQEAMChQ4fQ0dGB/Px88zEjRoxAVlYWysrKAABlZWUYPXo0UlNTzcdMnz4dOp0Ox44ds/o6bW1t0Ol0FjciZ4WrRgEALk+JRHxkuHn7pEmT2K1DLqdWq1FYWIgL509bbOeigES2OZ2gGI1GFBcXY+LEibjyyisBABqNBqGhoYiLi7M4NjU1FRqNxnxM9+TEtN+0z5oVK1YgNjbWfMvMzHQ2bApwBoMBQZHx0JfvRlLzCTazk1txUUAi5zmdoCxYsABHjx7FBx984Mp4rFq6dCm0Wq35Vl1d7fbXJP+jVquRk5ODlq+2oHHzK1j37MMYNWoUNm7cCCEEIiMj5Q6R/AwXBSRynlMJymOPPYYtW7agpKQEKpXKvF2pVKK9vR1NTU0Wxzc0NECpVJqP6Tmrx3TfdExPYWFhiImJsbgROcLUzF5bW2uxnc3s5E5cFJDIeQ4lKEIIPPbYY/joo4/w+eefY8iQIRb7x40bh5CQEOzcudO8raKiAlVVVcjNzQUA5Obm4siRIzh9+qf+2O3btyMmJgY5OTkDORciq9jMTnLhooBEzpOEtV/tPvzqV7/C2rVrsWnTJgwfPty8PTY2FoMGDQIAPProo9i6dSveeecdxMTE4PHHHwcA7Nu3D0DXxeLqq69Geno6Xn75ZWg0Gtx99934j//4DyxfvtyuOHQ6HWJjY6HVatmaQv3atWsXpkyZ0u9xJSUlmDx5svsDooBhMBiQnZ2N2tpaqwmyJElQqVSorKzkAG0KCI5cvx1qQVmzZg20Wi0mT56MtLQ08+0f//iH+ZhXX30Vt9xyC+bMmYNJkyZBqVRaNJ8rFAps2bIFCoUCubm5mD9/Pu655x48//zzDp4mkX3YzE5yUSgUWLVqFYCfFgE04aKARLY51ILiLdiCQo5gCwrJTa1WY+HChRZjoNLSM/CX/1rNRQEpoDhy/WaCQn7P1MxeU1sLsJmdZGL63Yq5YS4GDR6NVcV34Y7rBssdFpFHua2Lh8gXmZvZraTibGYnTzF9voJCwxGeNQaHa7jgJJEtTFAoIBQUFOBnv1oBRXSSxXbW3iFPiYyMhBACH762AgDwZeVZmSMi8m5MUCggdBiMOJN4FTIeeQuK2K71drZu3YrKykomJ+RR4wfHAwBOndGjsaVN5miIvBcTFAoIR2q10LcbEBcZBoO2a2FA1t4hOcRHhmJ4ajQA4OAP52SOhsh7MUGhgPDF913N6dcPTYQQRi5tT7K6bkhXgdX9lUxQiPrCBIX8ml6vhyRJeG7NOgBA7tBEmSMiAq69lKAcYAsKUZ+YoJD/CwpGWEZXGYXrhzFBIfldl92VoJTX6dDc2iFzNETeiQkK+TWDwYCQhDRcPLkfwQ3lGJYYIXdIRFDGhiMrIQJGARz68bzc4RB5JSYo5LfUajVycnLQ0ViNxs2v4NQ7v8XQoUNYuZi8gmkcypcch0JkFRMU8ktqtRqFhYUWS4sDQG1tLQoLC5mkkOxM3Twch0JkHRMU8jsGgwFFRUVWq8eathUXF8NgMHg6NCKzK5XhAIAvT57G2SauKkvUExMU8julpaWoqanpc78QAtXV1SgtLfVgVESWsuIHobPlHKTgEBypa5Y7HCKvwwSF/E59fb1LjyNyB6PRiOb/2wp9+W78Y8tnbNEj6oEJCvmdtLQ0lx5H5GqmAdy6fR+gcfMreH3JA8jOzubYKKJumKCQ38nLy4NKpTJXKu5JkiRkZmYiLy/Pw5ERcQA3kb2YoJDfUSgUWLVqFXoPkYU5aVm5ciXr8JDHcQA3kf2YoJBfKigowF1LV0IRnWSxXaVSYcOGDaxgTLLgAG4i+zFBIb91NvlqZDzyFsKyxgAAtm7disrKSiYnJBsO4CayHxMU8kunda34VtOMoCAFOs78AACYNGkSu3VIVvYOzI6Li3NvIEQ+gAkK+aU9JxoBAKNVsTBc0EIIgcjISJmjokDX3wBuk4kTJ3ooIiLvxQSF/FLpiTMAgEmXJ8scCdFPTAO4AdhMUvbu3cuBshTwmKCQ3zEaBUovtaBMuoIJCnmXgoICbNiwAenp6ZY7pJ9+jmfOnMl1USjgMUEhv3OsTodz+nZEhQVjbFac3OEQ9VJQUIDy8nLLjcJocZfrolCgY4JCfkWv1+PG2x8CAEzIjkOIgh9x8k79DdgWQkAIgaKiInb3UEDirzf5FYPBAEVEHPTlu5Go+44/7OS1IiMjUVJS0u9xNTU12LVrl/sDIvIyTFDIb6jVaowYORLnP38TjZtfwSvF97Afn7yaveud/PKXv+TnmAIOExTyC6b6JvV1dRbb2Y9P3szedVHOnTvHzzEFHElYKwrh5XQ6HWJjY6HVahETEyN3OCQzg8GA7OzsPpcQlyQJKpUKlZWVXKiNvIrps1tbW2u1Pk93/ByTP3Dk+s0WFPJ5rG9Cvqr7uij94eeYAg0TFPJ5rG9Cvsy0Lkp8fLxdx/NzTIEiWO4AiAbK3n58e48j8rSCggKEhYXhlltu6fdYfo4pULAFhXyeqb5JXyRJQmZmJvLy8jwYFZFjbr755kufY+tL4PNzTIGGCQr5PIVCgaXPv2h1n6neycqVKzmwkLyaaTyKtRI9/BxTIGKCQn5BGnI9km97ChHxlrV3VCoVNmzYgIKCApkiI7KfaTxKWCw/x0Qcg0J+4bNyDSKG34DlC+fjoZtyAABbt27FtGnT+Bcn+ZSCggL8LmgoXvvwU1yo2Id//PFX/BxTQGKCQj7vtK4V/1fVBAC4ddyQfteTIPJ2+TmpeCtrDEJTL8P1N9zI5IQCErt4yOd9Vt4AABibFYfUmHCZoyEauAmXKZESHYagsAh809AqdzhEsmCCQj7PlKBMy1HKHAmRawQFScjPSQUAbC/XyBwNkTyYoJBP07V2YO93DWit+gaP3XItPv30U1YwJr/wc3OC0oAmrRaSJEGSJH7GKWAwQSGf9tzqt/HjXx9Aw7qnYNSfx8yZM1nBmPzCDcMSER0WjMoDJbhi+Ejzdn7GKVAwQSGfpVar8ecl/wlDc6PFdlYwJn8QFqzAsAvHcObj5TjTYLm8PT/jFAhYzZi8nl6vR1RUFACgpaUFkZGRMBgMyMwajPq6WquPYeVX8nUGgwFpqiyc0dRZ3c/POPkit1Yz3rNnD2699Vakp6dDkiR8/PHHFvuFEFi2bBnS0tIwaNAg5Ofn48SJExbHnDt3DvPmzUNMTAzi4uLw4IMPoqWlxdFQKEB072/fs2cPdDodgoOD+0xOAFZ+Jd9XWlraZ3IC8DNO/s/hBEWv1+Oqq67Ca6+9ZnX/yy+/jNWrV+P111/H/v37ERkZienTp6O19aepcvPmzcOxY8ewfft2bNmyBXv27MHDDz/s/FmQ31Kr1cjJyTHfnzlzJkaOHGnjEZZY+ZV8Fat0U8ATAwBAfPTRR+b7RqNRKJVK8corr5i3NTU1ibCwMLFu3TohhBDl5eUCgDhw4ID5mE8//VRIkiRqa2vtel2tVisACK1WO5Dwyctt3LhRSJIkADh9Kykpkfs0iJxSUlLCzzj5HUeu3y4dJFtZWQmNRoP8/HzzttjYWEyYMAFlZWUAgLKyMsTFxWH8+PHmY/Lz8xEUFIT9+/dbfd62tjbodDqLG/k3g8GAoqIip1eFZeVX8nWmKt2SteqB4Gec/J9LExSNpmtBodTUVIvtqamp5n0ajQYpKSkW+4ODg5GQkGA+pqcVK1YgNjbWfMvMzHRl2OSFSktLUVNT49RjWfmV/IGpunEXyySFn3EKBD4xzXjp0qXQarXmW3V1tdwhkZsNpF+dlV/JX5iqGyvT0iy28zNOgcClxQKVyq6lxhsaGpDW7QvV0NCAq6++2nzM6dOnLR7X2dmJc+fOmR/fU1hYGMLCwlwZKnm5tB4/yPb67W9/i+XLl/OvSvIbBQUFyM/Px+DZxQiOTsKcG0bitcX38DNOfs+lLShDhgyBUqnEzp07zdt0Oh3279+P3NxcAEBubi6amppw6NAh8zGff/45jEYjJkyY4MpwyIf11//elxkzZvCHm/xOTEwM3v7zHxCZ8zP8nzETRjj2vSDyRQ4nKC0tLTh8+DAOHz4MoGtg7OHDh1FVVQVJklBcXIw//vGP+OSTT3DkyBHcc889SE9Px2233QYAGDlyJG6++WY89NBD+PLLL7F371489thjuPPOO5Genu7KcyMf1r3/3Z4khQMGyd/NGK1EUlQoGnRt+OjL71mbh/yewwnKwYMHMXbsWIwdOxYA8MQTT2Ds2LFYtmwZgK4m9scffxwPP/wwrr32WrS0tGDbtm0IDw83P8f777+PESNGYOrUqZg5cyZuvPFGvPHGGy46JfJ1BoMBu3btQltbG5599tl+u3s4YJACQViwAnddl4ULFftw78wbzNtZm4f8FZe6J6+iVquxcOFC1Nb+tEpsRkYGHn74YdQaY/GPnV+i9chnaNP+VH8nMzMTK1eu5IBB8nv//d4HePDuub22m5J0Dpwlb+fI9ZsJCnkNtVqNwsLCXmufmH58R85/Bvr08Xj+1pHI6qhCfX090tLSkJeXx5YT8nsGgwHZ2dl9Tr9nbR7yBY5cv106i4fIWbYWZhNCAJKEio//gpxF/4PCa7MQETpUhiiJ5NPf2kCiW22eyZMney4wIjfxiXVQyP/1uzCbEDA0N+L6yDOICGVeTYGHtXko0DBBIa9g74/q1Yk+1yNJ5BL2rg3k7BpCRN6GCQp5BXt/VHOGDXZzJETeibV5KNAwQSGvYM/CbOkZKv74UsCytTYQp9qTP2KCQl6h/4XZJPzX6lX88aWAZqrN03NRy/gUJacYk9/hNGPyKtbWQQmJScZbr/8Fd8/9pYyREXkPg8GA0tJSrNv1NTZ9dwFDRo3DriVTERbMBJ68G9dBIZ9mMBiws2QXHvt7CXRBkXj6wTlYMPUKucMi8jqtHQb87JUSNOja8PzsUbgnN1vukIhscuT6zS4e8joKhQI/hg5Be3Yuhoy+Dg9OGiZ3SEReKTxEgcemXAYA+MvnJ9HawZo85D+YoJDX+aFRjz9v/w4AsOjnVyA8hM3WRH355bWZyIgbhNPNbfjfsh/lDofIZbjiFcnO1J9eX1+PlFQlXjsejIsdBlw/NAGF16jkDo/Iq4UFK/D45KEoXr0Oz68qRaLuJsyeMZUDysnnMUEhWVkbFKuITkL6zY/g/y1ZiqCgvqcdE1HXd+jXCxei4dJ3aI76JahUKqxatYqzesinsYuHZGMqDtg9OQEAQ3Mjqte/gC9LtskUGZFvMH2H6np8h2pqa1FYWAi1Wi1TZEQDx1k8ZLfuXTEDrSLMyqxEA9PfdwgAEhIS8OGHH2Ly5Mn8HpFX4CweL2AwGLBr1y6sW7cOu3btgsFg/+j6gTzWXdRqNQYPHowpU6bgrrvuwpQpU5Cdne30X2iOVGYlot76LbAJ4Ny5c8jPzx/Qd5VILkxQ3GAgF3NXJwKu0FdXTO0AmpFZmZVoYBz5bgzku0okF3bx2Mne7g3Txbznf6tp+XZby1EP5LGuPIeej3FFV0zP1zYYDMjPz+835pKSEkyePLnf44gCza5duzBlyhS7jzd9V0+ePIl9+/a5pKuWyFEOXb+FD9JqtQKA0Gq1Hnm9jRs3CpVKJQCYbyqVSmzcuNHiuM7Ozl7H9bwlJyeLtra2Xq/R32MlSRKZmZmis7PTrefQU0lJic3zMd1KSkoceu309HQxKDLKbedL5O9MvxmSJNn1He3+G9T9fkZGhnjuuefE2rVrRUlJCb9z5FaOXL+ZoHTT2dkpSkpKLL6oGzdutPkDUFxcLEpKSkRbW5t49dVX7f6B6JkYuCIR6Etf5yBJkpAkyWaSsnbtWrviWrt2rUOvbetmT1xE9NP3y9HvmK0bExZyJyYoTrD2V35GRoZITEy060sdFBTk8EW4+wV4oImASc8kq62tbUAtMwNJnOxpUbJ2y8zMZHJCZCdrv12uvNnT0kpkLyYoDnLmr/yB3nomBu7qSklKShrQ8/bXjGwrwbH3nLrf+uoCI6K+dXZ2ih07doiEhAS3/FaxRZNcxZHrd8DP4jEYDCgqKuo1MNXdRI9ptHl5eVCpVOYBsdYkJCTAYDBYnXZsGmDbczBrY2OjXfFYmxFgGthqGrjbMzbT/ZUrVwKAxdTo9vZ27Ny5067X7u7MmTPYt2+fw48jCmQKhQJTp07Fm2++CUmSbP6OOMr021hcXOwVSx5Q4Aj4BMWetQTcyZQYKBQKrFq1CgD6/HHpa00DVyRZaWlpFve7T3c2JSBBQZYfF5VKhQ0bNgAAsrOzLaZGR0RE4I9//KNTsXBqMZFzCgoKsGHDBmRkZLj0eXv+QUXkCQGfoMh9MWxoaDD/VWLvj0vPNQ0GkmRJkoTMzEzk5eWZt/W5BP2lOIuLi7Fjxw68/fbbKC0txZw5c3q9/kD+0uqZLBGR/QoKCnDq1CkkJye7/Lnl/r2kwBLwCYrcF8NFixZZtIgUFBTghx9+wI4dO5CQkGD1MT2bXAfyoyGEwJw5c1BaWmruPrLVGiNJEv73f/8X9913H/Lz882tK65gLVkiIsft27cPZ86ccfnzyv17SYEl4KsZm8Z+1NbW2u4ikYIAYXRLDDU1NZgzZw5ScguQOvpGKK+4Gvqqcpw7d67Px5iaXJe9/iE0lRVOva5CoYDBYMDKlSuxcuVKqFQqPPTQQ/0uQX/27FmnXs+W7uNZuGgU0cC4uqXDtMgb/3ggT+JKsvipSwNAv+M4pvx8Okq2/wuQJMDmsV0X3NEz5uPkF//CxfOn7Y5HEZ2EiOET0XxwU7/HBoVHwdjaYvdze4PCwkJ88cUXFolQZmYmVq5cyfLwRC5g7yqzkVdOResPh2Fo6fuPDkdWsnZlQVHyT1xJ1gkbN24UGRkZdk0NXr9+fa/pvAqFwuJ+97U8Ojs77V7EDYCAh6c8e/pmWvyp56J4ROQa9i4P8MH+H8TQJZ+I1LnLhXL2b8XU+Y+J9B6/g/auS+TsatUUWBy5frMFpZudO3faXR8mLy/P4i+FG264wWZ9i3Xr1uGuu+5yKB6FQgGj0ejxKdDuYm/dHiIauL5ahnu2iJxoaMbzW8pReqJrSYLEiGDMSmnC8GgDMjLS7WoF6auOmElxcTFmz57tsRYVtuR4L7agOMlVq7la48yiZaabpxeRc8eNiz0ReZ61Vg1rLSJGo1HsKNeIya+UiMFLtojBS7aIWav3iP3fn+23tdORFaM90aLClhzvxpVkneTOejjOFvYqLi7ut+vJUzeVSiUSExPtOgdbXV5E5DmOdKe2dRjEm3tOiSuXbRODl2wRybc9JQbFp/R5sXe4+/rS7bnnnrOa6PSXCPV3HgOpO+aO/0+5eHOMTFCcNJBl3e3hTGGvkpISsWPHDqeTCle0viQkJIgdO3ZYFE/s63m7F0/01i8IEdl2prlV/GLxn/v4Tej6/i9evHhANYC6Jzr9tXr0t9+epf7t/f22Vs/MdP+5557zWOuMs0mGPS1Its7R3b/XTFAGoK8LsKsycHsLe3X/Mtnb9dTzsdYG82ZmZorFixc7lSjZOge2kBD5D2cLfTpzu+WWW5zab/oNczRRevXVVy0uwN0v1tYSkJ6twX3FYe33r79EoPv9HTt2iB07dgwoEbKnBcna73fPc3RnlxgTlAFy9wXY9KEtLi42f3hsfeAdGb/S87F9ZeGOVkDtOe7Gm5sQiWhgBjJmzhdupguwKytBd29pFsL6b2zPRKC/5MfWb3tP/SWVkiTZ3UVvuplaxF35+84ExQU8dQG2JxlyZPyKI4mUI/3Hzoy7ISLf5GirLW8/3ZKSkvptFXL21r1lvec16rPPPnPbObmyRYXTjH2MPVPi+ltMztlpfAaDAdnZ2X2upMupwUSBx96F3kge999/P7Zv326x2KUkSW5bksKRxfr648j1mwmKD1Gr1SgqKnL5Cqz2rpdARIGhvz9cKPC46o9VR67fAV8s0JeYCgmWlJRg7dq1KCkpQWVl5YCTh76qKKtUKiYnRAFIoVBg1apVTj3WVPRz/fr1/VZmJ98hLtV/Ky0t9dhrsgWFzLj6IhF1p1ar8Z//+Z9obGy06/iera4GgwEvvPACnnnmGXeGSR60du1azJ071+nHs4uHiIhcor29HSqVCmfOnOn32L66nK11T7uTaTxGYmIizp07x24qFyopKcHkyZOdfjy7eIiIyCVCQ0Px+uuvQ5IkcwtJT8XFxTa7nLt3TxcXFwNAn891yy232NxvD5VKhY0bN+KNN94Y8HP1bEVWqVR45plnkJCQ4PRzeht7WspNXXd5eXkeiOgSl8wb8jBPTDMmIqKfuHJ9qP6ey9r+5ORku6bE9lyIzdG1TjIyMsRzzz3X7yqrfS2KZuvmyDooKpVK3HfffW6dEm1au8V0jvauzTUQPjPN+LXXXsMrr7wCjUaDq666Cv/1X/+F6667rt/HsYuHiMjzXDlOrb/n6rn/hhtuwLBhw5xaEsH0XJs2bcLKlSv7nJL73HPP4Xe/+53d52Rv15VpGYieVe+7309JSQEAnD592vz/AcDp2VTdz7Hn+dqaoemu2aImPlHN+IMPPhChoaHiv//7v8WxY8fEQw89JOLi4kRDQ0O/j2ULChFR4HFFKRJXrxTefWXwnq08rliB3N4abn0VaHXmfN25UKlPtKBMmDAB1157Lf7yl78AAIxGIzIzM/H444/jySeftPlYtqAQEQUmV/yF764Zi+56XmvnrFKp8NBDD+Hyyy/v1RrT87W9aYam18/iaW9vR0REBDZs2IDbbrvNvP3ee+9FU1MTNm3aZHF8W1sb2trazPd1Oh0yMzOZoBARBSBvuuB6ir+csyMJSrCHYrLQ2NgIg8GA1NRUi+2pqan49ttvex2/YsUKPPfcc54Kj4iIvJhCoRjQVFdfFIjn7BPTjJcuXQqtVmu+VVdXyx0SERERuZEsLShJSUlQKBRoaGiw2N7Q0AClUtnr+LCwMISFhXkqPCIiIpKZLC0ooaGhGDduHHbu3GneZjQasXPnTuTm5soREhEREXkRWVpQAOCJJ57Avffei/Hjx+O6667DypUrodfrcf/998sVEhEREXkJ2RKUO+64A2fOnMGyZcug0Whw9dVXY9u2bb0GzhIREVHgYbFAIiIi8ggWCyQiIiKfxgSFiIiIvA4TFCIiIvI6TFCIiIjI68g2i2cgTON6dTqdzJEQERGRvUzXbXvm5/hkgtLc3Aygq4IlERER+Zbm5mbExsbaPMYnpxkbjUbU1dUhOjoakiS55DlNFZKrq6v9duqyv5+jv58fwHP0FzxH/+Dv5+iO8xNCoLm5Genp6QgKsj3KxCdbUIKCgqBSqdzy3DExMX75QevO38/R388P4Dn6C56jf/D3c3T1+fXXcmLCQbJERETkdZigEBERkddhgnJJWFgYnnnmGYSFhckditv4+zn6+/kBPEd/wXP0D/5+jnKfn08OkiUiIiL/xhYUIiIi8jpMUIiIiMjrMEEhIiIir8MEhYiIiLxOQCcoL774IiRJQnFxsXlba2srFixYgMTERERFRWHOnDloaGiQL8gBsnaOkydPhiRJFrdHHnlEviAd9Oyzz/aKf8SIEeb9/vAe9neOvv4eAkBtbS3mz5+PxMREDBo0CKNHj8bBgwfN+4UQWLZsGdLS0jBo0CDk5+fjxIkTMkbsuP7O8b777uv1Pt58880yRuyY7OzsXvFLkoQFCxYA8I/vYn/n6A/fRYPBgKeffhpDhgzBoEGDMGzYMPzhD3+wqJcjx/fRJ1eSdYUDBw7gb3/7G8aMGWOxfdGiRfjnP/+J9evXIzY2Fo899hgKCgqwd+9emSJ1Xl/nCAAPPfQQnn/+efP9iIgIT4Y2YKNGjcKOHTvM94ODf/oo+8t7aOscAd9+D8+fP4+JEydiypQp+PTTT5GcnIwTJ04gPj7efMzLL7+M1atX491338WQIUPw9NNPY/r06SgvL0d4eLiM0dvHnnMEgJtvvhlvv/22+b4vTVk9cOAADAaD+f7Ro0fx85//HLfffjsA//gu9neOgG9/FwHgpZdewpo1a/Duu+9i1KhROHjwIO6//37ExsZi4cKFAGT6PooA1NzcLC6//HKxfft28bOf/UwUFRUJIYRoamoSISEhYv369eZjjx8/LgCIsrIymaJ1Tl/nKITodd/XPPPMM+Kqq66yus9f3kNb5yiE77+HS5YsETfeeGOf+41Go1AqleKVV14xb2tqahJhYWFi3bp1nghxwPo7RyGEuPfee8Xs2bM9E5AHFBUViWHDhgmj0eg338Weup+jEL7/XRRCiFmzZokHHnjAYltBQYGYN2+eEEK+72NAdvEsWLAAs2bNQn5+vsX2Q4cOoaOjw2L7iBEjkJWVhbKyMk+HOSB9naPJ+++/j6SkJFx55ZVYunQpLly44OEIB+bEiRNIT0/H0KFDMW/ePFRVVQHwr/ewr3M08eX38JNPPsH48eNx++23IyUlBWPHjsWbb75p3l9ZWQmNRmPxPsbGxmLChAk+8z72d44mu3btQkpKCoYPH45HH30UZ8+elSHagWtvb8d7772HBx54AJIk+dV30aTnOZr48ncRAG644Qbs3LkT3333HQDg66+/xr///W/MmDEDgHzfx4Dr4vnggw/w1Vdf4cCBA732aTQahIaGIi4uzmJ7amoqNBqNhyIcOFvnCAB33XUXBg8ejPT0dHzzzTdYsmQJKioqoFarPRypcyZMmIB33nkHw4cPR319PZ577jnk5eXh6NGjfvMe2jrH6Ohon38Pv//+e6xZswZPPPEEnnrqKRw4cAALFy5EaGgo7r33XvN7lZqaavE4X3of+ztHoKt7p6CgAEOGDMGpU6fw1FNPYcaMGSgrK4NCoZD5DBzz8ccfo6mpCffddx8A//k97a7nOQK+/3sKAE8++SR0Oh1GjBgBhUIBg8GAF154AfPmzQMA2b6PAZWgVFdXo6ioCNu3b/eJPmxn2HOODz/8sPnfo0ePRlpaGqZOnYpTp05h2LBhngrVaaasHgDGjBmDCRMmYPDgwfjwww8xaNAgGSNzHVvn+OCDD/r8e2g0GjF+/HgsX74cADB27FgcPXoUr7/+uvni7evsOcc777zTfPzo0aMxZswYDBs2DLt27cLUqVNlidtZb731FmbMmIH09HS5Q3Eba+fo699FAPjwww/x/vvvY+3atRg1ahQOHz6M4uJipKeny/p9DKgunkOHDuH06dO45pprEBwcjODgYOzevRurV69GcHAwUlNT0d7ejqamJovHNTQ0QKlUyhO0g/o7x+6DvUwmTJgAADh58qSnw3WJuLg4XHHFFTh58iSUSqXPv4fWdD9Ha3ztPUxLS0NOTo7FtpEjR5q7sUzvVc8ZH770PvZ3jtYMHToUSUlJPvM+mvz444/YsWMH/uM//sO8zd++i9bO0Rpf+y4CwOLFi/Hkk0/izjvvxOjRo3H33Xdj0aJFWLFiBQD5vo8BlaBMnToVR44cweHDh8238ePHY968eeZ/h4SEYOfOnebHVFRUoKqqCrm5uTJGbr/+ztFas/Hhw4cBdP2g+qKWlhacOnUKaWlpGDdunM+/h9Z0P0drfO09nDhxIioqKiy2fffddxg8eDAAYMiQIVAqlRbvo06nw/79+33mfezvHK2pqanB2bNnfeZ9NHn77beRkpKCWbNmmbf523fR2jla42vfRQC4cOECgoIs0wGFQgGj0QhAxu+j24bf+oieI7AfeeQRkZWVJT7//HNx8OBBkZubK3Jzc+UL0AW6n+PJkyfF888/Lw4ePCgqKyvFpk2bxNChQ8WkSZPkDdIBv/71r8WuXbtEZWWl2Lt3r8jPzxdJSUni9OnTQgj/eA9tnaM/vIdffvmlCA4OFi+88II4ceKEeP/990VERIR47733zMe8+OKLIi4uTmzatEl88803Yvbs2WLIkCHi4sWLMkZuv/7Osbm5WfzmN78RZWVlorKyUuzYsUNcc8014vLLLxetra0yR28/g8EgsrKyxJIlS3rt84fvohB9n6M/fBeF6JpNlpGRIbZs2SIqKyuFWq0WSUlJ4re//a35GDm+j0xQeiQoFy9eFL/61a9EfHy8iIiIEL/4xS9EfX29fAG6QPdzrKqqEpMmTRIJCQkiLCxMXHbZZWLx4sVCq9XKG6QD7rjjDpGWliZCQ0NFRkaGuOOOO8TJkyfN+/3hPbR1jv7wHgohxObNm8WVV14pwsLCxIgRI8Qbb7xhsd9oNIqnn35apKamirCwMDF16lRRUVEhU7TOsXWOFy5cENOmTRPJyckiJCREDB48WDz00ENCo9HIGLHj/vWvfwkAVt8bf/guCtH3OfrLd1Gn04mioiKRlZUlwsPDxdChQ8Xvfvc70dbWZj5Gju+jJES3peKIiIiIvEBAjUEhIiIi38AEhYiIiLwOExQiIiLyOkxQiIiIyOswQSEiIiKvwwSFiIiIvA4TFCIiIvI6TFCIiIjI6zBBISIiIq/DBIWIiIi8DhMUIiIi8jpMUIiIiMjr/P/AHhvtz8GUOAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -3783,32 +10145,24 @@ "mi.migrad()" ] }, - { - "cell_type": "markdown", - "id": "3f25d0b2-aeca-45d6-ac95-00a45b4886c0", - "metadata": {}, - "source": [ - "### Add task here" - ] - }, { "cell_type": "markdown", "id": "b2d4c8e9-da2c-489e-9b2f-de24f042c341", "metadata": {}, "source": [ " # Wann fittet ein Fit?\n", - "Nach dem wir nun unser Model an unsere Daten angepasst haben stellt sich die Frage: „Spiegelt unser Model unsere Daten gut wider?“. Um diese Frage beantworten zu könne gibt es verschiedene Möglichkeiten, welche wir uns im Folgenden etwas näher angucken wollen. \n", - "## Fit Residuan: \n", + "Nach dem wir nun unser Model an unsere Daten angepasst haben, stellt sich die Frage: „Spiegelt unser Model unsere Daten gut wider?“. Um diese Frage beantworten zu können, gibt es verschiedene Möglichkeiten, welche wir im Folgenden etwas näher betrachten wollen. \n", + "## Fit Residual: \n", "Schauen wir uns zunächst noch einmal an, wie das Chi-Quadrat definiert ist:\n", - "$$$$\n", - "Wir minimieren den Abstand zwischen einem Messwert und unserer Model und Gewichten diesen mit den Unsicherheiten unserer Messwerte. Fitresiduan spiegeln genau dies wider. Sie sind definiert als \n", - "$$$$\n", - "Für unseren Fit sehen sie wie folgt aus. \n" + "$$ \\chi^2 = \\sum_i \\frac{(y_i - \\lambda_i)^2}{\\Delta y_i^2} $$\n", + "Wir minimieren den Abstand zwischen einem Messwert und unserem Model und gewichten diesen mit den Unsicherheiten unserer Messwerte. Fitresiduen spiegeln genau dies wider. Sie sind definiert als \n", + "$$ \\frac{(y_i - \\lambda_i)}{\\Delta y_i} $$\n", + "Für unseren Fit sehen sie wie folgt aus.\n" ] }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 520, "id": "30cafddc-ea17-4158-82cc-f132dee2c8de", "metadata": {}, "outputs": [ @@ -3818,13 +10172,13 @@ "Text(0, 0.5, 'Residuals [$\\\\sigma$]')" ] }, - "execution_count": 129, + "execution_count": 520, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6z0lEQVR4nO3deXgUdZ7H8U8nQEwCaZBwBA0QwJFRQBEQI4cgijLuqmRkdEUXEFl1cEQQR3AGZjwgOMziPMwoXrOI5+CBx87ueCK6XmxQUVFBiZEgBBCRDkIMmtT+waZNk6uP6q6qX71fz5PnSXc6nW+luqq+9f1dAcuyLAEAABgkzekAAAAA7EaCAwAAjEOCAwAAjEOCAwAAjEOCAwAAjEOCAwAAjEOCAwAAjNPK6QCcUFtbq+3bt6tdu3YKBAJOhwMAAKJgWZb27dunbt26KS2t+RqNLxOc7du3Kz8/3+kwAABAHLZu3aqjjz662df4MsFp166dpEP/oJycHIejAQAA0aisrFR+fn74Ot4cXyY4dc1SOTk5JDgAAHhMNN1L6GQMAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4IDAACMQ4KDlKoIVenN0t2qCFU5HQoAwGC+XGwTzlhZUq65qz5UrSWlBaTiov66cEh3p8MCABiICg5SoiJUFU5uJKnWkm5ctYFKDgAgKUhwkBJlu/eHk5s6NZalL3YfcCYgAIDRSHCQEgW52UoLRD6XHgioZ26WMwEBAIxGgoOUyAtmqriov9IDh7Kc9EBAC4v6KS+Y6XBkAAAT0ckYKXPhkO4a+ZNO+mL3AfXMzSK5AQAkDQkOUiovmEliAwBIOpqoAACAcUhwAACAcUhwAACAcUhwAACAcUhwAACAcUhwAACAcUhwAACAcUhwAACAcTyZ4BQXF2vIkCFq166dOnfurPPPP1+bNm1yOiwAAOASnkxwXn31VU2fPl1vv/22XnzxRX3//fcaO3as9u/f73RoAADABQKWZVlOB5Gor776Sp07d9arr76qkSNHNvh5dXW1qqurw48rKyuVn5+vUCiknJycVIYKAADiVFlZqWAwGNX125MVnMOFQiFJ0pFHHtnoz4uLixUMBsNf+fn5qQwPAACkmOcrOLW1tTr33HO1d+9evf76642+hgoOAADeF0sFx/OriU+fPl0bNmxoMrmRpIyMDGVkZKQwKgDwr4pQlcp271dBbrbygplOhwOf8nSCc/XVV+vvf/+7XnvtNR199NFOhwMAvreypFxzV32oWktKC0jFRf114ZDuTocFH/JkHxzLsnT11Vfrqaee0urVq1VQUOB0SADgexWhqnByI0m1lnTjqg2qCFU5Gxh8yZMVnOnTp+uRRx7RM888o3bt2mnHjh2SpGAwqMxMyqESJWIAqVe2e384ualTY1n6YvcBzkNIOU8mOMuWLZMkjRo1KuL55cuXa/LkyakPyGUoEQNwQkFuttICikhy0gMB9czNci4o+JZnm6ga+yK5oUQMwDl5wUwVF/VXeiAg6VBys7CoH9UbOMKTFRw0jRJx42iyA1LjwiHdNfInnfTF7gPqmZvF8QbHkOAYhhJxQzTZAamVF8wksYHjPNlEhaZRIo5Ekx0A+BMVHANRIv4RTXYA4E8kOIaiRHwITXYA4E80UcFoNNkBgD9RwYHxaLIDAP8hwYEv0GQHAP5CExUAADAOCY6LVYSq9GbpboY0AwAQI5qoXIrJ6QAAiB8VHBdicjoAABJDguNCzU1OBwAAWkaC40J1k9PVx+R0AABEjwTHhZicDvAuBgcA7kAnY5dy6+R0FaEqle3er4LcbNfEBLgFgwMA9yDBcTG3TU7HyRtoWlODA0b+pJOrjmPAL2iiQlQY2QU0j8EBgLuQ4CAqnLyB5vl5cAD9juBGJDiIip9P3kA0/Do4YGVJuYYtWq2L712rYYtWa2VJudMhAZKkgGVZVssvM0tlZaWCwaBCoZBycnKcDsczVpaU68ZVG1RjWeGTN31wgEgVoSrXDQ5IlopQlYYtWh1R3U0PBPT6nNHGbzucEcv1m07GiJpbR3YBbuK2wQHJ1FzTtdf/B4wY9T4SHMTETyfveHBShJ/UNV0fXsHxetM1I0bNQB8cwCb0RYDfmNjviBGj5qCCAyOlupLCHCjwK9Oark1udvMbEhwYx4nyMidF+JlJTdemNrv5EU1UMIpT5WWG0QNmMLHZza+o4MAoTlVS6k6Khw+jN/GkSEdqmM60Zje/IsGBUZwsL/vhpMjoEviFSc1ufkUTFYzidHk5L5ipwt4djTwxMroEgJdQwYFx/FBJcQIdqQF4CQkOjER52X6MLgHgJTRRAYiK081/ABALKjgAokbzHwCvIMEBEBOa/wB4AU1UAADXqAhV6c3S3YzOQ8Ko4ACAgbw4ISPzLMFOJDgAYBgvJgosWAu70UQFAAbx6oSMzc2zBMSDBAcADOLVRIEFa2E3EhwAMIhXEwXmWYLd6IMDAAbx8sr2zLMEO5HgADCCF0cNJYuXEwXmWYJdSHAAeJ4XRw0lG4kC/I4+OACa5faJ17w6aghAclHBAdAkL1RGmhs1RAUD8C8qOAAalYrKiB3VIa+OGgKQXCQ4gEclu+ko2fOprCwp17BFq3XxvWs1bNFqrSwpj+t9GF4MoDE0UQEelIqmo7rKSP0kx67KiN3T8nt51BDgRiaMSqSCA3hMqjrVJrMykozqUF4wU4W9O3r2ZAy4hV3VVadRwQE8JpWdapNVGUlmdQhA/Exa9JQKTgq5fbgtUi+ez0SqO9UmozJCvxnAnby6llljqOCkiBeG2yK14v1MeHkq/vroNwO4j0nV1YBlWVbLLzNLZWWlgsGgQqGQcnJykv73KkJVGrZodYMPzOtzRnNS9yk7PhMVoSqSAzjChA6oaNrKkvIGN1BuuSGP5frtyQrOa6+9psWLF+udd95RRUWFnnrqKZ1//vlOh9UkJiLD4ez4TDAVvzd5PTmgGm0+U6qrnuyDs3//fp1wwgm64447nA4lKkxEhsPxmfAnr49OYVkM/4i1750b+5h6soIzbtw4jRs3LurXV1dXq7q6Ovy4srIyGWE1yZQ+E7APnwn/MWF0CtVoe3i9inc4t1b1PJngxKq4uFg33XSTozEkWvIz7YCAOWVgRMeE5MCJDqimnfvcmgzEy82Juy8SnLlz52rWrFnhx5WVlcrPz095HPH2mTDtgMCP6EfjHyaMTkl15dG0c5+bk4F4uTlx90WCk5GRoYyMDKfDiIuJBwTgR6Y0S6aq8mjiuc/NyUC83Jy4+yLB8TITDwjAr0xplkxF5dHEc5+bk4F4uTlxJ8FxORMPCMDPaJaMjonnPjcnA4lwa+LuyQTn22+/1ebNm8OPy8rKtH79eh155JHq3t277bONMfWAAIDmmHruc2sykCg3Ju6enMl4zZo1Gj16dIPnJ02apPvvv7/F30/1TMZ2YNZaAH7EuQ/1xXL99mSCkygvJjipZNqwTACAGYxfqgHJY9qwTACHcOMCvyHBQZiJwzIBcOMCf/LkWlRIjuaGZQLwJtaPgl+R4CCMBSAB83Dj4l9uXAAzlUhwEFY3LDM9cCjLMWVYJuBn3Lj4k9dXrrcDo6gYRdUAwzIBs6wsKW8wnwx9cMxVEarSsEWrG0yS+Pqc0bad053qtM4oKiTEjRM2AbFi1NCPTJ1cDo1L9jIXXum0ToLjIpyQAXt45QScSty4+Ecyl7nw0mhb+uC4BO2lgD0YNQS/S2Z/Si91WqeC4wJeyogBtzNxFWogVslqlvTSIqhUcFzASxkx4HaMGgIOyQtmqrB3R1sTey+NtqWC4wJeyogBtzN1FWrALbzSaZ0ExwU4IQP28soJGPAqL3RaJ8FxCU7IgL28cAIGkDwkOC7CCRkAAHvQyRgAABiHBAcAABiHBAcAABiHBAcAABiHBAcAgCSqCFXpzdLdLBeSYoyichCLawKA2Vj41TkkOA7hQ49kI4EGnMU6g84iwXEAH3okGwk04Jy6m4s9+w+y8KuDSHAcwGrHSCYSaMA59W8uAjr0Vf90zzqDqUMnYwew2jGSidXpAWccfnNRdxjWne9ZZzC1qOA4wE+La9IPJFIq/h+sTo9o+PHYTPY2N3ZzYUn680UD1bFtBusMphgJjkP8sLgm/UAiper/4acEGvHx47GZim1u6uZiUM8OHH8OCFiWZbX8MrNUVlYqGAwqFAopJyfH6XCMVBGq0rBFqxsc6K/PGe3LA92J/0dFqMrzCbQfqwzJ5sdjM5XbvLKkvMHNhenJYyrFcv2mgoOkoCN1JCf+H15fnd6PVYZU8OOxmcpt9kN13ivoZIykoCN1JP4fsWlqJBgzwSbOj5/FVG9zXjBThb07ktw4jATHZkzJfUhdP5D0wKGzit/7gfD/iE1Td9zvfPENx1eC/PhZ9OM2gz44tvbBoaTekAn9QOzE/yM6jfWZCEgK/H8HTo6vxPnxs+jHbTZNLNdvEhybEhw/dtyDudzQubd+Z800HRpue/iEaRxfgL/QydgBfuy4BzO5pRJZv7Pm1/urdfUj70X8nOMLh3NDYg73IMGxCZOrwQRuW+ahbiRYRaiK4wvNcktiDveIOsF59tlnY37zM888U5mZ/siimVwNXtLUna5bK5EcX2iO2xJzuEPUCc75558f0xsHAgF99tln6tWrV6wxeRbzH8ALmrvTdXMlkuMLTXFrYg5nxTRMfMeOHaqtrY3qKyvL+ROiE9w4/wFD11Gnpfll3D6cNpHjK5HjgGPI3fw4tw9aFnUFZ9KkSTE1N11yySUsg+ACtEujvmjudE2slCRyHHAMuR9NmGhMXMPEv/32W7Vt2zYZ8aSEX9aiYug6DufHz0Qi2+zH/5eXMc+N+WK5fsc1k3EwGNSTTz4ZV3BInebu1uFPbm+CSoZEjgOOIW9xYxeBRNE8Gr+4holblqW7775bS5YsUSAQ0ODBgzVx4kQNGTLE7viQADd3GIVzTGyCak4ixwHHEJxE82hi4l6L6r333tNJJ52k4cOH66OPPtKIESM0e/ZsO2NDgky7W+dOxj4m3uk2JZHjwLRjCN7BgrOJi3uiv0ceeURnnnlm+PEHH3yg8847T0cddZRmzpxpS3BInCl369zJIBGJHAemHEPwFoa+Jy6uCs6RRx6p/Pz8iOcGDBigv/zlL1q2bJktgcE+Xr9b504GdkjkOPD6MQTvYeh74uJKcE488UQtX768wfN9+vRReXl5wkEB9dHRE35Fs6x/0TyauLiaqG699VaNHj1a27dv1y9/+UsNGDBA+/fv18KFC1VQUGB3jPA5L3f0ZPE/xItmWdA8mpi4EpxTTjlFb7/9tmbMmKERI0aobiqdI444Qo8//ritAQJencSLCxTixdpKjfPjDUPdgrNe44Z9FXcn4xNOOEFr1qzRrl279M4776i2tlZDhw5Vbm6unfEBkrx3J8MFComgg2lDyb5hcMMF2RRuubmLO8Gp07lzZ40bN86OWIBmeelOhguU2ZJ9MfRys2wyJPuGwS0XZBO46eYu6k7GH3zwgWpra6N+448++kg//PBDXEEBXufECAg6pKbGypJyDVu0Whffu1bDFq3WypLmB1bEs1/oYBopmQMNTBql6YZzgJsGhURdwRk4cKB27NihTp06RfX6wsJCrV+/Xr169Yo7OMCrUt1vyJQ7ULc3E8R6d5rIfvFas2wyJbOiZUq11S3nADdVH6NOcCzL0rx585SVFV2QBw8ejDsoIFZuvDCm6gLlppJwItxygm5OLBdDO/aLl5plkymZNwxuuiDHoyJUpXVf7HHNOcBNg0KiTnBGjhypTZs2Rf3GhYWFyszkwETyufnCmIoLlAl3oF5J0mK5GDqxX9yY6NslWTcMbrogx6r+ue9wTp4D3FJ9jDrBWbNmTRLDiN0dd9yhxYsXa8eOHTrhhBP05z//WSeffLLTYSHFvHJhTCav34FK3knSYrkYJmO/NJfAuDnRt0uybhjcckGORt1nILtNepPJjeT8OcAN1ceER1E5YeXKlZo1a5buuusuDR06VH/605901llnadOmTercubPT4SGF4r0wmnSn6/Y70Gj+115K0qK9GNq9X5pLYEj0E+eGC3JL6n8GApKayG1cdw5wSsCqm6XPQ4YOHaohQ4boL3/5iySptrZW+fn5+tWvfqU5c+Y0eH11dbWqq6vDjysrK5Wfn69QKKScnJyUxQ37VYSqNGzR6gYXxtfnjG7y4Db1TrciVOW6O9BY/tcrS8obJAPslx/fo7nP+Zulu3XxvWsb/N6j005RYe+O8YYOF2nsM3C4NEl/vnigTurRwTXnALtVVlYqGAxGdf32XAXn4MGDeueddzR37tzwc2lpaTrjjDP01ltvNfo7xcXFuummm1IVIlIo1rtkk+903XYHGuv/2kvNBLGwY7+0VKn0UgUM8WnsMyApvN/rzn3nDOiW+uBcynMJzu7du1VTU6MuXbpEPN+lSxdt3Lix0d+ZO3euZs2aFX5cV8GBGWK5MHqlr4cJ4vlfuy1Jc4uWEhi3N1MicU19Blb9slAHDtYadVNgl7gSnKqqKlmWFR4yvmXLFj311FM67rjjNHbsWFsDtENGRoYyMjKcDgNJFO2FkTvd1Gnsf50m6ev91aoIVXEyjkE0CYypFTAc0tRn4IT8Dk6H5lpxJTjnnXeeioqKdOWVV2rv3r0aOnSoWrdurd27d2vJkiW66qqr7I4zLDc3V+np6dq5c2fE8zt37lTXrl2T9ndhBu50U+fw/3Vdp8irH3nPqL5PqRJNAkMFzGwksbGJeqmG+t59912NGDFCkvTEE0+oS5cu2rJlix544AEtXbrU1gAP16ZNGw0aNEgvv/xy+Lna2lq9/PLLKiwsTOrfhhkuHNJdr88ZrUennaLX54zmIptEdf/rv/zLQAUCP4768PJ0+E7KC2aqsHdHLmw+xmcgenFVcA4cOKB27dpJkl544QUVFRUpLS1Np5xyirZs2WJrgI2ZNWuWJk2apMGDB+vkk0/Wn/70J+3fv19TpkxJ+t+GGfx2p+vksPi8YKaObEvfJwCpFVeC06dPHz399NMaP368nn/+ec2cOVOStGvXrpQMu77wwgv11Vdfaf78+dqxY4dOPPFEPffccw06HgNwx7B4+j4BSLW4mqjmz5+v2bNnq2fPnho6dGi4aeiFF17QwIEDbQ2wKVdffbW2bNmi6upqrV27VkOHDk3J3wW8xC0rJbM6NoBUi6uCc8EFF2j48OGqqKjQCSecEH5+zJgxGj9+vG3BAUiMm4bF00ESQCrFPQ9O165dG4xaYi0owF3c1jTkt75PAJwTdYJTf6K8lixZsiSuYAAv8NI6VgyLB+BXUSc47733XlSvC/x/GztgIjd02I0VTUMA/MiTi20mKpbFupA6bq+MxLOwJwDAPkYvtgkzubkyUpd47dl/0DUddgG4h9tvzvwqoQTn448/Vnl5uQ4ePBjx/LnnnptQUPAXN6/wXT/xCkjh5QbqMJcL4G9uvjmzkxeTuLgSnM8//1zjx4/Xhx9+qEAgoLpWrrr+NzU1NfZFCOO5aShzfYcnXpYOJTh1o5LosAv4m5tvzuzk1SQuron+ZsyYoYKCAu3atUtZWVn66KOP9Nprr2nw4MFas2aNzSHCdHVDmetzQ2WkscTLkrT0ooGsYwWg2ZszU7hlstB4xJXgvPXWW7r55puVm5urtLQ0paWlafjw4SouLtY111xjd4wwnFtnuW0q8RrUswOL3QE2qQhV6c3S3Z64YB7OrTdndvJyEhdXE1VNTU14sc3c3Fxt375dxx57rHr06KFNmzbZGiD8wY1DmZlDBkguLzV9NNYHxQ/nCLdNFhqLuBKcfv366f3331dBQYGGDh2qP/zhD2rTpo3uuece9erVy+4Y4RNunOXWjYkXYAIv9V9pLhEz/Rzh5SQurgTnt7/9rfbv3y9Juvnmm/VP//RPGjFihDp27Ki//e1vtgYIOM2NiRfgdW4dXHC4aBKxRM4RTo5OivZvezWJiyvBOeuss8Lf9+nTRxs3btSePXvUoUMHZjIGALTIK00fyUzEnGyii/Vve/FGL64E5+abb2725/Pnz48rGACAP3il6SNZiZiTTXReah5MRFwJzlNPPRXx+Pvvv1dZWZlatWql3r17k+AYxosTPAFwPy80fSQrEXOyic4rzYOJiivBaWzhzcrKSk2ePFnjx49POCi4h5dGOQCwT6pubLzQ9JGMRMzJJjqvNA8mKq55cBqTk5Ojm266SfPmzbPrLeEwL0/wBCB+K0vKNWzRal1871oNW7RaK0vKnQ7JcXnBTFvnv3Jy/i+3zj1mN1sX2wyFQgqFQna+JRzklzImgB/5pX+GGzjZROeF5sFExZXgLF26NOKxZVmqqKjQgw8+qHHjxtkSGJznlzImgB9xY5NaTjbReaF5MBFxJTi33357xOO0tDR16tRJkyZN0ty5c20JDM5L9igHOi8D7uOlGxvOIWhOXAlOWVmZ3XHApZJVxqTzcss4ecMJXhm+zTkELQlYlmW1/DKzVFZWKhgMKhQKKScnx+lwfKciVKVhi1Y3uEN8fc5o151EncLJG06rCFW5tn8G5xD/iuX6HXUFZ9asWVEHsGTJkqhfC/+hjb95dPJ0HtUzd/fP4ByCaESd4Bw+9827776rH374Qccee6wk6dNPP1V6eroGDRpkb4RwtXguBF5q43cCJ29nUT1zP84hiEbUCc4rr7wS/n7JkiVq166dVqxYoQ4dOkiSvvnmG02ZMkUjRoywP0q4UrwXAq+08TuFk7dzqJ55A+cQRCOuPjhHHXWUXnjhBR1//PERz2/YsEFjx47V9u3bbQswGUzog+N0Cd2ONnA3t/E7bWVJeYOTN1WE5HuzdLcuvndtg+cfnXaKCnt3dCAiNKelc4jT50nYLyl9cA7/A1999VWD57/66ivt27cvnrdEDNxQQrejGcXNbfxO88MkXG7kdPWMC3JsmjuHuOE8CWfFtVTD+PHjNWXKFK1atUpffvmlvvzySz355JOaOnWqioqK7I4R9bhl+YS6C0F9NKPYy+6p4dEyJ6ewZ3kE+7jlPBmPilCV3izd7YlY3S6uCs5dd92l2bNn6+KLL9b3339/6I1atdLUqVO1ePFiWwNEJLd0QKUNHKZyonpG3x97ueU8GSunq06mVRDjSnCysrJ05513avHixSotLZUk9e7dW9nZ2bYGh4acLqHXRzMKTJXq5lOvXpDdyk3nyWg5neQ6nVwlQ0KriWdnZ2vAgAEaMGAAyU2KuG0V2GQ2o1CqhV/Q5Gsvt50no9FckptsXm7Sa05ME/3dcsstys7ObnHSPyb6Sy4/VE5MvJsAmkKTr/28dp50supkagUxpon+6vrbHD7pX32BQKDJn8E+Jo9AcrpUCzjBaxdkL/DSedLJJNeLTXrRiGuiv/rfA3Zz+m7CtI520fDjNruRly7IsJ9TSa6pFcS4OhlXVVXJsixlZR3K7rZs2aKnnnpKxx13nMaOHWtrgPAfJ+8m/Ng05sdtBtzKqSTXxApiXJ2MzzvvPD3wwAOSpL179+rkk0/Wv//7v+u8887TsmXLbA0Q/uNUB0FTO9o1JxnbTOdw1MfnwTtMm3srrgrOu+++q9tvv12S9MQTT6hr165677339OSTT2r+/Pm66qqrbA0S/uPE3YTTTWNOsHub/VgNonmvaX78PMA94kpwDhw4oHbt2kmSXnjhBRUVFSktLU2nnHKKtmzZYmuA8K9Ul2pN7WjXHDu32Y+dw7mAN82Pnwe4S1xNVH369NHTTz+trVu36vnnnw/3u9m1a5dnF68EvDh3RqLs3GYn5/Fwgh+bNGPht88D3CeuCs78+fN18cUXa+bMmRozZowKCwslHarmDBw40NYAgVQysaNdS+zaZr9VwPzYpBkLv30e4D5xVXAuuOAClZeXa926dXruuefCz48ZMybcNwfwqlg72pnQidKOzoV+q4Ax+3Dz/PZ5gPsELMuyWn6ZWSorKxUMBhUKhWhSQ0Log9FQRajKNxWwlSXlDeYO8fv+P5yfPg9Ivliu33EnOP/zP/+ju+++W6WlpXriiSd01FFH6cEHH1RBQYGGDx8eV+CpQoIDO1SEqjRs0eoGJfjX54zmRO4jXMCB1Inl+h1XE9WTTz6ps846S5mZmXrvvfdUXV0tSQqFQlq4cGE8bwl4Dp0oIZk3dwhgirgSnFtvvVV33XWX7r33XrVu3Tr8/LBhw/Tuu+/aFhzgZvTBMIcJ/agARIorwdm0aZNGjhzZ4PlgMKi9e/cmGhPgCXSiNMPKknINW7RaF9+7VsMWrdbKknKnQwJgg7iGiXft2lWbN29Wz549I55//fXX1atXLzviAjzBj8PKTcJkdIC54qrgTJs2TTNmzNDatWsVCAS0fft2Pfzww5o9ezbLNMB36IPhXfSjAswVVwVnzpw5qq2t1ZgxY3TgwAGNHDlSGRkZmj17tn71q1/ZHSMAJAWT0QHmSmgenIMHD2rz5s369ttvddxxx6lt27aqqqpSZqa772QZJm4GFjmEHZjLBvCOlMyDc7jq6mrdcccd+sMf/qAdO3bY8ZZJQ4LjfUywBzsxlw3gDUmbB6e6ulpz587V4MGDdeqpp+rpp5+WJC1fvlwFBQW6/fbbNXPmzLgDB6LBIoewG/2omscwenhRTH1w5s+fr7vvvltnnHGG3nzzTU2YMEFTpkzR22+/rSVLlmjChAlKT09PVqyAJBY5BFKJaim8KqYKzuOPP64HHnhATzzxhF544QXV1NTohx9+0Pvvv6+LLrooJcnNggULdOqppyorK0vt27dP+t+D+zDBHuxAVaJlVEvN4rfPfEwVnC+//FKDBg2SJPXr108ZGRmaOXOmAoFAC79pn4MHD2rChAkqLCzUX//615T9XbhH3QR7h3cMpXqDaJlSlUh2R3uqpeYw5TMfi5gSnJqaGrVp0+bHX27VSm3btrU9qObcdNNNkqT7778/6t+prq4Or5clHeqkBG9jgj3Ee3E3ZXK/VFywGEZvBlM+87GKKcGxLEuTJ09WRkaGJOm7777TlVdeqezs7IjXrVq1yr4IbVBcXBxOjGCOvGCm0QcnmpbIxd2EqkSqLlhUS81gwmc+HjElOJMmTYp4fMkll9gaTLLMnTtXs2bNCj+urKxUfn6+gxG5C/PJwEsSvbibUJVI5QWLaqn3mfCZj0dMCc7y5cuTEsScOXN02223NfuaTz75RH379o3r/TMyMsJVJ0TyY7ssvC3Ri7sJVYlUX7ColnqbCZ/5eMS1VIPdrrvuOk2ePLnZ17CIp/382i4Lb7Pj4u71qoRfL1iIn9c/8/FwRYLTqVMnderUyekwfMev7bLwNrsu7l6vSvjxgoXEeP0zHytXJDixKC8v1549e1ReXq6amhqtX79ektSnT5+Uj+jyOr+2y8L7uLgf4rcLFhALzyU48+fP14oVK8KPBw4cKEl65ZVXNGrUKIei8ibK3PAyUy7udPL3Jvab+9m22KaXsNhmJL8vNMiJCk6hk783sd+cE8v123MVHNjPlDvheHCiglPo5O9N7DfviGktKsAkXltnx2/ryJiuuU7+cC/2m3dQwYFveWkUGZUm89DJ35vYb95BBQe+5ZVVyb1WaUJ06jr5p///YsVOd/KnQhgdt+03NI0KDnzLK6PIvFRpQmzcMtydCmFs3LLf0DwSHPiaF05UlMTN5nQnfzrNxsfp/YaW0UQF38sLZqqwd0fXnqwoiSOZ6DQLU1HBATzAC5UmeBMVQpiKCg7gEW6vNMGbqBDCVFRwAMDnqBDCRCQ4AAA6zcI4NFEBLsJcJABgDyo4gEswFwkA2IcKDuACzFYMAPYiwQFcgLlIAMBeJDiAC3hlXSwA8AoSHMAFmIsEAOxFJ2PAJZiLBADsQ4IDuAhzkQCAPWiiAgAAxiHBAQAAxiHBSaJUzkrLDLgAAPyIPjhJkspZaZkBFwCASFRwkiCVs9IyAy4AAA2R4CRBKmelZQZcAAAaIsFJglTOSssMuAAANESCkwSpnJWWGXABAGgoYFmW1fLLzFJZWalgMKhQKKScnJyk/Z2KUFXKZqVN5d8CAMAJsVy/GUWVRKmclZYZcAEA+BFNVAAAwDgkOAAAwDgkOAAAwDgkOAAAwDgkOAAA32H9PvMxigoA4Cus3+cPVHAAAL7B+n3+QYIDAPAN1u/zDxIcAIBvsH6ff5Dg+BCd6wD4Fev3+QedjH2GznUA/O7CId018iedWL/PcFRwfITOdQBwSF4wU4W9O5LcGIwEx0foXAcA8AsSHB+hcx0AwC9IcHyEznUAAL+gk7HP0LkOAOAHJDg+lBfMJLEBABiNJioAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcTyU4X3zxhaZOnaqCggJlZmaqd+/e+t3vfqeDBw86HRoAAHART81kvHHjRtXW1uruu+9Wnz59tGHDBk2bNk379+/XH//4R6fDg6SKUJXKdu9XQW42syUDABwTsCzLcjqIRCxevFjLli3T559/3uRrqqurVV1dHX5cWVmp/Px8hUIh5eTkpCJMX1hZUq65qz5UrSWlBaTiov66cEh3p8MC4CLcBCERlZWVCgaDUV2/PdVE1ZhQKKQjjzyy2dcUFxcrGAyGv/Lz81MUnX9UhKrCyY0k1VrSjas2qCJU5WxgAFxjZUm5hi1arYvvXathi1ZrZUm50yHBYJ5OcDZv3qw///nPuuKKK5p93dy5cxUKhcJfW7duTVGE/lG2e384ualTY1n6YvcBZwIC4CrcBCHVXJHgzJkzR4FAoNmvjRs3RvzOtm3bdPbZZ2vChAmaNm1as++fkZGhnJyciC/YqyA3W2mByOfSAwH1zM1yJiAArsJNEFLNFZ2Mr7vuOk2ePLnZ1/Tq1Sv8/fbt2zV69Gideuqpuueee5IcHaKRF8xUcVF/3bhqg2osS+mBgBYW9aONHYCkH2+C6ic53AQhmTzXyXjbtm0aPXq0Bg0apIceekjp6ekxv0csnZQQm4pQlb7YfUA9c7NIbgBEWFlS3uAmiIEIiEUs129PJTjbtm3TqFGj1KNHD61YsSIiuenatWvU70OCAwDO4CYIiYjl+u2KJqpovfjii9q8ebM2b96so48+OuJnHsrTAMC38oKZJDZICVd0Mo7W5MmTZVlWo18AAAB1PJXgAAAARIMEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEBwAAGIcEB0BCKkJVerN0typCVU6HAgBhrZwOAIB3rSwp19xVH6rWktICUnFRf104pLvTYQEAFRwA8akIVYWTG0mqtaQbV22gkgPAFUhwAMSlbPf+cHJTp8ay9MXuA84EBAD1kOAAiEtBbrbSApHPpQcC6pmb5UxAAFCP5xKcc889V927d9cRRxyhvLw8XXrppdq+fbvTYQG+kxfMVHFRf6UHDmU56YGAFhb1U14w0+HIAEAKWJZltfwy97j99ttVWFiovLw8bdu2TbNnz5Ykvfnmm1G/R2VlpYLBoEKhkHJycpIVKuALFaEqfbH7gHrmZpHcAEiqWK7fnktwDvfss8/q/PPPV3V1tVq3bt3oa6qrq1VdXR1+XFlZqfz8fBIcAAA8JJYEx3NNVPXt2bNHDz/8sE499dQmkxtJKi4uVjAYDH/l5+enMEoAAJBqnkxwbrjhBmVnZ6tjx44qLy/XM8880+zr586dq1AoFP7aunVriiIFAABOcEWCM2fOHAUCgWa/Nm7cGH799ddfr/fee08vvPCC0tPT9a//+q9qrqUtIyNDOTk5EV8AAMBcruiD89VXX+nrr79u9jW9evVSmzZtGjz/5ZdfKj8/X2+++aYKCwuj+nt0MgYAwHtiuX67YqmGTp06qVOnTnH9bm1trSRFdCIGAAD+5ooEJ1pr165VSUmJhg8frg4dOqi0tFTz5s1T7969o67eAAAA87miD060srKytGrVKo0ZM0bHHnuspk6dqgEDBujVV19VRkaG0+EBAACX8FQFp3///lq9erXTYQAAAJfzVAUHAAAgGiQ4AADAOCQ4AADAOJ7qg2OXuql/KisrHY4EAABEq+66Hc0Ufr5McPbt2ydJrEkFAIAH7du3T8FgsNnXuGIm41Srra3V9u3b1a5dOwUCAVves26F8q1btxo7O7Lp22j69klsoynYRjOYvo3J2D7LsrRv3z5169ZNaWnN97LxZQUnLS1NRx99dFLe2w9rXZm+jaZvn8Q2moJtNIPp22j39rVUualDJ2MAAGAcEhwAAGAcEhybZGRk6He/+53RS0aYvo2mb5/ENpqCbTSD6dvo9Pb5spMxAAAwGxUcAABgHBIcAABgHBIcAABgHBIcAABgHBKcBCxatEiBQEDXXntt+LnvvvtO06dPV8eOHdW2bVv9/Oc/186dO50LMgGNbd+oUaMUCAQivq688krngozD73//+wbb0Ldv3/DPTdiHLW2jCftx27ZtuuSSS9SxY0dlZmaqf//+WrduXfjnlmVp/vz5ysvLU2Zmps444wx99tlnDkYcu5a2cfLkyQ3249lnn+1gxLHp2bNng/gDgYCmT58uyYxjsaVtNOFYrKmp0bx581RQUKDMzEz17t1bt9xyS8R6UU4cj76cydgOJSUluvvuuzVgwICI52fOnKn/+q//0uOPP65gMKirr75aRUVFeuONNxyKND5NbZ8kTZs2TTfffHP4cVZWVipDs8Xxxx+vl156Kfy4VasfDwVT9mFz2yh5ez9+8803GjZsmEaPHq1//OMf6tSpkz777DN16NAh/Jo//OEPWrp0qVasWKGCggLNmzdPZ511lj7++GMdccQRDkYfnWi2UZLOPvtsLV++PPzYS0OOS0pKVFNTE368YcMGnXnmmZowYYIkM47FlrZR8vaxKEm33Xabli1bphUrVuj444/XunXrNGXKFAWDQV1zzTWSHDoeLcRs37591jHHHGO9+OKL1mmnnWbNmDHDsizL2rt3r9W6dWvr8ccfD7/2k08+sSRZb731lkPRxq6p7bMsq8FjL/rd735nnXDCCY3+zJR92Nw2Wpb39+MNN9xgDR8+vMmf19bWWl27drUWL14cfm7v3r1WRkaG9eijj6YixIS1tI2WZVmTJk2yzjvvvNQElAIzZsywevfubdXW1hpzLB6u/jZalvePRcuyrHPOOce67LLLIp4rKiqyJk6caFmWc8cjTVRxmD59us455xydccYZEc+/8847+v777yOe79u3r7p376633nor1WHGrantq/Pwww8rNzdX/fr109y5c3XgwIEUR5i4zz77TN26dVOvXr00ceJElZeXSzJnH0pNb2MdL+/HZ599VoMHD9aECRPUuXNnDRw4UPfee2/452VlZdqxY0fEfgwGgxo6dKhn9mNL21hnzZo16ty5s4499lhdddVV+vrrrx2INnEHDx7UQw89pMsuu0yBQMCoY7HO4dtYx8vHoiSdeuqpevnll/Xpp59Kkt5//329/vrrGjdunCTnjkeaqGL0t7/9Te+++65KSkoa/GzHjh1q06aN2rdvH/F8ly5dtGPHjhRFmJjmtk+SLr74YvXo0UPdunXTBx98oBtuuEGbNm3SqlWrUhxp/IYOHar7779fxx57rCoqKnTTTTdpxIgR2rBhgxH7UGp+G9u1a+f5/fj5559r2bJlmjVrlm688UaVlJTommuuUZs2bTRp0qTwvurSpUvE73lpP7a0jdKh5qmioiIVFBSotLRUN954o8aNG6e33npL6enpDm9BbJ5++mnt3btXkydPlmTG+fRwh2+jZMY5dc6cOaqsrFTfvn2Vnp6umpoaLViwQBMnTpQkx45HEpwYbN26VTNmzNCLL77oiTb8WEWzff/2b/8W/r5///7Ky8vTmDFjVFpaqt69e6cq1ITU3VVI0oABAzR06FD16NFDjz32mDIzMx2MzD7NbePUqVM9vx9ra2s1ePBgLVy4UJI0cOBAbdiwQXfddVf44u910WzjRRddFH59//79NWDAAPXu3Vtr1qzRmDFjHIk7Xn/96181btw4devWzelQkqaxbfT6sShJjz32mB5++GE98sgjOv7447V+/Xpde+216tatm6PHI01UMXjnnXe0a9cunXTSSWrVqpVatWqlV199VUuXLlWrVq3UpUsXHTx4UHv37o34vZ07d6pr167OBB2Dlravfke5OkOHDpUkbd68OdXh2qZ9+/b6yU9+os2bN6tr166e3odNqb+NjfHafszLy9Nxxx0X8dxPf/rTcDNc3b46fMSNl/ZjS9vYmF69eik3N9cz+7HOli1b9NJLL+nyyy8PP2fasdjYNjbGa8eiJF1//fWaM2eOLrroIvXv31+XXnqpZs6cqeLiYknOHY8kODEYM2aMPvzwQ61fvz78NXjwYE2cODH8fevWrfXyyy+Hf2fTpk0qLy9XYWGhg5FHp6Xta6zkvX79ekmHTsZe9e2336q0tFR5eXkaNGiQp/dhU+pvY2O8th+HDRumTZs2RTz36aefqkePHpKkgoICde3aNWI/VlZWau3atZ7Zjy1tY2O+/PJLff31157Zj3WWL1+uzp0765xzzgk/Z9qx2Ng2NsZrx6IkHThwQGlpkelEenq6amtrJTl4PCat+7JPHN4D/sorr7S6d+9urV692lq3bp1VWFhoFRYWOhdggupv3+bNm62bb77ZWrdunVVWVmY988wzVq9evayRI0c6G2SMrrvuOmvNmjVWWVmZ9cYbb1hnnHGGlZuba+3atcuyLDP2YXPbaMJ+/N///V+rVatW1oIFC6zPPvvMevjhh62srCzroYceCr9m0aJFVvv27a1nnnnG+uCDD6zzzjvPKigosKqqqhyMPHotbeO+ffus2bNnW2+99ZZVVlZmvfTSS9ZJJ51kHXPMMdZ3333ncPTRq6mpsbp3727dcMMNDX5mwrFoWU1vownHomUdGs131FFHWX//+9+tsrIya9WqVVZubq7161//OvwaJ45HEpwEHZ7gVFVVWb/85S+tDh06WFlZWdb48eOtiooK5wJMUP3tKy8vt0aOHGkdeeSRVkZGhtWnTx/r+uuvt0KhkLNBxujCCy+08vLyrDZt2lhHHXWUdeGFF1qbN28O/9yEfdjcNpqyH//zP//T6tevn5WRkWH17dvXuueeeyJ+Xltba82bN8/q0qWLlZGRYY0ZM8batGmTQ9HGp7ltPHDggDV27FirU6dOVuvWra0ePXpY06ZNs3bs2OFgxLF7/vnnLUmN7hsTjkXLanobTTkWKysrrRkzZljdu3e3jjjiCKtXr17Wb37zG6u6ujr8GieOx4Bl1ZtqEAAAwAD0wQEAAMYhwQEAAMYhwQEAAMYhwQEAAMYhwQEAAMYhwQEAAMYhwQEAAMYhwQEAAMYhwQHgS6NGjVIgEFAgEAiv/7NmzRoFAoEGCzza7fe//334b//pT39K6t8C/IoEB0CLJk+eHL4g1/86++yznQ4tIdOmTVNFRYX69euX8Hvt3LlTrVu31t/+9rdGfz516lSddNJJkqTZs2eroqJCRx99dMJ/F0DjSHAAROXss89WRUVFxNejjz6a1L958ODBpL5/VlaWunbtqlatWiX8Xl26dNE555yj//iP/2jws/379+uxxx7T1KlTJUlt27ZV165dlZ6envDfBdA4EhwAUcnIyFDXrl0jvjp06BD+eSAQ0H333afx48crKytLxxxzjJ599tmI99iwYYPGjRuntm3bqkuXLrr00ku1e/fu8M9HjRqlq6++Wtdee61yc3N11llnSZKeffZZHXPMMTriiCM0evRorVixItyUtH//fuXk5OiJJ56I+FtPP/20srOztW/fvri3+cCBAxo3bpyGDRsWbra677779NOf/lRHHHGE+vbtqzvvvDP8+qlTp+rll19WeXl5xPs8/vjj+uGHHzRx4sS4YwEQGxIcALa56aab9Itf/EIffPCBfvazn2nixInas2ePJGnv3r06/fTTNXDgQK1bt07PPfecdu7cqV/84hcR77FixQq1adNGb7zxhu666y6VlZXpggsu0Pnnn6/3339fV1xxhX7zm9+EX5+dna2LLrpIy5cvj3if5cuX64ILLlC7du3i2pa9e/fqzDPPVG1trV588UW1b99eDz/8sObPn68FCxbok08+0cKFCzVv3jytWLFCkvSzn/1MXbp00f33398glqKiIrVv3z6uWADEIalrlQMwwqRJk6z09HQrOzs74mvBggXh10iyfvvb34Yff/vtt5Yk6x//+IdlWZZ1yy23WGPHjo14361bt1qSrE2bNlmWZVmnnXaaNXDgwIjX3HDDDVa/fv0invvNb35jSbK++eYby7Isa+3atVZ6erq1fft2y7Isa+fOnVarVq2sNWvWNLlNp512mjVjxoyI51555RVLkvXJJ59YAwYMsH7+859b1dXV4Z/37t3beuSRRyJ+55ZbbrEKCwvDj+fMmWMVFBRYtbW1lmVZ1ubNm61AIGC99NJLDWLo0aOHdfvttzcZI4D4UcEBEJXRo0dr/fr1EV9XXnllxGsGDBgQ/j47O1s5OTnatWuXJOn999/XK6+8orZt24a/+vbtK0kqLS0N/96gQYMi3nPTpk0aMmRIxHMnn3xyg8fHH398uJLy0EMPqUePHho5cmRc23rmmWeqT58+Wrlypdq0aSPpUD+a0tJSTZ06NWIbbr311oj4L7vsMpWVlemVV16RdKh607NnT51++ulxxQIgPon3rAPgC9nZ2erTp0+zr2ndunXE40AgoNraWknSt99+q3/+53/Wbbfd1uD38vLyIv5OPC6//HLdcccdmjNnjpYvX64pU6YoEAjE9V7nnHOOnnzySX388cfq379/OH5JuvfeezV06NCI19fvLHzMMcdoxIgRWr58uUaNGqUHHnhA06ZNizsWAPEhwQGQEieddJKefPJJ9ezZM6ZRS8cee6z++7//O+K5kpKSBq+75JJL9Otf/1pLly7Vxx9/rEmTJsUd66JFi9S2bVuNGTNGa9as0XHHHacuXbqoW7du+vzzz1vsLDx16lRdddVVOvfcc7Vt2zZNnjw57lgAxIcmKgBRqa6u1o4dOyK+6o+Aasn06dO1Z88e/cu//ItKSkpUWlqq559/XlOmTFFNTU2Tv3fFFVdo48aNuuGGG/Tpp5/qscceC3firV8V6dChg4qKinT99ddr7NixCc8x88c//lETJ07U6aefro0bN0o61Im6uLhYS5cu1aeffqoPP/xQy5cv15IlSyJ+d8KECWrdurWuuOIKjR07Vvn5+QnFAiB2JDgAovLcc88pLy8v4mv48OFR/363bt30xhtvqKamRmPHjlX//v117bXXqn379kpLa/pUVFBQoCeeeEKrVq3SgAEDtGzZsvAoqoyMjIjXTp06VQcPHtRll10W30Ye5vbbb9cvfvELnX766fr00091+eWX67777tPy5cvVv39/nXbaabr//vtVUFAQ8XtZWVm66KKL9M0339gWC4DYBCzLspwOAgBisWDBAt11113aunVrxPMPPvigZs6cqe3bt4c7Bzdl1KhROvHEEx1dKqFnz5669tprde211zoWA2AqKjgAXO/OO+9USUmJPv/8cz344INavHhxRB+bAwcOqLS0VIsWLdIVV1zRYnJT/33btm2rDz/8MFmhN2rhwoVq27ZtgwkBAdiHCg4A15s5c6ZWrlypPXv2qHv37rr00ks1d+7ccGfl3//+91qwYIFGjhypZ555Rm3btm3xPbdt26aqqipJUvfu3aNOiuywZ8+e8ASInTp1UjAYTNnfBvyCBAcAABiHJioAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGAcEhwAAGCc/wNvmmkEWkK1IQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6bUlEQVR4nO3df3gV1Z3H8c9NgBgCCUgCCRoggEoVsIiIKYogSqVuVVIprugCUlYttojFCrpSrUKwKu3DtlVruwF/tfgDrdtttSrQLmppUFGoCoKRUAhoVG4wSYMmZ/9gc5tLft3fM3Pm/XqePA+5mdx8h7kz851zvuecgDHGCAAAwCJpTgcAAACQaCQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOl2cDsAJTU1N2rdvn3r27KlAIOB0OAAAIALGGB06dEj9+/dXWlrHbTS+THD27dunwsJCp8MAAAAx2LNnj44//vgOt/FlgtOzZ09JR/6DsrOzHY4GAABEoqamRoWFhaH7eEd8meA0d0tlZ2eT4AAA4DGRlJdQZAwAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDguMDVcF6vbKrWlXBeqdDAQAgJTyZ4JSWlmrMmDHq2bOn+vbtq0suuUTbt293OixXWlNeqXHL1+nyBzdp3PJ1WlNe6XRIAAAknScTnD/96U+aN2+e/vKXv+iFF17Q559/rsmTJ6u2ttbp0FylKlivxWu3qskc+b7JSDev3UZLDgDAel2cDiAWzz33XNj3q1atUt++ffXaa69p/PjxrbZvaGhQQ0ND6Puampqkx+gGFdW1oeSmWaMx+qC6TgU5mc4EBQBACniyBedowWBQknTssce2+fPS0lLl5OSEvgoLC1MZnmOKcrOUFgh/LT0Q0KDc7s4EhKhQOwUAsQsYY0znm7lXU1OTLrroIh08eFAbN25sc5u2WnAKCwsVDAaVnZ2dqlAdsaa8Ujev3aZGY5QeCGhZyXBNHzPA6bDQiTXllaHuxbSAVFoyguOGTlUF61VRXaui3CxaaWGlmpoa5eTkRHT/9mQXVUvz5s3Ttm3b2k1uJCkjI0MZGRkpjMo9po8ZoPEn5umD6joNyu3ORc8D2qudGn9iHscP7SIpBsJ5uovquuuu0+9+9zutX79exx9/vNPhuFZBTqaKh/Th5ugRHdVOAW1hQAHQmicTHGOMrrvuOj399NNat26dioqKnA4JSBhqpxAtkmKgNU8mOPPmzdMjjzyixx57TD179tT+/fu1f/9+1dfztALvK8jJVGnJCKUHjmQ5zbVTtMChPSTFQGueLDIOBAJtvl5WVqZZs2Z1+vvRFCkBTqkK1lM7hYgxoAB+YH2RsQdzMiBqBTmZJDaIGAMKgHCeTHAAAK2RFAP/5MkaHAAAgI6Q4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAolIVrNcru6pZ6wquxjw4AICIsWo5vIIWHABARFi1HF5CggMAiAirlsNLSHAAABFh1XJ4CQkOACAiBTmZKi0ZofTAkSynedVy1r+CG1FkDACIGKuWwytIcAAAUWHVcngBXVQAAMA6JDgAgIRiIkC4AV1UAICEYSJAuAUtOECUeDoF2sZEgHATWnCAKPB0CrSvo4kAKUpGqtGCA0SIp1OgY0wECDchwQEiZPM09XS7IRGYCBBuQhcVEKHmp9OWSY4NT6d0uyGRmAgQbkELDhAhG59O6XZDMhTkZKp4SB9PnxvwPlpwgCjY9nRKUSgAW5HgAFGyaZp6W7vdAIAuKsDHbOx2AwCJFhzA92zrdgMAiQQHgOzqdgMQmapgvSqqa1WUm2Xl+U+CAwCAz/hheghqcAAA8BG/TA9BggMAgI/YPCt7SyQ4AAD4iF/WDCPBAQDAR/wyPQRFxvAs20cAwDl8tmA7P0wPQYIDT/LDCAA4g88W/ML26SHoooLn+GUEAFKPzxZgDxIceI5fRgAg9fhsAfYgwYHn+GUEAFKPzxZgDxIceI5fRgAg9fhsAfYIGGNM55vZpaamRjk5OQoGg8rOznY6HMSoKlhv9QgAOIfPFuBO0dy/GUUFz7J9BACcw2cL8D66qAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAA6ERVsF6v7KpmZXkPYSZjAAA6sKa8UovXblWTkdICUmnJCE0fM8DpsNAJWnAAAGhHVbA+lNxIUpORbl67zfqWHBtarGjBAQCgHRXVtaHkplmjMfqgus7a9cpsabGiBQcAgHYU5WYpLRD+WnogoEG53Z0JKMlsarEiwQEApIzXuj4KcjJVWjJC6YEjWU56IKBlJcOtbb3pqMXKa+iiAgCkhFe7PqaPGaDxJ+bpg+o6Dcrtbm1yI/2zxaplkuPVFitacAAASef1ro+CnEwVD+ljdXIj2dViRQsOACDp/Fis61W2tFiR4CChqoL1qqiuVVFulmdPCsApNp8/NnV9+EFBTqbnP4MkOEgYr/avA25g+/nT3PVx89ptajTG010f8IaAMcZ0vpldampqlJOTo2AwqOzsbKfDsUJVsF7jlq9r9XS2cdFELmBAJ/x0/lQF6z3f9QHnRHP/pgUHCUH/OhA7P50/NnR9wBsYRYWE8NtkWEAicf74l9fmBfISEhwkhE1DC23BhdM7OH/8aU15pcYtX6fLH9ykccvXaU15pdMhWYUaHGpwEor+dXewvWA10dwyeuno88ctcSHx/FR3lUjU4MAx9K87r70J1cafmMexaYObksGW54+b4kLi+anuyime7KL685//rK9//evq37+/AoGAnnnmGadDAlzDprVkks2ts+u6NS4kDnVXyefJBKe2tlannnqqfvaznzkdCuA6XDgj59Zk0K1xIXGou0o+T3ZRTZkyRVOmTIl4+4aGBjU0NIS+r6mpSUZYgCswoVrk3Dq7rlvjQmLZsiSCW3kywYlWaWmpbr/9dqfDAFKGC2dk3JoMujUuJB51i8nj+VFUgUBATz/9tC655JJ2t2mrBaewsJBRVAAkuXf0n1vjApzCKKqjZGRkKCMjw+kwALiUW5+i3RoX4AWeLDIGgGgx8SHgL75owYE7MYkZUoU5ZQD/8WSC89lnn2nnzp2h7ysqKrRlyxYde+yxGjCAi5YXcMNBqjDxIeBPnuyi2rx5s0aNGqVRo0ZJkm644QaNGjVKS5YscTgyRIJJzJBKzCkD+JMnW3AmTJggjw/+8jWmKEcqMacM4E+ebMGBtzHTLlKJGWMBf/JkCw68jUnMkGpMfAj4DwkOHMENB6nGnDKAv5DgwDHccAAcjekjkCgkOAAAV2hr+ojxJ+aR8CAmJDgAAMe1NX3Eoqe2KvD/I+CYLwvRYhQVAMBxbU0fYSTmy0LMSHAAAI5ra/qIozFBI6JBggMAcNzR8xWlSTo632G+LESDGhxEhREOAJLl6Okj/rzjo6jmy+L6hJZIcBAxFsgEkGwtp4+IZr4srk84Gl1UiIgbFsisCtbrlV3VFBkCPlKQk6niIX06bblx+voE96EFBxFxeoFMns4AtMfp6xPciRYcRMTJBTJ5OgPQERbwRVtIcBARJ1Zkbu6Sem33p+0+ncF50XQd0s2IZGDFeLSFLipELJULZLbskgroyFfLHIenM3eIpuvQpm5GRuu4Dwv44mgkOIhKKhbIPLpLyuhIgpP2/1O283TmDu11HY4/Ma/VsYlmW7ezKVGzDQv4oiUSHLTi9NNpe1O2/+dlo9SnRwZPZy4RTWGnLUWgNiVqQDycvk9EggQHYdzwdNpcMNjyhpgeCGj0oN6uPZH8qL3j1FbXYTTbulkkiZoXLvxAPNxwn4gERcYIcctoJQoGvSGa42TLMe1stM6a8kqNW75Olz+4SeOWr9Oa8koHogSSxy33iUjQgoMQN3UjUDDoDdEcJxuOaXOi1tbyAXRfwQ/cdJ/oDAkOQtzWjUDBoDdEc5xsOKbtJWpeuvADsXLbfaIjdFEhxJZuBCDZ2lo+gMnm4Adeuk8EjDGm883sUlNTo5ycHAWDQWVnZzsdjutUBes93Y2AxKJoNnJryitbdV+5sfgSiJdT94lo7t8kOAlOcLgZwCZeGS3hJjwgAMkTzf2bGpwE4mYAmySqaNZvSb8NdUZwr2SeT7adqyQ4CcIICmdFe2LadiInQyKKZkn6gcRJ5vlk47lKgpMgjKBwTrQnpo0ncjLEO1qCpB9u5rWHnGSeT7aeq4yiShBGUDgj2kmnvDRJldPiHS3RUdLvJ6yg7j5enJAxmeeTrecqLTgJ0tEEYEieaFvOaGmLTjyT83lpvoxkobXQfbzaWpHM88nWc5UWnASaPmaANi6aqF/PPVMbF03kQpYC0bac0dIWvbbmfIn097wyX0Yy0FroTl5trUjm+WTruUoLToIxgiK1om05o6UttWxYniFWtBa6k5dbK5J5Ptl4rpLguJjXiuCcEu2JaeOJ7GaJTPq9dE54+UZqM68/5CTzIdq2B3Qm+nPpTMb03XuHl266XubFc4KZjd2LCRm9iZmMO+H2BKcqWK9xy9e1evLbuGgiJ6LLePGm60VePie4kQKJE839myJjF/JqEZzfUESaOl4+J2It0gYQHxIcF7JppI/Nc4B4+abrNTadEwBSI+Ii42effTbqNz///POVmclTS7S8XgTXrK3um/En5llTr0IRaerYck4ASJ2Ia3DS0qJr7AkEAnrvvfc0ePDgmAJLJrfX4DTzct99WzUTAUmB/08IbKlXoYg0tbx8TgBe5pbBFElbTXz//v3q27dvRNv27NkzmrdGG7w8ZK+t7hsjyXhs9tDOMOQ8tbx8TgDJkIrEw6uDKSJOcGbOnBlVd9MVV1zh6tYRJFdb3TdHs2XSM7fcdN3yhAUgNVKReHh1aQspiiLjsrKyUKvMZ5991un29913n3Jzc2OPDJ529NTfaTrSRdUS9SrR6ahg24uLBwKIXapGcXp5MEVMMxnn5OTo8ccf1ze+8Y1ExwOLHN198+cdH1EkGqOOntS8/IQF2CgVrampWgrEy4MpYkpwjDF64IEHtGLFCgUCAZ1++umaMWOGxowZk+j44HEtu2+oV4lNZwkMax4B7pGqepVUJR5eHsEY8zw4b7zxhk477TSdddZZ+tvf/qazzz5bCxcuTGRssBCTnkWvsyZi5ogB3CGVk3+mcgXw6WMGaOOiifr13DO1cdFETxQYS3EstvnYY4/p/PPPD33/1ltv6eKLL9Zxxx2nBQsWJCQ4AJ0/qXn5CQuwSapbU1PZKu6WwRTRiCnBOfbYY1VYWBj22siRI/XTn/5UCxYsIMEBEiiSBMar3X+M/IJNnKhX8WLikSoxJThf/vKXVVZWprvuuivs9aFDh6qyktEbtuEm5LxIEhivXei8NLcG5wAiQWuqu8SU4Nx5552aOHGi9u3bp29/+9saOXKkamtrtWzZMhUVFSU6RjjISzch23ktgemIl0Z+cQ4gGvG2ppJMJ05MCc6ZZ56pv/zlL5o/f77OPvtsNa/2cMwxx+iJJ55IaIBwjpduQvAWr4z84hyInx9v2LE+jJBMJ1bMRcannnqqNmzYoA8//FCvvfaampqaNHbsWCb3s4hXbkI28cvNwCtza3AOxIcbduRIphMv5gSnWd++fTVlypRExAKX8cpNyBa23AwiSdK8UqvAORA7btjRIZlOvIjnwXnrrbfU1NQU8Rv/7W9/0xdffBFTULboaGp9L4hkngWv76NbpHL+jGSKZskIL8ytkcq5RmwT6RT/XEOOYD6rxIu4BWfUqFHav3+/8vLyItq+uLhYW7Zs0eDBg2MOzstseRrvqGDOln10Axue3mJ5YvdC4bRXh+A7LZLWL64h/+SVVk0viTjBMcbo1ltvVffukWWThw8fjjkor7Otabatm5Bt++g0G7pCbEjS2uOFRMxtOrthcw1pjWQ6sSJOcMaPH6/t27dH/MbFxcXKzPTnwbH5Qt/MD/uYSjY8vdmQpKFtsRa/d3TD5hrStniSab8MUohUxAnOhg0bkhiGXfxwoffDPqaa15/ebEjSbBbrzS/ebqT2bthcQxKL7r7WAqZ5EhsfqampUU5OjoLBoLKzs5PyN9aUV7a60Nv2YfPDPiJ6VcF6zyZptor15lcVrNe45etaJSEbF01MyLHlGpIYyT5ObhLN/TvuYeJom9efxiPhh31E9KhXcZd4al2S3Y3ENSQx6O5rGwlOEvnhQu+HfQS8LJ6bXyq6kbiGxI/uvrZFPA8OAMB74plfJdJ5gJjLxlnM19S2mGpw6uvrZYwJDRnfvXu3nn76aZ188smaPHlywoNMtFTU4ACAW8Rb69JRXRXFre7hh/q3aO7fMSU4kydPVklJia655hodPHhQw4YNU9euXVVdXa0VK1bo2muvjTn4VCDBAezDENmOJePm56fiVrhDNPfvmLqoXn/9dZ199tmSpCeffFL9+vXT7t279dBDD2nlypWxvCUAxCyaJSL8qiAnU8VD+iQ08Yh0OQbb0UXnTjEVGdfV1alnz56SpD/+8Y8qKSlRWlqazjzzTO3evTuhAQJAR5gR1zkUt9JF52YxteAMHTpUzzzzjPbs2aPnn38+VHfz4Ycf0uUDIKVoRXCO34tbbVkk11YxteAsWbJEl19+uRYsWKBJkyapuLhY0pHWnFGjRiU0QADoCK0IznJyLhun666Yf8bdYmrBufTSS1VZWanNmzfrueeeC70+adIk/fjHP05YcB352c9+pkGDBumYY47R2LFj9de//jUlfxeAu/i9FcENklHf0xk31F3FMwQfyefJpRrWrFmjf/u3f9P999+vsWPH6ic/+YmeeOIJbd++XX379u309xlFhVRx+gnTT/wwRBZHuGn0FstNpFZShonfcMMNEQewYsWKiLeNxdixYzVmzBj99Kc/lSQ1NTWpsLBQ3/nOd7Ro0aJW2zc0NKihoSH0fU1NjQoLC0lwkFQUHyYXyaN/vbKrWpc/uKnV67+ee6aKh/RJeTwk16mTlLWo3njjjYi2CwQCnW8Uh8OHD+u1117T4sWLQ6+lpaXpvPPO06uvvtrm75SWlur2229PalxAS4zsSS6SR39zW90Vy024U8QJzvr165MZR8Sqq6vV2Niofv36hb3er18/vfvuu23+zuLFi8NaoJpbcIBkofgweUge0Vx3dXTXEMcfLflisc2MjAxlZGQ4HQZ8xG1PmDYheYTESuSR8Hs3blwJzttvv63KykodPnw47PWLLroorqA6kpubq/T0dB04cCDs9QMHDig/Pz9pf9cmfv/QpwJPmMlD8ohmdA21j27cGBOc999/X1OnTtXWrVsVCATUXKfcXH/T2NiYuAiP0q1bN40ePVovvfSSLrnkEklHioxfeuklXXfddUn7u05LVFLChz51eMJMDpLHxOBBx1504x4RU4Izf/58FRUV6aWXXlJRUZH++te/6uOPP9b3vvc93XPPPYmOsZUbbrhBM2fO1Omnn64zzjhDP/nJT1RbW6vZs2cn/W87IVFJCR/61OMJMzlIHuPDg47d6MY9IqYE59VXX9W6deuUm5urtLQ0paWl6ayzzlJpaam++93vRjziKlbTp0/XRx99pCVLlmj//v368pe/rOeee65V4bENEpmU8KGHTUgeY8ODjv3oxj0ippmMGxsbQ4tt5ubmat++fZKkgQMHavv27YmLrgPXXXeddu/erYaGBm3atEljx45Nyd9NtUSus8OsmwBYu8t+zO59REwtOMOHD9ebb76poqIijR07Vj/60Y/UrVs3/eIXv9DgwYMTHaOvJTITp3YBsEssdTQ83fsD3bgxLtXw/PPPq7a2ViUlJdq5c6f+5V/+RTt27FCfPn30m9/8RpMmTUpGrAnjtaUaEj0VOLNudiye4ksKN5Eq8dTRsLwAvCopSzV05pNPPlHv3r2TPpNxIngtwZFISlIl3psGhZtIhUSsxcQ1BV6UlKUaWvrhD3/Y4c+XLFkSy9uiAxRUJl88xZcUbiKVEjFggGsKbBdTgvP000+Hff/555+roqJCXbp00ZAhQ0hw4Enx3DQYoYZUaO4CzeqWTh0N0ImYEpy2hoHX1NRo1qxZmjp1atxBAU6Ip/iSwk0k29FdoFNHHadn3tjHgAGgHQmrwZGkrVu36utf/7o++OCDRL1lUnixBgepEU/xJYWbSJb2am7WfrtYdYebqKOBbyS9Bqc9wWBQwWAwkW8JJESko5viGVrJsEwkS3tdoHWHm1Q8pI8zQQEuF1OCs3LlyrDvjTGqqqrSww8/rClTpiQkMCBRoh3dFE/xJYWbSAa6QN2HKSHcL6YuqqKiorDv09LSlJeXp3PPPVeLFy8OzXLsVnRR+UcihtMCbkAXqHswJYRzkt5FVVFREVNgQKoxugm2iLYLlBaG5GBKCO9IaA0OEI9kXJBp2odNIu0CpYUheXho8o6IE5wbbrgh4jddsWJFTMHAv5J1QWb9LfgNLQzJxUOTd0Sc4Bw9983rr7+uL774QieddJIkaceOHUpPT9fo0aMTGyGsl+wLMqOb4Ce0MCQXD03eEXGCs379+tC/V6xYoZ49e2r16tXq3bu3JOnTTz/V7NmzdfbZZyc+SlgtFRdkRjfBL2hhSD4emrwhLZZfuvfee1VaWhpKbiSpd+/euvPOO3XvvfcmLDj4Q/MFuSUuyEBsmlsY0v9/4WNaGJKjICdTxUP68P/qYjEVGdfU1Oijjz5q9fpHH32kQ4cOxR0U/IUmXyCxaGEAYkxwpk6dqtmzZ+vee+/VGWecIUnatGmTbrzxRpWUlCQ0QPiDmy/IDLeFF9EtC7+LKcG5//77tXDhQl1++eX6/PPPj7xRly6aM2eO7r777oQG6Cd+v5G68YLMcFsA8Ka4Ftusra3Vrl27JElDhgxRVlZWwgJLJjfOZMyN1H2YBRkA3CVli21mZWVp5MiR8bwFxLwVbsVwWwDwrqgm+rvjjjuUlZXV6aR/TPQXHW6k7mTTcFu/d38C8J+oJvprrrc5etK/lgKBQLs/Q9tsupHaxJbRXXR/AvCjuGpwvMqtNTisFOxOVcF6V47uigR1RABskvQanPr6ehlj1L37kRaG3bt36+mnn9bJJ5+syZMnx/KWvufmYdJ+58bRXZGi+xOAX8U0k/HFF1+shx56SJJ08OBBnXHGGbr33nt18cUX67777ktogH7CzJhINGaJBuBXMSU4r7/+emjNqSeffFL5+fnavXu3HnroIa1cuTKhAQKIHdP2A/CrmLqo6urq1LNnT0nSH//4R5WUlCgtLU1nnnmmdu/endAAAcSH7k/gCEYT+ktMCc7QoUP1zDPPaOrUqXr++ee1YMECSdKHH37omqJdAP/k5ToiIBEYTeg/MXVRLVmyRAsXLtSgQYM0duxYFRcXSzrSmjNq1KiEBmiTqmC9XtlVrapgvdOhAIBvtDeZKtdiu8XUgnPppZfqrLPOUlVVlU499dTQ65MmTdLUqVMTFpxNeHoAAGcwmtCfYl6qIT8/X/n5+WGvNa8sjnAsxQAAzmEyVX+KqYtKkv73f/9XV1xxhYqLi7V3715J0sMPP6yNGzcmLDhbdPT0AABILkYT+lNMLThPPfWUrrzySs2YMUNvvPGGGhoaJEnBYFDLli3T73//+4QG6XU8PQCxYdQLEoXRhP4TUwvOnXfeqfvvv18PPvigunbtGnp93Lhxev311xMWnC14egCit6a8UuOWr9PlD27SuOXrtKa80umQ4HFMpuovMbXgbN++XePHj2/1ek5Ojg4ePBhvTFbi6QGIHHVraAsteohGTAlOfn6+du7cqUGDBoW9vnHjRg0ePDgRcVmJuUiAyDDqBUdjJCqiFVMX1dy5czV//nxt2rRJgUBA+/bt06OPPqqFCxfq2muvTXSMAHyGNbTQkm3z2DAnWmrE1IKzaNEiNTU1adKkSaqrq9P48eOVkZGhhQsX6jvf+U6iYwTgM811azev3aZGY6hb8zmbWvRoiUqdgDHGdL5Z2w4fPqydO3fqs88+08knn6wePXqovr5emZnu/sDV1NQoJydHwWCQpSUAF6sK1lO3BlUF6zVu+bpWI1E3Lproqc+FLfvhpGju3zHPgyNJ3bp108knn6wzzjhDXbt21YoVK1RUVBTPWwJwuVQ2rzPqBZI9I1GZEy21ouqiamho0G233aYXXnhB3bp10/e//31dcsklKisr0y233KL09PTQwpsA7EPzOpzi5ZGozaO/srqlMydaCkWV4CxZskQPPPCAzjvvPL3yyiuaNm2aZs+erb/85S9asWKFpk2bpvT09GTFCsBBDN2G07w4EvXoh4Kpo47TM2/so7YsBaJKcJ544gk99NBDuuiii7Rt2zaNHDlSX3zxhd58800FAoHO3wCAZ9lU6AmkQlsPBc+8sU9rv12susNNnmuJ8pqoEpy///3vGj16tCRp+PDhysjI0IIFC0huAB9gyREgOu09FNQdblLxkD7OBOUjURUZNzY2qlu3bqHvu3Tpoh49eiQ8KADuY0uhJ5AqzOfkrKhacIwxmjVrljIyMiRJ//jHP3TNNdcoKysrbLu1a9cmLkIAruHlQk8g1ZjPyVlRJTgzZ84M+/6KK65IaDAA3M+LhZ6AU3gocE5cE/15FRP9AQDgPSmb6A8AEB/WJQKSI6a1qAAA8WPiRHSmeZLAotwsureiRIIDwEpuvzEwcSI6QwIcHxIcANbxwo2BiRPRERLg+FGDA8Aq7d0Y3Fbjwhwp6AgLc8aPBAeAVbxyY2DixOTzcgE3CXD86KICYBUvLSnBHCnJ44Vuyo4wSWD8mAeHeXAA66wpr2x1Y/DSzQ3xqQrWa9zyda2S3I2LJnouQagK1pMAtxDN/ZsWHADWoWXE32wq4Gbm8NiR4FjK7UNkgWTjxuBfXuqmTCW/3RdIcCzk9b5nAIgH9Sut+fG+QA2OZTU4NvU9A0A8qF85wqb7AjU4PmZT3zMAxINuyiP8el9gHhzLMHcCAKAlJ+4LbpiDiATHMkweBgBoKdX3hTXllRq3fJ0uf3CTxi1fpzXllUn5O52hBseyGpxm9D0DAFpKxX0h2fU+1OCAvmcAQJhU3BfcVO9DFxV8zw19xQBgAzfVgXouwVm6dKm+8pWvqHv37urVq5fT4cDj3NJXDAA2cFMdqOe6qA4fPqxp06apuLhYv/rVr5wOBx5WFawPTXwlHZn19Oa12zT+xDy69wAgRm5ZKsVzCc7tt98uSVq1alXEv9PQ0KCGhobQ9zU1NYkOK+X8NuV2MriprxgAbOKGOlDPJTixKC0tDSVGNvDjlNvJ4Ib1akhUASA5PFeDE4vFixcrGAyGvvbs2eN0SDFrr1uFAtnoOd1XTP0PACSPK1pwFi1apLvuuqvDbd555x0NGzYspvfPyMhQRkZGTL/rNnSrJJZTfcXU/wBAcrkiwfne976nWbNmdbjN4MGDUxOMy7mhW8U2TvQVJyJRpXsLANrnigQnLy9PeXl5TofhCc3dKjev3aZGY1iKwaPiTVSpwwKAjrkiwYlGZWWlPvnkE1VWVqqxsVFbtmyRJA0dOlQ9evRwNrgUccsQPMQunkSV7i0A6JznEpwlS5Zo9erVoe9HjRolSVq/fr0mTJjgUFSp54YheIhey26lWBNV6rAAoHOeS3BWrVoV1Rw4gFu0160UbVJCHRYAdM4Xw8T9gPWU3C2Rw/udHt4OAF7guRYctEbBqfsluluJOiz3YDQb4E4kOB5Hwak3JKNbiTos5/FwAbgXXVQe11HLANyDbiX7MKs44G604HgcBafeQbeSXRjNBrgbLTgeR8uAtxTkZKp4SB+OTzu8VCzf/HDREg8X9vDSZxFtowXHArQMwAZeq2dhVnF7ee2ziLYFjDGm883sUlNTo5ycHAWDQWVnZzsdDuB7VcF6jVu+rlVX68ZFE12fMFQF63m4sIiXP4t+EM39mxYcAI7zcj0Lo9ns4uXPIsJRgwPAcdSzwC34LNqDBAeA4yiWh1vwWbQHNTjU4ACuQT0L3ILPojtRgwPAk6hngVvwWfQ+uqgcxDwLAAAkBy04DmGeBQAAkocWHAewhg0AAMlFguMAFsiE29F9CsDr6KJyAAtkws3oPgVgA1pwHMA8C3Aruk8B2IIWHIewQCbciGnqAdiCBMdBzLMAt6H7FIAt6KICEEL3KQBb0IIDIAzdpwBsQIIDoBW6TwF4HV1UAADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADfqwrW65Vd1aoK1jsdChKExTZhpapgvSqqa1WUm8WikW3g/wf4pzXllVq8dquajJQWkEpLRmj6mAFOh4U4keDAOlysOsb/D/BPVcH60PkgSU1GunntNo0/MY/k3+PoooJV2rtY0ex8BP8/QLiK6trQ+dCs0Rh9UF3nTEBIGBIcWNX3zMWqY/z/AOGKcrOUFgh/LT0Q0KDc7s4EhIQhwfG5NeWVGrd8nS5/cJPGLV+nNeWVTocUFy5WHeP/BwhXkJOp0pIRSg8cOTHSAwEtKxlO95QFAsYY0/lmdqmpqVFOTo6CwaCys7OdDscxVcF6jVu+LuyJPj0Q0MZFEz19cq8pr9TNa7ep0ZjQxYoak3/i/wdorSpYrw+q6zQot7unr3+2i+b+TZGxj3XUXeHlE3z6mAEaf2IeF6t28P8DtFaQk8m5YBkSHB9r7q44ugXHhu4KLlYd4/8HgO2owfEx+p4BALaiBcfn6K4AANiIBAd0VwAArEMXFQAAiIsb51OjBQcAAMTMrcu/0IIDAABi4ublX0hwAABATNy8/AsJDgAAiImbl38hwQEAADFx83xqFBkDAICYuXU+NRIcAAAQFzfOp0YXFQAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgCglapgvV7ZVe2KRROBWDDRHwCkUFWwXhXVtSrKzXLdxGjN1pRXhlaITgtIpSUjNH3MAKfDAqJCggMAKeKFxKEqWB+KUZKajHTz2m0af2KeaxMyoC10UQFACrSXOLitC6iiujYUY7NGY/RBdZ0zAQExIsEBgBTwSuJQlJultED4a+mBgAbldncmICBGnkpwPvjgA82ZM0dFRUXKzMzUkCFD9IMf/ECHDx92OjQA6JBXEoeCnEyVloxQeuBIsOmBgJaVDKd7Cp7jqRqcd999V01NTXrggQc0dOhQbdu2TXPnzlVtba3uuecep8MDgHY1Jw43r92mRmNcnThMHzNA40/M0wfVdRqU292VMQKdCRhjTOebudfdd9+t++67T++//3672zQ0NKihoSH0fU1NjQoLCxUMBpWdnZ2KMAFA0pFaHBIHIDY1NTXKycmJ6P7tqS6qtgSDQR177LEdblNaWqqcnJzQV2FhYYqiA4BwBTmZKh7Sh+QGSDJPJzg7d+7Uf/7nf+rqq6/ucLvFixcrGAyGvvbs2ZOiCAEAgBNckeAsWrRIgUCgw69333037Hf27t2rCy64QNOmTdPcuXM7fP+MjAxlZ2eHfQEAAHu5ogbno48+0scff9zhNoMHD1a3bt0kSfv27dOECRN05plnatWqVUpLiy5Pi6YPDwAAuEM0929XjKLKy8tTXl5eRNvu3btXEydO1OjRo1VWVhZ1cgMAAOznigQnUnv37tWECRM0cOBA3XPPPfroo49CP8vPz3cwMgAA4CaeSnBeeOEF7dy5Uzt37tTxxx8f9jMX9LQBAACX8FT/zqxZs2SMafMLAACgmacSHAAAgEiQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4ADwpapgvV7ZVa2qYL3ToQBIAk/NgwMAibCmvFKL125Vk5HSAlJpyQhNHzPA6bAAJBAtOAB8pSpYH0puJKnJSDev3UZLDmAZEhwAvlJRXRtKbpo1GqMPquucCQhAUpDgAPCVotwspQXCX0sPBDQot7szAQFIChIcAL5SkJOp0pIRSg8cyXLSAwEtKxmugpxMhyMDkEgUGQPwneljBmj8iXn6oLpOg3K7k9wAFiLBAeBLBTmZJDYtVAXrVVFdq6LcLP5fYAUSHADwOYbNw0bU4ACAjzFsHrYiwQEAH2PYPGxFggMAPsawediKBAcAfIxh87AVRcYA4HMMm4eNSHAAAAybh3XoogIAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANbx5VpUxhhJUk1NjcORAACASDXft5vv4x3xZYJz6NAhSVJhYaHDkQAAgGgdOnRIOTk5HW4TMJGkQZZpamrSvn371LNnTwUCgYS8Z01NjQoLC7Vnzx5lZ2cn5D3dxvZ9tH3/JPbRFuyjHWzfx2TsnzFGhw4dUv/+/ZWW1nGVjS9bcNLS0nT88ccn5b2zs7Ot/KC2ZPs+2r5/EvtoC/bRDrbvY6L3r7OWm2YUGQMAAOuQ4AAAAOuQ4CRIRkaGfvCDHygjI8PpUJLG9n20ff8k9tEW7KMdbN9Hp/fPl0XGAADAbrTgAAAA65DgAAAA65DgAAAA65DgAAAA65DgxGH58uUKBAK6/vrrQ6/94x//0Lx589SnTx/16NFD3/jGN3TgwAHngoxDW/s3YcIEBQKBsK9rrrnGuSBjcNttt7Xah2HDhoV+bsMx7GwfbTiOe/fu1RVXXKE+ffooMzNTI0aM0ObNm0M/N8ZoyZIlKigoUGZmps477zy99957DkYcvc72cdasWa2O4wUXXOBgxNEZNGhQq/gDgYDmzZsnyY5zsbN9tOFcbGxs1K233qqioiJlZmZqyJAhuuOOO8LWi3LifPTlTMaJUF5ergceeEAjR44Me33BggX6n//5Hz3xxBPKycnRddddp5KSEr388ssORRqb9vZPkubOnasf/vCHoe+7d++eytAS4pRTTtGLL74Y+r5Ll3+eCrYcw472UfL2cfz00081btw4TZw4UX/4wx+Ul5en9957T7179w5t86Mf/UgrV67U6tWrVVRUpFtvvVVf/epX9fbbb+uYY45xMPrIRLKPknTBBReorKws9L2XhhyXl5ersbEx9P22bdt0/vnna9q0aZLsOBc720fJ2+eiJN1111267777tHr1ap1yyinavHmzZs+erZycHH33u9+V5ND5aBC1Q4cOmRNOOMG88MIL5pxzzjHz5883xhhz8OBB07VrV/PEE0+Etn3nnXeMJPPqq686FG302ts/Y0yr773oBz/4gTn11FPb/Jktx7CjfTTG+8fxpptuMmeddVa7P29qajL5+fnm7rvvDr128OBBk5GRYX7961+nIsS4dbaPxhgzc+ZMc/HFF6cmoBSYP3++GTJkiGlqarLmXDxay300xvvnojHGXHjhheaqq64Ke62kpMTMmDHDGOPc+UgXVQzmzZunCy+8UOedd17Y66+99po+//zzsNeHDRumAQMG6NVXX011mDFrb/+aPfroo8rNzdXw4cO1ePFi1dXVpTjC+L333nvq37+/Bg8erBkzZqiyslKSPcdQan8fm3n5OD777LM6/fTTNW3aNPXt21ejRo3Sgw8+GPp5RUWF9u/fH3Ycc3JyNHbsWM8cx872sdmGDRvUt29fnXTSSbr22mv18ccfOxBt/A4fPqxHHnlEV111lQKBgFXnYrOj97GZl89FSfrKV76il156STt27JAkvfnmm9q4caOmTJkiybnzkS6qKP3mN7/R66+/rvLy8lY/279/v7p166ZevXqFvd6vXz/t378/RRHGp6P9k6TLL79cAwcOVP/+/fXWW2/ppptu0vbt27V27doURxq7sWPHatWqVTrppJNUVVWl22+/XWeffba2bdtmxTGUOt7Hnj17ev44vv/++7rvvvt0ww036Oabb1Z5ebm++93vqlu3bpo5c2boWPXr1y/s97x0HDvbR+lI91RJSYmKioq0a9cu3XzzzZoyZYpeffVVpaenO7wH0XnmmWd08OBBzZo1S5Id19OjHb2Pkh3X1EWLFqmmpkbDhg1Tenq6GhsbtXTpUs2YMUOSHDsfSXCisGfPHs2fP18vvPCCJ/rwoxXJ/v37v/976N8jRoxQQUGBJk2apF27dmnIkCGpCjUuzU8VkjRy5EiNHTtWAwcO1OOPP67MzEwHI0ucjvZxzpw5nj+OTU1NOv3007Vs2TJJ0qhRo7Rt2zbdf//9oZu/10Wyj5dddllo+xEjRmjkyJEaMmSINmzYoEmTJjkSd6x+9atfacqUKerfv7/ToSRNW/vo9XNRkh5//HE9+uijeuyxx3TKKadoy5Ytuv7669W/f39Hz0e6qKLw2muv6cMPP9Rpp52mLl26qEuXLvrTn/6klStXqkuXLurXr58OHz6sgwcPhv3egQMHlJ+f70zQUehs/1oWyjUbO3asJGnnzp2pDjdhevXqpRNPPFE7d+5Ufn6+p49he1ruY1u8dhwLCgp08sknh732pS99KdQN13ysjh5x46Xj2Nk+tmXw4MHKzc31zHFstnv3br344ov61re+FXrNtnOxrX1si9fORUm68cYbtWjRIl122WUaMWKErrzySi1YsEClpaWSnDsfSXCiMGnSJG3dulVbtmwJfZ1++umaMWNG6N9du3bVSy+9FPqd7du3q7KyUsXFxQ5GHpnO9q+tJu8tW7ZIOnIx9qrPPvtMu3btUkFBgUaPHu3pY9ielvvYFq8dx3Hjxmn79u1hr+3YsUMDBw6UJBUVFSk/Pz/sONbU1GjTpk2eOY6d7WNb/v73v+vjjz/2zHFsVlZWpr59++rCCy8MvWbbudjWPrbFa+eiJNXV1SktLTydSE9PV1NTkyQHz8eklS/7xNEV8Ndcc40ZMGCAWbdundm8ebMpLi42xcXFzgUYp5b7t3PnTvPDH/7QbN682VRUVJjf/va3ZvDgwWb8+PHOBhml733ve2bDhg2moqLCvPzyy+a8884zubm55sMPPzTG2HEMO9pHG47jX//6V9OlSxezdOlS895775lHH33UdO/e3TzyyCOhbZYvX2569eplfvvb35q33nrLXHzxxaaoqMjU19c7GHnkOtvHQ4cOmYULF5pXX33VVFRUmBdffNGcdtpp5oQTTjD/+Mc/HI4+co2NjWbAgAHmpptuavUzG85FY9rfRxvORWOOjOY77rjjzO9+9ztTUVFh1q5da3Jzc833v//90DZOnI8kOHE6OsGpr6833/72t03v3r1N9+7dzdSpU01VVZVzAcap5f5VVlaa8ePHm2OPPdZkZGSYoUOHmhtvvNEEg0Fng4zS9OnTTUFBgenWrZs57rjjzPTp083OnTtDP7fhGHa0j7Ycx//+7/82w4cPNxkZGWbYsGHmF7/4RdjPm5qazK233mr69etnMjIyzKRJk8z27dsdijY2He1jXV2dmTx5ssnLyzNdu3Y1AwcONHPnzjX79+93MOLoPf/880ZSm8fGhnPRmPb30ZZzsaamxsyfP98MGDDAHHPMMWbw4MHmlltuMQ0NDaFtnDgfA8a0mGoQAADAAtTgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAPClCRMmKBAIKBAIhNb/2bBhgwKBQKsFHhPttttuC/3tn/zkJ0n9W4BfkeAA6NSsWbNCN+SWXxdccIHTocVl7ty5qqqq0vDhw+N+rwMHDqhr1676zW9+0+bP58yZo9NOO02StHDhQlVVVen444+P++8CaBsJDoCIXHDBBaqqqgr7+vWvf53Uv3n48OGkvn/37t2Vn5+vLl26xP1e/fr104UXXqj/+q//avWz2tpaPf7445ozZ44kqUePHsrPz1d6enrcfxdA20hwAEQkIyND+fn5YV+9e/cO/TwQCOiXv/ylpk6dqu7du+uEE07Qs88+G/Ye27Zt05QpU9SjRw/169dPV155paqrq0M/nzBhgq677jpdf/31ys3N1Ve/+lVJ0rPPPqsTTjhBxxxzjCZOnKjVq1eHupJqa2uVnZ2tJ598MuxvPfPMM8rKytKhQ4di3ue6ujpNmTJF48aNC3Vb/fKXv9SXvvQlHXPMMRo2bJh+/vOfh7afM2eOXnrpJVVWVoa9zxNPPKEvvvhCM2bMiDkWANEhwQGQMLfffru++c1v6q233tLXvvY1zZgxQ5988okk6eDBgzr33HM1atQobd68Wc8995wOHDigb37zm2HvsXr1anXr1k0vv/yy7r//flVUVOjSSy/VJZdcojfffFNXX321brnlltD2WVlZuuyyy1RWVhb2PmVlZbr00kvVs2fPmPbl4MGDOv/889XU1KQXXnhBvXr10qOPPqolS5Zo6dKleuedd7Rs2TLdeuutWr16tSTpa1/7mvr166dVq1a1iqWkpES9evWKKRYAMUjqWuUArDBz5kyTnp5usrKywr6WLl0a2kaS+Y//+I/Q95999pmRZP7whz8YY4y54447zOTJk8Ped8+ePUaS2b59uzHGmHPOOceMGjUqbJubbrrJDB8+POy1W265xUgyn376qTHGmE2bNpn09HSzb98+Y4wxBw4cMF26dDEbNmxod5/OOeccM3/+/LDX1q9fbySZd955x4wcOdJ84xvfMA0NDaGfDxkyxDz22GNhv3PHHXeY4uLi0PeLFi0yRUVFpqmpyRhjzM6dO00gEDAvvvhiqxgGDhxofvzjH7cbI4DY0YIDICITJ07Uli1bwr6uueaasG1GjhwZ+ndWVpays7P14YcfSpLefPNNrV+/Xj169Ah9DRs2TJK0a9eu0O+NHj067D23b9+uMWPGhL12xhlntPr+lFNOCbWkPPLIIxo4cKDGjx8f076ef/75Gjp0qNasWaNu3bpJOlJHs2vXLs2ZMydsH+68886w+K+66ipVVFRo/fr1ko603gwaNEjnnntuTLEAiE38lXUAfCErK0tDhw7tcJuuXbuGfR8IBNTU1CRJ+uyzz/T1r39dd911V6vfKygoCPs7sfjWt76ln/3sZ1q0aJHKyso0e/ZsBQKBmN7rwgsv1FNPPaW3335bI0aMCMUvSQ8++KDGjh0btn3LYuETTjhBZ599tsrKyjRhwgQ99NBDmjt3bsyxAIgNCQ6AlDjttNP01FNPadCgQVGNWjrppJP0+9//Puy18vLyVttdccUV+v73v6+VK1fq7bff1syZM2OOdfny5erRo4cmTZqkDRs26OSTT1a/fv3Uv39/vf/++50WC8+ZM0fXXnutLrroIu3du1ezZs2KORYAsaGLCkBEGhoatH///rCvliOgOjNv3jx98skn+td//VeVl5dr165dev755zV79mw1Nja2+3tXX3213n33Xd10003asWOHHn/88VARb8tWkd69e6ukpEQ33nijJk+eHPccM/fcc49mzJihc889V++++66kI0XUpaWlWrlypXbs2KGtW7eqrKxMK1asCPvdadOmqWvXrrr66qs1efJkFRYWxhULgOiR4ACIyHPPPaeCgoKwr7POOivi3+/fv79efvllNTY2avLkyRoxYoSuv/569erVS2lp7V+KioqK9OSTT2rt2rUaOXKk7rvvvtAoqoyMjLBt58yZo8OHD+uqq66KbSeP8uMf/1jf/OY3de6552rHjh361re+pV/+8pcqKyvTiBEjdM4552jVqlUqKioK+73u3bvrsssu06effpqwWABEJ2CMMU4HAQDRWLp0qe6//37t2bMn7PWHH35YCxYs0L59+0LFwe2ZMGGCvvzlLzu6VMKgQYN0/fXX6/rrr3csBsBWtOAAcL2f//znKi8v1/vvv6+HH35Yd999d1iNTV1dnXbt2qXly5fr6quv7jS5afm+PXr00NatW5MVepuWLVumHj16tJoQEEDi0IIDwPUWLFigNWvW6JNPPtGAAQN05ZVXavHixaFi5dtuu01Lly7V+PHj9dvf/lY9evTo9D337t2r+vp6SdKAAQMiTooS4ZNPPglNgJiXl6ecnJyU/W3AL0hwAACAdeiiAgAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1vk/wb4ggVHhO2UAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3846,12 +10200,12 @@ "id": "d0ef61ca-afc5-472d-8e8e-b4726ef2a3dd", "metadata": {}, "source": [ - "Als einzelner Plot sind sie noch nicht sehr informative. Hilfreicher ist es bereits sofern wir die Residuanen zusammen mit unseren Daten und Fitmodel darstellen. " + "Als einzelner Plot sind sie noch nicht sehr informativ. Hilfreicher ist es bereits, wenn wir die Residuen zusammen mit unseren Daten und Fitmodel darstellen. " ] }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 521, "id": "d9fbe83b-3146-4d72-89a4-084c29752e24", "metadata": {}, "outputs": [ @@ -3859,13 +10213,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/jobs/29593351/ipykernel_11778/53208542.py:7: UserWarning: The figure layout has changed to tight\n", + "C:\\Users\\Matthias\\AppData\\Local\\Temp\\ipykernel_67644\\53208542.py:7: UserWarning: The figure layout has changed to tight\n", " fig_fit.tight_layout()\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAy0lEQVR4nOzdd3hUddbA8e+dSW8TAqkkhEACJBB6i6IgIIjAguLaV1BUVhFRLCvvqmvbtawFYW0oChbUxUZRQUCaEEBKaIGQhPSQQnohde77x+yMGZJAJkwyKeezzzybuffOvWcGc3Pm146iqqqKEEIIIYRo9zS2DkAIIYQQQliHJHZCCCGEEB2EJHZCCCGEEB2EJHZCCCGEEB2EJHZCCCGEEB2EJHZCCCGEEB2EJHZCCCGEEB2EJHZCCCGEEB2Ena0DaAv0ej2ZmZm4u7ujKIqtwxFCCCFEJ6GqKiUlJQQEBKDRXH57myR2QGZmJkFBQbYOQwghhBCdVFpaGoGBgZd9HknsAHd3d8DwoXp4eNg4GiGEEEJ0FsXFxQQFBZlykcsliR2Yul89PDwksRNCCCFEq7PWUDCZPCGEEEII0UFIYieEEEII0UFIYieEEEII0UHIGDshhBCig6utraW6utrWYXRK9vb2aLXaVrueJHZCCCFEB6WqKllZWRQWFto6lE7N09MTPz+/VlkrVxI7IYQQooMyJnU+Pj64uLjIIvytTFVVysvLycnJAcDf37/FrymJnRBCCNEB1dbWmpK6rl272jqcTsvZ2RmAnJwcfHx8WrxbViZPCCGEEB2QcUydi4uLjSMRxn+D1hjnKImdEEII0YFJ96vttea/gSR2QgghhBAdhCR2QgghhBCNeO655/D19UVRFH744QfmzJnDzJkzbR1WoySxE0IIIUSbMWfOHBRFMT26du3Kddddx9GjR612jeeee47Bgwdf8riTJ0/y/PPP88EHH3D27FmmTJnC22+/zcqVK03HjBs3jkceecRqsV0uSeyEEMJCZWVlpj86ZWVljW4TQjTPddddx9mzZzl79ixbt27Fzs6OadOmtXociYmJAMyYMQM/Pz8cHR3R6XR4enq2eixNJYmdEEIIIdoUR0dH/Pz88PPzY/DgwTz11FOkpaWRm5trOiYtLY2bb74ZT09PvLy8mDFjBsnJyab927dvZ+TIkbi6uuLp6cmVV15JSkoKK1eu5Pnnn+fIkSOmL2N1W+CMnnvuOaZPnw6ARqMxTYCo2xU7Z84cduzYwdtvv206V90YbEHWsRNCCCE6AVVVqS63TVkxexf7Zs8MLS0t5fPPPyc0NNS0Hl91dTWTJ08mKiqKXbt2YWdnx0svvWTqstVoNMycOZP77ruPL7/8kqqqKvbv34+iKNxyyy0cP36cjRs3smXLFgB0Ol296z7++OP07NmTu+++m7NnzzYY29tvv83p06cZMGAAL7zwAgDe3t7Nep/WIomdEEII0QlUl1fzstvLNrn24tLFOLg6NPn4DRs24ObmBhiGOfj7+7NhwwY0GkNH49dff41er+ejjz4yJYyffPIJnp6ebN++neHDh1NUVMS0adPo3bs3AOHh4abzu7m5YWdnh5+fX6MxuLm5mbpcGztOp9Ph4OCAi4vLRc/VmqQrVgghWoCMuROi+a655hpiYmKIiYlh//79TJ48mSlTppCSkgLAkSNHSEhIwN3dHTc3N9zc3PDy8qKiooLExES8vLyYM2cOkydPZvr06bz99tuNtrp1NNJiJ4QQQnQC9i72LC5dbLNrW8LV1ZXQ0FDT848++gidTseHH37ISy+9RGlpKcOGDeOLL76o91pjV+gnn3zCww8/zMaNG/n66695+umn2bx5M6NHj768N9PGSWInhBBCdAKKoljUHdqWKIqCRqPh/PnzAAwdOpSvv/4aHx8fPDw8Gn3dkCFDGDJkCIsXLyYqKorVq1czevRoHBwcqK2ttUps1jyXNUhXrBBCCCHalMrKSrKyssjKyuLkyZMsWLCA0tJS0yzVO+64g27dujFjxgx27dpFUlIS27dv5+GHHyY9PZ2kpCQWL15MdHQ0KSkp/PLLL8THx5vG2fXs2ZOkpCRiYmI4d+4clZWVzY61Z8+e7Nu3j+TkZM6dO4der7fKZ9BcktgJIcRlyMjIaNI2IUTTbdy4EX9/f/z9/Rk1ahS///47a9asYdy4cQC4uLiwc+dOevTowY033kh4eDhz586loqICDw8PXFxcOHXqFLNmzaJPnz7cf//9zJ8/n3nz5gEwa9YsrrvuOq655hq8vb358ssvmx3r448/jlarJSIiAm9vb1JTU63xETSboqqqatMI2oDi4mJ0Oh1FRUUXbdIVQgiAd999l/nz5wOG9a2WL19OZWWl2bZly5aZnpeWluLq6mqzeEXnVFFRQVJSEiEhITg5Odk6nE7tYv8W1s5BbN5il5GRwZ133knXrl1xdnYmMjKSAwcOmParqsqzzz6Lv78/zs7OTJw4kfj4eLNz5Ofnc8cdd+Dh4YGnpydz586ltLS0td+KEKITSE9PZ8GCBabner2e+++/v962hx9+2BbhCSE6OZsmdgUFBVx55ZXY29vz888/ExsbyxtvvEGXLl1Mx7z22mssXbqU999/n3379uHq6srkyZOpqKgwHXPHHXdw4sQJNm/ezIYNG9i5cyf333+/Ld6SEKKDi4+PrzeGRq/X19vWlgZTCyE6D5t2xT711FPs3r2bXbt2NbhfVVUCAgJ47LHHePzxxwEoKirC19eXlStXcuutt3Ly5EkiIiL4/fffGT58OGDom7/++utJT08nICDgknFIV6wQoqnS09MJDg42S+SMi6bW3abVak3JXVxcHH369GndQEWnJ12xbUen6Ypdt24dw4cP589//jM+Pj4MGTKEDz/80LQ/KSmJrKwsJk6caNqm0+kYNWoU0dHRAERHR+Pp6WlK6gAmTpyIRqNh3759rfdmhBCdQmBgIMuWLTM912q1LF++vN62W2+91fQ8PDycFStWtGqcQojOyaaJ3ZkzZ3jvvfcICwtj06ZNPPDAAzz88MOsWrUKgKysLAB8fX3NXufr62val5WVhY+Pj9l+Ozs7vLy8TMdcqLKykuLiYrOHEEI01ezZs00/x8bGMnfuXLNtv/76q9ksO71ez7x580hPT2/VOIUAQ++XsK3W/DewaWKn1+sZOnQo//rXvxgyZAj3338/9913H++//36LXvfll19Gp9OZHkFBQS16PSFEx9W9e/d620pLSxscc5eQkNBaYQmBvb2h2kN5ebmNIxHGfwPjv0lLsmnlCX9/fyIiIsy2hYeH8+233wJ/FN3Nzs7G39/fdEx2djaDBw82HZOTk2N2jpqaGvLz8xstyLt48WIWLVpkel5cXCzJnRDCakJDQ9FoNPXG3NUtkSRES9NqtXh6epr+Rrq4uKAoio2j6lxUVaW8vJycnBw8PT3RarUtfk2bJnZXXnklcXFxZttOnz5NcHAwACEhIfj5+bF161ZTIldcXMy+fft44IEHAIiKiqKwsJCDBw8ybNgwwNANotfrGTVqVIPXdXR0xNHRsYXelRCiM9OgoXR/KXMHzeWjwx+hoqJBw6Jpi3DXu9s6PNHJGBs4LmwAEa3L09Oz0cYma7PprNjff/+dK664gueff56bb76Z/fv3c99997F8+XLuuOMOAF599VVeeeUVVq1aRUhICM888wxHjx4lNjbWNLNkypQpZGdn8/7771NdXc3dd9/N8OHDWb16dZPikFmxQghLlJWV4ebmBvyx+HBZWRkRbhFMZSq+GMYFF1FEPvl44YUOHVpHLVf+7Uqu/vvVaB1a/pu7EEa1tbVUV1fbOoxOyd7e/qItddbOQWxeeWLDhg0sXryY+Ph4QkJCWLRoEffdd59pv6qq/OMf/2D58uUUFhYyZswY3n33XbOlA/Lz83nooYdYv349Go2GWbNmsXTpUtON91IksRNCWKKhxG7XG7vY8vgWNGhw8nJi4JyBLHhzAZVUsuadNZz88iSpvxlKDQWPDebmb2/GpauLLd+GEKIN6HCJXVsgiZ0QwhIXJnYHlxxk29PbADjKUT5I/QBnL2ezY1xcXDj06SG+nfMtjjjiPcCbu3fejXMXZ5u9DyGE7XWodeyEEKK9i/kwxpTUbWUr3/Edzl71kzVFUeh3Uz9WsIISSsg9nsuX076kpqKmtUMWQnRgktgJIUQz9aAHvz7xKwBRi6PYRcNVdOrKIYfP+AxHT0fS9qSxadGmlg5TCNGJSGInhBAWcnV1pexcGQ/7PYy+Rs+AWwdw7T+vRVVVVFXF1dX1oq/PIYepH08F4MB7Bzix5kRrhC2E6AQksRNCiGb4af5PlGaV0i28G9M/mm7x+mC9JvVi1OOGJZlW3byK3JTclghTCNHJSGInhBAWOvXDKU58fQJFq3DDpzfg4OrQrPNc8X9XkEMOrriyffF26wYphOiUJLETQggLVJdXs/GRjQBc8cQVBAwPaPa5tA5a1rIWFZXYL2NJ3yu1ZIUQl0cSOyGEsMDu13ZTlFKER5AHVz99daPHubq6NmnMXQYZxBADwMZHNkrBdiHEZZHETgghmqj8XDl7Xt8DwKQ3JjW5C7aoqIjz58+bbcvIyDD9vJWt2Lvak7Evg1Pfn7JewEKITkcSOyGEqKOsrAxFUVAUhbKyMrN9u/+9m+qyavyH+hNxU0Sjr//111+pra01bTt06BD//ve/WbhwoWlbeHg4q1atAqCUUobN/1+t62d/RaNoGry+EEJciiR2QgjRBKXZpfz+n98BGPfCuAZnwdbW1vLRRx+xa9cuYmNjTds1Gg2FhYV8/PHHpm16vZ6HH37Y9Hz4guE4ejhy7sQ5wglvwXcihOjIJLETQogm2P3qbqrLq+k+sjth14c1eIxWqyUqKgofHx88PT1N28eOHcvVV19db/xc3VY9py5OjHrEsPzJVVxl/TcghOgUJLETQohLKMks4cB7B4CGW+vqJmwjRozgvvvuIygoyOyY4cOHo9GY33LrPs/IyGDUglHYOdvhjz8hhAAX7xoWQogLSWInhBCXsHfJXmoqagi6Iojek3qb7UtNTeWjjz6iqKgIMNSEtbOzq3eOwMBAli1bZnquKAqRkZGm5+Hh4Xy59ksi7zJsu5IrW+KtCCE6OEnshBDiIqrKqjj44UEAXt3zKuXl5aZ958+f59tvvyUzM5Nduy5dJ3b27Nmmnz/88EOOHj1qeq7X65k3bx7+N/mjohJKKAWJBVZ8J0KIzkASOyGEuIijnx+lsrCSfPKJJ95s34YNGyguLsbLy4tJkyZZdF5/f/8Gx9ydqz5HAgmGa6882tBLhRCiUZLYCSFEI1RVZf/S/QDsZz8qfyRicXFxxMbGotFomDVrFg4OlpUVCw0NrTfmTqvV0rt3bw5gGM93/LPj1FbVNvRyIYRokCR2QgjRiP3f7Cc3Nhd7V3sOc9i0vaqqip9//hmAqKgoAgIsLyvWvXv3emPuXnnlFbp3785pTnOc42SdyyJ+XfxFziKEEOYksRNCiDqMiwYDTLx7Ioc4RP87+lNJpWl7dHQ0RUVF6HQ6xo4d2+xrGcfcjRkzhr///e/ccMMNrFq1ChWVb/iGJSzhP//8T/PfjBCi01FUKUxIcXExOp2OoqIiPDw8bB2OEMJG0tPTCQ4ORq/Xm7YpKOz9eS+jphjWmMvOzmbFihVUVVUxa9YsBgwY0OTzl5WV4ebmBkBpaSkAbm5uODs7k5GRQVlZWYPX16GjkEJKS0svWndWCNH+WDsHkRY7IYT4n/j4eLOkCkBFJU/NMz3ft28fVVVVBAQE0L9/f6tc9/z58zg4ODR6/R70AMzrywohREMksRNCiP8JCwtrcBHh3r0Na9e5ublx5MgRAMaPH99gWbHL0bt373rXBzjGMcCw1t2KFSusek0hRMciiZ0QolOrW9mhS5cu5hMaUHjvnffo3r07AH379iU/P5/AwEB69epl8bVcXV1RVRVVVRvsUj179izTpk0zJYzGJM84G9e41l16errF1xZCdA6S2AkhRB2zZ89mClOYzWw+vO1D7v/r/aYJFQcPHmTJkiVkZ2dbvbUOYNCgQYwfP54RI0ag0Wj45JNP6h1TW1tLQkKC1a8thOgYZPIEMnlCiM7swgkNFQUVLAlagh123LnrThx7Otab0KDVaklOTiYwMNCq13Z1daW0tBR3d3fAsFZeeL9w9Kr1ry2EaBtk8oQQQrSgk2tOYocdWWThO9i3wQkNLdlqVrclsHv37ixduhSFP7pmP/jgA0nqhBCNql+pWgghOrHjnx8H4DCHURTFNKHiwha70NDQy76WcczdhTQaDX369CEmJoY5d89hzYI19KQnI68bydy5cy/7ukKIjkta7IQQ4n/yT+eTfSibWmpNM1EDAwN56623TMdotdoWbzULDg7m1ltvZefOnVRVVRFPPCGEULC9gKrSqha7rhCi/ZPETggh/ufkmpMAnOEM5ZQDUFBQQHFxMVOmTEFRFGJjY1u81Sw5OZm8vDyqqqo4deoUmWSSRx415TXErY9r0WsLIdo3SeyEEOJ/Tn1zCvhj3TgwLFpcW1tLt27dUFXVtPRJS1JVlQMHDgAQExMDQCyxAMT9EGe2REtZWVmLxyOEaD8ksRNCCMALL5Ljk7FzsuMUp0zbR44cyV133cXWrVtbNZ6YmBi0Wi05OTkEBASYYor/KZ6aippWjUUI0X5IYieE6NSMa9Tlk88SlpA+IJ1KtdJsEWEfHx8yMzNbJR7jhIry8nJTybJhw4aRSSZuAW5UlVaRuiO1VWIRQrQ/ktgJITqt9PR0FixYYHquorL80HJTZYeaGtu2jA0ZMgSA/v37o7XTEjrVMBM3Yb0sUCyEaJgkdkKITquhNer0ej0JCQmUlZXx+uuv88MPP1BbW2uT+IKDg3F3d8fJyYnQ0FBCp/8vsfsxwbS2nRBC1CWJnRCi0zKuUVeXcY262NhYKisrycnJQavV2iQ+RVGIjIwE4Pnnn6ffdf1w1DlSnltOILJIsRCiPknshBCdVmBgYKOVHU6cOAHAgAEDTOPe6o67ay3GxO706dNU11bTZ1ofAPrRr1XjEEK0D5LYCSE6tUkRk3iER7iN2zh+5Dhz586lpKSElJQUANMEBlvx9fXF29ub2tpaTp48Sb+ZhoQunHCbxiWEaJtsmtg999xzprWYjI9+/f74FlpRUcH8+fPp2rUrbm5uzJo1i+zsbLNzpKamMnXqVFxcXPDx8eGJJ56w+YBnIUT7Eb8+Hh06qqiiR0gPAFNrXVBQEDqdzpbhoSgKAwYMAODYsWOEXheK1lGLFi06dGRkZNg0PiFE22LzFrv+/ftz9uxZ0+O3334z7Xv00UdZv349a9asYceOHWRmZnLjjTea9tfW1jJ16lSqqqrYs2cPq1atYuXKlTz77LO2eCtCiHZGVVXTDNO6a9cZEztbt9YZGbtjU1NT0dvpOdPrDEtYQhFFhIeHs2LFChtHKIRoK+ya8yLjrLGcnJx6M8quvvpqywKws8PPz6/e9qKiIlasWMHq1asZP348AJ988gnh4eHs3buX0aNH88svvxAbG8uWLVvw9fVl8ODBvPjii/ztb3/jueeew8HBoTlvTwjRSZw7dY6ChAJqqCEBQ4JXWFhoWu4kIiLCluGZdOnShT//+c/07NmTc+fOserUKlRUwHA/njdvHpMnT27R+rVCiPbB4sRu79693H777aSkpKCqqtk+RVEsXhYgPj6egIAAnJyciIqK4uWXX6ZHjx4cPHiQ6upqJk6caDq2X79+9OjRg+joaEaPHk10dDSRkZH4+vqajpk8eTIPPPAAJ06cMK0BdaHKykoqKytNz4uLiy2KWQjRMZz63tBKd4YzVGK4Jxhb63r27Im7u7vNYruQMcnct28fetX8C3VtbS0JCQmS2AkhLO+K/etf/8rw4cM5fvw4+fn5FBQUmB75+fkWnWvUqFGsXLmSjRs38t5775GUlMRVV11FSUkJWVlZODg44OnpafYaX19fsrKyAMjKyjJL6oz7jfsa8/LLL6PT6UyPoKAgi+IWQrRPF9ZYPfWDIbGr2w0bG2uoydpWumEvdLElWoQQwuIWu/j4eL755hur3ESmTJli+nngwIGMGjWK4OBg/vvf/+Ls7HzZ52/M4sWLWbRokel5cXGxJHdCdDIlGSVk/p4JCsSpcYDhXmAsHRYe3vZmnR47dowDBw6wePFi/vnPfwKgUf5YokUIISxusRs1ahQJCS1TzsbT05M+ffqQkJCAn58fVVVVFBYWmh2TnZ1tGpPn5+dXb5as8XlD4/aMHB0d8fDwMHsIITqXhA2G+1j30d0powyAxMREwDAbtrXXq2uKvLw8UlNT6devHz3pyWxm83ffv3PPPffYOjQhRBthcWK3YMECHnvsMVauXMnBgwc5evSo2eNylJaWkpiYiL+/P8OGDcPe3p6tW7ea9sfFxZGamkpUVBQAUVFRHDt2jJycHNMxmzdvxsPDo80MehZCtE3GxC7ixgjT4sNJSUkA9O3b15ahNSoyMpIpU6YwYcIE0kknkEC0WVpyjudc+sVCiE7B4q7YWbNmAZh9Q1QUBVVVLZ488fjjjzN9+nSCg4PJzMzkH//4B1qtlttuuw2dTsfcuXNZtGgRXl5eeHh4sGDBAqKiohg9ejQAkyZNIiIigr/85S+89tprZGVl8fTTTzN//nwcHR0tfWtCiA6krKwMNzc3wPClsW4LnBNOpO1KAzAt+GucDHbhepptSdeuXenatStlZWXUUEMSSfShD/E/xeMb6XvpEwghOjyLEzvjN1prSE9P57bbbiMvLw9vb2/GjBnD3r178fb2BuCtt95Co9Ewa9YsKisrmTx5Mu+++67p9Vqtlg0bNvDAAw8QFRWFq6srs2fP5oUXXrBajEKIjqcPfdDX6PEZ4INXqBdgSOj+8pe/cP78+RYd42tN8cTThz4k/JzAmL+NsXU4Qog2wOLELjg42GoX/+qrry6638nJiXfeeYd33nnnovH89NNPVotJCNHxGeus9p1Zv8u1rSd1tbW1HDlyhFtuuYWta7aCHtL2pFFVWoWDm6zdKURn16TEbt26dUyZMgV7e3vWrVt30WP/9Kc/WSUwIYRoCVq02GFnqNpwg2Hma21tLRUVFW1ywsSFFEXht99+Izw8nH099qFDR1FyEck7kukztY+twxNC2FiTEruZM2eSlZWFj48PM2fObPS45ixQLIQQrWXVqlXUUstqVqOgEHEognuH3ktKSgqfffYZ/fr145ZbbrF1mBel0WgICQkhNjaWsLAwgrsHc3TlUc5sPmOW2F1sjKEQouNq0qxYvV6Pj4+P6efGHpLUCSHaqvT0dBYsWGB6rqLy17/+lfT0dDIyMgDD8I/2wLjG3syZM+lzvSGZO7PljC1DEkK0Ec2qFSuEEO1NfHx8vdrWxlJc48aNY9CgQfX2t1W9e/dGURRyc3Pxus4LFMg9kUtJZgnuAW2nDJoQovVZvI4dwNatW5k2bRq9e/emd+/eTJs2jS1btlg7NiGEsIqMjAxDKS6l8VJcHh4e9UoYtlXOzs6majnpeekEDAsApNVOCNGMxO7dd9/luuuuw93dnYULF7Jw4UI8PDy4/vrrLzp7VQghWtOqVatMP4eHh7Np0ybmj5uPggIYkroPPviA7t272yrEyxIWFgZAQkICva7tBcCZzZLYCdHZKapxVc4mCgwM5KmnnuKhhx4y2/7OO+/wr3/9yzRWpT0pLi5Gp9NRVFQk5cWE6ADS09MJDg4261rVarX83e/vlGSU8A3fsCVuC3369GHNmjVUVVVxzTXXEBAQYMOoLZOdnc3777+PnZ0dN4+4mdWTV1NCCW/wBqWlpQAyeUKIdsDaOYjFLXaFhYVcd9119bZPmjSJoqKiyw5ICCEuV2Pj6VIyUnDBhSyy6N69OzU1NcTHx5OQkIBG06yRKTbj4+ODu7s7NTU16LvrsXO2wx13fPCxdWhCCBuy+E72pz/9ie+//77e9rVr1zJt2jSrBCWEEJcjLCysXqKmUTR44UUCCVRTDUBKSgrV1dW4ubnh69u+SnIpimLqjj2TeobAKwMB6EWvese2x54UIUTzNGlW7NKlS00/R0RE8M9//pPt27cTFRUFwN69e9m9ezePPfZYy0QphBAWCAwMZNmyZcyfPx8wdMPe5n8bunQdv/Kr6biEhAQAQkNDURTFJrFejrCwMA4dOkRCQgKR10SSvCWZEEKA+mMMly9fzty5c20VqhCilTRpjF1ISEjTTqYonDnT/gbvyhg7ITqeugv07t+yn58m/oSiVXil9hXOc57S0lJWrVpFbm4uN910E/3797dxxJarrKzk1VdfRVVVZo6ayQ9TfqCCCmafmE3/yP71xhgmJycTGBhow4iFEBeydg7SpBa7pKSky76QEELYSvmBcgACrwzk/M7zgOFmmpubi6Io9OpVv/uyPXB0dCQwMJC0tDTK3MqooAInnDiw+UCja/ZJYidEx9a+RgsLIUQzJKwzdLmGTQszbUtOTgYM3bbOzs62CMsqrrrqKm6++Wb6RfQjhRQAHDIc6o0xrLtmnxCi45LETgjRobniSsZew+SB0Ol/JDYpKYYkqL221hmFhYURHh6Oo6MjpzhFEklk7stk2bJlpmOMa/ZJa50QHZ8kdkKIDq0PfVD1Kv5D/fHv54+qquj1elJTU4H2n9gZrVq1isMcZhWrWLRzEWrtH8OnY2NjZeKEEJ2EJHZCiA6tH/0A6Duzr2lbVlYW58+fx8HBod1WnqgrJiaGBQsWmJ6rqDz8yMOm5x3hPQohmsaixK6mpoYXXniB9PT0lopHCCGsxgEHetMbgPAbwk3bjbP3e/bsiVartUls1hQdHV1vssSFz4UQnYNFiZ2dnR3//ve/qampaal4hBDCKlxdXTn8zWHssKNL7y549/c27TMmdk1dyqmtGzNmTL11+DTSISNEp2Txb/748ePZsWNHS8QihBBWder7UwD0u6GfKfHR6/WmSgwdZXxdZGQk//nPf0zPFRT+5PAnSe6E6ISatI5dXVOmTOGpp57i2LFjDBs2rF5h6T/96U9WC04IIZqrtrqW0xtOA9BvZj/Tdo1Gw6JFi0hLS8Pb27uxl7c7s2fPNlXaeMrzKRwLHTnIQdJIs3FkQojWZHFi9+CDDwLw5ptv1tunKAq1tbWXH5UQQlym5O3JVBZV4urjSuBo82U+HBwc6N27t40iaxmqquLt7Y2fnx8Deg0gfm08PekpiZ0QnYzFiZ0MyBVCtAenfjB0w/ad0ReNtuN3SZaXl5ta7Pyd/IlfG8+9E+5l55adNo5MCNGaLutuV1FRYa04hBDCalS9StzaOMC8G/b8+fN8+OGHbNmypcN9SXV1dSUnJwcAbahhpm/anjRqKmWymxCdicWJXW1tLS+++CLdu3fHzc3NNLvsmWeeYcWKFVYPUAghLJV5IJOSjBIc3BwImfDHzNfU1FQyMzM5depUvZJbHYGxTFqBXQGuvq7UnK8hY3+GbYMSQrQqi+9s//znP1m5ciWvvfYaDg4Opu0DBgzgo48+smpwQgjRVGVlZSiKgqIoHFtzDICw68Owc/xjxElQUBA33HADV111la3CbFFJSUkApKWl0XNcTwCStyXbLiAhRKuzOLH79NNPWb58OXfccYfZwp6DBg3i1KlTVg1OCCGaI35dPGBebQLAxcWFgQMHMmjQIFuE1eKM9W/z8vLwj/I3bNuRYsuQhBCtzOLELiMjg9DQ0Hrb9Xo91dXVVglKCCGayxtv8k/no7HXEHZ9mK3DaTWurq6UlZXh6+sLgCbEcHtPi06jtkpWKxCis7A4sYuIiGDXrl31tn/zzTcMGTLEKkEJIURzhWMoHdb72t446ZxM29PS0ti9ezfZ2dm2Cq1V9OzZE4BzyjlcurlQc76Gs4fO2jYoIUSrsXi5k2effZbZs2eTkZGBXq/nu+++Iy4ujk8//ZQNGza0RIxCCNFkxsQufFa42fYTJ06wb98+CgsLmTp1qi1CaxU9e/Zk3759pKSk0GNMD079cIqUXSn11vITQnRMFrfYzZgxg/Xr17NlyxZcXV159tlnOXnyJOvXr+faa69tiRiFEKJJutAFf/xRtAp9Z5iPrzPOGDW2aHVUwcHBgGGcne9IQ7ds6s5UW4YkhGhFFrfYAVx11VVs3rzZ2rEIIcRlMbbWBV0VhEtXF9P28+fPm7pgjYlPR+Xs7Iy/vz9nz55F6Wmoj5v6WyqqXkXRKDaOTgjR0pqV2AEcOHCAkydPAoZxd8OGDbNaUEII0RzBBJNEEgPHDjTbbmyt8/b2xs3NzQaRta6ePXty9uxZCp0KcXBzoKKwgpzjOfgO9LV1aEKIFmZxV2x6ejpXXXUVI0eOZOHChSxcuJARI0YwZswY0tPTWyJGIYS4pA+WfMBXfMUqVnHTizeZLZhuTOw6emudkbG7OSUthaArgww/75RlT4ToDCxO7O69916qq6s5efIk+fn55Ofnc/LkSfR6Pffee29LxCiEEBeVnp7OE888gYoKGJZfmjdvnunLpnF9t44+vs4oODgYHx8fQkNDTYld6i4ZZydEZ2BxV+yOHTvYs2cPffv+MTC5b9++LFu2rMOu5i6EaNvi4+PRq+a1X2tra0lISMDLy8s0vq6zJHaOjo488MADAKS4G5LalJ0pqKqKosg4OyE6Motb7IKCghpciLi2tpaAgACrBCWEEJYI8AxAwTxh0Wq1hIaGmlrrvL29cXV1tUV4NtV9RHe0DlpKs0rJT8i3dThCiBZmcWL373//mwULFnDgwAHTtgMHDrBw4UJef/31ZgfyyiuvoCgKjzzyiGlbRUUF8+fPp2vXrri5uTFr1qx6i4umpqYydepUXFxc8PHx4YknnqCmpqbZcQgh2p+S/SVMZ7opudNqtXzwwQcEBgaa6qd2lta6umpqasg6l0X3Ud0BiN8Sb6qnW1ZWZuPohBAtweKu2Dlz5lBeXs6oUaOwszO8vKamBjs7O+655x7uuece07H5+U37dvj777/zwQcfMHCg+Uy2Rx99lB9//JE1a9ag0+l46KGHuPHGG9m9ezdgaCWcOnUqfn5+7Nmzh7Nnz3LXXXdhb2/Pv/71L0vfmhCinSgrKzPNbi0tLeXktycZylAyyeQAB4iNjaVPnz5A5xtfZ1RTU8Nrr71GdXU1I0eNJHVXKum7ZYKbEB2dxYndkiVLrBpAaWkpd9xxBx9++CEvvfSSaXtRURErVqxg9erVjB8/HoBPPvmE8PBw9u7dy+jRo/nll1+IjY1ly5Yt+Pr6MnjwYF588UX+9re/8dxzz+Hg4GDVWIVo7y5MiDpC12T5uXKStyUDcIYzAHTvbmihKisrIycnB+g8M2KN7Ozs6NatG8XFxehCdACk75HEToiOzuLEbvbs2VYNYP78+UydOpWJEyeaJXYHDx6kurqaiRMnmrb169ePHj16EB0dzejRo4mOjiYyMtJU9Bpg8uTJPPDAA5w4caLR2rWVlZVUVlaanhcXF1v1PQkhWs/pH06jr9HjO9iX/BjzXoLUVMNM0M46vu7OO+/E2dmZqtIqtty9haKkIjzwoBi55wnRUVk8xs6avvrqKw4dOsTLL79cb19WVhYODg54enqabff19SUrK8t0TN2kzrjfuK8xL7/8MjqdzvQICgq6zHcihLCVU2tOAdDvz/3q7evatStXXHFFo1/yOjoXFxcURcHR3RG/IX4A9KCHjaMSQrQkmyV2aWlpLFy4kC+++AInJ6dWvfbixYspKioyPdLS0lr1+kII6/DAwzRurO+svvX2+/j4cO211xIVFdXaobUpqqrS4ypDQhdM5+qSFqKzsVlid/DgQXJychg6dCh2dnbY2dmxY8cOli5dip2dHb6+vlRVVVFYWGj2uuzsbPz8DN88/fz86s2SNT43HtMQR0dHPDw8zB5CiPZnAAMA6HFVDzwC5fe4IZs3b+bNN99E20sLQFe6ApCRkWHLsIQQLcRmid2ECRM4duwYMTExpsfw4cO54447TD/b29uzdetW02vi4uJITU01ffuOiori2LFjpsHRYLiJeXh4EBER0ervSQjRurzwoogiIm+PxNXVFVVVUVUVV1dX8vLySEhIMBtP2xlVVVVRWlpKpU8lhzjEZ3wGQHh4uFnZNSFEx2Dx5IkLFRcX8+uvv9K3b1/Cw8Ob/Dp3d3cGDBhgts3V1ZWuXbuats+dO5dFixbh5eWFh4cHCxYsICoqitGjRwMwadIkIiIi+Mtf/sJrr71GVlYWTz/9NPPnz8fR0fFy35oQHVpGRoZpSZD2ZtWqVQBsYAMKCmEVYQxnuNkxMTEx/PbbbwwaNIiZM2faIMq2ITg4mAMHDnAi+QTrWV+v7NrkyZMJDAy0cZRCCGuxuMXu5ptv5j//+Q8A58+fZ/jw4dx8880MHDiQb7/91qrBvfXWW0ybNo1Zs2Zx9dVX4+fnx3fffWfar9Vq2bBhA1qtlqioKO68807uuusuXnjhBavGIURHYUyIoP222KSnp7NgwQLTcxWVBY8vMNWFNXJ0dMTT05MePTr3ZAHj+z916pQpqTMyll0TQnQciqqq6qUP+4Ofnx+bNm1i0KBBrF69mn/84x8cOXKEVatWsXz5cg4fPtxSsbaY4uJidDodRUVFMt5OdFjp6ekEBwej1/9RU1Wr1ZKcnNyuWmy2bdtmWtvywu3jxo2rt13qo8LSpUtJTk5myZIl1L3lt8d/fyE6GmvnIBa32BUVFeHl5QXAxo0bmTVrFi4uLkydOpX4+PjLDkgI0TLi4+PNkjpony02YWFhaBTzW5exLmxDOntSB4buWJ1Ox4P3PGhWdm3p0qUEBQVJiTEhOhCLE7ugoCCio6MpKytj48aNTJo0CYCCgoJWX7ZECNF0YWFhaDRNT4jaqsDAQO4feX+DdWGNysvL6yWxnZmxO3bw6MHczd3MZjabPtxk9QXnhRC2Z3Fi98gjj3DHHXcQGBiIv7+/qetj586dREZGWjs+IYSVBAYGsmzZMtPzhhKi9qCypJLAY4E8wiN4401sbCxz5841O+a7777jtddeIy4uzkZRti3Gcmpnz56lUCkkhBBq4mpsHJUQoiVYnNg9+OCDREdH8/HHH7N7925TC0CvXr3MSoIJIdqeui00xoSorKwMRVFM3XEXPm9rTvz3BDXlNVRTTS65prqwRnq9nrS0NCorK9HpdDaKsm3p0qUL7u7u6PV6SrxKAMjYI+vYCdERNWsdu+HDhzN16lQyMjKoqTF865s6dSpXXnmlVYMTQrScCxOi9iLm4xgADtPwRK2srCyqqqpwdHTEx8enFSNruxRFMbXa2fUyrHJ19vez1FRKq50QHY3FiV15eTlz587FxcWF/v37m4psL1iwgFdeecXqAQohOjZLWgjPxZ0jbU8aikbhKEcbPCYlJQUwjCu7cExhZ2YcZ9etbzfKKKOmoobsw9mXeJUQor2x+K63ePFijhw5wvbt280mS0ycOJGvv/7aqsEJIURdhz48BEDPa3tSQkmDxxi/bHb29esuZGyxC+oRRCqGzyh9zx9r/0mJMSE6BosTux9++IH//Oc/jBkzxmwZgf79+5OYmGjV4IQQBk1p1WrrY+MuV1VZFYdXGLpfB987uMFjVFU1JXbGREYYeHt74+zsjIODAwUeBQCs/u9q0/72umC1EMKcxSXFcnNzGxy3YvyjIoRoO6pKq0jekUx+fD5VpVUozgrBBJNB+2qdKSsrY6zbWKYzHc9envSa3KvB486dO0d5eTl2dnYEBAS0cpRtm6Io3HrrrXh5eXHftPt4ffjrfHz8Y9N+KTEmRMdgcWI3fPhwfvzxR1NJH2My99FHHxEVFWXd6IQQzZJ/Op/NSzZz/Kvj1FbVmu27m7txcHdg68KtXPHEFTgHOpv2ZWRkmE2qaCv1ZFVVZRSjABh8/2Dc3N1oqGiOsbUuMDAQrVbbqjG2B8buaZdBLhQ7FaNWNFxiTBI7IdovixO7f/3rX0yZMoXY2Fhqamp4++23iY2NZc+ePezYsaMlYhRCNJEGDWMYw8pRK9FXGxbo7dKrCwHDA3DwcKA8t5yM/RmUni3l8IrDxHwSQ84VOabXh4eHc9ttt5k9X758eb114lpb2s40fPChiioG3Dmg0ePqTpwQjdPYaRg4ciDKTsWsfmx7XLBaCGHO4sRuzJgxxMTE8MorrxAZGckvv/zC0KFDiY6OlgWKhbChyuJKbuM2wghDX60n7PowRj45krBxYXAGSktLcXV1RdWrpP6WSvQb0exft593f3vXdA69Xs8XX3xh9tya3XNlZWW4ubkBf8RTV2MthIffN4ytO8IRnDwbr3AjEycuLTo6msTERMKiwpi+czrrWY+K2m4XrBZCmLM4sQPo3bs3H374obVjEUI0U2VxJWumryGMMKqpZsZHMxh+z3DKy8vrHatoFIKvDib46mDUt1TURfW7NOtq6e65VatWmX5uqIWw4EwBCT8a6tnuZ3+j5yksLKSoqAhFUQgKCmqRWDuCxMREEhMT6RbSjaEMxQ8/lrOc2NjYNtHtLoS4PE2aFVtcXGz288UeQoiWdeGyFDUVNayeupqsg1lkkcX7vI/uKl2TJjNd9eerLrnWW0t2z6Wnp5vG68IfLYTp6X8sw7Hr5V2oepUEEsglt9FzGVvr/P39cXBwaJF4O4Jhw4YxZcoUhv1pGFoHLQEE0IUu7XbBaiGEuSYldl26dCEnxzAOx9PTky5dutR7GLcLIazvwlYt47IUqqqyYd4GUn9L5ajzUd7nffLIa/LSFRfWj1VQGMQgFAxJobF7rkuXLi2ylEp8fDx6vd5sm7GFEKAwuZAjK48AsJWtQOPrrRUUGJbwkGVOLi48PJyRI0fi7e+N3zA/AIKRz0yIjqJJXbG//vorXl5eAGzbtq1FAxJCmGusVWvy5Mlkrs3kyKdHKNYU80PFD/WOueqqqy55/tmzZzN//nwAflr6E78/9jvjq8dzjGMsObiE/oP6N5jMXWq8XFOEhYWh0WjMkru6LYS7Xt6FvkZPSt8UzsadBRqf0DF27FhGjRpFba35LGDRuO5XdCcjOkMSOyE6kCYldmPHjgWgpqaGHTt2cM8998gAWyFaSWOtWge2HODE4ycACJkXgv69+sdYumj4VfdcRVBwEKtnrGYMY9j/yH76/NRy466MLYbGxLLuAP6i1CJiPomhiCJWxf/RYnmxCR11q+GIxhUWFnLmzBkcwxwB6IFMNhGio7Co8oSdnR3//ve/qamRwtFCtBZjq1ZdWq2WuDfjqKmoIfS6UGYsntHgMb179zY9b2rJqJ4TevIZn1FJJanbU/lqxldUn6++/DdyAWM8s2fPNm2LjY01tcT99spv6Kv1OAx2uGh3rbDcwYMHWb9+PblOuaiodKUrZdkdr1qJEJ2RxSXFxo8fL+vVCdGKLhwHp9VqeXLWk1Qcq8DJ04k/ffwngoKC6h3zwQcfsGXLFtM2S0pGpZHGF3yBvas9ZzafYe2ta7Fr3iR6M42NFTQyDuDPO51nqgs74/8aTlrrTujYsmULH3/8MadOnbrsGDsD4zjErMIs/Af7A5B7sPGJKUKI9sPixG7KlCk89dRTPP7443z55ZesW7fO7CGEsL66rVq/b/sdtx8NY9smvjYRd3/3esfExsYyefLkS844vZhUUpn13SzsXe1J3prMdKajQWNRsfi69WtPnz7dYDwNne+Xx39BX6MnbGoYUX+OajBprdsNe+bMGdLS0qiutn7LYkcUFBSEoigUFhbiN8owgSJlZ4qNoxJCWIPFX8EffPBBAN588816+xRFkYHLQrSw5I+TqS6rJmBUACPuH4F6v0ppaanZMd27d2f//v2NdmE2dYxs4JWB3P7j7Tw66VHWVq1FRTVNXrj11ltNxzWl9FhCQkKD8Vw4DjD+53hOrz+Nxk7DpNcnAeYTPBpab+2mm24iJSWFXr0ariErzDk6OuLn58fZs2dN4+xSd6XaOCohhDVYnNhdeGMWQrSebnTj2KfHABj70ljUaxtfXPhSM06NXF1d69Vdrfu8oHcB66rXmUpPGVvasrKyTMc0pfRYaGhog/HUHQdYVVrFjw/8CMDIh0fSrV+3eudpaL01Ly8v08x90TQ9evTg7NmzVPhWAJB9NJuKwoqLVvYQQrR9FnfFfvrpp1RWVtbbXlVVxaeffmqVoIQQDRvPeFS9St8ZfekedfEFZRsam9ecklHx8fHo1fotbc8884zpeVO6ebt3795gPHUTtV3P7aIopQhdsI5rnr/GojiFZYzj7M6WnMUr1AtUSNuTZuOohBCXy+LE7u6776aoqKje9pKSEu6++26rBCVEZ1d3bJpxDblAAokgAkWjMOFfE5p0nsZmnFqioVm5QL1WvqbMVG0oHmOLYdyGOFNN2GnvT8PBrWnVI3799Vf27t1r1YWTOwNjPd2cnBwCogIASNkl4+yEaO8sTuxUVW2wVFF6ejo6nc4qQQkh6pvIRAD639kf7whvi1/f3JJRF7b8aTQaJmsnm6pTGFlaeqxuPAVJBaydsxaAUQtHEXpd085TU1PDnj172LRpExUVFU2+tjB0wXfrZujqdgl3AWScnRAdQZPH2A0ZMsTUgjBhwgTs7P54aW1tLUlJSVx33XUtEqQQnV3+0Xx60hONvYaJL02st984eeHCVjRrqTt54eTJk2iSNDwx7QnW1hgmVDSlmzcjI6PB5LKiqIIvp39J+bly/If6M/GV+u/vYuesra3F1dVVxtg1Q48ePTh37hzV/obZxBn7M6g+X429s72NIxNCNFeTE7uZM2cCEBMTw+TJk02lhAAcHBzo2bMns2bNsnqAQgjY8+89AAz8y0B0QYaW8QvXhLvU5AVr6d69O659XHlxzYv0uKEHRRTRu2dvZl41s96xF8ZYt+UPoLK4ks8nf07uiVzc/N24de2t2DnVvy01NMEDICXF0HUYHBzcYE+CuLjg4GAOHTpEdnU2bv5ulJ4tJWN/Bj3H9rR1aEKIZmpyYvePf/wDgJ49e3LLLbdI6R4hWkl+fD6nfjAsvHvF41cAF68f21rl/kKuDeF7vudmbkafqGf5iOV8UfwFJzhBaWkpBQUF9WJ8+OGHTc+LUotYf/t6smKycOrixB0/3YFHoIdFMaSmGroOjePFhGWMn1tWVhZ9r+zLyW9OkrorVRI7Idoxi5c7MQ5+rqqqIicnp97yJ3KDFcK6Diw9ACr0md4H73DD2LrG6sdaskadNaSRxgd8wFtRb5ERncGf+TODGETu8VySypMajBFgEIP4bMxnVORX4OLtwp0b78RvsJ9F19br9aSlGWZxGmd4Cst4enqi0+koKirCrb8bfCPj7IRo7yxO7OLj47nnnnvYs2eP2XbjpApZoFgI63HCiT1f7MENN6544grT9stZo87aSinl5h9vJvrVaHa/ups+9GHV6FV4jPZAo2jMlkrRKBqe6/kc+iQ9FfkV+A/z55bvbkHXw/KJV1lZWVRVVeHo6IiPj48131KnEhkZSXl5OcEuwfzO76TtSUNfo0djZ/HcOiFEG2BxYjdnzhzs7OzYsGED/v7+Mq5FiBZgHJtWQQVvVL3BXb3uoseYP1rDjTNVjRMamrtGnbVoHbSMeWYMd756J9dwDf2V/hTvLWYa01jPelRUFBSmqdPQJ+lx1Dly1f9dxehHR6O11zbrmsbxdT169GhwORbRNBMmGJbO0dfqcfJ0oqKwgqyYLAKGB9g4MiFEcyiqhV/nXV1dOXjwIP369WupmFpdcXGxqTvCw8OyMT5CWFt6ejrBwcFmrXEajYaUlBSzxK2srMw0iSkuLu6SJb2sre71jSXNjM8zT2aSuDaRxK2J7Ni8g/OcJ7xnOH2H9KX35N5E3h6Jo7vjZV3/66+/5tSpU0yYMIExY8Zc3psRAKyetpr4H+OZ9OYkoh6NsnU4QnQK1s5BLG6xi4iI4Ny5c5d9YSFEwxoaP6fX6y86fs64jIiqqpw7d46ysjLs7e3x8fHB3r5llq64sJu37gLBJZoSxvxtDEMeGsIctzkAlB4vxdXV1SrXVlXVbEasuDy1tbVkZWXhO8KX+B/jSd2VKomdEO2UxYndq6++ypNPPsm//vUvIiMj6/3RkBYvIS5PU8fP1VVZWcn+/fs5fPgwJSUlpu033ngjkZGRLRqvUUPLr9x6660tcq1z585x/vx57OzsCAiQLsPL9f3333PixAmG+QwDIPW31EYXoxdCtG0WD0yZOHEie/fuZcKECfj4+NClSxe6dOmCp6cnXbp0aYkYhehUAgMDefWZV02VHbSai4+fCwkJYcWKFezcuZOSkhLs7e3p1q0brq6u+Pr6mo6rqKhosclNjS2/kpGR0SLXM7bWBQYGotU2b4ye+ENgYCBOTk64hrli52RHeW45eXF5tg5LCNEMFrfYbdu2rSXiEELUEV4YziM8wlGO8u7JdxsdPxcQEMBdd91FeXk5Xbt25ZprrqFv376myjDGrtKamhpWr16No6MjN910E46Olze+7UKNLb+SmJho8bkuHLvXUPetcf066Ya1juHDhzNq1CgURSFlVAopO1JI2ZlCt37dbB2aEMJCFrfYjR079qIPS7z33nsMHDgQDw8PPDw8iIqK4ueffzbtr6ioYP78+XTt2hU3NzdmzZpFdna22TlSU1OZOnUqLi4u+Pj48MQTT1BTU2Pp2xKizaipqOHEZyfQoSONtIvWeM3MzGTXrl0MGDCAefPm0b9/f7Nyf8autKysLM6ePUtCQgJff/211X9HjN3HdWm1WiIjI1FVFVVVrTa+DmDQoEGMGjWKsLAwq52zM7OzszP9txJ8tSFZlvXshGifmrVGwK5du7jzzju54oorTF0tn332Gb/99ptF5wkMDOSVV17h4MGDHDhwgPHjxzNjxgxOnDgBwKOPPsr69etZs2YNO3bsIDMzkxtvvNH0+traWqZOnUpVVRV79uxh1apVrFy5kmeffbY5b0uINuHk9yc5n3+eIoqIJ77R44yTF7Zs2cKNN9540UkSgYGBzJ49GwcHB5KSkvjhhx+sur6dcfkVo5ZefqV3795cd911F016heVUVaV7lOEzTdmVYuNohBDNYXFi9+233zJ58mScnZ05dOgQlZWVABQVFfGvf/3LonNNnz6d66+/nrCwMPr06cM///lP3Nzc2Lt3L0VFRaxYsYI333yT8ePHM2zYMD755BP27NnD3r17Afjll1+IjY3l888/Z/DgwUyZMoUXX3yRd955h6qqKkvfmhBtwpFVRwA4zGFU6idf+fn5fP/996b/xhVFadIg98DAQG699VY0Gg0nTpxg3759Vo3bWJUGIDY2tlXq1grrOXXqFEuWLOH3rN/Ro6copYizcWdtHZYQwkIWJ3YvvfQS77//Ph9++KFZC8GVV17JoUOHmh1IbW0tX331FWVlZURFRXHw4EGqq6uZOHGi6Zh+/frRo0cPoqOjAYiOjiYyMtJsgPjkyZMpLi42tfo1pLKykuLiYrOHELZSVlZmSs6yE7I5s/kMAEc4Uu9YvV7P999/z9GjR9m4caPF1woJCWHSpEkAbN68mczMzMsLvhEt2ZIWFxdHUlIS1dXVLXaNzsjZ2Zni4mIyz2VyFkNCl7GnZSa/CCFajsWJXVxcHFdffXW97TqdjsLCQosDOHbsGG5ubjg6OvLXv/6V77//noiICLKysnBwcMDT09PseF9fX7KysgDDuKG6SZ1xv3FfY15++WV0Op3pERQUZHHcQrSE2K9jUfUqQVcGka/m1xubtnv3btLT03F0dGzw97ApRo4cSXh4OHq9nh9//LHFS45djoZm1W7evJlPP/2UM2fO2CCijqt79+5otVrKy8vJccwBIP23dBtHJYSwlMWJnZ+fHwkJCfW2//bbb/Tq1cviAPr27UtMTAz79u3jgQceYPbs2cTGxlp8HkssXryYoqIi08NYSFwIWzvxhaGledDsQfX25efns3PnTgCmTJlS70tPUymKwtSpUwkNDWXGjBltbq2yC9fDW7Fihel5bW0tAQEBeHh40KNHj4ZeLprJzs7O1NJaFWDo5k/7Te6NQrQ3Fi93ct9997Fw4UI+/vhjFEUhMzOT6OhoHn/8cZ555hmLA3BwcDAtvDps2DB+//133n77bW655RaqqqooLCw0+wOWnZ2Nn58fYEgy9+/fb3Y+46xZ4zENcXR0tPpyD0I0xcWW8vDHn7yTeWgdtfS/uX+9127cuJGamhpCQkIYOHDgZcXh6urKHXfccVnnaAmNrYc3efJk05p1dSdQCevq0aMHqampuIS7oCap5J/Op+RsCe7+7rYOTQjRRBa32D311FPcfvvtTJgwgdLSUq6++mruvfde5s2bZ3ZDbi69Xk9lZSXDhg3D3t6erVu3mvbFxcWRmppKVJSh1E1UVBTHjh0jJyfHdMzmzZvx8PAgIiLismMRojUNwtBK129mP5x0Tmb7kpKSiI+PR6PRcP3111u9la1utYrmMs7SvZylTRpbD6+hXgJhfcZ1AXV+Og5ykCKKSNkhs2OFaE8sbrFTFIW///3vPPHEEyQkJFBaWkpERISpFcISixcvZsqUKfTo0YOSkhJWr17N9u3b2bRpEzqdjrlz57Jo0SK8vLzw8PBgwYIFREVFMXr0aAAmTZpEREQEf/nLX3jttdfIysri6aefZv78+dIiJ9oVBQUdOoooarAbdteuXQAMHTqUbt2st2isqqr88ssv7N+/n3vvvRd/f3+rnbs5LlVOLT8/ny5durS57uOOIigoiEOHDrF+/XpUVBQUat6vYemtS20dmhCiiZq1jh0YulAjIiIYOXJks5I6gJycHO666y769u3LhAkT+P3339m0aRPXXnstAG+99RbTpk1j1qxZXH311fj5+fHdd9+ZXq/VatmwYQNarZaoqCjuvPNO7rrrLl544YXmvi0hWt2qVatQUfmar1nCEranba93zI033sioUaOaPWGiMYqiUFZWhl6vZ8eOHVY9d3NcbD28iooKli1bxuuvv05FRYUNo+y4cnNzDUnd/ybUqKj8Z8d/SE+XSRRCtBeK2panxLWS4uJidDodRUVFeHh42Doc0YHVHWMXFxeHi4sLwcHB9VqokpOTW2xx3wudO3eOd999F1VVuf/++23eanfhZ2QspxYfH8/q1avx8vKyyrAPUd+2bdsYP358ve0/rvmR62+63gYRCdHxWTsHaXaLnRDCchfO+Hz77bcvOqbs/PnzLR5Tt27dGDBgAECbaLWrq+56eCkphrFeMhu25TRUGk5BwT6r8aomQoi2RRI7IVpJQzM+33zzzXrjxYxjylRVZeXKlXz++ecUFRW1aGxXX301iqIQFxfH2bNts9pAaqqhdqkkdi0nMDCQN954w/TfpEbRMJ3pVByTrm8h2osmJXZDhw6loKAAgBdeeIHy8vIWDUqIjqihGZ96vZ7re1+PguEPad0xZWfOnCEnJ4e0tLQWnwzUrVs3IiMjAUxr5bUlVVVVpsWKjTM3Rcu47777uOuuu5g9ezYrn1vJUIaSvC3Z1mEJIZqoSYndyZMnKSsrA+D555+ntLS0RYMSoiNqqJtLq9USkRbBIzxCF7qY1Vg1ls4bMmQITk5O9c5nbWPGjAEgMTGxVbqALZGeno5er8fDw4MuXbrYOpwOLy8vj5CQELwHeqNoFPLj8ynOkNKLQrQHTVruZPDgwdx9992MGTMGVVV5/fXXG50J++yzz1o1QCE6CuOMz/nz5wOGpO7pOU+jrFA4xzkKKDCNKcvJySExMRFFURg1alSrxOft7c2NN95I7969cXZ2bpVrNsS4Hl5dSUlJgKHWrSx10vJ+++03du7cSWZmJqlDUjl78CwpO1KIvD3S1qEJIS6hSS12K1eupGvXrmzYsAFFUfj555/5/vvv6z1++OGHFg5XiPZt9uzZpp9jY2Ppc9Yw4/M4x82OM7bWhYeHt2oLVWRkJC4uLq12vaYyTpyQbtjWUVhYSHGxoYWu+5WGLxt/v+Pvpp4bIUTb1aQWu759+/LVV18BoNFo2Lp1Kz4+Pi0amBAdXVfXriRuTgTME7vS0lKOHTsGYFqM2xYqKipapQv4UuqOr+vZs6dtg+mEgq4K4sDSA/Skp61DEUI0gcWzYvV6vSR1QlhB4s+J6Kv1dO3XlXOcM20/fPgwtbW1BAYGEhQU1Opx5eXl8cknn7BixYp6XaK2kJaWhl6vR6fTmdWNFi3D2BWekJDA2rVrSdemo0dPV7pSknH5peeEEC3L4pJiYBhcvWTJEk6ePAlAREQECxcupHfv3lYNToiOLH5tPAD9/9wf9YU/EqjRo0fj7u6Ou7ttCq+7ubmRlZVFVVUVZ86csfnvdXJyMmBorZPxda2nvLyc+Ph4fHx8OMtZutOdtF1p+PXxs3VoQoiLsLjFbtOmTURERLB//34GDhzIwIED2bdvH/3792fz5s0tEaMQHY4DDiRvSQYgfFa42T57e3sGDx5ss4TK0dGRwYMHA3Dw4EGbxFBX3cROtJ5evXoxadIkJk+eTDLJAKTuTLVtUEKIS7I4sXvqqad49NFH2bdvH2+++SZvvvkm+/bt45FHHuFvf/tbS8QoRIdh7OY69PUhaipq8Ar1wnegr63Dqmfo0KGAoaSXLQfM6/V6ampqAEnsWpurqytRUVH4+voSTzxJJHHs12O2DksIcQkWd8WePHmS//73v/W233PPPSxZssQaMQnR4cV+EwsYWuuM3YulpaV8/vnnDBo0iNGjR9u029HX15eAgAAyMzM5evQoUVFRNolDo9Ewb948ysvL2+Rs3c5g1apVJP/vf0q6gtfLXjy8+GFbhyWEaITFLXbe3t7ExMTU2x4TEyOTKoRogurz1cT/ZBhfV7cbNiYmhuzsbGJjY9vEWLIhQ4YAhskctp5EIUmdbSQmJpqVwVNRefTpR0lPT7dhVEKIi7G4xe6+++7j/vvv58yZM1xxxRUA7N69m1dffZVFixZZPUAhOprETYlUl1Wj66EjYHgAgKF79tAhAIYNG2bL8EwGDBjApk2byM3NJSMjg8DAwFaPQa/X16vWIVpPXFxcg2XwEhISbPLfgxDi0ixO7J555hnc3d154403WLx4MQABAQE899xzPPywNM8LcSknvzXMJq/bDZuamkpBQQEODg5ERETYMjwTJycnrrnmGjw8PPDza/2ZkFVVVbzxxhsEBARw22234eDg0OoxdHYDBw5EURSzFlsFhV4hvWwYlRDiYiz+KqwoCo8+amiKLyoqoqioiPT0dBYuXNgmuo+EaMtqKmuIWxcHmHfDHjlyBDAsHdSWEpgrrriCAQMGYGfXrJWRLktaWhpVVVUUFha2qc+kMwkMDOTBBx803dsVFKYzHbtzrf/fgxCiaS7rt9NW62wJ0V4lbU2isrgSN383gqIMiw9XV1cTG2uYTDFo0CBbhtem9OrVi/nz51NSIovi2tI999yDg4MDiYmJTCiZQMG2As5sOUPAsABbhyaEaIAMXhGiFcV+a0jg+t3QD0VjaAU5ffo0lZWV6HS6NlkLtaysjF27dvHjjz+26nUVRaFbt26EhIS06nWFuaCgIHQ6HUOHDqX/tf0BSNiUgKIoKIoi9WOFaGMksROildRW1xL3g6EbNmLWH+PoPD096d+/P0OGDGmTwxkqKir49ddfOXjwIKWlpbYOR7QyFxcXsrOzAbDrY+jkSd+Tjt3ldfgIIVqIJHZCtJKUHSmczz+PSzcXgq/+o2Wue/fu3HTTTYwdO9aG0TWua9eudO/eHVVVOXHiRKtcMzExkTVr1pi6qIVtGat/FGgLcA9wp7ayliBav46xEOLSLErsqqurmTBhAvHx8S0VjxAdlrEbtu/Mvmjs2td3qsjISACOHj3aKtc7ffo0sbGxJCUltcr1RONcXV154403AEhPT6fXRMOM2F7IzFgh2iKL/rrY29u32o1diI5EX6vn1PenAPNu2P3795Obm2ursJpswIABKIpCZmYmeXl5LX49Y0LXq5ckD21Bz549URSFvLw8/K40LH3jg2FB+oyMDFuGJoS4gMXNBnfeeScrVqxoiViE6LDS9qRRll2Go86RkPGGyQCFhYX8/PPPvPfee5SXl9s4wotzdXWld+/eQMu32pWUlJiSXakP2zY4OzsTEPC/xbR7qhziEF/xFQDh4eHyN0GINsTi0a81NTV8/PHHbNmyhWHDhuHq6mq2/80337RacEJ0FMbasH3/1BetgxbANF4tODi4XZTMGjhwIAkJCRw7doxx48a12ESPM2fOAIaFz52dnVvkGsJyvXr1IiMjg+Mpx1nPelQMixbr9XrmzZvH5MmTpRqFEG2AxYnd8ePHGTp0KGAYB1NXW5zRJ4StqXqVU9/9rxv2pj+6YY0TA9pKpYlL6du3L66urgQGBlJdXd1iiwYbu2FlmZO2pVevXuzatYuDBw+akjqj2tpaKTMmRBthcWK3bdu2lohDiA4r4/cMitOLcXBzoPckQ3dmYWEhmZmZKIpCeHj4Jc7QNjg4OLBo0aIWrd2qqqqpxU7G17UtgYGBDB48mKioKD5c/iF69Y8aslqtltDQUBtGJ4QwavYdOiEhgU2bNnH+/HkAs1qCQog/GGvDhk0Nw87J8F3K2FoXHByMm5ubzWKzVEsmdQB5eXmUlJRgZ2dHjx49WvRawjJ2dnbMmDGDSZMm8dYbb6Fg6KHRarR88MEH0lonRBth8V06Ly+PCRMm0KdPH66//nrOnj0LwNy5c3nsscesHqAQ7VlpaSkb/r0BgF5T/2iBam/dsHWpqkp2djaFhYVWP7extS4oKMgm9WlF08y9fy43ciOzmc1Xf/uKuXPn2jokIcT/WJzYPfroo9jb25Oammo24PuWW25h48aNVg1OiPYu91guXnhRTTUhkwxjxioqKsjLy2tX3bB1bdq0iffff5/9+/db/dzSDdu2qapKVlYWv//+O2eVs4QQQtl+KSkmRFti8VfiX375hU2bNtVrdg8LCyMlJcVqgQnREZz+wTDBKIEEHNwMkw2cnJx4/PHHyczMbFfdsEbBwcHs27ePEydOcO2111pt0pRerzdVOJDEru36/PPPKSsro9S/FDIh7bc0qsqqcHBtmck0QgjLWNxiV1ZW1uDSDPn5+Tg6OlolKCE6itNrDYndSU6abddqtQQFtc+STKGhoTg4OFBcXEx6errVzpuZmUllZSVOTk74+flZ7bzCehRFoW/fvoSEhFCgKaCQQmora0nelmzr0IQQ/2NxYnfVVVfx6aefmp4rioJer+e1117jmmuusWpwQrRnuSdzyY/Lp4ACTnKSjIwMamtr2/1EI3t7e/r27Qtg1dqxxm7YkJCQFp+kIZpv+vTpzJo1i7T0NOIxlJeM/1nKTArRVljcFfvaa68xYcIEDhw4QFVVFU8++SQnTpwgPz+f3bt3t0SMQrRLJ787ySEOsY51gGGF/ieffBJ/f3/GjBljWg+yPerfvz/Hjh0jNjaWyZMnW6U7dvjw4XTt2rXeouei7XF1dUVVVeLWx/HVn74i4acEVFWVtUyFaAMs/lo8YMAATp8+zZgxY5gxYwZlZWXceOONHD582FRySAgBe77cw3rWm54bW7aTk5OpqamxYWSXr3fv3jg6OlJSUkJaWppVzuni4kL//v2ljFg7UVRUhNdQL7QOWgqTC8mLa/kawkKIS2vWegI6nY6///3v1o5FiA6j4EwBp06cqrdCv16vJz8/v10uc1KXnZ0d/fr148iRI5w6dUrWnOtktm/fzo4dOxg+fDjBY4M5s/kM8T/H061fN1uHJkSn16yBLAUFBbz++uvMnTuXuXPn8sYbb5Cfn2/xeV5++WVGjBiBu7s7Pj4+zJw5k7i4OLNjKioqmD9/Pl27dsXNzY1Zs2aRnZ1tdkxqaipTp07FxcUFHx8fnnjiiXbfIiLat5PfncQLL9MirkaKojBw4MB2ORv2QqNGjeL2229nwoQJl32uvXv3snPnTgoKCqwQmWhpxsktZ86cIXSKoeLEe4veQ1EUyspk+RMhbMnixG7nzp307NmTpUuXUlBQQEFBAUuXLiUkJISdO3dadK4dO3Ywf/589u7dy+bNm6murmbSpElmN4ZHH32U9evXs2bNGnbs2EFmZiY33nijaX9tbS1Tp06lqqqKPXv2sGrVKlauXMmzzz5r6VsTwmpOfnsSHTqevPlJ0zaNRsP06dMZM2aMDSOzHn9/f8LCwtBqtZd1HlVV2bdvH9u2bSM3N9dK0YmWZJzgkp+fj3eUNwDBBOOALHkihK0pqoVT9CIjI4mKiuK9994z3dBra2t58MEH2bNnD8eOHWt2MLm5ufj4+LBjxw6uvvpqioqK8Pb2ZvXq1dx0000AnDp1ivDwcKKjoxk9ejQ///wz06ZNIzMzE19fXwDef/99/va3v5Gbm9ukQuXFxcXodDqKiorw8PBodvyicysrK8PNzQ0PPFjEIgDmnZ6Hfx9/XF1duf/++9HpdDz22GMdosXOWvR6PYcOHeLMmTPMnDmzSb+zwvZWrVpFcnIykydPZu9teylKLmI1qzlUekgmwAhhAWvnIBa32CUkJPDYY4+ZfUvXarUsWrSIhISEywqmqKgIAC8vLwAOHjxIdXU1EydONB3Tr18/evToQXR0NADR0dFERkaakjqAyZMnU1xcbNWlGIRoqn70AyAwKhD3AHcABg4ciE6na3e1YS+loqKCzZs38/HHHzd7GReNRsPw4cO5+eabJalrR8LCwgBITEwkZFIIRRTRhS5kZGTYODIhOjeLE7uhQ4dy8uTJettPnjzJoEGDmh2IXq/nkUce4corr2TAgAEAZGVl4eDggKenp9mxvr6+ZGVlmY6pm9QZ9xv3NaSyspLi4mKzhxDWEo6hTFj4rD/KhaWmpjJw4EAGDx5so6hahp2dHQcPHiQtLc1qs2NF+2BM7JKSkjjEIZawhH3sIzw8nBUrVtg4OiE6rybNij169Kjp54cffpiFCxeSkJDA6NGjAcPA53feeYdXXnml2YHMnz+f48eP89tvvzX7HE318ssv8/zzz7f4dUTn44ILwQQDEH7jH4ldRkYGkyZN6nBdVHZ2dvTt25ejR48SGxtr8ezYqqoqYmJiCAsLo0uXLi0UpWgJ3bp1Q6fTkZqaytsfvW2aAa7X65k3bx6TJ0+uV3pSCNHympTYDR48GEVRzLpannzyyXrH3X777dxyyy0WB/HQQw+xYcMGdu7caXYj8PPzo6qqisLCQrNWu+zsbNOsLD8/v3rFyI2zZhsrS7R48WIWLVpkel5cXNxuyzuJtqUXvUghhb4RfekSYkhU2nuliUuJiIjg6NGjnDx50uLFipOTk/n555/Zs2cPCxculAVu2xFFUQgLCyMmJga9Xm+2r7a2loSEBEnshLCBJiV2SUlJLXJxVVVZsGAB33//Pdu3byckJMRs/7Bhw7C3t2fr1q3MmjULgLi4OFJTU4mKigIgKiqKf/7zn+Tk5ODj4wPA5s2b8fDwaHStMEdHR6lrK6xu1apVHP/f/zQnNfis8GHu3LlER0cTGBhIYGBgh0xcevfubVY71pIvSfHxhlJUoaGhHfKz6ehCQ0Px8vKq98Vfq9USGhpqw8iE6LyalNgFBwe3yMXnz5/P6tWrWbt2Le7u7qYxcTqdDmdnZ3Q6HXPnzmXRokV4eXnh4eHBggULiIqKMnUDT5o0iYiICP7yl7/w2muvkZWVxdNPP838+fMleROtJj09nQULFpie61VDd1RUVBS//PILAIsWLcLd3d1WIbYYY3esscRYUxM7VVVNE66M47VE+xISEoKXlxfTp09n3TpD6TwFhbdefkta64SwkWZVnsjMzOS3334jJyenXhP8ww8/3OTzvPfeewCMGzfObPsnn3zCnDlzAHjrrbfQaDTMmjWLyspKJk+ezLvvvms6VqvVsmHDBh544AGioqJwdXVl9uzZvPDCC815a0I0S3x8fIPdUdu2bQOgR48eHTKpM4qIiDAldpMmTWpS61teXh6FhYVotdp6rfWifXBwcKBnz57U1taSnp6OzyEfwglnlPMoW4cmRKdlcWK3cuVK5s2bh4ODA127djW7gSuKYlFi15SxR05OTrzzzju88847jR4THBzMTz/91OTrCmFtYWFhKChmJcS0Wi3l5eUA7b6E2KX07t2bLl260KtXL6qrq5u0bImxta5Hjx6yzEk7FhoaSmJiIgMGDCDhUAI6dMStjWPkQyNtHZoQnZLFy50888wzPPvssxQVFZGcnExSUpLpcebMmZaIUYg2r4tjF6Yr000lxLRaLW+99VanSezs7e1ZsGAB06ZNa3KSZkzsZCxW+xYWFoarqyt5eXmc4hQAyduTqSissHFkQnROFid25eXl3HrrrWg0zSozK0SHdPLbkwxVh3I7twMQGxvLiBEjgI7fDWtkyeSH6upqkpOTARlf19517dqVv/71r/z444/kk49XXy/0NXrif463dWhCdEoWZ2dz585lzZo1LRGLEO3Wia8NVU6SSQage/fuxMbGAh2/ta4uVVVJTU2loKDgosclJiZSW1uLp6cn3bp1a6XoREtxc3NDVVVUVSX8BsP6jae+P2XjqITonCweY/fyyy8zbdo0Nm7cSGRkJPb29mb733zzTasFJ0R7UHK2hOQdyQCcwJDgGddfBAgPD2/klR3Phg0bOHToEFdccQXXXntto8fFxcUB0LdvX1nmpINQVZWMjAz63dCP3a/sJv6neKrLq7F3sb/0i4UQVtOsxG7Tpk307dsXoN7kCSE6m9hvYkGF7qO6U7D3j5aqRx99lOzsbKsUdW4vevfuzaFDh4iNjWXixIkN3hP0ej2nT58GMN1HRPumqirLli2joKCAe++9F12wjqKUIhI2JphVYBFCtDyLE7s33niDjz/+2LQciRCdVVlZGW5ubtzDPfSgB/1v6W+2X1GURqufdFRhYWHY29tTWFjI2bNnCQgIqHdMRkYG5eXlODk5WVyCTLRNxv/Wy8vLKSwsJOKmCKLfiCb2m1hJ7IRoZRYndo6Ojlx55ZUtEYsQ7Y4HHvSgByjQ/2ZDYldTU4NGo+mUE4zs7e0JCwsjNjaW2NjYBhO7U6cMY6/CwsLQarWtHaJoIddffz3Ozs5otVp0f9YR/UY0p9efpvp8NfbO0h0rRGux+C/PwoULWbZsWUvEIkS70x9DMhcYFYhHd0OX68GDB3nzzTfZu3evLUOzGeNkkdjY2AbXquzTpw9Dhw5lwIABrR2aaEFubm6mRL37yO54BHlQVVpF4i+JNo5MiM7F4ha7/fv38+uvv7Jhwwb69+9fb/LEd999Z7XghGjretKTJJKInBBp2nbixAnKyspsGJVthYWFYWdnR0FBAVlZWfj7+5vtDw4ObrEyhcL2VFWlsrKSiJsi2PvWXmLXxNJvRj9bhyVEp2FxYufp6cmNN97YErEI0a689/p7fMVXqKh89s/PWB68nD//+c+kpaUBnWuZk7ocHBwICwvj5MmTnD59ul5iJzqulJQU1q5di4eHBxP+PIG9b+0lbl0cNRU12Dk1q4KlEMJCFv+mffLJJy0RhxDtSnp6On97/m+mEmJ6vZ558+bh7e0NGBYl7kyzYS901VVXMXr0aIKCgsy279+/H39/f7p3794pxyB2dDqdjoKCAgoLC3Gc4kgxxXiUeHBi3QkG3TzI1uEJ0SnInVWIZjh9+jR6VW+2rba2ll27dgHQv3//hl7Wafj7+9OjRw+z5U5KSkr4+eef+fjjjyktLbVhdKKleHp64ufnh6qqJCUnmdZ1PPnfkzaOTIjOw+IWu5CQkIuuVyf1YkVn4F7qjoJiarEDQ33Y2tpaoPN2w15MdXU1AwYM4Pz58526NbOj69u3L1lZWcTHx3OYw/jhR9mGMm4ovgFHD0dbhydEh2dxYvfII4+YPa+urubw4cNs3LiRJ554wlpxCdGm5WzKYTrTWc96VFS0Wi1PPPEETk5O9OzZEzc3N1uHaHOlpaVs376d3Nxc5syZg5eXF7NmzWpwpqzoOMLDw9mxYwfffvstOeSwilUolQrOjzjz/MfP2zo8ITo8ixO7hQsXNrj9nXfe4cCBA5cdkBBtXW1VLSe+OsFQhnKEI6SQQmxsLJ6enhw5ckQmC/yPvb09MTEx1NbWkpOTg6+vLyAVajo6Hx8fNBoNa9euNW1TUXnpk5e474X7CAwMtGF0QnR8VhtjN2XKFL799ltrnU6INiv+53jO55/H1c+VNAwzYLt3746Pjw/XXnutrM/2P46OjoSGhgKwb98+srOzpbWuE1AUBRcXl3r/1nr0HNt/zEZRCdF5WC2x++abb/Dy8rLW6YRos45+dhSA8JvD0aO/xNGdm3Gs4fHjx3n//felVb+TGD9+fL2WWQWFv8/6O4qidOp1HoVoaRZ3xQ4ZMsTsF1ZVVbKyssjNzeXdd9+1anBCtDXleeWcXm8oYD/snmGobxtaJbZt20ZQUBAhISFSJquOPn36oNFoqK6uBqB37942jki0hsGDB3PLLbfw9ddfo6oqGkXDNHUavvhymMO2Dk+IDs3ixG7mzJlmzzUaDd7e3owbN45+/WR1cdGxHf38KLVVtfgP9cdvkB8AeXl57Ny5E0VRePzxx3FxcbFxlG2Hk5MT3t7eZGdn4+rqKq36nYSiKMyZMwd/f39iYmJ4659vsfaqtai1Kt542zo8ITo0ixO7f/zjHy0RhxBtnqqqHP7I0NowZO4Q0/YTJwxrdfXq1UuSugbo9XrT/6uqKpMnOom+ffuyd+9errzySoL6BtHrul4c+vEQwQSTkZFBnz59bB2iEB2SLFAsRBOUlZURpAki53gOdk52RN5uXhsWZFHihpSUlHDu3DnAMN7OuM6f6Pi6devGuXPnsLOzIzExkYTABJawhAMcIDw8nBUrVtg6RCE6pCYndhqNBq1We9GHnZ3UAhQd1xAMrXRhM8Jw8nQCIDs7m5ycHLRarQxFaMCJEydQVZXAwECmTZsm94hOxM3NjRtvvBFPT08KCwt58cMX65XgO336NIqiyIQKIayoyXfZ77//vtF90dHRLF261NTlIkRHU1VWRSSGVrrI2X+01h09apgh26dPH5ydnW0SW1t27JhheYvIyMhLHCk6oquuuopx48axffv2en8famtrSUxMtFFkQnRcTU7sZsyYUW9bXFwcTz31FOvXr+eOO+7ghRdesGpwQrQVp78/TQUVnOIUt/a6FTC0Okji0ri8vDwyMzNRFIX+/fub/pB7eHjg5+dn6/BEKzC20IaFhaHRaMySO61WazZLWsbdCWEdzRpjl5mZyX333UdkZCQ1NTXExMSwatUqgoODrR2fEG3CO6++wxKW8D3fExERwYoVKygpKcHR0REnJyfCwsJsHWKbY0x6e/fujaurK1u2bOHLL78kOjraxpGJ1ubn58fzz/9RTkxB4bHpj7FlyxbTNhl3J4R1WJTYFRUV8be//Y3Q0FBOnDjB1q1bWb9+vay0Lzq0Az8d4POkz+uNDyopKeHBBx/kr3/9q4wdu4Cqqhw/fhzAdH8wLlZ86tQp07p2ouOrrq7mrbfeora2Fk9PT3rTm0d4BJcDLixYsMB0nPH3Kj093YbRCtH+NTmxe+211+jVqxcbNmzgyy+/ZM+ePVx11VUtGZsQbcLGZRtNSZ1RbW0tCQkJKIqCTqezUWRt19mzZ8nLy8POzs40qSQwMBBPT0+qqqqIi4uzcYSitdjb2xMQEICbmxtdu3YllVR8u/iSlJ7U4Li7hIQEG0UqRMfQ5GaGp556CmdnZ0JDQ1m1ahWrVq1q8LjvvvvOasEJYWvleeUUbytGQTFL7rRarQw9uIjDhw3r/fXr1w9HR0fAsGhtZGQku3bt4tixY9LS34nMnDkTvV7P448/DsCAuwaQ/XZ2g79XxvrCQojmaXJid9ddd8nCoqLTOfzxYVwrXbk98Ha+SP8CMPzxueeee/jqq6+YMWOGqYtR/GHEiBFotVrCw8PNthsTu4SEBMrLy2VB507C1dUVMHTRAxScKeDA0gNMV6ezjnWA4ffqgw8+IDAw0GZxCtERNDmxW7lyZQuGIUTbo6/Vc+BdQ9H6h/7vIb540JDYHTx4kHXr1lFVVYW3t5RHaoiPjw/XXXddve3e3t74+fmRlZXFiRMnGDFihA2iE7ai1+vJycnBr5cffab1gfVQTDHb2U5sbKzMihXCCqTyhBCNiP8xnsLkQpy6ONHvpj8WHy4pKUGv1+Pv7y+JXTMMHDgQMMyuF51HcXExb731FitWrKCiooKRD40EYDSjccCB7t272zhCIToGSeyEaMSe1/cAMPS+oXh6e6KqKqqqmgb+GxMU8YfCwkK+++47kpOTGz1m0KBB3H///Q2ujSk6Lnd3d5ydnampqeH48eP0mtiLLmFdcMKJQQyydXhCdBiS2AnRgLToNFJ3paKx1zB64WjT9tzcXNLT01EURQb/NyAmJoZjx46xc+fORo9xcXHB39+/FaMSbYGiKAwZYijLd+jQIRSNwqgFowC4s/edODtJ5RYhrEESOyEasOffhta6gXcOxD3A3bT90KFDgKGEmJubm01ia8v69u3LsGHDmjx2rrKyktra2haOSrQVgwYNQqPRcPbsWbKyshhyzxCcuzpTkFjAyW9P2jo8IToESeyEuEDe6TxO/XAKgPs+uc9UnLxuCTFjy4Mw5+/vz7Rp0+rNhm3IL7/8whtvvEF8fHwrRCbaAhcXF9O6hocOHcLB1cE01m73q7tRVZWysjIURUFRFNPvnhCi6SSxE+ICe97YAyoc5jC55JKRkQGARqNh7ty5XHPNNVJCzAoURaG6upqYmBhbhyJa0dChQwE4evQoVVVVjHxoJHbOdpw9dJakrUlmxxp/94QQTWfTxG7nzp1Mnz6dgIAAFEXhhx9+MNuvqirPPvss/v7+ODs7M3HixHrf7vPz87njjjvw8PDA09OTuXPnUlpa2orvQnQkJZklHFl1hEMcYi1rAfMall26dOHqq69Go5HvRHXl5+ezdu1ai/4QDx48GIDTp0/L72wn0qtXL7y8vKisrOTIkSO4dHNhyFxDC/ju13abLX4v9WOFsJxN/zqVlZUxaNAg3nnnnQb3v/baayxdupT333+fffv24erqyuTJk6moqDAdc8cdd3DixAk2b97Mhg0b2LlzJ/fff39rvQXRDl2sq2fXv3aRX5nPetabtkkNy0s7cOAAMTExbN++vcmv8fb2JjAwEFVVpdWuE1EUxTQG8/fff0dVVa547AoUrcLhzYelfqwQl8mmid2UKVN46aWXuOGGG+rtU1WVJUuW8PTTTzNjxgwGDhzIp59+SmZmpqll7+TJk2zcuJGPPvqIUaNGMWbMGJYtW8ZXX30la2SJJsnIyDAlep6KJ4c+PEQ++Q3Whl2+fDmpqak2irTtqq6uNpUQs3TB4WHDhgGGRZ8vrBsqOq7Bgwdjb29Pbm4uycnJePb0JPK2SPLJl/qxQlymNtuflJSURFZWFhMnTjRt0+l0jBo1iujoaACio6Px9PRk+PDhpmMmTpyIRqNh3759rR6zaB8u7OoxPg8nnPyqfAZFDarX1aooCqWlpRQWFrZmqO3C8ePHqaiowNPT0+I6n/3798fJyYnCwkISExNbKELR1jg5OTFokGHtuv379wNw9bNX01XTFQXz0pVSP1YIy7TZxC4rKwsAX19fs+2+vr6mfVlZWfj4+Jjtt7Ozw8vLy3RMQyorKykuLjZ7iM4hPT29XlfPQw89BMBe9rKEJVRfXc2yZctMx2g0GqZPn46/v7/Uhb2AqqqmL1HDhw+3eOyhvb29aazdgQMHrB2eaMNGjjTMho2Li6OwsJCuYV25es7VTGe6KbmT+rFCWK7JtWI7kpdffpnnn3/e1mEIG4iPj6/X1WMsTA6govJ/r/8fsbGxpm2vvvoqZWVlDB06FDu7Tvkr06gzZ86QnZ2Nvb29abajpYYPH46Tk1OzXy/aJ29vb0JCQkhKSuLAgQNMnDiRsc+M5ehnR+ld3ZvVrGZn7E6pHyuEhdpsi52fnx8A2dnZZtuzs7NN+/z8/MjJyTHbX1NTQ35+vumYhixevJiioiLTIy0tzcrRi7YqLCzskq1KtbW1pm5Bb29v0xi8ul3+wmD37t2AYQkLZ+fmVQ7o2rUrY8eOxd3d/dIHiw5lzJgxTJgwgTFjxgDg2dOTgXMGokPHVKYSEBBg4wiFaH/abGIXEhKCn58fW7duNW0rLi5m3759REVFARAVFUVhYSEHDx40HfPrr7+i1+sZNWpUo+d2dHTEw8PD7CE6h8DAwHrdrA2N6YmMjERVVT755BPAUFFBp9O1aqxt3dmzZ0lKSkJRFEaPHn3pFzRR3RZU0bH16tWLMWPG4OTkZNo2/rnx2DnZ0YMepG2WL91CWMqmiV1paSkxMTGmpQ6SkpKIiYkhNTUVRVF45JFHeOmll1i3bh3Hjh3jrrvuIiAggJkzZwKGge/XXXcd9913H/v372f37t089NBD3HrrrfJNTzRq9uzZpp83vLWh0TE9lZWVHD16FLB8tmdnsGePoezagAED8PT0vOzzJSUlsWrVKln6pJNSVRW9Xo97gDtRjxu+vG9+fDNF+UVSiUIIC9h0wNCBAwe45pprTM8XLVoEGP7wrly5kieffJKysjLuv/9+CgsLGTNmDBs3bjT7dvfFF1/w0EMPMWHCBDQaDbNmzWLp0qWt/l5E21RWVmaq6VpaWoqrq6tpnx12nHrzFEMZSg457GUvsbGxpjE9Go2Ga6+9lsTEREJCQmwSf1tVUFDAiRMnALjiiiuscs7MzEySk5MpLy9n8ODBKIpy6ReJDiExMZFt27YxaNAgRowYwZi/jeHwisMUnCng0LuHTMdlZGTImDshLkFRpd+D4uJidDodRUVF0i3bwVwssdvx4g62P7sdtwA3FmcupprqeseIhm3YsIGDBw/Sq1cv/vKXv1jlnBUVFbz11ltUVVVx55130rt3b6ucV7R9+/fv5+eff8bb25sHHngARVE48ukRfpj9A0cdj/Jd5XeA4cvW8uXLmTt3ro0jFsJ6rJ2DtNkxdkJYW91yV7mxuex6aRcAk16fRJVahaqqktQ1QUFBgWlB4quvvtpq53VycmLIEENpKeNalaJzGDJkCOPGjWP27NmmltqBdw7EeaAz31d+bzpOKlEIcWmS2IkOraG6k/paPevmrqO2qpawqWEMuHWA2WtUVWXNmjUcPHiQmpqa1g65zaupqSE4OJhevXoRHBxs1XOPGjUKRVFITEysNyNedFz29vaMHTvW7IuVolEIvje4wSowUolCiMZJYic6rIYWI543bx4bXtxA+t50HD0cmfb+tHpjuc6cOUNsbCybNm2iqqqqtcNu87y9vbnrrru45ZZbrH7uLl26EB4eDsDevXutfn7RPpSWlgJw5Q1X1vv9lEoUQlycJHaiw2poMeLa2lrWvbIOgGv/fS0egfXHMxhnew4ZMgQXF5eWD7SdcnBwaJHzGpczOnr0qJRw62SKi4v59NNPWb58OdXV1QQGBrLk30tMs9Y1ikYqUQhxCZLYiQ6rocWINWjwqPSg5zU9GXpv/UoHGRkZnDlzBkVRTAmGMMjNzeWXX35p8SUnAgMDGTZsGDNmzJDJTJ2Mi4sLeXl5lJSUmErMzf3rXEIIYTazeUR5hOuHXm/jKIVo2ySxEx1WvcWIFQ3TmIZ/N39u+OwGFE395TS2b98OwMCBA62yNltHsnnzZqKjo/n5559b/FrTpk1j4MCBFteeFe2bnZ0dY8eOBeC3336joqICgDOcoZxyPPQefHf7d1SXV9syTCHaNLlrig7NuBhxT3qyUF3IUIZyw2c34NG9fktQeno6CQkJKIpi1dmeHcXo0aMJCAgwW3uyNciKTJ3LoEGD6Nq1K+Xl5ezcuRNXV1dUVWVl7krc/N04d+ocGx/daOswhWizJLETHZqrqytnY85yv9v96NAxZvEYQq9reOC1sbVu8ODBeHl5tWKU7UOvXr2499576dq1a6tcT1VV9u/fz7JlyyguLm6Vawrb02q1TJ48GYB9+/aRl5cHgEs3F2747AZQ4NDyQ5z87qQtwxSizZLETnRoxenFrJ66mqrSKnpe05NrXmi8tenqq6+md+/e0lp3gboTUFqzGoSiKMTGxlJQUMDOnTtb7brC9sLCwggLC0Ov1/PLL7+Ytvea0Isrn7wSgHX3rqMgqcBWIQrRZkliJzqsyuJKVk9dTUlGCd4R3tzy3S1o7Br/T75Hjx7ceeedMraujvLycpYtW8bOnTttsqafsdv30KFD5Obmtvr1he1MmjQJjUbD6dOnzdatu+bFa+g+sjsVBRV8NeMrqkplSSIh6pLETnQoZWVlKIqCnWLHsmuXkX00G1dfV27/8XacPJ0afE1tbW0rR9l+bN68mcLCQk6cOGGT2q3BwcH069cPVVXZsmVLq19f2E63bt0YOXIkAD///DPV1YYJE1p7LdM+m0YJJeQcy+Gb279B1cs4TCGMJLETHYqx0kQttTy5/0mOOh7ltvW34dnTs8Hja2tr+eCDD/jll1+orKxsxUjbvqSkJGJiYgDDLFWtVmuTOCZMmICiKJw+fZrk5GSbxCBsY9y4cbi7u5Ofn28aAwvg3t2dL/iCBBI4sP4A25/b3ug5hOhsJLETHcaFlSZUVNZWr0X1b/zb/P79+8nNzeXYsWOtEWK7UV1dzYYNGwAYMWIEQUFBNoulW7duDB8+HIBffvlFZsl2Io6OjkydOhUw1A/OzMwEDF/gssjicz5nCUtY8uISfn/3d1uGKkSbIYmdaFHGrlFji0tLOvDrgfqVJvSN15UsKytjx44dAIwfPx5HR8cWja892b59O/n5+bi7uzNhwgRbh8PYsWNxcHDg7NmzUgC+k+nbty8DBgxAVVXWrVtHSkpKvS9w61nP8vnL6aX0avH7jBBtnSR2rcBayU1rJknWYuwaBQgPD2fFihUtcp3EzYnsX7DfVHrI6GJ1Jbdu3UplZSV+fn4MGjSoReJqj5KSkkxl1a6//vo2kfC6uroybdo07r33Xpu2HgrbuO6663BxcaF79+7ExcXV+wKnorKCFSSRRHi/lrvPCNEeSGLXCqyV3LRWkmQtF3aN6vV65s2bZ9UWl5qKGjb/bTOfT/4cx2JH/tLrL6Z9Wq220bqSSUlJHD58GDD80ZAKBwbnz5/n+++/Bwy1cvv162fjiP4QGRlJ9+7dbR2GsAFXV1fmz5/P9OnTiYiIaPD3VcXQRa9X9dx///3Ssis6LflrZoHmtJhZK7lpjSSpLmu0DsbHx9fvGq1tvGvU0ngyD2ayfPhy9ry2B1QYet9Qlv6+1PSa2NhY5s6dW+9c1dXVrF+/HoBhw4YRHBxscTwdkaqqrF+/npKSErp27cp1111n65AalZeXR0ZGhq3DEK3IxcUFMJQKXLr0j9/zhpI8vV7Phtc3mG1rjz0eQjSHJHYWaEqL2YU3j8aSm6CgIItuMNZMkprCGq2DYWFh9W66F+satSSeh658iA9HfEjCiQRiiSXq3SimL5+OzkuHqqqoqkqfPn0aPFdWVhZlZWW4u7tz7bXXWhxLR3XgwAFOnjyJRqPhxhtvxMHBwdYhNSg+Pp733nuP7777jqoqWcOssykpKcHd3Z1ly5bx66+/snfv3nr3GQWF02+fZstTW9DXGu6bDd3TJNkTHZEkdnXodLpGf8EbazE7ffq02Y3hwpvHgQMH6t906qwH1tSkyZpJ0qVuZtZqHQwMDGTZsmVm8TbWNXoxDcXz7p532a3u5i3e4r/8lykPTWly8hkUFMSDDz7In//85zYxfqwtSElJYeNGQ/3NCRMmEBAQYOOIGhcUFISLiwv5+flmVQlE51BWVkZqaiolJSVERkYyYsSIeveZx6Y/hg4du1/dzZfTvyThREKD97QlS5aYtoWHh/Puu+9KoifaP1WoRUVFKmB6aDQa9aOPPjI75tdffzU7xvhYuHCh6WdFUVRFUcz2a7Va9aWXXjI7d0PHpKWlXTLOd955x+w1F8bYVHXPY8l73bZtm8XXKi0tNb0+Li7O4tfra/XqF2980WA8zf0chbnq6mr1zTffVJ977jn1m2++UfV6va1DuqTExET1ueeeU5977jn15MmTtg5HtLJjx46p2dnZpucN3WcOfHJAXcACdTaz1dm+s5t0D6n7vKF7oxAtwZiDFBUVWeV8iqrKolDFxcXodDqzbVqtluTkZFPrUnp6OsHBwWbdocYWtAu7SC+0bds2QkNDSUhIICcnh1tuuaXBY8aNG3fJWNPT00lISCA0NJQuXbrg5uYGQFxcXKNdjxe+/sL30ZT3euExjSkrK7M4pgtf0zukN6e3nGbe9fPwxRdPPFnBCtPgaDB89g197o19jqqq8tNPP9G3b99mtXJ2dGlpaezatYs///nP2Nvb2zqcJtm8eTN79uzB2dmZBx54AHd3d1uHJGxEVdV6lVHeffdd5s+f3+hrGruH1NXU+54Ql8OYgxQVFeHh4XHZ55Ou2EbU1tbyTPgzvOT3Ev/s8U8+G/sZM71nmpbTUFAYFzjukjcGjaIhd38uqTtScStwo0t1lwa7VHv16tWkuAIDAxk3bhyBgYHNGgfXlLF6l9OF2pyYli9dbvq5X99+3Ox+M09d/xS/8Rvf8A0rWMHY3mPN4nnllVcs6po+dOgQBw4c4KuvvqK4uPiSMXU2QUFB3H777e0mqQNDHVk/Pz/Onz/Pt99+K6XhOqmUlBQ++OADCgoKTNsuHL5hZLx/azSaBu8hF2rJccxCtBRpsaPhFjsFhUd4BB3m24soIp98vPACYAlLzFqSjK9VUVFQmM50hjLUbP8hDrGe9fWOKdIWkafJo5tDNzydPFHsFRR7BY2jBo2DBq2DFo2jBq2jlmK1mH/s+od5K5ai4d2/voufjx8OLg7YO9tj72KPg4sDji6O2DvZk1+Sz/hbxtdrjYs5EMPAIQNRUU0tbXVbB5uS1DXW0vf7z7/jaedJ+blyzuedJ+9MHm//+20UFEI8Qni3+N1GP8O654mOjqasrMwUT91v5Mbks6FZsGlpaaxatYra2lomTpzIlVdeecn30tHp9Xp++uknhg0bhr+/v63DabZz587x4YcfUlVVxbRp0xg2bJitQxKtSFVVPvzwQ86ePYunpyd33303Hh4ebNu2jfHjx9c7/jan23CocMALL665/xoSQhJYtHgRYEj21P9NvDKSFjvRGqzdYieJHfUTO41Gw98X/J1vP/sWvarn2Sefxcfdh6ryKqrPV1NVXkVNRQ3V56vZcmQLn+37zJSk3Rx2M+4l7hRXF9PbqzfuuKNWquir9ajVKmqVilqjUlRVRH6NIUHUoWs02WtMEkmsYlW97bOZTQghF32/DV0LMN9mN51hjsNQtAqKnYKiNXzTzSrNIl+fT6BbIJ72noZvwAqgh4TyBFaU1G+huzCmute3REPdrJdKPgsKCvjoo48oLy+nb9++3HLLLTYpZt/WREdH88svv+Di4sLChQvb7AzYpoiLiyMjI4NrrrlG/m07oZKSElauXEl+fj7dunVjzpw5FBQUNPgl88T+E8QuieXoZ0cBsHe1J2R2CF6Tveg/tD/r1q1r0pdFIaxJErsWYPxQY2Njyc7OJjQ01OwXXKPRsHz58kZ/wS1t2TLS6/VUV1STeDqRyGGR9cbvhevC0Wq0PPbAY3Rz60bVeUNiWXO+huxz2Sz6cpFZcqSg8PTgp3HHHX2VHn2lHn2VnpziHApqCvDWeuOhekANFNUUkV+bj5e+4ZbHhlosL5V8FlHU8HmcHkHnpgMXKLIrYsmZ+q2cF1IUxeybs0aj4eWXX8bHxwc7Ozvs7OzQarVm/3/hz6qqsnfvXsrKytDpdEyYMAEnJyfTcXVf39DPGo2mwyYKVVVVfPHFF4waNYqIiAhbhyPEZSksLOSTTz6huLiYbt26ceedd/LFF180mqSl7Ezhl8d+IfOAofasg7sDQ+YOYdSCUZQ5lDXrft6Q9PR04uPjCQsLk1Y/0ShJ7FrAhR/q5UweaI7Gug2MGkssG+uKrHszaSxBVVWV2tpaqqur2bJ5C3+a8ad6113+7+UM7DOQmooaMrMyueWRW+olW+//4326eHShVl8LdrB5z2Y+/u/HqKqKRqPhrrvu4sorr6SmpoaamhpOnTrFO++8U+9axkROURSmT/9fC+L69Wbbhg5tvAWzpRgTvaYkghc79lLHW7qvOUlnbW2t2ev0en2Hq7hRU1PDDz/8wIgRI2Th6U4mLy+PTz/9lOLiYjw8PPjLX/5CRUVFo0maqqqcXn+abc9uI/tItmGjAn2m9mHQnEH0mdYHO0e7ZsdT9/58qcYB0blJYtcCLvxQG0u0mjpz1VINJZIXaiyxvLC1sO7NxPgH/FJjRpqSyDb2mfz3v/+lW7duZt9IL9aC2di1duzYQUlJCT179sTX15eamhpSU1M5c+YMgYGBeHt7U1tba0oQa2pqzJ43tC81NZWioiK6d++OVqutd7zxed2f29OvgyWJoKqqZGZm4uHhQUBAwEUTUGPieOE2S4/RaDStnjhu376dHTt24ODgwF133SUlyDqZoqIiPvvsM/Ly8nBxceGWW26hR48eF32NqldJ3JzIviX7SNj4x0QJpy5O9JvRjz7T+9Dr2l44ujd9zcvG7nPR0dGUlpa2mRY8aVFsGySxawG2brEDWLFiBfPmzTO1qliylIdRUxLExs5zqYkIDZ27bnepJd9I677XlhzHoqoqhYWFdOnSpcmv0ev1pkTvwsSvoUTQ0uOac7zxeXv8VVUU5bITRkteA4bxg7m5udjb2zN+/Hj8/f2bfI6O3P3eWZSXl/PFF1+QmZmJRqNh8uTJjBgxokn/rudOnSNmZQxHPztKSWaJaXupfSn2g+wZOXkkw64fhv8w/4u25jW3F6Y1SYti2yGJXQto6ENt6oxLazK2dLm6ujJ69GiLE8tL3UwudZ5LjRW8MPm8nBlkzR2XeDHFxcXs2rWLyZMnY2fX/C6Utqpu0tmURLCmpoa4uDiOHTuGqqq4ubkxaNAgHB0dG004L0xsG3pc7JiOcDu5VILZ2P9fuO1Sx7fU/2u1WlP1hM6qqqqK9evXc/z4cQAGDhzI9ddf3+RKM/paPSk7UohbH8eqz1fx9bmvzcYWj3AcQcDwAAJGBOAb6YtPpA+VukpSMlIICwsDaHIvDHDJVrOmtKxZ0vpmi8YLS2Nsy6z9PiSxawGNfagtkXw0VXMSy8Za1TQajdVax4yfyeUutGxtmZmZfPXVV5SUlDBq1Kg2XcC+NZSUlLB27VoSExMB6Nu3LzfccEOLl1DT6/UNJn6XmzA2tr+x19TU1HDu3DkqKysBcHZ2xt7evsHXd1TWTBgvJ8k0vv7CR2P7LrbdkmTVOHlq8+bNqKqKp6cn8+bNw8nJqcnnaPCe2oSJZQ9e8SAOXRx468e3DP8Wiga9Wv+/tYULF/L222+b/r0uNZb6co4xvp/4+Hhyc3Otfv++MNm58HlbaCG0RkJm6Wfd2OdRlyR2LcDaH6q1NCexbKibc/LkyVZPUG31je9Cqqpy8OBBNm3aRE1NDd7e3tx+++14enq2WgxtiV6v5+DBg/z6669UVFRgZ2fHpEmTGD58eKdrwdHr9fz8888cOHAAFxcXHnzwQVxdXc2OUVW1XnLYWLJYd7vx58v5/8s9R92fOxNLk8Lq6mry8/NxdnbG19e3SUmk8XH06FEef/zxejE8++iz2OXZ4VHsQWlyKc/EPNPgqgIA+eRjj3296jnGxZIvXIv046c+pkZbQ58+fXBwc+CKm66oPyb51x1UVFXQt19foH7rYEP34qaOvwbLWxAvTHZuu+02vvjiC9PzV155haeeeqpZfy8aSoiakjS1RGLZ1L97l/o8Lry2JHYtoK0mds3VWi2NrTVWrjFlZWWsW7fOVKw7NDSUWbNmWfSNvCNJSUlh06ZNnD17FgB/f39uuOEGvL29bRyZ7aiqyu+//06XLl1MXWQdkTUSxZb4/wvjuvBxse1tQVFREUuWLKk3xKDuLP6oqCj27NlT77WzQ2cTUhsCRUAZHKo0b9WLIoo91H9d3QXum3SMJoo9+vrH3OtzL71ce6HYKRTri3kl8ZWLLqZ/+4DbQYHVx1abts2Oms248HEUVhaSU5pDQNcAjqQe4cMtH5o+h9nXzmbV5lUXHYZx4fJVRkteXELXrl0J7R1KYPdANPYacs7lkJyeTJ+wPmzauolFT/yxgPTy5cuprKy8ZNJ04TGWJJYXSxrj4+MvOYkQLO+G9/PzIyIiQhI7a+poiV1rslV3dVJSEmvWrOH8+fNotVomTJjA6NGjO12rFEBGRgbbtm0zdbs6Ojoyfvx4hg8f3uGWM7GGmJgYkpKSuPbaa001ikXbU7c11ZKEsCnb9+7dS05ODsHBwfTp0+eix2/cuJH//Oc/6PX6Blu6Gtqm0Wh48cUX0el0pvPUVNaQl57HuYxzdLHrgr5Uzxs/vXHpNT0vqMLTlGMUFOYyl2qq8cKLfPIbXND+Jm7CFddGKykpKExkIlvYYvGC8k15HxdWaQIuuXh9cz6PxtwRfAfuju50c+6Gl7MXe3P3siZxjSmmkQEj2Z+53/T8xsgb+e7Yd/U+I+NzRVGYNmwa6w+sv+S1b5pwE99s/cbsHJLYWZEkdu1PSUkJ//nPf/D09OSGG27Az8/P1iHZzNdff82pU6fQaDQMHjyY8ePH1+tyFAY1NTUsWbKEsrIynJyciIqKYtSoUS0+9lC0Haqqsn//fnbu3MmcOXNMLdrFxcU4ODg02OJ/qbHFjz/+OG+99ZbFvRdNWQ3hoYce4r333rvoMXfddBeff/e5aW3KCSMnsHnvZsCQbMy5bg4rN640Tz4VDUvmLKGLYxf01XpOpJ3gtV9eq3duayRSCgrXOl/L5vObLztpa65LJZZNSWAtOa45n5kkdlYkiV3bptfrOX36NGfOnOH66683bT979qxpzExnkZeXx5EjR4iMjDT9QUpJSeHw4cOMHTvWoqVdOquMjAw2bNhAVlYWYJhYMXr0aIYNGyYJcSdSU1NjNnv++++/5+TJkwwYMICBAwcSHBxcrwfgYmOsgGb1XjRlNQTjuS/nGGN3ZGPJZ0PvrbFEsq6Gzn3nnXfy+eef17vWpRLkS9Eohnt9QxNRjBprQb33T/fy0dqP0Kv6Bsc3NjWpfHTMo3Rz6kZOaQ7F5cV8cvSTeseM8x3HjuwdpqRxiG4Ih4sOm56P8RjDruJd9V4niZ0VSWLXNhUUFBATE0NMTAzFxcUA3H333ZdccLQjMf56Gm9Wxta5K664gmuvvdaWobVrer2eEydOsGPHDvLy8gDDzf/6669n2LBhNo5OtDa9Xs9HH31kGp8K4OHhQd++fQkNDaVnz56mesotOba4Kee+1DEXW2A/NDS0yUtaabVaXn755Xpj0xpbaeHCYTmWLlRv/IJ+qWsBZjE2lEReeExTE8vGxgIaXTguz5JEv+7nAQ2Pw5PE7gLvvPMO//73v8nKymLQoEEsW7aMkSNHNum1kti1HUVFRRw+fJhTp06RnZ1t2u7s7MywYcMYPXp0h25V0ev15OTkkJKSYnrceeed+Pv7A3Dq1CkOHjzIiBEj6NOnj42jbf/0ej3Hjx9n//79ZGRkcP/995s+6+zsbPLz8+nZsyfOzs42jlS0NFVVSUlJ4ejRo8TGxpqWygHDH+vg4GCCg4Pp3r07qqqSnp7eImOLmzJuuTnVfZq7xmhLrbTQ0HmhfkLW0LWakkQ25zNqasvjpd5Hc7vhJbGr4+uvv+auu+7i/fffZ9SoUSxZsoQ1a9YQFxeHj4/PJV8viV3r0+v1FBYWkpubi6enJ76+voChW3HlypWA4dtTSEgIQ4YMoV+/fh1q0eGamhoKCwspLCzk3LlzZGdnk52dTW5uLjU1NWbHTp48mdGjR9so0s4jJyfH7H6xdu1aYmJiUBQFPz8//P39TQ9fX98O9d+jMFdTU0NiYiIJCQkkJCRQWFhY75hu3bpx66230rVrVwAqKirQarXY29u3crT1WbtVsaUmyVmakFlTY5+RJS2PF3sfTWF8na+vr8yKvdCoUaMYMWIE//nPfwBD0hAUFMSCBQt46qmnLvl6SeysR1VVampq0Ov1pgHplZWV/P7775SUlFBSUkJ+fj7nzp0zLWkwYsQI09i5mpoavvvuO/r06UOfPn1wcXGx2XuxhLHqgvGP/fnz50lJSQGgX79+puO++uorMjIyKC0tbfRcDg4O9OjRgx49etCzZ09TbVfRurZt20ZsbCznzp2rt0+r1fJ///d/pu6juLg4ysvLcXV1xcXFBVdXV1xdXbG3t++UM7U7ElVVycvLIzExkfT0dDIyMigoKADgySefNLXmbty4kX379jFu3DjGjh0LGJZkOnjwIM7OzmYPJycn0/+31H8ftlxgv71oK5+RtXOQdv+Vs6qqioMHD7J48WLTNo1Gw8SJE4mOjrboXF9//XWDiUS3bt1M3X/l5eXk5OQAhj5yMPzi5+bmUl5ezuDBg4mMjAQgOTmZnTt3mp2rbh7t5eWFTmdYvbyiooLMzEwAAgMDTX/I8/LyKC0tJTw8nFGjRgGQlZXFzz//3Oj70Ol0eHkZpq9XV1eTlpYGgJ+fn+nbZGFhIcXFxYSEhJjGYxQXF/Pf//7XLFbjQ6/Xo9PpTC1rtbW1xMbGmhK4mpoaKioqqKioMH02c+bMMR27devWenEqioKLiwtZWVls3rzZtL1Lly7k5uYSEBBg+vfIysri2LFjeHl5mY2B2rZtG9XV1Q1+vv/f3p3HN1HmfwD/JKUtPdO76X3BUqEtN5VDbiroriCi8BPcAoUFLS7UVUGRCiiiq6t4oLCChVVYRXTF3VXk9kBAQBBBLLQUSo+UltKDFlraPL8/uhkzzdE0mclMku/bV1+SyWTmeZ55nme+88xlSs+ePRETE8OV79GjR+Hn54ehQ4dy83z55Zeor683+UDYlpYWNDc3o7m5GU1NTdBqtRg3bhyGDBkCAKiqqsJHH32EgIAAXmB3/fp1Lqjz8PBAQEAAgoKCEBYWBrVajfDwcAQGBlIwIAOjRo3CqFGjUFdXh8uXL6O8vBwajQZlZWXw9PTk3bRz8OBBrp3pUyqV8PX1RU5ODjdt165dqKysNPp2B3d3d94NQidOnMDVq1e5+qD/f4VCwXtLwJkzZ1BVVWV0XgAYMmQIl+Zz586hsrLSZN4HDRrE9RWFhYXcjSbGDBgwgDuIKyoq4voxY/r27cu16eLiYqNlptO7d2/ucTQlJSXcgZIxqamp3A6xvLwcFy5cMDlvz549uZuMKioqUFBQYHLe5ORkBAcHIyQkhDtoVavVaG5uRn19PX788UduXt1+wcfHB9XV1Th79iyuXbuG48ePm1w+AO6NGvr1oH///tw1fTdu3MDVq1eRkpKC2NhYnDp1Cjdv3sSFCxe4eqD7U6lUXDm0tLSgoqKCKzeFQoGYmBhuuW5ubrh58yaioqIQExODH3/8ES0tLSguLubm1/Hz80NQUBAUCgVaW1tRUlLCy4NarebuJnZzc0NLSwtCQkLQrVs3HDlyhDvN3Z63tzfvOZvt5wkNDeX2vbrlqlQqpKSk4NChQ2CMobi42OBata5du3L7KgC4fPkyb57g4GD4+flx8166dAlVVVXo06cPjh07hubmZpSUlBicPXF3d0dkZCT3uaysjLf/CQgIMHg4vru7OwYOHIiffvoJDQ0NKC8v553m9/X1FfxtTQ4f2OlGfvQ3IgCEh4fj119/NfqbpqYmXsHqLsy/cOGC0VvdTTV83XPD9Hl7e3OBXWlpKYqKikymXXeBZXvGGoBSqeQCu6tXr3KNrzOMdaK3bt3iAruGhgaUlpaa/P2VK1dw/vx5g+n19fUG03RHtABMPkqCMYaGhgY0NDQYTVt0dDR3aqyyshLff/89EhISeIHdDz/8wAWTlgoODuYCu9raWhw5cgRhYWG8wK6goADV1dWdWm5zczP3bz8/P0RFRRk08vHjx0OhUCAwMBBeXl4UwDkAf39/9OrVC7169QLQVm/b17moqCh4enqisbGRq9O6kev2BxslJSUmAxoPDw9eYHfmzBmj/QwAg8Du9OnTJvs8ALj99tu5wO7MmTM4deqUyXn79u3LBXZnz541G5ykpKRwbfzcuXM4fPiwyXl79OjBBXYFBQX49lvDOwN1EhISuMDu4sWLRg8OdaKjo7mApri4GHv27DE5r+7gCWjro83NGxgYyJ1qraioMDvvxIkT8cADD0ChUODixYtm53Vzc+POWOj+rx9E6A8IREVFobS0FBEREVCpVGaX2xH9/ZHuNOOgQYMQHBzMO7juLP39gi69KSkpiI+PF2y5arUaGo0GCQkJSElJwd69e80+yPrnn3+2aLnBwcG4evUqwsLC0KdPH3z77bdcTGDML7/8YlHa/fz8UF9fD19fXwwcOBBHjhzh3Zyj4+bmRoGdEFavXo0VK1YYTA8MDOQFdrqdbnBwMHfUcOPGDVRWVkKhUPDuztSN2EVFRXHTQkJCuE5Bn265AQEB8PPzg0KhQFNTE3ezQExMDHdKr6qqCtevX+dGB3W/M3ftoL+/PxdQtLS0cJVJt/MBgOrqatTU1CApKYn7nbe3N+95cPpHgkqlEt7e3twII9AWYCqVSvTs2RMhISHw9PREVVUVioqKeEc1SqXSomvE2gc5ulFHoK0sBw8ezJsGtJ2G1z9iMrac9vTzGBAQgGHDhhk8qHbEiBFoamoy+f5LNzc3eHp6wsPDg/vTD2ADAgIwZ84cg3XTKRHHp1AoDG6muPPOO3mfGWO4desWbt68abDzGTFihMFosO4htu3rbnJyMjdapFuu7v/t501KSoK3t7fBvPrp1omNjTXbTvSvH4yOjjYYudCnf01ZZGQkevfubXJe/TYSERFhdl79sydhYWFm59W/oSokJMTsvLqRGqCtbzc3r35/FxAQYHbeoKAgbv/h7+9vdt7evXsjNjYWN2/ehEajwdGjR7mDAK1WC19fX277hIaGok+fPoiMjETXrl3Ru3dv7jVp+tuaMYbAwEAuaG1qauJG1nTzhYeHc9vLx8cH4eHhiI2NhYeHB3r37o3W1lajI66+vr5c39vS0mIwABAWFsbl3cvLCyEhIYiKioJSqUTv3r3BGDN6MOPt7Y2QkBDuc/sBi5CQEK4eeHp6Ijw8nJs/LS0NWq0WJSUlRkfs9PeR7ecJCgri+nwPDw9ER0dz9eK2227jzqAZG7HT3VwFwGAelUrF1Rld8K6r8927d0dYWBgqKip4A0ti3Azo8NfYNTc3w9vbG9u3b8ekSZO46ZmZmaipqcGOHTsMfmNsxC4mJoausSOEEEKIXQl9jZ3DP9nVw8MD/fv35w3Ta7Va7N27F4MHDzb6G09PT/j7+/P+CCGEEEIcnVOcin3ssceQmZmJAQMGYNCgQdwrg2bNmiV10gghhBBC7MYpArupU6eisrISubm50Gg06NOnD3bu3GlwQwUhhBBCiDNz+GvshEDPsSOEEEKIFOgaO0IIIYQQYhQFdoQQQgghToICO0IIIYQQJ0GBHSGEEEKIk6DAjhBCCCHESVBgRwghhBDiJCiwA7jXi+m/ZsyVNTU1Yfny5VQe/0PlwUflwUflYYjKhI/Kg4/Kg0/oGISeYwfg0qVLiI+Px5EjR3gvr3dV9fX16NmzJ3755RfeC7NdFZUHH5UHH5WHISoTPioPPioPvrKyMqSnp+PixYuIi4uzeXkU2AHYv38/Ro8eLXUyCCGEEOKi9u3bh1GjRtm8HKd4pZitEhMTAQCXL1+mN08QQgghxG7q6uoQExPDxSK2osAOgLe3NwDA39+fAjtCCCGE2J0uFrEV3TwBwNPTU+okEEIIIcSFCRWLUGBHCCGEEOIkKLAjhBBCCHESFNgRQgghhDgJCuyI6EpKSrB//36UlJRInRRCCCHEqVFgR0S1ceNGxMXFYfTo0YiLi8PGjRulThIhhBDitBw+sFu9ejUGDhwIPz8/hIWFYdKkScjPz5c6WQRtI3V/+tOfoNVqAQBarRbz5s2jkTtCCCFEJA4f2H399dfIzs7G4cOHsXv3bty6dQsZGRloaGiQOmku7/z581xQp9Pa2oqCggKJUkQIIYQ4N4d/QPHOnTt5nzdt2oSwsDAcP34cw4cPlyhVBAC6d+8OpVLJC+7c3NzQrVs3CVNFCCGEOC+HH7Frr7a2FgAQFBQkcUpIdHQ0/v73v8PNzQ1AW1C3fv16REdHS5wyQggxjm72Io5OwRhjUidCKFqtFvfccw9qamrw3XffmZyvqakJTU1N3Gfde9oqiitk/0qxktISFBYWIikpCdFRjhEglZSW4MKFC0hMTJRNmh2xHAkh4tr0j03IXpQNrVYLpVKJtWvWYuYfZ0qdLOLk6urqEB4bjtraWkFiEIc/FasvOzsbp0+fNhvUAW03XKxYscJg+pmPz8DXy1es5Nlsx8EdWL11NbRMC6VCiacefAoTh06UOlkWCUQgrl2+hmu4JnVSHLocCSHiqLhWgexnsqFlv93slb0oG9H10QgPDJc4dcSZXb9xXdDlOc2I3YIFC7Bjxw588803SEhIMDuvqRG7b97+BgGBAaKkT3NVg2JNMWLVsVAHq636/fhHx3OdDgAolUrsfGOnVctzVVSOhBBjfjjzA+Y8P8dg+sZlGzGw50AJUkRcRc21Ggx/ZDiN2OkwxvDoo4/iX//6Fw4cONBhUAe0vWjX2Mt2u3h2gYePh+Bp3L5rO3LX5nIjRCuzV2JKxpROLaOssIwXjABtR5TlteWIjY0VMrkcTZUGF8suIj4yHuoQ5wh6pChHQqTijG1YLN0Su0GpUBoc9CUlJImyXyBEp0ujsKGY1Uv7/PPPO/2bcePGwcvLy9pVGpWdnY2tW7dix44d8PPzg0ajAQCoVCrB12UNTZWGC+oAQMu0yH07F8P6DetURxsfGW+004mLiBM8zYAwwagc2bscCZGKs7ZhoekHvyuzVyL37VzuGruVj6x06oCYAn/nZPWpWKWyczfUKhQKnD9/HomJidaszuxyjcnLy8PMmTMtWkZdXR1UKhW+3/g9gkKFvZv28KnDmPmMYTo2r9qM9NT0Ti1r+67tBp2OGB21pkqD0VmjDYKffRv2OWTjb9952ascLU0PIUJztjYsFmPB77B+w3Cp/BLiIuKcuqwo8JeP6spqDMkaIo9TsRqNBmFhYRbN6+fnZ8uqTJL7JYJCjhBNyZhil07nYtlFo6crL5VfcriOzlTnJVXnTZ2pcRTsCsuZ2rBYTJ1N2bdhX6cPuh2NUGeSiDxZ/Ry7zMzMTp3qnDFjhuwfJSIGdYgaK7NXciOctg7vq0PUSE9NF7Xx6YJRfY54utJU56Wp0tilHDuTHle2fdd2jM4ajZnPzMTorNHYvmu71ElyeM7ShsVkLvgViqZKg8OnDsuujdsj70Q6Vgd2eXl53Cjc9esd36r7zjvvICQkxNrVObQpGVOwb8M+bF61Gfs27JP9CI3QwahU5NZ5yS09ckDBrjgcqQ1LFfyIHfzK+YCFAn/nJsitGCqVCtu2bcN9990nxOKckjpELctO1RQpT1cKRW43SsgtPVLRP+3qyKcM5X762BHasJSXJuiCXzFulpD7qU4x806kJ0hgxxjD+vXr8eqrr0KhUGDAgAGYPn06Bg6kZ/84MkcLRtuTW+cll/RIGZC035H/JfMvoga7YuXVUa6VlHMblkPwI1bw6wgHLI4Q+MuV3A/qBHt4yokTJzBt2jT4+Pjg+PHjuOOOO7BgwQK88sorQq1CFuS+QQmf3DovW9IjRN2TMiAxtiP/2z/+hr9k/gV/+8ffBA92xcqrHAISIUnVp0kR/BjLqxjBr6OMzss58JcrRzioEyyw27p1K8aNG8d9PnXqFCZOnIioqCjk5OQItRpJCblBKUC0H7l1XtakR4i6J3VAYmpHntI9Bfs27BM0+BYzr44wGmMpKXdSzvxsTlOj80DbI7Bctd939P2eLf2KPfMuSGAXFBSEmJgY3rS0tDS89dZbyMnJcZjAruVGC2413DL6neaq8Q2anpze6VdRfbr/U6x4dwXXwTw791lMHjXZ5vR3hq2vOCP2I1TdK7xQaDQguVB0AcFewYKm2ZiogCijO/JIVSSCvYIRnNiWBlNtsDPEzKu5fAiRdnsRsk+zRrBXMJ6d+yxWbFjBBT/PznkWwV7BgpejFHmdOHQi0pPTcbniMmLCY/D9qe+5ZwtK1e9LSQ77PVtZ2690lPeWGy2CplOQwK5Pnz7Iy8vDSy+9xJverVs3FBcXC7EKuyg5VIJav1qj350qPWV0gx796ihSo1ItXkfV9Sos37Kce/6elmmx4t0ViG2MRYivfe4a3nV2F9765i0wxqBQKLBg+AJk3JZhl3WTzhOq7imvK6FQKHjPflQqlFAUKXCx8qJQyTUre3g21n6zluvgsu/Ixs3TN3ERwq5f7LzaKx9iEqpe2aKfsh82PrgR5bXliFBFIEQZgotfX0TV9SqU1ZYhUhUpSL8oZV5DEYqSohLJ+30pyWG/p0uHLfXKmn7FkrzX19d3PjNmCBLYPf/88xg1ahTKysrwyCOPIC0tDQ0NDXjhhRcsenerXCg9lfDwNf5OwLjIOMOjdIUSsZGxBr+prK9E6bVSRAVGIdQvlPfdleorBg9V1jItKpsrEekbKVBOTKusr8Tab9ZyaWCMYe03a5GenG6QViIPnal75kT6RmJRxiK8vut1LiBZmLEQkWrx653O7wf+HunJ6Si7VobIwEjR6pzYeTWVD3NtX26Eqle2ivSN5G2XnT/vNNhu41PH27QOqfMqdb8vNTnkX4h61Zl+RdcX1DbWdph3ZbPVT54zSpDA7vbbb8fhw4excOFC3HHHHVwmunbtio8//liIVdiFm7sbunQ1XiQRXSOQc1cOXvviNW6D5tyVg4jQCN58X5z4wmCeu/rexX0fpzbRwahjTa5bSBqNxvDIlWlR0VBhkBciD5bWPUv8fuDvkd4jHaXVpYgKikKov/2Dj4iuEXapa2LntX0+Omr7ciNkvRJKZV0lt9ME2vqm13e9jvQe6TZtP6nzKnW/LzWp8y9kvbKkX9HvCxT/+4+BP8qnn3c3dzcbcmdIsBLt3bs3Dhw4gCtXruD48ePQarVIT093qocS39X3LgxMGmhyg1bWVXIbE2irPK998RoGJg3k5g31DzXawdhrBxsdFG20gUUFRdll/cQ6HdW9zgj1D5UkoJOCvfJqSduXIyHrlRBKqkuMHniWVpfanDYp8yp1vy81qfMvdL0y16+07wsYGBRQcPtde+Rd8FA5LCwMEyZMEHqxsmFsg1bWVaKkugS1DbUWVR7qYIg17BmQ6ep0dFA01Q0LiBmQiE1Ogb7YB55S5lVuQbTQ2vcZ7T9LmX97DmgY6wsYGJ6Z9AwCfALsknerA7tTp04hJSWFe2VNR86cOYMePXqgSxfnGna2ZMjVWOVx5g6GggJhSFWOjnZKUQi2ljWNhAvD1IEnAJy4eMLh+xQx+30p+932fcbYlLHYc3qPQR8i1X7PngMapvqCXjG97JZ3BWt/VZ+F3NzcoNFoEBpqWUL9/f1x8uRJJCYmWrM6UdXV1UGlUmHd9HW4rrhuccOorKvEg28+yNuACiigUChcaqeozxWDAjFIVY7G6rRSocTWR7da3SnJPdA3VtYDkwZ2Os1U94VTWVfJHXgeLTxK5doBKeuesT6jPVv7EKHo1ysx09LZ7VFdWY3719+P2tpa+Pv727x+q4fPGGNYtmwZvL29LZq/ubnZ2lXZzfwt8wHA4oYhhyFXOe00HfU6I7mRshw7e0qxo/on92DHWFm/+t9XAUVbH9eZNBsbCReqfcqpnduDbmSH+pQ25ra/1GVkrM9oTy6XJdhrxFDq0+5WB3bDhw9Hfn6+xfMPHjwYXl5e1q7OrixtGFIPucptp+nI1xnJiZTl2JlTih3VP6l3OJYwdXCmu5qis2nW33EI1T7l1s7tifqUjre/1GVkrM9oz5bLEhz1oEbKy62sDuwOHDggYDLkx5KGIeWNCHLcaYp9nZGjNnBL6OdNyuu1LK3TltQ/qXc4lrBkp2RNmoVqn3Js5/ppE7s9usK1i7aOxkldRsb6DGPX2FlTR5z9oEa37X2Zr6DLdZo7GdauXYuXX34ZGo0GvXv3xptvvolBgwZZvTxLG4ZUQ65y3GmKGeg6cwM3ljd7HzDo71wsqdOW1D+pdzimtN+R6pe1AgoAsOgGKHOEap/mlqP7vrOBlRABmb3ao7PfxS/EaFxnykisYNxYnzF71Gyb9oudOagxli+5DwTob3uhOUVg99FHH+Gxxx7DunXrkJ6ejjVr1uDOO+9Efn4+wsLCLF6O7o7WznYeUgy5ynWnKUag29lRC2satFSdgKm8bX10K7Y+ulXSC32tuQxBv/6JvVO2ZpuZyqt+nTV2sX5n0yxU+zS1nPzyfDyx5YlOB1ZCBGSm6mxiWCJu3LphdntYs82kvl5JLEKOxllSRmIH4+33g7buFy09qDHWXgHIeiCg/bYXmtV3xcpJeno6Bg4ciLfeegtA2zsAY2Ji8Oijj2LJkiUd/l53V+zaB9aiUdko6quOhPTlqS/x+ld6rza5cyEmpDnfMwRPXjqJJz960mD6y9NeRu/Y3rxp1pSJlOXYmbyJobK+Eg+te8hgx/H+/Pc7bAOWlltlfaXgrxAzte7Ker273tqtqzN5FSLNQtWr9suZPWI23vv6vU5vM1u2tT5TdVb/wNhYXl2lv7KUpW1fiHITatvbk6k0Z43IwsavN5ocYVdAwd38pP87OeXV1LYX6q5Yhw/smpub4e3tje3bt2PSpEnc9MzMTNTU1GDHjh0Gv2lqakJTUxP3ua6uDjExMViCJeiKrvZItmBqUYtqVCMIQVBBJXVyRFGLWqzBGoPGuwiLeHm2dD5rli0WqddfhCJsxmaD6ZnIRAL473k2VtekqH+mymwsxmIP9nBPev8D/oB+6MfN05m8CplWIcpHfznVqLYqH0Ll31j5t9e+Dktdz+WoM2Viaz2Sou4L4Uf8iH/j31yb1m/jnSWnvJpqQ0IFdoK8efbGjRtobGzkPl+6dAlr1qzBrl27hFi8WVVVVWhtbUV4eDhvenh4ODQajdHfrF69GiqVivuLiYkRPZ1iUUGFBCQ4fOdYi1oUoQi1qDX4TgUV/oA/cEdnup12+zxXo9qgoTAwVKPa5Hqt+Y25dJvLhzGW5k0sQQji1q2jgAJBCOJN+xE/Yg3WYDM2Yw3W4Ef8yKXf3vXP1DbT7/AZGP6Nf/O2g6V5FZJQ5aO/HGvzIVT+29dZY9q3IVvbmTPqTNu3tR4JXfc7289Zqx/6YREWIROZWIRFiESkRUGdvdu5rf2+0AS5xm7ixImYPHky5s+fj5qaGqSnp8Pd3R1VVVV49dVX8fDDDwuxGsE89dRTeOyxx7jPuhG7PrP7IChEvI1PjLPkVMMQDMHU+qlmT491r++O99e9bzB0nzE/w+QQvDW/MZXuMb3GYO+ZvZ0+ZWJJ3kR1CmbLv7K+EivXreRObTAw/EfxH0ydP1WSUxvGtln7N74AbemMnBbJP6XdQV4dhrX5ECj/+nXW090Tiz5YZLYN2dLOHIW5ywBMsWvbt3Dbd5QPKU+pV9ZXGm37+i8FWHjnQgD2a+fWlof+tvfWeiN7W7ZgaRLkVGxISAi+/vpr9OrVCxs2bMCbb76JEydO4JNPPkFubi7Onj0rRFqNsuZUbHu6a+w+nvcxgkJdN7CT4gYCod90YM0Fwtb8xpGetm4Jc09kP3HxBB7/4HGD3/xtxt/QJ76PnVLI136bzRk1Bxv2b7CoHtnr6fNiszYfYuTfkjbkane2yzFvHW17S55NKWR/LdQNUMZuHLGlfViaJqHKQzZvntDX2NgIPz8/AMCuXbswefJkKJVK3H777bh06ZIQqzDJw8MD/fv3x969e7nATqvVYu/evViwYIGo63Ym9u6YdI2ntqFW0Me2WHMHnTW/caSnrVvC3B1scrwD29g28/Pys+huVikfHCoka/MhRv4taUPO+o5qoZ81KGY+zG17ez+b0tp9jql61H791tTzzqZJjo8dAwQK7Lp164bPPvsM9957L7766ivk5LTdbnzlyhVBos+OPPbYY8jMzMSAAQMwaNAgrFmzBg0NDZg1a5bo63YGtj4vqLP0G4/if//Z+twwfdY06M7+RuynrVtLjJ2CXJ8l1n6bOdNjMeT+DC5jLGlDYgXVUo6YySHYEYI9n01pazAsRj2yJk1yPOgFBArscnNz8eCDDyInJwdjxozB4MGDAbSN3vXt21eIVZg1depUVFZWIjc3FxqNBn369MHOnTsNbqiQO6k6c0s7JjGegaW720nXOOQSNHREzKetW0vMnYKjBE3OMBonx9N6cg40pX47hxTBjhjbw57PphTjwdu2MpWmM5fPQOWjMpoeuR70ChLYTZkyBcOGDUN5eTl69/7tQuUxY8bg3nvvFWIVHVqwYIFDn3qVsjO3pEEL1XmaejfnM5OeQYBPgME1EnLambRPjxhPW7clbWLv3CwJmuS2zRyN1EGKMXIMNPVJfTrMHsGO0AfYtuRDiIM8oR+8LQRjaVJAgec/ex6MMZPpkeNBr2BvnlCr1VCr1bxptrzSy5VI3Zlb0qCF6jxNNeheMb3s0nlZy9zbGYR82rq1pN65AeJvM1cIGm3djkKXkdR9kyXscTqso3IVM9gR4wDbFEvzYWs/Z2yfM2fUHGzYt0E2+0Hu4cf/u7/UXHrkdqZAsMDu22+/xfr161FYWIjt27cjKioK77//PhISEjBs2DChVuOU5LBT7qhBC9V5WhJEym1nYmt6XOFl6WJvM7kF+mKxZTuKUUZy6Js6IvbpMEvLVYxgR6wD7I7SYY9t236fI4e6pp+mmoYaPPev5yRNj7UECew++eQTPPTQQ5g+fTpOnDjBvdWhtrYWL7zwAr744gshVuO0pN4p65hr0EJ2nh0FkXJo4EKlx1Veli7mNpNboC+09oG/NdtRrDKSS9/UEbFOh9m77tnrAFsu2u9z5JA3XZoq6yplkR5rCBLYPf/881i3bh3++Mc/4sMPP+SmDx06FM8//7wQq3BqUu+ULSVk52kuiOxM5yXn0TC57RTEJOYOR26Bvq3066yxF5gL9fgdIcrIUfomwHifYmv/IEXds9cBttzILW9yS09nCBLY5efnY/jw4QbTVSoVampqhFiF0xNzpyxk8GOPYXpLG5TcR8PktlMQk5idoFxGKcR41A/w2wvM2wf+Qly7KkQZ2dI3SXldpBD9g1zqnj45XqwvFHvnzR7XTkpBkMBOrVajoKAA8fHxvOnfffcdEhMThViFSxBjp+yo1yZ11KAcYTRMjjsFMYnVCcrhyFmsR/20Z23gL3QZtd/hWdM3Sdn3CNU/yKHumUqXPdNgzwDdXnmz17WTUhAksJs7dy4WLlyI9957DwqFAmVlZTh06BAef/xxLFu2TIhV2EXrrVa03GyROhmCqaw33rn1je7rEO9nDPQIRKA6EAAMtsslzSWjo2HFmmIEegQKsv7K+kqUXitFVGDbOxPNpcdU+hdmLMTru/TeI5ixEIEegXatZ+3zIabOlpGlMm7LQN/ovrx3atqrDIVqR8bqbHtKhRLhPuFW5U2oMtr5806DOjs+dXynlmGPvsdcvRayf5Cy7smBEPVBbuS2b2y91Sro8gQJ7JYsWQKtVosxY8agsbERw4cPh6enJx5//HE8+uijQqzCLrRNWjRfb5Y6GYK5VGaicysrhipKJVGqhBHmEQaFQgH9Vx0rFUqEeoQKsg13nd2Ft755C4wxKBQKLBi+ABm3ZXR6OaMTRiNtehrKa8sRoYpAiG+IXeuYUPmQA5VCBVVQW721ZxkK1Y6M1dn2LzDPHp4NlUJldf5sLaOq61VYs2sN7xEPr+96HWmhaQjxDbF4OWL3PR3Va6H7B6nqntSEqg9yI7d9o7bJ/AFfZwkS2CkUCixduhRPPPEECgoKcP36dfTs2RO+vr64ceMGvLy8hFiN6KIHRyMwWJjRHjnoerUrlP9pdypQqcTAOwdCHaw280v5i0c8lnsvx4oNK6DVaqFUKvHsnGcxYNQAm5etuarB2vVruc6MMYa1367FPfffY1W5xSPe5jSZormqQbGmGLHqWIO0CZ0PVyVUOzJVZ4ekDcHlisuICY+RfLtcOXOFFwwBbTs8lsAQ3zPe4uWI2fdYUq/F7B9ciVD1QW7ktm+8dvUasEW45Qn2HDsA8PDwQM+ePQEATU1NePXVV/HXv/4VGo1GyNWIpotXF7j7uEudDMHE+MRgZfZK5L6dy3VuKx9ZiZjYGKmTJoipv5+KEbePwKXyS4iLiIM6RJgGWVpYang0p9WirLZMVmW3fdd25K7N5UZ7VmavxJSMKdz3jpIPuROyHZmqs3LZHkmJSYbXhSqVSExI7FTfKGbfY2m9Fqt/cCVC1Qe5kdu+sUujoKGYbYFdU1MTli9fjt27d8PDwwNPPvkkJk2ahLy8PCxduhRubm7IyckRKq12p6nS4GLZRcRHxkvSKQix/ikZUzCs3zCn7dzUIWrB8xQfGW+0M4uLiBN0PbbQVGm4oA5oO4rOfTsXw/oN48rDEfLhKIRsR2LUWaGoQ9RGd3jWpFesvqcz9VrOZe0IhKwPcuPM+0YFaz/O2gmLFy/G+vXrMXbsWHz//feorKzErFmzcPjwYTz99NO4//774ebmJmR6RVFXVweVSoXvN36PoNAgAB2PhohN6vW7uu27tht0ZnIq/8OnDmPmMzMNpm9etRnpqencZ7nng8iTpkoj6x0e1Wv7knt9cHTVldUYkjUEtbW18Pf3t3l5NgV2iYmJWLNmDe655x6cPn0aaWlpmDlzJjZu3AiFQmFz4uylfWCnqdJgdNZogyPCfRv22aVSS71+0kbOnVln6oic80GItaheE2chdGCntOXHJSUl6N+/PwAgJSUFnp6eyMnJcaigzpiLZReNXsNxqfySS6yftFGHqJGemi7LnYbuFIlS2daEzZ0ikXM+CLEW1WvzNFUaHD51GJoqx7jGnQjHpmvsWltb4eHh8dvCunSBr6+vzYmSmtTXJtm6fqmvDST24czXiBBCrEeX8rg2mwI7xhhmzpwJT09PAMDNmzcxf/58+Pj48Ob79NNPbVmN3Ul9wagt66cG7Vro4nBCiD5Lbqwizs2mwC4zM5P3ecaMGTYlprMuXryI5557Dvv27YNGo0FkZCRmzJiBpUuX8kYSrSH1aIg166cGTQghrs3cpTy0H3ANNgV2eXl5QqXDKr/++iu0Wi3Wr1+Pbt264fTp05g7dy4aGhrwyiuv2Lx8qUdDOrt+KRo0nfYlhLgaOfd7Ul9KRKQn7FPx7Gz8+PEYP/63d9YlJiYiPz8f77zzjiCBnaOxd4Om076EEFcj935P6kuJiPQcOrAzpra2FkFBQWbnaWpqQlNTE/e5rq4OANDS1ILmBsd9D2CQVxBy5+Zi5YaVXIPOnZOLIK8gwfOluWr8tO+g5EGSvxaJEELE4Cj93j1D78Gg5EG8V9U58r7N2bU0tQi6PKcK7AoKCvDmm292OFq3evVqrFixwmB6y40W3MRNsZJnF3f1uQv9n+uPksoSRIdGIzwwHDevCZ+ngvMFRk/7FhYUIkAZIPj6CCFEao7U7wUoAxAQEQAAouwDiHBabggb2Nn0gGKxLFmyBC+99JLZec6ePYvk5GTuc2lpKUaMGIGRI0diw4YNZn9rbMQuJiYGFcUVgjwc0BWUlJagR2oPaLW/dXJubm749dSviI6KljBlhBAiDur3iBjq6uoQHhsujzdPiKWyshJXr141O09iYiJ352tZWRlGjhyJ22+/HZs2beIe2mop3ZsnhCpUV7Fx40bMmzcPra2tcHNzw/r165GVlSV1sgghRDTU7xGhCR2DyDKw64zS0lKMGjUK/fv3xwcffGDVu2kpsLNeSUkJCgoK0K1bN0RH0xErIcT5Ub9HhESBnZ7S0lKMHDkScXFx2Lx5My+oU6stv5CVAjtCCCGESEHoGMShb57YvXs3CgoKUFBQYHDU5MDxKiGEEEKIVTp3MZrMzJw5E4wxo3+EEEIIIa7GoQM7QgghhBDyGwrsCCGEEEKcBAV2hBBCCCFOggI7QojslJSUYP/+/SgpKZE6KYQQ4lAosCOEyMrGjRsRFxeH0aNHIy4uDhs3bpQ6SYQQ4jAc+jl2QqHn2BEiDyUlJYiLizN4ZdPFixfpQbCEEKdEz7ETgS62raurkzglhLi2kydP8oI6AGhtbcVPP/1EB12EEKekiz2EGmejETsAFy5cQFJSktTJIIQQQoiLKiwsRGJios3LoRE7AEFBQQCA4uJiqFQqiVMjvbq6OsTExODy5cs0SgIqj/aoPPioPAxRmfBRefBRefDV1tYiNjaWi0VsRYEdAKWy7R4SlUpFlUyPv78/lYceKg8+Kg8+Kg9DVCZ8VB58VB58uljE5uUIshRCCCGEECI5CuwIIYQQQpwEBXYAPD098eyzz8LT01PqpMgClQcflQcflQcflYchKhM+Kg8+Kg8+ocuD7oolhBBCCHESNGJHCCGEEOIkKLAjhBBCCHESFNgRQgghhDgJlw3sXnzxRSgUCixatIibdvPmTWRnZyM4OBi+vr647777UFFRIV0i7chYeYwcORIKhYL3N3/+fOkSKaLly5cb5DU5OZn73hXrRkdl4kr1Q6e0tBQzZsxAcHAwvLy8kJqaimPHjnHfM8aQm5uLiIgIeHl5YezYsTh//ryEKRZXR+Uxc+ZMgzoyfvx4CVMsnvj4eIO8KhQKZGdnA3C9PqSj8nC1/qO1tRXLli1DQkICvLy8kJSUhOeee473GjGh+g+XfEDx0aNHsX79eqSlpfGm5+Tk4L///S8+/vhjqFQqLFiwAJMnT8bBgwclSql9mCoPAJg7dy5WrlzJffb29rZn0uyqV69e2LNnD/e5S5ffmoer1g1zZQK4Vv24du0ahg4dilGjRuHLL79EaGgozp8/j8DAQG6ev/71r3jjjTewefNmJCQkYNmyZbjzzjvxyy+/oGvXrhKmXniWlAcAjB8/Hnl5edxnZ70T8ujRo2htbeU+nz59GuPGjcP9998PwPX6kI7KA3Ct/uOll17CO++8g82bN6NXr144duwYZs2aBZVKhT//+c8ABOw/mIupr69n3bt3Z7t372YjRoxgCxcuZIwxVlNTw9zd3dnHH3/MzXv27FkGgB06dEii1IrPVHkwxgw+O7Nnn32W9e7d2+h3rlo3zJUJY65VPxhjbPHixWzYsGEmv9dqtUytVrOXX36Zm1ZTU8M8PT3ZP//5T3sk0a46Kg/GGMvMzGQTJ060T4JkZuHChSwpKYlptVqX7UP06ZcHY67Xf9x9991s9uzZvGmTJ09m06dPZ4wJ23+43KnY7Oxs3H333Rg7dixv+vHjx3Hr1i3e9OTkZMTGxuLQoUP2TqbdmCoPnS1btiAkJAQpKSl46qmn0NjYaOcU2s/58+cRGRmJxMRETJ8+HcXFxQBct24ApstEx5Xqx+eff44BAwbg/vvvR1hYGPr27Yt3332X+76oqAgajYZXT1QqFdLT052ynnRUHjoHDhxAWFgYevTogYcffhhXr16VILX21dzcjA8++ACzZ8+GQqFw6T4EMCwPHVfqP4YMGYK9e/fi3LlzAICffvoJ3333HSZMmABA2P7DpU7Ffvjhh/jxxx9x9OhRg+80Gg08PDwQEBDAmx4eHg6NRmOnFNqXufIAgAcffBBxcXGIjIzEqVOnsHjxYuTn5+PTTz+1c0rFl56ejk2bNqFHjx4oLy/HihUrcMcdd+D06dMuWTcA82Xi5+fnUvUDAC5cuIB33nkHjz32GJ5++mkcPXoUf/7zn+Hh4YHMzEyuLoSHh/N+56z1pKPyANpOw06ePBkJCQkoLCzE008/jQkTJuDQoUNwc3OTOAfi+eyzz1BTU4OZM2cCcM39i7725QG41v4FAJYsWYK6ujokJyfDzc0Nra2tWLVqFaZPnw4AgvYfLhPYXb58GQsXLsTu3bud7loXa1hSHn/605+4f6empiIiIgJjxoxBYWEhkpKS7JVUu9AdNQFAWloa0tPTERcXh23btsHLy0vClEnHXJlkZWW5VP0AAK1WiwEDBuCFF14AAPTt2xenT5/GunXruEDGlVhSHtOmTePmT01NRVpaGpKSknDgwAGMGTNGknTbw8aNGzFhwgRERkZKnRRZMFYertZ/bNu2DVu2bMHWrVvRq1cvnDx5EosWLUJkZKTg/YfLnIo9fvw4rly5gn79+qFLly7o0qULvv76a7zxxhvo0qULwsPD0dzcjJqaGt7vKioqoFarpUm0iDoqD/2LXnXS09MBAAUFBfZOrt0FBATgd7/7HQoKCqBWq12qbpiiXybGOHv9iIiIQM+ePXnTbrvtNu70tK4utL/T0VnrSUflYUxiYiJCQkKcto4AwKVLl7Bnzx7MmTOHm+bKfYix8jDG2fuPJ554AkuWLMG0adOQmpqKhx56CDk5OVi9ejUAYfsPlwnsxowZg59//hknT57k/gYMGIDp06dz/3Z3d8fevXu53+Tn56O4uBiDBw+WMOXi6Kg8jJ0mOXnyJIC2Dt3ZXb9+HYWFhYiIiED//v1dqm6Yol8mxjh7/Rg6dCjy8/N5086dO4e4uDgAQEJCAtRqNa+e1NXV4ciRI05ZTzoqD2NKSkpw9epVp60jAJCXl4ewsDDcfffd3DRX7kOMlYcxzt5/NDY2Qqnkh1xubm7QarUABO4/bL/Xw3G1vytn/vz5LDY2lu3bt48dO3aMDR48mA0ePFi6BNqZfnkUFBSwlStXsmPHjrGioiK2Y8cOlpiYyIYPHy5tIkXyl7/8hR04cIAVFRWxgwcPsrFjx7KQkBB25coVxphr1g1zZeJq9YMxxn744QfWpUsXtmrVKnb+/Hm2ZcsW5u3tzT744ANunhdffJEFBASwHTt2sFOnTrGJEyeyhIQEduPGDQlTLo6OyqO+vp49/vjj7NChQ6yoqIjt2bOH9evXj3Xv3p3dvHlT4tSLo7W1lcXGxrLFixcbfOeKfYip8nDF/iMzM5NFRUWx//znP6yoqIh9+umnLCQkhD355JPcPEL1HxTY6QV2N27cYI888ggLDAxk3t7e7N5772Xl5eXSJdDO9MujuLiYDR8+nAUFBTFPT0/WrVs39sQTT7Da2lppEymSqVOnsoiICObh4cGioqLY1KlTWUFBAfe9K9YNc2XiavVD59///jdLSUlhnp6eLDk5mf3973/nfa/VatmyZctYeHg48/T0ZGPGjGH5+fkSpVZ85sqjsbGRZWRksNDQUObu7s7i4uLY3LlzmUajkTDF4vrqq68YAKPb3BX7EFPl4Yr9R11dHVu4cCGLjY1lXbt2ZYmJiWzp0qWsqamJm0eo/kPBmN5jjwkhhBBCiMNymWvsCCGEEEKcHQV2hBBCCCFOggI7QgghhBAnQYEdIYQQQoiToMCOEEIIIcRJUGBHCCGEEOIkKLAjhBBCCHESFNgRQgghhDgJCuwIIcRORo4cCYVCAYVCwb0b88CBA1AoFAYviBfa8uXLuXWvWbNG1HURQqRDgR0hRJZmzpzJBSL6f+PHj5c6aTaZO3cuysvLkZKSYvOyKioq4O7ujg8//NDo91lZWejXrx8A4PHHH0d5eTmio6NtXi8hRL4osCOEyNb48eNRXl7O+/vnP/8p6jqbm5tFXb63tzfUajW6dOli87LCw8Nx991347333jP4rqGhAdu2bUNWVhYAwNfXF2q1Gm5ubjavlxAiXxTYEUJky9PTE2q1mvcXGBjIfa9QKLBhwwbce++98Pb2Rvfu3fH555/zlnH69GlMmDABvr6+CA8Px0MPPYSqqiru+5EjR2LBggVYtGgRQkJCcOeddwIAPv/8c3Tv3h1du3bFqFGjsHnzZu6UaUNDA/z9/bF9+3beuj777DP4+Pigvr7e6jw3NjZiwoQJGDp0KHd6dsOGDbjtttvQtWtXJCcn4+233+bmz8rKwt69e1FcXMxbzscff4yWlhZMnz7d6rQQQhwPBXaEEIe2YsUKPPDAAzh16hTuuusuTJ8+HdXV1QCAmpoajB49Gn379sWxY8ewc+dOVFRU4IEHHuAtY/PmzfDw8MDBgwexbt06FBUVYcqUKZg0aRJ++uknzJs3D0uXLuXm9/HxwbRp05CXl8dbTl5eHqZMmQI/Pz+r8lJTU4Nx48ZBq9Vi9+7dCAgIwJYtW5Cbm4tVq1bh7NmzeOGFF7Bs2TJs3rwZAHDXXXchPDwcmzZtMkjL5MmTERAQYFVaCCEOihFCiAxlZmYyNzc35uPjw/tbtWoVNw8A9swzz3Cfr1+/zgCwL7/8kjHG2HPPPccyMjJ4y718+TIDwPLz8xljjI0YMYL17duXN8/ixYtZSkoKb9rSpUsZAHbt2jXGGGNHjhxhbm5urKysjDHGWEVFBevSpQs7cOCAyTyNGDGCLVy4kDdt//79DAA7e/YsS0tLY/fddx9ramrivk9KSmJbt27l/ea5555jgwcP5j4vWbKEJSQkMK1WyxhjrKCggCkUCrZnzx6DNMTFxbHXXnvNZBoJIY6NRuwIIbI1atQonDx5kvc3f/583jxpaWncv318fODv748rV64AAH766Sfs378fvr6+3F9ycjIAoLCwkPtd//79ecvMz8/HwIEDedMGDRpk8LlXr17cyNkHH3yAuLg4DB8+3Kq8jhs3Dt26dcNHH30EDw8PAG3XyRUWFiIrK4uXh+eff56X/tmzZ6OoqAj79+8H0DZaFx8fj9GjR1uVFkKI47L96l1CCBGJj48PunXrZnYed3d33meFQgGtVgsAuH79Ov7whz/gpZdeMvhdREQEbz3WmDNnDtauXYslS5YgLy8Ps2bNgkKhsGpZd999Nz755BP88ssvSE1N5dIPAO+++y7S09N58+vfBNG9e3fccccdyMvLw8iRI/GPf/wDc+fOtTothBDHRYEdIcRp9evXD5988gni4+M7dRdqjx498MUXX/CmHT161GC+GTNm4Mknn8Qbb7yBX375BZmZmVan9cUXX4Svry/GjBmDAwcOoGfPnggPD0dkZCQuXLjQ4U0QWVlZePjhh3HPPfegtLQUM2fOtDothBDHRadiCSGy1dTUBI1Gw/vTv6O1I9nZ2aiursb//d//4ejRoygsLMRXX32FWbNmobW11eTv5s2bh19//RWLFy/GuXPnsG3bNu7mBP1RsMDAQEyePBlPPPEEMjIybH5G3CuvvILp06dj9OjR+PXXXwG03RyyevVqvPHGGzh37hx+/vln5OXl4dVXX+X99v7774e7uzvmzZuHjIwMxMTE2JQWQohjosCOECJbO3fuREREBO9v2LBhFv8+MjISBw8eRGtrKzIyMpCamopFixYhICAASqXp7i8hIQHbt2/Hp59+irS0NLzzzjvcXbGenp68ebOystDc3IzZs2dbl8l2XnvtNTzwwAMYPXo0zp07hzlz5mDDhg3Iy8tDamoqRowYgU2bNiEhIYH3O29vb0ybNg3Xrl0TLC2EEMejYIwxqRNBCCFyt2rVKqxbtw6XL1/mTX///feRk5ODsrIy7qYHU0aOHIk+ffpI+kqv+Ph4LFq0CIsWLZIsDYQQ8dCIHSGEGPH222/j6NGjuHDhAt5//328/PLLvGvoGhsbUVhYiBdffBHz5s3rMKjTX66vry9+/vlnsZJu1AsvvABfX1+DBxkTQpwLjdgRQogROTk5+Oijj1BdXY3Y2Fg89NBDeOqpp7ibMJYvX45Vq1Zh+PDh2LFjB3x9fTtcZmlpKW7cuAEAiI2NtTgYFEJ1dTX34ObQ0FCoVCq7rZsQYj8U2BFCCCGEOAk6FUsIIYQQ4iQosCOEEEIIcRIU2BFCCCGEOAkK7AghhBBCnAQFdoQQQgghToICO0IIIYQQJ0GBHSGEEEKIk6DAjhBCCCHESVBgRwghhBDiJP4fDUv8eCgrbZsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBAUlEQVR4nOzdd3hUZfrw8e/MpPcCSQiBkJAAoUNAiICLgCBNUdaKCygKq4hgl9/r2tjVVVdFWHRBUbBjwxVUqiC9t0BCGukVSE9ImznvH7NzSIUMJJkkc3+45iJzzplz7hPI5J6n3I9GURQFIYQQQgjR5mktHYAQQgghhGgaktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTNpYOoDUwGAxkZGTg6uqKRqOxdDhCCCGEsBKKolBUVIS/vz9a7fW3t0liB2RkZNClSxdLhyGEEEIIK5WamkpAQMB1n0cSO8DV1RUwflPd3NwsHI0QQgghrEVhYSFdunRRc5HrJYkdqN2vbm5uktgJIYQQosU11VAwmTwhhBBCCNFOSGInhBBCCNFOSGInhBBCCNFOyBg7IYQQop3T6/VUVlZaOgyrZGtri06na7HrSWInhBBCtFOKopCVlUV+fr6lQ7FqHh4e+Pn5tUitXEnshBBCiHbKlNT5+Pjg5OQkRfhbmKIolJaWkpOTA0CnTp2a/ZqS2AkhhBDtkF6vV5M6b29vS4djtRwdHQHIycnBx8en2btlZfKEEEII0Q6ZxtQ5OTlZOBJh+jdoiXGOktgJIYQQ7Zh0v1peS/4bSGInhBBCCNFOSGInhBBCCNGAV155BV9fXzQaDT/99BOzZ89m2rRplg6rQZLYCSGEEKLVmD17NhqNRn14e3tz6623curUqSa7xiuvvMLAgQOvelx0dDSvvvoqK1euJDMzk4kTJ/L++++zZs0a9ZjRo0ezaNGiJovtekliJ4QQzaCkpET9xVRSUmLpcIRoU2699VYyMzPJzMxk+/bt2NjYMGXKlBaPIyEhAYDbb78dPz8/7O3tcXd3x8PDo8VjaSxJ7IQQQgjRqtjb2+Pn54efnx8DBw7khRdeIDU1lfPnz6vHpKamcvfdd+Ph4YGXlxe33347SUlJ6v6dO3dyww034OzsjIeHByNGjCA5OZk1a9bw6quvcvLkSfXDV/UWOJNXXnmFqVOnAqDVatUJENW7YmfPns0ff/zB+++/r56regyWIHXshBBCCCugKAqVpZZZVszWyfaaZ4YWFxfzxRdfEBISotbjq6ysZMKECURERLB7925sbGz4+9//rnbZarVapk2bxiOPPMLXX39NRUUFhw4dQqPRcM8993D69Gk2bdrEtm3bAHB3d69z3WeeeYZu3brx4IMPkpmZWW9s77//PrGxsfTt25fXXnsNgI4dO17TfTYVSeyEEEIIK1BZWskbLm9Y5NqLixdj52zX6OM3btyIi4sLYBzW0KlTJzZu3IhWa+xoXLduHQaDgY8//lhNGD/99FM8PDzYuXMnQ4YMoaCggClTptC9e3cAwsLC1PO7uLhgY2ODn59fgzG4uLioXa4NHefu7o6dnR1OTk5XPFdLkq5YIYQQQrQqN998MydOnODEiRMcOnSICRMmMHHiRJKTkwE4efIk8fHxuLq64uLigouLC15eXpSVlZGQkICXlxezZ89mwoQJTJ06lffff7/BVrf2RlrshBBCCCtg62TL4uLFFru2OZydnQkJCVGff/zxx7i7u/PRRx/x97//neLiYsLDw/nyyy/rvNbUFfrpp5/yxBNPsGnTJtatW8eLL77I1q1bGT58+PXdTCsniZ0QQghhBTQajVndoa2JRqNBq9Vy6dIlAAYPHsy6devw8fHBzc2twdcNGjSIQYMGsXjxYiIiIvjqq68YPnw4dnZ26PX6JomtKc/VFKQrVgghhBCtSnl5OVlZWWRlZREdHc2CBQsoLi5WZ6nOmDGDDh06cPvtt7N7924SExPZuXMnTzzxBGlpaSQmJrJ48WL2799PcnIyW7ZsIS4uTh1n161bNxITEzlx4gQXLlygvLz8mmPt1q0bBw8eJCkpiQsXLmAwGJrke3CtJLETQohmlp6eXu92qXUnRP02bdpEp06d6NSpE8OGDePw4cN89913jB49GgAnJyd27dpF165dufPOOwkLC2POnDmUlZXh5uaGk5MTZ8+eZfr06fTo0YO5c+cyf/585s2bB8D06dO59dZbufnmm+nYsSNff/31Ncf6zDPPoNPp6N27Nx07diQlJaUpvgXXTKMoimLRCFqBwsJC3N3dKSgouGKTrhBCNNYHH3zA/PnzAWMNrFWrVjFnzpwax5SUlKgz/4qLi3F2dm7xOEX7VVZWRmJiIkFBQTg4OFg6HKt2pX+Lps5BpMVOCCGaWFpaGgsWLFCfGwwG5s2bR1pamgWjEkJYA0nshBCiicXFxdUZZ6PX64mPj7dQREIIayGJnRBCNLHQ0FC1kKqJTqerUb5BCCGagyR2QgjRxAICAli+fLn6XKfTsXLlSgICAiwYlRDCGkhiJ4QQzWDWrFnq11FRUXUmTjREZsqKpiZzJC2vJf8NJLETQggzmZt8de7cuQWiEqImW1vjag+lpaUWjkSY/g1M/ybNSVaeEEKIViA9PZ0ePXpYOgzRjuh0Ojw8PMjJyQGMtd80Go2Fo7IuiqJQWlpKTk4OHh4e6HS6Zr+mJHZCCGEha9euVb8OCwtj1apV3HvvvRaMSLQ3fn5+AGpyJyzDw8ND/bdobpLYCSGEBTRU627UqFEWjEq0NxqNhk6dOuHj40NlZaWlw7FKtra2LdJSZ2LxxC49PZ3nn3+e3377jdLSUkJCQvj0008ZMmQIYGzGfPnll/noo4/Iz89nxIgRfPjhh4SGhqrnyM3NZcGCBWzYsAGtVsv06dN5//331YruQgjR2jRU6y4hIcFCEYn2TKfTtWhyISzHopMn8vLyGDFiBLa2tvz2229ERUXxzjvv4OnpqR7z1ltvsWzZMv7zn/9w8OBBnJ2dmTBhAmVlZeoxM2bM4MyZM2zdupWNGzeya9cu5s6da4lbEkJYKdOECheNCwdXHmT3K7u5mZsZwAAuXbxU5/iGat117969pUIWQrRDFl0r9oUXXmDv3r3s3r273v2KouDv78/TTz/NM888A0BBQQG+vr6sWbOGe++9l+joaHr37s3hw4fVVr5NmzYxadIk0tLS8Pf3v2ocslasEMIc9a3xmnMuh3nd59GPfuio2TKitdEy8KGBjPn7GJw7Xl4Ptvp6sqZad/fee6+sHyuEFWlXa8X+/PPPDBkyhLvuugsfHx8GDRrERx99pO5PTEwkKyuLcePGqdvc3d0ZNmwY+/fvB2D//v14eHioSR3AuHHj0Gq1HDx4sOVuRghhtRK2JPBJ+CcMZCA6dPgO9mXIY0MY8ugQ/Ab6YagycGzVMT7s+yEpe1PU112t1l16enqL3YMQon2w6Bi7c+fO8eGHH/LUU0/xf//3fxw+fJgnnngCOzs7Zs2aRVZWFgC+vr41Xufr66vuy8rKwsfHp8Z+GxsbvLy81GNqKy8vp7y8XH1eWFjYlLclhLAiv6/4neP/dxxFr5BJJhvZSMyumBotbcm7k/nl0V84f+Y8a29ey93f303P23rWOI+p1l19M2UbW9xYCCEs2mJnMBgYPHgwr7/+OoMGDWLu3Lk88sgj/Oc//2nW677xxhu4u7urjy5dujTr9YQQbVvtgsTVk6/bn7+do/qj9L6vNx/zMenUbWULHBXIwwcfptcdvTBUGvju7u9I3JFY57iGZsqmpaU1z40JIdodiyZ2nTp1onfv3jW2hYWFkZJi7Kow1XzJzs6ucUx2dra6z8/Pr059nqqqKnJzcxusGbN48WIKCgrUR2pqapPcjxCi/UtPT6+RfCkobNRspP/L/dGjb/B1ds523PXtXfSa1gt9uZ7v/vwdBSkFNY5paKZsfHx8096EEKLdsmhiN2LECGJiYmpsi42NJTAwEICgoCD8/PzYvn27ur+wsJCDBw8SEREBQEREBPn5+Rw9elQ95vfff8dgMDBs2LB6r2tvb4+bm1uNhxBCNEZ8fHyd5MugGDh37txVX6u10TL96+n4D/XnUu4lNvxlA9pqb8MNzZQNCQlpmuCFEO2eRRO7J598kgMHDvD6668THx/PV199xapVq9RZYhqNhkWLFvH3v/+dn3/+mcjISGbOnIm/vz/Tpk0DjC18t956K4888giHDh1i7969PP7449x7772NmhErhBDmCAkJqbMskzllSmwcbLjru7tw9HIk62gWIxmp7gsICGD58uU1zrty5UoCAgKaJnghRLtn0cRu6NChrF+/nq+//pq+ffuyZMkSli5dyowZM9RjnnvuORYsWMDcuXMZOnQoxcXFbNq0CQcHB/WYL7/8kl69ejF27FgmTZrEyJEjWbVqlSVuSQjRzlXGVDJVmYoGY3JnSr5Mkx/g6rNZPQI9mLh8IgB/4k90pKO672ozZYUQ4kosWseutZA6dkIIk/pq1Jm26dDxTvd3yE/IZ+f//sTExNCjR48aNem0Wu1VZ7MqisKXU74k4dcEznGOFUUrcHFxqff6Qoj2q13VsRNCiLZkGMPIT8jH2deZfewDjGVKrmU2q0ajYfK/J6Oz1xFMMGnbZearEOL6SWInhBCN4IQTf+JPAIx6bRQVVKj7GprNevbsWa7UKeIZ5EnEU8aJYNue24ahytDgsUII0RiS2AkhRCMMYQgZZGDX244+9/Wpsa++2axarZZff/2Vd955B72+4TIoIxePxNHbkYuxF4n8KrJZYhdCWA9J7IQQ4ipWLVvFbnazlrW8GP0in33+WY39AQEBvPTSS+pznU7HO++8g7u7O35+fuh0l9eOrd2CZ+9qz4jnRgDwx6t/oK9sOAkUQoirseiSYkII0dqlpaXx9P97GgVjQmZQDDzxxBM1jtm3zzje7sEHH+Szzz4jKiqK0NBQKioqarTW5ebm8v333zN9+nS8vb3V7UPnD2Xfv/aRdy6PmB9r1vYUQghzSIudEEJcwZnjZ+q0slVP1g4cOMDWrVsB46o4Go2Gzp07o9FosLe3x8nJST12y5YtZGZm8tlnn5GXl6dut3O2Y/ii4QAcXnq4OW9HCNHOSWInhBBXUHqgVK1ZZ2LqWu3Xrx979uwBYNSoUfz6669UVVU1eK6pU6fSoUMHCgsL+fLLLykvL1f3DXl0CLbOtpyPPE/cpjgURZFSJ0IIs0liJ4QQDUhJTCFxbSJTmapuMxUkzs7O5p577gGMSxs2tIRhbS+88AIFBQVcvHiR9evXq62Bjp6ODH5kMACHlh9q4jsRQlgLSeyEEKKatWvXql/37d+XP9L/YJTfKHVN16ioKGbNmsUPP/xAVVUVISEh3HLLLY0+f3FxMevWrUOn0xETE8Px48fVfUMfGwpA/G/xFKQUNNEdCSGsiSR2QgjxP3UKDSsGNrCBLvd3wYCxxlznzp3ZtWsXOTk5ODs7c/vtt9dZO/ZqMjIyGDVqFACbN28mPz8fAO9Qb4LGBKEYFI59fKxpbkoIYVUksRNCiP+pr9CwgoLD8MtrU1+8eJG9e/cCMGnSJHX5L3MNHjyYLl26UFFRwebNm9Xt4X8NB+DYx8fQV+opKSlBo9Gg0WgoKSm5pmsJIayHJHZCCPE/9RYa1mgJGxCmPt+xYwcGg4HQ0FDCwsJqn6LRtFotU6ZMQaPRcPbsWc6dOwdAr9t74ezjTHFmMbEbY6/5/EII6ySJnRBC/E9AQADLly9Xn2vQ8Ob/vUnnzp0BCA4OJikpCa1Wy6233lqjC9bZ2RlFUcyazerj48PQocZxdZs3b0ZRFHR2OgY+NBCAoyuPNtGdCSGshSR2QghRzaxZsxjIQGYxiyW9lvD0kqcB0Gg0jBs3DoAhQ4bg5eXVJNcbPXo09vb25OTkcObMGQDCHzF2xyZsTiA/Mb9JriOEsA6S2AkhRDWKohBBBEEE8adH/qS2ytnY2JCZmYmjoyM33XRTk13P0dGRiIgIAHbu3InBYMAz2JPgW4IBiP42usmuJYRo/ySxE0KIarKOZOGLL5VUEnb35TF0lZWVbNiwgUceeaRJCgenp6erXw8fPhxPT0969uypFjjuN6MfANHrJLETQjSeJHZCCFHNqTWnAIgiCgdP42zY6uPnPD09r/nc1WvkhYWFsXr1agDs7e15/PHHueWWW7CzszPuvyMMnb2O3Nhc/PC75msKIayLJHZCCPE/laWVnP3hLADHuFxHbu/evWRmZl7XuevUyDMYmDdvHmlpaQB1ZuPau9nTc2pPAPrR77quLYSwHpLYCSHE/8RujKWyuJI88kgmGYCcnBy2bdvGRx99RFFR0TWfu74aeXq9nvj4ePW5oigkJCSwa9cuAPre3xeAQAKBmt23QghRH0nshBDifyK/jDT+TaS6TafT0bdvX/r06YOrq+s1n7u+Gnk6nY6QkBD1eX5+Pl988QU7duwgLy+P0ImhnHI8xWqMXbbVu2+FEKI+ktgJIQRwKfcScb/FATUTO29vb6ZPn86dd955XeevXSNPp9OxcuVKAgIC1G2enp707t2boUOHotVqybqQxfqy9SgoQN3uWyGEqE0SOyGEAKK+j8JQacB3gC85Sk6dQsPmrgdbn1mzZl2+XlQUc+bMqXPMXXfdxaRJk3B3dycuLg5FUWrs1+v1REZGyjJjQoh6SWInhBBA5FfGVrp+91+eqLBv3z5ycnKa5Xqm1SyupKHu2+7duzdLTEKItk8SOyGEVSspKcFd407yH8bJEn3vM05YyMrKYuvWraxcuZJLly61aEyKopCSkkJCQgLLly9Hg7G1UKvRsnLlykYlhUII62Rj6QCEEMLS+mJM5gJGBODexR2A48ePA9CrVy8cHR1bNJ7i4mLWrFmDoijMnj2bt+e/zZ/4E118uvDQQw9RWlraovEIIdoOabETQli9PvQBoNddvQDjKhOnThkLFQ8aNKjF43F1daVHjx4AREdHk0Ya/vhjk21DxpGMFo9HCNF2SGInhLBqBSkFdKYzBgyE3hYKwNmzZykrK8Pd3Z3g4GCLxNWv3/+WFIuORq/RE4+x3t3Z9WctEo8Qom2QxE4IYdXi/msscZJMMs4+xlmwpta6AQMG1Jm80FJ69OiBnZ0dhYWFBAQEcBZjQnf2J0nshBANk8ROCGHVYn+KBSCaaABKS0s5d+4ccLnVrKlUX3O2eimV+tja2hIWFgZA//79iSUWra2WC9EXyI3NVY+T1SiEENVdU2JnMBiIjY1lz5497Nq1q8ZDCCHaisL0QjIOGsesmRK76OhoDAYDvr6+dOjQwZLhqYllnz59qNRW0vVPXQF4/5X31WNkNQohRHVmz4o9cOAA999/P8nJyXUKZ2o0GvR6fZMFJ4QQzSn6R2Myl0IKRRjXgT1z5gwAffv2tVhcJkFBQTg5OQEQEhJCyJQQTm47ydKfl6rHmFajmDBhQo1VLIQQ1snsFru//vWvDBkyhNOnT5Obm0teXp76yM3NvfoJhBCilYj+3pjYHcdY2iQuLo6kpCTA2EpmaVqtVm21e/311+l7Z19yyVWXGDPR6/XEx8dbIkQhRCtjdmIXFxfH66+/TlhYGB4eHri7u9d4CCFEW1CcXUzy7mSOcUxN7MLDwzl69CidO3fG09PTwhEamRK7s2fP4uTnRI9ePdSCxSY6nY6QkBBLhCeEaGXMTuyGDRsmnwyFEG1ezH9jKFAK2MAGdZvBYGDDhg107NjRgpHV5O/vj4eHB1VVVcTHx3PD7TcwlalqcqfT6Vi5cqV0wwohgGsYY7dgwQKefvppsrKy6NevH7a2tjX29+/fv8mCE0KI5hK7Ibbebk1FUbCxaT2L8mg0Gnr16sWBAwc4e/YsgycNZvCbg+lMZz7kQ6KiotRixkIIYXaL3fTp04mOjuahhx5i6NChDBw4kEGDBql/m+OVV15Bo9HUePTq1UvdX1ZWxvz58/H29sbFxYXp06eTnZ1d4xwpKSlMnjwZJycnfHx8ePbZZ6mqqjL3toQQVqSytJJz287hhVedOnVarZYBAwZYKLL6md4XY2Nj8R/mj727Pb74EkCArBsrhKjB7I+liYmJTRpAnz592LZt2+WAqn1SfvLJJ/nll1/47rvvcHd35/HHH+fOO+9k7969gHHA8OTJk/Hz82Pfvn1kZmYyc+ZMbG1tef3115s0TiFE+3Fu+zmqyqro2rUry55bxuOPPw603m7NLl26MGHCBHr06IGtvS2BYwKJXR9LKKGWDk0I0cqYndgFBgY2bQA2Nvj5+dXZXlBQwOrVq/nqq68YM2YMAJ9++ilhYWEcOHCA4cOHs2XLFqKioti2bRu+vr4MHDiQJUuW8Pzzz/PKK69gZ2fXpLEKIdqH2A3GosQ9pvbgT7P/pCZ2rbVbU6vVMnz4cPV58IRgSeyEEPVqVGL3888/M3HiRGxtbfn555+veOxtt91mVgBxcXH4+/vj4OBAREQEb7zxBl27duXo0aNUVlYybtw49dhevXrRtWtX9u/fz/Dhw9m/fz/9+vXD19dXPWbChAk8+uijnDlzpsGu4fLycsrLy9XnhYWFZsUshGi7FINC7MbLiR1Az5496dmzZ5upwxl0SxAA/vhTkl2Cc/CVV7EQQliPRiV206ZNIysrCx8fH6ZNm9bgceYWKB42bBhr1qyhZ8+eZGZm8uqrrzJq1ChOnz5NVlYWdnZ2eHh41HiNr68vWVlZAGRlZdVI6kz7Tfsa8sYbb/Dqq682Ok4hRPuReSyT4sxi7Fzs6Da6G+VV5fTr14++ffuSlJSkLuPVGkVFRREZGUl4eDgZZOCPP4lbE/GZ52Pp0IQQrUSjEjuDwVDv19dr4sSJ6tf9+/dn2LBhBAYG8u233+Lo6Nhk16lt8eLFPPXUU+rzwsJCunTp0mzXE0K0HjEbYgDoPr47NvY2lFeVc+jQIYqLi/nLX/5i4eiuLDo6mrNnz+Lq6ko88fjjT9L2JIbNG2bp0IQQrUTrmdMPeHh40KNHD+Lj47nllluoqKggPz+/Rqtddna2OibPz8+PQ4cO1TiHadZsfeP2TOzt7bG3t2/6GxBCtHrVx9eZpKSkkJKSUqcHoLUZNGgQ3t7eBAYGkkACN3ETyTuSUQwKGq3m6icQQrR7Zpc7Adi+fTtTpkyhe/fudO/enSlTptSY2XqtiouLSUhIoFOnToSHh2Nra8v27dvV/TExMaSkpBAREQFAREQEkZGR5OTkqMds3boVNzc3evfufd3xCCHal8K0QrKOZ4EGQie1vYkHwcHBjB49mqCgIBLKE7B1tuXShUtkn8q++ouFEFbB7MTugw8+4NZbb8XV1ZWFCxeycOFC3NzcmDRpEitWrDDrXM888wx//PEHSUlJ7Nu3jzvuuAOdTsd9992Hu7s7c+bM4amnnmLHjh0cPXqUBx98kIiICHV22Pjx4+nduzd/+ctfOHnyJJs3b+bFF19k/vz50iInhKjDNGkiYHgAzj7OKIrCnj176NatGxpN22rx0tnp6PanbgAkbE2wbDBCiFbD7MTu9ddf57333uPrr7/miSee4IknnuCrr77ivffeM7t2XFpaGvfddx89e/bk7rvvxtvbmwMHDqjL+bz33ntMmTKF6dOnc9NNN+Hn58ePP/6ovl6n07Fx40Z0Oh0RERE88MADzJw5k9dee83c2xJCWIGon6IAWLN/DSUlJeTk5HDgwAEefvhhysvLcXZu/bNLKyoqiI6O5sCBAwTfEgzAua3nLByVEKK1MHuMXX5+Prfeemud7ePHj+f5558361zffPPNFfc7ODiwYsWKK7YEBgYG8uuvv5p1XSFE+1dSUoKLiwtgHOZhiy0pO1MAiMXYchcXFwdAUFBQneURW6v8/Hy+/fZbbGxseHDygwCk7E6hqqwKG4dWNWxaCGEBZrfY3Xbbbaxfv77O9v/+979MmTKlSYISQoimdm7bOfTlevLIIwfjuNz4+HgAQkJCLBmaWTp27Ii7uztVVVUUORbh6u9KVVkVKXtSLB2aEKIVaNTHu2XLlqlf9+7dm3/84x/s3LlTncRw4MAB9u7dy9NPP908UQohxHUyzYY1tdaVl5eTmpoKtK3ETqPREBoaypEjR4iPjyf4lmBOrj1JwtYEgscFWzo8IYSFNSqxe++992o89/T0JCoqiqioKHWbh4cHn3zyCS+++GLTRiiEENep+moTMRjr2CUnJ2MwGPDy8sLLy8uS4ZnNlNjFxcUxZtwYTq49aRxn96alIxNCWFqjErvExMTmjkMIIZpN1rEsSrJLsHO1I7koGbj8vtaWWutMgoKC0Ol0FBQU4H6LOwBZx7MoOV+Cc8fWPwFECNF8rqmOnRBCtCUJvxrLgXQb2w09xmUPk5KSgLaZ2Nna2hIUZFwvNr0gHZ9+xiXFknYmWTAqIURrIImdEKLdS/jNmNh1n9QdMA4dSUtLw8bGhm7dulkwsmvXvbvxXhISEuh2czcAknYkWS4gIUSrIImdEKJdc8aZ+Mh4NFoN+/L2AcaSIUuXLiUpKanNlDmpzZTYpaSk0GWUca1rSeyEEJLYCSHapbVr1wJQQglLWcrprqd5evHlmfuKovDJJ5+QlpZmqRCvS4cOHXB1daWqqgptsBY0cOHsBYoyiiwdmhDCgsxK7Kqqqnjttdfa7BuhEMI6pKWlsWDBAvW5gsL3Sd9jMBhqHGcwGNRadm2NRqNRW+3SL6bjN9APkHF2Qlg7sxI7Gxsb3n77baqqqporHiGEuG5xcXF1kjgFpc56sDqdrk1OnjAJDjbWrUtISCBojHEyReIOqWIghDUzuyt2zJgx/PHHH80RixBCNInQ0FC02ppvbzqdjiVLlqjPtVotK1euJCAgoKXDazKmxC47Oxu/4f9rsZNxdkJYNbMXFpw4cSIvvPACkZGRhIeH11k0+7bbbmuy4IQQorFqrw27fPlyHp//OAoKWo0xibv33nvVIurR0dH06NHDkiFfN2dnZ4YPH463tzcdO3TEgIG8hDwyYzLp1LOTpcMTQliARlEUxZwX1P4UXONkGg16vf66g2pphYWFuLu7U1BQgJubm6XDEUJcg9qJnWJQeMbtGcooY+anMxkze0ydY2p/MG3LSkpKWOSyiAACmLhqIn3u79Nu71WI9qSpcxCzu2INBkODj7aY1Akh2qeso1l0+t+fIbcPMW7LyqJfv35qwtPeJJEEQMquFMsGIoSwGLO7YqsrKyvDwcGhqWIRQogmY1ptIoEEdHY6AE6fPs306dM5ePCgJUNrcrm5uURFRXHe+TyUQOquVEuHJISwELNb7PR6PUuWLKFz5864uLhw7tw5AP72t7+xevXqJg9QCCGuhWm1iRhi1G2enp5kZGSo71vtxS+//ML27dtx6uWEHj2FKYXkJ+VbOiwhhAWYndj94x//YM2aNbz11lvY2dmp2/v27cvHH3/cpMEJIcS1KEgp4Pzp8xgwEEecuj08PJxVq1YRExNzhVe3PSEhIXTp0oWCSwWkkw5Iq50Q1srsxO6zzz5j1apVzJgxA51Op24fMGAAZ8+ebdLghBDiWhz4+gAAqaRyiUsWjqb5RUREcM899xAVFcVxjlNAgSR2Qlgps8fYpaen11vQ02AwUFlZ2SRBCSGEuUxLiAH8ecmfmcpULnJR3ZadnY2npydmFgJoM0z3f5zjnOAEab/JCkFCWCOzW+x69+7N7t2762z//vvvGTRoUJMEJYQQ5qhvCbENbGDF7ytQFAUnJye++OIL3nzzTTIzMy0YafOodwm1gu9xw1g6IT093VKhCSFamNktdi+99BKzZs0iPT0dg8HAjz/+SExMDJ999hkbN25sjhiFEOKKGlpCLJdcAC5cuEBxcTE2NjZ07NjREiE2q4buv5BCAMLCwli1ahVz5syxRHhCiBZkdovd7bffzoYNG9i2bRvOzs689NJLREdHs2HDBm655ZbmiFEIIa6oviXEtBotoaGhAOos2K5du2Jjc11Vnlql+u6/OoPBwLx580hLk+5ZIdo7sxM7gFGjRrF161ZycnIoLS1lz549jB8/vqljE0KIRgkICGD58uXqcw0a/vHUP9R1YBMTEwEICgqySHzNLSAggGXLlqHRaADUv6vT6/XEx8e3dGhCiBZ2zR9djxw5QnR0NGAcdxceHt5kQQkhhLlmzZrFkvlLmMAEOrl24tk3ngWMrVVJSUlA+03sAGbPns3mzZvx8vIifEA4C59aiMLliSI6na7eiW9CiPbF7MQuLS2N++67j7179+Lh4QFAfn4+N954I9988436CVkIIVpaX/oSRBC9JvRCZ2ssx5STk0N5eTl2dnZ06tTJwhE2r+zsbMLDw3H1dOWBwAf4IvkLFBR0Oh0rV66U92chrIDZXbEPP/wwlZWVREdHk5ubS25uLtHR0RgMBh5++OHmiFEIIRqlF70ACJlyuWUqOTkZgC5dulxxHFp7YOpyTk9P5+7b7mYRixjOcKKiomTihBBWwuwWuz/++IN9+/bRs2dPdVvPnj1Zvnw5o0aNatLghBCNV1JSoi5uX1xcjLOzs4UjalkXYy7SgQ7o0RM0/nKXqymxCwwMtFRoLeb8+fMUFxfj4uKCU5gT7rgTTjidO3e2dGhCiBZi9sfXLl261FuIWK/X4+/v3yRBCSHElZSUlKDRaNBoNJSUlAAQ/4txYkAiidi72QOgKIpVJXaAOp6w3LccBYWOdKQkp8SyQQkhWozZid3bb7/NggULOHLkiLrtyJEjLFy4kH/9619NGpwQQjRW/EZjYneWy0sbXrx4kdLSUmxsbKzmg6epOzYjL4NssgFI3ycFioWwFmZ3xc6ePZvS0lKGDRum1oOqqqrCxsaGhx56iIceekg9Njc3t+kiFUKIBhRlFpF52LiiRAwx6nZTa11AQEC7rF9XH1OLXWZmJqmaVPwUP9L2pjFohqwMJIQ1MPudbunSpc0QhhBCXLvYDbGgQOcbOlN4sFDdbkrsunbtaqnQWoyzszOKoqAoCu+99x5FRUWUdCyBHEjbK4WJhbAWZid2s2bNao44hBDimsX819hK1/P2njW2a7VabG1t6datmwWisgyNRkO3bt2IjIxk8YeL2T99PzmROZTll+Hg4WDp8IQQzax9z/0XwkpZ06LvFUUVnNtmXDKs17ReNfZNmzaN559/3momTpgEBgbi6OiIract3j28QYGUvSmWDksI0QIksROinVi7dq36dVhYGKtXr7ZgNC3nwLcH0Ffo8QrxokNYhzr7dTpdu69fV9vAgQN59tlnufnmm+l6k7EbOnlXcr2ziYUQ7Uurebf75z//iUajYdGiReq2srIy5s+fj7e3Ny4uLkyfPp3s7Owar0tJSWHy5Mk4OTnh4+PDs88+S1VVVQtHL4RlpaWlsWDBAvV5e1/0vXoSO3nhZI5xjJ7TetZYI7W+skzWQqfTqd+LwJuMrZUpu6TFTghr0CoSu8OHD7Ny5Ur69+9fY/uTTz7Jhg0b+O677/jjjz/IyMjgzjvvVPfr9XomT55MRUUF+/btY+3ataxZs4aXXnqppW9BCIuKi4vDYDDU2NZeF32vncQqKGxgA+4R7jWO+/DDD/n3v/9NTk5OS4fYaiiKgt8NfgBkHMmgoqTCwhEJIZrbdSd2hYWF/PTTT0RHR1/T64uLi5kxYwYfffQRnp6e6vaCggJWr17Nu+++y5gxYwgPD+fTTz9l3759HDhwAIAtW7YQFRXFF198wcCBA5k4cSJLlixhxYoVVFTIG5iwHqGhoXW6G9vrou/1JbEKCiXul7sWS0pKyMvL4+LFi7i5ubV0iK1CfHw87733HlsObcGtixuGKgOZhzItHZYQopmZndjdfffd/Pvf/wbg0qVLDBkyhLvvvpv+/fvzww8/mB3A/PnzmTx5MuPGjaux/ejRo1RWVtbY3qtXL7p27cr+/fsB2L9/P/369cPX11c9ZsKECRQWFnLmzJkGr1leXk5hYWGNhxBtWUBAAMuXL1eft+dF3+tLYrUaLT169lCfOzs789xzzzFz5kwcHKxzJqiLiwtFRUVkZmaq3bFS9kSI9s/sxG7Xrl3qmrDr169HURTy8/NZtmwZf//738061zfffMOxY8d444036uzLysrCzs4ODw+PGtt9fX3JyspSj6me1Jn2m/Y15I033sDd3V19dOnSxay4hWiNqpcias+LvtdOYjVo+Puiv9dJYh0dHQkKCqr9cqvh6+vLrFmzePLJJyWxE8KKmJ3YFRQU4OXlBcCmTZuYPn06Tk5OTJ48mbi4uEafJzU1lYULF/Lll1+2+CfqxYsXU1BQoD5SU1Nb9PpCNLf2vuj7rFmz6EIXZjGLFzxe4Lk3n7N0SK2OqZ6dra2tmthlHs5E+7+3fWsqiSOENTE7sevSpQv79++npKSETZs2MX78eADy8vLMStCOHj1KTk4OgwcPxsbGBhsbG/744w+WLVuGjY0Nvr6+VFRUkJ+fX+N12dnZ+PkZBwP7+fnVmSVrem46pj729va4ubnVeAjRHrXn8hYDGEAQQQyZNgSdrU7dXlpaypo1a9ixYweKolgwwtbDu6c3Th2dOFR2CAPG8YnWVBJHCGtidmK3aNEiZsyYQUBAAJ06dWL06NGAsYu2X79+jT7P2LFjiYyM5MSJE+pjyJAhzJgxQ/3a1taW7du3q6+JiYkhJSWFiIgIACIiIoiMjKwx623r1q24ubnRu3dvc29NCNFGGKoMhBEGQM87aq42kZycTHJyMtHR0TXKn1ijsrIyNm3axNq1a3EZ4sIGNqj72ntJHCGsldlLij322GPccMMNpKamcsstt6iDmIODg80aY+fq6krfvn1rbHN2dsbb21vdPmfOHJ566im8vLxwc3NjwYIFREREMHz4cADGjx9P7969+ctf/sJbb71FVlYWL774IvPnz8fe3t7cWxNCtBGpu1NxxplSSulyU80xsqb1Ya1ttYn62NracuzYMSorK3Hu5IxCzRZMU0mc9jjJRghrZXZiBzBkyBD69+9PYmIi3bt3x8bGhsmTJzd1bLz33ntotVqmT59OeXk5EyZM4IMPPlD363Q6Nm7cyKOPPkpERATOzs7MmjWL1157rcljEcJalJSU4OLiAhjLETk7O1s4oroxxa6PBSCa6BrdsGAsWg6S2IHxPbJLly6cO3eOzgM6o0FTI7lrryVxhLBmZid2paWlLFiwQK38HhsbS3BwMAsWLKBz58688MIL1xzMzp07azx3cHBgxYoVrFixosHXBAYG8uuvv17zNYVoL5ydna9pTFntpKm1M1QZiP3ZmNhFEVVjX1lZmTojXhI7o8DAQM6dO4fOV8cdDnewvmw9Ckq7LokjhDUze4zd4sWLOXnyJDt37qwxWWLcuHGsW7euSYMTQjSd9jILMnlHMpcuXMKpgxMxFTE1WhRTU1NRFAUvLy9cXV0tGGXrYUpwU1JTuP2m21nEIsIIa9clcYSwZmYndj/99BP//ve/GTlyZI2ByX369CEhIaFJgxNCXJ/qa6q2l1mQZ74yFh/vc2+fOt2wpvF1Xbt2bfG4WqvOnTuj0+koKSnBa5AX7rjTj37tviSOENbK7MTu/Pnz+Pj41NluKqsghGgdaq+p2h5mQdphR/xG4/q3A/4yoM5+mThRl42Njdrdqgs2JsKBBEopGCHaKbMTuyFDhvDLL7+oz03J3Mcff6yWIRFCNL+r1airb01V0yzItqo3vam6VIV3D2/8h/rX2FdZWUlGRgYgiV1tpu9HkWsRlVTijDO5sbkWjkoI0RzMnjzx+uuvM3HiRKKioqiqquL9998nKiqKffv28ccffzRHjEKIa2BaU7V6cmfuLMj09HR69Ohx9QNbiA8+FFDAzTNvrtNDkJaWhsFgwM3Nrc5ShNbOlNilZaaRRhpBBJG2N42ug6XLWoj2xuwWu5EjR3LixAmqqqro168fW7ZswcfHh/379xMeHt4cMQohzKQoCtosLQtvXYgGYwKk1Wj5vxn/h5eDV4OvS09Pt/i4vPpaIk0xbWELS1nKSZuTdV5XvRtWhoXUFBAQgFarpaioiGx74+o8sm6sEO2TRpGBFhQWFuLu7k5BQYEsLybajIbqzaUdTGPTwk2kHzTOgi2ggFxy8cI4cF5np6PfA/0Ys2QMrv6ufPDBB8yfPx+4PLSi+tuCTqcjKSmpxcpi1L6vvLw8AgMD67Q81o5p7dq1JCUlMWXKFPmQWY/Vq1eTlpbGiE4j2DtvL+5d3VmUvMjSYQlh9Zo6B2lUi11hYWGNr6/0EEJYhmJQ2PnqTlYPX036wXR09jp63NGDAxzgNKcZ/8x4Og3uhL5Cz4lPTrC8x3J+e+u3GhMsFEWpM6je0uPyGjNWsKqqSp0UIuPr6meaKVzoXojWRktBSgH5yfmWDUoI0eQaNcbO09OTzMxMfHx88PDwqLebQ1EUNBoNer2+yYMUQlyZQW9g/cz1RH4ZCcCAmQMY99Y4NC4a7ne5H4BRr4yCV6CXSy8mMIEuJV1Y9/w6dVH4hlh6dYLQ0FC0Gi0GpeGxglqtlgceeIDU1FS8vb0tEWarFxgYyL59+0jPSadTeCfSD6aTsjsFj0APS4cmhGhCjUrsfv/9d7y8jONyduzY0awBCSHM99Xsr8han4XWRsuUlVMY9NAggHpny6aRxid8wvYl2yl8uRCNoeYyUxqNRm21M2d1guZaiiwgIICHBz3MR8c+anDFBK1WS2BgoLTWXUHXrl2ZMGECgYGBRKZEkn4wneRdyfR/oL+lQxNCNKFGJXZ/+tOfAGN3xx9//MFDDz0ky9AIYWHVJzk8uv5Rpmqm8sY3b9B7eu+rvlZB4YYnb6DrsK4k3ZZUY5mpZcuWqWPuoqKiLDorNj09HX93fwJOBbCIRaxhDQeiDrSqmbpthYODA8OHDweg8KZC9v9rP8m7ki0clRCiqZk1K9bGxoa3336bqqqq5opHCNEItYsPKyhs1GzEbZh5A2+739KdNze9yaM8yixm8ebQN7n/7vvV/ZZYnaD2rNwljy7BUGWgkELyyKsTk8FgYNOmTURFRclQkEbqOrIraOBizEVKcuq26goh2i6zy52MGTNG6tUJYWH1TSgwGAx1Jjk4OzurEyIa6hrtNKQTP/Mz/vhTfKCYDTM3qCVSWlp9q2W8vf5tCijgCEfqfU1mZiYHDx5kw4YNUubkKsrLyzl+/Dj7ju3Dp69xBaHk3dJqJ0R7YnaB4okTJ/LCCy8QGRlJeHh4nV8Wt912W5MFJ4SoX2hoKBpqjo27nkkOaaTxJV8y12Eu5347x3jGs5nNTRVuo9WXsCooFLsUc6b4TL2vsbe354YbbkCj0aDVmv1Z1apUVVXx888/AzDoxkHkROaQvCu5Ud33Qoi2wezE7rHHHgPg3XffrbNPZsUK0TIqYyuZylQ2sKHBCQVXU3tViRRSmLhqIhtmbiCCCC5y8Zrju9YVK+pbLUODhhvvupGPPv2o3td06NCBiRMnXnOs1sTZ2Zl+/frh7u6OR7oHx1ceJ2V3iqXDEkI0IbM/3hoMhgYfktQJ0fz0lXp+ffxXBjOY0YwGjJMc5syZc9XXXm1ViZ539mTkyyMBmMQkkn5PanRcTbFiRUBAAMuXL1efa9Bwm/Y2Jjw/wexzifrdeeedjB07lh63GBPvrBNZlBWUWTgqIURTMTux++yzzygvL6+zvaKigs8++6xJghJCNOzYR8e4EH0Bxw6O7Gc/0LhJDvWNX5s3bx7p6ek1jhvz8hgGzBqAFi0bZ20kN+Hqi8U3dG5T0WBzzJo1yxgHY1jEIh6c/SCdenaqd6xgUVERycnJMqHrGrh2csUrxAsUSN2baulwhBBNxOzE7sEHH6SgoKDO9qKiIh588MEmCUoIUb+K4gr+eM04eenGxTdSRuNbWhpawSEjI6NG0qTRaJiycgqdh3WmLK+MddPWkZedV2f91sac+1pXrPDBh5u4CXeNOyOfH9ngcdHR0axZs4Z169Zd03WsVVlZGbGxsQSMMHbdywQKIdoPsxM70woTtaWlpeHu7t4kQQkh6ndw2UFKskvwDPak/4PmFZY1jV+rrqEJFzb2Ntzz4z24+LmQczqH3+b+dsWZso09d0lJyRUTRJORGJO5nnf0xLtHwytJpKQYx4d16dKlwWNEXatWreLrr7/Gubex9TNll4yzE6K9aHRiN2jQIAYPHoxGo2Hs2LEMHjxYfQwYMIBRo0Yxbty45oxVCKtWUVzB/neNXa+jXxuNzk5n1utrj1+72oQLV39X7v7xbnR2OuJ+jmMUo5rs3FeSF59HX/oCMOyZYQ0epygKSUlJgKwPay7TurGV/pUApB9Op/JSpSVDEkI0kUbPip02bRoAJ06cYMKECerSQQB2dnZ069aN6dOnN3mAQgijwx8e5tLFS3iFetH33r5odVp16a/GmjVrllmrSnSJ6MKkFZPY8MgGxjCGLLKa7NwN2f3KbrRoiSUWn/4+DR6Xm5tLSUkJOp3OIoWU27KuXbty8uRJsiuycfV3pSijiPSD6XQb3c3SoQkhrlOjE7uXX34ZgG7dunHPPffg4ODQbEEJIWqqKq/iwLsHABi5eCRa3fXXa2tsMjT44cGkHkrlxEcnmM50LsZcxHnwldeBvdZEK3V/KrE/xWLAwDa2XfHY5GTjuLCAgABsbMyu3GTVTC2cGRkZ9BzVk6h1USTvSpbEToh2wOzfDrNmzcLBwYGKigrS0tJISUmp8RBCNL3jXxynOKuYQgrpfkf3Fr/+zW/dzBnOkEEGa6avoSy/6ctjGPQGNj2xCYDBDw0mW8lucLUMuJzYmboVReN5eXnh4uKCXq/Hra9xGTqpZydE+2D2x9y4uDgeeugh9u3bV2O7aVKF1LITomkpisLRD44CcJjD6GzNG1vXFL746gu+4zsANEka0m5K4z/H/3NdLYe1ixgf+c8RMo5kYO9mz5i/j7nq602JXbdu3a45Bmul0WgIDAzkzJkz6AOM79mp+1LRV+ot8v9LCNF0zH5Xnj17Nlqtlo0bN3L06FGOHTvGsWPHOH78OMeOHWuOGIWwaukH08k+lk0VVRzlaItfv3aNOgWFjyM/5rNZn5k9xq++IsYlJSV4ajxZ//h6AMa+MRbXTq5XPE9+fj4FBQVotdprmqAhLrd0XtRexNHLkcrSSjKPZVo4KiHE9TK7xe7EiRMcPXqUXr16NUc8QohaDi47CEAkkZRSel3ncnZ2NjsZa2j91p1f7qRrUFfGLLl66xo0XMR4xI0juIM7cMAB/+H+hM8Lv+q5TK11nTp1ws7Ozoy7ESamcXapaakEjQgidkMsKbtTCBgmibIQbZnZLXa9e/fmwoULzRGLEKKWoowior6LAuAQhywSQ3016rRaLV54sfvvu9n/nrEEiylprL06hElDRYz/+8p/CSSQcsqZ9NGkRnXvmhI7KXNy7Xx8fHBwcKCyshKPgR4AJO+SQsVCtHVmJ3Zvvvkmzz33HDt37uTixYsUFhbWeAghms6RlUcwVBnoHNGZTIzdZLWXAGtu9dWoW7VqFXf84w4Atjy1hT1v7rnqeRpKELO/zQZgAxvwCPJoVEymiVqS2F070zg7AP73V8qeFBSDeS26QojWxezEbty4cRw4cICxY8fi4+ODp6cnnp6eeHh44Onp2RwxCmGVDHoDJz45AUByr8stKaaxaS3JtH4rGGvUzZkzh5GLRzLqRWPR4u0vbOeXx35BX9nw5KnaCaJWq2WKMgV33NnNbk5zulGxFBcXc/HiRUBmxF4vPz8/AD7b8hm2zraU5ZWRcybHwlEJIa6H2WPsduzY0RxxCCFqSdyeSGFaIeXu5by59k11u2ls2oQJEywyccBUo06j0TBmyRgcPBzY+uxWjnx4hMxjmUxbO40OPTvU+1pTEeN+9GOcYRzuuNN3Zl9e+ewVoO5M2fqUlpYSGBiIXq+XeprXyfT/JzAoEP9h/iT/nkzyrmR8+/laODIhxLUyO7H705/+1BxxCCFqOfHpCQBcR7ti+G/dsWnx8fHqL2ZFUYiOjiYyMpKMjAwMBgPu7u6EhoYycuRIdLrmK2Fx49M34t3Dm/V/WU/6wXT+0/8/hP81nGELhuEV4qUepxgUknck8zAPE4Ax7iGPDSGpdxJ8ZjwmLCyMVatWMWfOnAav5+Pjw+zZs82eBCLq8vX1paCggKysLEbfMJrk35NJ2ZXCDfNvsHRoQohrpFGu4d1x9+7drFy5knPnzvHdd9/RuXNnPv/8c4KCghg5cmRzxNmsCgsLcXd3p6CgADc3N0uHIwSX8i7xTqd30JfrmfzLZIZNHVZj4oFOpyMpKYmAgAAuXLjADz/8QFZW3eW+QkNDuf/++687npKSEnUZweLi4nonRxSkFrDhkQ0kbE5Qt3n38MYrxAtDlYHsU9kUZxUDUE45U/89lS63dyEwMLDBexPNq/q/a/Rv0aybuA6XTi48lf4UGo3GwtEJYR2aOgcxe4zdDz/8wIQJE3B0dOTYsWOUl5cDUFBQwOuvv37dAQkh4PQ3p9GX6/Hp50P4xPA6kxdWrlxJQEAAlZWVfP7552RlZWFvb8+oUaN48MEHmTdvHrfddhvjx49XX2easdpUSkpK0Gg0aDQaSkpKcO/izgObHuCBLQ/QfUJ3NFoNF2MvEvdrHAlbEijOKsbOzY7DHGY5y+k/u3+DM2Xj4+PrvWZlZSWXLl1qsnsQl/kN8UNnp6M4s5i8hDxLhyOEuEZmt9gNGjSIJ598kpkzZ+Lq6srJkycJDg7m+PHjTJw4sd5Wg9ZOWuxEa/PRDR+RcTiD8e+OJ+LJiBotKzExMTXGoWVkZLB7924mT56sHlOboihs2rSJyspKpk6d2iStMVdrxSu9UErGkQwK0wrRaDV49/TGracbnh091dfk5eWZ1WJ39uxZ1q1bR69evbjnnnuu+x6sXfV/w6NHj3LiiROk7k3lttW3MeihQRaOTgjrYPEWu5iYGG666aY6293d3cnPzzfrXB9++CH9+/fHzc0NNzc3IiIi+O2339T9ZWVlzJ8/H29vb1xcXJg+fTrZ2dk1zpGSksLkyZNxcnLCx8eHZ599lqqqKnNvS4hWI+dMDhmHM9CjZ9xT4ygpKamx3zR5wcTf35977rmnwaQOjMnf4cOHOX78OLt27WqWuGtz6uBEyK0hDH54MIMeGkTXEV2xdbStcUx9pVRMrZH1OX/+vPHcTk7NF7gVqb4SyJAhQzjheAKQdWOFaMvMTuz8/Pzq7SbZs2cPwcHBZp0rICCAf/7znxw9epQjR44wZswYbr/9ds6cOQPAk08+yYYNG/juu+/4448/yMjI4M4771Rfr9frmTx5MhUVFezbt4+1a9eyZs0aXnrpJXNvS4hWI/LLSADiiKt3pYmKigrWrl2r1nJrjM6dOzN58mQAdu7cyblz55om2Kuo3V1bXxHj+kqpNGTUqFE8/fTT9X64FOaps1ScorDi9xUUUCCFioVow8xO7B555BEWLlzIwYMH0Wg0ZGRk8OWXX/LMM8/w6KOPmnWuqVOnMmnSJEJDQ+nRowf/+Mc/cHFx4cCBAxQUFLB69WreffddxowZQ3h4OJ9++in79u3jwIEDAGzZsoWoqCi++OILBg4cyMSJE1myZAkrVqygoqLC3FsTwuIUReH0N8Z6bpFE1nvMrl27SEpKYv369ej1DdeNqy08PJxBg4zda+vXr2+VY9Vqt0bWx8XFBXd39xaIpn2rb3yjwWAgT5NH3rk8CtOl4LwQbZHZid0LL7zA/fffz9ixYykuLuamm27i4YcfZt68eTU+/ZlLr9fzzTffUFJSQkREBEePHqWyspJx48apx/Tq1YuuXbuyf79xCaP9+/fTr18/fH0v11yaMGEChYWFaqufEG1J+qF08hPzsXW2JZbYOvu7devGiRMnAOMHI3PLmEycOJEOHTpQXFzMli1bmiJkoOVXwxDXr76VQHQ6HT3CjOM3RwaMrDMMQAjR+pmd2Gk0Gv7f//t/5Obmcvr0aQ4cOMD58+dZsmTJNQUQGRmJi4sL9vb2/PWvf2X9+vX07t2brKws7Ozs8PDwqHG8r6+vOkEjKyurRlJn2m/a15Dy8nJZCk20GtW7K098fgKAkMkhVFIJGJMmZ2dnqqqqePbZZwFj65u5Qx8AbG1tmTp1KgAnTpxQ11y9FtXHZ7XEahg7duzg888/Jy4urlmvYy0aGt/Yb2w/ALrRzUKRCSGuh9mJnYmdnR29e/fmhhtuuOKg7avp2bMnJ06c4ODBgzz66KPMmjWLqKioaz5fY7zxxhu4u7urjy5dujTr9YRoDA0azv5wFoAor8s/A6ak6ciRI5w/fx5HR0fGjh17zdfp2rUrgwcPxt7e/po/1NQen2VaDSMtLe2a47qauLg4zp071yq7kNuq6uMbv/32WxRFQRts/LUgiZ0QbdM1J3ZNxc7OjpCQEMLDw3njjTcYMGAA77//Pn5+flRUVNSZaZudna2ub+jn51dnlqzpuemY+ixevJiCggL1kZqa2rQ3JcQ1CCSQkqwSyt3KWbLqcgu4KWn673//C8CYMWNwdHS8rmuNGzeOJ554gn79+l3T682tPwcNd9fWN6GitrKyMrUVvlu3btcUs7gye3t70tPTKe1QigED3nhTlF5k6bCEEGayeGJXm8FgoLy8nPDwcGxtbdm+fbu6LyYmhpSUFCIiIgCIiIggMjKSnJzLi1Zv3boVNzc3evfu3eA17O3t1RIrpocQltaXvgA4jXCqN2nKyMigQ4cODB48+Lqv5ejoeF0lQxoanxUSElJjW1N116akpKAoCp6envLz2kxMJWYy8zLJJBOAlF0pdWY2CyFaN4smdosXL1Zn+EVGRrJ48WJ27tzJjBkzcHd3Z86cOTz11FPs2LGDo0eP8uCDDxIREcHw4cMBGD9+PL179+Yvf/kLJ0+eZPPmzbz44ovMnz8fe3t7S96aEGbRoqU3xg8jN8+8ud6kadasWdx666119l0PRVGIi4sjJibGrNc1pv5cU3bXmsYCSmtd8zHNSM7NzSXOJo5EEjnx2wnLBiWEMFujfkMMHjyYvDzjEjOvvfYapaV1a2tdi5ycHGbOnEnPnj0ZO3Yshw8fZvPmzdxyyy0AvPfee0yZMoXp06dz00034efnx48//qi+XqfTsXHjRnQ6HRERETzwwAPMnDmT1157rUniE6KldKYz2WRT7llOxJ8j6k2abr75Zrp3796k142MjOSrr75i06ZNdVoJr+Zq9eeupbu2IUlJSQAEBgaa/VrROI6Ojvj4+HDs2DF2Vu1kLWv5649/rdHqKoRo/Rq1pJijoyNxcXEEBASg0+nIzMzEx8enJeJrEbKkmLCkDz74gPnz5wPGWecfffQR9957Ly4uLmi1Wk6dOkWfPn2a5dqVlZUsXbqU0tJS/vznP5t1nastKZaWlmbWcmENKS8v580330RRFBYtWiQ17JrRZ599xuzZs2usKazT6tAbjPUS6/t3FkJcn6bOQWwac9DAgQN58MEHGTlyJIqi8K9//avBmbCy6oMQjVdf9f958+YxatQoAIYOHcovv/xCWVkZ4eHhTX59W1tbhgwZwq5duzhw4ECTJpCm7lpT0nq15cIaYhpf5+HhIUldM9Pr9dT+rG9K6oQQbUOjErs1a9bw8ssvs3HjRjQaDb/99hs2NnVfqtFoJLETwgwNdVcmJCSg0WgYNmwYly5dqvPLtikNHTqUvXv3kpaWRlpamtmJ15XMmjVLTeyioqLo0aOH2eeQ8XUtJyIiAo1GU+P/m1ajxaAY/4+mp6df07+hEKLlNCqx69mzJ9988w0AWq2W7du3t6uuWCEsJTQ0tM4vUp1OR/fu3enevTteXl7Y29vTv3//ZovBxcWFvn37cvLkSQ4ePNjoxM5UpqSxGrNcWH1kfF3L6dWrF/fccw/r1q1DURQ0aBjsOJgjpUcA48zmVatWXXE9XyGEZZk9vc5gMEhSJ0QTCQgI4P5O96NBA1zuruzcuTNDhw4FoE+fPtjZ2TVrHKaZ5mfOnKGgoKBZr2WOiooKMjIyAGmxayl33303ixYtYujgoTyie4SjpUfVfS1RiFoIcX2uqW5CQkICCxYsYNy4cWqh04SEhKaOTYh2L+9cHqEZoSxkIXbYqbNLKysr6dmzJ4Bat7E5+fn50a1bNzp27EhxcXGzX6+xTOPr3N3d6ywvKJpHly5dcHd3Z/DQwbj2dEWh1pi7a5zZLIRoGY3qiq1u8+bN3HbbbQwcOJARI0YAsHfvXvr06cOGDRvUUiVCiKs7+1/jEmJ55FFBhdpdeeSIsesrODiYDh06tEgsd999Nw4ODmg0mha5XmPI+LqWZ1pi0c/Pj6CRQWiiNDWSu/oKUQshWg+zE7sXXniBJ598kn/+8591tj///POS2Alhhpj/GgsDn+Wsuk2v13P8+HEAtTu2JVzvMmX1MXccXm033XQTQUFBzRKbqJ+Liwvnz5+nY8eO+A/xZ+qqqWxgAwrKNc9sFkK0nEbVsavOwcGByMhIQkNDa2yPjY2lf//+lJWVNWmALUHq2AlLKL1Qyr98/4ViUHiP9yigQK0Tlp2dzalTpxg7dmyTrjTRGBUVFaSmpjZ5MWTRNpSUlDBgwADKysqIPB7Jii4ryC3PZTWrORxzWGbFCtHEmjoHMfs3RseOHTlx4kSd7SdOnJBJFUKYIXZjLIpBwae/DwXUnLDg6+vLLbfc0uJJXWlpKe+88w5ffvklRUWyALw1cnZ2Jj4+nrS0NDw7euJ/gz/uuNODHtc8s1kI0XLM7op95JFHmDt3LufOnePGG28EjGPs3nzzTZ566qkmD1CI9qT6ag1fTPkCgLA7w1BONl+dOnM4OTnh6+tLamoqJ0+eZOTIkRaL5ciRI1y8eJF+/frh7+9vsTisXdfRXUndnUowwZYORQjRCGYndn/7299wdXXlnXfeYfHixQD4+/vzyiuv8MQTTzR5gEK0R7bYkrQ9CYBe03qp2w8ePEhGRgY33HCDxVpHBg0aRGpqKsePH2fEiBEWm0wRGRlJSkqKcayXJHYtLj4+nqioKDx6eQAQRBAGvXnrCQshWp7Z/TwajYYnn3yStLQ0CgoKKCgoIC0tjYULF7aq2XRCtGbBBFN1qQr3QHd8+/sCxuXEjhw5wqlTp8jOzrZYbKa6ebm5uaSkpFgsjuHDhzN48GCCgoIsFoM1i4+P5/jx4xQ4F+Dg4YAjjhREt54ah0KI+l3XAB5XV1dcXV2bKhYhrEYvjK10vab1Uj8QZWZmcuHCBWxsbOjdu7fFYrOzs1Ovf+rUKYvFERYWxtSpU/H09LRYDNYsLCyMiIgI+g/sT9AYY3J9bus5C0clhLialh2ZLYRAgwYHHCigoEY3rGlSUq9evXBwcLBQdEamJcyioqLQ62UReGsUGBjI+PHjCQwMJPgW4/g6SeyEaP0ksROiBa1duxYFhXWsYylL2Rq7FTDWrjt9+jQAAwYMsGSIgPGXuouLC2VlZRZZPuro0aOkpaVhMMiYrtYgeJwxsUvdn0pFcQUlJSVoNBo0Gg0lJSUWjk4IUZ3ZkyeEENcmLS2NBQsWqM8VFB597FEmTprIpUuXuHTpEs7OzgQHW372oVar5Y477sDLy6vFl/IqLS1l48aNADz99NPqLGLR8iorK0lJSaG8ohyPbh7kJ+WT9EcSnUdL2RMhWiuzWuwqKysZO3YscXFxzRWPEO1WXFxcnRYo07qbpta63r17t3jtuoYEBwdbZH3WxMREAHx8fCSps7CkpCS++OILtm3bdrk7dpt0xwrRmpn1G8TW1taig6mFaMtCQ0PrJG2mdTd9fX3p0KEDffv2tVB0V3Y9y4KZy5TYyWxYy+vatSsajYa8vDz8bvQDZJydEK2d2U0DDzzwAKtXr26OWIRo1wICAlg0cREajLNgq6+7eeONN/LYY4+pC7C3FllZWXz11Vd8++23LXZNSexaD3t7e7WeoiHQABo4f+Y8xZnF6jHp6emWCk8IUQ+zx9hVVVXxySefsG3bNsLDw3F2dq6x/913322y4IRob0IzQlnEIjawgV+ifqmx7mZrrAOp0+mIi4tDq9VSWlqKk5NTs14vPz+f3NxcNBoN3bp1a9ZricYJCgoiLS2NtNw0/MP9yTiSwfIly9X9YWFhrFq1ijlz5lgwSiGEidktdqdPn2bw4MG4uroSGxvL8ePH1Ud9a8gKYc2qzx7MjMkk+3g2briRSSadO3emsrKSqKgoKisrLR1qvTp27Iivry8Gg4GYmJhmv56pta5z587Y29s3+/XE1XXv3h2Ac+fOETQuiAIKeP2z19X9BoOBefPmWWT2tBCiLrNb7Hbs2NEccQjR7sVvjAcghRRKMJaIiI2N5fvvv8fHx4dHH33UkuE1KCwsjOzsbKKjoxk0aFCzXku6YVufgIAAbG1tKS0txTPck1xyUag55tI0CSggIMBCUQohTK55+l18fDybN2/m0qVLQMsOrhaiLUr4JQGAs5xVt505cwYwTqxorUyrUCQkJFBWVtZs11EUhXPnjAPzW0PJF2Gk0+nUbvFS71J8HHzUcaLVjwkJCbFAdEKI2sxO7C5evMjYsWPp0aMHkyZNIjMzE4A5c+bw9NNPN3mAQrQHDjiQujsVgBiMXZqVlZVq6aA+ffpYLLar6dixIx06dMBgMBAbG9ts1zl//jwlJSXY2NhIy08rY0q0k9KS6P+n/kxlqrqv+iQgIYTlmZ3YPfnkk9ja2pKSklJjIPU999zDpk2bmjQ4IdqLTnQiryqPjn06clG5iKIoZGVlUVVVhbu7O35+fpYO8YrCwsIAiI6ObrZrmFrrunbtio2N1E5vTUzj7JKTkwm6JYjBDGY60wHjsnMycUKI1sPsxG7Lli28+eabdT6dhYaGkpyc3GSBCdEerF27FoBEElnKUs51u1wD7OxZY5dsr169WuWM2Op69+5NYGBgs3a3mcbXSTds69OhQwdcXV3R6/U4DTB+oO9Nb+ywU8uhCCFaB7MTu5KSknpLHuTm5sosNiGqqW8JsaW/LSUtLQ29Xq/OMjW1hrVmfn5+zJ49m/Dw8GY5v16vVz8YysSJ1kej0aitdjn6HDyCPdChIxhJwoVobcxO7EaNGsVnn32mPtdoNBgMBt566y1uvvnmJg1OiLak9sLo9S4hZjDOHkxPT6esrAwnJ6dWV5TYEqqqqrjhhhsICgpq9d3S1srUkpqYmEjwBOPXobTeST9CWCuzB7K89dZbjB07liNHjlBRUcFzzz3HmTNnyM3NZe/evc0RoxBtkmkJserJnWn2YEBAAAsWLCA3N7fVrA3bGCUlJcTExNC/f/8mHQdnb2/PmDFjmux8oukFBwcTFBRE9+7d8enmw7EPjzHaf3SzF60WQpjH7N8offv2JTY2lpEjR3L77bdTUlLCnXfeyfHjx9WmeiGEsf7XsmXL1NIQWq22xuxBLy+vNlUiQlEUPv74YzZs2EBCQoKlwxEtzNnZmZkzZzJixAiCRgdh42hDUUYR2aeyLR2aEKKaa/rI7e7uzv/7f/+vqWMRot0ZHzaeRSwiiyz+dvJvhPVt/ePpGqLRaOjRoweHDh0iOjqanj17Nsl5S0tLSU1NJSgoCDs7uyY5p2heNg42BI8NJnZjLHG/xuE3QLrPhWgtrqkPKC8vj3/961/MmTOHOXPm8M4775Cbm9vUsQnRZpkWRo//JR533Kmggq5BXQH4448/WLduXZucRW4qVhwTE4Ner2+Sc8bHx/PNN9+oM4hF61ZcXMzp06cJmWRsbY77Jc7CEQkhqjM7sdu1axfdunVj2bJl5OXlkZeXx7JlywgKCmLXrl3NEaMQbUL1xCQsLIzVq1cTv8G4jJhptQlFUTh16hRnz56luLjYInFejy5duuDs7ExZWZlanuR6GQwGPD09pcxJG1BVVcX777/PDz/8gPcwbwDS9qdxKfeShSMTQpiYndjNnz+fe+65h8TERH788Ud+/PFHzp07x7333sv8+fObI0YhWr3apU0MBgPz5s4jMS4RPXriMSZ458+fJzc3t80uwaTVatUuWFMdvus1cOBAnnjiCUaPHt0k5xPNx8bGhsDAQDp16oRtR1s69umIYlBI2CJjLoVoLcxO7OLj43n66afR6XTqNp1Ox1NPPUV8fLxZ53rjjTcYOnQorq6u+Pj4MG3aNLW2l0lZWRnz58/H29sbFxcXpk+fTnZ2zcG6KSkpTJ48GScnJ3x8fHj22Wepqqoy99aEuGYNlTbJJZceE3pQppTh7OysJkPBwcFttu6jqe5eTExMk64RXf09RbRe9913H3PnzqVLly6ETjaWO5HuWCFaD7MTu8GDB9e7rFB0dDQDBgww61x//PEH8+fP58CBA2zdupXKykrGjx9PSUmJesyTTz7Jhg0b+O677/jjjz/IyMjgzjvvVPfr9XomT55MRUUF+/btY+3ataxZs4aXXnrJ3FsT4pqZSptUp0WLF170mtZL3VZ9tYm2KigoCHt7e0pKSsjJybmucxUWFjbZWD3RMqon4KGTjIld/KZ4DHpDQy8RQrSgRs2KPXXqlPr1E088wcKFC4mPj2f48OEAHDhwgBUrVvDPf/7TrIvXXlt2zZo1+Pj4cPToUW666SYKCgpYvXo1X331lVrj6tNPPyUsLIwDBw4wfPhwtmzZQlRUFNu2bcPX15eBAweyZMkSnn/+eV555RWZZSdaREBAAMuXL1eHI+i0OiYbJuOOOz1vM3Zd5ufnk5mZiUajabIZpZag0+m499576dixI87Oztd1ru+//57s7GzuuuuuNtk1bc0qKirw7O+JvZs9pRdKyTiSQcCwgKu/UAjRrBqV2A0cOBCNRlOj2+W5556rc9z999/PPffcc83BFBQUAMb6XgBHjx6lsrKScePGqcf06tWLrl27sn//foYPH87+/fvp168fvr6+6jETJkzg0Ucf5cyZMwwaNOia4xHCHLNmzVITu+9f/p6TL5+k8w2dcfV3BS631nXt2vW6EyJL69at23Wf49KlS6SlpaEoCh06dLj+oESLOXToEFu2bKF///50H9+dqO+jiN0YK4mdEK1AoxK7ppr9diUGg4FFixYxYsQI+vbtC0BWVhZ2dnZ4eHjUONbX15esrCz1mOpJnWm/aV99ysvLKS8vV58XFhY21W0IAUDBLuOHlF53Xu5ydXV1pUuXLm1ibVhzKIqCRqMx+3WJiYlqUlf7Z1y0bl5eXuj1xuXxxkwZY0zsfo5lzBJZPUQIS2tUYhcYGNjccTB//nxOnz7Nnj17mv1ab7zxBq+++mqzX0dYJwccSPkjBYCwOy4ncX369KFPnz5NOuHAkmJiYti3bx/du3fnpptuMvv1pslW0gXb9nTr1g1bW1uKiorwuNUDjU5D9qlsvDRepBantvkWaSHasmtaeSIjI4M9e/aQk5NTZybgE088Yfb5Hn/8cTZu3MiuXbvU5ZYA/Pz8qKioID8/v8Yn+uzsbHWhcD8/Pw4dOlTjfKZZsw0tJr548WKeeuop9XlhYaEsxC6aTA96YKgy4NPXB+8e3nX2X0vrVmtUWlpKSkoKFRUVZid2iqJIYteG2djYEBQURGxsLKkXUwkYEUDqrlR60nbHjgrRXpid2K1Zs4Z58+ZhZ2eHt7d3jV9SGo3GrMROURQWLFjA+vXr2blzJ0FBQTX2h4eHY2try/bt25k+fTpgbCVISUkhIiICgIiICP7xj3+Qk5ODj48PAFu3bsXNzU2tkl+bvb19my01IVovZ2dnFEVh3R3rOPvT2RrdsOfOnaNTp044OjpaMMKm1aNHDzQaDVlZWXU+fF1NdnY2RUVF2NjY0LVr1+YLUjSb0NBQYmNjiYuLI3RKKKm7UulF253tLUR7YXa5k7/97W+89NJLFBQUkJSURGJiovo4d+6cWeeaP38+X3zxBV999RWurq5kZWWRlZXFpUvGKubu7u7MmTOHp556ih07dnD06FEefPBBIiIi1Bm548ePp3fv3vzlL3/h5MmTbN68mRdffJH58+dL8iZaXEVJBfGbjC1RYXcau2HLy8v56quvePvtt8nPz7dgdE3L2dlZTcrMLVYcGxsLGOv52draNnlsovmFhhpLnaSlpRFwSwAFFBiLcZ8yr56pEKJpmZ3YlZaWcu+999ap2XUtPvzwQwoKChg9ejSdOnVSH+vWrVOPee+995gyZQrTp0/npptuws/Pjx9//FHdr9Pp2LhxIzqdjoiICB544AFmzpzJa6+9dt3xCWGu+E3xVJVV4RnsiW9/4ySe+Ph49Ho9np6euLu7WzjCpmWqx3etiV2PHj2aPCbRMtzd3fHx8UFRFD754ROWspTP+ZzBIwazevVqS4cnhNUyOzubM2cO3333XZNcXFGUeh+zZ89Wj3FwcGDFihXk5uZSUlLCjz/+WGfsXGBgIL/++iulpaWcP3+ef/3rX9jYXNPwQSGuy9kf/1eA+M5e6jCF6kWJ28v4OhNTYpeSklKjsPiVFBcXk56eDkhi19aFhoZSUFDAP/7xDxSMk4IMioF58+aRlpZm4eiEsE5mZz9vvPEGU6ZMYdOmTfTr169ON8q7777bZMEJ0ZZUlVcRu9HYEmXqhq2qqlJbp9pbmRMADw8POnXqRGZmJjExMQwePPiqrzF9P/z9/XF1dW3uEEUz6tGjB1988UWdmd6mUijVJ8MJIVrGNSV2mzdvVivn1548IYS1StyeSHlhOa7+rmqh1sTERCoqKnB1daVz584WjrB59O3bF1dX10ZPnpBu2PYjICAAf3//OgXstVqtzHYWwkLMTuzeeecdPvnkkxrdpUIIiP7RuIZyrzt6odEaP+SY1lXu2bNnu/3gc+ONN3LjjTc26tiqqip1klVbXlZNGGm1WsLDw5k6dSo///wzABo0zB08V1rrhLAQsxM7e3t7RowY0RyxCNFmGaoMxPw3BrjcDasoSrvuhr0WRUVFdOrUicLCwjorxoi2qUePHgwePBhPT082rN3ALGbRIaoDFSUV2DnLWt1CtDSzJ08sXLiQ5cuXN0csQrRZKXtSKL1QiqOXI4E3GVdq0Wg0/PWvf2XKlCktsnqLpeXl5amJbEM8PT158MEHmT9/frttwbQ2oaGh2NnZUVFRQZFNEV2DulJZWkncr3GWDk0Iq2R2i92hQ4f4/fff2bhxI3369KkzeaJ6KRIhrMWZ784A0PP2nmhtLn9ecnFxITw83FJhtZjMzExWrVqFnZ0dzz777FVnpcus9fbDwcGBxx57TB1j2fPOnhx65xBR30bR564+lg1OCCtk9rurh4cHd955Z3PEIkSbZKgyEP29cSxdn7ut8xeZn58fLi4uFBcXk5iYqBavra64uBitVouTk5MFIhTNyd3dXZ08kXk8k0PvHCL2l1gqiiuwc5HuWCFaktmJ3aefftoccQjRZiXtTKIkpwRHb0eCxhqXxcvKymLLli307du3USVA2jqNRkPPnj05evQoZ8+erTex27dvHwcOHGD06NFmry0r2oa8vDzce7rj2d2TvIQ8BrsO5gxnKC4uBowt2GBM8p2dnS0ZqhDt1vUvHyGElTu97jQAYdPD0NnqAONs2MTERHWhe2tgmiASExODwWCosz8vLw9FUejQoUNLhyZawE8//cSyZcs4c+aM2nLdB+tswRbCksxusQsKCrrioGdz14sVoi3TV+jV1Sb63ttX3W4qc2JamcEadOvWDXt7e0pKSkhLS1PXkTW55557yMvLU1ttRPvSsWNHNBoN+fn59Lu7H3ve2EMoodgja3YL0ZLMTuwWLVpU43llZSXHjx9n06ZNPPvss00VlxCtXklJCYNcBjGDGTj7OquzYS9evMj58+fRarX1dkm2Vzqdjh49ehAZGcnZs2frJHZgnBUr2qfBgwczaNAgnJycUBQFrx5eJMYmEkAA6enpNQp0p6enS4FqIZqJ2YndwoUL692+YsUKjhw5ct0BCdGWmLqaetzRA63OOLLBtDZst27dcHR0tFhsltCrVy8iIyOJj49n/Pjx6vaKigrs7GQQfXtW/f+6RqMhuWcyS2OXoqAQFhbGfffdp+4PCwtj1apVzJkzxxKhCtGuNdkYu4kTJ/LDDz801emEaPWqyqrwx59EEvG4yUPdbuqGtcaixCEhIdx11108/PDD6rYLFy7w1ltv8e2339ZZU1S0T3Fxcbz3y3soGP+9DQYDX375pbrfYDAwb9480tLSLBWiEO1WkxWT+v777/Hy8mqq0wnR6r37wrt8yIcoKHz+wOesKl3FXXfdRXp6OmCdS2bZ2dnRu3fvGtuio6PR6/VUVFRIUeJ2rqKigi+//JLdu3fXO4GmOr1eT3x8vCw9JkQTMzuxGzRoUI03Z0VRyMrK4vz583zwwQdNGpwQrVVaWhpLPl5So0Vi3rx5DBkyhJCQECorK3F1dbVwlK3DmTPG4s21Ez7R/tjZ2VFWVoaHhwdarfaKyZ1OpyMkJKQFoxPCOpid2E2bNq3Gc61WS8eOHRk9erRVzQAU1i3ySKSa1Jno9Xry8vKYMWOGVXc5KorC7t27iYqKYty4cWRnZ6PVaq2ya9oa9enTh5ycHGbNmqXWPdWg4Y6Jd/Djb8aViXQ6HStXrpTWOiGagdmJ3csvv9wccQjRplRFVqFBUyO5q94CYc1djhqNhsTERLKzs9m/fz9gHHtnbRNJrFWfPn3YsWMH3bp1w8HBgWFlwxjMYMZ0H8OPGBO7qKgomRUrRDORAsVCXIOsDVlMZar6XKfT8fbbb0v36/+YWu9TUlIA6Nu375UOF+2It7c3fn5+KIpC7969ySQTd9yJ+iYKHcYC3tVLnwghmlajEzutVotOp7viQxb2FtbgwtkLZBzOYIjNEBwxtkJFRUXRoUMHli5dyvHjxy0coeWZul2rqqqwsbGxyokk1qxPnz7q3/HE4+znzKULl+iJ/D8Qork1OhNbv359g/v279/PsmXLrjoLSoj24OTnJwHodks3Lv12CTAW3k1MTAQgMDDQYrG1Fm5ubri6ulJUVIS3t7fUsLMyffr0Yfv27YSEhJBfmM+hfx5iz+t7WDxhMQ9sesDS4QnRrjU6sbv99tvrbIuJieGFF15gw4YNzJgxg9dee61JgxOitTHoDZz6/BQAfe7rA78Zt8fGxqIoCp06dZKyPxgnUFRWVgKofwvr4enpSUBAAGlpaZw+fZpBDw1iz+t7SNiSQH5SPh7dPCwdohDt1jWNscvIyOCRRx6hX79+VFVVceLECdauXSstFaLdKikpQaPR0NOmJ4WphTh4OtD/rv4oioKiKMTHxwOXu6CsXUpKCmVlZQDk5uaSl5dn4YhES+vfvz8Ap06dwqu7F0Fjg0CB45/IUAUhmpNZiV1BQQHPP/88ISEhnDlzhu3bt7NhwwYZGC2sRjjhAAyYNQAbB2ODd1FREUlJSYAkdiYnTpwAwN3dnX79+skwDSvUp08ftFotWVlZZGdnM/iRwYAxsTPo5f+DEM2l0YndW2+9RXBwMBs3buTrr79m3759jBo1qjljE6JVccYZO+wooIDwR8LV7aYlxAICAvDw8LBQdK1HRUUFUVFRgLHu5Z133om3t7eFoxItzcnJSS1pcurUKXpN64WjtyNF6UXEb4q3cHRCtF+NHmP3wgsv4OjoSEhICGvXrmXt2rX1Hvfjjz82WXBCtBZr166lhBI+53M0aOizvw9zehsXMDcldrKygtGlS5cICgriwoULMjzDyvXv35+zZ88SGRnJ2LFjGTBrAAfePcDhFYfpMVnq2AnRHDRKI0vkz549u1FFV02VxtuSwsJC3N3dKSgowM3NzdLhiFYmLS2NwMDAGt2JOp2OpKQkAgICKC8vJyYmhqCgIKljV41er0en06EoCjk5OZSWlhIUFGTpsEQLqqqq4t///jdBQUGMHz+eSxmXWB66HBSYf3Y+HXp2sHSIQlhcU+cgjW6xW7NmzXVfTIi2KC4urs4YseoLmNvb26sDxcVlOp2xGG10dDTfffcdHTt25LHHHrNwVKIl2djY8MQTT6DVGkf9OHZ3pMeUHsRuiOXQvw8xafkkC0coRPsjK08IcRWhoaFoqNlaLQuY1y85ObnODNjg4GB0Oh3nz58nJyfHQpEJSzEldSbDnhgGwMk1JykrKLNESEK0a5LYCXEVTuVOTGWqmtyZFjB3cXFh1apV7N27l0aOaGjXFEXh559/ZtmyZcTGxqrbHRwc1CT49OnTlgpPWFhGRgaJiYkEjQ2iY++OVBRXcGLNCUuHJUS7I4mdEFdxaPkhBjOYaUwDjMuHzZkzh1OnTpGZmUlCQkKjxp+2d2VlZXh6emJvb19n0oSpDMzp06clCbZCp06d4qOPPmLTpk0A3PDEDYDxZ0sxyP8HIZqSJHZCXEF5YblaUPUUxhUnOnfujKIonDxpXFpswIABFouvNXF0dOSBBx5g4cKF2Nvb19jXs2dPbG1tycvLIy0tzUIRCksJDQ3FwcEBHx8fKisr6f9Afxw8HMhLyOPsf89aOjwh2hVJ7IS4guOfHKeiqIIOYR2IM8ShKArOzs6kp6eTm5uLra2tuuC9MHJ0dKyzzc7OTi0HYypeLKyHo6MjTz31FNOnT8fOzg47ZzuGPDYEgPfufA+NRkNJSYmFoxSifZDETogGGPQGDi47CMDwRcNrdLeaWuvCwsJkgXuMkyYKCwuveIypZTM5OVm6Y62Qra1tjefDFw7HxsGGznQmCCmDI0RTkcROiAac/eks+Yn5OHo50v+By+VMqqqq1EkA0g0LBoOBn376iaVLl3Lu3LkGj+vWrRv3338/jz76qIxJtGI5OTkkJSXh7ONMv1n9KKCAUEJJT0+3dGhCtAuS2AlRD0VR2P333QAMeWwItk6XWxvi4uIoKyvD1dWVbt26WSjC1iMhIYH8/Hzs7e3p0qVLg8dpNBpCQ0PV+nbC+kRFRfHhhx/yyy+/oCgKcQFxLGUpW9hCWFgYq1evtnSIQrR5Fk3sdu3axdSpU/H390ej0fDTTz/V2K8oCi+99BKdOnXC0dGRcePGERcXV+OY3NxcZsyYgZubGx4eHsyZM4fi4uIWvAvRHsVujCXrRBZ2LnYMXzS8xj43Nzf69OnDoEGD6tToskaHDx8GYODAgXW62xqiKApVVVXNGZZohbp3746dnR0XLlxgz549PPfycygYu+UNBgPz5s2TyTVCXCeL/lYqKSlhwIABrFixot79b731FsuWLeM///kPBw8exNnZmQkTJlBWdrmo5YwZMzhz5gxbt25l48aN7Nq1i7lz57bULYh2SFEUdr66E4Dfi39Hcag5Hqxz5878+c9/5uabb7ZAdK3LhQsX1A9bQ4YMadRrjh07xtKlSzl06FBzhiZaIXt7ewYNGgTApk2bGlzRRQhx7Sya2E2cOJG///3v3HHHHXX2KYrC0qVLefHFF7n99tvp378/n332GRkZGWrLXnR0NJs2beLjjz9m2LBhjBw5kuXLl/PNN9+QkZHRwncj2ouEzQlkHc3iIhfZwx4Z+3MFBw4cAIzlTLy9vRv1GoPBQGFhIcePH5dJFFbohhuMNewuXbpUp8Vbi1ZWdBHiOrXafqTExESysrIYN26cus3d3Z1hw4axf/9+APbv34+Hh0eNloJx48ah1Wo5ePBgg+cuLy+nsLCwxkNYr5KSEjQaDRqNhuLiYnYt2cUxjrGc5ZRRpo79URSFXbt2cfHiRUuH3CqUlpaqs4MjIiIa/bp+/fpha2vLhQsXSElJaa7wRCvl5eVFjx49cHd359FHH1W3a9AwhSkUnylWfx6lBIoQ5mu1iV1WVhYAvr6+Nbb7+vqq+7KysvDx8amx38bGBi8vL/WY+rzxxhu4u7urjysN+BbWZf+X+zm97zQb2KBuM4392bdvHzt27OCjjz6S8WHAkSNHqKqqolOnTnTt2rXRr7O3t6dv374AHD16tLnCE63YsGHG9WL9/f3VYtar7l3FYAaz59U96nHSWi6E+VptYtecFi9eTEFBgfpITU21dEjCgtauXat+PeGvEzjIQXVAt4ler2fbtm2AscXJxsamRWNsbaqqqtQxchEREWaXLzG1skdFRVFaWtrk8YnWLSgoSF2FYuvWrSiKwt3/uhsbBxs27L/8oUpmygphvlab2Pn5+QGQnZ1dY3t2dra6z8/Pj5ycnBr7q6qqyM3NVY+pj729PW5ubjUewjqlpaWxYMEC9bmCwj721Rn7o9PpKCoqAiA8PLxFY2yNTp06RUlJCW5ubuqKEubw9/enU6dO6PV6tTtXWA+NRsPIkSMB4zjNiooK3Dq70W1Wt3pby2WmrBCN12oTu6CgIPz8/Ni+fbu6rbCwkIMHD6rjeSIiIsjPz6/RnfP7779jMBjUpn4hriQuLq7OzDygRrKn0+l49tlncXV1xd/f/4ofGqyBwWBgzx5jd9mwYcOuuS6dKUE+evSoTKKwQn369MHT05PS0lKOHTsGgPck73pby2WmrBCNZ9HErri4mBMnTqhrRyYmJnLixAlSUlLQaDQsWrSIv//97/z8889ERkYyc+ZM/P39mTZtGmBspr/11lt55JFHOHToEHv37uXxxx/n3nvvxd/f33I3JtqM0NDQelvnHnvsMfX56dOn1WROWusgMjKSvLw8nJycGl3ipD59+/YlPDy83lnxov3TarWMGDECgH379lFVVUXfwX3Raur+PMpMWSEaz6KJ3ZEjRxg0aJBa1+ipp55i0KBBvPTSSwA899xzLFiwgLlz5zJ06FCKi4vZtGkTDg4O6jm+/PJLevXqxdixY5k0aRIjR45k1apVFrkf0fYEBATwxv+9gQbjGDGtVsvKlSvp3LmzekxZWRn5+fk4OjrSr18/S4Xaapjq1kVERFzXOrn29vZMmTKFzp07yxJjVmrAgAG4urpSVFTEqVOnCAgIYNmyZZd/HjXGn8eAgAALRypE26FRpA+EwsJC3N3dKSgokPF2VkYxKHw84mOiD0RzilOsOLuCnj171jjm2LFjbN26lSFDhjB27FgLRdp6KIpCXFwcgYGB6oxGIa7V/v372bJlC+Hh4UyZMoWSkhJ6uPTgFm7BCy+eOfwM/kOkB0a0X02dg1j31D5h9Y6sPELGgQw6unTkhzM/4N7Vvc4xgwcPpm/fvvWOxbNGGo2GHj16NNn5Ll68yN69e3FwcGD8+PFNdl7RNoSHh+Pv709gYKC6LYMMiigiiCB+nvMzjxx+BJ2drDEsRGO02skTQjS3wvRCtj1vLGEy5vUx9SZ1JnZ2djWGAFijjIyMGsv5NZWCggKOHz/OkSNHmuX8onWzs7OrkdQ5OzujKAqf5XyGo7cj2aeyGWM/RgoWC9FIktgJq1NSUoJWo+XxgMepKKqg87DODH1saL3HJSQkyIxNoLKyknXr1rFs2bImX66vek0zKVhs3YqLi0lISADAuaMzE5dPBGAQg/DAQwoWC9EIktgJqzSUoWjRUuJQwu2f3o5WV/dHYf/+/XzxxRfq2sTWrLCwEDs7O2xtbenYsWOTnluj0TB8+HAADh06hF6vb9Lzi7YhKyuLZcuW8f3333Pp0iUA+t7bl9R+qSxjGfnkS8FiIRpBEjthdd578T0Oc5i1rOWd8nf4ed/PdY65dOkShw8fBrimArztjbe3N48++igzZ87E1ta2yc/fr18/nJ2dKSws5NSpU01+ftH6+fj44OnpSYcOHdTVSNLT0/n0zKdqbTspWCzE1UliJ6xKzPEYXlr60uVfFEr9vygOHjxIRUUFvr6+TTpRoC3TarV4e3s3y7ltbGy48cYbAdi9e7dMVLFCWq2WmTNn8tBDD6n/z+orIC4Fi4W4MknshNWoKKlg1b2rrlrZvry8nIMHDwIwatQoq66xlpOTw549e1qke3TIkCE4OTmRl5cnrXZWytnZucbPW30FxDVo8HO17tVfhLgSSeyEVTBUGfjh3h9QYhW1+KlJ7cr2hw4doqysjA4dOlh1N6yiKPz6669s376dzZs3N/v17OzsGD16NH/605/q1BIU1qW8vJytW7dSWlrK8uXL1e1atExlKgeePoC+QsZiClEfSexEm1VSUoJGo7lqGQRFUfh1wa/EbozF28GbJU8vUffpdLoale3Ly8s5cOAAIK11p06dIjk5GVtbW7WbtLkNHTqU0aNH4+jo2CLXE63TgQMH2LdvH5s2bWLGjBnq9n2/7mO4y3CS/0jm18d/lRnrQtRDEjvRLpjKIFRP9mJjYzHoDWyct5Gj/zkKGrjzyztZ9Ooi9XVRUVHMmTNHfV5cXIyrqyteXl707du3pW+j1bh06RJbtmwB4KabbsLDw6PFY1AURcbaWamIiAhcXV3Jy8vjyJEjKIqCoigMmziM6d9MR6PVcOyjYxxYesDSoQrR6khi14bVTmKszdq1a9WvTWUQam97fMTjHPvoGBqthttW30bYnWFqAVRFUepMjPD29mbu3LnMnDmzztgea2LqBuvYsSMREREtfv3U1FQ+/vhjDh061OLXFpZnZ2fHxInGGnZ79+6tUTuxx+Qe3PKvWwDY8vQWzv73rEViFKK1st7fXO1AfYmNtUhLS2PBggXqc4PBwNy5c+ts+8/B/1CkK+LOr+5k0IODGnVurVaLu3vDq1C0d7GxsRw/fhyAyZMno9O1/FJOOTk5ZGRksGvXLrWmmbAuYWFh9O3bF0VR+O9//0tVVZW6b/ii4QyeOxgU+P7u70nYmmDBSIVoXSSxa6PqS2ysqb5TfWUQDAZDnW0KCl/qv6Tfvf2u2KqZk5PDrl27qKysbJZ424rS0lJ+/tlY1y8iIqLGUk8tadCgQXTs2JFLly6xa9cui8QgLG/ixIk4OTmpP58mGo2GySsmE3ZnGPoKPd/c/g3Ju5MtGKkQrYckdtW4u7u3mW5Na6vvVLvbub4yCFqtts5kB41GQxZZQMOtmoqisGXLFnbs2MGmTZua7yZaOUVR2LhxIyUlJXTs2JExY8ZYLBatVssttxi72w4dOkRubq7FYhGW4+TkxOTJkwHYs2cPKSkp6j6tjZbpX08nZGIIVZeq+GryVyTvaji5s/ahK8J6SGJXj7bQrVlfYlO7bEd7UrvbefPmzTXKIOi0Oh4IfICpylS1nEnt709DrZpnzpwhISEBnU7XYrM/W6Pjx48THR2NVqvljjvuwMbGxqLxhISEEBwcjMFgYNOmTTID0kr17t2bfv36oSgKP/zwA6WlpWqSZmNvw8B/DqTbzd2oKKrg8/Gfc/an+sfcWfPQFWFdJLGrhykBaKpPd83xSTEgIKBmYlOrbEdLuNb7aszrqh+za9euerudb7vtNiL3RrLk1iUsZCHBicEMdxtOP/oB8Omnn9ZJBmq3al66dEltpRs5cmSzrazQ2mVkZPDrr78CMHr0aDp16mThiIytrbfeeis6nY64uDjOnDlj6ZCEhUyePBlvb28KCwv56aefWLNmjbqv/6D+lN9VTs/beqIv1/Pt9G85uupoo95DrGXoirAuktg1oHql/ev9dNdcnxRnzZqlfl27bMeVmJtYNXTMtd5XY15X/ZjRo0fX2+285pE1rP/TevSb9LgZ3Ai7M4z5UfM5qZxEURTGjBlz1VbNbdu2UVJSQocOHRg5cmSj4m9vSktL+fbbb9Hr9fTo0aNVfR86duzIqFGjAOP/cWGd7O3tueuuu7CxseHIkSM88cQT6j6DwcBjCx7jxvdvZNCcQSgGhY3zNvL8xOfVYxp6D2mvQ1eEddMo0r9BYWHhVWdBatDw2pjXOBNzhtyqXCaNn0RA5wDsXOxwcHHA3tUeB1cHNHYa7p55N0UVRfy25Tc8fTzp2btnjTcVnU6nJo4xMTFNvhZpWloacXFxhIaG1tuC98EHHzB//nzA2F25atUq7r33XlxcXNSYtm3bVueYOXPmqOd2cXFh+PDhde4rKipKXTUgJiaGzp071zivk5MTgYGBdV6XlJSkxpqWllbnmNo0aFjEItxxp/v47ox+dTQBw698r6ZWTVMCnJycrH7ynz17tsUmClhafn4+X3/9NZWVlcydOxcHBwdLh1SDXq/nzJkz9OvXz6oLRgs4duwYy5Ytq/HBz+Tbb7/F29ubi79eZP87+1nK0jrLB1ZX+31HCEsx5SAFBQW4ubld9/ksO4imDVFQ+O3339jPfhQUtn6+lalMZTCDaxx3jGMkk4yCwrCbhhFBBAbqflI06dWzF3eH3M3IbiOxcbLB1skWW2dbbJ1ssXexx87Fzpg0ujjg4OaAo5sjDq4OOLo74uzhjJOHE7YOtuovvPqStuoteQ3Nps3KyrocU69eNeKtfsyLL74IGLvJ6uvm/OCDD9TnYWFh3HfffTWeP/XUU/V+ct6/fz8dOnQgNDS03okhYEzmFIxLgt1uczuj7hvFkEeH0CWiS51jTWbNmqV+P6KiotQkWlEUtQt20KBBVpvUAXh4eDBnzhyKi4tbXVIHxl/A/fv3t3QYohUYNGgQo0eP5rPPPqvx/qPRaLj77rsB4/ve7Dtmo6y/clJX39CVkpKSGh9Em/pDtxAtQVrsuJwtB7sHo0PHk48/yfzX59d84/jfgPzqnwA1aHih1wsYygycLzmPTaUNH+V/VOdToikhaYip9Qkgl1y88MKd+lsQCyioe4wWsIVCm0LeK3mvToz/r///w9vNGxt7G+JL4nn/wPt1Y6gnUTP3GFO355Va2uo7pvp5NWiY3nU6P6T8UOc+HuRBUknlr3/7K7cuvBUnb6crxns1BQUFbN++ncmTJ2Nvb39d52qLzp8/T8eOHS0dhlkqKirYtm0bI0aMsOpag9bMYDDw73//m4ULFwLG9xRTwXGT+t5ntBotv//yO4qjQkhISKN7Mxo7xEWIa9XULXaS2FH/N7V2F96TTz7Jv/71rzqvXbhwIe+/b0yUGkp8Hpn5CB999tEVj7m1761sPr1ZbZG6K+QuPIo9KKgoINA1EDe9G4fzD/Nz8c/qMbVbDBNJZC11uyhmMYsgggBjYni1LgpzVG9Fu9HhRvaW7b3qa27kRrXls6FzjmMc29iGgoJWo+WVv77CM/94BkdPWUO0KRw/fpyff/6ZW265pU3NBP7xxx+JjIykS5cuzJo1yyLFk0XrkJaWRnx8PIcPH+a5556rs7/Ge/P/3i+Huw7npr/dxPCFw9HZ6eqc72rDRIRoDpLYNYOGvqmmNw7TYPvaP/SNaaEyvTEAxMfH4+zsXGds2tVasbRaLf/85z954YUX6rzpnDx0Ek8nT0oLSklOTGb8/eMxKDU/pX742Ie42bhRWVpJ5aVKfj/zO18d/0pNyCZ1nsSv6b822NJYO9Gqvn8Oc6ikEi+8AK6aNNZondTlUmJbwvdl39c5bva02fiE+FBQVICfnx8dOnTAxsYGW1tbbGxs1Eft57W31d5fWFhIeXk5wcHB9Z7LWsZwbd++nT179jBixAjGjRtn6XAaLS8vj5UrV1JeXt7mYhdN7/jx43z++ecsXbq0xgfm2u+7rpdcOfbyMTIOG5cm8wrx4qaXbiL4tmDcPIzv+WvXrq0xIc1kx44djB49utnvRVgvSeyaQWO/qY1txTOpPVjfZPXq1cybNw+9Xt+o84Axuasvgaz9plM7xmXLlqnPq48ZqZ60BgQE1DvJYMKECcTHxxMcHEzHDh1ZsWwFzy5+Vo3n5WdfZsq4KVSWVVJZbnz8tOknln2+zHiMRsuI8BHsObJHbXmbeddMboy4Eb2tniqligsXLvDaa6/VGS+zaNEii3S16XS6RieJV0s0G5OE2tjYoNPp6i2u3JwUReHs2bP06tWrzSWzZ86c4fvvjR8Gpk2bxoABAywckbCUvLw8Pv30U5KTk1m2zPi+09D7rmJQOPnZSba9sI2S7BIAzvqc5ZucbwDUn4P6EsTaLXZXm6AmhDkksWsG5nxTr9aKp9Pp2L9/PyUlJQ2O42jMeepTuxv3Sm86pnP//PPPjR4zUjvZa6pjrvaa2knl8uXLmTFjBlVVVVRWVlJVVaU+qj+/0r7a2yoqKsjJyaGqqgqtVouDg4N6zNW+7y1Bo9GoSV59iV9D2xp7vFarJSUlheDgYBwdHes9zpRgtgVbt25l3759aLVaZsyYQXBwsKVDEhZSWlqKo6Mj6enpV31vAigvKufwisP8+uav/DP/nzV7Iaq9x1ZPEKsncua8pwrRGJLYNYPr+aZeqZzGtZ6nvsHAOp2OV199VZ2V2phrtaUxI41JGK+VXq/n22+/JTY2FicnJx5++GE8PT3V/QaDwezE0ZyksqH9rSGhrE2r1TYqoWxoW33JYu0ktPa2hr6+UiumaRWCM2fOYG9vz4MPPoivr28Lf7dEa1NVVcUPP/zAiBEjrvo+suXXLUyYPKHO9rlBcxkwaQA33XcTfUf0rfHebE6rHkjLnmgcSeyawfV+U5sqKal+ns2bN9forq3+ybGx19qxY0e9631a05iRqqoqvvvuO2JjY9HpdMyePbvVvMEaDAb0er2a6FX/+nq2Vf/a1FJZXl4OgIODAzY2NjWOa81vAVdL/HJzc6msrCQgIAAnJyd1vylBbWwSae7Xba372lqYxo7qdDomTZrEoEGDGvy3qu+Db/X6mADaYC0vJ7581Z+RHTt2EBISUiOJq/1hffny5fUOi2ltJBlteZLYNYOm/qY2letNGNtSi11zMBgMfPPNN8TFxWFjY8M999zTbtfSrU9KSgo//PADhYWF2Nracuedd9apUagoSp0EsykTzep/N+brtvJ2pNVqG50MmpLQ6s8b2tbQo7HH1j6upcduWlpFRQU//PCDulrOwIEDmTRpEra2tvUeX3u887K3lzHEdgjRP0STsieFhKqEeisNVFe7N6WhyW61J8Q1tgu3JWvrtXS5l9aWRFqqjqEkds2gtSZ2TaH2G9e1dhW3VTt27GDfvn3cd999VjMOS6/Xs3v3bnbt2oWiKHh5efHnP/+5Vaz/ejWmJNPchND0d3Z2NgaDAXd393qPNXW7m3uN1tht3ljXmhReb1JZ377G/m1azvBaKIrCnj172LFjB4qi4O3tze23306XLvUXMm/oA3R5YTn71u1j7LyxdT5wVK8YcJv3bfx88ecaY/W0Gm2N6gT1aezEjGtNtsxNmq63IcDc611PEtlcCWFjY2rq60ti1wzac2IHzTt+rTVSFKXGWJj8/PwaY+ras5SUFDZu3Mj58+cB6N+/P5MmTbKKAswZGRl8+umn6PV6xo0bR0RERJO1VimKck3JoOn51R71HdvY19c+rr0wNxms/felS5dIT0+nqqoKAF9fX7p06YKtrS1arbbR5/n222957bXXjDFptMwdOZeuRV1JjEvEpcSFXHLrbdW7WmF6gE9f+ZSQkBDS89LpGdaT7fu388zfnlHvv6EyV1dLCK9lgseVhu7U7maundisXr2auXPnYjAYGnW9KyWRwBWTpvquNWHChDqvaarEdv/+/RQXF18x0b7e60ti1wzae2JnLRRF4fjx45w4cYIHHngAOzs7S4fUYgoKCti5cycnTpwAwMnJiVtvvZV+/fpZNrAWVFVVxS+//KJ+D/r06cPkyZNxdLSeotamrvXrTSqbK/ls6O/WrqCggNzcXLy8vC6XYVKAYihILGDpj0vr1Pisr/ZndY05piEPBDyAq4MrPi4+eLt5c+D8Ab6O/lo9T+2kUqvR8u85/8bHywetrRadrQ4bOxt0djp0tjp0djouFl/knufuqVkHVavlqXlP8e7Kd9VEatrkafy44Ud1/5JXlvC3V/521YQILic758+f55577qlzX9WLSje0JGadcZH1dHED9SaaV0q2Gkpsq38vGupi12g0Na5VXl5uVmItiV0zkMSu7SssLGTDhg3Ex8cDMGbMGEaNGmXhqFrG9u3b2b9/v/oLcuDAgYwfP96qEhoTRVE4fPgwmzdvxmAw4OLiwuTJk+uMLRStS/VktDn+zsnJITY2lrKyMsD4wadTp064u7s3ybUPHTrE+vXr1d6CqVOnMrj3YAqyCsjNysXL1ouE5AQ2nNpwuei79zi2Xbx6Uldfy9/VisfXZxaz8MKrxpKUtZeoPMYxNrDB7HNfKW4NGqY6TAUtbCjdcNUC9rUT5IX9FlJJJT7OPlwov8Dy48uvel2gTmI74+YZfP7758ZjNBoW3bOIG/reQGZuJl39u6Kz1TF90fQrdqE3pou9vgUHrtalLYldM5DEru2qrKzkwIED7Nmzh4qKCnQ6HWPGjGH48OFtpibb9frpp584efIkgYGBjBs3ziq6268mNTWV//73v1y8eBEwdknfcccdFo5KWFJVVRWHDx/mjz/+UGeJ33fffU02QN405KV79+506tSp3iQwNTWVhIQEAgMDiY+P5+67777iObVaLXPvm8uqr1dhMBgaXLO8McnhlMApbEzeqCZbg9wHcbzguPr8ds/bCXcIp6CigIuVF/HEk9zKXNZcWnPVe29sDFdKUCOIYB/7GnxdUyWaDZ17KlMB1MTWnPM0xiyHWQTbBYMWNDoNaKFQKeSi4SJeHbx4J/YdSeyakiR2bdOxY8fYuXMnRUVFAHTu3Jlp06bRoUMHC0fWfE6dOsXRo0eZMGEC/v7+AJw/f578/HxCQkKsagbk1VRVVbFz50727dvHqFGjuPnmmy0dkmgFSktLOXjwIImJiTz44IPqz8zZs2dxcXGhc+fOLfJz1FC3olarrTPZzZQ05uTk1NuFWbt4fe3zvPHGG3W6EGurr1Wpvhjre93L//cyr77+Knq9vlGtWiYvz3sZN0c3Onl2Qq/XM3PJzCvOjNdqtPw5/M98f/R7DIqhwSTrWpIvDRqe7vA0ikEhtzIXG8WGj4s/NruLvb7r115+s3brqEmT5SCKUAoKChRAKSgosHQowgzr169XXnnlFWXp0qXKqVOnFIPBYOmQmlxhYWGN+/rhhx+UV155RdmwYYMFo2pbsrOzlUuXLqnPY2JilC+//FKJi4tT9Hq9BSMTllT956qqqkp56623lFdeeUU5d+5ci8Xw8ccfKzqdTgEUnU6nfPzxx0pqaqqyY8cOJTU1tc7xqampilarVTCO8FNf9/bbb1/xPL///nuN1zT02LFjx1VjnDVrVp1rmWLbsWOHcujQoToxarXaeuOufY/Vr1X7+OoxVr+3+r6Htbe99dZbDZ7vSvdf37kVRVFSUlKUbdu2KefizikfLP+gxjHvvvGu8q8l/1J02sv3MfWWqZe/FxqtsnD2QkWrqRtPU+Ug7abFbsWKFbz99ttkZWUxYMAAli9fzg033NCo10qLXeulKArnz58nPj6eM2fOcOutt6plC7Kzs0lKSiI8PBwbGxsLR9o0CgoKSElJITU1lZSUFLKzs5k7d65aqiQ1NZWkpCQGDhyIq6urhaNtmz7//HPOnTsHgLOzM2FhYYSFhdG1a9d28/9ImKe4uJjNmzeTlpbGggUL1GEcmzdv5vz58wQHBxMQEICfn1+TT8oyt2pBQyWsrnSexra8XWkFDXOWiawvRqBRpbdM53Z2dmb48OGNnhFcO57a26rH1NDqTo0999W+P1e7j4bWfpeu2GrWrVvHzJkz+c9//sOwYcNYunQp3333HTExMfj4+Fz19ZLYtR56vZ7MzEzS09NJT08nKSlJ7WoFGDp0KJMmTbJghNdPURSKi4spKCjg/Pnz5OTkqI/i4uI6x0+ePJkhQ4ZYINL26eLFixw6dIjIyEguXbqkbtfpdISEhHDvvfdaMDphSaaZjSbLli0jLy9Pfa7RaOjQoQP+/v506NABb29vOnTogKenZ4t+KLiWEla1k60HHniAL774otlqnDYm2TI35uuNsTGrOzW1hmbb1pfcSWJXzbBhwxg6dCj//ve/AeMPZ5cuXViwYAEvvPDCVV8viV3L0Ov1lJeXU1JSQnFxMUVFRRQVFdGxY0d1AHNBQQFLly6t8TobGxsCAwPp2bMnvXv3xtnZ2QLRN0xRFCorK9VlrMBYwTwhIQGNRlOj5Minn35Kenp6gyUeNBoNnTp1okuXLnTt2pWuXbuqldBF09Lr9SQmJnLmzBkSEhIoKioiICCgxpv7J598gqIoeHp64u7ujqenJ66urjg5OeHq6irvF+2YqbcgISGB5ORkMjIyanzIrE6j0eDs7IybmxsjRoygd+/egLElMCUlBVdX1xoFkpVqtTZbkrktb61Bc8bYEvffUH08U+kUUwuiwWBoshykzfc7VFRUcPToURYvXqxu02q1jBs3jv3795t1rnXr1uHk5FRne4cOHdRkorS0lJycHAACAwOBy28ApaWlDBw4UP1FnpSUxK5du2qcq3oeXb0mUllZGRkZGQAEBASg0+lQFIXc3FyKi4sJCwtj2LBhAGRlZfHbb781eF4PDw+1IG9lZSWpqakAdOrUCVtbW7Vob2FhIcHBweqnicLCQr799tsGz+vq6krHjh0BY/KcmJiIwWDAy8sLnU6HXq+nqKiI4uJi/P39ueuuuwC4dOkSb7/9doODYr29vUlOTlavZ29vj5OTE927d1e7yM6fP09kZCTR0dE1Wq9+//13Kisr6z1v7fhN+vTpo77JXrhwgcOHD+Pq6srIkSPVY3777TcKCwvrndlWWVlJRUWF+jBd/5ZbbuHGG28EIC8vj/Xr1+Ph4VEjsTOdR6PR4OrqipeXFz4+Pvj6+uLj44OPj49V1d+zJFMLXUhICIqicPHiRUpKStT9lZWVpKWloSgKaWlpdV4fGBjI7Nmz1ecrV67EYDBga2tb42FjY0PHjh1r/P/avn27+mHAtOyX6W83NzcGDx6sHnvw4EF1Fmdtzs7OhIeHq8+PHj1aoxWyOgcHhxo/OydPnqxxv9XZ2toydOhQ9fnp06cpLCys91itVsvw4cPV51FRUeTn59d7LKD+jIBx2SbTzOX6DBs2DJ1OB6DWP2vI0KFD1aXDEhISyM7ObvDYwYMH4+DgABjfp03vvfUZOHAgERERgHGCRUxMDEVFRZSUlFBaWkpJSQl6vZ7i4mKKi4vV94P09HSOHDnCiRMncHV1rfE92rNnD1VVVer/D41Go7Ycmf5PmP4/aDQaPDw8GDJkCCEhIeTk5HDq1ClSUlKws7OrsaJOSkoKLi4u6u+xS5cuqd/f6omk6XeCt7c3vXv3JiAggNzcXE6dOkV6ejparVb9/QbG3zmmDzNg/H11pe+vp6cnPXr0oHv37hQVFXHi/7d353FR1XsfwD8z7AgMIMuwb3IlExTUyDJUNNy6LabZk3VR0bSwq/jYzW5XTEutW4/aYmqpaIu3krzZ7ZapqPVUalguWYqCKAoMgsgiKiDze/7gmXM5s8AsZ+acmfm+ffF6OTNn+Z3fdr7nd7Zjx7h1xsTEcGmpra2Fm5sbtx9sb283WBZVVVXw8/NDnz59kJSUhJs3b+KXX37hHmocFRXF1RXNNgcGBgLoPIjT14Y1GhsbcfXqVSQnJ6OjowOHDx/GxYsX0dHRgfDwcK5PbmhoQHt7O7cfZIxx+y59vLy8EBsbi3fffZd3GnjGjBlITU1FYWEh6urqeAcDQrD7wK6urg4dHR0IDQ3lfR8aGorTp0/rnae1tZXXUWo6rHPnznGNvSvNs9G0lZWV6Xzn7e3N7cgrKytRXl5uMO2aCqlNX0WRy+VcYHflyhVUVFQYXK6mAWnTV7Fv3brFBXYtLS2orKw0uFygsyPWpq+Bdz060QSThly5cgU//si/zb21tRXx8fFcp1VXV4eDBw8iLi6Ot3MqLi7mnk1lrKCgIC6wa2pqwk8//YSQkBDejresrKzbHY4+bW1t3P99fX0RHx+vc/R1//33w9XVFX5+flwnRMSnOcXW9Y5qFxcXPPnkk6ivr8fVq1fR0NCAhoYGXLt2DdevX9cp29raWoMjsbGxsbz61V0AFhERwQvsfvzxR4NBVXBwMC+wO3ToEOrq6vROqwkONA4fPozq6mq90/bq1YsX2B05csTgDszNzY0XtBw9etRgnwnwA7vjx4/j1KlTBqcdMmQI105+++03HD9+3OC0AwcO5AK7U6dO4eeffzY4bb9+/bi+/syZM90OAiQmJnKBUnV1NfcAbH2ysrIQFxcHACgvL+embW5uxp49e3Sm7+6gtKuamhrExcV1vqWishI//PAD95u+/ZCxNPu82NhY1NXV4dtvv+V+07xv11wdHR1ISEhAY2Mj9u3bx31/9uxZi5bb0tKCpKQk3Lhxg5enli63vr6eC+yEXG5lZSXmzp2LMWPGYMmSJVAoFFAoFPj+++8BACEhIYiIiLBoHdrsPrAzx8qVK7F06VKd7wMCAniBneaoonfv3tyI3Y0bN1BbWwuZTIbo6Ghu2traWty4cYNXQNo7Cm3+/v7czqGtrY0LkLSPPJqbm3lHT/7+/nqvHdSk18/PjzsCunXrFtd5R0ZGckcemh1V16M9zUM7DfHx8UFAQAD3lO3KykouHzSBSmNjI1QqFfcoDqBzB5mamsq9HF07vYZojraAzh3YXXfdxfsO6Dyi17wyyBDt9XTdRn9/fwwbNkzndGdGRgba2tr0vmbIzc0N7u7uvD/N6IyGQqHAE088oZMWzZEekT65XA6lUgmlUmnU9NnZ2Whvb9f5u3Xrlk4QeOedd6KtrY33pgi1Wg3GGPz9/XnTJicn6wSBmgMl7RtobrvtNoOnC7UfWJ2YmGjwGmTtUeOEhASddGloH6DExcUZfblETExMtyPUXa93M/SuV33piIyM7LZf6LrOsLAwDBgwwOC0XfcJSqWy22mTkpK4sg4JCTE4bXt7O9LS0uDr64tbt27hwoULKC0t5dWDrn8xMTHcPiAwMBC33XYb6uvr4eLiwutTLl++jMDAQC7/r1271u3IWlBQELfP8vPzQ79+/aBSqSCXy3n7ssuXL3Mjdowx3Lx5kztzpY+/vz93atPb2xv9+/fnBg2ioqK4Prmurk5nxM7QwYYmjbGxsQA6y3DAgAHcIEdERARXB65evcq9JxvoDDK7G7To1asXEhISAHTWuQEDBnCXzHS9YaaxsRHt7e3cfp0xZnAgBeisO5p9bGRkJB544AFUVlaivb0dISEh8PT0tMpNcHZ/jV1bWxu8vb1RWFiIBx98kPs+OzsbDQ0N2Llzp848+kbsoqKi6Bo7QgghhNiU0Nf52/2j+d3d3TFo0CAUFRVx36nVahQVFXHXRWjz8PCAn58f748QQgghxN45xKnYBQsWIDs7G4MHD8Ydd9yBNWvWoKWlBdOnTxc7aYQQQgghNuMQgd2UKVNQW1uL/Px8qFQqDBw4ELt27dK5oYIQQgghxJHZ/TV2QqDn2BFCCCFEDHSNHSGEEEII0YsCO0IIIYQQB0GBHSGEEEKIg6DAjhBCCCHEQVBgRwghhBDiICiwI4QQQghxEBTYAdzrxbq+ZsyZtba24sUXX6T8+H+UH3yUH3yUH7ooT/goP/goP/iEjkHoOXYALly4gNjYWBw+fJj38npn1dzcjH79+uH333+3yguK7Q3lBx/lBx/lhy7KEz7KDz7KD76qqiqkp6fj/PnziImJsXh5FNgB2L9/PzIzM8VOBiGEEEKc1L59+zBy5EiLl+MQrxSzVHx8PADg4sWL9OYJQgghhNhMU1MToqKiuFjEUhTYAfD29gYA+Pn5UWBHCCGEEJvTxCKWopsnAHh4eIidBEIIIYQ4MaFiEQrsCCGEEEIcBAV2hBBCCCEOggI7QgghhBAHQYEdIYQQQoiDoMCOEEIIIcRB2H1gt3LlSgwZMgS+vr4ICQnBgw8+iJKSErGTRQghhBBic3Yf2H377bfIzc3FoUOHsGfPHrS3tyMrKwstLS1iJ40QQgghxKYc7pVitbW1CAkJwbfffouMjAyj5mlqaoJCoUBjY6PdPaD40qVLOHv2LBITExEZGSl2cojIqD4QQoh9EToGsfsRO22NjY0AgMDAQJFTYn2bNm1CTEwMMjMzERMTg02bNomdJCIiqg9E6i5duoT9+/fj0qVLYieFEIflUCN2arUa999/PxoaGvD9998bnK61tRWtra3cZ8172moqauxmxO5S5SX0Te4LtVrNfefi4oLTJ04jMoJGapwN1QcidVve34Lc+blQq9WQy+VYu2Ytpv1pmtjJIkR0TU1NCI0OFWzEzqHeFZubm4uTJ092G9QBnTdcLF26VOf737b/Bh8vH2slT1BHSo7wduIA0NHRgb3v7cWgPwwSKVVELFQfiJTVXK1B7t9yoWaddVStViN3fi4imyMRGhBq03RcvHwRUSFRNl0vId25duOaoMtzmMBu7ty5+PLLL/Hdd9/1eG3R888/jwULFnCfNSN2rl6u8AzwtHZSBdEnsQ/kMjnXUQKAXC5HQp8Eu9kGIhyqD0TKaqpqeHUT6AzuLt+8jJiAGJukYcf+HVj23jKomRpymRz5s/IxceREm6ybkO7cxE1Bl2f3gR1jDM888wz++c9/4sCBA4iLi+txHg8PD70v23X1cIV7L3drJFNw0b2isSx3GfLfyedObSx7ehmio6PFTppTU9WpcL7qPGLDY6EMUtpsvVKpD2JtP5G2PvEGDjziEmzS56rqVFxQBwBqpsayjcsw4s4ROvWU6jCxNdfrwoZiZi/tiy++MHmee++9F15eXuauUq/c3Fxs27YNO3fuhK+vL1QqFQBAoVAIvi6pmZQ1CcPShuFC9QXEhMVQJySywt2FyF+bz40ILMtdhklZk2y2frHrg9jbT6RLGaTUe+Bhqzp6vuq83hHDC9UXeGmgOkwcgdk3T8jlpt1QK5PJcPbsWcTHx5uzum6Xq09BQQGmTZtm1DI0txr/uOlHBAY7/t20RHiqOhUyczJ1RiT2bdznFAG3s28/MY6qTiXKgYcx9ZPqMAHEGbGtr63HXTl3SeNxJyqVCmq12qg/b29vixOrD2NM75+xQR2xb6o6FQ6dOARVnUrUdHQ3IuAMnH37hSaVei00ZZAS6cnpNg+UNCOGmgEJfSOGVIdJ4e5CZOZkYtrfpiEzJxOFuwvFTpJZzD4Vm52dbdKpzscff9xuHiVC7IOUTpvEhsfqvYYoJsw2F4aLzdm3X0hSqteOpKdLFagOOzdVnYprd0DndZj57+RjWNowuxuxNXvErqCgAL6+vgCAa9d6vlV33bp1CAoKMnd1hPAYaoRijXAYMyLgyJx9+4UitXrtaLobMaQ63MlRR4t74kgjtoLciqFQKPDpp5/i4YcfFmJxhPTI2IuhbUnsmxfE5uzbLwQp1mtnYmwddtQ7Z515tNiUEVupl78grxRjjGHDhg24++67MWzYMMyfPx/FxcVCLJpInFhHd5pG2JUUTpuIdQ2RVDj79ltKqvXamUZxeqrDjnIdljZnHy02dsTWHspfsHfFHj16FGlpaRg2bBh+++033HPPPVi4cKFQiycSJGYFp9Mm1uVMO3Kxdc1rKdZrQ+3cGeuIIwc/YpyKlFodmpQ1Cfs27sPW5Vuxb+M+ndFKeyl/wZ6Kt23bNtx7773c5xMnTuCBBx5AREQE8vLyhFoNkQgpXGhKp/6sw5lPx9iaobyWSr021M4brzXif7b+j9PVEUc+VW7rm0ek2s8og5QGy9Jeyl+QwC4wMBBRUVG871JSUvD2228jLy/PbgK7Wzduob2lXexk2IWyc2V6K/i58nPo7dW7x/lVV1SoUFUgWhkNZW/zG0Rvr97oHd+5Pio7y6mu6N+RpyelW1ROzqq7et5TXkuhXhtq569vfR2aR6A6Ux2J8I/QG/yEK8Ltvv/p7dUbS2YtwdKNS7mHSC+ZuQS9vXoLvm322s9Yq/xv3bglRPI4ggR2AwcOREFBAV599VXe93369EFFRYUQq7CJSwcvodG3Uexk2AX5NTlkMhm6Pt9aLpNDVi7D+drz3c67+9RuvP3d22CMQSaTYW7GXGTdlmXlFBNjnKg8oXdHXvxNMZIjkkVKlX3qqZ7bQ17ra+cy8D8D0ku3NeVm5GLtd2u5kabce3Jx8+RNnMd5nWnrrtWhqrEK4YpwBPkE6XyWmjR5GjY9tgnVjdUIU4QhSB6E89+eF3w99lD3DTGl/I3V3NwsXAIhUGD38ssvY+TIkaiqqsLTTz+NlJQUtLS0YMWKFUa9u1Uq5B5yuPvYx7tibaG2uRaVVysRERCBYN9g3m/hPuGYnzUfb+x+g6vg87LmIVwZ3uMy1363ltsxMMaw9ru1SE9K11mHKekhwogJj9E9IpXJER0eTW3DBMbUc3vIa33tfEbGDGz+brOk021N9w25D+lJ6ai6WoXwgHCDfdGuX3fx8m1Uv1Eo+r2I11+OTR5r1Dpt2feF+4T32I9byh7qviHGlr8p5G2C3e4AQKDA7s4778ShQ4cwb9483HPPPVxn5unpie3btwuxCptwcXOBq6ewL+OVqtqmWlyqv4TIwEgE++lWzK+OfoXVX63mOqG88XkYnzqeN819Q+5Det90VNZXIiIwQu9ytKlUKt0jNaZGTUsNwoLDDKaxuKy4x/QQy4V5hiFvfJ5OXmuXjbX1VD+Fnk9oxtRzS/PaVtuqr50rfBSi1xExhXmGdbu9tU21XFAHdJb9nt/2cL+rmRpv7H4D6X3Teyw7Y/pieyOVfsZcPZU/YFr7dHFzETJ5wt08MWDAABw4cACXL1/Gzz//DLVajfT0dHoosQT11FHUNtVyvwOdndDqr1ZjSMIQnQoa7Bds0k4lMjBS75FaRGCEwTTK0Pk+YIb/XNNjKD3EcuNTx2NIwhCTAnZTCHFQoY+UdoDG1nNz89rYbRUq+NNu59auI/buUv0lncBem5qpUVlf2W3emdIX2xtHrkNi90XCjv8BCAkJwbhx4zBhwgS7C+quXLuCo+ePorapVuykWI2hjqLrNuvrlDSdkKWC/YKRNz6Pe1aXptJ3bdTaaWT//8/Y9NQ21ZpcjubM48iC/YIxMHag4J3tV0e/wmNvPYaFHy7EY289hq+OfsX73Zj62XVaTZmZMp8tGFPPu05rSl4bu62G8lqoum6tOuIINIF9d/QF+tos6YvtoU8ztw7ZcttMXZcU+iKzR+xOnDiB/v37c89b6slvv/2Gvn37wtVVuqc653w0BwCsEmFL5RRRdx2FJl3GjjaYq6cjNWOOdg2lx5wjJWsfXUml7MVmzOiDMfUT0C2zh+942Kj5TEmrpWVmrREJY/LIUF4332zGxn0bJTGq6cg0gX3XOjq6/2jsPbmXl/c91Qlz+2KxR4ysyZbbZs66jO3DrMnsKCs1NRUqlQrBwcYldOjQoTh27Bji4+PNXaXNCD3cLaVGZkxHoa9TMqYT0tDeKerbSXZ3CldfGmWQQSaTdZsec05bWPtUhxTK3pggxRbBp1AHFfrKrPBwod67tM05GBGyzEy9VMEYxuSRobx+r+g9uqTBRvQF9jNGzjAp0DenL3bk07eGti0+JB432m8I2n+Zko9d+09rD4wYw+zAjjGGxYsXw9vb26jp29razF2VKISKsKXWyIztKIS69kffUWpPO0lDaewpPeYcKVnz6EoKZW9MkGKr4FOogwp9ZcbA8Ej6Iyg8XMibDwCOnj9qdIcvhTLriTF5ZOjgyNAlDVLZNkejHdibE+ib2heLNWIk5sHh3IK5YGCC9l/mnj3IG59n0cCIEMwO7DIyMlBSUmL09EOHDoWXl5e5q7M5uUwOTzdPk3YK+khhWFaboY5Cu2Hq64S6a7z6doq7f93N/W7KTtJQGrubz5wjJWseXdmi7E0tD+38t2UgY+lBhWZbvdy89JbZxDsmYuIdE7n5isuK8dhbj9ndaRR9tMu5p529vryeOXImNu7fKOpIgr0Se9TblIBQjBEjIQ8Ou8tHfdsGWOfGOnPPHqz+ajW2PbMN257ZJtqNIWYHdgcOHBAwGdKgOaLVjDQ9s+UZiyuqFIZl9dHuKIQY2RHqTjBDaTRmelOPlCw97dwda5e9OeWhnf+2DmSMHX3oqX52d72S5vS/OQGrFNuroXLuqX3oy2tfL19RRxKMJVSQJMRypDTqbQxr9mn6CHlw2FM+am9bd6PQACwqe3PPHmjWL+aNRdK9k8FEa9euxWuvvQaVSoUBAwbgrbfewh133GHSMtZNXYcWWQs83Ty5oA6wrKLaupGZQ6iRHUNHU11Zeydpzilka13kbs2yN7c8tPNfjEDG1IBd37buPbkXb017Czfbbxp9A44xAaspZWaLU0+W7jS189oeHjEhVJAkxCNhpDbqbSxbPrJIqINDY/Ox67Zp76uBzv6rpLoEz370rMV1qKd8lOKBIOAggd0nn3yCBQsWYP369UhPT8eaNWswZswYlJSUICQkxOjl9PbpjcTgRBw9f1TQUQypd6ZCjezo2ymacyeYpcy5jsWceYxhbNmbGiSYWx7a+W8PBx6GtvVm+00MjB2odx5LOlxjLlWw1QOzrTGiaq26LgShgiRjlyPFUW9rPXtQKNp5NnPkTEGCG1Pyseu26b3kYN9Gi+uQvnXp+02K/adDBHarVq3CrFmzMH36dADA+vXr8e9//xubN2/GokWLjF5OR3sHOto6EOYbpreiKn2V6GjrMCuNgZ6BCAwP7FxPW0fnK2I0Ow6BXxFj6rKN2V5j82TM7WOQFp3Ge91K9rBs3mdz89BeaZe9tq9PfI03vunyarYx8zAuZVy3y7SkPLTTYMw0YjKnPQZ6BmLemHk6+RroGWjUtmmXWdcyMvTA7LToNMHbsjX6IimrqKnQu3P/9fyvUHgpjO7TDC3n4uWLCPTsLNfaZv3BX9dyFLJvNIY5fYEt6cuzjfs3Imd4DjZ9u8mstqZhbj5q91+V9ZUGy76jvUPw/a4Q/WdHu7BtWca03+ZsZ9ra2uDt7Y3CwkI8+OCD3PfZ2dloaGjAzp07deZpbW1Fa2sr97mpqQlRUVFYhEXwhCcA4Bf8gn/hX2BgkEGGP+KPSEOaIGmW4rKNmc+a6bYHjWhEPeoRiEAooBBkOQCwBmt414nIIMN8zO9xHc5UHuZuqxBl1ohGnTLSJxvZiIPw78a253I2Nf8N5bXmWipjt1/fcrTbVTnKsRVbdebVLkdb9Y3GpFls3eVZIAItbmvWzMfRGI292CvJdnQTN/EKXkFjYyP8/PwsXp4gI3Y3btwAY4x79MmFCxfwz3/+E/369UNWVpYQqzCorq4OHR0dCA0N5X0fGhqK06dP651n5cqVWLp0abfLTUMaEpAgyI68q0Y0chUX6Dzq/xf+hQQkWLwOS5ZtzPZaK0/EYOoOR6idq/ZyhmKozk6MgaEe9YKUmaMwd1sV///PEvWo7zGok0HGBepCs5dy1m5T5rQZBRT4I/7I68cAmNynaS9Hs/6u8wQiUOfie33laKu+UV89M7YvsDZN2brBzWCeCdHWhMhHfWXfNagDhN3vSpEggd0DDzyAiRMnYs6cOWhoaEB6ejrc3NxQV1eHVatW4amnnhJiNYJ5/vnnsWDBAu6zZsRu4IyBCAyyTuescezCMbBPdBtv+KPhGBA9QLLLtjZrnprWZurpjtrmWixbv4x7+C0Dw5eyLzFlzhST0qpvOQdxUO+DdbPmZFk9H4hxEpsT8cH6D3ind7QfmC21U2a2pt2mZgyfgS+//dKoNqPd9u/CXZjSPAVVV6tw9fpVrPhiBW96Y/u0rsvRnCLTcQKSOfWpr55JoS/QLtvRt49G0W9FksgzQ7TLvrK+Ens+2cObRkr7xvq6emCzcMsTJLD75ZdfsHr1agBAYWEhQkNDcfToUXz22WfIz8+3amAXFBQEFxcX1NTU8L6vqamBUqnUO4+Hhwc8PDx0vndxc4GLu4vFaeru4tfo0Gi91xFEhURZvG5rLtuabPmogNqmWq6TAjqvvXjjmzeQ/od0gxe8VjdX671mQ9Wsgoubi9EXOutbjqEH6yp766+7YnLWV6MpeyvNemC2s9DXpjYd2KT3MRSqZhWvbhtq+8reSih7K1HbVGtRn6ZZjiH3Db4P6X9Il0Q5GqpnYvYF+sq26Leibu9Il4quZe/i5iLpfaOLm7BpECSwu379Onx9fQEAu3fvxsSJEyGXy3HnnXfiwoULQqzCIHd3dwwaNAhFRUXcNXZqtRpFRUWYO3euVdetj6nP4RHyLhqp3qHTHVs/KsCcO9gM3WFp6i31hpaj/WBdKZaXlJ7TJQZzHpjtLAy9CUT7lJ2xD3ft2vZt0adJ6S5hqT1BwZw70qXIHveNlhAksOvTpw8+//xzPPTQQ/jmm2+Ql9f5Kp/Lly8LciFgTxYsWIDs7GwMHjwYd9xxB9asWYOWlhbuLlkhWfrMI8C6jVdqHUNPbP2AXHMeg6GvUzDnlvqeOheplpUUn9MlBikFAFJiqE3NzPxPGzH14a729uw9IZlbz6wxoi7V57SZw5nqkSCBXX5+Ph577DHk5eVh1KhRGDp0KIDO0bvU1FQhVtGtKVOmoLa2Fvn5+VCpVBg4cCB27dqlc0OFpYR45pGGNXcS9rQDsnXHYe6Rm3anYG5Aao+di1RfsyUkZz3NLARDbWp86nhk3p4pyMNd7alPM5Wt3o5hDqFHusRuZ45cj7oS7HEnKpUK1dXVGDBgAORyOQDgp59+gp+fH5KSkoRYhdU0NTVBoVBg++ztCAzWf/NEbVMt995JDblMjm3PbOM9wLSnaYguMU7z1TbVWhRcOVNZ22Jbxezwnf00s1DMaVPOnvdCbL+t2qepZavdpp29rLtTX1uPyRsmS+txJwCgVCp1blYw9ZVeUibUk/6JLjFGsSw9cnOmsrb2torZ4dNpZv3MCbTNaVP2OIItFKHqni1G1E0tW31vp9i4X7i3QZDuCRbY/e///i82bNiAsrIyFBYWIiIiAh988AHi4uIwbNgwoVYjGmNPGzhzR2UJexwid6aytta2ih1YSfV1UGKydaBtj21fCJbUva71TGrXwelr0+/te0/vXdKmbqsz1hNzCBLYffbZZ3jiiScwdepUHD16lHurQ2NjI1asWIGvvvpKiNWIypRRC2t2VFTJpcWZdkrW2Faxr98TcqfoCKeaxA60nYm5dU9fPZPS2QNz75LWx9ptylH3p4IEdi+//DLWr1+PP/3pT/j444+57++++268/PLLQqxCEsQeoXGEHYc9cdRGLyVijzYIdZrZUQIisQNtZ2JO3TNUz7Y9sw3bntkmibMH5t4lrc3abUoK+1PNPsaH+Qi6XEECu5KSEmRkZOh8r1Ao0NDQIMQqJEOs0ThH2XHYCyk0em2OGGhK4VpFIQ7YHCUgEjvQdjam1r3u6tnA2IGSqGvm3iWtzZptSgr70677GKEJEtgplUqUlpYiNjaW9/3333+P+Ph4IVbh8PQFEkMShnA7ckfZcdgDKTR6TTo05V9cVixYoCm1AFHskXDA8gM2RwmIpBBoOxtT6p691LPuHugthW0Ve3+qvY8RmiCB3axZszBv3jxs3rwZMpkMVVVVOHjwIBYuXIjFixcLsQqb6GjvwK2bt2y+3tpm3UBi1b9XATKAMdb57sWMGXoreWivUFHS7MguqC7obfQVqgoEuAfYJA27ft2FN3Z3vspHBhmA/7wIXRNopkammvwOya7LlcvkmJc1D2OTxwqeflMFuAcgQNmZt9auz7XNtai8WomIAOHeSxzgHoB5WfN08jbAPcCm7VOIbcu6LQupkam8d6xSHyMNQtcza7SFrmm1pE1bs00peylF3Z/q28cISZDAbtGiRVCr1Rg1ahSuX7+OjIwMeHh4YOHChXjmmWeEWIVNqFvVaLvWZvP1XqjSLWQGBs11pmqmxubvNiM7PRtbD2/lKnluRi4UMoUoaXZkIe4hkMlk6PqIR7lMjmD3YJvkdd21OqzZvYb3AnVtaqZGRVUFFBEKs5erZmq8sfsNpASnIMgnSJjES9zuU7vx9ndvgzEGmUyGuRlzkXVbliDLzozLRMrUFFQ3ViNMEYYgnyCbtk0ht00hU0AR2Fm3qH+RFqHqmTXbglCs1aYUMgVyM3Kx9ru1ouxP9e1jhCTYA4oBoK2tDaWlpbh27Rr69esHHx8f3LhxA15eXkKtwio0Dyj+7u3vENDb9BEZ1RUVKlQViFZGm/XCZtUVFcY8M6bHCH7z4s2ICo3CxZqLiAqNkuSL4h3Fjv07sHTjUqjVasjlciyZuQQTR060ybp/+u0n5Lyc0+00crkc37z5jUl1wNByNy/ejCH9hpicTmNZ2j6ETId2OzMnH6XIkbeNCI/qSyfVFZVo+9Ou+xhNkCe5BxQDgLu7O/r16wcAaG1txapVq/D3v/8dKpVKyNVYjauXK9x6uZk0T+HuQuSvzeei/mW5yzApa5JJy4jqFYVlucuQ/04+V8gA+CNGcjni4+KhDFIiKjrKpOUT0025bwqG3zkcF6ovICYsBsog2zX6hPgEndMEMpkMMpmMCzSXPb3M5Hqgb7maemVqvTeWEO1DKJVllbqn2NVqVDVW2X2bcuRtI8Kj+tIpqleUaNvbdR/j5+6Hh559SLBlyy2ZubW1Fc8//zwGDx6Mu+66C59//jkAoKCgAHFxcVi9ejXy8vKESKckqepU3E4L6Dy1lf9OPlR1pgeyk7ImYd/Gfdi6fCv2b9qPl3Jf4l7NptmR2zK4IIAySIn05HSb57sySIlluct45f9S7ktc/di3cZ9ZwZG+5VqzXgnZPoQQGx4LuYzf5cnlcsSExYiSHiE58rYR4VF9kQbNPiY0UNj32ls0Ypefn48NGzZg9OjR+PHHHzF58mRMnz4dhw4dwqpVqzB58mS4uLgIlVbJOV91Xu9Rz4XqC2btLJVBSm6+SVmTMCxtmCgjRkR8hsrf0npgy3oldPuwlCaw1YyMO9IBkyNvGxEe1RfHZlFgt337drz//vu4//77cfLkSaSkpODWrVs4fvw4dzrRkWmOerRPbQl11NM10LOEqk6F81XnERse65QN1163X6jyt+Zyu8tba7cPczjyAZMjbxsRRtf2SvXFcVkU2F26dAmDBg0CAPTv3x8eHh7Iy8tziqAOsI+jHild4yQGZ99+a+opb6XaPqwVMEuBI28bsYyh9kr1xfFYdFesi4sLVCoVgoM7n3/j6+uLEydOIC4uTrAE2oLmrtgfN/2IwOBAk+dX1akkedSjqlMhMydTZ8Rk38Z9kkqntTj79luTKXkr1fZBiLOgvlB83Z3dqK+tx105d0njrljGGKZNmwYPDw8AwM2bNzFnzhz06tWLN92OHTssWY3kSfUoWWrXONmas2+/NZmSt1JtH4Q4C+oLxWXrM0cW3RWbnZ2NkJAQKBQKKBQKPP744wgPD+c+a/6s5fz588jJyUFcXBy8vLyQkJCAJUuWoK2NHqgJ0J1Pzr791kR56zhUdSocOnFItLuVheIo22EN1F7FI8bTASwasSsoKBAqHWY5ffo01Go1NmzYgD59+uDkyZOYNWsWWlpa8Prrr4uaNimQ6jVOtuLs229NlLeOwVGuQXWU7bAWaq/iEWO0VNA3T0jBa6+9hnXr1uHcuXNGz2PpNXZS5+zXODn79lsT5a39cpTrrhxlO2yB2qvtGVM/JXWNnRQ1NjYiMLD74Ky1tRWtra3c56amJgDArdZbaGtxvNO4gV6BCIzvzBNH3L6eOPv2WxPlrf0qPVeqdyShrLwMgV72c4DrKNthC9RebS/QKxD5s/KxbOMybrQ0f2Y+Ar0CuTK41XpL0HU6VGBXWlqKt956q8fTsCtXrsTSpUt1vr914xZu4qa1kkcIIai5WoOLly8iKiQKoQHCPnHeFKFeoXqfMxjiGYKbV+2nH3SU7SCOa/zA8Rj00iBcqr2EyOBIhAaE8urmrRvCBnaSPBW7aNEivPrqq91Oc+rUKSQlJXGfKysrMXz4cIwYMQIbN27sdl59I3ZRUVGoqagRZBiUEEL02fL+FuTOz+WO3NeuWYtpf5omanrm5s1FR0cHXFxc8Pbqt0VNjykuVV5CWVkZEhISsLdor91uByFNTU0IjQ4V7FSsJAO72tpaXLlypdtp4uPj4e7uDgCoqqrCiBEjcOedd2LLli3cuzCNpbnGTqhMJYQQbZcuXUJMTAzU6v+MLLm4uOD8+fOIjIwUNV2lpaXo06ePqOkwxaZNm/Dkk09yAfK7776LMWPG2N12EAIIH4NIMrAzRWVlJUaOHIlBgwbhww8/NOvdtBTYEUKsbf/+/cjMzNT7/YgRI2yfIDsl1QCZEHMJHYNY9Bw7sVVWVmLEiBGIjo7G66+/jtraWqhUKqhU9BwjQoi0JCYm6pxNcHFxQZ8+fURKkX06e/YsL6gDgI6ODpSWloqUIkKkxa4Duz179qC0tBRFRUWIjIxEWFgY90cIIVISGRmJd999lzur4OLigg0bNtAok4koQCake3Z/KlYIdCqWEGIr9nhNm9Rs2rQJs2fP5m6W2LBhA3JycsROFiFmoWvsrIACO0IIsS8UIBNHIXQM4lDPsSOEEOIcIiMjKaAjRA+7vsaOEEIIIYT8BwV2hBBCCCEOggI7QgghhBAHQYEdIYQQQoiDoJsnAGhuDG5qahI5JYQQQghxJprYQ6iHlFBgB3DvpY2KihI5JYQQQghxRleuXIFCobB4ORTYAQgMDAQAVFRUCJKp9q6pqQlRUVG4ePEiPdcPlB/aKD/4KD90UZ7wUX7wUX7wNTY2Ijo6motFLEWBHcC9nkahUFAl68LPz4/yowvKDz7KDz7KD12UJ3yUH3yUH3zar8ozezmCLIUQQgghhIiOAjtCCCGEEAdBgR0ADw8PLFmyBB4eHmInRRIoP/goP/goP/goP3RRnvBRfvBRfvAJnR8yJtT9tYQQQgghRFQ0YkcIIYQQ4iAosCOEEEIIcRAU2BFCCCGEOAinDexeeeUVyGQyzJ8/n/vu5s2byM3NRe/eveHj44OHH34YNTU14iXShvTlx4gRIyCTyXh/c+bMES+RVvTiiy/qbGtSUhL3uzPWjZ7yxJnqh0ZlZSUef/xx9O7dG15eXkhOTsaRI0e43xljyM/PR1hYGLy8vDB69GicPXtWxBRbV0/5MW3aNJ06MnbsWBFTbD2xsbE62yqTyZCbmwvA+fqQnvLD2fqPjo4OLF68GHFxcfDy8kJCQgJeeukl3mvEhOo/nPIBxcXFxdiwYQNSUlJ43+fl5eHf//43tm/fDoVCgblz52LixIn44YcfREqpbRjKDwCYNWsWli1bxn329va2ZdJs6vbbb8fevXu5z66u/2kezlo3ussTwLnqx9WrV3H33Xdj5MiR+PrrrxEcHIyzZ88iICCAm+bvf/873nzzTWzduhVxcXFYvHgxxowZg99//x2enp4ipl54xuQHAIwdOxYFBQXcZ0e9E7K4uBgdHR3c55MnT+Lee+/F5MmTAThfH9JTfgDO1X+8+uqrWLduHbZu3Yrbb78dR44cwfTp06FQKPDnP/8ZgID9B3Myzc3NLDExke3Zs4cNHz6czZs3jzHGWENDA3Nzc2Pbt2/npj116hQDwA4ePChSaq3PUH4wxnQ+O7IlS5awAQMG6P3NWetGd3nCmHPVD8YYe+6559iwYcMM/q5Wq5lSqWSvvfYa911DQwPz8PBg//jHP2yRRJvqKT8YYyw7O5s98MADtkmQxMybN48lJCQwtVrttH1IV13zgzHn6z8mTJjAZsyYwftu4sSJbOrUqYwxYfsPpzsVm5ubiwkTJmD06NG873/++We0t7fzvk9KSkJ0dDQOHjxo62TajKH80Pjoo48QFBSE/v374/nnn8f169dtnELbOXv2LMLDwxEfH4+pU6eioqICgPPWDcBwnmg4U/344osvMHjwYEyePBkhISFITU3Fe++9x/1eXl4OlUrFqycKhQLp6ekOWU96yg+NAwcOICQkBH379sVTTz2FK1euiJBa22pra8OHH36IGTNmQCaTOXUfAujmh4Yz9R933XUXioqKcObMGQDA8ePH8f3332PcuHEAhO0/nOpU7Mcff4xffvkFxcXFOr+pVCq4u7vD39+f931oaChUKpWNUmhb3eUHADz22GOIiYlBeHg4Tpw4geeeew4lJSXYsWOHjVNqfenp6diyZQv69u2L6upqLF26FPfccw9OnjzplHUD6D5PfH19nap+AMC5c+ewbt06LFiwAH/9619RXFyMP//5z3B3d0d2djZXF0JDQ3nzOWo96Sk/gM7TsBMnTkRcXBzKysrw17/+FePGjcPBgwfh4uIi8hZYz+eff46GhgZMmzYNgHPuX7rSzg/AufYvALBo0SI0NTUhKSkJLi4u6OjowPLlyzF16lQAELT/cJrA7uLFi5g3bx727NnjcNe6mMOY/HjyySe5/ycnJyMsLAyjRo1CWVkZEhISbJVUm9AcNQFASkoK0tPTERMTg08//RReXl4ipkw83eVJTk6OU9UPAFCr1Rg8eDBWrFgBAEhNTcXJkyexfv16LpBxJsbkx6OPPspNn5ycjJSUFCQkJODAgQMYNWqUKOm2hU2bNmHcuHEIDw8XOymSoC8/nK3/+PTTT/HRRx9h27ZtuP3223Hs2DHMnz8f4eHhgvcfTnMq9ueff8bly5eRlpYGV1dXuLq64ttvv8Wbb74JV1dXhIaGoq2tDQ0NDbz5ampqoFQqxUm0FfWUH10vetVIT08HAJSWlto6uTbn7++PP/zhDygtLYVSqXSqumFI1zzRx9HrR1hYGPr168f77rbbbuNOT2vqgvadjo5aT3rKD33i4+MRFBTksHUEAC5cuIC9e/di5syZ3HfO3Ifoyw99HL3/ePbZZ7Fo0SI8+uijSE5OxhNPPIG8vDysXLkSgLD9h9MEdqNGjcKvv/6KY8eOcX+DBw/G1KlTuf+7ubmhqKiIm6ekpAQVFRUYOnSoiCm3jp7yQ99pkmPHjgHo7NAd3bVr11BWVoawsDAMGjTIqeqGIV3zRB9Hrx933303SkpKeN+dOXMGMTExAIC4uDgolUpePWlqasLhw4cdsp70lB/6XLp0CVeuXHHYOgIABQUFCAkJwYQJE7jvnLkP0Zcf+jh6/3H9+nXI5fyQy8XFBWq1GoDA/Yfl93rYL+27cubMmcOio6PZvn372JEjR9jQoUPZ0KFDxUugjXXNj9LSUrZs2TJ25MgRVl5eznbu3Mni4+NZRkaGuIm0kv/+7/9mBw4cYOXl5eyHH35go0ePZkFBQezy5cuMMeesG93libPVD8YY++mnn5irqytbvnw5O3v2LPvoo4+Yt7c3+/DDD7lpXnnlFebv78927tzJTpw4wR544AEWFxfHbty4IWLKraOn/GhubmYLFy5kBw8eZOXl5Wzv3r0sLS2NJSYmsps3b4qceuvo6Ohg0dHR7LnnntP5zRn7EEP54Yz9R3Z2NouIiGBffvklKy8vZzt27GBBQUHsL3/5CzeNUP0HBXZdArsbN26wp59+mgUEBDBvb2/20EMPserqavESaGNd86OiooJlZGSwwMBA5uHhwfr06cOeffZZ1tjYKG4irWTKlCksLCyMubu7s4iICDZlyhRWWlrK/e6MdaO7PHG2+qHxr3/9i/Xv3595eHiwpKQk9u677/J+V6vVbPHixSw0NJR5eHiwUaNGsZKSEpFSa33d5cf169dZVlYWCw4OZm5ubiwmJobNmjWLqVQqEVNsXd988w0DoLfMnbEPMZQfzth/NDU1sXnz5rHo6Gjm6enJ4uPj2QsvvMBaW1u5aYTqP2SMdXnsMSGEEEIIsVtOc40dIYQQQoijo8COEEIIIcRBUGBHCCGEEOIgKLAjhBBCCHEQFNgRQgghhDgICuwIIYQQQhwEBXaEEEIIIQ6CAjtCCCGEEAdBgR0hhNjIiBEjIJPJIJPJuHdjHjhwADKZTOcF8UJ78cUXuXWvWbPGqusihIiHAjtCiCRNmzaNC0S6/o0dO1bspFlk1qxZqK6uRv/+/S1eVk1NDdzc3PDxxx/r/T0nJwdpaWkAgIULF6K6uhqRkZEWr5cQIl0U2BFCJGvs2LGorq7m/f3jH/+w6jrb2tqsunxvb28olUq4urpavKzQ0FBMmDABmzdv1vmtpaUFn376KXJycgAAPj4+UCqVcHFxsXi9hBDposCOECJZHh4eUCqVvL+AgADud5lMho0bN+Khhx6Ct7c3EhMT8cUXX/CWcfLkSYwbNw4+Pj4IDQ3FE088gbq6Ou73ESNGYO7cuZg/fz6CgoIwZswYAMAXX3yBxMREeHp6YuTIkdi6dSt3yrSlpQV+fn4oLCzkrevzzz9Hr1690NzcbPY2X79+HePGjcPdd9/NnZ7duHEjbrvtNnh6eiIpKQnvvPMON31OTg6KiopQUVHBW8727dtx69YtTJ061ey0EELsDwV2hBC7tnTpUjzyyCM4ceIExo8fj6lTp6K+vh4A0NDQgMzMTKSmpuLIkSPYtWsXampq8Mgjj/CWsXXrVri7u+OHH37A+vXrUV5ejkmTJuHBBx/E8ePHMXv2bLzwwgvc9L169cKjjz6KgoIC3nIKCgowadIk+Pr6mrUtDQ0NuPfee6FWq7Fnzx74+/vjo48+Qn5+PpYvX45Tp05hxYoVWLx4MbZu3QoAGD9+PEJDQ7FlyxadtEycOBH+/v5mpYUQYqcYIYRIUHZ2NnNxcWG9evXi/S1fvpybBgD729/+xn2+du0aA8C+/vprxhhjL730EsvKyuIt9+LFiwwAKykpYYwxNnz4cJaamsqb5rnnnmP9+/fnfffCCy8wAOzq1auMMcYOHz7MXFxcWFVVFWOMsZqaGubq6soOHDhgcJuGDx/O5s2bx/tu//79DAA7deoUS0lJYQ8//DBrbW3lfk9ISGDbtm3jzfPSSy+xoUOHcp8XLVrE4uLimFqtZowxVlpaymQyGdu7d69OGmJiYtjq1asNppEQYt9oxI4QIlkjR47EsWPHeH9z5szhTZOSksL9v1evXvDz88Ply5cBAMePH8f+/fvh4+PD/SUlJQEAysrKuPkGDRrEW2ZJSQmGDBnC++6OO+7Q+Xz77bdzI2cffvghYmJikJGRYda23nvvvejTpw8++eQTuLu7A+i8Tq6srAw5OTm8bXj55Zd56Z8xYwbKy8uxf/9+AJ2jdbGxscjMzDQrLYQQ+2X51buEEGIlvXr1Qp8+fbqdxs3NjfdZJpNBrVYDAK5du4Y//vGPePXVV3XmCwsL463HHDNnzsTatWuxaNEiFBQUYPr06ZDJZGYta8KECfjss8/w+++/Izk5mUs/ALz33ntIT0/nTd/1JojExETcc889KCgowIgRI/D+++9j1qxZZqeFEGK/KLAjhDistLQ0fPbZZ4iNjTXpLtS+ffviq6++4n1XXFysM93jjz+Ov/zlL3jzzTfx+++/Izs72+y0vvLKK/Dx8cGoUaNw4MAB9OvXD6GhoQgPD8e5c+d6vAkiJycHTz31FO6//35UVlZi2rRpZqeFEGK/6FQsIUSyWltboVKpeH9d72jtSW5uLurr6/Ff//VfKC4uRllZGb755htMnz4dHR0dBuebPXs2Tp8+jeeeew5nzpzBp59+yt2c0HUULCAgABMnTsSzzz6LrKwsi58R9/rrr2Pq1KnIzMzE6dOnAXTeHLJy5Uq8+eabOHPmDH799VcUFBRg1apVvHknT54MNzc3zJ49G1lZWYiKirIoLYQQ+0SBHSFEsnbt2oWwsDDe37Bhw4yePzw8HD/88AM6OjqQlZWF5ORkzJ8/H/7+/pDLDXd/cXFxKCwsxI4dO5CSkoJ169Zxd8V6eHjwps3JyUFbWxtmzJhh3kZqWb16NR555BFkZmbizJkzmDlzJjZu3IiCggIkJydj+PDh2LJlC+Li4njzeXt749FHH8XVq1cFSwshxP7IGGNM7EQQQojULV++HOvXr8fFixd533/wwQfIy8tDVVUVd9ODISNGjMDAgQNFfaVXbGws5s+fj/nz54uWBkKI9dCIHSGE6PHOO++guLgY586dwwcffIDXXnuNdw3d9evXUVZWhldeeQWzZ8/uMajrulwfHx/8+uuv1kq6XitWrICPj4/Og4wJIY6FRuwIIUSPvLw8fPLJJ6ivr0d0dDSeeOIJPP/889xNGC+++CKWL1+OjIwM7Ny5Ez4+Pj0us7KyEjdu3AAAREdHGx0MCqG+vp57cHNwcDAUCoXN1k0IsR0K7AghhBBCHASdiiWEEEIIcRAU2BFCCCGEOAgK7AghhBBCHAQFdoQQQgghDoICO0IIIYQQB0GBHSGEEEKIg6DAjhBCCCHEQVBgRwghhBDiICiwI4QQQghxEP8HRlSRp1IzOxQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3918,18 +10272,18 @@ "id": "dbe65a21-572e-4618-bcd8-78f13e945e8a", "metadata": {}, "source": [ - "Sofern wir einen unser Fitmodel unsere Daten gut widerspiegelt erwarten wir, dass die Residuen sich Gaußförmig zufällig um den Wert 0 herum verteilen. Dies folgt direkt aus der Annahme, dass de Unsicherheiten unserer Messwerte sich durch eine Gaußverteilung darstellen lassen. Dies können wir direkt überprüfen, sofern wir unsere Residuen in ein Histogramm eintragen. " + "Sofern unser Fitmodel unsere Daten gut beschreibt, erwarten wir, dass die Residuen sich Gaußförmig zufällig um den Wert 0 herum verteilen. Dies folgt direkt aus der Annahme, dass sich die Unsicherheiten unserer Messwerte durch eine Gaußverteilung darstellen lassen. Dies können wir direkt überprüfen, sofern wir unsere Residuen in ein Histogramm eintragen. " ] }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 522, "id": "05e24224-66f7-45ed-99c6-f6d257e2c779", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuz0lEQVR4nO3de1RVdeL//9eRmwhyUxFQUMQZyxQtHI00RSWVxtvolFPz+YTpOB8LLcVu9LEau0jZRaoxa7p4mU8uLUd0qpXmJbBSnKQYNdMRP/bBu5XCkSMekHN+f/T1/GJEPAcP7rPx+Vhrr8W+nL1f7OWS19r7vfexOJ1OpwAAAEyohdEBAAAAGosiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATMvf6ABNzeFw6MiRI2rdurUsFovRcQAAgBucTqdOnz6tuLg4tWhx8esuzb7IHDlyRPHx8UbHAAAAjXDw4EF17NjxouubfZFp3bq1pJ9ORFhYmMFpAACAO6xWq+Lj411/xy+m2ReZ87eTwsLCKDIAAJjMpYaFGDrYd+HChUpOTnaVjNTUVH388ceu9WlpabJYLHWmqVOnGpgYAAD4EkOvyHTs2FHPPvusfvGLX8jpdGrJkiUaM2aMvv76a1133XWSpClTpujJJ590faZVq1ZGxQUAAD7G0CIzatSoOvPPPPOMFi5cqKKiIleRadWqlWJiYoyIBwAAfJzPvEemtrZWy5cvl81mU2pqqmv5u+++q7Zt26pHjx7KycnRmTNnGtyP3W6X1WqtMwEAgObJ8MG+O3fuVGpqqs6ePavQ0FDl5+ere/fukqQ777xTnTp1UlxcnHbs2KGHH35Ye/fu1apVqy66v9zcXM2ZM+dKxQcAAAayOJ1Op5EBqqurVVZWpoqKCq1cuVJvvfWWCgsLXWXm5zZt2qShQ4eqtLRUSUlJ9e7PbrfLbre75s8/vlVRUcFTSwAAmITValV4ePgl/34bXmT+XXp6upKSkvTGG29csM5msyk0NFRr167V8OHD3dqfuycCAAD4Dnf/fvvMGJnzHA5HnSsqP1dSUiJJio2NvYKJAACArzJ0jExOTo4yMjKUkJCg06dPa9myZSooKNC6deu0f/9+LVu2TLfeeqvatGmjHTt2aObMmRo4cKCSk5ONjA0AAHyEoUXmxIkTuuuuu3T06FGFh4crOTlZ69at0y233KKDBw9qw4YNysvLk81mU3x8vMaPH6/Zs2cbGRkAAPgQnxsj422MkQEAwHxMO0YGAADAXRQZAABgWoa/EA8ALsfh8iqdslUbHcMjkSGB6hARbHQMoFmgyAAwrcPlVUp/sVBVNbVGR/FIcICfNswaRJkBvIAiA8C0TtmqVVVTq7wJvdU1OtToOG4pPVGpGStKdMpWTZEBvIAiA8D0ukaHqkeHcKNjADAAg30BAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpGVpkFi5cqOTkZIWFhSksLEypqan6+OOPXevPnj2rrKwstWnTRqGhoRo/fryOHz9uYGIAAOBLDC0yHTt21LPPPqvi4mJt375dQ4YM0ZgxY/TNN99IkmbOnKkPPvhA77//vgoLC3XkyBGNGzfOyMgAAMCH+Bt58FGjRtWZf+aZZ7Rw4UIVFRWpY8eOevvtt7Vs2TINGTJEkrRo0SJde+21Kioq0o033mhEZAAA4EN8ZoxMbW2tli9fLpvNptTUVBUXF6umpkbp6emuba655holJCRo69atF92P3W6X1WqtMwEAgObJ8CKzc+dOhYaGKigoSFOnTlV+fr66d++uY8eOKTAwUBEREXW2b9++vY4dO3bR/eXm5io8PNw1xcfHN/FvAAAAjGJ4kenWrZtKSkq0bds23XPPPcrMzNTu3bsbvb+cnBxVVFS4poMHD3oxLQAA8CWGjpGRpMDAQHXt2lWSlJKSoi+//FIvv/yyJkyYoOrqapWXl9e5KnP8+HHFxMRcdH9BQUEKCgpq6tgAAMAHGH5F5t85HA7Z7XalpKQoICBAGzdudK3bu3evysrKlJqaamBCAADgKwy9IpOTk6OMjAwlJCTo9OnTWrZsmQoKCrRu3TqFh4dr8uTJys7OVlRUlMLCwjR9+nSlpqbyxBIAAJBkcJE5ceKE7rrrLh09elTh4eFKTk7WunXrdMstt0iS5s+frxYtWmj8+PGy2+0aPny4XnvtNSMjAwAAH2JokXn77bcbXN+yZUstWLBACxYsuEKJAACAmfjcGBkAAAB3UWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpUWQAAIBpGVpkcnNz9atf/UqtW7dWdHS0xo4dq71799bZJi0tTRaLpc40depUgxIDAABfYmiRKSwsVFZWloqKirR+/XrV1NRo2LBhstlsdbabMmWKjh496prmzZtnUGIAAOBL/I08+Nq1a+vML168WNHR0SouLtbAgQNdy1u1aqWYmJgrHQ8AAPg4nxojU1FRIUmKioqqs/zdd99V27Zt1aNHD+Xk5OjMmTNGxAMAAD7G0CsyP+dwODRjxgz1799fPXr0cC2/88471alTJ8XFxWnHjh16+OGHtXfvXq1atare/djtdtntdte81Wpt8uwAAMAYPlNksrKytGvXLn3++ed1lv/xj390/dyzZ0/FxsZq6NCh2r9/v5KSki7YT25urubMmdPkeQEAgPF84tbStGnT9OGHH+rTTz9Vx44dG9y2X79+kqTS0tJ61+fk5KiiosI1HTx40Ot5AQCAbzD0iozT6dT06dOVn5+vgoICJSYmXvIzJSUlkqTY2Nh61wcFBSkoKMibMQEAgI8ytMhkZWVp2bJlWrNmjVq3bq1jx45JksLDwxUcHKz9+/dr2bJluvXWW9WmTRvt2LFDM2fO1MCBA5WcnGxkdAAA4AMMLTILFy6U9NNL735u0aJFmjhxogIDA7Vhwwbl5eXJZrMpPj5e48eP1+zZsw1ICwAAfI3ht5YaEh8fr8LCwiuUBgAAmI1PDPYFAABoDIoMAAAwLYoMAAAwLZ95IR4A4x0ur9IpW7XRMdxWeqLS6AgADEaRASDppxKT/mKhqmpqjY7ikeAAP0WGBBodA4BBKDIAJEmnbNWqqqlV3oTe6hodanQct0WGBKpDRLDRMQAYhCIDoI6u0aHq0SHc6BgA4BYG+wIAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANNq1FNLDodDpaWlOnHihBwOR511AwcO9EowAACAS/G4yBQVFenOO+/U//3f/13w7dUWi0W1teZ6mRYAADAvj4vM1KlT1adPH3300UeKjY2VxWJpilwAAACX5HGR2bdvn1auXKmuXbs2RR4AAAC3eTzYt1+/fiotLW2KLAAAAB7x+IrM9OnTNWvWLB07dkw9e/ZUQEBAnfXJycleCwcAANAQj4vM+PHjJUmTJk1yLbNYLHI6nQz2BQAAV5THRebAgQNNkQMAAMBjHheZTp06NUUOAAAAj7lVZP7+978rIyNDAQEB+vvf/97gtqNHj/ZKMAAAgEtxq8iMHTtWx44dU3R0tMaOHXvR7RgjAwAAriS3iszPv4bg37+SAAAAwCh8aSQAADCtRhWZjRs3auTIkUpKSlJSUpJGjhypDRs2eDsbAABAgzwuMq+99ppGjBih1q1b6/7779f999+vsLAw3XrrrVqwYEFTZAQAAKiXx49fz507V/Pnz9e0adNcy+677z71799fc+fOVVZWllcDAgAAXIzHV2TKy8s1YsSIC5YPGzZMFRUVXgkFAADgDo+LzOjRo5Wfn3/B8jVr1mjkyJFeCQUAAOAOt24tvfLKK66fu3fvrmeeeUYFBQVKTU2VJBUVFemLL77QrFmzmiYlAABAPdwqMvPnz68zHxkZqd27d2v37t2uZREREXrnnXc0e/Zs7yYEAAC4CLeKDF8UCQAAfBEvxAMAAKZFkQEAAKZFkQEAAKZFkQEAAKblUZE5d+6cnnzySR06dKip8gAAALjNoyLj7++v559/XufOnWuqPAAAAG7z+NbSkCFDVFhY2BRZAAAAPOLxl0ZmZGTokUce0c6dO5WSkqKQkJA660ePHu21cAAAAA3xuMjce++9kqSXXnrpgnUWi0W1tbVu7ys3N1erVq3Snj17FBwcrJtuuknPPfecunXr5trm7NmzmjVrlpYvXy673a7hw4frtddeU/v27T2NDgAAmhmPby05HI6LTp6UGEkqLCxUVlaWioqKtH79etXU1GjYsGGy2WyubWbOnKkPPvhA77//vgoLC3XkyBGNGzfO09gAAKAZ8viKzM+dPXtWLVu2bPTn165dW2d+8eLFio6OVnFxsQYOHKiKigq9/fbbWrZsmYYMGSJJWrRoka699loVFRXpxhtvvJz4AADA5DwuMrW1tZo7d65ef/11HT9+XP/617/UpUsXPfbYY+rcubMmT57c6DAVFRWSpKioKElScXGxampqlJ6e7trmmmuuUUJCgrZu3VpvkbHb7bLb7a55q9Xa6DzA5ThcXqVTtmqjY7it9ESl0REAwGMeF5lnnnlGS5Ys0bx58zRlyhTX8h49eigvL6/RRcbhcGjGjBnq37+/evToIUk6duyYAgMDFRERUWfb9u3b69ixY/XuJzc3V3PmzGlUBsBbDpdXKf3FQlXVeHa71WjBAX6KDAk0OgYAuM3jIrN06VL95S9/0dChQzV16lTX8l69emnPnj2NDpKVlaVdu3bp888/b/Q+JCknJ0fZ2dmueavVqvj4+MvaJ+CpU7ZqVdXUKm9Cb3WNDjU6jtsiQwLVISLY6BgA4DaPi8zhw4fVtWvXC5Y7HA7V1NQ0KsS0adP04YcfavPmzerYsaNreUxMjKqrq1VeXl7nqszx48cVExNT776CgoIUFBTUqByAt3WNDlWPDuFGxwCAZsvjp5a6d++uzz777ILlK1eu1PXXX+/RvpxOp6ZNm6b8/Hxt2rRJiYmJddanpKQoICBAGzdudC3bu3evysrKlJqa6ml0AADQzHh8Rebxxx9XZmamDh8+LIfDoVWrVmnv3r1aunSpPvzwQ4/2lZWVpWXLlmnNmjVq3bq1a9xLeHi4goODFR4ersmTJys7O1tRUVEKCwvT9OnTlZqayhNLAADA8ysyY8aM0QcffKANGzYoJCREjz/+uL799lt98MEHuuWWWzza18KFC1VRUaG0tDTFxsa6phUrVri2mT9/vkaOHKnx48dr4MCBiomJ0apVqzyNDQAAmqFGvUfm5ptv1vr16y/74E6n85LbtGzZUgsWLNCCBQsu+3gAAKB5afQL8bZv365vv/1W0k/jZlJSUrwWCgAAwB0eF5lDhw7pjjvu0BdffOF6kqi8vFw33XSTli9fXuepIwAAgKbk8RiZP/zhD6qpqdG3336rkydP6uTJk/r222/lcDj0hz/8oSkyAgAA1MvjKzKFhYXasmVLnW+o7tatm1599VXdfPPNXg0HAM2V2b4Sgpclwld5XGTi4+PrffFdbW2t4uLivBIKAJqryJBABQf4acaKEqOjeCQ4wE8bZg2izMDneFxknn/+eU2fPl0LFixQnz59JP008Pf+++/XCy+84PWAANCcdIgI1oZZg0z3haIzVpTolK2aIgOf43GRmThxos6cOaN+/frJ3/+nj587d07+/v6aNGmSJk2a5Nr25MmT3ksKAM1Eh4hgCgHgJR4Xmby8vCaIAQAA4DmPi0xmZmZT5AAAAPCYx49fAwAA+AqKDAAAMC2KDAAAMC2KDAAAMK3LLjJWq1WrV692fYEkAADAleJxkbn99tv15z//WZJUVVWlPn366Pbbb1dycrL+9re/eT0gAADAxXhcZDZv3uz6TqX8/Hw5nU6Vl5frlVde0dNPP+31gAAAABfjcZGpqKhQVFSUJGnt2rUaP368WrVqpV//+tfat2+f1wMCAABcjMdFJj4+Xlu3bpXNZtPatWs1bNgwSdKpU6fUsmVLrwcEAAC4GI/f7Dtjxgz9/ve/V2hoqBISEpSWlibpp1tOPXv29HY+AACAi/K4yNx7773q27evDh48qFtuuUUtWvx0UadLly6MkQEAAFeUx0VGkvr06aPk5GQdOHBASUlJ8vf3169//WtvZwMAAGiQx2Nkzpw5o8mTJ6tVq1a67rrrVFZWJkmaPn26nn32Wa8HBAAAuBiPi0xOTo7++c9/qqCgoM7g3vT0dK1YscKr4QAAABri8a2l1atXa8WKFbrxxhtlsVhcy6+77jrt37/fq+EAAAAa4vEVme+//17R0dEXLLfZbHWKDQAAQFPzuMj06dNHH330kWv+fHl56623lJqa6r1kAAAAl+DxraW5c+cqIyNDu3fv1rlz5/Tyyy9r9+7d2rJliwoLC5siIwAAQL08viIzYMAAlZSU6Ny5c+rZs6c++eQTRUdHa+vWrUpJSWmKjAAAAPVq1HtkkpKS9Oabb3o7CwAAgEfcKjJWq1VhYWGunxtyfjsAAICm5laRiYyM1NGjRxUdHa2IiIh6n05yOp2yWCyqra31ekgAAID6uFVkNm3apKioKEnSp59+2qSBAAAA3OVWkRk0aJAk6dy5cyosLNSkSZPUsWPHJg0GAABwKR49teTv76/nn39e586da6o8AAAAbvP48eshQ4bwvhgAAOATPH78OiMjQ4888oh27typlJQUhYSE1Fk/evRor4UDAABoiMdF5t5775UkvfTSSxes46klAABwJXlcZBwOR1PkAAAA8JjHY2SWLl0qu91+wfLq6motXbrUK6EAAADc4XGRufvuu1VRUXHB8tOnT+vuu+/2SigAAAB3eFxkzr/B998dOnRI4eHhXgkFAADgDreLzPXXX68bbrhBFotFQ4cO1Q033OCaevXqpZtvvlnp6ekeHXzz5s0aNWqU4uLiZLFYtHr16jrrJ06cKIvFUmcaMWKER8cAAADNl9uDfceOHStJKikp0fDhwxUaGupaFxgYqM6dO2v8+PEeHdxms6lXr16aNGmSxo0bV+82I0aM0KJFi1zzQUFBHh0DAAA0X24XmSeeeEKS1LlzZ02YMEEtW7a87INnZGQoIyOjwW2CgoIUExNz2ccCAADNj8ePX2dmZkr66SmlEydOXPA4dkJCgneS/T8FBQWKjo5WZGSkhgwZoqefflpt2rS56PZ2u73OU1VWq9WreQAAgO/wuMjs27dPkyZN0pYtW+osPz8I2JsvxBsxYoTGjRunxMRE7d+/X48++qgyMjK0detW+fn51fuZ3NxczZkzx2sZAACA7/K4yEycOFH+/v768MMPFRsbW+8TTN7yu9/9zvVzz549lZycrKSkJBUUFGjo0KH1fiYnJ0fZ2dmueavVqvj4+CbLCAAAjONxkSkpKVFxcbGuueaapsjToC5duqht27YqLS29aJEJCgpiQDAAAFcJj98j0717d/3www9NkeWSDh06pB9//FGxsbGGHB8AAPgWj4vMc889p4ceekgFBQX68ccfZbVa60yeqKysVElJiUpKSiRJBw4cUElJicrKylRZWakHH3xQRUVF+u6777Rx40aNGTNGXbt21fDhwz2NDQAAmiGPby2df+ndv9/aacxg3+3bt2vw4MGu+fNjWzIzM7Vw4ULt2LFDS5YsUXl5ueLi4jRs2DA99dRT3DoCAACSGlFkPv30U68dPC0tTU6n86Lr161b57VjAQCA5sfjIjNo0KCmyAEAAOAxt8fIzJs3T1VVVa75L774os6L506fPq17773Xu+kAAAAa4HaRycnJ0enTp13zGRkZOnz4sGv+zJkzeuONN7ybDgAAoAFuF5l/H8vS0NgWAACAK8Hjx68BAAB8BUUGAACYlkdPLb311lsKDQ2VJJ07d06LFy9W27ZtJanO+BkAAIArwe0ik5CQoDfffNM1HxMTo7/+9a8XbAMAAHCluF1kvvvuuyaMAQAA4DnGyAAAANNqVJGZNm2aTp486e0sAAAAHnG7yBw6dMj187Jly1RZWSlJ6tmzpw4ePOj9ZAAAAJfg9hiZa665Rm3atFH//v119uxZHTx4UAkJCfruu+9UU1PTlBkBAADq5fYVmfLycr3//vtKSUmRw+HQrbfeql/+8pey2+1at26djh8/3pQ5AQAALuB2kampqVHfvn01a9YsBQcH6+uvv9aiRYvk5+end955R4mJierWrVtTZgUAAKjD7VtLERER6t27t/r376/q6mpVVVWpf//+8vf314oVK9ShQwd9+eWXTZkVAACgDrevyBw+fFizZ89WUFCQzp07p5SUFN18882qrq7WV199JYvFogEDBjRlVgAAgDrcLjJt27bVqFGjlJubq1atWunLL7/U9OnTZbFY9MADDyg8PFyDBg1qyqwAAAB1NPqFeOHh4br99tsVEBCgTZs26cCBA7r33nu9mQ0AAKBBHn1p5Hk7duxQhw4dJEmdOnVSQECAYmJiNGHCBK+GAwAAaEijikx8fLzr5127dnktDAAAgCf4riUAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBaFBkAAGBahhaZzZs3a9SoUYqLi5PFYtHq1avrrHc6nXr88ccVGxur4OBgpaena9++fcaEBQAAPsfQImOz2dSrVy8tWLCg3vXz5s3TK6+8otdff13btm1TSEiIhg8frrNnz17hpAAAwBf5G3nwjIwMZWRk1LvO6XQqLy9Ps2fP1pgxYyRJS5cuVfv27bV69Wr97ne/u5JRAQCADzK0yDTkwIEDOnbsmNLT013LwsPD1a9fP23duvWiRcZut8tut7vmrVZrk2cFgKtB6YlKoyN4JDIkUB0igo2OgSbms0Xm2LFjkqT27dvXWd6+fXvXuvrk5uZqzpw5TZoNAK4mkSGBCg7w04wVJUZH8UhwgJ82zBpEmWnmfLbINFZOTo6ys7Nd81arVfHx8QYmAgBz6xARrA2zBumUrdroKG4rPVGpGStKdMpWTZFp5ny2yMTExEiSjh8/rtjYWNfy48ePq3fv3hf9XFBQkIKCgpo6HgBcVTpEBFMI4JN89j0yiYmJiomJ0caNG13LrFartm3bptTUVAOTAQAAX2HoFZnKykqVlpa65g8cOKCSkhJFRUUpISFBM2bM0NNPP61f/OIXSkxM1GOPPaa4uDiNHTvWuNAAAMBnGFpktm/frsGDB7vmz49tyczM1OLFi/XQQw/JZrPpj3/8o8rLyzVgwACtXbtWLVu2NCoyAADwIYYWmbS0NDmdzouut1gsevLJJ/Xkk09ewVQAAMAsfHaMDAAAwKVQZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGlRZAAAgGn5Gx0AcMfh8iqdslUbHcNtpScqjY4AAFcFigx83uHyKqW/WKiqmlqjo3gkOMBPkSGBRscAgGaNIgOfd8pWraqaWuVN6K2u0aFGx3FbZEigOkQEGx0DAJo1igxMo2t0qHp0CDc6BgDAhzDYFwAAmBZFBgAAmBZFBgAAmJZPF5k//elPslgsdaZrrrnG6FgAAMBH+Pxg3+uuu04bNmxwzfv7+3xkAABwhfh8K/D391dMTIzRMQAAgA/y6VtLkrRv3z7FxcWpS5cu+v3vf6+ysjKjIwEAAB/h01dk+vXrp8WLF6tbt246evSo5syZo5tvvlm7du1S69at6/2M3W6X3W53zVut1isVFwAAXGE+XWQyMjJcPycnJ6tfv37q1KmT3nvvPU2ePLnez+Tm5mrOnDlXKiIAADCQz99a+rmIiAj98pe/VGlp6UW3ycnJUUVFhWs6ePDgFUwIAACuJFMVmcrKSu3fv1+xsbEX3SYoKEhhYWF1JgAA0Dz5dJF54IEHVFhYqO+++05btmzRb37zG/n5+emOO+4wOhoAAPABPj1G5tChQ7rjjjv0448/ql27dhowYICKiorUrl07o6MBAAAf4NNFZvny5UZHAAAAPsynby0BAAA0hCIDAABMiyIDAABMy6fHyAAAcDlKT1QaHcEjkSGB6hARbHQMU6HIAACanciQQAUH+GnGihKjo3gkOMBPG2YNosx4gCIDAGh2OkQEa8OsQTplqzY6ittKT1RqxooSnbJVU2Q8QJEBADRLHSKCKQRXAQb7AgAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA06LIAAAA0/I3OgCuvMPlVTplqzY6httKT1QaHQEA4KMoMleZw+VVSn+xUFU1tUZH8UhwgJ8iQwKNjgEA8DEUmavMKVu1qmpqlTeht7pGhxodx22RIYHqEBFsdAwAgI+hyFylukaHqkeHcKNjAABwWRjsCwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIvHry+D2d6QK/GWXABA80KRaSSzviFX4i25AIDmgyLTSGZ9Q67EW3IBAM0HReYy8YZcAACMw2BfAABgWhQZAABgWhQZAABgWqYoMgsWLFDnzp3VsmVL9evXT//4xz+MjgQAAHyAzxeZFStWKDs7W0888YS++uor9erVS8OHD9eJEyeMjgYAAAzm80XmpZde0pQpU3T33Xere/fuev3119WqVSu98847RkcDAAAG8+nHr6urq1VcXKycnBzXshYtWig9PV1bt26t9zN2u112u901X1FRIUmyWq1ezVZ52iqH/YwqT1tltVq8um8AwNXn/N+VHf97VJWnvfs3qym1Cw1Su7CWXt/v+b/bTqezwe18usj88MMPqq2tVfv27essb9++vfbs2VPvZ3JzczVnzpwLlsfHxzdJxtS8JtktAOAq9fs8oxP4ltOnTys8/OLva/PpItMYOTk5ys7Ods07HA6dPHlSbdq0kcXivSsnVqtV8fHxOnjwoMLCwry23+aK8+U+zpX7OFfu41y5j3PlvqY8V06nU6dPn1ZcXFyD2/l0kWnbtq38/Px0/PjxOsuPHz+umJiYej8TFBSkoKCgOssiIiKaKqLCwsL4h+4Bzpf7OFfu41y5j3PlPs6V+5rqXDV0JeY8nx7sGxgYqJSUFG3cuNG1zOFwaOPGjUpNTTUwGQAA8AU+fUVGkrKzs5WZmak+ffqob9++ysvLk81m09133210NAAAYDCfLzITJkzQ999/r8cff1zHjh1T7969tXbt2gsGAF9pQUFBeuKJJy64jYX6cb7cx7lyH+fKfZwr93Gu3OcL58rivNRzTQAAAD7Kp8fIAAAANIQiAwAATIsiAwAATIsiAwAATIsi4yWjR49WQkKCWrZsqdjYWP3nf/6njhw5YnQsn/Pdd99p8uTJSkxMVHBwsJKSkvTEE0+ourra6Gg+6ZlnntFNN92kVq1aNemLHc1owYIF6ty5s1q2bKl+/frpH//4h9GRfNLmzZs1atQoxcXFyWKxaPXq1UZH8lm5ubn61a9+pdatWys6Olpjx47V3r17jY7lkxYuXKjk5GTXi/BSU1P18ccfG5KFIuMlgwcP1nvvvae9e/fqb3/7m/bv36/f/va3RsfyOXv27JHD4dAbb7yhb775RvPnz9frr7+uRx991OhoPqm6ulq33Xab7rnnHqOj+JQVK1YoOztbTzzxhL766iv16tVLw4cP14kTJ4yO5nNsNpt69eqlBQsWGB3F5xUWFiorK0tFRUVav369ampqNGzYMNlsNqOj+ZyOHTvq2WefVXFxsbZv364hQ4ZozJgx+uabb658GCeaxJo1a5wWi8VZXV1tdBSfN2/ePGdiYqLRMXzaokWLnOHh4UbH8Bl9+/Z1ZmVlueZra2udcXFxztzcXANT+T5Jzvz8fKNjmMaJEyeckpyFhYVGRzGFyMhI51tvvXXFj8sVmSZw8uRJvfvuu7rpppsUEBBgdByfV1FRoaioKKNjwCSqq6tVXFys9PR017IWLVooPT1dW7duNTAZmpuKigpJ4v+nS6itrdXy5ctls9kM+fogiowXPfzwwwoJCVGbNm1UVlamNWvWGB3J55WWlurVV1/Vf/3XfxkdBSbxww8/qLa29oK3e7dv317Hjh0zKBWaG4fDoRkzZqh///7q0aOH0XF80s6dOxUaGqqgoCBNnTpV+fn56t69+xXPQZFpwCOPPCKLxdLgtGfPHtf2Dz74oL7++mt98skn8vPz01133SXnVfLiZE/PlSQdPnxYI0aM0G233aYpU6YYlPzKa8y5AnBlZWVladeuXVq+fLnRUXxWt27dVFJSom3btumee+5RZmamdu/efcVz8BUFDfj+++/1448/NrhNly5dFBgYeMHyQ4cOKT4+Xlu2bLkqvqnb03N15MgRpaWl6cYbb9TixYvVosXV06kb8+9q8eLFmjFjhsrLy5s4ne+rrq5Wq1attHLlSo0dO9a1PDMzU+Xl5VwJbYDFYlF+fn6d84YLTZs2TWvWrNHmzZuVmJhodBzTSE9PV1JSkt54440relyf/9JII7Vr107t2rVr1GcdDockyW63ezOSz/LkXB0+fFiDBw9WSkqKFi1adFWVGOny/l1BCgwMVEpKijZu3Oj6g+xwOLRx40ZNmzbN2HAwNafTqenTpys/P18FBQWUGA85HA5D/uZRZLxg27Zt+vLLLzVgwABFRkZq//79euyxx5SUlHRVXI3xxOHDh5WWlqZOnTrphRde0Pfff+9aFxMTY2Ay31RWVqaTJ0+qrKxMtbW1KikpkSR17dpVoaGhxoYzUHZ2tjIzM9WnTx/17dtXeXl5stlsuvvuu42O5nMqKytVWlrqmj9w4IBKSkoUFRWlhIQEA5P5nqysLC1btkxr1qxR69atXWOuwsPDFRwcbHA635KTk6OMjAwlJCTo9OnTWrZsmQoKCrRu3borH+aKPyfVDO3YscM5ePBgZ1RUlDMoKMjZuXNn59SpU52HDh0yOprPWbRokVNSvRMulJmZWe+5+vTTT42OZrhXX33VmZCQ4AwMDHT27dvXWVRUZHQkn/Tpp5/W+28oMzPT6Gg+52L/Ny1atMjoaD5n0qRJzk6dOjkDAwOd7dq1cw4dOtT5ySefGJKFMTIAAMC0rq7BCQAAoFmhyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAwXFpammbMmHHZ23j7uGlpabJYLLJYLK7vuXLHxIkTXZ9bvXr1ZecEcHEUGQAN+vkf5YCAACUmJuqhhx7S2bNnvXaMVatW6amnnvLa/rxpypQpOnr0qHr06OH2Z15++WUdPXq0CVMBOI9vvwZwSSNGjNCiRYtUU1Oj4uJiZWZmymKx6LnnnvPK/qOioryyn6bQqlUrj7+ZPTw8XOHh4U2UCMDPcUUGwCUFBQUpJiZG8fHxGjt2rNLT07V+/XrXeofDodzcXCUmJio4OFi9evXSypUr6+xj5cqV6tmzp4KDg9WmTRulp6fLZrNJuvAWj81m01133aXQ0FDFxsbqxRdfvCBT586dlZeXV2dZ79699ac//UmStHbtWg0YMEARERFq06aNRo4cqf3793vnhEgqKirS0KFD1aZNG9cVq/OT1Wr12nEANIwiA8Aju3bt0pYtWxQYGOhalpubq6VLl+r111/XN998o5kzZ+o//uM/VFhYKEk6evSo7rjjDk2aNEnffvutCgoKNG7cODmdznqP8eCDD6qwsFBr1qzRJ598ooKCAn311Vce5bTZbMrOztb27du1ceNGtWjRQr/5zW/kcDga/8v/P//85z+Vlpam66+/Xp999pnWrl2rqKgoDR06VCtWrFBYWNhlHwOAe7i1BOCSPvzwQ4WGhurcuXOy2+1q0aKF/vznP0uS7Ha75s6dqw0bNig1NVWS1KVLF33++ed64403NGjQIB09elTnzp3TuHHj1KlTJ0lSz5496z1WZWWl3n77bf3P//yPhg4dKklasmSJOnbs6FHm8ePH15l/55131K5dO+3evduj8S71ue+++zRu3Di98MILkqTu3bvrjjvuUHFxsW6//fbL2jcAz1BkAFzS4MGDtXDhQtlsNs2fP1/+/v6uolBaWqozZ87olltuqfOZ6upqXX/99ZKkXr16aejQoerZs6eGDx+uYcOG6be//a0iIyMvONb+/ftVXV2tfv36uZZFRUWpW7duHmXet2+fHn/8cW3btk0//PCD60pMWVnZZRWZ48eP6/PPP3ddbTovJCREFoul0fsF0DgUGQCXFBISoq5du0r66cpGr1699Pbbb2vy5MmqrKyUJH300Ufq0KFDnc8FBQVJkvz8/LR+/Xpt2bJFn3zyiV599VX993//t7Zt26bExMRGZWrRosUFt6ZqampcP48aNUqdOnXSm2++qbi4ODkcDvXo0UPV1dWNOt55xcXFcjgc6tWr1wXL+/Tpc1n7BuA5xsgA8EiLFi306KOPavbs2aqqqlL37t0VFBSksrIyde3atc4UHx/v+pzFYlH//v01Z84cff311woMDFR+fv4F+09KSlJAQIC2bdvmWnbq1Cn961//qrNdu3bt6jzibLVadeDAAUnSjz/+qL1792r27NkaOnSorr32Wp06dcorv//5KzvnBypL0o4dO7R582bdeeedXjkGAPdRZAB47LbbbpOfn58WLFig1q1b64EHHtDMmTO1ZMkS7d+/X1999ZVeffVVLVmyRJK0bds2zZ07V9u3b1dZWZlWrVql77//Xtdee+0F+w4NDdXkyZP14IMPatOmTdq1a5cmTpyoFi3q/nc1ZMgQ/fWvf9Vnn32mnTt3KjMzU35+fpKkyMhItWnTRn/5y19UWlqqTZs2KTs72yu/e79+/RQcHKwHH3xQe/bs0UcffaTRo0crKytLN954o1eOAcB93FoC4DF/f39NmzZN8+bN0z333KOnnnpK7dq1U25urv73f/9XERERuuGGG/Too49KksLCwrR582bl5eXJarWqU6dOevHFF5WRkVHv/p9//nlVVlZq1KhRat26tWbNmqWKioo62+Tk5OjAgQMaOXKkwsPD9dRTT7muyLRo0ULLly/Xfffdpx49eqhbt2565ZVXlJaWdtm/e7t27fTee+9p1qxZSk5OVkJCgqZNm+a1ogTAMxbnxZ5/BICrXFpamnr37n3B+2rcZbFYlJ+fr7Fjx3o1F4D/H7eWAKABr732mkJDQ7Vz5063PzN16lSFhoY2YSoA53FFBgAu4vDhw6qqqpIkJSQk1HkJYENOnDjhertvbGysQkJCmiwjcLWjyAAAANPi1hIAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADCt/w+S9bDPEc0QawAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAukUlEQVR4nO3dfVRVdaLG8ecgcETeQRFQQJIZy3zrYhqjJQqpNGmMTDk194bp1LXQUuyNxmrsRcpetLpmTRnq3Fxa3tDJVppaYI3iKMWoWd5g7Pr+UgrIEQE55/7R9dxhRDxHD+yz8ftZa6/Ffjn7POzlkmft/dt7WxwOh0MAAAAm5GN0AAAAgItFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKbla3SA1ma323Xw4EEFBwfLYrEYHQcAALjA4XDo5MmTio2NlY/P+c+7tPsic/DgQcXFxRkdAwAAXIR9+/ape/fu513f7otMcHCwpJ8OREhIiMFpAACAK6qrqxUXF+f8O34+7b7InL2cFBISQpEBAMBkLjQshMG+AADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtNr9268BtG8HKmt1wlZvdAy3hAf6q1tYgNExgHaBIgPAtA5U1ir9pWLVNjQaHcUtAX4dtH7GMMoM4AEUGQCmdcJWr9qGRs0bP0BJUUFGx3FJ+dEaTVtephO2eooM4AEUGQCmlxQVpD7dQo2OAcAADPYFAACmRZEBAACmRZEBAACmZWiRWbBggfr166eQkBCFhIQoJSVFH3/8sXN9amqqLBZLk2ny5MkGJgYAAN7E0MG+3bt313PPPaef/exncjgcWrx4sW655RZ99dVXuvrqqyVJd999t5566innZzp16mRUXAAA4GUMLTJjxoxpMv/ss89qwYIFKikpcRaZTp06KTo62oh4AADAy3nNGJnGxkYtW7ZMNptNKSkpzuXvvvuuOnfurD59+igvL0+nTp1qcT91dXWqrq5uMgEAgPbJ8OfI7NixQykpKTp9+rSCgoJUWFio3r17S5LuuOMOJSQkKDY2Vtu3b9cjjzyi3bt364MPPjjv/vLz8zVr1qy2ig8AAAxkeJHp1auXysrKVFVVpRUrVig7O1vFxcXq3bu37rnnHud2ffv2VUxMjNLS0lRRUaGePXs2u7+8vDzl5uY656urqxUXF9fqvwcAAGh7hhcZf39/JSUlSZKSk5O1detWvfLKK3rzzTfP2Xbw4MGSpPLy8vMWGavVKqvV2nqBAQCA1/CaMTJn2e121dXVNbuurKxMkhQTE9OGiQAAgLcy9IxMXl6eMjIyFB8fr5MnT2rp0qUqKirS2rVrVVFRoaVLl+qmm25SZGSktm/frunTp+uGG25Qv379jIwNAAC8hKFF5ujRo7rzzjt16NAhhYaGql+/flq7dq1uvPFG7du3T+vXr9e8efNks9kUFxenrKwszZw508jIAADAixhaZBYuXHjedXFxcSouLm7DNAAAwGy8bowMAACAqygyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtAwtMgsWLFC/fv0UEhKikJAQpaSk6OOPP3auP336tHJychQZGamgoCBlZWXpyJEjBiYGAADexNAi0717dz333HMqLS3Vtm3bNGLECN1yyy36+uuvJUnTp0/Xhx9+qPfff1/FxcU6ePCgxo0bZ2RkAADgRXyN/PIxY8Y0mX/22We1YMEClZSUqHv37lq4cKGWLl2qESNGSJIKCgp01VVXqaSkRNddd50RkQEAgBfxmjEyjY2NWrZsmWw2m1JSUlRaWqqGhgalp6c7t7nyyisVHx+vzZs3n3c/dXV1qq6ubjIBAID2yfAis2PHDgUFBclqtWry5MkqLCxU7969dfjwYfn7+yssLKzJ9l27dtXhw4fPu7/8/HyFhoY6p7i4uFb+DQAAgFEMLzK9evVSWVmZtmzZonvvvVfZ2dnatWvXRe8vLy9PVVVVzmnfvn0eTAsAALyJoWNkJMnf319JSUmSpOTkZG3dulWvvPKKxo8fr/r6elVWVjY5K3PkyBFFR0efd39Wq1VWq7W1YwMAAC9g+BmZf2a321VXV6fk5GT5+flpw4YNznW7d+/W3r17lZKSYmBCAADgLQw9I5OXl6eMjAzFx8fr5MmTWrp0qYqKirR27VqFhoZq0qRJys3NVUREhEJCQjR16lSlpKRwxxIAAJBkcJE5evSo7rzzTh06dEihoaHq16+f1q5dqxtvvFGSNHfuXPn4+CgrK0t1dXUaNWqUXn/9dSMjAwAAL2JokVm4cGGL6zt27Kj58+dr/vz5bZQIAACYideNkQEAAHAVRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJiWoUUmPz9f1157rYKDgxUVFaXMzEzt3r27yTapqamyWCxNpsmTJxuUGAAAeBNDi0xxcbFycnJUUlKidevWqaGhQSNHjpTNZmuy3d13361Dhw45pzlz5hiUGAAAeBNfI798zZo1TeYXLVqkqKgolZaW6oYbbnAu79Spk6Kjo9s6HgAA8HJeNUamqqpKkhQREdFk+bvvvqvOnTurT58+ysvL06lTp867j7q6OlVXVzeZAABA+2ToGZl/ZLfbNW3aNA0ZMkR9+vRxLr/jjjuUkJCg2NhYbd++XY888oh2796tDz74oNn95Ofna9asWW0VGwAAGMhrikxOTo527typL774osnye+65x/lz3759FRMTo7S0NFVUVKhnz57n7CcvL0+5ubnO+erqasXFxbVecAAAYBivKDJTpkzR6tWrtXHjRnXv3r3FbQcPHixJKi8vb7bIWK1WWa3WVskJAAC8i6FFxuFwaOrUqSosLFRRUZESExMv+JmysjJJUkxMTCunAwAA3u6iiozdbld5ebmOHj0qu93eZN0/3m10ITk5OVq6dKlWrVql4OBgHT58WJIUGhqqgIAAVVRUaOnSpbrpppsUGRmp7du3a/r06brhhhvUr1+/i4kOAADaEbeLTElJie644w79z//8jxwOR5N1FotFjY2NLu9rwYIFkn566N0/Kigo0IQJE+Tv76/169dr3rx5stlsiouLU1ZWlmbOnOlubAAA0A65XWQmT56sgQMH6qOPPlJMTIwsFstFf/k/F6F/FhcXp+Li4ovePwAAaN/cLjLfffedVqxYoaSkpNbIAwAA4DK3H4g3ePBglZeXt0YWAAAAt7h9Rmbq1KmaMWOGDh8+rL59+8rPz6/JegbhAgCAtuJ2kcnKypIkTZw40bnMYrHI4XC4PdgXAADgUrhdZPbs2dMaOQAAANzmdpFJSEhojRwAAABuc6nI/PnPf1ZGRob8/Pz05z//ucVtx44d65FgAAAAF+JSkcnMzNThw4cVFRWlzMzM827HGBkAANCWXCoy//gagn9+JQEAAIBR3H6ODAAAgLe4qCKzYcMG3XzzzerZs6d69uypm2++WevXr/d0NgAAgBa5XWRef/11jR49WsHBwXrggQf0wAMPKCQkRDfddJPmz5/fGhkBAACa5fbt17Nnz9bcuXM1ZcoU57L7779fQ4YM0ezZs5WTk+PRgAAAAOfj9hmZyspKjR49+pzlI0eOVFVVlUdCAQAAuMLtIjN27FgVFhaes3zVqlW6+eabPRIKAADAFS5dWnr11VedP/fu3VvPPvusioqKlJKSIkkqKSnRX/7yF82YMaN1UgIAADTDpSIzd+7cJvPh4eHatWuXdu3a5VwWFhamd955RzNnzvRsQgAAgPNwqcjwokgAAOCNeCAeAAAwLYoMAAAwLYoMAAAwLbcfiAcAuHTlR2uMjuCW8EB/dQsLMDoGcA63isyZM2c0e/ZsTZw4Ud27d2+tTADQboUH+ivAr4OmLS8zOopbAvw6aP2MYZQZeB23ioyvr69eeOEF3Xnnna2VBwDatW5hAVo/Y5hO2OqNjuKy8qM1mra8TCds9RQZeB23Ly2NGDFCxcXF6tGjRyvEAYD2r1tYAIUA8BC3i0xGRoYeffRR7dixQ8nJyQoMDGyyfuzYsR4LBwAA0BK3i8x9990nSXr55ZfPWWexWNTY2HjpqQAAAFzgdpGx2+2tkQMAAMBtl/QcmdOnT3sqBwAAgNvcLjKNjY16+umn1a1bNwUFBenvf/+7JOnxxx/XwoULPR4QAADgfNwuMs8++6wWLVqkOXPmyN/f37m8T58+evvttz0aDgAAoCVuj5FZsmSJ/vjHPyotLU2TJ092Lu/fv7++/fZbj4YD0LYOVNaa7vkmAC5vbheZAwcOKCkp6ZzldrtdDQ0NHgkFoO0dqKxV+kvFqm0w152HAX4dFB7of+ENAbRLbheZ3r176/PPP1dCQkKT5StWrNA111zjsWAA2tYJW71qGxo1b/wAJUUFGR3HZbwDCLi8uV1knnjiCWVnZ+vAgQOy2+364IMPtHv3bi1ZskSrV69ujYwA2lBSVJD6dAs1OgYAuMTtwb633HKLPvzwQ61fv16BgYF64okn9M033+jDDz/UjTfe2BoZAQAAmuX2GRlJuv7667Vu3TpPZwEAAHDLRRUZSdq2bZu++eYbST+Nm0lOTvZYKAAAAFe4fWlp//79uv766zVo0CA98MADeuCBB3Tttddq6NCh2r9/v1v7ys/P17XXXqvg4GBFRUUpMzNTu3fvbrLN6dOnlZOTo8jISAUFBSkrK0tHjhxxNzYAAGiH3C4yv/vd79TQ0KBvvvlGx48f1/Hjx/XNN9/Ibrfrd7/7nVv7Ki4uVk5OjkpKSrRu3To1NDRo5MiRstlszm2mT5+uDz/8UO+//76Ki4t18OBBjRs3zt3YAACgHXL70lJxcbE2bdqkXr16OZf16tVLr732mq6//nq39rVmzZom84sWLVJUVJRKS0t1ww03qKqqSgsXLtTSpUs1YsQISVJBQYGuuuoqlZSU6LrrrnM3PgAAaEfcPiMTFxfX7IPvGhsbFRsbe0lhqqqqJEkRERGSpNLSUjU0NCg9Pd25zZVXXqn4+Hht3ry52X3U1dWpurq6yQQAANont4vMCy+8oKlTp2rbtm3OZdu2bdMDDzygF1988aKD2O12TZs2TUOGDFGfPn0kSYcPH5a/v7/CwsKabNu1a1cdPny42f3k5+crNDTUOcXFxV10JgAA4N3cvrQ0YcIEnTp1SoMHD5av708fP3PmjHx9fTVx4kRNnDjRue3x48dd3m9OTo527typL774wt1ITeTl5Sk3N9c5X11dTZkBAKCdcrvIzJs3z+MhpkyZotWrV2vjxo3q3r27c3l0dLTq6+tVWVnZ5KzMkSNHFB0d3ey+rFarrFarxzMCAADv43aRyc7O9tiXOxwOTZ06VYWFhSoqKlJiYmKT9cnJyfLz89OGDRuUlZUlSdq9e7f27t2rlJQUj+UAAADmdNEPxPOEnJwcLV26VKtWrVJwcLBz3EtoaKgCAgIUGhqqSZMmKTc3VxEREQoJCdHUqVOVkpLCHUsAAMDYIrNgwQJJUmpqapPlBQUFmjBhgiRp7ty58vHxUVZWlurq6jRq1Ci9/vrrbZwUAAB4I0OLjMPhuOA2HTt21Pz58zV//vw2SAQAAMzE7duvAQAAvMUlF5nq6mqtXLnS+QJJAACAtuL2paXbbrtNN9xwg6ZMmaLa2loNHDhQ33//vRwOh5YtW+a8uwi43B2orNUJW73RMVxWfrTG6AgA4Da3i8zGjRv1+9//XpJUWFgoh8OhyspKLV68WM888wxFBtBPJSb9pWLVNjQaHcUtAX4dFB7ob3QMAHCZ20WmqqrK+S6kNWvWKCsrS506ddIvf/lLPfTQQx4PCJjRCVu9ahsaNW/8ACVFBRkdx2Xhgf7qFhZgdAwAcJnbRSYuLk6bN29WRESE1qxZo2XLlkmSTpw4oY4dO3o8IGBmSVFB6tMt1OgYANBuuV1kpk2bpt/+9rcKCgpSfHy88xkwGzduVN++fT2dDwAA4LzcLjL33XefBg0apH379unGG2+Uj89PNz5dccUVeuaZZzweEAAA4Hwu6oF4AwcOVL9+/bRnzx717NlTvr6++uUvf+npbAAAAC1y+zkyp06d0qRJk9SpUyddffXV2rt3ryRp6tSpeu655zweEAAA4HzcLjJ5eXn629/+pqKioiaDe9PT07V8+XKPhgMAAGiJ25eWVq5cqeXLl+u6666TxWJxLr/66qtVUVHh0XAAAAAtcfuMzLFjxxQVFXXOcpvN1qTYAAAAtDa3i8zAgQP10UcfOefPlpe3335bKSkpnksGAABwAW5fWpo9e7YyMjK0a9cunTlzRq+88op27dqlTZs2qbi4uDUyAgAANMvtMzJDhw5VWVmZzpw5o759++qTTz5RVFSUNm/erOTk5NbICAAA0KyLeo5Mz5499dZbb3k6CwAAgFtcKjLV1dUKCQlx/tySs9sBAAC0NpeKTHh4uA4dOqSoqCiFhYU1e3eSw+GQxWJRY2Ojx0MCAAA0x6Ui8+mnnyoiIkKS9Nlnn7VqIAAAAFe5VGSGDRsmSTpz5oyKi4s1ceJEde/evVWDAQAAXIhbdy35+vrqhRde0JkzZ1orDwAAgMvcvv16xIgRPC8GAAB4Bbdvv87IyNCjjz6qHTt2KDk5WYGBgU3Wjx071mPhAAAAWuJ2kbnvvvskSS+//PI567hrCQAAtCW3i4zdbm+NHAAAAG5ze4zMkiVLVFdXd87y+vp6LVmyxCOhAAAAXOF2kbnrrrtUVVV1zvKTJ0/qrrvu8kgoAAAAV7hdZM4+wfef7d+/X6GhoR4JBQAA4AqXx8hcc801slgsslgsSktLk6/v/3+0sbFRe/bs0ejRo1slJAAAQHNcLjKZmZmSpLKyMo0aNUpBQUHOdf7+/urRo4eysrI8HhAAAOB8XC4yTz75pCSpR48eGj9+vDp27NhqoQAAAFzh9u3X2dnZkn66S+no0aPn3I4dHx/vmWQAAAAX4HaR+e677zRx4kRt2rSpyfKzg4B5IB4AAGgrbheZCRMmyNfXV6tXr1ZMTEyzdzABAAC0BbeLTFlZmUpLS3XllVe2Rh4AAACXuf0cmd69e+uHH35ojSwAAABucbvIPP/883r44YdVVFSkH3/8UdXV1U0md2zcuFFjxoxRbGysLBaLVq5c2WT9hAkTnM+uOTvxrBoAAHCW25eW0tPTJUlpaWlNll/MYF+bzab+/ftr4sSJGjduXLPbjB49WgUFBc55q9XqbmQAANBOuV1kPvvsM499eUZGhjIyMlrcxmq1Kjo62mPfCQAA2g+3i8ywYcNaI8d5FRUVKSoqSuHh4RoxYoSeeeYZRUZGtmkGAADgnVweIzNnzhzV1tY65//yl7+orq7OOX/y5Endd999Hg03evRoLVmyRBs2bNDzzz+v4uJiZWRktHj5qq6u7pLG7QAAAPNwucjk5eXp5MmTzvmMjAwdOHDAOX/q1Cm9+eabHg33m9/8RmPHjlXfvn2VmZmp1atXa+vWrSoqKjrvZ/Lz8xUaGuqc4uLiPJoJAAB4D5eLjMPhaHG+LVxxxRXq3LmzysvLz7tNXl6eqqqqnNO+ffvaMCEAAGhLbo+RMdL+/fv1448/KiYm5rzbWK1W7mwCAOAyYWiRqampaXJ2Zc+ePSorK1NERIQiIiI0a9YsZWVlKTo6WhUVFXr44YeVlJSkUaNGGZgaAAB4C7eKzNtvv62goCBJ0pkzZ7Ro0SJ17txZkpqMn3HVtm3bNHz4cOd8bm6upJ/esL1gwQJt375dixcvVmVlpWJjYzVy5Eg9/fTTnHEBAACS3Cgy8fHxeuutt5zz0dHR+tOf/nTONu5ITU1tcazN2rVr3dofAAC4vLhcZL7//vtWjAEAAOA+t9+1BAAA4C0uqshMmTJFx48f93QWAAAAt7hcZPbv3+/8eenSpaqpqZEk9e3bl2e1AAAAQ7g8RubKK69UZGSkhgwZotOnT2vfvn2Kj4/X999/r4aGhtbMCAAA0CyXz8hUVlbq/fffV3Jysux2u2666Sb9/Oc/V11dndauXasjR460Zk4AAIBzuFxkGhoaNGjQIM2YMUMBAQH66quvVFBQoA4dOuidd95RYmKievXq1ZpZAQAAmnD50lJYWJgGDBigIUOGqL6+XrW1tRoyZIh8fX21fPlydevWTVu3bm3NrAAAAE24fEbmwIEDmjlzpqxWq86cOaPk5GRdf/31qq+v15dffimLxaKhQ4e2ZlYAAIAmXC4ynTt31pgxY5Sfn69OnTpp69atmjp1qiwWix588EGFhoZq2LBhrZkVAACgiYt+IF5oaKhuu+02+fn56dNPP9WePXt03333eTIbAABAiy7q7dfbt29Xt27dJEkJCQny8/NTdHS0xo8f79FwAAAALbmoIhMXF+f8eefOnR4LAwAA4A7etQQAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEzL0CKzceNGjRkzRrGxsbJYLFq5cmWT9Q6HQ0888YRiYmIUEBCg9PR0fffdd8aEBQAAXsfQImOz2dS/f3/Nnz+/2fVz5szRq6++qjfeeENbtmxRYGCgRo0apdOnT7dxUgAA4I18jfzyjIwMZWRkNLvO4XBo3rx5mjlzpm655RZJ0pIlS9S1a1etXLlSv/nNb9oyKgAA8EJeO0Zmz549Onz4sNLT053LQkNDNXjwYG3evNnAZAAAwFsYekamJYcPH5Ykde3atcnyrl27Otc1p66uTnV1dc756urq1gkIAAAM57VnZC5Wfn6+QkNDnVNcXJzRkQAAQCvx2iITHR0tSTpy5EiT5UeOHHGua05eXp6qqqqc0759+1o1JwAAMI7XFpnExERFR0drw4YNzmXV1dXasmWLUlJSzvs5q9WqkJCQJhMAAGifDB0jU1NTo/Lycuf8nj17VFZWpoiICMXHx2vatGl65pln9LOf/UyJiYl6/PHHFRsbq8zMTONCAwAAr2Fokdm2bZuGDx/unM/NzZUkZWdna9GiRXr44Ydls9l0zz33qLKyUkOHDtWaNWvUsWNHoyIDAAAvYmiRSU1NlcPhOO96i8Wip556Sk899VQbpgIAAGbhtWNkAAAALoQiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATMvQl0YCAMyj/GiN0RHcEh7or25hAUbHQCujyAAAWhQe6K8Avw6atrzM6ChuCfDroPUzhlFm2jmKDACgRd3CArR+xjCdsNUbHcVl5UdrNG15mU7Y6iky7RxFBgBwQd3CAigE8EoM9gUAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKbF7dcwhQOVtaZ7hgUAoPVRZOD1DlTWKv2lYtU2NBodxS0Bfh0UHuhvdAwAaNcoMvB6J2z1qm1o1LzxA5QUFWR0HJfxnhcAaH0UGZhGUlSQ+nQLNToGAMCLMNgXAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYllcXmT/84Q+yWCxNpiuvvNLoWAAAwEt4/duvr776aq1fv9457+vr9ZEBAEAb8fpW4Ovrq+joaKNjAAAAL+TVl5Yk6bvvvlNsbKyuuOIK/fa3v9XevXuNjgQAALyEV5+RGTx4sBYtWqRevXrp0KFDmjVrlq6//nrt3LlTwcHBzX6mrq5OdXV1zvnq6uq2igsAANqYVxeZjIwM58/9+vXT4MGDlZCQoPfee0+TJk1q9jP5+fmaNWtWW0UEAAAG8vpLS/8oLCxMP//5z1VeXn7ebfLy8lRVVeWc9u3b14YJAQBAWzJVkampqVFFRYViYmLOu43ValVISEiTCQAAtE9eXWQefPBBFRcX6/vvv9emTZv0q1/9Sh06dNDtt99udDQAAOAFvHqMzP79+3X77bfrxx9/VJcuXTR06FCVlJSoS5cuRkcDAABewKuLzLJly4yOAAAAvJhXX1oCAABoCUUGAACYlldfWkLrOFBZqxO2eqNjuKz8aI3REQAAXooic5k5UFmr9JeKVdvQaHQUtwT4dVB4oL/RMQAAXoYic5k5YatXbUOj5o0foKSoIKPjuCw80F/dwgKMjgEA8DIUmctUUlSQ+nQLNToGAACXhMG+AADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtLj9GgDQbpntyeA8M8t9FBkAQLsTHuivAL8Omra8zOgobgnw66D1M4ZRZtxAkQEAtDvdwgK0fsYw071XbtryMp2w1VNk3ECRAQC0S93CAigElwEG+wIAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANMyRZGZP3++evTooY4dO2rw4MH661//anQkAADgBby+yCxfvly5ubl68skn9eWXX6p///4aNWqUjh49anQ0AABgMK8vMi+//LLuvvtu3XXXXerdu7feeOMNderUSe+8847R0QAAgMF8jQ7Qkvr6epWWliovL8+5zMfHR+np6dq8eXOzn6mrq1NdXZ1zvqqqSpJUXV3t8XzHqk/rWE3dhTf0In8/ZpO97pRqTlarutpidBwAwP+pOVkte90pbf/7IdWc9PzfrNbSJciqLiEdPb7fs3+3HQ5Hi9t5dZH54Ycf1NjYqK5duzZZ3rVrV3377bfNfiY/P1+zZs06Z3lcXFyrZDSrlHlGJwAANOe384xO4F1Onjyp0NDQ86736iJzMfLy8pSbm+uct9vtOn78uCIjI2WxeO4MRHV1teLi4rRv3z6FhIR4bL/tFcfLdRwr13GsXMexch3HynWteawcDodOnjyp2NjYFrfz6iLTuXNndejQQUeOHGmy/MiRI4qOjm72M1arVVartcmysLCw1oqokJAQ/qG7gePlOo6V6zhWruNYuY5j5brWOlYtnYk5y6sH+/r7+ys5OVkbNmxwLrPb7dqwYYNSUlIMTAYAALyBV5+RkaTc3FxlZ2dr4MCBGjRokObNmyebzaa77rrL6GgAAMBgXl9kxo8fr2PHjumJJ57Q4cOHNWDAAK1Zs+acAcBtzWq16sknnzznMhaax/FyHcfKdRwr13GsXMexcp03HCuL40L3NQEAAHgprx4jAwAA0BKKDAAAMC2KDAAAMC2KDAAAMC2KjIeMHTtW8fHx6tixo2JiYvRv//ZvOnjwoNGxvM7333+vSZMmKTExUQEBAerZs6eefPJJ1dfXGx3NKz377LP6xS9+oU6dOrXqgx3NaP78+erRo4c6duyowYMH669//avRkbzSxo0bNWbMGMXGxspisWjlypVGR/Ja+fn5uvbaaxUcHKyoqChlZmZq9+7dRsfySgsWLFC/fv2cD8JLSUnRxx9/bEgWioyHDB8+XO+99552796t//qv/1JFRYV+/etfGx3L63z77bey2+1688039fXXX2vu3Ll644039NhjjxkdzSvV19fr1ltv1b333mt0FK+yfPly5ebm6sknn9SXX36p/v37a9SoUTp69KjR0byOzWZT//79NX/+fKOjeL3i4mLl5OSopKRE69atU0NDg0aOHCmbzWZ0NK/TvXt3PffccyotLdW2bds0YsQI3XLLLfr666/bPowDrWLVqlUOi8XiqK+vNzqK15szZ44jMTHR6BheraCgwBEaGmp0DK8xaNAgR05OjnO+sbHRERsb68jPzzcwlfeT5CgsLDQ6hmkcPXrUIclRXFxsdBRTCA8Pd7z99ttt/r2ckWkFx48f17vvvqtf/OIX8vPzMzqO16uqqlJERITRMWAS9fX1Ki0tVXp6unOZj4+P0tPTtXnzZgOTob2pqqqSJP5/uoDGxkYtW7ZMNpvNkNcHUWQ86JFHHlFgYKAiIyO1d+9erVq1yuhIXq+8vFyvvfaa/v3f/93oKDCJH374QY2Njec83btr1646fPiwQanQ3tjtdk2bNk1DhgxRnz59jI7jlXbs2KGgoCBZrVZNnjxZhYWF6t27d5vnoMi04NFHH5XFYmlx+vbbb53bP/TQQ/rqq6/0ySefqEOHDrrzzjvluEwenOzusZKkAwcOaPTo0br11lt19913G5S87V3MsQLQtnJycrRz504tW7bM6Cheq1evXiorK9OWLVt07733Kjs7W7t27WrzHLyioAXHjh3Tjz/+2OI2V1xxhfz9/c9Zvn//fsXFxWnTpk2XxZu63T1WBw8eVGpqqq677jotWrRIPj6XT6e+mH9XixYt0rRp01RZWdnK6bxffX29OnXqpBUrVigzM9O5PDs7W5WVlZwJbYHFYlFhYWGT44ZzTZkyRatWrdLGjRuVmJhodBzTSE9PV8+ePfXmm2+26fd6/UsjjdSlSxd16dLloj5rt9slSXV1dZ6M5LXcOVYHDhzQ8OHDlZycrIKCgsuqxEiX9u8Kkr+/v5KTk7VhwwbnH2S73a4NGzZoypQpxoaDqTkcDk2dOlWFhYUqKiqixLjJbrcb8jePIuMBW7Zs0datWzV06FCFh4eroqJCjz/+uHr27HlZnI1xx4EDB5SamqqEhAS9+OKLOnbsmHNddHS0gcm80969e3X8+HHt3btXjY2NKisrkyQlJSUpKCjI2HAGys3NVXZ2tgYOHKhBgwZp3rx5stlsuuuuu4yO5nVqampUXl7unN+zZ4/KysoUERGh+Ph4A5N5n5ycHC1dulSrVq1ScHCwc8xVaGioAgICDE7nXfLy8pSRkaH4+HidPHlSS5cuVVFRkdauXdv2Ydr8Pql2aPv27Y7hw4c7IiIiHFar1dGjRw/H5MmTHfv37zc6mtcpKChwSGp2wrmys7ObPVafffaZ0dEM99prrzni4+Md/v7+jkGDBjlKSkqMjuSVPvvss2b/DWVnZxsdzeuc7/+mgoICo6N5nYkTJzoSEhIc/v7+ji5dujjS0tIcn3zyiSFZGCMDAABM6/IanAAAANoVigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAw6WmpmratGmXvI2nvzc1NVUWi0UWi8X5nitXTJgwwfm5lStXXnJOAOdHkQHQon/8o+zn56fExEQ9/PDDOn36tMe+44MPPtDTTz/tsf150t13361Dhw6pT58+Ln/mlVde0aFDh1oxFYCzePs1gAsaPXq0CgoK1NDQoNLSUmVnZ8tisej555/3yP4jIiI8sp/W0KlTJ7ffzB4aGqrQ0NBWSgTgH3FGBsAFWa1WRUdHKy4uTpmZmUpPT9e6deuc6+12u/Lz85WYmKiAgAD1799fK1asaLKPFStWqG/fvgoICFBkZKTS09Nls9kknXuJx2az6c4771RQUJBiYmL00ksvnZOpR48emjdvXpNlAwYM0B/+8AdJ0po1azR06FCFhYUpMjJSN998syoqKjxzQCSVlJQoLS1NkZGRzjNWZ6fq6mqPfQ+AllFkALhl586d2rRpk/z9/Z3L8vPztWTJEr3xxhv6+uuvNX36dP3rv/6riouLJUmHDh3S7bffrokTJ+qbb75RUVGRxo0bJ4fD0ex3PPTQQyouLtaqVav0ySefqKioSF9++aVbOW02m3Jzc7Vt2zZt2LBBPj4++tWvfiW73X7xv/z/+dvf/qbU1FRdc801+vzzz7VmzRpFREQoLS1Ny5cvV0hIyCV/BwDXcGkJwAWtXr1aQUFBOnPmjOrq6uTj46P/+I//kCTV1dVp9uzZWr9+vVJSUiRJV1xxhb744gu9+eabGjZsmA4dOqQzZ85o3LhxSkhIkCT17du32e+qqanRwoUL9Z//+Z9KS0uTJC1evFjdu3d3K3NWVlaT+XfeeUddunTRrl273Brv0pz7779f48aN04svvihJ6t27t26//XaVlpbqtttuu6R9A3APRQbABQ0fPlwLFiyQzWbT3Llz5evr6ywK5eXlOnXqlG688cYmn6mvr9c111wjSerfv7/S0tLUt29fjRo1SiNHjtSvf/1rhYeHn/NdFRUVqq+v1+DBg53LIiIi1KtXL7cyf/fdd3riiSe0ZcsW/fDDD84zMXv37r2kInPkyBF98cUXzrNNZwUGBspisVz0fgFcHIoMgAsKDAxUUlKSpJ/ObPTv318LFy7UpEmTVFNTI0n66KOP1K1btyafs1qtkqQOHTpo3bp12rRpkz755BO99tpr+v3vf68tW7YoMTHxojL5+Picc2mqoaHB+fOYMWOUkJCgt956S7GxsbLb7erTp4/q6+sv6vvOKi0tld1uV//+/c9ZPnDgwEvaNwD3MUYGgFt8fHz02GOPaebMmaqtrVXv3r1ltVq1d+9eJSUlNZni4uKcn7NYLBoyZIhmzZqlr776Sv7+/iosLDxn/z179pSfn5+2bNniXHbixAn993//d5PtunTp0uQW5+rqau3Zs0eS9OOPP2r37t2aOXOm0tLSdNVVV+nEiRMe+f3Pntk5O1BZkrZv366NGzfqjjvu8Mh3AHAdRQaA22699VZ16NBB8+fPV3BwsB588EFNnz5dixcvVkVFhb788ku99tprWrx4sSRpy5Ytmj17trZt26a9e/fqgw8+0LFjx3TVVVeds++goCBNmjRJDz30kD799FPt3LlTEyZMkI9P0/+uRowYoT/96U/6/PPPtWPHDmVnZ6tDhw6SpPDwcEVGRuqPf/yjysvL9emnnyo3N9cjv/vgwYMVEBCghx56SN9++60++ugjjR07Vjk5Obruuus88h0AXMelJQBu8/X11ZQpUzRnzhzde++9evrpp9WlSxfl5+fr73//u8LCwvQv//IveuyxxyRJISEh2rhxo+bNm6fq6molJCTopZdeUkZGRrP7f+GFF1RTU6MxY8YoODhYM2bMUFVVVZNt8vLytGfPHt18880KDQ3V008/7Twj4+Pjo2XLlun+++9Xnz591KtXL7366qtKTU295N+9S5cueu+99zRjxgz169dP8fHxmjJliseKEgD3WBznu/8RAC5zqampGjBgwDnPq3GVxWJRYWGhMjMzPZoLwP/j0hIAtOD1119XUFCQduzY4fJnJk+erKCgoFZMBeAszsgAwHkcOHBAtbW1kqT4+PgmDwFsydGjR51P942JiVFgYGCrZQQudxQZAABgWlxaAgAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApvW/nnljBU1CFakAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -3950,22 +10304,22 @@ "id": "24ce04cc-5234-4326-9a28-7624b9c7d23e", "metadata": {}, "source": [ - "Bzw. den Anteil an Residuen berechnen welcher innerhalb der 1 $\\sigma$ Umgebeung" + "Bzw. den Anteil an Residuen berechnen, welcher innerhalb der 1 $\\sigma$ Umgebung liegt." ] }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 523, "id": "39009321-41f4-49f4-820a-717be277b1b0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.675" + "0.6833333333333333" ] }, - "execution_count": 138, + "execution_count": 523, "metadata": {}, "output_type": "execute_result" } @@ -3979,12 +10333,12 @@ "id": "08579cdf-3b28-4ea2-9c61-6ae62974af51", "metadata": {}, "source": [ - "Zeigen unsere Residuen eine Struktur oder ein systematisches Verhalten deutet dies auf einen ungenauen Fit oder ein falsches Fitmodel hin. Dies ist im folgenden gezeigt. " + "Zeigen unsere Residuen eine Struktur oder ein systematisches Verhalten, deutet dies auf einen ungenauen Fit oder ein falsches Fitmodel hin. Dies ist im Folgenden gezeigt. " ] }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 524, "id": "850870af-e546-4d95-b9de-8a4e7b61c241", "metadata": {}, "outputs": [ @@ -3992,13 +10346,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/jobs/29593351/ipykernel_11778/4141622746.py:10: UserWarning: The figure layout has changed to tight\n", + "C:\\Users\\Matthias\\AppData\\Local\\Temp\\ipykernel_67644\\2321973434.py:8: UserWarning: The figure layout has changed to tight\n", " fig_fit.tight_layout()\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE1ElEQVR4nOzdd1RU197G8e+AFBHBgoAF7FGwi0axEjTWWKIm8cYeo8ao15Km9yYaTaIp96YbTbXEGI3G3ksssSvYRSNGxQaKCqgobeb9w1cSro3BGQ7l+ax11sqcObPPM05gfuxz9t4mi8ViQURERERyPQejA4iIiIiIbaiwExEREckjVNiJiIiI5BEq7ERERETyCBV2IiIiInmECjsRERGRPEKFnYiIiEgeocJOREREJI8oYHSAnMBsNnP+/HkKFy6MyWQyOo6IiIhIOovFwrVr1yhVqhQODg/uk1NhB5w/fx4/Pz+jY4iIiIjc15kzZyhTpswDj1FhBxQuXBi4/Q/m4eFhcBoRERGRvyQkJODn55derzyICjtIv/zq4eGhwk5ERERypMzcLqbBEyIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqG1YkXEEFFRUcTGxtqlbS8vL/z9/e3StohITpZjCrv333+fMWPGMHz4cD799FMAbt26xSuvvMKcOXNISkqidevWfPXVV/j4+KS/LioqisGDB7Nhwwbc3d3p06cPkyZNokCBHPPWROR/REVFERAQQGJiol3ad3NzIyIiQsWdiOQ7OaL62b17N19//TU1a9bMsH/kyJEsX76cefPm4enpydChQ+nSpQtbt24FIC0tjfbt2+Pr68u2bdu4cOECvXv3xsnJiYkTJxrxVkQkE2JjY0lMTGTWrFkEBATYtO2IiAh69uxJbGysCjsRyXcML+yuX79Ojx49+Pbbb3n33XfT98fHx/P9998ze/ZsQkNDAZg2bRoBAQHs2LGDhg0bsmbNGo4cOcK6devw8fGhdu3avPPOO7zxxhu8/fbbODs7G/W2RCQTAgICqFu3rl3ajoiIsHmbusQrIjmd4YXdkCFDaN++PS1btsxQ2IWFhZGSkkLLli3T91WtWhV/f3+2b99Ow4YN2b59OzVq1MhwabZ169YMHjyYw4cPU6dOnXueMykpiaSkpPTHCQkJdnhnImIELy8v3Nzc6Nmzp83bzuolXnOqmYuHL3LpyCVuXr7JzSs3uXn1Jreu3OLmlZuYHE0ULFaQgsUK4lrUlYLFClKoRCF8avpQrFIxTA4mm78XEcmbDC3s5syZQ3h4OLt3777ruejoaJydnSlSpEiG/T4+PkRHR6cf8/ei7s7zd567n0mTJjF+/PhHTC8iOZG/vz8RERE2H5hhzSXeq39e5cy2M5zbfY4Ley5wYe8FUm+mZum8Lp4ulKpXilL1S1G6fmn8Gvvh7uOepbZEJO8zrLA7c+YMw4cPZ+3atbi6umbruceMGcOoUaPSHyckJODn55etGUTEfvz9/bP9kmncqTgOzT3E4bmHid579x+WLh4u+NTywd3HHddirhQs+lcPncVsud2Ld+Umt67e7sW7du4aMQdiSIpP4uT6k5xcf/J2QyYo17wc1bpXI7BrIG5ebtn6PkUkZzOssAsLC+PixYsZ7q9JS0tj8+bNfPnll6xevZrk5GTi4uIy9NrFxMTg6+sLgK+vL7t27crQbkxMTPpz9+Pi4oKLi4sN342I5Ec3Lt3g4OyDHJ5zmLM7zqbvNzmaKNOgDKXq3+5pK1WvFMUrF7f6kmpaShqXDl/i3O5znN9znnM7zxGzP4ZTG09xauMpVgxZQYWWFajevTqBzwTiXEj3FYvkd4YVdi1atODgwYMZ9vXr14+qVavyxhtv4Ofnh5OTE+vXr6dr164AHDt2jKioKIKDgwEIDg7mvffe4+LFi3h7ewOwdu1aPDw8CAwMzN43JCL5RvyZeLb/dzth34T9dYnVBOVCylG9e3UCugTYpCfN0ckR39q++Nb2JWhAEHC7Z/DwL4c5PPcwF8IvcGL1CU6sPsHa19bSYEQDHh/yOK5FsvcqiIjkHIYVdoULF6Z69eoZ9hUqVIjixYun7+/fvz+jRo2iWLFieHh4MGzYMIKDg2nYsCEArVq1IjAwkF69evHhhx8SHR3Nm2++yZAhQ9QjJyI2V5zi7Juwj+UrlmNOMQNQsm5JavWtRWC3QAqXLGz3DEXKFaHx641p/HpjLv9xmUNzD7Fv2j7iTsax4c0NbP1gK/WH1KfhiIa6F08kHzJ8VOyDfPLJJzg4ONC1a9cMExTf4ejoyLJlyxg8eDDBwcEUKlSIPn36MGHCBANTi0hec/XkVcLGhDGUoZxZfAaAck+Uo8mYJlRoWQGTyZhRq8UfK07zt5rTdExTDv9ymC2TtnDx0EW2vr+VnZ/upO7AuoSMC6FgsYKG5BOR7GeyWCwWo0MYLSEhAU9PT+Lj4/Hw8DA6jkieFx4eTlBQEGFhYXabx84WUm+lsvWjrWyZuIXUW7cvufo09+Gp95+iTMMyBqe7m8Vs4Y9lf/D7xN85t/McAG5ebrT8sCW1+9TWtCkiuZQ1dYpDNmUSEclVIldHMqXGFDaO3UjqrVSK1yvOFKbw+MeP58iiDsDkYKJKxyr0396fXmt7USKwBImxiSx5YQnTmk4jev/9p4ESkbxBhZ2IyN8knE3gl26/8FObn7gSeQX3ku50/bkrwVODiSHG6HiZYjKZqNCyAoP2DeLJj57EqZATZ7ad4Zu637BqxCqSEpIe3oiI5Eo5+h47EZHsFLEggiX9l3Ar7hYmRxOPD3ucJ8Y/gYuHC+Hh4XY7b1RUlM0nVIbbq3A0erUR1btXZ/Wo1RyZd4Sdn+3k2JJjdJvTjdKPl7b5OUXEWCrsRCTfS7mZwupRqwmbGgZAqfql6PhdR3xq+jzklY8uKiqKgIAAEhMTbd7235dAe+aXZzix5gRLBy4l7mQcPzT+gdD3Qmn0aiPdeyeSh6iwE5F87eLhi/za/VcuHroIQKPXGxH6biiOTo7Zcv7Y2FgSExOZNWsWAQEBNmv3zhJov//++1/tekHwjGD2v7ufC+susO6NdexfuJ86E+rgUjzzU0R5eXll+8oeIpI5KuxEJF+yWCyEfxfOquGrSL2ZSiGfQjw982kqtqpoSJ6AgACbjhD28vLCzc2Nnj173vP5utSlLW25tOMSC1otYCELOcGJTLX9955AEclZVNiJSL6TlpLG8peXs/e7vQBUbFWRzjM756kJff39/YmIiHjgvXvX/rxG2OgwOAG9TL0I/GcgFXo9eF6+Oz2BsbGxKuxEciAVdiKSr9y8epN5z8zj5PqTmBxMhE4MpfFrjfPkfWb+/v4PLr7qQqP2jVg1fBXh34Zz5LMjuNxwof1X7bPtUrSI2JamOxGRfOPKiSv80OgHTq4/iVMhJ7ov7k6TN5rkyaIus5wKOvHU10/R+tPWYIK93+3lp7Y/cfPqTaOjiUgWqLATkXwhamsU3zf8ntijsXiU8eCFrS/w2FOPGR0rRzCZTDQc3pDui7vjVMiJk+tP8kOjH7hy4orR0UTESirsRCTPO/jzQWaGziQxNpGSQSV5cdeL+NbyNTpWjlOlQxVe2PICHmU8iD0ay/cNv+fMtjNGxxIRK6iwE5E8LeybMBY8v4C05DSqdq5K3019KVyysNGxcizf2r68uPNFSgaVJDE2kR+f/JE/1/9pdCwRySQVdiKSZ+34bAfLBi0DoP6Q+jz767M4F3I2OFXOV7hUYfpu6kvF1hVJSUxhdvvZHF9x3OhYIpIJKuxEJE/a8v4WVo9YDUCj1xrR9ou2+XqQhLWcCznTfXF3qnSqQlpSGnM6zyFiYYTRsUTkIVTYiUieYrFY2Pj2RtaPWQ9A83HNaflBywfOzSb3VsClAM/Me4Zqz1bDnGJm3jPzOLf6nNGxROQBNI+diOQZFouFdaPXse3DbQC0mNSCJqObGJwqd3N0cqTLT10o4FqA/TP3E/5mOLWoZXQsEbkPFXYikmesH7M+vahr/WlrGg5vaPNzRETY9nKkrduzB4cCDnSa1glHV0fCvwnnaZ7mzLIzNl0CTURsQ4WdiOQJWz7YwtYPtgLQfkp76r1Uz6btP2zt1Ufh5uaGl5eXzdu1JZODiaemPsWV+CucmnuK/RP2U6VWFap2qmp0NBH5GxV2IpLr7fl6D+tH376n7smPnrR5UQeZW3s1q7y8vHLFuqsmk4nqr1Zn4dyF1Emrw/zn5tNjZQ/KP1He6Ggi8v9U2IlIrnZoziGWD14OQJN/NaHRq43sdq6Hrr2aD5gcTCxlKW2faEv0hmjmdJxD7/W9Kf14aaOjiQgaFSsiudjxFcdZ2GshWKDey/UIfTfU6Ej5ghkzdd+rS/kW5Um+nsxPbX/i4uGLRscSEVTYiUgudfr30/zS9RfMqWZqPF+Ddl+005Qm2cjRxZHui7pTukFpbl65yaxWs7h68qrRsUTyPRV2IpLrXDpyiZ87/EzqrVQee+oxOk3vpMmHDeDs7kyPFT3wru7NtfPXmNVqFomXE42OJZKvqbATkVzlxsUbzG4/m6T4JPwa+9Htl244OjkaHSvfKlisID3X9MSzrCdXIq8w9+m5pCalGh1LJN9SYSciuUbKzRTmdJpD3Kk4ilYsSvdF3XEq6GR0rHyvcMnCPL/8eVw8XIj6PYqlA5ZisViMjiWSL6mwE5FcwWK2sLjvYs7uOItrUVeeX/48bl5uRseS/+ddzZtn5j2DydHEgR8PsPndzUZHEsmXVNiJSK6wYewGDv9yGAcnB55b8BxeVXL2hL75UcVWFWk3uR0AG8du5ODPBw1OJJL/GFrYTZkyhZo1a+Lh4YGHhwfBwcGsXLky/fmQkBBMJlOG7aWXXsrQRlRUFO3bt8fNzQ1vb29ee+01UlN1f4dIXrJv+j5+f+93ADp804FyIeWMDST3VW9QPYJfCQZgcb/FnNl2xuBEIvmLoYVdmTJleP/99wkLC2PPnj2EhobSqVMnDh8+nH7MgAEDuHDhQvr24Ycfpj+XlpZG+/btSU5OZtu2bcyYMYPp06czduxYI96OiNjB6c2nWTpwKXB7AuLafWsbG0gequUHLanSqQppSWnM6TRH06CIZCNDC7sOHTrQrl07KleuzGOPPcZ7772Hu7s7O3bsSD/Gzc0NX1/f9M3DwyP9uTVr1nDkyBFmzZpF7dq1adu2Le+88w6TJ08mOTnZiLckIjYUfyaeX7r9gjnFTLVnqxH6jiYgzg0cHB3o8lMXSgaVJDE2kblPzyUlMcXoWCL5Qo65xy4tLY05c+Zw48YNgoOD0/f/9NNPeHl5Ub16dcaMGUNi4l9zJG3fvp0aNWrg4+OTvq9169YkJCRk6PUTkdwn9VYqv3T9hcRLifjW9qXTNM1Vl5s4F3Km+6LuFPIuRMz+GJYO1EhZkexg+FqxBw8eJDg4mFu3buHu7s7ChQsJDAwE4Pnnn6ds2bKUKlWKAwcO8MYbb3Ds2DEWLFgAQHR0dIaiDkh/HB0dfd9zJiUlkZSUlP44ISHB1m9LRB6BxWJhxdAVnN99noLFCvLsgmdxctO0JrmNRxkPuv3SjZktZnLwp4OUql+KhsMbGh1LJE8zvLCrUqUK+/btIz4+nvnz59OnTx82bdpEYGAgAwcOTD+uRo0alCxZkhYtWnDixAkqVqyY5XNOmjSJ8ePH2yK+iNhB2Ddh7P1+LyYHE11/7krR8kWNjiRZVK55OVr9pxWrR65mzStr8K3tS7nm5YyOJZJnGX4p1tnZmUqVKhEUFMSkSZOoVasWn3322T2PbdCgAQCRkZEA+Pr6EhMTk+GYO499fX3ve84xY8YQHx+fvp05o1FbIjnFme1nWDns9uj40PdCqdgq63/ESc7QYHgDajxfA0uahfnPzifhrK6SiNiL4YXd/zKbzRkuk/7dvn37AChZsiQAwcHBHDx4kIsXL6Yfs3btWjw8PNIv596Li4tL+hQrdzYRMd716OvM6zYPc4qZgK4BNH6jsdGRxAZMJhMdvu2ATy0fbly8wS9df9GyYyJ2YmhhN2bMGDZv3sypU6c4ePAgY8aMYePGjfTo0YMTJ07wzjvvEBYWxqlTp1iyZAm9e/emWbNm1KxZE4BWrVoRGBhIr1692L9/P6tXr+bNN99kyJAhuLi4GPnWRMRKaSlpzHtmHtfOX6NEYInbgyVMGiyRVzi5OfHcgudwLerKuV3n0ntlRcS2DC3sLl68SO/evalSpQotWrRg9+7drF69mieffBJnZ2fWrVtHq1atqFq1Kq+88gpdu3Zl6dKl6a93dHRk2bJlODo6EhwcTM+ePenduzcTJkww8F2JSFZseGsDUVuicPFw4bmFz+FSWH+c5TVFKxSl25xuYILwb8M58NMBoyOJ5DmGDp74/vvv7/ucn58fmzZtemgbZcuWZcWKFbaMJSLZLHJVJFs/2ApAx+87Uvyx4gYnEnup2Koizcc2Z9P4TSx/aTml65fW5y1iQznuHjsRyV+unb/Gwl4LAaj3cj0Cu93//ljJG5q91YxyIeVIvp7MvGfnkXpL99uJ2IoKOxExjDnVzK/P/0pi7O1JiFv/t7XRkSQb3FmZws3LjZj9Max+ZbXRkUTyDBV2ImKY498d5/Sm0zi7O9NtbjcKuBo+taZkk8KlCvP0j08DsOerPRyZf8TgRCJ5gwo7ETFEecrzx3d/APDU10/pPqt8qFKbSjQefXtKmyX9l3D1z6sGJxLJ/VTYiUi2S7qcRBe6gAXqvFiHGs/XMDqSGOSJCU/g18iPpIQk5nefT1pymtGRRHI1FXYikq0sFgt7395LYQpTuGJh2n7W1uhIYiBHJ0e6/twV16KunN99nvX/Xm90JJFcTYWdiGSrXV/u4tK2S6SQQtCkIJzcnIyOJAbz9Pek07ROAGz/73ZObjhpcCKR3EuFnYhkm4uHL7Lu9XUArGUthSsWNjiR5BRVO1Wl7oC6YIFFvRdx8+pNoyOJ5Eoq7EQkW6QmpbKw50JSb6VSolEJdrHL6EiSw7T+pDXFKhcj4WwCywcvx2KxGB1JJNdRYSci2WLD2A1E74vGzcuN2uNqGx1HciDnQs50mdUFk6OJw3MPc/Cng0ZHEsl1sjRplNlsJjIykosXL2I2mzM816xZM5sEE5G849TGU2z7aBsAHb7rQKJXosGJJKcq/XhpQt4OYcNbG1gxZAX+TfwpUq6I0bFEcg2rC7sdO3bw/PPPc/r06bu6yU0mE2lpGqouIn+5efXm7SXDLFB3QF2qdqpKeHi40bEkB2syugmRKyM5s+0MC3stpM/GPjg46gKTSGZY/ZPy0ksvUa9ePQ4dOsSVK1e4evVq+nblyhV7ZBSRXGzFkBUknE2gWKVitP5YS4bJwzkUcODpWU/jXNiZqC1RbP1wq9GRRHINqwu748ePM3HiRAICAihSpAienp4ZNhGROw7NPcShnw9hcjTR5acuOLs7Gx1Jcomi5YvS9ovbcxxuHLuR6H3RBicSyR2svhTboEEDIiMjqVSpkj3yiEgecT36OiteXgFAszebUfrx0gYnEluKiIiweZteXl74+/unP67VuxZ/LPmDiAURLOqziAG7B+Do7Gjz84rkJVYXdsOGDeOVV14hOjqaGjVq4OSUcXLRmjVr2iyciOROFouFZS8t4+aVm/jW8aXpv5saHUlsxMvLCzc3N3r27Gnztt3c3IiIiEgv7kwmE+2ntOf05tPEHIhh0zubCH0n1ObnFclLrC7sunbtCsALL7yQvs9kMmGxWDR4QkQAODDrAMcWH8PByYHOMzrj6KRelrzC39+fiIgIYmNjbdpuREQEPXv2JDY2NkOvXSHvQrSf2p553eaxZdIWqnSsQun66v0VuR+rC7uTJ7XUi4jcX8K5BFYOWwlAyNsh+NTwMTiR2Jq/v3+G4sveArsGUr17dQ7NOcSiPosYFD6IAq5Zmq1LJM+z+iejbNmy9sghInmAxWJh6YClJMUnUfrx0jR+vbHRkSSPaPtlW05uOElsRCwbxm3gyQ+eNDqSSI6UqcJuyZIltG3bFicnJ5YsWfLAYzt27GiTYCKS++z9YS+RKyNxdHGk0/ROOBTQ3GNiG27F3ejwTQfmdJrD9v9sp2rnqvgF+xkdSyTHyVRh17lzZ6Kjo/H29qZz5873PU732InkX/FR8aweuRqA0HdDKRFQwuBEktdU6ViFWr1rsX/mfhb1WcRL+17Cyc3p4S8UyUcy9ee02WzG29s7/b/vt6moE8mf7lyCTb6WjF9jPxqObGh0JMmjWn/amsKlCnPl+BV+e+s3o+OI5Di6TiIij2zf9H2cWHOCAq4F6DStk5Z/ErspWLQgHb7tAMDOT3dydudZgxOJ5CxZGla0fv16Pvnkk/QJKgMCAhgxYgQtW7a0aTgRMV5UVNQDp7a4dekWG4dvBOCxQY9x+tppToeffmCb9pjcVvKPyu0qU7NXTQ78eIAlLyxhYPhACrholKwIZKGw++qrrxg+fDjdunVj+PDhAOzYsYN27drxySefMGTIEJuHFBFjREVFERAQQGJi4n2PeY7nCCCAc5xjwmcTMH9mzlTbbm5ueHl52Sqq5DOtP2lN5KpILh25xJZJWwh5O8ToSCI5gslisViseUGZMmUYPXo0Q4cOzbB/8uTJTJw4kXPnztk0YHZISEjA09OT+Ph4PDw8jI4jkmOEh4cTFBTErFmzCAgIuOv58+vOE/ZGGCZHE81+aoZH5cz//Pzv8lGSv935fy0sLIy6detm6jWHfznM/Ofm41DAgYHhAzVnouRZ1tQpVvfYxcXF0aZNm7v2t2rVijfeeMPa5kQkFwgICLjryzbxciK//ff2zetN/92UkOdCDEgm+VngM4FU/bkqRxcdZckLS+i/vb+m2JF8z+qfgI4dO7Jw4cK79i9evJinnnrKqramTJlCzZo18fDwwMPDg+DgYFauXJn+/K1btxgyZAjFixfH3d2drl27EhMTk6GNqKgo2rdvj5ubG97e3rz22mukpqZa+7ZExEprRq3hxsUblAgsQdN/aS1YyX4mk4l2k9vh4unC+T3n2fHZDqMjiRguUz12n3/+efp/BwYG8t5777Fx40aCg4OB2/fYbd26lVdeecWqk5cpU4b333+fypUrY7FYmDFjBp06dWLv3r1Uq1aNkSNHsnz5cubNm4enpydDhw6lS5cubN26FYC0tDTat2+Pr68v27Zt48KFC/Tu3RsnJycmTpxoVRYRybzjK4+zf+Z+MEHHHzrqxnUxTOFShWn9cWuW9F/Chjc3ULVTVYpVKmZ0LBHDZOoeu/Lly2euMZOJP//885ECFStWjI8++ohu3bpRokQJZs+eTbdu3QA4evQoAQEBbN++nYYNG7Jy5Uqeeuopzp8/j4/P7Xsrpk6dyhtvvMGlS5dwdnbO1Dl1j53Ivd3rvqeka0l8Ve0rEs4k0HBkQ1p/3NrglJIXZOUeuzssFgs/PvkjJ9efpGzzsvT5rQ8mB5OdkopkP2vqlExdij158mSmtkcp6tLS0pgzZw43btwgODiYsLAwUlJSMkyhUrVqVfz9/dm+fTsA27dvp0aNGulFHUDr1q1JSEjg8OHDWc4iIvf325u/kXAmgSLli/DEO08YHUcEk8lEh2874OTmxOlNp9k7ba/RkUQMY/hdpgcPHsTd3R0XFxdeeuklFi5cSGBgINHR0Tg7O1OkSJEMx/v4+BAdHQ1AdHR0hqLuzvN3nrufpKQkEhISMmwi8nDndp1j1xe7AHjq66dwLpS5XnEReytavmj6HxprX13L9ZjrBicSMYbhhV2VKlXYt28fO3fuZPDgwfTp04cjR47Y9ZyTJk3C09MzffPz00LSIg+TlpLG0oFLwQI1e9ak4pMVjY4kkkGDfzagZN2S3Iq7lb5usUh+Y/gdz87OzlSqVAmAoKAgdu/ezWeffcZzzz1HcnIycXFxGXrtYmJi8PX1BcDX15ddu3ZlaO/OqNk7x9zLmDFjGDVqVPrjhIQEFXeS6z1shYis+PsKETs+2UHM/hgKFitIq49b2fQ8IrbgUMCBDt924Nv633Lo50PU7FWTym0rGx1LJFsZXtj9L7PZTFJSEkFBQTg5ObF+/Xq6du0KwLFjx4iKikofjRscHMx7773HxYsX8fb2BmDt2rV4eHgQGBh433O4uLjg4uJi/zcjkk0ys0JEVrm5ueGS6MLKt29PRdTqv60oVKKQzc8jYgsl65akwYgG7Ph4B8sHL+flwy/rlgHJV6wq7FJTU5k4cSIvvPACZcqUeeSTjxkzhrZt2+Lv78+1a9eYPXs2GzduZPXq1Xh6etK/f39GjRpFsWLF8PDwYNiwYQQHB9OwYUPg9qTIgYGB9OrViw8//JDo6GjefPNNhgwZosJN8pXY2FgSExPvu0LEoyhevDi/D/yd1JuplHuiHLX61LJp+yK29sT4J4j4NYL40/FsfHsjrT5SD7PkH1YVdgUKFOCjjz6id+/eNjn5xYsX6d27NxcuXMDT05OaNWuyevVqnnzySQA++eQTHBwc6Nq1K0lJSbRu3Zqvvvoq/fWOjo4sW7aMwYMHExwcTKFChejTpw8TJkywST6R3OZeK0Q8qoOzD3JizQkcXRx56uunMJk0jYTkbM7uzrT/qj2z289mx8c7qPGPGpSsW9LoWCLZwupLsaGhoWzatIly5co98sm///77Bz7v6urK5MmTmTx58n2PKVu2LCtWrHjkLCJyt5tXbrJqxCoAmr3VjOKVixucSCRzKrerTLXnqnF47mGWDlzKizte1HJjki9YXdi1bduW0aNHc/DgQYKCgihUKOO9Nh07drRZOBEx1prX1pB4KZES1UrQ+LXGRscRsUqbT9twYvUJLoRdYOcXOwkeGWx0JBG7s7qwe/nllwH4+OOP73rOZDKRlpb26KlExHCnN59m3w/7gNtz1jk6OxobSMRK7r7utPywJcsGLmPDWxsI7BaIp5+n0bFE7Mrqfmmz2XzfTUWdSN6QlpzG8sHLAag7sC7+jf0NTiSSNXX718WvkR8pN1JYPUJz20ne90g3HNy6dctWOUQkB9n+8XYuHbmEWwk3Wk5q+fAXiORQJgcT7ae2x+RoImJBBH8s/8PoSCJ2ZfWl2LS0NCZOnMjUqVOJiYnhjz/+oEKFCrz11luUK1eO/v372yOniGSTqyevsmnCJuD2nHUFixU0OJHkJ3+fFNuWqr1YjUNfH2Ll0JWUf6I8Tm5OdjmPiNGsLuzee+89ZsyYwYcffsiAAQPS91evXp1PP/1UhZ1ILmaxWFg5dOXtOetCylGzZ02jI0k+4eXlhZubGz179rRL+54FPXmz9JvEnYpj87ubaTGxhV3OI2I0qwu7mTNn8s0339CiRQteeuml9P21atXi6NGjNg0nItnr6MKjHF9xHAcnB9pPaa856yTb+Pv7ExERYfNl8eB2L2DPnj0JfCWQ3aN2s+2jbdToUQPvat42P5eI0awu7M6dO5e+tuvfmc1mUlJSbBJKRLJf0rUkVv7z9rJhjd9ojFdVL4MTSX7j7++Pv7/9Bur4NvelSqcqHFt8jOWDl9N3U1/98SJ5jtWDJwIDA/n999/v2j9//nzq1Kljk1Aikv02jtvItXPXKFqhKE3/1dToOCJ20fbztji5ORH1exT7Z+w3Oo6IzVndYzd27Fj69OnDuXPnMJvNLFiwgGPHjjFz5kyWLVtmj4wiYmfR+6LZ+dlOANpNbodTQd1YLnmTp78nIeNDWPvaWta8uobHOjyGW3E3o2OJ2IzVPXadOnVi6dKlrFu3jkKFCjF27FgiIiJYunRp+hqvIpJ7WMwWlg9ejsVsIfCZQCq1uftWC5G8pMHwBnjX8Obm5ZusH7Pe6DgiNmV1jx1A06ZNWbt2ra2ziIgB9v6wl7M7zuLs7kzrT1obHUfE7hydHGn/VXumNZ1G+Lfh1HmhDmUaljE6lohNZHmC4j179vDjjz/y448/EhYWZstMIpJNEmMTWffGOgBCxofgUdrD2EAi2cS/iT+1+9YGYPnLyzGnmo0NJGIjVvfYnT17ln/84x9s3bqVIkWKABAXF0ejRo2YM2cOZcrorx6R3GLdmHXcvHIT7xrePD7scaPjiGSrlh+25Ojio0TvjWb3lN00GNbA6Egij8zqHrsXX3yRlJQUIiIiuHLlCleuXCEiIgKz2cyLL75oj4wiYgdnd5xl73d7AWj/VXscnRwNTiSSvQqVKJQ+UfGGNzdwPfq6wYlEHp3Vhd2mTZuYMmUKVapUSd9XpUoVvvjiCzZv3mzTcCJiH+ZUM8tfXg5A7b618W9iv7nDRHKyugPqUqp+KZISklj7mu4dl9zP6sLOz8/vnhMRp6WlUapUKZuEEhH72j1lN9F7o3Et4krLD1oaHUfEMA6ODrT/qj2Y4MCsA5zaeMroSCKPxOrC7qOPPmLYsGHs2bMnfd+ePXsYPnw4//nPf2waTkRs73r0dTa8uQGAFpNaUMi7kMGJRIxVql4p6g2uB8CKIStIS04zOJFI1lld2PXt25d9+/bRoEEDXFxccHFxoUGDBoSHh/PCCy9QrFix9E1Ecp41r64hKSGJUvVKUXdAXaPjiOQIoe+G4lbCjUtHLrHj0x1GxxHJMqtHxX766ad2iCEi2eHUplMc/OkgmKDdV+1wcMzyjEcieUrBogV58qMnWdx3MZsmbKLG8zXwKKPpfyT3sbqw69Onjz1yiIidpaWksXLoSgCCBgVRun5pgxOJ5Cy1etdi73d7idoSxZpX1tBtbjejI4lYTX+ui+QTu77cxcVDFylYvCAt3mthdByRHMdkMtFucjtMjiYO/3KYP9f9aXQkEaupsBPJB66dv8bGcRsBaPlBSwoWK2hsIJEcyqemD48PvT1Z94qhGkghuY8KO5F8YO1ra0m+lkzpBqWp06+O0XFEcrSQ8SEU8inE5WOX2f7JdqPjiFhFhZ1IHndq4ykOzv7/AROT22FyMBkdSSRHc/V05cmPngRg84TNxJ+JNziRSOY9cmGXkJDAokWLiIiIsEUeEbGhtJQ0VgxdAUC9l+pRKkiTiItkRs2eNfFv4k9KYgprRq0xOo5Iplld2D377LN8+eWXANy8eZN69erx7LPPUrNmTX799VebBxSRrNv1xS4uHb6Em5cboe+GGh1HJNf4+0CKI/OPcGLNCaMjiWSK1dOdbN68mX//+98ALFy4EIvFQlxcHDNmzODdd9+la9euNg8pkpdERUURGxtr0zbv1WOuARMij8anpg+PD3ucnZ/uZOWwlbx04CUKuFj9tSmSraz+PzQ+Pj59VYlVq1bRtWtX3NzcaN++Pa+99ppVbU2aNIkFCxZw9OhRChYsSKNGjfjggw+oUqVK+jEhISFs2rQpw+sGDRrE1KlT0x9HRUUxePBgNmzYgLu7O3369GHSpEkUKKAfQMlZoqKiCAgIIDEx0eZtu7m54eXllf54zatrSL5+e8BE7b61bX4+kfwg5O0QDv18iMt/XGb7x9tpOqap0ZFEHsjqysfPz4/t27dTrFgxVq1axZw5cwC4evUqrq6uVrW1adMmhgwZQv369UlNTeVf//oXrVq14siRIxQq9Nf6lQMGDGDChAnpj93c3NL/Oy0tjfbt2+Pr68u2bdu4cOECvXv3xsnJiYkTJ1r79kTsKjY2lsTERGbNmkVAQIBN2/by8sLf3x+4PWDi0M+HNGBC5BHdGUixqPcifn/3d2r2qImnv6fRsUTuy+rCbsSIEfTo0QN3d3f8/f0JCQkBbl+irVGjhlVtrVq1KsPj6dOn4+3tTVhYGM2aNUvf7+bmhq+v7z3bWLNmDUeOHGHdunX4+PhQu3Zt3nnnHd544w3efvttnJ2drXuDItkgICCAunXts07r3wdMBA0K0oAJkUdUs2dNwr8JT1+R4pl5zxgdSeS+rB488fLLL7N9+3Z++OEHtm7dioPD7SYqVKjAu++++0hh4uNvDym/c6n3jp9++gkvLy+qV6/OmDFjMlzG2r59OzVq1MDHxyd9X+vWrUlISODw4cP3PE9SUhIJCQkZNpG8YteXtwdMaIUJEdswmUy0/bItJofbAym0IoXkZFma7qRevXq0b9+ec+fOkZqaCkD79u1p3LhxloOYzWZGjBhB48aNqV69evr+559/nlmzZrFhwwbGjBnDjz/+SM+ePdOfj46OzlDUAemPo6Oj73muSZMm4enpmb75+fllObdITnLtwt8GTLyvARMituJby5f6Q+oDsHLYSq1IITmW1YVdYmIi/fv3x83NjWrVqhEVFQXAsGHDeP/997McZMiQIRw6dCj9nr07Bg4cSOvWralRowY9evRg5syZLFy4kBMnsj70fMyYMcTHx6dvZ86cyXJbIjnJutfX3V5h4vHS1HlBK0yI2NITE56gkHchYo/GsuOzHUbHEbknqwu7MWPGsH//fjZu3JhhsETLli2ZO3dulkIMHTqUZcuWsWHDBsqUKfPAYxs0aABAZGQkAL6+vsTExGQ45s7j+92X5+LigoeHR4ZNJLc7/ftpDsw6oAETInbiWsSVlh+0BGDT+E0knNNtPJLzWF3YLVq0iC+//JImTZpgMv31xVGtWjWre9EsFgtDhw5l4cKF/Pbbb5QvX/6hr9m3bx8AJUuWBCA4OJiDBw9y8eLF9GPWrl2Lh4cHgYGBVuURya3MqWZWDLk9YKLugLqUqqcBEyL2UKt3LcoElyHlRgprX11rdByRu1hd2F26dAlvb++79t+4cSNDoZcZQ4YMYdasWcyePZvChQsTHR1NdHQ0N2/eBODEiRO88847hIWFcerUKZYsWULv3r1p1qwZNWvWBKBVq1YEBgbSq1cv9u/fz+rVq3nzzTcZMmQILi4u1r49kVxp91e7uXjwIgWLFaTFRA2YELEXk4MpvUf80JxDnNxw0uhIIhlYXdjVq1eP5cuXpz++U8x99913BAcHW9XWlClTiI+PJyQkhJIlS6Zvdy7pOjs7s27dOlq1akXVqlV55ZVX6Nq1K0uXLk1vw9HRkWXLluHo6EhwcDA9e/akd+/eGea9E8nLrsdcZ8PYDQCETgzFrbjbQ14hIo+iZJ2SBL0UBMDKoStJS9FACsk5rJ7HbuLEibRt25YjR46QmprKZ599xpEjR9i2bdtdK0Q8jMVieeDzfn5+mWqzbNmyrFixwqpzi+QV695YR1J8EiWDSlL3RfvMjSciGYW+G8qRX45w6cgldn2xi+BR1nVsiNiL1T12TZo0Yd++faSmplKjRg3WrFmDt7c327dvJygoyB4ZReQ+zmw7w/4Z+4HbAyYcHLM0g5GIWKlg0YK0eP/2bQ8b397ItQvXDE4kcluWFlOtWLEi3377ra2ziIgVzGl/DZio078OZRo8eES5SH4XERFh0/YstSyUqFOCS3svsfa1tXSZ1cWm7YtkRaYKu4SEhPQpQR62SoOmDhHJHnum7iF6XzSuRVxpMUkDJkTux8vLCzc3twyT29tKBZcK9Db15uBPBwkaGETZZmVtfg4Ra2SqsCtatCgXLlzA29ubIkWK3HP0q8ViwWQykZamm0hF7O3GpRtsePP/B0y8F0qhEoUMTiSSc/n7+xMREUFsbKxN242IiKBnz56U7VqW07+eZsXQFQwKH4RDAd0SIcbJVGH322+/pa/fumHDBrsGEpGHWzd6HbfibuFbx5egQbq3VeRh/P398ff3t0vbVV+uysUNF7l48CK7Ju+i4fCGdjmPSGZkqrBr3rw5AKmpqWzatIkXXnjhoStEiIh9nN1xln0/7AM0YEIkJ3Au4kyLSS1YNmgZG8dupPpz1XH3dTc6luRTVn0jFChQgI8++ojU1FR75RGRB/j7gInafWvjF+xncCIRgdsDmErVL0VSQhLr3lhndBzJx6z+Uz80NNTq+epExDbCvw3nQvgFXDxd0tesFBHjOTg60G5yOzDB/pn7idoSZXQkyaesnu6kbdu2jB49moMHDxIUFEShQhlv2u7YsaPNwonIXxJjE1n/r/UAPPHOExTy1oAJkZykdP3S1H2xLuHfhrNiyAoGhg3UQArJdlYXdi+//DIAH3/88V3PaVSsiP2sG7OOW1dv4VPLh/qD6xsdR0TuocXEFkT8GkHMgRh2f7WbBv9sYHQkyWes/lPCbDbfd1NRJ2IfZ3ecZe93e4H/HzChXgCRHMnNy43QiaEAbHhrA9djrhucSPIbq78dZs6cSVJS0l37k5OTmTlzpk1Cichf/nfAhH9j+0zZICK2UffFupSq9/8DKV7XQArJXlYXdv369SM+Pv6u/deuXaNfv342CSUif9GACZHcxcHRgXZf/TWQ4vTvp42OJPmI1YXdnRUm/tfZs2fx9PS0SSgRue3GpRvpAyZC3w3VgAmRXKJ0/dLUHVAXgBVDVmBONRucSPKLTA+eqFOnDiaTCZPJRIsWLShQ4K+XpqWlcfLkSdq0aWOXkCL51fox67l19Ra+tX2p91I9o+OIiBVaTGxBxPwIrUgh2SrThV3nzp0B2LdvH61bt8bd/a9ZtZ2dnSlXrhxdu3a1eUCR/OrsjrPs/V4DJkRyK7fiblqRQrJdpgu7cePGAVCuXDmee+45XF1d7RZKJL/LMGCiX238GmmFCZHcqE7/OoR/F8753edZ+9panv7xaaMjSR5ndRdAnz59cHV1JTk5mbNnzxIVFZVhE5FHF/Z1GBfCL+BaxJWW72vAhEhu9fcVKQ7MOsCpTaeMjiR5nNWF3fHjx2natCkFCxakbNmylC9fnvLly1OuXDnKly9vj4wi+cr1mOt/DZh4TwMmRHK70vVLEzQwCLg9kCItRXO+iv1YvfJE3759KVCgAMuWLaNkyZL3HCErIlm37vV1JMUnUTKoJEGDgoyOIyI2cGdFikuHL7Hzs500erWR0ZEkj7K6sNu3bx9hYWFUrVrVHnlE8rXTm0+zf+Z+MEH7r9rj4KgBEyJ5QcFiBWn5YUuWvLCEjW9vpHr36niU8TA6luRBVn9rBAYGEhsba48sIvlaWkoay19eDkDQwCBKP17a4EQiYku1+9weCJVyI4XVo1YbHUfyKKsLuw8++IDXX3+djRs3cvnyZRISEjJsIpI1Oz/fyaXDl3DzcqPFxBZGxxERGzM5mGj3VTtMDiaOzDvCiTUnjI4keZDVhV3Lli3ZsWMHLVq0wNvbm6JFi1K0aFGKFClC0aJF7ZFRJM9LOJvAprc3AdDyg5YULFbQ4EQiYg++tXx5fNjjAKwYuoLUpFSDE0leY/U9dhs2bLBHDpF8bfWo1SRfT6ZMcBlq961tdBwRsaOQ8SEcnnuYK8evsO2jbTR7s5nRkSQPsbqwa968uT1yiORbJ9ae4Mi8I5gcTLSf0h6Tg0aai+Rlrp6utPq4FQueX8Dv7/1OjR41KFpeV7zENrI05O7333+nZ8+eNGrUiHPnzgHw448/smXLFpuGE8nrUm+lpq8w8fiwx/Gt5WtwIhHJDtW7V6d8aHlSb6WycthKLBaL0ZEkj7C6sPv1119p3bo1BQsWJDw8nKSkJADi4+OZOHGiVW1NmjSJ+vXrU7hwYby9vencuTPHjh3LcMytW7cYMmQIxYsXx93dna5duxITE5PhmKioKNq3b4+bmxve3t689tprpKbqvgXJ+bZ8sIUrx6/gXtKdJyY8YXQcEckmJpPp9hrQTg4cX36co4uOGh1J8girC7t3332XqVOn8u233+Lk5JS+v3HjxoSHh1vV1qZNmxgyZAg7duxg7dq1pKSk0KpVK27cuJF+zMiRI1m6dCnz5s1j06ZNnD9/ni5duqQ/n5aWRvv27UlOTmbbtm3MmDGD6dOnM3bsWGvfmki2unz8Mlsm3e7lbvNpG1w8XAxOJCLZyauqF41fbwzAqn+uIvl6ssGJJC+wurA7duwYzZrdfaOnp6cncXFxVrW1atUq+vbtS7Vq1ahVqxbTp08nKiqKsLAw4HYv4Pfff8/HH39MaGgoQUFBTJs2jW3btrFjxw4A1qxZw5EjR5g1axa1a9embdu2vPPOO0yePJnkZP2QSM5ksVhuLy2UlEbFVhUJfCbQ6EgiYoCm/25KkfJFSDibwMa3NxodR/IAqws7X19fIiMj79q/ZcsWKlSo8Ehh4uPjAShWrBgAYWFhpKSk0LLlX4ugV61aFX9/f7Zv3w7A9u3bqVGjBj4+PunHtG7dmoSEBA4fPnzP8yQlJWn+PTHU+bXn+XPtnzi6ONJucjstzSeSTzkVdKLdl+0A2PHpDmIOxDzkFSIPZvWo2AEDBjB8+HB++OEHTCYT58+fZ/v27bz66qu89dZbWQ5iNpsZMWIEjRs3pnr16gBER0fj7OxMkSJFMhzr4+NDdHR0+jF/L+ruPH/nuXuZNGkS48ePz3JWkUfhgguH/3P7j46m/2pKsUrFDE4kIo8iIiLi0RrwhZItSnJh/QXm9ppL4+8bU8K7BP7+/rYJKPmK1YXd6NGjMZvNtGjRgsTERJo1a4aLiwuvvvoqw4YNy3KQIUOGcOjQoWwZWTtmzBhGjRqV/jghIQE/Pz+7n1cEIJRQki4nUfyx4jR+o7HRcUQki7y8vHBzc6Nnz56P3JYHHgxhCFcPXGVg/YEcdTtKRESEijuxmtWFnclk4t///jevvfYakZGRXL9+ncDAQNzd3bMcYujQoSxbtozNmzdTpkyZ9P2+vr4kJycTFxeXodcuJiYGX1/f9GN27dqVob07o2bvHPO/XFxccHHRjeqS/eIi4qhPfQDafdWOAi5W/wiKSA7h7+9PRESEzdZPP/HTCY58fITO7p15//r7xMbGqrATq2X5W8XZ2ZnAwEe74dtisTBs2DAWLlzIxo0bKV++fIbng4KCcHJyYv369XTt2hW4PXgjKiqK4OBgAIKDg3nvvfe4ePEi3t7eAKxduxYPD49HzidiS+Y0MwcmHsABB0q3Lk2FFo92T6qIGM/f399mxVftmrW5vP4yMftjeJInbdKm5D9ZmqDYVoYMGcKsWbOYPXs2hQsXJjo6mujoaG7evAncHmnbv39/Ro0axYYNGwgLC6Nfv34EBwfTsGFDAFq1akVgYCC9evVi//79rF69mjfffJMhQ4aoV05ylD1T9hB/JJ5b3CJwlP7oEJGMHAo48NTUp8AEdahD7B7b9ARK/mJoYTdlyhTi4+MJCQmhZMmS6dvcuXPTj/nkk0946qmn6Nq1K82aNcPX15cFCxakP+/o6MiyZctwdHQkODiYnj170rt3byZMmGDEWxK5p4RzCaz/13oA1rEOVy9XgxOJSE5UpmEZynYpC8CBiQdITdJk+2Idk0XrmJCQkICnpyfx8fF4eHgYHUfyoF+6/kLEggiK1ijKiIMj2BO2h7p16xodS0RyoJ2bdjIvZB6FKUzzt5sTMi7E6EhiMGvqlEz12NWtW5erV68CMGHCBBITEx89pUg+cWzJMSIWROBQwIGa/66JhXz/t5SIPIBTYSdWsQqALRO3EHtMl2Ql8zJV2EVERKQv8zV+/HiuX79u11AieUXy9WRWDF0BQPArwXhUVo+wiDzcYQ7j3dibtOQ0lr+0HF1ck8zK1KjY2rVr069fP5o0aYLFYuE///nPfac30RqtIn/ZMHYDCWcSKFKuCM3HNufg0YNGRxKRXKLG6BpsenYTpzaeYv+M/dTuW9voSJILZKqwmz59OuPGjWPZsmWYTCZWrlxJgQJ3v9RkMqmwE/l/58POs/OznQC0n9IeJzcngxOJSG7iVsqNkPEhrHt9HWteWUPl9pUpVKKQ0bEkh8tUYVelShXmzJkDgIODA+vXr0+fM05E7mZONbNs4DIsZgvVu1enUptKRkcSkVyo4YiGHJx1kJgDMax9dS2dZ3Q2OpLkcFZPd2I2m1XUiTzEri93cSH8Ai6eLrT+pLXRcUQkl3J0cuSpb27Pbbd/5n7+XP+n0ZEkh8vSPHYnTpxg2LBhtGzZkpYtW/LPf/6TEydO2DqbSK4UdzqO3978DYCWH7TE3Tfry+2JiJRpUIb6L99einDZoGWkJKYYnEhyMqsLu9WrVxMYGMiuXbuoWbMmNWvWZOfOnVSrVo21a9faI6NIrmGxWFg+eDkpN1Lwb+JP0IAgoyOJSB7QYmILCpcuzNUTV9k4fqPRcSQHs7qwGz16NCNHjmTnzp18/PHHfPzxx+zcuZMRI0bwxhtv2COjSK5x6OdDRK6MxNHZkQ7fdsDkYDI6kojkAS4eLrT/qj0A2/+7nQvhFwxOJDmV1YVdREQE/fv3v2v/Cy+8wJEjR2wSSiQ3SoxNZNXw25OKNnurGV5VvQxOJCJ5SZWOVaj2bDUsaRaWvLgEc6rZ6EiSA1ld2JUoUYJ9+/bdtX/fvn0aVCH52upRq0mMTcS7ujeNX29sdBwRyYPafN4G16KuRO+NZvsn242OIzlQpqY7+bsBAwYwcOBA/vzzTxo1agTA1q1b+eCDDxg1apTNA4rkBpGrIznw4wEwQYfvOuDo7Gh0JBHJg9x93Gn131YseWEJG8duJODpAIpVKmZ0LMlBrC7s3nrrLQoXLsx///tfxowZA0CpUqV4++23+ec//2nzgCI5XfL1ZJYNWgZAg382oEyDMgYnEpG8rHbf2hycdZCTv51k2aBl9FrXC5NJ9/PKbVZfijWZTIwcOZKzZ88SHx9PfHw8Z8+eZfjw4fofS/KlDWM3EH86Hk9/T0LfDTU6jojkcSaTiae+fooCrgU4+dtJ9k3fZ3QkyUGyNI/dHYULF6Zw4cK2yiKS65zbde6vZcOmtsfZ3dngRCKSHxSrVIyQ8SEArBm1hmsXrhmaR3KORyrsRPKz1KRUFvdbjMVsoUaPGlRuW9noSCKSjwSPCqZk3ZLcirvFipdXYLFYjI4kOYAKO5Es2vzuZi4duUQh70K0+ayN0XFEJJ9xKOBAxx864lDAgaOLjnJknqYcExV2IllyYe8FtkzaAkC7r9rhVtzN4EQikh/51vKlyb+aALBiyApuXLphcCIxmlWFXUpKCi1atOD48eP2yiOS46WlpN2+BJtmIbBbIIFdA42OJCL5WLN/N8O7uvftSdL/ucroOGIwqwo7JycnDhw4YK8sIrnC1g+2ErM/hoLFC9L2y7ZGxxGRfM7R2ZFO0zphcjRxaM4hji46anQkMZDVl2J79uzJ999/b48sIjnexUMX2TRhEwBtP2+Lu4+7wYlERKBUvVI0eu32ogHLBy/n5pWbBicSo1g9QXFqaio//PAD69atIygoiEKFCmV4/uOPP7ZZOBEjRUVFERsbm/7YnGpm6wtbMaeY8WnuQ3KVZMLDw61qMyIiwtYxRUQACBkXwrFFx4g9GsvqUavpPL2z0ZHEAFYXdocOHaJu3boA/PHHHxme0wTFkldERUUREBBAYmJi+r7GNOZJnuQmN3l90+tcq5e1eaPc3Nzw8vKyVVQREQAKuBag4w8d+aHxD+yfsZ9qz1ajcjtNw5TfWF3YbdiwwR45RHKU2NhYEhMTmTVrFgEBAVz78xqbe2zGnGym4biGPNvx2Sy37eXlhb+/vw3Tiojc5hfsR8MRDdnxyQ6WDljK4EODKVi0oNGxJBtZXdjdERkZyYkTJ2jWrBkFCxbEYrGox07ynICAAGrVqMUPg37AnGymcrvKdBrXSf+vi0iOFfpuKMeXH+fyH5dZNXwVT8982uhIko2sHjxx+fJlWrRowWOPPUa7du24cOECAP379+eVV16xeUARo215fwvn95zHtagrHb7toKJORHI0JzcnOs/ojMnBxIEfDxCxUPf25idWF3YjR47EycmJqKgo3Nz+mpT1ueeeY9UqzZ8jeUv80Xg2T9gMQLsv21G4lNZGFpGcr0zDMjR6/fYo2WWDlmni4nzE6sJuzZo1fPDBB5QpUybD/sqVK3P69Gmr2tq8eTMdOnSgVKlSmEwmFi1alOH5vn37YjKZMmxt2mRcuunKlSv06NEDDw8PihQpQv/+/bl+/bq1b0vkLo44snfcXsypZgK6BlD9H9WNjiQikmkhb4fcnrj4UiLLBy/XWrL5hNWF3Y0bNzL01N1x5coVXFxcrG6rVq1aTJ48+b7HtGnThgsXLqRvP//8c4bne/ToweHDh1m7di3Lli1j8+bNDBw40KocIvcSQgjXIq/hVsKN9lPa6xKsiOQqBVwK0HlmZxwKOBDxawSH5hwyOpJkA6sLu6ZNmzJz5sz0xyaTCbPZzIcffsgTTzxhVVtt27bl3Xff5emn739jp4uLC76+vulb0aJF05+LiIhg1apVfPfddzRo0IAmTZrwxRdfMGfOHM6fP2/tWxNJd/XgVRrTGICnpj5FoRKFHvIKEZGcp2SdkjR7qxlwey3ZaxeyNk2T5B5WF3Yffvgh33zzDW3btiU5OZnXX3+d6tWrs3nzZj744AObB9y4cSPe3t5UqVKFwYMHc/ny5fTntm/fTpEiRahXr176vpYtW+Lg4MDOnTttnkXyh5SbKewdtxcHHCjdtjQBXQKMjiQikmVNxjShZFBJbl29xdIBS3VJNo+zurCrXr06f/zxB02aNKFTp07cuHGDLl26sHfvXipWrGjTcG3atGHmzJmsX7+eDz74gE2bNtG2bVvS0tIAiI6OxtvbO8NrChQoQLFixYiOjr5vu0lJSSQkJGTYRO5Y98Y6bpy+QQIJVH9d99WJSO7m6ORI5xmdcXR25Pjy44R/Z92KOZK7ZGkeO09PT/7973/bOstdunfvnv7fNWrUoGbNmlSsWJGNGzfSokWLLLc7adIkxo8fb4uIkgP879Jfj+Litovs+mIXAEtYQg+PHjZpV0TESN7VvAmdGMraV9eyesRqyoWUo3jl4kbHEjvIUmF39epVvv/++/R1LwMDA+nXrx/FihWzabj/VaFCBby8vIiMjKRFixb4+vpy8eLFDMekpqZy5coVfH1979vOmDFjGDVqVPrjhIQE/Pz87JZb7OdeS39llRtuDGYwhSnMTnZy3u28lv4SkTwjeGQwx5cf59SGUyzsuZB+W/rh6ORodCyxMasLuztTlHh6eqbf2/b5558zYcIEli5dSrNmzWwe8o6zZ89y+fJlSpYsCUBwcDBxcXGEhYURFBQEwG+//YbZbKZBgwb3bcfFxcXqEbySM/3v0l9ZZbFY2PP6HqJ/i8a9vDvjZ43Hp4yPlv4SkTzD5GCi84zOTK05lXO7zvH7e78T8naI0bHExqwu7IYMGcJzzz3HlClTcHS8XemnpaXx8ssvM2TIEA4ePJjptq5fv05kZGT645MnT7Jv3z6KFStGsWLFGD9+PF27dsXX15cTJ07w+uuvU6lSJVq3bg3cXu6pTZs2DBgwgKlTp5KSksLQoUPp3r07pUqVsvatSS4WEBBA3bp1s/z6vdP2Ev1bNA5ODjw//3lK1i1pw3QiIjmDp58n7ae059d//MrmdzdTqU0lyjQs8/AXSq5h9eCJyMhIXnnllfSiDsDR0ZFRo0ZlKNIyY8+ePdSpU4c6deoAMGrUKOrUqcPYsWNxdHTkwIEDdOzYkccee4z+/fsTFBTE77//nqG37aeffqJq1aq0aNGCdu3a0aRJE7755htr35bkY1f/vMqqf95eNeWJd55QUScieVr17tWp0aMGljQLC3ouIPl6stGRxIas7rGrW7cuERERVKlSJcP+iIgIatWqZVVbISEhDxx2vXr16oe2UaxYMWbPnm3VeUXuMKeaWdhrIcnXk/Fv6k+jVxsZHUlExO7afdmO05tPc/XEVVaPWk2HbzoYHUlsJFOF3YEDB9L/+5///CfDhw8nMjKShg0bArBjxw4mT57M+++/b5+UInay5f0tnNl2BhcPF56e+TQOjlZ3YouI5DquRVx5eubTzAidQfi34VRuX5mqnaoaHUtsIFOFXe3atTGZTBl6115//fW7jnv++ed57rnnbJdOxI7ObDvDxrc3AtBucjuKlCtiaB4RkexULqQcjV5rxLYPt7Gk/xJK1SuFR2kPo2PJI8pUYXfy5El75xDJVrfibvHr879iSbNQ/R+37zcREclvQt8J5eT6k1wIu8DCngvpta6Xrlzkcpkq7MqWLWvvHCLZxmKxsHTgUuJPx1O0QlGemvoUJpPJ6FgiItnO0dmRrj935Zu633Bq4ym2TNpCszftN22Z2F+WJig+f/48W7Zs4eLFi5jN5gzP/fOf/7RJMBF72fv9Xo7MO4JDAQe6/twVFw/NaSgi+VfxysVp91U7FvVexMa3N1LuiXL4N9YcnrmV1YXd9OnTGTRoEM7OzhQvXjxDT4fJZFJhJznapSOXWPnPlQCEvhdK6cdLG5xIRMR4tXrV4s81f3Jg1gEWPL+AQfsGUbBoQaNjSRZYXdi99dZbjB07ljFjxuDgoOvwknuk3kplfvf5pN5MpWKripraRERytDvLdtqSl5fXfVfUafdVO87uOMuVyCssHbCUZ+Y9o9tUciGrC7vExES6d++uok5ynTWvruHiwYsU8i5E5xmdMTnoF5aI5DxeXl64ubnRs2dPm7ft5uZGRETEPYs7l8IudJ3Tle+Dvyfi1wjCvgmj3qB6Ns8g9mV1Yde/f3/mzZvH6NGj7ZFHxC4iFkawe/JuADrP7Iy7r7vBiURE7s3f35+IiAhiY2Nt2m5ERAQ9e/YkNjb2vr12pYJK0WJSC9a+upbVI1bj18gPnxo+Ns0h9mV1YTdp0iSeeuopVq1aRY0aNXBycsrw/Mcff2yzcCK2cPXPqyzutxiA4FeDqdS6ksGJREQezN/f/77Fl70Fjwzm5PqTRK6MZN4z8xiwewAuhTXILLfIUmG3evXq9CXF/nfwhEhOknorlXnPzCMpPgm/Rn60mNjC6EgiIjmaycHE0zOf5us6X3P52GWWDVxGl9ld9B2fS1hd2P33v//lhx9+oG/fvnaII2Jbq0au4kL4BQoWL0i3ud1wdHI0OpKISI7n5uVGt7ndmN58OofmHMK/qT/1X65vdCzJBKtHQLi4uNC4cWN7ZBGxqYOzDxI2NQxM0OWnLniU0VI5IiKZ5dfIj5YftARg9cjVnN9z3uBEkhlWF3bDhw/niy++sEcWEZu5FHGJpQOXAtDszWa6r05EJAsajmxI1c5VSUtOY94z87h59abRkeQhrL4Uu2vXLn777TeWLVtGtWrV7ho8sWDBApuFE8mK5BvJzOs2j5QbKZQPLU/zcc2NjiQikiuZTCY6TetE9P5o4k7GsbjfYp5b+Jzut8vBrO6xK1KkCF26dKF58+Z4eXnh6emZYRMxksViYfng5Vw6cgn3ku50md1FC1qLiDwC1yKuPDPvGRydHTm2+Bjb/7vd6EjyAFb32E2bNs0eOURsYvdXuznw4wFMDia6zemGu4/mqxMReVSlgkrR5rM2LB+8nHWj11GybknKh5Y3Opbcg7oyJM84/ftpVo9YDUDLD1tStllZgxOJiOQdQYOCqNW7FpY0C/Ofm0/c6TijI8k9WN1jV758+QdeW//zzz8fKZBIVty8eJN5fedhTjVTvXt1gkcFGx1JRCRHepQ1aEsPKs2pXaeIPxrP9DbTafx9YxxdHR+4Bq1kL6sLuxEjRmR4nJKSwt69e1m1ahWvvfaarXKJZJojjux5bQ83Ym7gU9OHDt910I29IiL/w1Zr0HriyUAGwlGY2Hgii1j0wDVoJXtZXdgNHz78nvsnT57Mnj17HjmQiLXa0pa4Q3G4FnXl2QXP4lzI2ehIIiI5ji3XoI3dFcv2Idupba5Ny94tGTpz6APXoJXsY3Vhdz9t27ZlzJgxGlwh2er0gtPUox6YoOvsrhSrWMzoSCIiOZbN1qCtC+433Fn76lou/3QZf1TQ5RQ2Gzwxf/58ihXTl6pkn7M7znLow0MAVH25KpXaaBJiEZHsEjwqmOrdq2NJs/Asz3IzRpMX5wRW99jVqVMnw/1LFouF6OhoLl26xFdffWXTcCL3Ex8Vz5zOczCnmDnCEZ7q95TRkURE8hWTyUSH7zoQFRYFx2HXyF3Ub1Zft8MYzOrCrnPnzhkeOzg4UKJECUJCQqhataqtconcV/L1ZH7u+DM3Ym7g8ZgHi/5YxBumN4yOJSKS7zgXcqb+x/VZ0mEJHINFfRbxzC/PYHLQADajWF3YjRs3zh45JI+LioqyyQ27FrOFPa/tIWZ/DM7FnCn6clGSRyTbIKGIiGSFWyk35jKXF51eJOLXCDaM20DoO6FGx8q3bDZ4QuR+oqKiCAgIIDEx8ZHbakELmtKUVFL57sp3nB1xFjc3N7y8vGyQVEREsiKKKGr+uyb73t7H7+/+TomAEtR4vobRsfKlTBd2Dg4OD50bzGQykZqamumTb968mY8++oiwsDAuXLjAwoULM1zqtVgsjBs3jm+//Za4uDgaN27MlClTqFy5cvoxV65cYdiwYSxduhQHBwe6du3KZ599hru7lpLKKWJjY0lMTGTWrFkEBARkuZ2zK86y9629ANR/pz5Pt3saQBNjiojkAH4d/HBLdGPbh9tY/MJiilYsSpkGZYyOle9kurBbuHDhfZ/bvn07n3/+OWaz2aqT37hxg1q1avHCCy/QpUuXu57/8MMP+fzzz5kxYwbly5fnrbfeonXr1hw5cgRXV1cAevTowYULF1i7di0pKSn069ePgQMHMnv2bKuyiP0FBARQt27dLL32zPYzrHhnBQBNxjShxZstbBlNRERsoMXEFlw+epljS44xp9McBuwegKefp9Gx8hfLIzh69Kilc+fOFkdHR0vv3r0tp06dynJbgGXhwoXpj81ms8XX19fy0Ucfpe+Li4uzuLi4WH7++WeLxWKxHDlyxAJYdu/enX7MypUrLSaTyXLu3LlMnzs+Pt4CWOLj47OcX+4vLCzMAljCwsKy9PorJ65YPvL+yPI2b1vmdJ5jMaeZbZxQRESy6n9/x99KuGWZUnOK5W3etkypNcVyK/6WwQlzP2vqlCzNY3f+/HkGDBhAjRo1SE1NZd++fcyYMYOyZW236PrJkyeJjo6mZcuW6fs8PT1p0KAB27dvB273FBYpUoR69eqlH9OyZUscHBzYuXOnzbKIcRIvJ/JT25+4cfEGvrV9efrHpzXaSkQkB3Mp7EL3Jd0p5FOImP0x/NLtF9JS0oyOlW9YVdjFx8fzxhtvUKlSJQ4fPsz69etZunQp1atXt3mw6OhoAHx8fDLs9/HxSX8uOjoab2/vDM8XKFCAYsWKpR9zL0lJSSQkJGTYJOdJuZnCnE5zuPzHZTz9PXl++fM4u2t+JBGRnK5I2SI8v+x5nNyc+HPtnywbuAyLxWJ0rHwh04Xdhx9+SIUKFVi2bBk///wz27Zto2nTpvbMZjeTJk3C09MzffPz8zM6kvwPi9nCwl4LObP1DK5FXHl+xfMULlXY6FgiIpJJpeqVotsv3TA5mNg3fR+bxm8yOlK+kOnBE6NHj6ZgwYJUqlSJGTNmMGPGjHset2DBApsE8/X1BSAmJoaSJUum74+JiaF27drpx1y8eDHD61JTU7ly5Ur66+9lzJgxjBo1Kv1xQkKCirscZvUrq4n4NQJHZ0eeW/Qc3tW8H/4iERHJUR5r/xjtp7Rn2aBlbBq/CQ8/D+r2z9ogOsmcTBd2vXv3fuh0J7ZUvnx5fH19Wb9+fXohl5CQwM6dOxk8eDAAwcHBxMXFERYWRlBQEAC//fYbZrOZBg0a3LdtFxcXXFxc7P4eJGt2fLqDnZ/evkey84zOlGtezthAIiKSZUEDg4g7HceWiVtYNmgZHqU9tLa3HWW6sJs+fbrNT379+nUiIyPTH588eZJ9+/ZRrFgx/P39GTFiBO+++y6VK1dOn+6kVKlS6XPdBQQE0KZNGwYMGMDUqVNJSUlh6NChdO/enVKlStk8r9jfkflHWD1qNQAtP2hJ9e62v39TRESyV+i7oSREJXBg1gHmPTOPPhv7UCpI39P2kKVRsbayZ88e6tSpQ506dQAYNWoUderUYezYsQC8/vrrDBs2jIEDB1K/fn2uX7/OqlWr0uewA/jpp5+oWrUqLVq0oF27djRp0oRvvvnGkPcjj+bE2hP8+vyvYIF6L9ej0WuNjI4kIiI2YDKZ6Ph9R8qHlif5ejI/tfmJ2KOPvsyk3M1k0TAVEhIS8PT0JD4+Hg8PD6Pj5Dnh4eEEBQURFhZ23wmKz2w/w48tfyQlMYXAZwLp+nNXHBwN/btDREQyITO/4+9ISkhixhMzuBB+AQ8/D17Y8gKe/prA+GGsqVP0zSmGizkYw+z2s0lJTKFiq4p0mdVFRZ2ISB7k4uFCj1U9KF6lOAlnEvjxyR+5cfGG0bHyFH17iqGu/nmVWa1mcevqLcoEl+HZBc/i6OxodCwREbGTQiUK0WttLzz9Pbn8x2VmtZnFrfhbRsfKM1TYiWGunb/GzJYzuR59He8a3rcnIC6kCYhFRPI6Tz9Peq3thVsJN6L3RjOn4xxSbqYYHStPUGEnhkiMTWRW61nEnYyjaMWi9Fzdk4JFCxodS0REsknxx4rTc3VPXDxcOL35NPOemUdaspYee1Qq7CTb3bxyk5ktZ3Lx0EXcS7rTa20vCpfUqhIiIvlNyTol+ceyf1DAtQDHlx9n3rPztK7sI1JhJ9nq5tXbRV3M/hgK+RSiz299KFq+qNGxRETEIGWblqX74u44ujhybPExfv3HryruHoEKO8k2KddS+PHJH4neG41bCTf6/NYHr6peRscSERGDVWxVke6LuuPo7EjErxEs6LEAc6rZ6Fi5UqZXnpD8ISoqithY204aGRERgQsu7Biyg7jDcbh53S7qSgSWsOl5REQk96rUphLPLniWuU/P5ci8Izg4OvD0j0/jUEB9UNZQYSfpoqKiCAgIIDEx0abtuuBCb4fexB2Oo2DxgvRe3xvv6t42PYeIiOR+j7V/jGd/fZZfuv7CoTmHMDma6Dyjs+Y2tYIKO0kXGxtLYmIis2bNIiAgwCZtJicks+ufu7h68CquRV3pva43PjV9bNK2iIjkPVU6VKHb3G7Mf3Y+B386iMVsofOMzjg6aY7TzFBhJ3cJCAh46LIwmXHj0g1mtZqVXtT1WtsL39q+NkgoIiI5TUREhO0aKwt1JtYh/F/hHPr5ECmJKXSb240CLipbHkb/QmIXCecS+LHlj8QejaWQz+1Zxn1qqKdORCSv8fLyws3NjZ49e9q87eou1XnO8TmOLT7GnI5zeG7hczi5Odn8PHmJCjuxuasnrzKzxUziTsbhUcaD3ut7U/yx4kbHEhERO/D39yciIsIuA+969uzJf6f8lz2v7uHEmhPMajOL55c9j4uHi03PlZeosBObij0Wy8wWM7l27hpFKxal97reFClXxOhYIiJiR/7+/vj7+9ulba/Hvei1thc/tf2JqN+jmNli5u3ViopptaJ70TATsZkL4ReY3mw6185do0RgCfpt7qeiTkREHplfsB99NvTBzcuN83vOM735dBLOJRgdK0dSYSc2cWLNCaY3n86NizfwreNLn419KFxKy4SJiIhtlKxTkr6b+lK4VGEuHrrI98Hfc+nIJaNj5Tgq7OSR7Z+5n9ntZ5N8PZnyLcrTd2NfCpUoZHQsERHJY0oEluCFrS9QvEpxEs4k8EPjH4jaEmV0rBxFhZ1kmcViYcv7W1jUZxHmVDM1nq9BjxU9dFOriIjYTZFyRXhh6wuUCS7DrbhbzGw5k4gFNpxqJZdTYSdZYk4zs/KfK1k/Zj0Awa8G8/SPT+PorAkkRUTEvtyKu9F7XW+qdKxCWlIav3T7hV2TdxkdK0dQYSdWS76ezLxu89j95W4wQetPWtPqo1aYHExGRxMRkXzCyc2JZ399lqBBQWCBlUNXsua1NZjTzEZHM5QKO7FK/Jl4pjWdxtFFR3F0dqTbnG40HNHQ6FgiIpIPORRwoP2U9jzxzhMAbP/PduZ2nkvStSSDkxlHhZ1k2tkdZ/m2/rdE74umkHch+mzoQ7VnqxkdS0RE8jGTyUSzN5vR9eeuFHAtwB/L/uCHRj8QdyrO6GiGUGEnmXJw9kGmh0znRswNfGr68OKuF/Fr5Gd0LBEREQCqd69O3019cS/pzsVDF/n28W/z5YhZFXbyQBazhd/e/I0FPRaQlpRGlU5VeGHrCxQpW8ToaCIiIhmUfrw0A3YNoGTdkiReSmRG6Az2Td9ndKxspcJO7uvmlZvMfmo2v7/3OwCNRzfmuQXP4ezubHAyERGRe/Mo40HfzX0J7BaIOcXM4n6LWT5kOalJqUZHyxYq7OSezoed5+u6XxO5MpICrgV4+senaTmppUa+iohIjudcyJluc7vRfFxzAPZ8tYfpzacTfybe4GT2V8DoAJI1UVFRxMbG2rTNiIjbEzyeXnCaFR+tIC05jaIVi/Lsr8/iW8vXpucSERGxJ5ODiZC3Qyj9eGkW9FzAuZ3n+LrO13T9uSsVn6xodDy7UWGXC0VFRREQEEBiYqJN2y1AAbo4duHAewcAqNKxCp1ndMa1iKtNzyMiIpJdKrerzMCwgfzS9Rei90Yzq/UsnnjnCZqOaZonr0Ll6MLu7bffZvz48Rn2ValShaNHjwJw69YtXnnlFebMmUNSUhKtW7fmq6++wsfHx4i42SY2NpbExERmzZpFQECATdq89uc1wv8VTsLxBEwOJkLfC6Xx643z5P/0IiKSvxQtX5T+2/qzYugK9n6/lw1vbiDq9yg6z+iMu4+70fFsKkcXdgDVqlVj3bp16Y8LFPgr8siRI1m+fDnz5s3D09OToUOH0qVLF7Zu3WpE1GwXEBBA3bp1H6kNi8VC2NdhbBm5hdRbqbiVcKPrz12p0KKCjVKKiIgYr4BrATp+15EywWVYOXQlJ1afYGrNqXSa3onKbSsbHc9mcnxhV6BAAXx9776/Kz4+nu+//57Zs2cTGhoKwLRp0wgICGDHjh00bKjVEB4m8XIiS19cytFFt3tAK7aqePuvF9+89deLiIjkXnfu/7aZOtB4RmP2j91P3LE4ZrebTYPhDWj5QUsKuOT4suihcvw7OH78OKVKlcLV1ZXg4GAmTZqEv78/YWFhpKSk0LJly/Rjq1atir+/P9u3b39gYZeUlERS0l/LjSQkJNj1PeREJ387ycJeC7l2/hoOTg60/KAlDYc31KVXERHJEby8vHBzc6Nnz552ad+joAff9v2WiOkR7PxsJ6c2nqLrz10pEVDCLufLLjm6sGvQoAHTp0+nSpUqXLhwgfHjx9O0aVMOHTpEdHQ0zs7OFClSJMNrfHx8iI6OfmC7kyZNuuvevfwiJTGF3978jR2f7gALFK9SnK4/d6VknZJGRxMREUnn7+9PRESEzWeAgNu9gD179qTSsErU7lqbxf0WE7M/hm/qfkPoxFAa/LMBDo65c0a4HF3YtW3bNv2/a9asSYMGDShbtiy//PILBQsWzHK7Y8aMYdSoUemPExIS8PPL+8tjRW2JYvELi7ly/AoAdQfUpfUnrXEupAmHRUQk5/H398ff39+u53jsqcd46cBLLO67mBNrTrBm1Boifo2g07ROFK9c3K7ntodcVY4WKVKExx57jMjISHx9fUlOTiYuLi7DMTExMfe8J+/vXFxc8PDwyLDlZSmJKawauYppzaZx5fgVPMp40GNlDzp800FFnYiI5HuFSxamx6oePPX1Uzi7O3Nm6xmm1pzK9k+2Y04zGx3PKrmqsLt+/TonTpygZMmSBAUF4eTkxPr169OfP3bsGFFRUQQHBxuYMmc5/ftpptaays5Pd4IFar9Qm8GHBlOpTSWjo4mIiOQYJpOJoIFBDD40mApPViD1ViprRq1herPpxB6z/eVge8nRl2JfffVVOnToQNmyZTl//jzjxo3D0dGRf/zjH3h6etK/f39GjRpFsWLF8PDwYNiwYQQHB2tELJAYm8ja19eyb9o+4PbaeR2+7aCCTkRE5AGKlC1Cz9U9Cf8unDWvrOHMttu9d43faEyTMU1wKuhkdMQHytGF3dmzZ/nHP/7B5cuXKVGiBE2aNGHHjh2UKHF7xMonn3yCg4MDXbt2zTBBcX5mMVvY+8Ne1r2xjptXbgK376V78qMncfXUChIiIiIPYzKZCBoQRKXWlVj20jIiV0ay+Z3NHPzpIG2/bJuj573L0YXdnDlzHvi8q6srkydPZvLkydmUKGeLORDDspeWcXb7WQB8avrQfmp7/ILz/sAQERERW/P09+T55c8TsSCCVcNXcfXPq8xuN5uArgG0+bQNHmVy3j36Obqwk8xJjE1k4/iN7JmyB0uaBWd3Z0ImhNBgWAMcCuSq2yhFRESyTaYnPy4PTX5uwrGvj3Fyzkkifo3gj5V/ULlfZSo8XwFHV8f0Q728vOw+kvdBVNjlYmnJaWz77zY2v7OZpPjbEy7n5L8iREREcoJHmfzYBx+e4in8Ev04OvkoOybvYB3rOMQhANzc3IiIiDCsuFNhZ2dRUVE2n1zxyJEjBBDAxmc2kng2EQCfWj60/rg15UPL2/RcIiIiec2jTn5sMVs4t/ocEV9EUCSmCN3oxoAaA3Dr4saA8QOIjY01rLAzWSwWiyFnzkESEhLw9PQkPj7epnPaRUVFERAQQGJios3a9MefFrSgLGUBcPd1J/S9UGr1qZVrZ8kWERHJjVISU9j+yXa2TNpCyo0UAA5zmCHzh9C8a3ObnceaOkWFHfYr7MLDwwkKCmLWrFkEBAQ8Ultxh+M4+tVRLu24BICjiyONX29M49cb4+yuSYZFRESMcu3CNTa8tYG9P+wFC+AAtXrWovm45hStUPSR27emTtGl2GwQEBBA3bp1s/TamAMxbBi7gWOLjwHgUMCBOi/Wodm/m+k+OhERkRygcMnCdPyuIx5PejC1+1QCzAHsn7mfg7MPUvuF2jR/q3m2fWersMuhzu85z5ZJW4hYGAEWMDmYqNmrJs3H2qb6FxEREdvyqOzBXOay/sf1XPjpApGrIgn/Jpz90/dTu19tGr3WiGIVi9k1gwq7HMRisXDyt5NsmbSFk+tPpu+v9mw1QsaH4FXVy7hwIiIikilFAosQujKU07+fZsObGzi9+TRhX4cR/m041Z6rRpPRTfCp6WOXc6uwywHMaWaOLT7G1g+2cm7XOQBMjiZq9qhJ4zcaUyKwhMEJRURExFplm5alz8Y+RP0exZZJW4hcFcmhnw9x6OdDVG5fmcavN8a/qT8mk8lm51RhZ6CbV2+y9/u97PpyF/Gn4wEo4FqAOv3r0OjVRhQpV8TYgCIiIvJITCYTZZuVpWyzslzYe4Gt72/l8LzDHF9+nOPLj+Nb25fH//k4Nf5RgwKuj16WqbAzwKUjl9j5+U4O/HiAlMTbw6MLFitI0KAgGgxvgLuPu8EJRUREJKsetKJFhTcq4P0Pb07MPMHZFWeJ3hfNkheWsGrUKsp2LUvZbmUp6F0ww2uuX7+e6XOrsMsmKTdTiPg1gvDvwjm96XT6fu8a3jQY3oAaz9fAqaCTgQlFRETkUVi7okVBClKXujzO43jGeXL8++Mc/f4oW9nKb/yWpQwq7OzMBx8OfniQtavXcivuFnB7hGuVTlVo8M8GlG1e1qbX1kVERMQYWV3RwpxqJnpTNCfnnORK+BWGvTWMjzp/lP58WFgYAwcOzFRbmqAY209QfO3CNQ7NOcTOb3cSHxGfvt+zrCd1+tehdt/aePp5PvJ5REREJG+J3hdN8SrFM1zF27x5M82bN9cExdbat28f7u5Zu78t5VoKFzZc4NzKc8TuiQXz7f2ppOL/pD+hr4VSoUUFTA7qnRMREZF7863t+0ivV2H3N82bW7euW0EK8hiPEUAAlahEgb/9c0YRxUEO8mfBPwn/LtywxYBFREQk/1Bh9zfffPMNQUFBDzzm1qVbRG+M5sKGC1zecxlL2l9Xst0ruFOmbRlKty6NW2k34PaNlCrqREREJDuosPubKlWq3LWmqznNzLmd5zi+8jiRKyK5EH4hw/PeNbwJ6BJAQJcAvGt4ayCEiIiIGEaF3T3ER8Vz8reTnFhzghOrT3Dzys0Mz5duUJqArgEEPB1AsUr2XfNNREREJLNU2P3Nof8cYn///VyJvJJhv2sRVyq2rkjldpWp2LqiJhAWERGRHEmF3d+cWXoGV1wxOZgoVb8U5VuUp3LbypRpWAaHAg5GxxMRERF5IBV2f1P+2fKE9ArBv6k/rp6uRscRERERsYoKu7+pOqQqjzV7zOgYIiIiIlmi64siIiIieYQKOxEREZE8QoWdiIiISB6hwk5EREQkj8gzhd3kyZMpV64crq6uNGjQgF27dhkdSURERCRb5YnCbu7cuYwaNYpx48YRHh5OrVq1aN26NRcvXjQ6moiIiEi2yROF3ccff8yAAQPo168fgYGBTJ06FTc3N3744QejoxkuKSmJt99+m6SkJKOjiJX02eVe+uxyL312uZc+u9tMFovFYnSIR5GcnIybmxvz58+nc+fO6fv79OlDXFwcixcvvus1SUlJGT74q1evUq5cOebNm0fDhg2zI3a2uXbtGoGBgRw5coTChQsbHUesoM8u99Jnl3vps8u98vJnt2PHDp555hmuXLlC0aJFH3ywJZc7d+6cBbBs27Ytw/7XXnvN8vjjj9/zNePGjbMA2rRp06ZNmzZtuWbbtWvXQ+uifLnyxJgxYxg1alT64zs9dmfOnMHDw8PAZCIiIiIZJSQk4OfnR6VKlR56bK4v7Ly8vHB0dCQmJibD/piYGHx9fe/5GhcXF1xcXO7a7+HhocJOREREciRHR8eHHpPrB084OzsTFBTE+vXr0/eZzWbWr19PcHCwgclExBbOnj3Lhg0bOHv2rNFRRERyvFxf2AGMGjWKb7/9lhkzZhAREcHgwYO5ceMG/fr1MzqaiDyC77//nrJlyxIaGkrZsmX5/vvvjY4kIpKj5fpRsXd8+eWXfPTRR0RHR1O7dm0+//xzGjRokKnXJiQk4OnpSXx8vC7FiuQQZ8+epWzZspjN5vR9jo6OnDp1ijJlyhiYTEQke1lTp+T6e+zuGDp0KEOHDjU6hojNnD17luPHj1O5cuV8WcgcP348Q1EHkJaWRmRkZL789xARyYw8cSlWJK/RJUioXLkyDg4Zf0U5OjpmalSYiEh+pcJOJIc5e/YsAwcOTO+tMpvNDBo0KN8NHihTpgzffPNN+igwR0dHvv76a/XWiYg8QK4v7CZNmkT9+vUpXLgw3t7edO7cmWPHjhkdSyTLHnQJMr/p378/p06dYsOGDZw6dYr+/fsbHUlEJEfL9YXdpk2bGDJkCDt27GDt2rWkpKTQqlUrbty4YXQ0kSzRJciMypQpQ0hIiHrqREQyIdcPnli1alWGx9OnT8fb25uwsDCaNWtmUCqRrLtzCXLQoEGkpaXpEqSIiGRari/s/ld8fDwAxYoVMziJSNb179+f1q1bExkZSaVKlVTUiYhIpuSZeezg9k3mHTt2JC4uji1bttz3uKSkJJKSktIf31mDLSYqRvPYiYiISI6SkJCAj79P/prHDmDIkCEcOnTogUUd3B5wMX78+Lv2H553GPeC7vaKl6fEXI3hzMUz+Hn74VPUx+g4YgV9diIiucv1m9czfWye6bEbOnQoixcvZvPmzZQvX/6Bx96vx27zV5spUrSInZNmr+jL0URFR+Hv649vcV+btLlgwwImfDsBs8WMg8mBsQPG0uWJLjZpW+xLn52ISO4TdzWOZi83y1SPXa4v7CwWC8OGDWPhwoVs3LiRypUrW93GnaU6tn2/jWIl8s69efPXzGfs5LHpX+IThkygW6tuj9RmdGw0of1DMVv+mo7DwcGB3777DV8v2xSOYh/67EREcqcrl67QqH8j+16KXbJkidWvefLJJylYsGBWT3lPQ4YMYfbs2SxevJjChQsTHR0NgKenp83PlZtEx0anF3UAZouZsV+NpUndJo/0JX7q/KkMhQHcvrfx9IXTKg5yOH12IiJ5X5YLu86dO1t1vMlk4vjx41SoUCGrp7ynKVOmABASEpJh/7Rp0+jbt69Nz5Wb2OtLvFypcjiYHO7q9SlbsmyW28wu0bHRnDp/inKlyuXLQiY3f3YiIpI5jzRBcXR0NGazOVObm5ubrTJnYLFY7rnltqIuOjaaHQd2EB0bbZP27nyJ/50tvsR9vXyZMGRC+gS6Dg4OTHh5Qo4vlOavmU9o/1D6vtmX0P6hzF8z3+hI2S63fnYiIpJ5We6x69Onj1WXOnv27KmpRO7DHvfC3fkSH/vVWMxms02/xLu16kaTuk04feE0ZUuWtWlhYI9eNXtdls6N7PnZiYiI8WwyeOL69eu4u+feaUKMHDxh7xvao2Ojc82XuD0KXIAdB3bQ982+d+2f8d4MGtRo8Mjti4iI2JM1gydsslasp6cnv/76qy2ayncedC+cLfh6+dKgRoMcX9Tdr1fNFpem7XVZWkREJKexSWFnsVj4+uuvady4MU2aNGHEiBHs3r3bFk3neSo6brNngat7y0REJL+wSWEHsHfvXurWrUuTJk04fPgwTZs25dVXX7VV83mWio7b7F3gdmvVjd+++40Z783gt+9+s8klXhERkZzGZkuKzZ49myeffDL98YEDB+jUqROlS5dm5MiRtjqN4exxc79uaLfvYI+/nyM//tvK/eX3KXBEJO+xyeAJLy8vtmzZQtWqVTPsX758OSNHjuSPP/541FPY1Z3BE5u/3EzR4kXve9yCDQsY/+349Jv7xw0Yp+WYbCz6cjRnYs7g5+NnsyXQRO5FP88ikltcvXyVZkMzt6SYTXrsateuzbRp0/jggw8y7K9UqRJRUVG2OEW2OLv9LPGF4+/5XOz1WN7+6W3u1MFmi5nx347HP9EfL3ev7IyZ55WgBLcu3eIUp4yOInmUfp5FJDe5du1apo+1SWH37rvv8sQTT3D+/HlefvllatasyY0bN5g4cSLly5e3xSmyhYOLA87uzvd87uKVi/xv56bZYuZS8iVKuZfKjngiYiP6eRaR3MQhOfNDImxS2DVs2JAdO3YwfPhwmjZtmv4L09XVlXnz5tniFNnC0cmRAq73/icp61v27uWYTA74+/rf9zUikjPp51lEchNHJ8dMH2uzUbG1atVi48aNnD9/nmXLlrFkyRJOnz5Nu3btbHUKQ5XwKMHIdiPTR246mBwY2W4kJTxKGJxMRKyln2cRyatsMngit7szeGLeoHkPXXniUsIlzl05R+lipfUlIJLL6edZRHKDK5eu8MzXz9h38MSBAweoXr16+vxrD3P48GGqVKlCgQK5+zJHCY8S+gIQySP08ywieU2WL8XWqVOHy5cvZ/r44ODgXDVCVkRERCS3yXL3mcVi4a233sLNzS1TxycnJ2f1VCIiIiKSCVku7Jo1a8axY8cyfXxwcDAFCxbM6ulERERE5CGyXNht3LjRhjFERMQolxIucfbKWcoUK6N7DkVyOZtNd2K0yZMnU65cOVxdXWnQoAG7du0yOpKISI63Yu8Knv/ieV6d9SrPf/E8K/auMDqSiDyCPFHYzZ07l1GjRjFu3DjCw8OpVasWrVu35uLFi0ZHExHJsS4lXOKTFZ+kT9Rstpj5ZMUnXEq4ZHAyEcmq3D33yP/7+OOPGTBgAP369QNg6tSpLF++nB9++IHRo0dnup20lDTSktPsFVNEJEeJionKsPoG3C7uzlw8QzHXB8/pKSLZJy0l87VJri/skpOTCQsLY8yYMen7HBwcaNmyJdu3b7/na5KSkkhKSkp/nJCQAMC+H/bhiqt9A4vkUfHEc4UrFKMYnngaHUcyIZ54TJiw8Nc89SZMnJ9znhvcMDCZiPzdLW5l+libXIq9efMmiYmJ6Y9Pnz7Np59+ypo1a2zR/APFxsaSlpaGj49Phv0+Pj5ER0ff8zWTJk3C09MzffPz87N7TpG8LJxwPuVTZjCDT/mUcMKNjiSZ4IknHeiACRNwu6jrQAcV5iK5mE167Dp16kSXLl146aWXiIuLo0GDBjg5OREbG8vHH3/M4MGDbXEamxkzZgyjRo1Kf5yQkICfnx+1X6hNMS9dfhCxxqVrl5gwdQJ3Vie0YGGZaRnPvfQcJQprhGVO14hGPHftOc5fPU+poqX0mYnkQFdir8APmTvWJoVdeHg4n3zyCQDz58/Hx8eHvXv38uuvvzJ27Fi7FnZeXl44OjoSExOTYX9MTAy+vr73fI2LiwsuLi537Xd0csTR2dEuOUXyqgvXLtzzPq3oa9H4Fr/3z6DkLL7FffVZieRgjk6Zr01scik2MTGRwoULA7BmzRq6dOmCg4MDDRs25PTp07Y4xX05OzsTFBTE+vXr0/eZzWbWr19PcHCwXc8tIlCmWBkcTBl/lTiYHChdrLRBiUREcr5LCZfYe2qvzUeh26Swq1SpEosWLeLMmTOsXr2aVq1aAXDx4kU8PDxscYoHGjVqFN9++y0zZswgIiKCwYMHc+PGjfRRsiJiPyU8SjCy3cj04s7B5MDIdiM10a2IyH3Yc/5Im1yKHTt2LM8//zwjR46kRYsW6T1la9asoU6dOrY4xQM999xzXLp0ibFjxxIdHU3t2rVZtWrVXQMqRMQ+2tVpR/2K9Tl35Ryli5VWUWcnWiFCJPe73/yR9SvWt8nPtU0Ku27dutGkSRMuXLhArVq10ve3aNGCp59+2haneKihQ4cydOjQbDmXyN/py/a2Eh4l8vX7t7cVe1ekfxnc6RVtV6ed0bFE8jxb/44/e+XsPe9LPnflXM4p7AB8fX3vGqzw+OOP26p5kRxJX7aSHez9F76I3Js9fsffuS/578WdLe9LttmSYr///js9e/YkODiYc+fOAfDjjz+yZcsWW51CJEfRckySXR70F76I2Ie9fsfb+75km/TY/frrr/Tq1YsePXqwd+/e9FUd4uPjmThxIitWaFFpyXvs3Z0ucoe9/8IXkbvZ83e8Pe9LtkmP3bvvvsvUqVP59ttvcXJySt/fuHFjwsM1A73kTZrmQ7KLRh6LZD97/44v4VGC2uVq2/zn2CY9dseOHaNZs2Z37ff09CQuLs4WpxDJce582f7v/Rf6shV70MhjkeyVW3/H26Sw8/X1JTIyknLlymXYv2XLFipUqGCLU4jkSPqyleykkcci2Ss3/o63SWE3YMAAhg8fzg8//IDJZOL8+fNs376dV199lbfeessWp8gWaSlppN5KNTqG5DJFnYtS1LcogP7/EZE84dK1S5y7eo7SRUvn+/WDc8Lv+LSUtEwfa5PCbvTo0ZjNZlq0aEFiYiLNmjXDxcWFV199lWHDhtniFNnCnGQm+Xqy0TFEREQMsyZiDV9u/hKLxYLJZGJos6G0CmhldKx8zZxkfvhB/89ksVgstjpxcnIykZGRXL9+ncDAQNzd3bl58yYFCxa01SnsIiEhAU9PTzZ/uZmixYsaHUdERMQQ0ZejaT2sdcYR2A4OrP58Nb7FfR/wSrGnq5ev0mxoM+Lj4x+6VKvNJigGcHZ2JjAwEICkpCQ+/vhjPvzwQ6Kjo215GrspULAAToWcHn6giIiIFaJjozl1/hTlSpXD1yvnFkjnTpy7e4oPs5nz8efx8/czKJUUSMx8ufZI050kJSUxZswY6tWrR6NGjVi0aBEA06ZNo3z58nzyySeMHDnyUU4hIiKSq81fM5/Q/qH0fbMvof1Dmb9mvtGR7qtcqXJ3T/Hh4EDZkmUNSiTWeqTCbuzYsUyZMoVy5cpx6tQpnnnmGQYOHMgnn3zCxx9/zKlTp3jjjTdslVVEJFeIjo1mx4EdRMfmjqsVYj/RsdGMnTw2w+oFY78am2P/3/D18mXCkAk4OPz/nIkODkx4eUKO7mWUjB7pUuy8efOYOXMmHTt25NChQ9SsWZPU1FT279+PyWSyVUYRkVxj/pr56V/kDiYHJgyZQLdW3YyOJQY5df7UPS9tnr5wOscWS91adaNJ3SacvnCasiXL5ticcm+P1GN39uxZgoKCAKhevTouLi6MHDlSRZ2I5Eu5rXfG3uzZc5lbekVz66VNXy9fGtRooKIuF3qkwi4tLQ1nZ+f0xwUKFMDd3f2RQ4mI5EYP6p3Jb+x5X1luumdNlzYluz3SdCcODg60bdsWFxcXAJYuXUpoaCiFChXKcNyCBQseLaWd3ZnuZNv32yhWopjRcUQkl4qOjSa0f+hdU0X89t1v+eqL3J7/Dvb+N7bX6NXo2Ghd2iT3jA7Oaa5cukKj/o0yNd3JI/XY9enTB29vbzw9PfH09KRnz56UKlUq/fGdzV5OnTpF//79KV++PAULFqRixYqMGzeO5GRNMiwi2U+9M7fZs+fSnm3bsydQlzZzV09rbvZIgyemTZtmqxxZcvToUcxmM19//TWVKlXi0KFDDBgwgBs3bvCf//zH0Gwikj/pxvO/7iv73141W9xXZq+273d/ZJO6TfLlZ2hr+vfNPo/UY2e0Nm3aMG3aNFq1akWFChXo2LEjr776ao6/9CsieVt+752xZ8+lvdrW/ZH2lR3/vrllQI292XTliZwgPj6eYsUefJ9cUlISSUlJ6Y8TEhIASE1KJfmGLuOKiDyqjo078njVxzkTcwY/Hz98i/va7PerPdouVaTUPXsCS3qW1PeCDdj733fBhgVM+HZC+jRDYweMpcsTXR653ZwiNSk108fmqcIuMjKSL7744qGXYSdNmsT48ePv2p96M5Vb3LJXPBGRfKWIQxGKlCwCwK2rtv3dauu2izgUYczzY5j08yTMZjMODg6M+ccYijgUsXn2/Mie/74xV2PSizq4fZl3wncTCCobhE9RH1vEN1zqzcwXdo80KtZeRo8ezQcffPDAYyIiIqhatWr643PnztG8eXNCQkL47rvvHvjae/XY+fn5ERMV89DRJiIiknedPXeWP//8kwoVKlCmdBmj4+Q59vj33bR5E206trlr/+qlq2nWtJlNzmG0hIQEfPx9MjUqNkcWdpcuXeLy5csPPKZChQrpc+idP3+ekJAQGjZsyPTp09PvvcisO9OdZOYfTERERHKOs2fPUrZsWczmvy7zOjo6curUKcqUyRvFuTV1So68FFuiRAlKlCiRqWPPnTvHE088QVBQENOmTbO6qBMREZHcq0yZMnzzzTcMGjSItLQ0HB0d+frrr/NMUWetHNljl1nnzp0jJCSEsmXLMmPGDBwdHdOf8/XN/Agp9diJiIjkbmfPniUyMpJKlSrluaIu1/fYZdbatWuJjIwkMjLyrg8xF9erIiIiYqUyZcrkuYIuK3L1dcu+fftisVjuuYmIiIjkN7m6sBMRERGRv6iwExEREckjVNiJiIiI5BEq7ERERETyCBV2IiIiInmECjsRERGRPCJXz2NnK3emR0lISDA4iYiIiEhGd+qTzEznpsIOuHbtGgB+fn4GJxERERG5t2vXruHp6fnAY3L1kmK2YjabOX/+PIULF8ZkMhkdx6YSEhLw8/PjzJkzWi4tl9Fnl3vps8u99NnlXnn5s7NYLFy7do1SpUrh4PDgu+jUYwc4ODjk+WVIPDw88tz/6PmFPrvcS59d7qXPLvfKq5/dw3rq7tDgCREREZE8QoWdiIiISB6hwi6Pc3FxYdy4cbi4uBgdRaykzy730meXe+mzy7302d2mwRMiIiIieYR67ERERETyCBV2IiIiInmECjsRERGRPEKFXT6UlJRE7dq1MZlM7Nu3z+g48hCnTp2if//+lC9fnoIFC1KxYkXGjRtHcnKy0dHkHiZPnky5cuVwdXWlQYMG7Nq1y+hI8hCTJk2ifv36FC5cGG9vbzp37syxY8eMjiVZ8P7772MymRgxYoTRUQyjwi4fev311ylVqpTRMSSTjh49itls5uuvv+bw4cN88sknTJ06lX/9619GR5P/MXfuXEaNGsW4ceMIDw+nVq1atG7dmosXLxodTR5g06ZNDBkyhB07drB27VpSUlJo1aoVN27cMDqaWGH37t18/fXX1KxZ0+gohtKo2Hxm5cqVjBo1il9//ZVq1aqxd+9eateubXQssdJHH33ElClT+PPPP42OIn/ToEED6tevz5dffgncXq7Qz8+PYcOGMXr0aIPTSWZdunQJb29vNm3aRLNmzYyOI5lw/fp16taty1dffcW7775L7dq1+fTTT42OZQj12OUjMTExDBgwgB9//BE3Nzej48gjiI+Pp1ixYkbHkL9JTk4mLCyMli1bpu9zcHCgZcuWbN++3cBkYq34+HgA/YzlIkOGDKF9+/YZfv7yK60Vm09YLBb69u3LSy+9RL169Th16pTRkSSLIiMj+eKLL/jPf/5jdBT5m9jYWNLS0vDx8cmw38fHh6NHjxqUSqxlNpsZMWIEjRs3pnr16kbHkUyYM2cO4eHh7N692+goOYJ67HK50aNHYzKZHrgdPXqUL774gmvXrjFmzBijI8v/y+xn93fnzp2jTZs2PPPMMwwYMMCg5CJ515AhQzh06BBz5swxOopkwpkzZxg+fDg//fQTrq6uRsfJEXSPXS536dIlLl++/MBjKlSowLPPPsvSpUsxmUzp+9PS0nB0dKRHjx7MmDHD3lHlf2T2s3N2dgbg/PnzhISE0LBhQ6ZPn46Dg/4uy0mSk5Nxc3Nj/vz5dO7cOX1/nz59iIuLY/HixcaFk0wZOnQoixcvZvPmzZQvX97oOJIJixYt4umnn8bR0TF9X1paGiaTCQcHB5KSkjI8lx+osMsnoqKiSEhISH98/vx5Wrduzfz582nQoAFlypQxMJ08zLlz53jiiScICgpi1qxZ+e4XVW7RoEEDHn/8cb744gvg9mU9f39/hg4dqsETOZjFYmHYsGEsXLiQjRs3UrlyZaMjSSZdu3aN06dPZ9jXr18/qlatyhtvvJEvL6frHrt8wt/fP8Njd3d3ACpWrKiiLoc7d+4cISEhlC1blv/85z9cunQp/TlfX18Dk8n/GjVqFH369KFevXo8/vjjfPrpp9y4cYN+/foZHU0eYMiQIcyePZvFixdTuHBhoqOjAfD09KRgwYIGp5MHKVy48F3FW6FChShevHi+LOpAhZ1Ijrd27VoiIyOJjIy8qwhXh3vO8txzz3Hp0iXGjh1LdHQ0tWvXZtWqVXcNqJCcZcqUKQCEhIRk2D9t2jT69u2b/YFEHoEuxYqIiIjkEbr7WkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkTEICEhIZhMJkwmE/v27QNg48aNmEwm4uLi7Hrut99+O/3cn376qV3PJSLZR4WdiOQKffv2TS9E/r61adPG6GiPZMCAAVy4cMEm61rGxMTg5OTEnDlz7vl8//79qVu3LgCvvvoqFy5c0FrRInmMCjsRyTXatGnDhQsXMmw///yzXc+ZnJxs1/bd3Nzw9fWlQIFHX7rbx8eH9u3b88MPP9z13I0bN/jll1/o378/AO7u7vj6+uLo6PjI5xWRnEOFnYjkGi4uLvj6+mbYihYtmv68yWTiu+++4+mnn8bNzY3KlSuzZMmSDG0cOnSItm3b4u7ujo+PD7169SI2Njb9+ZCQEIYOHcqIESPw8vKidevWACxZsoTKlSvj6urKE088wYwZM9Ivmd64cQMPDw/mz5+f4VyLFi2iUKFCXLt2LcvvOTExkbZt29K4ceP0y7PfffcdAQEBuLq6UrVqVb766qv04/v378/69euJiorK0M68efNITU2lR48eWc4iIjmfCjsRyVPGjx/Ps88+y4EDB2jXrh09evTgypUrAMTFxREaGkqdOnXYs2cPq1atIiYmhmeffTZDGzNmzMDZ2ZmtW7cydepUTp48Sbdu3ejcuTP79+9n0KBB/Pvf/04/vlChQnTv3p1p06ZlaGfatGl069aNwoULZ+m9xMXF8eSTT2I2m1m7di1FihThp59+YuzYsbz33ntEREQwceJE3nrrLWbMmAFAu3bt8PHxYfr06Xdl6dKlC0WKFMlSFhHJJSwiIrlAnz59LI6OjpZChQpl2N577730YwDLm2++mf74+vXrFsCycuVKi8VisbzzzjuWVq1aZWj3zJkzFsBy7Ngxi8VisTRv3txSp06dDMe88cYblurVq2fY9+9//9sCWK5evWqxWCyWnTt3WhwdHS3nz5+3WCwWS0xMjKVAgQKWjRs33vc9NW/e3DJ8+PAM+zZs2GABLBEREZaaNWtaunbtaklKSkp/vmLFipbZs2dneM0777xjCQ4OTn88evRoS/ny5S1ms9lisVgskZGRFpPJZFm3bt1dGcqWLWv55JNP7ptRRHIX9diJSK7xxBNPsG/fvgzbSy+9lOGYmjVrpv93oUKF8PDw4OLFiwDs37+fDRs24O7unr5VrVoVgBMnTqS/LigoKEObx44do379+hn2Pf7443c9rlatWnrP2axZsyhbtizNmjXL0nt98sknqVSpEnPnzsXZ2Rm4fZ/ciRMn6N+/f4b38O6772bI/8ILL3Dy5Ek2bNgA3O6tK1euHKGhoVnKIiK5x6PfrSsikk0KFSpEpUqVHniMk5NThscmkwmz2QzA9evX6dChAx988MFdrytZsmSG82TFiy++yOTJkxk9ejTTpk2jX79+mEymLLXVvn17fv31V44cOUKNGjXS8wN8++23NGjQIMPxfx8EUblyZZo2bcq0adMICQlh5syZDBgwIMtZRCT3UGEnIvlG3bp1+fXXXylXrpxVo1CrVKnCihUrMuzbvXv3Xcf17NmT119/nc8//5wjR47Qp0+fLGd9//33cXd3p0WLFmzcuJHAwEB8fHwoVaoUf/7550MHQfTv35/BgwfTsWNHzp07R9++fbOcRURyD12KFZFcIykpiejo6Azb30e0PsyQIUO4cuUK//jHP9i9ezcnTpxg9erV9OvXj7S0tPu+btCgQRw9epQ33niDP/74g19++SV9cMLfe8GKFi1Kly5deO2112jVqtUjzxH3n//8hx49ehAaGsrRo0eB24NDJk2axOeff84ff/zBwYMHmTZtGh9//HGG1z7zzDM4OTkxaNAgWrVqhZ+f3yNlEZHcQYWdiOQaq1atomTJkhm2Jk2aZPr1pUqVYuvWraSlpdGqVStq1KjBiBEjKFKkCA4O9/91WL58eebPn8+CBQuoWbMmU6ZMSR8V6+LikuHY/v37k5yczAsvvJC1N/k/PvnkE5599llCQ0P5448/ePHFF/nuu++YNm0aNWrUoHnz5kyfPp3y5ctneJ2bmxvdu3fn6tWrNssiIjmfyWKxWIwOISKS27z33ntMnTqVM2fOZNj/448/MnLkSM6fP58+6OF+QkJCqF27tqFLepUrV44RI0YwYsQIwzKIiO2ox05EJBO++uordu/ezZ9//smPP/7IRx99lOEeusTERE6cOMH777/PoEGDHlrU/b1dd3d3Dh48aK/o9zRx4kTc3d3vmshYRHI39diJiGTCyJEjmTt3LleuXMHf359evXoxZsyY9EEYb7/9Nu+99x7NmjVj8eLFuLu7P7TNc+fOcfPmTQD8/f0zXQzawpUrV9Inbi5RogSenp7Zdm4RsR8VdiIiIiL/154dkAAAAAAI+v+6H6ErgiasWACACWEHADAh7AAAJoQdAMCEsAMAmBB2AAATwg4AYELYAQBMCDsAgIkA+bxqB1DF8rgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEsElEQVR4nOzdd1iV9f/H8edhCwiKiGgKzhT3Vly5cWuaaUmOzMrUTJs2LFu2vtm3UhuaWmaWK/feMydOnKmIynKAioJwzu8Pf53iqykHDt4ceD2u61yX5z73eB3Aw5vP/Rkmi8ViQUREREQcnpPRAURERETEPlTYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikke4GB0gNzCbzZw7d46CBQtiMpmMjiMiIiJiZbFYuHLlCiVKlMDJ6e5tcirsgHPnzlGqVCmjY4iIiIj8qzNnzlCyZMm77qPCDihYsCBw6wvm4+NjcBoRERGRvyUlJVGqVClrvXI3KuzAevvVx8dHhZ2IiIjkSpnpLqbBEyIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqG1YkVEMikqKoqEhAS7n9ff35+goCC7n1dE8h8VdiIimRAVFUVISAjJycl2P7enpyeRkZEq7kQk21TYiYhkQkJCAsnJyUyfPp2QkBC7nTcyMpLw8HASEhJU2IlItqmwExGxQUhICLVr1zY6hojIHWnwhIiIiEgeocJOREREJI9QYSciIiKSR+Sawu6jjz7CZDLxwgsvWLfduHGDIUOGUKRIEby9venRowexsbEZjouKiqJjx454enoSEBDAyy+/TFpa2n1OLyIiImK8XFHY7dixg2+//Zbq1atn2D5ixAgWLlzIrFmzWL9+PefOnaN79+7W19PT0+nYsSOpqals2bKFadOmMXXqVEaPHn2/34KIiIiI4Qwv7K5evUqfPn34/vvvKVy4sHV7YmIikydP5vPPP6dly5bUqVOHKVOmsGXLFrZt2wbAihUrOHToENOnT6dmzZq0b9+e9957j/Hjx5OammrUWxIRERExhOHTnQwZMoSOHTvSunVr3n//fev2Xbt2cfPmTVq3bm3dVqlSJYKCgti6dSsNGzZk69atVKtWjWLFiln3CQsLY/DgwRw8eJBatWrd8ZopKSmkpKRYnyclJeXAOxMRueX6peuc33We+Mh4rl+4zvVL17lx6QbXL14nITqBAQxg+8jtnClzBo/CHngU9sDT35Ni1YsRWDMQNy83o9+CiDgIQwu7mTNnsnv3bnbs2HHbazExMbi5uVGoUKEM24sVK0ZMTIx1n38WdX+9/tdr/2bs2LGMGTMmm+lFRG5nTjcTvTWaM1vPcH7nec7tPMelPy/d9ZhggoldH0vs+tjbXjM5mfAP8adE3RKUqFuCoKZBFKteDJPJlFNvQUQcmGGF3ZkzZxg+fDgrV67Ew8Pjvl571KhRjBw50vo8KSmJUqVK3dcMIpJ3WMwWojZHcfC3g0TOjuRqzNXb9ilcrjCBNQLxDPCkQOECFPArgEdhD85fOs8rL7/C+2+8T9GCRbl+8VZr3pVzV4jZE8OVc1eIPxhP/MF49k7bC4BfBT+qPFqFKo9WIaBagIo8EbEyrLDbtWsXcXFxGWZwT09PZ8OGDXz99dcsX76c1NRULl++nKHVLjY2lsDAQAACAwPZvn17hvP+NWr2r33uxN3dHXd3dzu+GxHJj2L2xrBn8h4OzT7E1fN/F3MehTwo07IMJerdamUrXrs4BfwK3PEcu3fv5hCHCO4efMcVLa6cu8K5Xec4t/Mc57af49S6U1w8dpGNH2xk4wcbKVKxCJV7Vqb2U7UpFFwop96qiDgIwwq7Vq1asX///gzbBgwYQKVKlXj11VcpVaoUrq6urF69mh49egBw5MgRoqKiCA0NBSA0NJQPPviAuLg4AgICAFi5ciU+Pj5Urlz5/r4hEckXLBYLp9adYtNHmzix/IR1u7uvO5W6VaLKo1Uo27oszm7OdrlewRIFqViiIhU7VwQg5UoKRxcd5dBvhzi29BgXjlxg4/sb2TR2E9Ueq0ajVxpRrFqxe5xVRPIqwwq7ggULUrVq1QzbvLy8KFKkiHX7wIEDGTlyJH5+fvj4+DBs2DBCQ0Np2LAhAG3btqVy5co88cQTfPLJJ8TExPDmm28yZMgQtciJiF1ZzBYqUYlN/TZx+eBl4Fb/t5AeIdToV4Oyrcvi4p7zH6nuBd2p9lg1qj1WjZSkW0Xensl7OLnmJPum72Pf9H1U6FiBJq81IahJUI7nEZHcxfBRsXczbtw4nJyc6NGjBykpKYSFhTFhwgTr687OzixatIjBgwcTGhqKl5cX/fr149133zUwtYjkNceWHGPd0HX0pjeXD17GxcOFmgNqEvpiKH7l/AzL5e7jTrXHq1Ht8Wqc23mOzR9v5tCcQxxbfIxji48R3CyYsC/CKF6ruGEZReT+MlksFovRIYyWlJSEr68viYmJ+Pj4GB1HRHKJS39eYtkLyzi68CgA17lOtSer0fXDrngX87bLNXbv3k2dOnXYtWvXHfvY2erC0Qts+WwLe6ftJT01HUxQ99m6tHy/5b/28xOR3M2WOsXwCYpFRHKbm8k3WTt6LeMrj+fowqM4uThR7olyfMEXhAwJsVtRlxOKPFiEzt915vkTz1Pt8WpggZ0Td/LVg1+x89udmNPNRkcUkRykwk5E5B+OLjrK+JDxbHhvA+kp6ZRtXZZn9z1L5Rcqk0LKvU+QS/iU9KH7z93pt64fAVUDuH7hOoufXcyk+pM4t+uc0fFEJIeosBMR4VYr3aLBi/il8y8kRiXiU8qHnrN7Er4inKIhRY2Ol2WlHyrNM3ueod1/2+Hu48753eeZHDqZzZ9sxmLO9z1xRPIcFXYiku/F7I3hu7rfseubXQA0HNmQoYeHUrlH5Twx+a+TixMNnm/A0KNDCekRgvmmmVWvruKnNj+RdFZLKorkJSrsRCTfspgtbB23lUn1J5EQmYB3cW/CV4QT9p8wXD1djY5nd97FvOk5qyedJ3XG1dOVk2tO8k31bzj8+2Gjo4mInaiwE5F8KTkhmZ87/MyKkStIT02nYpeKDN43mHJtyhkdLUeZTCZqD6zN07ufpnjt4ly/eJ1fH/6VRc8uIi0lzeh4IpJNKuxEJN+JOxjH9/W/58TyE7h4uNBxYkd6/d4LT39Po6PdN/4V/Rm4dSCNXmkEwK5vd/Fjyx+5FnfN4GQikh0q7EQkXzm25BiTQydz+eRlCpctzKAdg6j7bN080ZfOVs5uzrT5uA3hy8PxKOTBmS1n+L7e98TuizU6mohkkQo7EckXLJZb/el+6fwLqVdSCX4omKe2P0VA1QCjoxmuXNtyDNw2EL8KfiRGJTK50WSOLDhidCwRyQIVdiKS56WnprPw6YWsGLkCi9lCradq8cSKJ/Askn9uvd6Lf0V/ntr2FGValeHmtZvM7Dbz1pQoWpxIxKGosBORPC3lSgrT201nz6Q9mJxMhI0Lo/N3nXF2czY6Wq5TwK8AfZb2oe7gumCBVa+uYuHTC7VahYgDUWEnInnW9YvX+an1T5xaewq3gm48tvAxGr7QMF/2p8ssZ1dnOk7oSPuv22NyMrFn0h7mPj731rqzIpLruRgdQEQkJ1yNucpPbX4i7kAcBYoUIHx5OCXqlDA6lsOoP6Q+3oHezHlsDgd/O0jqtVR6zuqJa4G8N7+fSF6iFjsRyXMSoxKZ0mwKcQfi8C7uTf/1/VXUZUHlHpV5bMFjuHi4cGzxMWZ0nEHKFcdZL1ckP1JhJyJ5yoWjF/ihyQ9cPHYR32BfBmwcQEAVjXzNqvLtyhO+PBy3gm6cWnuKn9r8xPWL142OJSL/QrdiRSTPiDsYx4+tfuRa7DWKVCxC31V98SnpY3SsTImMjLT7Of39/QkKCsr2eYKbBdN3dV9+bvczZ/84y7QW03hi1RN4FfWyQ0oRsScVdiKSJ1w4doGfWv/EtdhrBNYMJHx5OF4Bub/w8Pf3x9PTk/DwcLuf29PTk7lz51K0aNHsn8wZ6k+sz7bnthG7L5bpYdPpt6YfHoU8sn9uEbEbFXYi4vASoxL5sdWPXI25SrHqxei7ui8F/AoYHStTgoKCiIyMJCEhwa7njY+Pp3v37rRr186u5y1CEZ7kSWL2xPBzh595YsUTuHm72fUaIpJ1KuxExKFdOX+FH1v9SNKZJIo8WITwFeEOU9T9JSgoyC63TP9XThSMkZGRvBj+Is/7PE/01mhmdp3J44sfx8VDv05EcgP9TxQRh5V8IZmf2vzExeMXKVS6EH1X98W7mDdRUVE5UtA4mpwqGGOJpcFXDdg+ZDsn15zkt0d+o9fcXpr0WSQXUGEnIg7pRuINpodNJ/5gPAVLFOSJVU/gU9KHqKgoQkJCSE5Otvs1PT098ff3t/t5HVHhqoV5bNFj/NzuZ44tPsa8J+bRfUZ3nJw12YKIkVTYiYghstOqlp6SzrYh27i45yJuhdyo82UdTiWe4tTuU0RGRpKcnMz06dMJCQmxa2Z7jTLNK0o/VJpe83rxS5dfOPjbQdwKutH5+85a2UPEQCrsROS+y06rmgkTj/AIVajCDW7wzeVveP2R1zPs4+npSdOmTVWE3Qfl25XnkV8fYdYjs9gzeQ++wb489NZDRscSybdU2InIfZeQkJDlVrVD/z3EiR9PYHIx0eLrFvSs1/O2fdSydn+FPBxChwkdWPzsYtaNXkeh0oWo8UQNo2OJ5Esq7ETEMCEhIdSuXTvT+++YuIMTP54AoNuUblQPr55T0cRGdZ+py+WTl9n88WYWDFyAzwM+lGlZxuhYIvmOermKiEM4uugoS4cuBaDFey1U1OVCrT5sRdXeVTHfNPNr91+JOxhndCSRfMfQwm7ixIlUr14dHx8ffHx8CA0NZenSpdbXmzdvjslkyvB49tlnM5wjKiqKjh074unpSUBAAC+//DJpaWn3+62ISA46t+scs3vNxmK2UGtgLZq+0dToSHIHJicTXad0JahJECmJKczoMIMr568YHUskXzG0sCtZsiQfffQRu3btYufOnbRs2ZKuXbty8OBB6z6DBg3i/Pnz1scnn3xifS09PZ2OHTuSmprKli1bmDZtGlOnTmX06NFGvB0RyQGXT1/ml06/cDP5JuXalqPjxI4adZmLuXi40Ov3XhR5sAiJUYn80ukXUq+mGh1LJN8wtLDr3LkzHTp0oEKFCjz44IN88MEHeHt7s23bNus+np6eBAYGWh8+Pn8v6L1ixQoOHTrE9OnTqVmzJu3bt+e9995j/PjxpKbqg0TE0aVeS2Vml5nWpcJ6zuqJs6smwc3tPIt40mdpHzyLenJ+93l+7/87FovF6Fgi+UKu6WOXnp7OzJkzuXbtGqGhodbtP//8M/7+/lStWpVRo0ZlmB5h69atVKtWjWLFilm3hYWFkZSUlKHVT0Qcj8ViYcGTC4jdF4tXgBePLXoMdx93o2NJJhUuW5je83vj5OpE5JxINn640ehIIvmC4aNi9+/fT2hoKDdu3MDb25t58+ZRuXJlAB5//HGCg4MpUaIE+/bt49VXX+XIkSPMnTsXgJiYmAxFHWB9HhMT86/XTElJISUlxfo8KSnJ3m9LRLJp88ebOfjbQZxcnOg5uye+pXyNjiQ2KhVaio4TOrJw0ELWvrWWwBqBPNjpQaNjieRphhd2FStWJCIigsTERGbPnk2/fv1Yv349lStX5umnn7buV61aNYoXL06rVq04ceIE5cqVy/I1x44dy5gxY+wRX0RywLElx1j9+moA2n/VnuCmwQYnkqyq/VRtzu85z84JO5nz+BwGbR+EfyUtyyaSUwy/Fevm5kb58uWpU6cOY8eOpUaNGvz3v/+9474NGjQA4Pjx4wAEBgYSGxubYZ+/ngcGBv7rNUeNGkViYqL1cebMGXu8FRGxgwtHLzDn8TlggdpP16bus3WNjiTZ1O6LdgQ3Cyb1Siozu87kxuUbRkcSybMML+z+l9lsznCb9J8iIiIAKF68OAChoaHs37+fuLi/50pauXIlPj4+1tu5d+Lu7m6dYuWvh4gYLyUphZldZ5KSmEKpxqXo8FUHoyOJHTi7OtNzVk98Svlw4egF5vaZizndbHQskTzJ0MJu1KhRbNiwgVOnTrF//35GjRrFunXr6NOnDydOnOC9995j165dnDp1igULFtC3b1+aNWtG9eq3JiZt27YtlStX5oknnmDv3r0sX76cN998kyFDhuDurk7WIo7EYrYwN3wuCYcTKPhAQR6d/SjObhoBm1d4BXjRa14vXDxcOLbkGGtHrzU6kkieZGhhFxcXR9++falYsSKtWrVix44dLF++nDZt2uDm5saqVato27YtlSpV4sUXX6RHjx4sXLjQeryzszOLFi3C2dmZ0NBQwsPD6du3L++++66B70pEsmLzJ5s5uvAozu7O9JrXC+9Ab6MjiZ2VqFOCzpM6A7Dpw00cXXTU4EQieY+hgycmT578r6+VKlWK9evX3/McwcHBLFmyxJ6xROQ+O7X+FGveWANAh6878EC9BwxOJDmlep/qnN1+lu1fbmde33k8s+cZCgUXMjqWSJ6R6/rYiUj+cjX2KnMem4PFbKFG3xrUGljL6EiSw9p+2pYH6j/AjUs3mP3obNJT042OJJJnqLATEcNY0i3M7TOXq+evUrRyUTpM6KDlwvIBZzdnHvn1ETwKe3B2+1lWvLzC6EgieYbh89iJSP51dNJRTq4+iaunKz1n98TNy83oSJJJkZGR2T5H9dHV2T5iO9u/3E76A+lU712doKAgO6QTyb9U2ImIIcpSlqPf3+o83+nbThQNKWpwIskMf39/PD09CQ8Pt8v5WtOaJjRhy6tbeObtZ9h6ZKuKO5FsUGEnIvfd9bjr9KCHdRLi6uHVjY4kmRQUFERkZCQJCQl2OZ/5ppmtz27lYsRFOt/oTGx0rAo7kWzIUmFnNps5fvw4cXFxmM0ZJ5ls1qyZXYKJSN5kTjez5809eOGFT0Uf2v+3vdGRxEZBQUF2Lb4eXPQg46uNp/il4hz64hD1GtWz27lF8hubC7tt27bx+OOPc/r0aSwWS4bXTCYT6eka3SRihKioKLu1ovyTv7+/XX+Jb/54Mxd2XSCVVOp8VAcXD904yO98HvCh1nu1+GPoH5yadYojC45QsUtFo2OJOCSbP1GfffZZ6taty+LFiylevLhGsInkAlFRUYSEhJCcnGz3c3t6ejJ37lyKFs1+H7hL+y+xefRmABazmB5BPbJ9TskbAkID2MIWGtGI+U/OZ/C+wRQsUdDoWCIOx+bC7tixY8yePZvy5cvnRB4RyYKEhASSk5OZPn06ISEhdjtvfHw83bt3p127dtk+lzvuPMMz+OHHfvZzrMAx/P397ZBS8orVrKZdxXYkHUliXt95PLHiCUxOajwQsYXNhV2DBg04fvy4CjuRXCgkJITatWvb9Zz26ii/Z/QeohdHU6B4AV7+5WU+L/O5OslLBumkU+fDOmx6YhMnV59ky3+20PjlxkbHEnEoNhd2w4YN48UXXyQmJoZq1arh6uqa4fXq1TW6TSQvsUdH+X0/7yN6cTQmJxO9Z/UmqLEKOrkz79LetPtvOxYOWsia19dQpkUZStQtYXQsEYdhc2HXo8etPjFPPvmkdZvJZMJisWjwhIjc5tKfl1g8eDEAzUY3U1En91RrYC2OLztO5JxI5jw+h2d2P4ObtyavFskMmwu7kydP5kQOEcmDzGlm5vaZS+qVVEo1LkWzNzQdktybyWSi83edOfvHWS4eu8jS55fS9YeuRscScQg2F3bBwcE5kUNE8qCNYzcSvS0ad193uv/cHScXLU8tmVPArwAPT3+YaS2mETElgopdKlKpWyWjY4nkepkq7BYsWED79u1xdXVlwYIFd923S5cudgkmIo7t/O7zbHh3AwAdxnegUHAhYwOJwyn9UGkav9KYzR9vZuHTCynVqBReAV5GxxLJ1TJV2HXr1o2YmBgCAgLo1q3bv+6nPnYiApB2I415T8zDnGam8iOVqfZ4NaMjiYNqPqY5x5YcI25/HAufXkiveb00f6rIXWTqvojZbCYgIMD67397qKgTEYA1b64h/lA8XsW86Dixo34RS5a5uLvw8E8P4+TqxJH5R9j7416jI4nkaurwIiJ2dWr9KbZ+vhWALpO64OnvaXAicXSBNQJp8W4LAJY9v4zLpy8bG0gkF8tSYbd69Wo6depEuXLlKFeuHJ06dWLVqlX2ziYiDiYlKYX5/eeDBWo9VYsHOz1odCTJIxq93IhSjUrd+hkbMB+L2XLvg0TyIZsLuwkTJtCuXTsKFizI8OHDGT58OD4+PnTo0IHx48fnREYRcRDLRy7n8qnLFCpdiLDPw4yOI3mIk7MT3aZ1w9XTlVNrT/HHV38YHUkkV7K5sPvwww8ZN24cv/zyC88//zzPP/88M2bMYNy4cXz44Yc5kVFEHMCRhUfYM3kPmKDbtG64F3Q3OpLkMX7l/Wj7n7YArH5tNfGR8QYnEsl9bC7sLl++fMcFwdu2bUtiYqJdQomIY7l+8TqLnl4EQOiLoQQ303yXkjPqPFOHcmHlSLuRxvz+8zGnmY2OJJKr2FzYdenShXnz5t22ff78+XTq1MkuoUTEsSx7YRlXY67iX8mflu+1NDqO5GEmk4kuk7vg7uvO2e1n2Tpuq9GRRHKVTM1j9+WXX1r/XblyZT744APWrVtHaGgoANu2bWPz5s28+OKLOZNSRHKto4uOsu+nfZicTHSd0hUXD5sXtBGxic8DPoSNC2PBkwtY+9ZaKnauiH8lf6NjieQKmfoEHjduXIbnhQsX5tChQxw6dMi6rVChQvzwww+8+eab9k0oIrnW9UvXWfTM37dgSzYsaXAiyS9q9q/JwV8PcmL5CeY/OZ8BGwfg5KwZvEQyVdidPHkyp3OIiANaMXIFV85dociDRWg+prnRcSQfMZlMdP6+MxOqTCB6azR//PcPQkeGGh1LxHD680ZEsuTY0mNETI0AE3Sd0hXXAq5GR5J8xreUr3WU7Jo31nDh6AWDE4kYz9DCbuLEiVSvXh0fHx98fHwIDQ1l6dKl1tdv3LjBkCFDKFKkCN7e3vTo0YPY2NgM54iKiqJjx454enoSEBDAyy+/TFpa2v1+KyL5yo3EGywctBCAhiMaUqpRKYMTSX5V+6nalG1d9tYo2SfnY07XKFnJ3wwt7EqWLMlHH33Erl272LlzJy1btqRr164cPHgQgBEjRrBw4UJmzZrF+vXrOXfuHN27d7cen56eTseOHUlNTWXLli1MmzaNqVOnMnr0aKPekki+sOLFFVw5ewW/8n4aBSuGMplMdJ7UGTdvN85sPsP2r7cbHUnEUIYWdp07d6ZDhw5UqFCBBx98kA8++ABvb2+2bdtGYmIikydP5vPPP6dly5bUqVOHKVOmsGXLFrZt2wbAihUrOHToENOnT6dmzZq0b9+e9957j/Hjx5OammrkWxPJs06sPGGdiLjLD11w9dQtWDFWoeBCtPm0DQCrR63m4omLBicSMY5NhV1aWhrvvvsu0dHRdg+Snp7OzJkzuXbtGqGhoezatYubN2/SunVr6z6VKlUiKCiIrVtvzVu0detWqlWrRrFixaz7hIWFkZSUZG31u5OUlBSSkpIyPETk3lKvplonIq4/tD7BTTURseQOdZ6uQ+kWpUm7nsaipxdhsWgtWcmfbCrsXFxc+PTTT+3ah23//v14e3vj7u7Os88+y7x586hcuTIxMTG4ublRqFChDPsXK1aMmJgYAGJiYjIUdX+9/tdr/2bs2LH4+vpaH6VKqX+QSGasHb2Wy6cu4xvkS6sPWxkdR8TK5GSi83edcfFw4eSak7cG9ojkQzbfim3ZsiXr16+3W4CKFSsSERHBH3/8weDBg+nXr1+G+fFywqhRo0hMTLQ+zpw5k6PXE8kLzm4/yx//vbXweqdvO+Hm7WZwIpGM/Mr70fzd5sCtqXiuxlw1NpCIAWyeIr59+/a89tpr7N+/nzp16uDl5ZXh9S5duth0Pjc3N8qXLw9AnTp12LFjB//973/p1asXqampXL58OUOrXWxsLIGBgQAEBgayfXvGjrJ/jZr9a587cXd3x91dC5SLZFZ6ajoLBi7AYrZQPbw65duVNzqSyB2Fjgjl4MyDnN99nqXDltJzVk+jI4ncVzYXds899xwAn3/++W2vmUwm0tPTsxXIbDaTkpJCnTp1cHV1ZfXq1fTo0QOAI0eOEBUVZV3KLDQ0lA8++IC4uDgCAgIAWLlyJT4+PlSuXDlbOUTkb5s+3kTcgTg8/T0JGxdmdByRf+Xk4kSXyV34ru53HJp9iMO/H6ZSt0pGxxK5b2wu7Mxm+80RNGrUKNq3b09QUBBXrlxhxowZrFu3juXLl+Pr68vAgQMZOXIkfn5++Pj4MGzYMEJDQ2nYsCEAbdu2pXLlyjzxxBN88sknxMTE8OabbzJkyBC1yInYSXxkPBvf3whAuy/b4envaXAikbsLrBlIo5cbsfmjzSx+bjGlm5fGo5CH0bFE7otsTXdy48aNbF08Li6Ovn37UrFiRVq1asWOHTtYvnw5bdrcGrY+btw4OnXqRI8ePWjWrBmBgYHMnTvXeryzszOLFi3C2dmZ0NBQwsPD6du3L++++262conILRazhYVPLSQ9NZ0KHSpQtXdVoyOJZMpDox/Cr4IfV89fZeUrK42OI3Lf2Nxil56ezocffsg333xDbGwsR48epWzZsrz11luULl2agQMHZvpckydPvuvrHh4ejB8/nvHjx//rPsHBwSxZsiTT1xSRzNsxcQdntpzBzduNjhM7YjKZjI4kkimuBVzpMqkLUx+ayu7vd1Pt8WqUbl7a6FgiOc7mFrsPPviAqVOn8sknn+Dm9veouKpVqzJp0iS7hhMR4yRFJ7H6tdUAtPqoFb5BvgYnErFNcLNg6jxTB4CFTy8k7YaWm5S8z+bC7scff+S7776jT58+ODs7W7fXqFGDw4cP2zWciBhn6bClpF5NpWRoSeoNrmd0HJEsaf1xa7yLe3Px2EU2frjR6DgiOc7mwu7s2bPW6Un+yWw2c/PmTbuEEhFjRc6L5PDvh3FycaLzd50xOekWrDgmD18P2n/ZHoBNH20i/lC8wYlEcpbNhV3lypXZuPH2v3pmz55NrVq17BJKRIyTkpTC0mFLAWj0ciMCqgYYnEgke0J6hPBgpwcx3zSz6JlFWMxabkzyLpsHT4wePZp+/fpx9uxZzGYzc+fO5ciRI/z4448sWrQoJzKKyH20+o3VXDl7hcLlCtPsrWZGxxHJNpPJRIfxHTi59iRRm6LYPXk3dQbVMTqWSI6wucWua9euLFy4kFWrVuHl5cXo0aOJjIxk4cKF1mlKRMQxRf8RzY7xOwDo9E0nXAu4GpxIxD58g3xp8V4LAFa9skrLjUmeZXOLHUDTpk1ZuVLzAonkJek301n09CKwQPUnqlO2dVmjI4nYVYNhDdj/837O7zrP8hHL6fFLD6Mjidhdlico3rlzJz/99BM//fQTu3btsmcmETHAtnHbiN0XS4EiBWj7n7ZGxxGxu38OBjow8wDHlh4zOpKI3dlc2EVHR9O0aVPq16/P8OHDGT58OPXq1aNJkyZER0fnREYRyWGXTl5i3TvrAGj7WVu8inoZG0gkhxSvXZwGLzQAYPHgxaReSzU4kYh92VzYPfXUU9y8eZPIyEguXrzIxYsXiYyMxGw289RTT+VERhHJQRaLhSXPLSHtehqlW5SmRr8aRkcSyVEtxrTAN9iXxNOJbHhvg9FxROzK5sJu/fr1TJw4kYoVK1q3VaxYka+++ooNG/QfRMTRHJp9iOPLjuPs5qxlwyRfcPN2o8PXHQDY+p+txB2IMziRiP3YXNiVKlXqjhMRp6enU6JECbuEEpH7IyUphWXDlwHQ+LXG+Ff0NziRyP3xYKcHqfRwJcxpZhY9q7ntJO+wubD79NNPGTZsGDt37rRu27lzJ8OHD+ezzz6zazgRyVlr3lzD1fNX8SvvR9NRTY2OI3Jftf+yPW7ebpzZfIY9P+wxOo6IXdhc2PXv35+IiAgaNGiAu7s77u7uNGjQgN27d/Pkk0/i5+dnfYhI7nVu5znrnHUdJnTAxSNLsx+JOCyfkj40f7c5ACtfWcm1+GvGBhKxA5s/yb/44osciCEi95M5/e/bT1Ufq0q5NuWMjiRiiAbDGrDvx33ERMSw8qWVdJvWzehIItlic2HXr1+/nMghIvfRjvE7OL/rPO6+7oR9HmZ0HBHDOLk40fGbjkwOnczeH/dSo38NyrQoY3QskSzL8gTFIuKYks4msebNNQC0GtsK70BvgxOJGKtkg5LUfbYucGtuu7SUNIMTiWSdCjuRfGb5iOWkXknlgQYPUPeZukbHEckVWn3YCq9iXlw4coHNn2w2Oo5IlqmwE8lHji87zqFZhzA5mej0TSdMTpqzTgTAo5AHYeNudUvY+MFGLp64aHAikaxRYSeST9y8fpMlQ5YAUP/5+gTWDDQ4kUjuUrV3Vcq0KkN6SjpLhy7FYtHcduJ4sl3YJSUl8fvvvxMZGWmPPCKSQzZ9tIlLf16iYImCtHi3hdFxRHIdk8lExwkdcXZz5viy40TO0e81cTw2F3aPPvooX3/9NQDXr1+nbt26PProo1SvXp05c+bYPaCIZN+FoxfY/NGtfkNhX4ThXtDd4EQiuVORB4vQ+NXGACx7YRkpV1IMTiRiG5sLuw0bNtC06a0Z6ufNm4fFYuHy5ct8+eWXvP/++3YPKCLZY7FYWDJkCemp6ZQLK0flRyobHUkkV2syqgmFyxbmytkrrHt7ndFxRGxic2GXmJhoXVVi2bJl9OjRA09PTzp27MixY8fsHlBEsufgrwf5c9WfOLs70+HrDphMGjAhcjeuBVzpML4DAH98+Qcxe2MMTiSSeTYXdqVKlWLr1q1cu3aNZcuW0bZtWwAuXbqEh4eH3QOKSNbdSLzB8hHLAWj6elP8ymupP5HMKN+uPJUfqYwl3cLiwYuxmDWQQhyDzStPvPDCC/Tp0wdvb2+CgoJo3rw5cOsWbbVq1eydT0SyYe3otVyNuYpfBT9rvyGR3CynBuL5+/sTFBRk0zFhX4RxfNlxordGs+eHPdR+qnaOZBOxJ5sLu+eee4769etz5swZ2rRpg5PTrUa/smXL2tzHbuzYscydO5fDhw9ToEABGjVqxMcff0zFihWt+zRv3pz169dnOO6ZZ57hm2++sT6Piopi8ODBrF27Fm9vb/r168fYsWNxcdGi5pJ/nd9znh1f7wCg44SOuLjr/4PkXv7+/nh6ehIeHp4j5/f09CQyMtKm4s7nAR+av9ucFSNXsOrVVVTsWhGvol45kk/EXrL0SV+3bl2qV6/OyZMnKVeuHC4uLnTs2NHm86xfv54hQ4ZQr1490tLSeP3112nbti2HDh3Cy+vv/zyDBg3i3XfftT739PS0/js9PZ2OHTsSGBjIli1bOH/+PH379sXV1ZUPP/wwK29PxOFZzBYWP3vr9lGVXlUo27qs0ZFE7iooKIjIyEgSEhLsfu7IyEjCw8NJSEiwudWuwbAG7J22l9i9sax6bRVdJ3e1ez4Re7K5sEtOTmbYsGFMmzYNgKNHj1K2bFmGDRvGAw88wGuvvZbpcy1btizD86lTpxIQEMCuXbto1qyZdbunpyeBgXeeTHXFihUcOnSIVatWUaxYMWrWrMl7773Hq6++yjvvvIObm5utb1HE4e2etJuz28/iVtCNsM/DjI4jkilBQUE2F145zcnFiY4TOvJD4x+I+CGCWk/WIqhx7soo8k82D54YNWoUe/fuZd26dRkGS7Ru3Zpff/01W2ESExMBrKNu//Lzzz/j7+9P1apVGTVqFMnJydbXtm7dSrVq1ShWrJh1W1hYGElJSRw8eDBbeUQc0bX4a6x6bRUALd5rQcESBQ1OJOLYSjUqRa2BtQBYPHgx5jSzwYlE/p3NLXa///47v/76Kw0bNswwbUKVKlU4ceJEloOYzWZeeOEFGjduTNWqVa3bH3/8cYKDgylRogT79u3j1Vdf5ciRI8ydOxeAmJiYDEUdYH0eE3PnIeopKSmkpPw96WRSUlKWc4vkNqteXcWNSzcIrBlI/SH1jY4jkie0/qg1h+cdJm5/HH989QehI0KNjiRyRzYXdvHx8QQEBNy2/dq1a9maH2vIkCEcOHCATZs2Zdj+9NNPW/9drVo1ihcvTqtWrThx4gTlypXL0rXGjh3LmDFjspxVJLe6sOcCEVMiAOg4sSNOLloOWsQePP09af1JaxY+tZB1o9dR5dEq+DzgY3QskdvY/Klft25dFi9ebH3+VzE3adIkQkOz9hfM0KFDWbRoEWvXrqVkyZJ33bdBgwYAHD9+HIDAwEBiY2Mz7PPX83/rlzdq1CgSExOtjzNnzmQpt0hu4oQT+8fuB6D2oNqUbHj3/0siYptaA2pRMrQkqVdTWTFyhdFxRO7I5ha7Dz/8kPbt23Po0CHS0tL473//y6FDh9iyZctt05Lci8ViYdiwYcybN49169ZRpkyZex4TEREBQPHixQEIDQ3lgw8+IC4uztqSuHLlSnx8fKhc+c5LJ7m7u+PurrUyJW9pQAOunLhCgSIFaDW2ldFxRPIck5OJjhM78l3t7zj420FqDaxFubZZu3MkklNsbrFr0qQJERERpKWlUa1aNVasWEFAQABbt26lTp06Np1ryJAhTJ8+nRkzZlCwYEFiYmKIiYnh+vXrAJw4cYL33nuPXbt2cerUKRYsWEDfvn1p1qwZ1atXB6Bt27ZUrlyZJ554gr1797J8+XLefPNNhgwZouJN8o3rsddpTnMA2nzSBs8innc/QESyJLBGIPWfv9V3dcmQJaTdSDM4kUhGWZrHrly5cnz//ffZvvjEiRMBrKtX/GXKlCn0798fNzc3Vq1axRdffMG1a9coVaoUPXr04M0337Tu6+zszKJFixg8eDChoaF4eXnRr1+/DPPeieR1Bz8/iDvuFK5RmJr9axodRyRXsteqFoUfLoz7dHcuHr/IkjeW0OU/XexyXhF7MFkslnsugJeUlISPj4/133fz136OJCkpCV9fXxITEx0yvziWqKgou07CGrcljj+G/YEZM81/aU6L3i3sdm6RvCAqKoqQkJAMU2VlVxWq0JOepJFGrw29qNq06r0PEskiW+qUTLXYFS5cmPPnzxMQEEChQoXuOPrVYrFgMplIT0/PWmqRfMDev2BccGEwgylCEXa57GJgo4F2Oa9IXpITq1pYLBZW91/N9QPX2ThqI1U2VsnWzBAi9pKpwm7NmjXWSYPXrl2bo4FE8rKEhASSk5OZPn06ISEh2T7f0e+OcuTbI3gU9eCLtV/kuln7RXKLnFjV4tq711jZfSVxm+M4/PthQh7O/v9pkezKVGH30EMPAZCWlsb69et58skn7zktiYj8u5CQEGrXrp2tc1w8cZElU5cA0OnrTpSvUt4e0UQkk7yDvdnMZh7iIZYNX0a5NuVw89YylmIsm0bFuri48Omnn5KWplFAIkayWCwsHbqU9JR0yrYpS+Wed57aR0Ry1kY24vmAJ0lnklj/nm1TfonkBJunO2nZsqXN89WJiH0dnneY48uO4+zmTIevO6hvj4hB0kij6ku3Bk5s+3wbcQfjDE4k+Z3N0520b9+e1157jf3791OnTh28vLwyvN6li4Z9i+Sk1KupLBu+DIDGrzamyINFDE4kkr8Va1aMSt0qcfj3wyx5bgn91vXTH1tiGJsLu+eeew6Azz///LbXNCpWJOetG7OOpOgkCpUpRJNRTYyOIyJA2BdhnFhxgtMbTrPvp33U6FvD6EiST9l8K9ZsNv/rQ0WdSM6KOxDHtnHbAOjwdQdcC7ganEhEAAoFF6LZ6GYArHhpBdcvXTc4keRXNhd2P/74IykpKbdtT01N5ccff7RLKBG5ncVsYfHgxVjSLVTqVokKHSoYHUlE/iF0RCj+If4kxyez+vXVRseRfMrmwm7AgAEkJibetv3KlSsMGDDALqFE5HZ7f9xL1KYoXD1dafffdkbHEZH/4ezmTMcJHQHY9e0uzm4/a3AiyY9sLuz+WmHif0VHR+Pr62uXUCKSUfKFZFa+vBKAh955CN8g/V8TyY1KNy9N9SeqgwUWD16MOd1sdCTJZzI9eKJWrVqYTCZMJhOtWrXCxeXvQ9PT0zl58iTt2qkVQSQnrB61muSEZAKqBtDwhYZGxxGRu2j7WVuOLjzK+d3n2TFhBw2GNTA6kuQjmS7sunXrBkBERARhYWF4e3tbX3Nzc6N06dL06NHD7gFF8rszW8+w+/vdAHSc2BFnV2eDE4nI3XgFeNFqbCsWD17M2jfXUvmRyhQsXtDoWJJPZLqwe/vttwEoXbo0vXr1wsPDI8dCicgt5jQziwcvBqBm/5oENdFasCKOoPag2uz5YQ/ndpxjxcgV9PhFDR9yf9jcx65fv354eHiQmppKdHQ0UVFRGR4iYj9/fPUHsXtj8SjsQetPWhsdR0QyycnZiU7fdMLkZOLAzAOcWHnC6EiST9hc2B07doymTZtSoEABgoODKVOmDGXKlKF06dKUKVMmJzKK5EtJZ5NYN3odAK0/bo1XUa+7HyAiuUrx2sWpN6QeAEuGLCEtReusS86zeeWJ/v374+LiwqJFiyhevLiWTRHJIctHLCf1aiolQ0tSe2Bto+OISBa0eK8Fh2Yd4uKxi2z+ZDMPvfWQ0ZEkj7O5sIuIiGDXrl1UqlQpJ/KICHB82XEOzTqEydlEx4kdMTnpDygRR+Th60HYuDDmPDaHjR9spNpj1fAr72d0LMnDbL4VW7lyZRISEnIii4gAN6/fZPFztwZMNHi+AYE1Ag1OJCLZUaVXFcq2KUt6SjpLhizBYrEYHUnyMJsLu48//phXXnmFdevWceHCBZKSkjI8RCR7Nn6wkcsnL+NT0ofmY5obHUdEsslkMtFhfAec3Z05seIEB387aHQkycNsvhXbuvWtkXmtWrXKsP2vFSnS09Ptk0wkH4qPjGfzJ5sBaPdlO9wLuhucSETsoUiFIjR9vSnr3l7H8heWU75deTx8NW2Y2J/Nhd3atWtzIodIvmexWFj87GLMN8082PlBKnVTP1aRvKTxq43Z//N+Lhy9wJo31tDh6w5GR5I8yObC7qGHNKJHJCfsnbaX0xtO4+rpSvuv2mvEuUge4+LuQseJHfmx1Y/smLCDGv1q8EC9B4yOJXmMzX3sADZu3Eh4eDiNGjXi7NmzAPz0009s2rTJruFE8ovkC8mseGkFAA+9/RCFggsZG0hEckSZlmWoHl4dLLDomUWY08xGR5I8xubCbs6cOYSFhVGgQAF2795NSkoKAImJiXz44Yd2DyiSH6x6dRXXL1wnoGoADUc0NDqOiOSgNp+1waOQBzF7YtgxYYfRcSSPsbmwe//99/nmm2/4/vvvcXV1tW5v3Lgxu3fvtms4kfwgalMUeybvAaDjNx1xdnU2OJGI5CTvYt60+ujWAMQ1b64h6axmlBD7sbmwO3LkCM2aNbttu6+vL5cvX7ZHJpF8Iz01nUXPLAKg1lO1CGocZHAiEbkf6gyqQ8mGJUm9ksqy4cuMjiN5iM2DJwIDAzl+/DilS5fOsH3Tpk2ULVvWpnONHTuWuXPncvjwYQoUKECjRo34+OOPqVixonWfGzdu8OKLLzJz5kxSUlIICwtjwoQJFCtWzLpPVFQUgwcPZu3atXh7e9OvXz/Gjh2Li4vNb0/kvtr86WbiD8XjWdSTNh+3MTqOiGRBZGRklo4r90I5zvY5S+ScSJZ8sYTAZn9PRu7v709QkP7QE9vZXPkMGjSI4cOH88MPP2AymTh37hxbt27lpZde4q233rLpXOvXr2fIkCHUq1ePtLQ0Xn/9ddq2bcuhQ4fw8rq14PmIESNYvHgxs2bNwtfXl6FDh9K9e3c2b74111d6ejodO3YkMDCQLVu2cP78efr27Yurq6v6/EmudvH4RTa8twGAsHFhFPArYHAiEbGFv78/np6ehIeHZ/kcrWlNE5qwasQqxjOeVFIB8PT0JDIyUsWd2MxksXFtE4vFwocffsjYsWNJTk4GwN3dnZdeeon33nsvW2Hi4+MJCAhg/fr1NGvWjMTERIoWLcqMGTN45JFHADh8+DAhISFs3bqVhg0bsnTpUjp16sS5c+esrXjffPMNr776KvHx8bi5ud3zuklJSfj6+pKYmIiPj0+23oPkHVFRUXZfPi8yMpLw8HB27tzJwVcPcnL1Scq2KUv48nBNbyLigLL7OZF2PY11j67j+rnrlO1Tliojq1g/J3bt2kXt2rXtmFYclS11is0tdiaTiTfeeIOXX36Z48ePc/XqVSpXroy3t3eWA/8lMTERAD+/Wwsk79q1i5s3b1pXuwCoVKkSQUFB1sJu69atVKtWLcOt2bCwMAYPHszBgwepVavWbddJSUmxjuYFtBSa3CYqKoqQkBDrHy/25OnpSeLGRE6uPomLx615rVTUiTimoKCgbLeq+U324+f2P3Pyl5O0GtEKQuwUTvKlLHdCc3Nzo3LlynYLYjabeeGFF2jcuDFVq1YFICYmBjc3NwoVKpRh32LFihETE2Pd559F3V+v//XanYwdO5YxY8bYLbvkPQkJCSQnJzN9+nRCQuz7Kevt7M381vMBaPZWM/zK+dn1/CLiWMq3K0/V3lU5MPMAi55eRO2JaqWTrMs1owuGDBnCgQMH7sskx6NGjWLkyJHW50lJSZQqVSrHryuOJyQkxO63QuY/OZ/khGSKVilKo5ca2fXcIuKYwsaFcXzZcc7vPs+p304ZHUccWJZWnrC3oUOHsmjRItauXUvJkiWt2wMDA0lNTb1tGpXY2FgCAwOt+8TGxt72+l+v3Ym7uzs+Pj4ZHiL3w6l1p4iYEgFAp2874eymOetEBLwDvWn98a1uR4cnHMYH/V6SrDG0sLNYLAwdOpR58+axZs0aypQpk+H1OnXq4OrqyurVq63bjhw5QlRUFKGhoQCEhoayf/9+4uLirPusXLkSHx8fu94qFsmutJQ0Fj17a866Os/U0Zx1IpJB7adqU6pxKdKvp9OBDtg4tlEEyGRhV7t2bS5dugTAu+++a7cO5UOGDGH69OnMmDGDggULEhMTQ0xMDNevXwduTXo8cOBARo4cydq1a9m1axcDBgwgNDSUhg1vLbvUtm1bKleuzBNPPMHevXtZvnw5b775JkOGDMHd3d0uOUXsYeMHG7lw5AJexbxoNbaV0XFEJJcxOZno9G0nTC4mKlGJ86vPGx1JHFCmCrvIyEiuXbsGwJgxY7h69apdLj5x4kQSExNp3rw5xYsXtz5+/fVX6z7jxo2jU6dO9OjRg2bNmhEYGMjcuXOtrzs7O7No0SKcnZ0JDQ0lPDycvn378u6779olo4g9xB2MY9NHt/qPtv+qPQUKa846EbldQJUAyvcvD8CBTw5w/dJ1gxOJo8nU4ImaNWsyYMAAmjRpgsVi4bPPPvvX6U1Gjx6d6YtnppnZw8OD8ePHM378+H/dJzg4mCVLlmT6uiL3kzndzMKnFmK+aebBzg9S+RF1ERCRf1fhyQpsnbQV/wv+rHxlJV2+72J0JHEgmSrspk6dyttvv82iRYswmUwsXbr0jst1mUwmmwo7kfxg58SdRG+Lxq2gGx0naM46Ebk7Z3dnFrCAJ3mSPZP2UL1PdUo3L210LHEQmSrsKlasyMyZMwFwcnJi9erVBAQE5Ggwkbwg8Uwiq0fdGvzTamwrfEpqpJuI3FsUUQT3COb0nNMsfHohz+59FtcCrkbHEgdg86hYs9msok4kEywWC0ueW0Lq1VRKhpak3uB6RkcSEQcSMiwE7+LeXDx2kQ3vbzA6jjiILE13cuLECYYNG0br1q1p3bo1zz//PCdOnLB3NhGHdmjWIY4uOoqTqxNdJnXB5KRbsCKSea4FXekwvgMAWz7ZQuy+2HscIZKFwm758uVUrlyZ7du3U716dapXr84ff/xBlSpVWLlyZU5kFHE41y9eZ+mwpQA0fb0pRSsXNTiRiDiikIdDCOkegjnNzIKnFmBONxsdSXI5m5cUe+211xgxYgQfffTRbdtfffVV2rRpY7dwIo5qxcsruBZ3Df8Qf5qMamJ0HBFxYO2/as+fq//k3I5z/PHlH4SOCDU6kuRiNrfYRUZGMnDgwNu2P/nkkxw6dMguoUQc2YmVJ4j4IQJM0Pm7zri455olmUXEARUsUZA2n9xqNFnzxhounrhocCLJzWz+jVO0aFEiIiKoUKFChu0REREaVCH5XurVVBYOWghAvSH1CGqiZcNEJGsiIyP/flIbitQtwoWdF5jRewah34Rmaeokf39/goL0uZSX2VzYDRo0iKeffpo///yTRo0aAbB582Y+/vhjRo4cafeAIo5k1ahVJJ5OxDfYl9ZjWxsdR0QckL+/P56enoSHh2fYXpjCPMdzXNh5gWfqPsMudtl8bk9PTyIjI1Xc5WE2F3ZvvfUWBQsW5D//+Q+jRo0CoESJErzzzjs8//zzdg8o4ihObzzNjq93AND5+864ebsZnEhEHFFQUBCRkZEkJCTc9tqJn09w6PNDPOz1MP/97b8UCMz88oSRkZGEh4eTkJCgwi4Ps7mwM5lMjBgxghEjRnDlyhUAChYsaPdgIo7k5vWbLBi4AICaT9akXJtyBicSEUcWFBR0x+KrZo2aJG1JInpbNKfHn+axRY9pNRvJIEvz2P2lYMGCKupEgHXvrOPisYt4F/cm7D9hRscRkTzKydmJLpO74OzmzLElx9j/836jI0kuk63CTkTg3M5zbP1sKwCdvumERyEPgxOJSF5WtHJRmo1uBsCy4cu4GnvV4ESSm6iwE8mG9NR05j85H4vZQtXeVanYpaLRkUQkH2j8SmMCawbemgx96FKj40guosJOJBs2fLCBuP1xePp70u7LdkbHEZF8wtnVmS4/dMHkbOLQ7EMcnHXQ6EiSS9hU2N28eZNWrVpx7NixnMoj4jDO7z7Pxg82AtD+6/Z4FfUyOJGI5CfFaxW3rmyz5LklXIu7ZnAiyQ1sKuxcXV3Zt29fTmURcRhpKWn83u93LOkWKvesTNVeVY2OJCL50ENvPUSx6sVITkhm8XOLsVgsRkcSg9l8KzY8PJzJkyfnRBYRh7HhvQ3EHYjDs6gnHcZ3MDqOiORTzm7OdJ3aFScXJyLnRHLwN92Sze9snscuLS2NH374gVWrVlGnTh28vDLefvr888/tFk4kNzq74yybPtoEQMeJHXULVkQMVbxWcZq+0ZT1Y9az5LkllH6oNN6B3kbHEoPYXNgdOHCA2rVrA3D06NEMr2mSRMnr0m6kMb//fCzpt0bBVu5R2ehIIiI0fb0pR+YfISYihsWDF/Po3Ef1OzmfsrmwW7t2bU7kEHEI68asI/5QPF7FvGj/dXuj44iIAH/fkv2+3vcc/v0wB345QLXHqxkdSwyQ5elOjh8/zvLly7l+/TqAOmxKnhf9RzRbPtkC3JqI2LOIp8GJRET+FlgjkGZv3Zq4eMnQJVw5f8XgRGIEmwu7Cxcu0KpVKx588EE6dOjA+fPnARg4cCAvvvii3QOK5AY3k2/eGgVrtlCtTzUqdatkdCQRkds0ea0JxWsX58alGywctFCNLvmQzYXdiBEjcHV1JSoqCk/Pv1ssevXqxbJly+waTiS3WPXaKi4cuYB3cW/af6lbsCKSOzm7OtNtWrdba8kuPsbuSbuNjiT3mc2F3YoVK/j4448pWbJkhu0VKlTg9OnTdgsmklucWHmC7V9tB6DrlK4U8CtgcCIRkX8XUDWAlh+2BGD5iOVcPHHR4ERyP9lc2F27di1DS91fLl68iLu7u11CieQWqUmpzB8wH4C6z9WlfFh5gxOJiNxbwxcaEtwsmJvXbnUjMaebjY4k94nNhV3Tpk358ccfrc9NJhNms5lPPvmEFi1a2HSuDRs20LlzZ0qUKIHJZOL333/P8Hr//v0xmUwZHu3aZVyP8+LFi/Tp0wcfHx8KFSrEwIEDuXr1qq1vS+SODnx8gCtnr+BXwY82n7QxOo6ISKY4OTvRbVo33Aq6cWbzGbZ8usXoSHKf2FzYffLJJ3z33Xe0b9+e1NRUXnnlFapWrcqGDRv4+OOPbTrXtWvXqFGjBuPHj//Xfdq1a8f58+etj19++SXD63369OHgwYOsXLmSRYsWsWHDBp5++mlb35bIbapQhbPLzmJyNvHwTw/j5uVmdCQRkUwrVLoQ7f57qzFk7ei1JB5JNDiR3A82z2NXtWpVjh49ytdff03BggW5evUq3bt3Z8iQIRQvXtymc7Vv35727e/eEd3d3Z3AwMA7vhYZGcmyZcvYsWMHdevWBeCrr76iQ4cOfPbZZ5QoUcKmPCJ/uRF/g050Am5N/FmyQcl7HCEikvvU7F+TI/OPcGT+Efa8tQcX23/ti4PJ0nfY19eXN954w95Z7mjdunUEBARQuHBhWrZsyfvvv0+RIkUA2Lp1K4UKFbIWdQCtW7fGycmJP/74g4cffvi+ZJS8xWKxEDEmggIUwDfE1zovlIiIozGZTHT+rjPRW6O5cuIKLbCty5Q4niwVdpcuXWLy5MlERkYCULlyZQYMGICfn59dw7Vr147u3btTpkwZTpw4weuvv0779u3ZunUrzs7OxMTEEBAQkOEYFxcX/Pz8iImJ+dfzpqSkkJKSYn2elJRk19zi2HZM2EH81nhucpNa79XC2dXZ6EgiIlnmFeBF5+87M7PrTBrRiIQdCVDb6FSSU2zuY7dhwwZKly7Nl19+yaVLl7h06RJffvklZcqUYcOGDXYN17t3b7p06UK1atXo1q0bixYtYseOHaxbty5b5x07diy+vr7WR6lSpewTWBxe3IE4Vry4AoBVrKJgmYIGJxIRyb6KXSoS1C0IEyb2jN5D8oVkoyNJDrG5sBsyZAi9evXi5MmTzJ07l7lz5/Lnn3/Su3dvhgwZkhMZrcqWLYu/vz/Hjx8HIDAwkLi4uAz7pKWlcfHixX/tlwcwatQoEhMTrY8zZ87kaG5xDGk30pjz2BzSU9IJaBzAH/xhdCQREbup8mIVLnCBG3E3WPT0Iq1KkUfZXNgdP36cF198EWfnv29POTs7M3LkSGvBlVOio6O5cOGCdZBGaGgoly9fZteuXdZ91qxZg9lspkGDBv96Hnd3d3x8fDI8RFa+upK4A3F4BXhR8+2aRscREbErF08XZjMbk4uJyLmR7Jm8x+hIkgNsLuxq165t7Vv3T5GRkdSoUcOmc129epWIiAgiIiIAOHnyJBEREURFRXH16lVefvlltm3bxqlTp1i9ejVdu3alfPnyhIWFARASEkK7du0YNGgQ27dvZ/PmzQwdOpTevXtrRKzY5NjSY2z/8u/VJdyLaLJtEcl7znOeSs/dWut62fBlJBxJMDiR2FumBk/s27fP+u/nn3+e4cOHc/z4cRo2bAjAtm3bGD9+PB999JFNF9+5c2eGSY1HjhwJQL9+/Zg4cSL79u1j2rRpXL58mRIlStC2bVvee++9DCtc/PzzzwwdOpRWrVrh5OREjx49+PLLL23KIfnb1dirzO9/a3WJ+sPqU6FDBXbv1vqKIpI3lXuiHDcO3ODkmpPM7TOXgVsG4uymQWJ5hcmSiZvsTk5OmEyme96PN5lMpKen2y3c/ZKUlISvry+JiYm6LZvPWCwWZnScwfGlxwmoGsCgHYNw8XBh9+7d1KlTh127dlG7toaPiYjj++fnWvli5fmm+jdcv3idRq80os3HWlknN7OlTslUi93JkyftEkwkJ0RFRZGQkLXbCX/+8ifHlx7Hyc2JkLdC2HfoVuv0nbobiIjkFT4P+NB5Umd+6/4bWz7ZQrm25SjbqqzRscQOMlXYBQcH53QOkSyJiooiJCSE5GTbh+4HEshTPIULLixKXcToXqMzvO7p6Ym/v7+9ooqI5CohD4dQ++na7P5uN/PC5/Hs3mfxCvAyOpZkU5YmKD537hybNm0iLi4Os9mc4bXnn3/eLsFEMiMhIYHk5GSmT59OSEhIpo9Lu5bGhj4buHbmGsWaFWPC5xMwmUwZ9vH39ycoKMjekUVEco1249pxZtMZ4g/FM++JefRZ2geTk+neB0quZXNhN3XqVJ555hnc3NwoUqRIhl+GJpNJhZ0YIiQkJNN94SwWC3P7zOXamWv4lPKh37x+FPArkMMJRURyH1dPVx757RG+r/c9J1acYNPHm2g6qqnRsSQbbJ7u5K233mL06NEkJiZy6tQpTp48aX38+eefOZFRxK72TN7DgV8OYHI28cjMR1TUiUi+FlAlgA5fdwBg7VtridoUZXAiyQ6bC7vk5GR69+6Nk5PNh4oYLu5AHEuHLQWg5QctKdVIy8mJiNQcUJNqfaphSbcw57E5WnLMgdlcnQ0cOJBZs2blRBaRHJV6LZVZj84i7UYa5duVp/HLjY2OJCKSK5hMJjpO7IhfBT+SopOY33++lhxzUDb3sRs7diydOnVi2bJlVKtWDVdX1wyvf/7553YLJ2JPS4cuJSEygYIlCtLtx27qICwi8g/uBd3p+VtPJjWcxNFFR9k2bhuhI0ONjiU2ylJht3z5cipWrAhw2+AJkdwoYloEEVMjMDmZ6D6jO15FNaRfROR/BdYMJGxcGEueW8KqV1dRMrQkpULVZcWR2FzY/ec//+GHH36gf//+ORBHxP5i9saw+NnFADz0zkOUfqi0sYFERHKxus/W5dTaUxyadYhZPWfxzJ5n9MewA7G5j527uzuNG6tvkjiGG5dv8FuP3271q2tfnmZvNDM6kohIrmYymegyqQtFKhbhytkrzHlsDuZ0870PlFzB5sJu+PDhfPXVVzmRRcSuLGYL8/rO49KJS/gG+9J9enf1qxMRyQR3H3cenfMorp6unFx9krWj1xodSTLJ5lux27dvZ82aNSxatIgqVarcNnhi7ty5dgsnkh2bP9nM0YVHcXZ35tE5j2q+OhERGwRUCaDzpM7MfXwumz7cRMmGJanYuaLRseQebC7sChUqRPfu3XMii4jd/Ln6T9a8sQaADl93oESdEgYnEhFxPNUeq0b01mi2f7WdeU/M4+ldT+NXzs/oWHIXNhd2U6ZMyYkcksdFRUWRkJBg9/NGRkbeti0pOok5j83BYrZQc0BNag2sZffriojkF20/a8u5neeI3hrNbz1+Y+DWgbgWcL33gWIImws7EVtFRUUREhJCcnLOzGTu6emJv78/AGkpaczqOYvk+GSK1ShGh/EdNA2PiEg2OLs50/O3nnxb+1ti98ay+NnFdJ3aVZ+tuZTNhV2ZMmXu+s3UerHyvxISEkhOTmb69OmEhITY/fz+/v4EBQVhsVhYMmQJ0duicff9/46/+qtSRCTbfEr68MjMR/ipzU/s/XEvgbUDaTi8odGx5A5sLuxeeOGFDM9v3rzJnj17WLZsGS+//LK9ckkeFBISQu3atXPs/Dsm7GDP5D2YnEw88usj6gciImJHZVqWoc1nbVgxcgUrXlxBQNUAyrYqa3Qs+R82F3bDhw+/4/bx48ezc+fObAcSyYpT606xbPgyAFp91IryYeUNTiQikvc0fKEhMXti2PfTPmY/OptBOwZRuGxho2PJP9g8j92/ad++PXPmzLHX6UQy7fLpy8zqOQtLuoVqj1ej0UuNjI4kIpInmUwmOn3biRL1SnD94nVmdptJ6tVUo2PJP9itsJs9ezZ+frr1JfdX6rVUfu32K8kJyRSvXZzOkzqrQ6+ISA5yLeBKr7m98CrmRdz+OH7v/zsWi8XoWPL/bL4VW6tWrQy/OC0WCzExMcTHxzNhwgS7hhO5G4vFwoKBC4iJiMErwIte83ppsISIyH3gU9KHXnN7MbX5VCLnRLLxg400e1NLNuYGNhd23bp1y/DcycmJokWL0rx5cypVqmSvXCL3tPHDjRz89SBOLk70nN0T3yBfoyOJiOQbpRqVouOEjiwctJC1b62laJWihDxs/5kPxDY2F3Zvv/12TuQQscmBXw+w9s1baxe2/7o9wU2DDU4kIpL/1H6qNjF7Y9jx9Q7m9pnLgI0DtNKPwezWx07kfoneFs3v/X4HoOGIhtR9pq6xgURE8rF249pRvl150q6n8UvnX0iKTjI6Ur6W6cLOyckJZ2fnuz5cXLSQheSsy6cuM7PrTNJT0nmw84O0+bSN0ZFERPI1JxcnHvn1EQKqBnD1/FVmdJqhkbIGynQlNm/evH99bevWrXz55ZeYzWa7hBK5kxuJN5jRaQbX4q4RWDOQHjN64OSsRmcREaO5+7jz2KLHmFR/ErF7Y5nz2Bx6/d5Ln9EGyPRXvGvXrrc9KlWqxNSpU/nss8/o2bMnR44cseniGzZsoHPnzpQoUQKTycTvv/+e4XWLxcLo0aMpXrw4BQoUoHXr1hw7dizDPhcvXqRPnz74+PhQqFAhBg4cyNWrV23KIbmfOc3M7EdnE38wnoIlCvLYwsdw83YzOpaIiPy/QsGF6L2gNy4eLhxddJQVL60wOlK+lKV7p+fOnePtt99m2rRphIWFERERQdWqVW0+z7Vr16hRowZPPvkk3bt3v+31Tz75hC+//JJp06ZRpkwZ3nrrLcLCwjh06BAeHh4A9OnTh/Pnz7Ny5Upu3rzJgAEDePrpp5kxY0ZW3prkQhaLhSXDlnBixQlcPV15bOFj+JT0MTqWiIhDioyMtPs5/1qzu2SDknT7sRuzH53NH1/8gV95P+oPqW/368ldWGxw+fJlyyuvvGIpUKCAJTQ01LJhwwZbDr8rwDJv3jzrc7PZbAkMDLR8+umnGa7v7u5u+eWXXywWi8Vy6NAhC2DZsWOHdZ+lS5daTCaT5ezZs5m+dmJiogWwJCYmZv+NyG127dplASy7du3K0vEbPtxgeYd3LO+Y3rFE/h5p53QiIvnD6dOnLZ6enhbA7g9PT0/L6dOnrdfa8MGtz+0xTmMskfP0uZ1dttQpmW6x++STT/j4448JDAzkl19+oWvXrtmvKu/i5MmTxMTE0Lp1a+s2X19fGjRowNatW+nduzdbt26lUKFC1K3796jI1q1b4+TkxB9//MHDDz98x3OnpKSQkpJifZ6UpBE8uVXE1AjWvL4GgHZftKNSV82VKCKSFUFBQURGRpKQkGDX80ZGRhIeHk5CQgJBQUEANBnVhEsnL7Fn0h7mPDaHJ1Y9QVDjILteV+4s04Xda6+9RoECBShfvjzTpk1j2rRpd9xv7ty5dgkWExMDQLFixTJsL1asmPW1mJgYAgICMrzu4uKCn5+fdZ87GTt2LGPGjLFLTsk5x5YcY8FTCwBo/GpjGjzfwOBEIiKOLSgoyFp85SSTyUSniZ24FnuNowuP8kvnX3hy05MUrVw0x6+d32V68ETfvn159NFH8fPzw9fX918fjmDUqFEkJiZaH2fOnDE6kvyPs9vPMqvnLCzpFmr0rUGrsa2MjiQiIjZwcnHikZmPULJhSW5cusH0dtM1x919kOkWu6lTp+ZgjNsFBgYCEBsbS/Hixa3bY2NjqVmzpnWfuLi4DMelpaVx8eJF6/F34u7ujru7u/1Di11cOHqBGR1ncDP5JuXCytF5UucM6xOLiIhjcPV05bFFj/FD4x+4cOQCP7f/mQEbB+BRyMPoaHlWrp1gpkyZMgQGBrJ69WrrtqSkJP744w9CQ0MBCA0N5fLly+zatcu6z5o1azCbzTRooNt2juhqzFWmh00nOSGZEnVL8OjsR3F2dTY6loiIZJFnEU/Cl4fjXdybuANxzOw6k7QbaUbHyrMMLeyuXr1KREQEERERwK0BExEREURFRWEymXjhhRd4//33WbBgAfv376dv376UKFGCbt26ARASEkK7du0YNGgQ27dvZ/PmzQwdOpTevXtTooTWqnM01y9e56e2P3H51GUKlyvM44sf11x1IiJ5QKHgQvRZ2gd3H3dObzjN7F6zSb+ZbnSsPMnQwm7nzp3UqlWLWrVqATBy5Ehq1arF6NGjAXjllVcYNmwYTz/9NPXq1ePq1assW7bMOocdwM8//0ylSpVo1aoVHTp0oEmTJnz33XeGvB/JupQrKfzc/mfi9sfhXdyb8OXheAV4GR1LRETsJLBGoHUC4yMLjvB7v98xp2vFKnszdHHX5s2bY7FY/vV1k8nEu+++y7vvvvuv+/j5+WkyYgd3M/kmv3T+hbPbz1KgSAGeWPkEfuX8jI4lIiJ2Vvqh0jw651Fmdp3JgV8O4OrlSufv1I/annJtHzvJH9JT0/ntkd84vf407j7uhC8PJ6BKwL0PFBERh1ShQwW6z+iOycnEnkl7WPHiirs28ohtVNiJYcxpZuY8PofjS4/jUsCFxxc/Tok66hspIpLXVelZhS6TuwCwbdw21o9Zb3CivEOFnRjCYraw4KkFRM6JxNnNmd6/9yaoiWYlFxHJL2r2r0m7L9sBsH7MerZ8tsXgRHmDCju57yxmCwsGLWDvtL2YnE30mNmDcm3LGR1LRETuswbDGtDyg5YArHx5JVs/32pwIsenwk7uq79a6iJ+iMDkZOLhnx4m5OEQo2OJiIhBmr7elGZvNQNgxYsr2PIftdxlhwo7uW8s6RYWDFxAxJRbRV33n7tT7bFqRscSERGDtXi3BQ+9/RAAK19ayeZPNxucyHEZOt2J5B8mTESMiSB6cTQm51tFXdVeVY2OJSIiuUTzd5oDt/rbrXplFVig8SuNjQ3lgNRiJznOkm6hG92sRV2PX3qoqBMRkds0f6c5D71zq+Vu1aur2PTRJoMTOR4VdpKj0m+ms2f0HmpQw1rUVelZxehYIiKSSzV/uznNxzQHYPWo1ax/d73mubOBCjvJMTev3+S37r9xdtlZ0kmn9oe1VdSJiMg9PTT6IVq83wKAdW+v0yTGNlBhJzkiJenW2q9HFx3Fyd2JmcykRGtNPiwiIpnT7I1mhH0RBtyaxHjBwAWY07S27L2osBO7S05IZlrLadZlwhqOb8gxjhkdS0REHEzD4Q3pOrUrJicTEVMimN1rNmkpaUbHytU0KlYyiIqKIiEhIcvHX4+9zrYh27h68ipuhd2o/1V9znPejglFRCQ/qdmvJu4+7szpPYfIuZH80vkXes3rhZuXm9HRciUVdmIVFRVFSEgIycnJWTreH3/CCacQhUgkkR8v/ciF8AsAeHp64u/vb8+4IiKST4Q8HMLjix9nZreZ/LnyT35q/ROPLXwMT39Po6PlOirsxCohIYHk5GSmT59OSIhtq0Fc2HOBHSN3cDPpJl5BXrSa0Irw4uHW1/39/QkK0lqwIiKSNWVbl6Xv6r783P5nordFM7nRZPos7YNfOT+jo+UqKuzkNiEhIdSuXTvT+x/49QB/PPcH6anplGxYkt4LeuNV1CsHE4qISH5UskFJntz8JD+3/5mLxy4yueFkHlv0GCUblDQ6Wq6hwROSZRaLhc2fbmZO7zmkp6ZT6eFK9F3TV0WdiIjkmKIhRXlq21MUr1P81mC9FtM4/Ptho2PlGirsJEvMaWaWDF1ya9kXoMHwBvSc1RPXAq4GJxMRkbzOO9Cb/uv6U6FjBdKup/Fr91/546s/jI6VK6iwE5vdSLzBzG4z2TlhJ5ggbFwY7b5oh5OzfpxEROT+cPN2o/fvvanzTB2wwLLnl7H0+aX5fq47/SYWm1w4doHJDSdzbPExXDxc6DmrJw1faGh0LBERyYecXJzoOLEjrca2AmD7V9uZ3m46yReyNrtDXqDBE5JpJ1acYHav2dy4fAOfkj70+r0XJepoNQkREYHIyEi7nzMzMyqYTCaavNaEIhWLMO+JeZxcfZJJ9SfRe0FvAqoE2D1TbqfCTu7JYrGwbdw2Vr68EovZQqlGpXh0zqN4B3obHU1ERAzm7++Pp6cn4eHh997ZRp6enkRGRmZquqyQh0Pw2+rHzK4zufTnJSY3nMzD0x+mUtdKds+Vm6mwk7u6ef0miwcvZu+0vQDUfLImHSd0xMVdPzoiIgJBQUFERkZma9WiO4mMjCQ8PJyEhIRMz4NarFoxBm0fxKxHZ3Fq7Sl+7fYrLd5rQdPXm2JyMtk1X26l387yry4ev8isnrOIiYjB5Gwi7PMw6g+rj8mUP/5ziIhI5gQFBeWaSeg9/T0JXx7O8pHL2fH1Dta+tZbobdE8/OPDFPArYHS8HKfBE3JHh+Yc4rs63xETEYNnUU/Cl4XT4PkGKupERCTXc3Z1psNXHeg8qTPO7s4cW3yMb2t9y9ntZ42OluPUYicZOOPMgc8OcPKXkwAENQmix8we+DzgY3AyERHJj7I1KKMWNJ7SmJ2v7CQxKpHJjSdTZUQVSvcqTdGiRXNNK6M9mSwWi8XoEP/mnXfeYcyYMRm2VaxYkcOHb80wfePGDV588UVmzpxJSkoKYWFhTJgwgWLFitl0naSkJHx9fUlMTMTHJ/8WMJsWb2Jqp6mUohQAjV5uRMsPWuLs6mxwMhERyW+ioqIICQkhOTn7U5e4405XulKZygAc5CArC6xk7+G9DlHc2VKn5PoWuypVqrBq1SrrcxeXvyOPGDGCxYsXM2vWLHx9fRk6dCjdu3dn8+bNRkR1aAd+PcCGQRsoRSlcC7rSY3oPKnapaHQsERHJp+w9KMNisXDyl5Mc+uIQVdKrUOJ6CY6uOkrQk7m/sLNFri/sXFxcCAwMvG17YmIikydPZsaMGbRs2RKAKVOmEBISwrZt22jYMG9PmhsVFWWXH/abV25y4NMDRC+OBuAsZ+n7c18qdlZRJyIixrL3oIw6deoQ/Ug0M7rPgPOwedBmnE468dDoh/LM3alcX9gdO3aMEiVK4OHhQWhoKGPHjiUoKIhdu3Zx8+ZNWrdubd23UqVKBAUFsXXr1jxd2NmreTqIILrTnUIUwoyZjWxkR4EdvFnjTTslFRERyV1KNizJQ788xMfNP6aGuQYb39/Inyv+5OHpD1OkQhGj42Vbri7sGjRowNSpU6lYsSLnz59nzJgxNG3alAMHDhATE4ObmxuFChXKcEyxYsWIiYm563lTUlJISUmxPk9KSsqJ+DkmISGB5ORkpk+fTkhIiM3Hm2+aOfr9UY5NOQZm8HzAk1rv1qJrza6ZmuVbRETEkbkWdGUe8xjw4QAOfXKIs9vP8m2tbwkbF0btp2o79AwQubqwa9++vfXf1atXp0GDBgQHB/Pbb79RoEDW56IZO3bsbYMyHFFISAi1a9e26ZhzO88xf9B84vbHAVCzf03a/bcd7j7uORFRREQk13og7AGahTfj936/c2rtKRY9vYjI2ZF0+q4ThYILGR0vSxxqHrtChQrx4IMPcvz4cQIDA0lNTeXy5csZ9omNjb1jn7x/GjVqFImJidbHmTNncjB17nDz+k1WvrqSSQ0mEbc/Dk9/T3rO6knXKV1V1ImISL7lW8qXvqv60ubTNji7O3NixQkmVJnA9vHbsZhz7cQh/8qhCrurV69y4sQJihcvTp06dXB1dWX16tXW148cOUJUVBShoaF3PY+7uzs+Pj4ZHnlZ1KYovq35LVs+2YLFbKHqY1V57tBzVH6kstHRREREDGdyMtHopUYM3jeYoCZB3Lx2k6VDlzK1+VQuHL1gdDyb5OrC7qWXXmL9+vWcOnWKLVu28PDDD+Ps7Mxjjz2Gr68vAwcOZOTIkaxdu5Zdu3YxYMAAQkND8/TACVvcuHyDxUMWM6XZFC4cvYB3cW96z+9Njxk98CrqZXQ8ERGRXKXIg0Xov74/7b9uj6uXK1Ebo/imxjdsHLuR9NR0o+NlSq7uYxcdHc1jjz3GhQsXKFq0KE2aNGHbtm0ULVoUgHHjxuHk5ESPHj0yTFCc31nMFvb+uJeVr6wkOf7WyNlaA2vR9rO2eBTyMDidiIhI7mVyMlF/SH0e7PQgi55exIkVJ1jz+hr2TttL+6/aU65NOaMj3lWuLuxmzpx519c9PDwYP34848ePv0+Jcr+YvTEsGbKEM5tv9Rv0D/Gnw9cdKNOyjMHJREREHEeh4EL0WdaH/T/vZ8VLK7hw5ALT206ncs/KhH0ehk/J3NmNK1cXdpJ51y9dZ90769jx9Q4sZguuXq489PZDNBzeEGe3vDHpooiIyP1kMpmoHl6dBzs/yLq317H9q+0cmnWIY0uO0eytZjR8oSEu7rmrlMpdacRm6anp7Jiwg/XvrufGpRsAVHm0Cm3/0zbX/jUhIiLiSDx8PWj3RTtqDqhpvSu2+rXV7Pp2F60+bEWVXlVyzdx3KuxymL2W/vqnyMhIAM6tPMemnpu49OclAIpWKUrYuLBcf/9fREQkN/jr96ktanxRgyKLixD5dSSXT15mzmNzWP3+aiqPqEyRWkUMn+jfZLFYHG+SFjtLSkrC19eXxMREu059Yq+lv/5XEEGEOYXxgPkBALwDvWnxXgtq9q+Jk0uuHugsIiJiOHv8fnbFlVBCaUIT3HADIJJINntsZvORzXYt7mypU9Ril4Oyu/TX/7q0/xJHvjlC/LZ4MIOrlyuNXm5Eoxcb4ebtZofEIiIieV9QUBCRkZF2uaN2I+EGR787yul5pwkxh1DxRkVWPreSh794GL/yfnZIaxu12JFzLXa7d++mTp067Nq1y+alv/7p3M5zrHt7HceWHAPAycWJmk/WpPk7zSlYvKC94oqIiEgWxR+KZ85zc4hdHwuAydlEjb41aPZmMwqXLZytc6vFLo84u+MsG9/fyJEFR4D//yHp9/8/JGWy90MiIiIi9lO0clHqf16fznU682aTN4nbFEfElAj2/bSPGv1r0OTVJvelBU+FXS5jsVg4vuw4Wz7Zwql1p4BbkyVWD69Os7eaGdKsKyIiIplzjnM0+G8DAm4GsO7tdZxYfoI9k/YQ8UMEIT1CaPxKY0rULZFj11dhl0uk30zn4G8H2fLJFmL33WrGdXJxotrj1WjyehP8K/obnFBEREQyq2SDkoQvCydqcxSbPtzEsSXHODTrEIdmHaJMyzI0eqUR5dqWs/s0KSrs/iEiIgJvb2+7nS8zw6ivxV9j96Td7Jy4k6QzSQC4ebtR++naNHyhIb6lfO2WR0RERO6voMZBPL74cWL3x7Ll0y0c+OUAJ9ec5OSakwRUC6D+0PpU61MNNy/7DILU4An+7pSYEzw9PYmMjLxt2PPZHWfZ8fUODsw8YF1Y2CvAiwbDG1B3cF0KFC6QI3lEREQkZ2Rm0GRiVCJbx21l9/e7uXntJgAehTyo+WRN6j1XD79yt3e5smXwhAo7/v6Cfffdd9SpU8eu5/7nRIWpV1M5OOsgu77ZxdntZ637lKhbgnpD61G1V1VcPNSIKiIi4ohsmQ3j+qXrREyNYMf4HVw6cWuhAUxQoX0FGo5sSNlWZa37alRsFlWsWDFb05LcicViIWpzFHt+2MPBXw9aq3NnN2eq9KpC/aH1eaD+A3a9poiIiORuBQoXIHREKA2HN+T4suNs/3o7x5ce59iSY/iH+Gco7Gyhwi6HXD59mQO/HCBiSgQXjl6wbver4EetJ2tR68laeAV4GZhQREREjGZyMlGhQwUqdKjAxeMX2TFxB3UH183y+VTY2dHV2KscmnWIA78c4MyWM9btrl6uVHm0CrWerEWpxqVyzULBIiIiknv4lfcj7D9h2TqHCrtsuhp7lSMLjnBo1iFOrj6Jxfz/XRZNULp5aar1qUaVR6vgXtDd2KAiIiKS56mwy4ILxy5w+PfDHPn9CGe2noF/DD95oP4DVH2sKlUerULBElruS0REJL/JzHRntrh69Wqm91VhlwlpKWlEbYri+NLjHF96nPhD8RleL1GvBJUerkSVR6vccZiyiIiI5H3+/v54enoSHh5uWAYVdndgsVi4ePwif678k+NLj3NyzUluJt+0vu7k4kTp5qWp2K0ilbpWwqfk3Ycei4iISN4XFBREZGQkCQkJdj3vrl27ePrppzO1rwq7f4heHM3c7+Zyat0prpy9kuE170BvyrcrT7l25SjXtpwmEBYREZHbBAUF3bYoQXbpVmwW7f9kPx54ALfmmSsZWpLy7cpTvl15itUoptGsIiIikqupsPuHwlULU7dbXcq0KEPJ0JK4FnA1OpKIiIhIpqmw+4eG4xvSrFkzo2OIiIiIZImT0QFERERExD5U2ImIiIjkESrsRERERPIIFXYiIiIieUSeKezGjx9P6dKl8fDwoEGDBmzfvt3oSCIiIiL3VZ4o7H799VdGjhzJ22+/ze7du6lRowZhYWHExcUZHU1ERETkvskThd3nn3/OoEGDGDBgAJUrV+abb77B09OTH374wehohktJSeGdd94hJSXF6ChiI33vHJe+d45L3zvHpe/dLSaLxWIxOkR2pKam4unpyezZs+nWrZt1e79+/bh8+TLz58+/7ZiUlJQM3/hLly5RunRpZs2aRcOGDe9H7PvmypUrVK5cmUOHDlGwYEGj44gN9L1zXPreOS597xxXXv7ebdu2jZ49e3Lx4kUKFy58950tDu7s2bMWwLJly5YM219++WVL/fr173jM22+/bQH00EMPPfTQQw89HOaxffv2e9ZF+XLliVGjRjFy5Ejr879a7M6cOYOPj4+ByUREREQySkpKolSpUpQvX/6e+zp8Yefv74+zszOxsbEZtsfGxhIYGHjHY9zd3XF3d79tu4+Pjwo7ERERyZWcnZ3vuY/DD55wc3OjTp06rF692rrNbDazevVqQkNDDUwmIiIicn85fIsdwMiRI+nXrx9169alfv36fPHFF1y7do0BAwYYHU1sFB0dzbFjx6hQoQIlS5Y0Oo6IiIhDyROFXa9evYiPj2f06NHExMRQs2ZNli1bRrFixYyOJjaYPHkyTz/9NGazGScnJ7777jsGDhxodCwRERGH4fDTndhDUlISvr6+JCYmqo+dQaKjowkODsZsNlu3OTs7c+rUKbXciYhIvmZLneLwfewkbzh27FiGog4gPT2d48ePG5RIRETE8aiwk1yhQoUKODll/HF0dnbO1NBuERERucXhC7uxY8dSr149ChYsSEBAAN26dePIkSNGxxIblSxZku+++846lNvZ2Zlvv/3WIW7DRkdHs3btWqKjo42OIiIi+ZzDF3br169nyJAhbNu2jZUrV3Lz5k3atm3LtWvXjI4mNho4cCCnTp1i7dq1nDp1yiEGTkyePJng4GBatmxJcHAwkydPNjqSiIjkY3lu8ER8fDwBAQGsX7+eZs2aZeoYWzolajoO+YsGfIiIyP2QrwdPJCYmAuDn52f3c6t1Rv5JAz5ERCS3yVMtdmazmS5dunD58mU2bdr0r/ulpKSQkpJiff7XGmyxUbH/WglHn42mYrWKt7XOHN53mJIPqHUmP9LPhIiI3A9JSUkUCyqWqRa7PDFB8V+GDBnCgQMH7lrUwa0BF2PGjLlt+8FZB/Eu4H3HY3Ye2XnH1plV36+izoN1sh5aHNqox0Yx9pex1kmVX+v9GpfWX+ISl4yOJiIiecTV61czvW+eabEbOnQo8+fPZ8OGDZQpU+au+/5bi92GCRsoVLjQHY+JuRBDu2HtMFv+Lu6cnJxY9uUyAosE2uU9iGOKuRDDmdgzlCpWSj8LIiJid5cvXabZc83yR4udxWJh2LBhzJs3j3Xr1t2zqANwd3fH3d39tu0u7i64ebnd8ZggryDeHfIuoyeMtrbOvPvcuwQFBWX7PYhjC/IK0s+BiIjkGJfkzJdrWS7sFixYYPMxbdq0oUCBAlm95B0NGTKEGTNmMH/+fAoWLEhMTAwAvr6+dr/WI20foUntJpw+f5rg4sEE+tuvdSYmIYZT505RukRpu55XRERE8o8s34r931UC7nkhk4ljx45RtmzZrFzurue9kylTptC/f/9MneOvYcRbJm/Br6j9R9Pey+wVsxk9fjRmixknkxPvDnmXR9o+ct9zSO6iYl9ERAAuxl+k0cBGOX8rNiYmhoCAgEztW7Bgwexc6l85ehfBmIQYa1EHYLaYGT1hNE1qN9Ev83xMxb6IiGRFluex69evn023OsPDw+9ZZeZHp86dyjAgA25N23L6/GmDEonR/q3Yj0mIMTiZiIjkdlku7KZMmWJthbt69d7DcCdOnIi/v39WL5dnlS5RGidTxm+Dk5MTwcWD7XL+mIQYtu3bpqLAgajYFxGRrLLLyhO+vr7MmTPHHqfKdwL9A3l3yLvWPot/jba1x23Y2Stm03JgS/q/2Z+WA1sye8XsbJ9Tcl5OF/siIpJ32WUeOycnJ1q3bs21a9cwmUzUrVuXPn36UK9ePXtkzHFGD56AWy1r9hxtG5MQQ8uBLW+bd2/NpDXqu+cAZq+YfdvUOupjJyKSP923wRP/tGfPHnr37o2Xlxe7du2iadOmDB06lM8++8xel8jTAv0D7Vpw3e12ngq73C8np9YREZG8y26F3YwZM2jTpo31+b59++jatSsPPPAAI0aMsNdlJJP+up33vy129uy752hTcThaZnsX+znN0b6+IiJ5kV0KOz8/P0qVKpVhW/Xq1fn6668ZMWKEwxR2adfTuHntptEx7KJIgSK8PehtxkwaY72d9/ZTb1OkQJFsv8e5a+cy5vsx1qk43h70Nt1bdLdT8pzhiJkdib6+IiI5J+16Wqb3tUsfu9atW1OnTh0+/vjjDNuPHDlCjRo1uHHjRnYvkaP+6mM3o8+MHJtvzygJVxM4n3ie4r7F8ffO/qjkhKsJPPnzkxnmD3QyOTG5z2S7nD8nOGJmR6Kvr4hIzrpy5QqP//z4/etj9/7779OiRQvOnTvHc889R/Xq1bl27RoffvhhptZuzS2c3J1w877zWrGOqoR3CUoElrDb+eIuxt02KbTZYiY+NZ4S3va7jj05YmZHoq/v7eKvxHP20lkeKPwARQsWNTqOiDg4p9TMT2Jil8KuYcOGbNu2jeHDh9O0aVPrh7yHhwezZs2yxyXuC2dXZ1w87NbtME8KDgy+ve+eyYmgwKBc+7VzxMyORF/fjJbsWcK4JeOst6VHdBhBh1odjI4lIg7M2dU50/vaZR47gBo1arBu3TrOnTvHokWLWLBgAadPn6ZDB32g5SVFfYoyosMI6zxrf/3iKuqTe1slHDGzI9HX92/xSfHWog5utVyOWzKO+KR4g5NJXhWfFM+eU3v0MyZWdv9zOiAggPbt29v7tJKLdKjVgXrl6nH24lke8HvAIX6BO2JmR6Kv7y3RF6Nvn2bIYubsxbP59msiOUetw3InWW6x27dvH2az+d47/r+DBw+Slpb5UR2SuxX1KUrN0jUd6peVI2Z2JDn19XWkFomSfiVvXzXE5MQDfg8YlEjyKrUOy7/JcmFXq1YtLly4kOn9Q0NDiYqKyurlRCQfWrJnCY9/9TgvTX+Jx796nCV7lhgd6a50W1rul7u1Dkv+luVbsRaLhbfeegtPT89M7Z+amprVS4lIPvRvLRL1ytXL1YWSbkvL/fBX6/D/DlpS67BkubBr1qwZR44cyfT+oaGhFChQIKuXE5F8xpH7qxX1KZrrM4pj+6t1+H/72OnnTrJc2K1bt86OMUREMlKLhMjdqXVY7sRu050Ybfz48ZQuXRoPDw8aNGjA9u3bjY4kItmg/moi96ZBYfK/8sTsob/++isjR47km2++oUGDBnzxxReEhYVx5MgRAgICjI4nIlmkFgkREdvYZa1YozVo0IB69erx9ddfA2A2mylVqhTDhg3jtddeu+fxf60VO/PJmfj5++V0XBEREZFMu5hwkd4/9L5/a8UaKTU1lV27djFq1CjrNicnJ1q3bs3WrVvveExKSgopKSnW50lJSQBE/BCBBx45G1hERETEBje4kel97dLH7vr16yQnJ1ufnz59mi+++IIVK1bY4/R3lZCQQHp6OsWKFcuwvVixYsTExNzxmLFjx+Lr62t9lCpVKsdzioiIiOQ0u7TYde3ale7du/Pss89y+fJlGjRogKurKwkJCXz++ecMHjzYHpexm1GjRjFy5Ejr86SkJEqVKkXNJ2vqVqyIiIjkKhcTLsIPmdvXLoXd7t27GTduHACzZ8+mWLFi7Nmzhzlz5jB69OgcLez8/f1xdnYmNjY2w/bY2FgCAwPveIy7uzvu7u63bXd2dcbZzTlHcoqIiIhkhbNr5msTu9yKTU5OpmDBggCsWLGC7t274+TkRMOGDTl9+rQ9LvGv3NzcqFOnDqtXr7ZuM5vNrF69mtDQ0By9toiIiEhuYpfCrnz58vz++++cOXOG5cuX07ZtWwDi4uLuOXrDHkaOHMn333/PtGnTiIyMZPDgwVy7do0BAwbk+LVFREREcgu73IodPXo0jz/+OCNGjKBVq1bWlrIVK1ZQq1Yte1zirnr16kV8fDyjR48mJiaGmjVrsmzZstsGVIiIiIjkZXabxy4mJobz589To0YNnJxuNQRu374dHx8fKlWqZI9L5Ji/5rGb9cws/Ipq8ISIiIjkHhfjL9Lz2573dx67wMDA2wYr1K9f316nFxGRHBKfFE/0xWhK+pXU6h4iDs5ua8Vu3LiR8PBwQkNDOXv2LAA//fQTmzZtstclRETEzpbsWcLjXz3OS9Nf4vGvHmfJniV2O3d8Ujx7Tu0hPinebucUkbuzS2E3Z84cwsLCKFCgAHv27LGu6pCYmMiHH35oj0uIiIidxSfFM27JOMwWMwBmi5lxS8bZpRDLyYJRRP6dXQq7999/n2+++Ybvv/8eV1dX6/bGjRuze/due1xCRMTu8nuLUvTFaGtR9xezxczZi2ezdd6cLBhF7jdH+5ywSx+7I0eO0KxZs9u2+/r6cvnyZXtcQkTErpbsWWItPpxMTozoMIIOtToYHeu+KulXEieTU4bizsnkxAN+D2TrvHcrGPNrHz71Y3RMjvg5YZcWu8DAQI4fP37b9k2bNlG2bFl7XEJExG7UonRLUZ+ijOgwAifTrV8Ff/3iym7h8VfB+E/2KBgdlW5LOyZH/ZywS4vdoEGDGD58OD/88AMmk4lz586xdetWXnrpJd566y17XOK+SL+ZTtqNNKNjiEgOOx1z+o4tSlExURR2K2xQKmO0DWlLrZK1OHfpHCUKl6BowaLZ/hws7FaY4W2H898V/7W2dAxvO5zCboXz3Wds/JU7Fwe1StaiaEG13OVmuelzIv1meqb3tUth99prr2E2m2nVqhXJyck0a9YMd3d3XnrpJYYNG2aPS9wX5hQzqVdTjY4hIjkswC0Ak8nEP6fxdDI5UdStaL78DPA1+eLr5wtgt/ffskxLqvepzvnE8xT3LY6/t3++/NqePvcvxcG5KHwf8DUolWRGbvqcMKeY773T/7PbBMUAqampHD9+nKtXr1K5cmW8vb25fv06BQoUsNclcsRfExRv+HoDhYvkr7/WRfKruWvnMmbSGMxmM05OTrz91Nt0b9Hd6FiSx8RciCFsWFjGfoxOTiz/cjmBRQLvcqTYKuZCDFExUQQFBtnta5tbPicuXbhEs6HNMjVBsV0Lu39KSUlh/PjxfPLJJ8TExOTEJezmr8Juy+QtWnlCJB+JSYjh9PnTBBcPJtBfv2QlZ8xeMZvRE0Zbi4N3n3uXR9o+YnSsPGX2itmMHj/aeuv/3SH2+xrnhs+Ji/EXaTSwUc6vPJGSksI777zDypUrcXNz45VXXqFbt25MmTKFN954A2dnZ0aMGJGdS4iI5JhA/0CHKuhiEmI4de4UpUuUdqjc+d0jbR+hSe0mhhcHeVVMQoy1qINbt7pHTxhNk9pN7PK1drTPiWwVdqNHj+bbb7+ldevWbNmyhZ49ezJgwAC2bdvG559/Ts+ePXF2drZXVhGRfCsnWyTkbzlVPDtaceBITp07dXs/RrOZ0+dP58uvebYKu1mzZvHjjz/SpUsXDhw4QPXq1UlLS2Pv3r2YTCZ7ZRQRyddyukVCblHx7JhKlyh9+3yMTk4EFw82MJVxsjWPXXR0NHXq1AGgatWquLu7M2LECBV1IiJ2dLcWCbGPfyueYxJydx9xudUa+u6Qd3Fy+v/5GP+/H2N+/aMnWy126enpuLm5/X0yFxe8vb2zHUpERP6mFomcp9t5jk39GP+WrcLOYrHQv39/3N3dAbhx4wbPPvssXl5eGfabO3dudi4jIpKv/dUi8b8jK/PzLy97U/Hs+NSP8ZZsFXb9+vXL8Dw8PDxbYWx16tQp3nvvPdasWUNMTAwlSpQgPDycN954I0NLooiIo1OLRM5S8Sx5RbYKuylTptgrR5YcPnwYs9nMt99+S/ny5Tlw4ACDBg3i2rVrfPbZZ4ZmExGxN7VI5CwVz5IX2GVJMaO0a9eOdu3aWZ+XLVuWI0eOMHHiRBV2IiJiMxXP4ugcurC7k8TERPz87r56REpKCikpKdbnSUlJAKSlpJF6Lf+tZSgiIiL3ly1LoKWlpGX6vHmqsDt+/DhfffXVPVvrxo4dy5gxY27bnnY9jRvcyKl4IiIiIszfPJ+xM8Za50wc9fgoujbu+q/7p13PfGGXY2vFZsdrr73Gxx9/fNd9IiMjqVSpkvX52bNneeihh2jevDmTJk2667F3arErVaoUsVGx91yDTURERCSros9GU7FaRczmv0dgOzs7c3jfYUo+UPKOxyQlJVEsqFjOrxWbU1588UX69+9/133Kli1r/fe5c+do0aIFjRo14rvvvrvn+d3d3a1TtPyTh68HHj4eNucVERERyYwzu89kKOrg1rzA0XHRlK9c/o7HpJoy300sVxZ2RYsWpWjRopna9+zZs7Ro0YI6deowZcoU68zTIiIiIrlNhQoVcHJyuq3Frnz5Oxd1tnLoKujs2bM0b96coKAgPvvsM+Lj44mJiSEmRkvAiIiISO5TsmRJvvvuO5ydnYFbRd23335LyZJ3vg1rq1zZxy6zpk6dyoABA+74mi1vKykpCV9f30zduxYRERHJrujoaI4fP0758uXvWdTZUqc4dGFnLyrsRERE/hYdHc2xY8eoUKGC3VqSJOtsqVMc+lasiIiI2NfkyZMJDg6mZcuWBAcHM3nyZKMjiQ3UYoda7EREROBWS11wcPBtHftPnTqlljsDqcVOREREbHbs2LE7TsVx/PhxgxKJrVTYiYiICPD3VBz/ZM+pOCTnqbATERERIOen4pCcpz52qI+diIjIP9kyFYfkPFvqlFy58sT99ldtm5SUZHASERER4/n4+FC7dm1Avxtzg7++B5lpi1NhB1y5cgWAUqVKGZxERERE5M6uXLmCr6/vXffRrVjAbDZz7tw5ChYsiMlkMjqOXSUlJVGqVCnOnDmj28wORt87x6XvnePS985x5eXvncVi4cqVK5QoUeK2wS3/Sy12gJOTU57vQ+Dj45PnftDzC33vHJe+d45L3zvHlVe/d/dqqfuLRsWKiIiI5BEq7ERERETyCBV2eZy7uztvv/027u7uRkcRG+l757j0vXNc+t45Ln3vbtHgCREREZE8Qi12IiIiInmECjsRERGRPEKFnYiIiEgeocIuH0pJSaFmzZqYTCYiIiKMjiP3cOrUKQYOHEiZMmUoUKAA5cqV4+233yY1NdXoaHIH48ePp3Tp0nh4eNCgQQO2b99udCS5h7Fjx1KvXj0KFixIQEAA3bp148iRI0bHkiz46KOPMJlMvPDCC0ZHMYwKu3zolVdeoUSJEkbHkEw6fPgwZrOZb7/9loMHDzJu3Di++eYbXn/9daOjyf/49ddfGTlyJG+//Ta7d++mRo0ahIWFERcXZ3Q0uYv169czZMgQtm3bxsqVK7l58yZt27bl2rVrRkcTG+zYsYNvv/2W6tWrGx3FUBoVm88sXbqUkSNHMmfOHKpUqcKePXuoWbOm0bHERp9++ikTJ07kzz//NDqK/EODBg2oV68eX3/9NXBrucJSpUoxbNgwXnvtNYPTSWbFx8cTEBDA+vXradasmdFxJBOuXr1K7dq1mTBhAu+//z41a9bkiy++MDqWIdRil4/ExsYyaNAgfvrpJzw9PY2OI9mQmJiIn5+f0THkH1JTU9m1axetW7e2bnNycqJ169Zs3brVwGRiq8TERAD9H3MgQ4YMoWPHjhn+/+VXWis2n7BYLPTv359nn32WunXrcurUKaMjSRYdP36cr776is8++8zoKPIPCQkJpKenU6xYsQzbixUrxuHDhw1KJbYym8288MILNG7cmKpVqxodRzJh5syZ7N69mx07dhgdJVdQi52De+211zCZTHd9HD58mK+++oorV64watQooyPL/8vs9+6fzp49S7t27ejZsyeDBg0yKLlI3jVkyBAOHDjAzJkzjY4imXDmzBmGDx/Ozz//jIeHh9FxcgX1sXNw8fHxXLhw4a77lC1blkcffZSFCxdiMpms29PT03F2dqZPnz5MmzYtp6PK/8js987NzQ2Ac+fO0bx5cxo2bMjUqVNxctLfZblJamoqnp6ezJ49m27dulm39+vXj8uXLzN//nzjwkmmDB06lPnz57NhwwbKlCljdBzJhN9//52HH34YZ2dn67b09HRMJhNOTk6kpKRkeC0/UGGXT0RFRZGUlGR9fu7cOcLCwpg9ezYNGjSgZMmSBqaTezl79iwtWrSgTp06TJ8+Pd99UDmKBg0aUL9+fb766ivg1m29oKAghg4dqsETuZjFYmHYsGHMmzePdevWUaFCBaMjSSZduXKF06dPZ9g2YMAAKlWqxKuvvpovb6erj10+ERQUlOG5t7c3AOXKlVNRl8udPXuW5s2bExwczGeffUZ8fLz1tcDAQAOTyf8aOXIk/fr1o27dutSvX58vvviCa9euMWDAAKOjyV0MGTKEGTNmMH/+fAoWLEhMTAwAvr6+FChQwOB0cjcFCxa8rXjz8vKiSJEi+bKoAxV2IrneypUrOX78OMePH7+tCFeDe+7Sq1cv4uPjGT16NDExMdSsWZNly5bdNqBCcpeJEycC0Lx58wzbp0yZQv/+/e9/IJFs0K1YERERkTxCva9FRERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERAzSvHlzTCYTJpOJiIgIANatW4fJZOLy5cs5eu133nnHeu0vvvgiR68lIvePCjsRcQj9+/e3FiL/fLRr187oaNkyaNAgzp8/b5d1LWNjY3F1dWXmzJl3fH3gwIHUrl0bgJdeeonz589rrWiRPEaFnYg4jHbt2nH+/PkMj19++SVHr5mampqj5/f09CQwMBAXl+wv3V2sWDE6duzIDz/8cNtr165d47fffmPgwIEAeHt7ExgYiLOzc7avKyK5hwo7EXEY7u7uBAYGZngULlzY+rrJZGLSpEk8/PDDeHp6UqFCBRYsWJDhHAcOHKB9+/Z4e3tTrFgxnnjiCRISEqyvN2/enKFDh/LCCy/g7+9PWFgYAAsWLKBChQp4eHjQokULpk2bZr1leu3aNXx8fJg9e3aGa/3+++94eXlx5cqVLL/n5ORk2rdvT+PGja23ZydNmkRISAgeHh5UqlSJCRMmWPcfOHAgq1evJioqKsN5Zs2aRVpaGn369MlyFhHJ/VTYiUieMmbMGB599FH27dtHhw4d6NOnDxcvXgTg8uXLtGzZklq1arFz506WLVtGbGwsjz76aIZzTJs2DTc3NzZv3sw333zDyZMneeSRR+jWrRt79+7lmWee4Y033rDu7+XlRe/evZkyZUqG80yZMoVHHnmEggULZum9XL58mTZt2mA2m1m5ciWFChXi559/ZvTo0XzwwQdERkby4Ycf8tZbbzFt2jQAOnToQLFixZg6deptWbp3706hQoWylEVEHIRFRMQB9OvXz+Ls7Gzx8vLK8Pjggw+s+wCWN9980/r86tWrFsCydOlSi8Visbz33nuWtm3bZjjvmTNnLIDlyJEjFovFYnnooYcstWrVyrDPq6++aqlatWqGbW+88YYFsFy6dMlisVgsf/zxh8XZ2dly7tw5i8ViscTGxlpcXFws69at+9f39NBDD1mGDx+eYdvatWstgCUyMtJSvXp1S48ePSwpKSnW18uVK2eZMWNGhmPee+89S2hoqPX5a6+9ZilTpozFbDZbLBaL5fjx4xaTyWRZtWrVbRmCg4Mt48aN+9eMIuJY1GInIg6jRYsWREREZHg8++yzGfapXr269d9eXl74+PgQFxcHwN69e1m7di3e3t7WR6VKlQA4ceKE9bg6depkOOeRI0eoV69ehm3169e/7XmVKlWsLWfTp08nODiYZs2aZem9tmnThvLly/Prr7/i5uYG3Oond+LECQYOHJjhPbz//vsZ8j/55JOcPHmStWvXArda60qXLk3Lli2zlEVEHEf2e+uKiNwnXl5elC9f/q77uLq6ZnhuMpkwm80AXL16lc6dO/Pxxx/fdlzx4sUzXCcrnnrqKcaPH89rr73GlClTGDBgACaTKUvn6tixI3PmzOHQoUNUq1bNmh/g+++/p0GDBhn2/+cgiAoVKtC0aVOmTJlC8+bN+fHHHxk0aFCWs4iI41BhJyL5Ru3atZkzZw6lS5e2aRRqxYoVWbJkSYZtO3bsuG2/8PBwXnnlFb788ksOHTpEv379spz1o48+wtvbm1atWrFu3ToqV65MsWLFKFGiBH/++ec9B0EMHDiQwYMH06VLF86ePUv//v2znEVEHIduxYqIw0hJSSEmJibD458jWu9lyJAhXLx4kccee4wdO3Zw4sQJli9fzoABA0hPT//X45555hkOHz7Mq6++ytGjR/ntt9+sgxP+2QpWuHBhunfvzssvv0zbtm2zPUfcZ599Rp8+fWjZsiWHDx8Gbg0OGTt2LF9++SVHjx5l//79TJkyhc8//zzDsT179sTV1ZVnnnmGtm3bUqpUqWxlERHHoMJORBzGsmXLKF68eIZHkyZNMn18iRIl2Lx5M+np6bRt25Zq1arxwgsvUKhQIZyc/v3jsEyZMsyePZu5c+dSvXp1Jk6caB0V6+7unmHfgQMHkpqaypNPPpm1N/k/xo0bx6OPPkrLli05evQoTz31FJMmTWLKlClUq1aNhx56iKlTp1KmTJkMx3l6etK7d28uXbpktywikvuZLBaLxegQIiKO5oMPPuCbb77hzJkzGbb/9NNPjBgxgnPnzlkHPfyb5s2bU7NmTUOX9CpdujQvvPACL7zwgmEZRMR+1GInIpIJEyZMYMeOHfz555/89NNPfPrppxn60CUnJ3PixAk++ugjnnnmmXsWdf88r7e3N/v378+p6Hf04Ycf4u3tfdtExiLi2NRiJyKSCSNGjODXX3/l4sWLBAUF8cQTTzBq1CjrIIx33nmHDz74gGbN/q+dO7RhAIahKOgBIgWFZpTunKFCQ0PLSlvQFnzdDWDTJ1nyo9Za1Vp7O3PvXffeqqqac34cg99wznk9bh5jVO/9b7uB3xF2AAAhnGIBAEIIOwCAEMIOACCEsAMACCHsAABCCDsAgBDCDgAghLADAAgh7AAAQjwBQ9rRyfLvLZwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -4010,16 +10364,13 @@ "source": [ "pseudo_data = np.random.normal(0, 2, 5000)\n", "\n", - "\n", "fig_fit = plt.figure(constrained_layout=True)\n", "gs = fig_fit.add_gridspec(5, 5, hspace=0)\n", "\n", - "\n", "main_axis = fig_fit.add_subplot(gs[:4, :])\n", "res_axis = fig_fit.add_subplot(gs[4:, :], sharex=main_axis)\n", "fig_fit.tight_layout()\n", "\n", - "\n", "entries1, edges1, _ = main_axis.hist(pseudo_data, bins=25, range=(-5,5), histtype='step', color='k')\n", "center1 = edges1[:-1] + np.diff(edges1)/2\n", "\n", @@ -4053,9 +10404,9 @@ "id": "48e95a88-0742-4221-a716-17dacfc02823", "metadata": {}, "source": [ - "Zusätzlich zu den Fit Residuan bietet das $\\chi^2$ selbst einen Weg um die „goodness-of-fit“ unseres Model bestimmen zu können...\n", + "Zusätzlich zu den Fit-Residuen bietet das $\\chi^2$ selbst einen Weg, um die „goodness-of-fit“ unseres Model bestimmen zu können ...\n", "\n", - "### Chi-Square:" + "### $\\chi^2$:" ] }, { @@ -4063,44 +10414,32 @@ "id": "fe1789cf-7ed3-4db3-a0ae-9e563a9dc85e", "metadata": {}, "source": [ - "Need to update the following:...\n", - "\n", - "\n", - "Wie Sie sehen können, ist der Wert für den Widerstand zwar gleich geblieben, jedoch die Unsicherheit des Wertes hat sich erhöht.\n", - "\n", "Wie gut fittet unsere obige Funktion unsere Messdaten? Sehr gut? Gut? Befriedigend? Oder doch eher schlecht? Wäre es nicht gut, ein Maß für die Güte des Fits zu haben? Wie könnte ein solches Maß aussehen?\n", "\n", - "Sie haben das entscheidende Kriterium bereits kennengelernt, bei der Methode der kleinsten Quadrate geht es darum, das $\\chi^2$ zu minimieren. Gucken wir uns hierzu erst noch einmal an, wie sich das $\\chi^2$ berechnet:\n", + "Sie haben das entscheidende Kriterium bereits kennengelernt: bei der Methode der kleinsten Quadrate geht es darum, das $\\chi^2$ zu minimieren. Gucken wir uns hierzu erst noch einmal an, wie sich das $\\chi^2$ berechnet:\n", "\n", "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", "\n", - "\n", - "Coming back to figure\n", + "Bei der Minimierung werden dabei Werte mit geringerer Unsicherheit bevorzugt, d.h. stärker gewichtet (s. Bild unten).\n", "\n", "
\n", "\"{{\n", "
\n", "\n", - "Chi-Square can be understood easily, want to minimize distance, put bigger emphsis on values with smaller uncertainty as more confident...\n", - "\n", - "\n", - "\n", - "Wie Sie sehen können, ist das $\\chi^2$ für unsere zweite Funktion etwas größer als für das klassische ohm'sche Gesetzt. Somit würden wir unseren zweiten Ansatz verwerfen.\n", - "\n", - "Damit man für einen gegebenen Datensatz nicht hunderte von verschiedenen Funktionen durchprobieren muss, gibt es für das $\\chi^2$ eine allgemeine Faustregel, welche den berechneten $\\chi^2$-Wert mit der Anzahl unserer Freiheitsgrade vergleicht. Die Anzahl an Freiheitsgrade ist allgemeinhin gegeben als *Anzahl der Messwerte - Anzahl der Funktionsparameter* ($m - n$).\n", + "Damit man für einen gegebenen Datensatz nicht hunderte von verschiedenen Funktionen durchprobieren muss, gibt es für das $\\chi^2$ eine allgemeine Faustregel, welche den berechneten $\\chi^2$-Wert mit der Anzahl unserer Freiheitsgrade vergleicht. Die Anzahl an Freiheitsgrade ist gemeinhin gegeben als *Anzahl der Messwerte - Anzahl der Funktionsparameter* ($m - n$).\n", "\n", "1. Sofern $\\chi^2/\\text{ndof} >> 1$: sollte die Hypothese bzw. die Fitfunktion angezweifelt werden. Sie beschreibt in diesem Fall die Messdaten nur unzureichend. (Bzw. sollte $\\chi^2/\\text{ndof} > 1$ kann dies auch bedeuten, dass die Unsicherheiten unterschätzt sind)\n", "2. Sofern $\\chi^2/\\text{ndof} \\approx 1$: beschreibt die Hypothese bzw. die Fitfunktion die Daten wie erwartet und wird nicht abgelehnt. \n", - "3. Falls $\\chi^2/\\text{ndof} << 1$ beschreibt die Hypothese bzw. die Fitfunktion die Daten wesentlich besser als erwartet. In diesem Fall heißt es nicht, dass unsere Hypothese falsch ist, aber man sollte überprüfen, ob die gemessenen Fehler nicht überschätzt worden sind (oder eine Korrelation zwischen den Messfehlern vorliegt). \n", + "3. Falls $\\chi^2/\\text{ndof} << 1$ beschreibt die Hypothese bzw. die Fitfunktion die Daten wesentlich besser als erwartet. In diesem Fall heißt das nicht automatisch, dass unsere Hypothese falsch ist, aber man sollte überprüfen, ob die gemessenen Fehler nicht überschätzt worden sind (oder eine Korrelation zwischen den Messfehlern vorliegt). \n", "\n", - "Sofern Sie eine Arbeit schreiben und Ihre **Goodness-of-the-Fit** ($\\chi^2/\\text{ndof}$) angeben wollen, so geben Sie immer beides an, das $\\chi^2$ und die Anzahl an Freiheitsgraden ndof. Beide Werte getrennt haben einen größeren Informationsgehalt als der resultierende Quotient (Genaueres lernen Sie z.B. in der Vorlesung *Statistik, Datenanalyse und Simulationen* im Master).\n", + "Sofern Sie eine Arbeit schreiben und Ihre **Goodness-of-the-Fit** ($\\chi^2/\\text{ndof}$) angeben wollen, so geben Sie immer beides an, das $\\chi^2$ und die Anzahl an Freiheitsgraden *ndof*. Beide Werte getrennt haben einen größeren Informationsgehalt als der resultierende Quotient (Genaueres lernen Sie z.B. in der Vorlesung *Statistik, Datenanalyse und Simulationen* im Master).\n", "\n", - "Sehen wir uns hierzu nochmal unseren Doppelpeakfit etwas genauer an. Iminuit berechnet hier für uns bereits das reuzierete $\\chi^2$." + "Sehen wir uns hierzu nochmal unseren Doppelpeakfit etwas genauer an. `iminuit` berechnet hier für uns bereits das reduzierete $\\chi^2$." ] }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 525, "id": "fa85a19a-f066-4567-abb0-6283ae1bc90b", "metadata": {}, "outputs": [ @@ -4109,30 +10448,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 71.34 (χ²/ndof = 1.4) Nfcn = 517 FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 530
EDM = 1.63e-06 (Goal: 0.0002) EDM = 1.61e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -4149,8 +10485,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4160,8 +10496,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4171,8 +10507,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4182,8 +10518,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4193,8 +10529,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4204,7 +10540,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4215,8 +10551,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4226,8 +10562,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4248,146 +10584,1250 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - "
0 A_p1 627 14 317 7
1 A_p2 1.142e3 0.014e3 580 7
2 mu_p1 53.38 0.09 53.24 0.07
3 mu_p2 60.50 0.06 60.43 0.05
4 sigma_p1 2.18 0.06 1.99 0.05
5 sigma_p2 2.76 2.80 0.04
6 A_bkg 222 23 147 14
7 tau_bkg 40.1 2.9 34.1 2.0 0
A_p1 196 0.03e3 (0.134) 0.333 (0.273) 0.292 (0.344) -0.081 (-0.092) -0.2462 (-0.397) -0.01e3 (-0.046) 2 (0.046) 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 0.03e3 (0.134) 202 -0.064 (-0.052) 0.010 (0.012) -0.100 (-0.112) -0.2153 (-0.342) -0 (-0.009) 0 (0.007) 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.333 (0.273) -0.064 (-0.052) 0.00757 0.004 (0.788) 0.004 (0.736) -0.0028 (-0.717) -0.161 (-0.081) 0.023 (0.094) 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.292 (0.344) 0.010 (0.012) 0.004 (0.788) 0.00367 0.003 (0.689) -0.0020 (-0.736) -0.135 (-0.097) 0.015 (0.088) 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.623) -0.0015 (-0.680) -0.0513 (-0.068) 0.0062 (0.059)
sigma_p1 -0.081 (-0.092) -0.100 (-0.112) 0.004 (0.736) 0.003 (0.689) 0.00396 -0.0016 (-0.571) -0.302 (-0.208) 0.031 (0.173) -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.623) 0.00297 -0.0012 (-0.518) -0.1409 (-0.179) 0.0155 (0.142)
sigma_p2 -0.2462 (-0.397) -0.2153 (-0.342) -0.0028 (-0.717) -0.0020 (-0.736) -0.0016 (-0.571) 0.00196 0.1500 (0.147) -0.0229 (-0.181) -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0816 (0.137) -0.0142 (-0.172)
A_bkg -0.01e3 (-0.046) -0 (-0.009) -0.161 (-0.081) -0.135 (-0.097) -0.302 (-0.208) 0.1500 (0.147) 530 -64 (-0.966) -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0513 (-0.068) -0.1409 (-0.179) 0.0816 (0.137) 209 -28 (-0.965)
tau_bkg 2 (0.046) 0 (0.007) 0.023 (0.094) 0.015 (0.088) 0.031 (0.173) -0.0229 (-0.181) -64 (-0.966) 8.17 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0155 (0.142) -0.0142 (-0.172) -28 (-0.965) 4.01
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:53.558660\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 71.34 (χ²/ndof = 1.4) │ Nfcn = 517 │\n", - "│ EDM = 1.63e-06 (Goal: 0.0002) │ │\n", + "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 530 │\n", + "│ EDM = 1.61e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 627 │ 14 │ │ │ │ │ │\n", - "│ 1 │ A_p2 │ 1.142e3 │ 0.014e3 │ │ │ │ │ │\n", - "│ 2 │ mu_p1 │ 53.38 │ 0.09 │ │ │ │ │ │\n", - "│ 3 │ mu_p2 │ 60.50 │ 0.06 │ │ │ │ │ │\n", - "│ 4 │ sigma_p1 │ 2.18 │ 0.06 │ │ │ │ │ │\n", - "│ 5 │ sigma_p2 │ 2.76 │ 0.04 │ │ │ │ │ │\n", - "│ 6 │ A_bkg │ 222 │ 23 │ │ │ │ │ │\n", - "│ 7 │ tau_bkg │ 40.1 │ 2.9 │ │ │ 0 │ │ │\n", + "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 196 0.03e3 0.333 0.292 -0.081 -0.2462 -0.01e3 2 │\n", - "│ A_p2 │ 0.03e3 202 -0.064 0.010 -0.100 -0.2153 -0 0 │\n", - "│ mu_p1 │ 0.333 -0.064 0.00757 0.004 0.004 -0.0028 -0.161 0.023 │\n", - "│ mu_p2 │ 0.292 0.010 0.004 0.00367 0.003 -0.0020 -0.135 0.015 │\n", - "│ sigma_p1 │ -0.081 -0.100 0.004 0.003 0.00396 -0.0016 -0.302 0.031 │\n", - "│ sigma_p2 │ -0.2462 -0.2153 -0.0028 -0.0020 -0.0016 0.00196 0.1500 -0.0229 │\n", - "│ A_bkg │ -0.01e3 -0 -0.161 -0.135 -0.302 0.1500 530 -64 │\n", - "│ tau_bkg │ 2 0 0.023 0.015 0.031 -0.0229 -64 8.17 │\n", + "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", + "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", + "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", + "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0513 0.0062 │\n", + "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1409 0.0155 │\n", + "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0816 -0.0142 │\n", + "│ A_bkg │ -0 -0 -0.057 -0.0513 -0.1409 0.0816 209 -28 │\n", + "│ tau_bkg │ 0 0 0.010 0.0062 0.0155 -0.0142 -28 4.01 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 55, + "execution_count": 525, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX7ElEQVR4nO3de3xT9f0/8Ndper+kpfeWBFqQW7mJoliwiKMDBZ0u1okyRWUyN1CqziE4704U3VZwTofzq+wn4KUGL4hO5FoFoYDITQtooW164VKatIXeks/vjzSxgaRN2yQnl9fz8cjjYc85ad7HNs2Lz1USQggQERER+ZAguQsgIiIi6i4GGCIiIvI5DDBERETkcxhgiIiIyOcwwBAREZHPYYAhIiIin8MAQ0RERD6HAYaIiIh8TrDcBbiLyWRCZWUlYmJiIEmS3OUQERGRE4QQqK+vR3p6OoKCHLez+G2AqayshFqtlrsMIiIi6oHy8nKoVCqH5/02wMTExAAw/w9QKpUyV0NERETOMBgMUKvV1s9xR/w2wFi6jZRKJQMMERGRj+lq+AcH8RIREZHPYYAhIiIin8MAQ0RERD6HAYaIiIh8DgMMERER+RwGGCIiIvI5DDBERETkcxhgiIiIyOcwwBAREZHPYYAhIiIin8MAQ0RERD6HAYaIiIh8DgMMERER+RwGGCLyaY2NjZAkCZIkobGxUe5yiMhDGGCIiIjI5zDAEBERkc9hgCEiIiKfwwBDREREPocBhoh8mtFotP731q1bbb4mIv/V7QCzdetWXH/99UhPT4ckSfjwww+t51pbW7FgwQKMHDkSUVFRSE9Pxx133IHKykqb71FbW4uZM2dCqVQiLi4Os2fPRkNDg801+/btQ05ODsLDw6FWq7FkyZKe3SER+S2tVousrCzr19OmTUNGRga0Wq2MVRGRJ3Q7wDQ2NmL06NF45ZVXLjh39uxZ7NmzB4899hj27NkDrVaLkpIS/OpXv7K5bubMmTh48CDWr1+PtWvXYuvWrZgzZ471vMFgwJQpU9C/f3/s3r0bL774Ip588kksX768B7dIRP5Iq9UiLy8POp3O5rhOp0NeXh5DDJGfk4QQosdPliSsWbMGN954o8NriouLcfnll+P48ePo168fvv/+e2RlZaG4uBhjx44FAHz++eeYNm0aKioqkJ6ejldffRWPPvooqqurERoaCgB45JFH8OGHH+KHH35wqjaDwYDY2Fjo9Xoolcqe3iIReSGj0YiMjAxUVFTYPS9JElQqFUpLS6FQKDxcHRH1hrOf324fA6PX6yFJEuLi4gAA27dvR1xcnDW8AEBubi6CgoKwY8cO6zUTJ060hhcAmDp1KkpKSnDmzBm7r9Pc3AyDwWDzICL/VFRU5DC8AIAQAuXl5SgqKvJgVUTkSW4NME1NTViwYAFuvfVWa4qqrq5GcnKyzXXBwcGIj49HdXW19ZqUlBSbayxfW6453+LFixEbG2t9qNVqV98OEXmJqqoql15HRL7HbQGmtbUVv/nNbyCEwKuvvuqul7FauHAh9Hq99VFeXu721yQieaSlpTl1XVxcHLcZIPJTwe74ppbwcvz4cWzcuNGmDys1NRUnTpywub6trQ21tbVITU21XlNTU2NzjeVryzXnCwsLQ1hYmCtvg4i8VE5ODlQqFSoqdADsD+NTJqbisiuyPVsYEXmMy1tgLOHlyJEj+PLLL5GQkGBzPjs7G3V1ddi9e7f12MaNG2EymTBu3DjrNVu3bkVra6v1mvXr12PIkCHo06ePq0smIh+jUCjw6z8+CvvhRQIAhF15NxZ+VOLRuojIc7odYBoaGrB3717s3bsXAFBaWoq9e/eirKwMra2tyMvLw65du7By5UoYjUZUV1ejuroaLS0tAIBhw4bhmmuuwT333IOdO3fi66+/xrx58zBjxgykp6cDAG677TaEhoZi9uzZOHjwIN59910sXboUDz74oOvunIh8gr3dpncfP4PPGvoh6cZFUCbYjpdTq1V4YukbiMu6Eut/OIWYsb+y922JyNeJbtq0aZOA+Z89No9Zs2aJ0tJSu+cAiE2bNlm/x+nTp8Wtt94qoqOjhVKpFHfddZeor6+3eZ3vvvtOXHnllSIsLEz07dtXPP/8892qU6/XCwBCr9d39xaJyIs0NDRY/440NDQI/bkWccVzX4r+C9aKP769W9TV1VnPr1u3TrS1tQkhhFixrVT0X7BW9PvThyI09SLR0NAg850QkTOc/fzu1Tow3ozrwBD5h8bGRkRHRwMwtwD/Z3sl/vHlYWQkRGLt/TmQ2pptzkdFRQEwT6W+561vsHb9Zpwr2493Hr0dU6ZM4bowRF7Oa9aBISJylfqmNrzx1U8AgIemDEF0mON5CGvWrMGnj+ahZvUiGL5ezW0GiPwMAwwR+Yy3d1bA0NSGQcnRmDbS8VRqyzYD1VW2+7BxmwEi/8EAQ0Rezbq7tCIU/3r3UwiTEfdNHgRFkOTw+vnz58Ne77jlWH5+PnetJvJxDDBE5LVsdps2tqB0xQLULP8dWo5st14TFRUFIQSEEIiKiuI2A0QBggGGiLySo92mmw2n8Jvf3OywG4jbDBAFBgYYIvI6nXUDoYtuIGe3GXD2OiLyTgwwROR1etMNZNlmQJLsj5EBAJVKhZycHJfUSkTyYIAhIq/Tm24ghUKBpUuXAoDDEHP7A09wPRgiH8cAQ0Rep7fdQBqNBoWFhdbtSSxiE1ORdOMi6FMv6XWNRCQvBhgi8jpddQNJkgS1Wt1pN5BGo8GhQ4esX69btw4biw8gcsh4bPrhBJpaOY2ayJcxwBCR17F0A9nda7o91BQUFHTZDdTx/MSJEzGmfzz6xkXgbIsRWw6fdGXJRORhDDBE5JU0Gg1+9eBLUMQk2hxXqVQoLCyERqPp9veUJAnXjEgFAHx+oNoldRKRPBhgiMgrNbUa8VPUcPS99w2EJGYAMHcDlZaW9ii8WEwbaQ4wXx6qQXMbu5GIfBUDDBF5pc0lJ1Hf3Ia0uEi0njoOwNwN1J3ZQ+ev0gsAY9R9kKIMQ31zG7YdPe2W2onI/RhgiMgrffKdeSPGa4cnA3ZHw/RMUJCEa4abW2HW7edqvES+igGGiLxOfVMrvvy+BgAwbXiyy7//NSPM06/Xf1+DVqPJ5d+fiNyPAYaIvE7RkVNobjMhMzEKYwemXNAN1FuXZ8YjISoUdWdb8c1P7EYi8kUMMETkdbaUmKc4/2JocqdbAvSUIkjClOEpAIAN359w+fcnIvdjgCEiWTU2NkKSJEiShMbGRgghsPWIOcBcNTjJba975UXm780WGCLfxABDRF7lyIkGVOmbEBYchMsz4932OlcMMH/vH6rrcbqh2W2vQ0TuwQBDRF7F0n10xYAEhIe4b8PFhOgwDEmJAQDsKK112+sQkXswwBCRV7Es8e/O7iOL7IEJAIDtP7IbicjXMMAQkayMxp9Xw12/cTN2/GgOMBM9EGDG9DXPanpjbREaGxvd/npE5DoMMEQkG61Wi6ysLOvXv/7VdSh95S6EV+zCwCTXTJnuzNj+cRDChNDEfjjJcTBEPoUBhohkodVqkZeXB51OZ3PcWH8KJSufwpo1a9xeQ1xECFpPlAIAio/Vuf31iMh1GGCIyOOMRiPmz58PIRxsESAB+fn5Nt1L7tJUth8AsPN4ndtfi4hchwGGiDyuqKgIFRUVji8QAuXl5SgqKnJrHUajEY0/fIXGQ1vwxYbNHglMROQaDDBE5HFVVc5toujsdT1hGX/TUvkDTn3yIvYtfwjqfv2h1Wrd9ppE5DoMMETkcWlpaS69rrscjb+pqqpEXl4eQwyRD5CEw05o32YwGBAbGwu9Xg+lUil3OUTUgdFoREZGBnQ6nd1xMJIkQaVSobS0FAqFaxezs7y2oy4sd742EXXN2c9vtsAQkccpFAosXboUAC7YrNHydUFBgVsCRFfjb4SHxt8QUe8wwBCRLDQaDQoLC5Genm5zXKVSobCwEBqNxi2v6w3jb4io94LlLoCIApdGo0Fubi7U0/6A0Pi++M2VWVj20O1u7bqRe/wNEbkGAwwRySooKAjKMdOgiIrDjF+Ncfu4k5ycHKhUKofjbwAJarUKOTk5bq2DiHqHXUhEJKufTp2FIioOptZmjEiLcfvrdTb+xky4bfwNEbkOAwwRyWp3mR4A0FL5A0KDPfMnydH4G0VMIlR5f8ENN/7aI3UQUc8xwBCRrL7VNQAAFtydh6go92/gaKHRaHDo0CHr12s/XYdB978FxcAr8OPJBo/VQUQ9wwBDRLIRQmBnaS0AYNyAeI+/fsduoklXTcRItbmGvWV1Hq+FiLqHAYaIZFNWexbVhiaEKCSMUfeRuxyMUccBAL4tr5O1DiLqGgMMEclmR3vry2hVHCJC5R80e3F7gPmOAYbI63EaNRHJZsdP5gBzeabnu48AICoqymYq9cX9zP+mK6mpx7kWo1eEKiKyjy0wRCSbncdOAwDGDUiQuRKzVGU4kmPCYDQJ7Nfp5S6HiDrBAENEsqisO4fy2nNQBEm4tL/8418A87ow7EYi8g0MMEQki+Jj5u6j4elKRId5T2/2xf3iAAB7GWCIvFq3A8zWrVtx/fXXIz09HZIk4cMPP7Q5L4TA448/jrS0NERERCA3NxdHjhyxuaa2thYzZ86EUqlEXFwcZs+ejYYG23UX9u3bh5ycHISHh0OtVmPJkiXdvzsi8lrftk9VvqSfd7S+WFysigPAAEPk7bodYBobGzF69Gi88sords8vWbIEy5Ytw2uvvYYdO3YgKioKU6dORVNTk/WamTNn4uDBg1i/fj3Wrl2LrVu3Ys6cOdbzBoMBU6ZMQf/+/bF79268+OKLePLJJ7F8+fIe3CIReaPdx88AgNd0H1mMVMVCkgBd3TmcqG/q+glEJA/RCwDEmjVrrF+bTCaRmpoqXnzxReuxuro6ERYWJlavXi2EEOLQoUMCgCguLrZe89lnnwlJkoROpxNCCPGvf/1L9OnTRzQ3N1uvWbBggRgyZIjTten1egFA6PX6nt4eEbnJ2eY2MXDhp6L/grWi4sxZucu5wC//vln0X7BWfHGwWu5SiAKOs5/fLh0DU1paiurqauTm5lqPxcbGYty4cdi+fTsAYPv27YiLi8PYsWOt1+Tm5iIoKAg7duywXjNx4kSEhoZar5k6dSpKSkpw5swZu6/d3NwMg8Fg8yAi77Svog5tJoEUZRjSY8PlLucCo9u7kTiQl8h7uTTAVFdXAwBSUlJsjqekpFjPVVdXIzk52eZ8cHAw4uPjba6x9z06vsb5Fi9ejNjYWOtDrVb3/oaIyC12l/3cfWR/R2h5jVLFAgAOVnIqNZG38ptZSAsXLoRer7c+ysvL5S6JiBzYc7wOgPcN4LXISlcCAA5WsiWXyFu5NMCkpqYCAGpqamyO19TUWM+lpqbixIkTNufb2tpQW1trc42979HxNc4XFhYGpVJp8yAi7yOEwLftLTBjvDTADE1VQpKAE/XNOFnfLHc5RGSHSwNMZmYmUlNTsWHDBusxg8GAHTt2IDs7GwCQnZ2Nuro67N6923rNxo0bYTKZMG7cOOs1W7duRWtrq/Wa9evXY8iQIejTxzv/4BGRc46fPovTjS0IVQRhRF/v/IdGVFgwMhOjAAD9Ro+HJElobGyUuSoi6qjbAaahoQF79+7F3r17AZgH7u7duxdlZWWQJAn5+fl49tln8fHHH2P//v244447kJ6ejhtvvBEAMGzYMFxzzTW45557sHPnTnz99deYN28eZsyYgfT0dADAbbfdhtDQUMyePRsHDx7Eu+++i6VLl+LBBx902Y0TkTz2tLe+jOirRFiw9+41lJVmDlehyQNkroSI7On28pe7du3C1Vdfbf3aEipmzZqFt956C3/+85/R2NiIOXPmoK6uDldeeSU+//xzhIf/PNNg5cqVmDdvHiZPnoygoCDcdNNNWLZsmfV8bGwsvvjiC8ydOxeXXnopEhMT8fjjj9usFUNEvsmy/ou3jn+xGJ4ei7X7qhCawgBD5I0kITpsxepHDAYDYmNjodfrOR6GyItcu7QI31cZ8OrMS3DtyDS5y3Foy+GTmPV/O9F6ugKV/7kXDQ0NiIqKkrssIr/n7Oe338xCIiLv19DchpJq88yeS7xsBd7zZaUpIUxGtDWcBhQh2Lp1K4xGo9xlEVE7Bhgi8pjvyutgEkDfuAikKL1vAbuOitZ/iqp/z8aJdx4FjK2YNm0aMjIyoNVq5S6NiMAAQ0QetMcy/sXLW1+0Wi3y8vLQajhlc1yn0yEvL48hhsgLMMAQkcdYZiBd0i9O3kI6YTQaMX/+fNgbHmg5lp+fz+4kIpkxwBCRR5hMAnvK6gB43w7UHRUVFaGiosLheSEEysvLUVRU5MGqiOh8DDBE5BE/nWqE/lwrwkOCMCzNe2cGVlVVufQ6InIPBhgi8ghL99GovnEIUXjvn560NOemdjt7HRG5h/f+FSEiv+IrA3hzcnKgUqkc7pItSRLUajVycnI8XBkRdcQAQ0Qe4QsDeAFAoVBg6dKlAHBBiLF8XVBQAIXCe7dBIAoEDDBE5Hb6c604cqIBgPe3wACARqNBYWGhdX82C5VKhcLCQmg0GpkqIyKLbu+FRETUXXvL6yAE0D8hEonRYXKX4xSNRoPc3FzE9x+CPjm3IyY+EYf/8yCCg/lnk8gb8J1IRG63x0c2cDyfQqGA0XAKkUPGw6QIQXV9C1R9+GeTyBuwC4mI3M5Xxr/YZWpDa60OAHCkpkHmYojIggGGiNzKZBLY276AnS+Mf+koKioKQgjclDseAFBSUy9zRURkwQBDRG515EQD6pvbYGo5hxGqeDQ2NspdUrcNTo4GAByuZoAh8hYMMETkVrvbx7+0VB0GhEnmanpmcGoMALbAEHkTBhgicivL+Jdm3fcyV9JzQ1LMAebIiQYYTRdu8khEnscAQ0RutafsDITJiLNHdwIAtm7d6nM7OavjIxEeEoSWNhOOn/a9LjAif8QAQ0Ruc6axBQe+Wg/da7PNXUgApk2bhoyMDGi1Wpmrc54iSMKgZHMrzGF2IxF5BQYYInKbZW+8jZMfPgdj/Smb4zqdDnl5eT4VYganWAIMp1ITeQMGGCJyC6PRiH8886jdc0KYx5Hk5+f7THfSkFTzTCQO5CXyDgwwROQWRUVF0J+qdnheCIHy8nIUFRV5sKqes7bAcCo1kVdggCEitzhernPquqqqKjdX4hpD2qdSl55qRHObb7QaEfkzBhgicouzwTFOXZeWlubmSlwjVRmOmPBgtJkESk9xJhKR3BhgiMgt2pKGQBGT6PC8JElQq9XIycnxYFU9J0mSdT2YEnYjEcmOAYaI3GJ3uR7xk+cAkCBJks05y9cFBQVQKBQyVNczlhV5OZWaSH4MMETkckaTwO7jZxA5ZDz+sXwF0tPTbc6rVCoUFhZCo9HIVGHP/NwCw6nURHJjgCEilyuprkd9UxuiQhWYd/dMHDp0yHpu3bp1KC0t9bnwAnRcC4YtMERyY4AhIpfbdbwWAHBJ/z4IVgTZdBNNnDjRp7qNOhqcYl4Lpqz2LM62tMlcDVFgY4AhIpfbWWoOMJdlxMtciWslRIchMToMAHCEK/ISyYoBhohcSgiB4mO2ASYqKgpCCAghEBUVJWd5vcYVeYm8AwMMEblUxZlzqDE0I0Qh4WJ1nNzluBxX5CXyDgwwRORSltaXEX1jERHqm2NdOmOZiXSosg6SZJ4i3tjIhe2IPI0Bhohc6vzuI39jWQvm6EmGFiI5McAQkUsVHzsDwH8DzKBk8xiYE/UtCAqPlrkaosDFAENELlPb2IKjJ8yzc8b27yNzNe4REx6CvnERECYjFNHmrRK2bt0Ko5EbPBJ5EgMMEfVaY2MjJEmCasxVAMytFH2iQmWuyn3CKoqhe202Wk8dAwBMmzYNGRkZ0Gq18hZGFEAYYIjIZcJUWQCAsX7afQQAWq0Wm15ZCGP9KZvjOp0OeXl5DDFEHsIAQ0QuE64aDgC4PNM/u4+MRiPmz58PQFxwTgjzsfz8fHYnEXkAAwwR9ZrRaAQUIWit1aGpbB/GqGLlLsktioqKUFFR4fC8EALl5eUoKiryYFVEgYkBhoh6RavVIisrCzC24vSnf0fN6kXIuSTLL7tSqqqqXHodEfUcAwwR9ZhWq0VeXh50Op3NcX8dD5KWlubS64io5yRh6bj1MwaDAbGxsdDr9VAqlXKXQ+SUxsZGREeb1xZpaGjw6n2DjEYjMjIyHHapSJIElUqF0tJSn919+nyWe9bpdLD3p9Mf75nI05z9/GYLDBH1SCCOB1EoFFi6dGn7V5LNOUkyf11QUMDwQuQBLg8wRqMRjz32GDIzMxEREYGBAwfimWeesfnXihACjz/+ONLS0hAREYHc3FwcOXLE5vvU1tZi5syZUCqViIuLw+zZs9HQwO3ribxFoI4H0Wg0KCwsREJyis1xlUqFwsJCaDQamSojCiwuDzAvvPACXn31Vfzzn//E999/jxdeeAFLlizByy+/bL1myZIlWLZsGV577TXs2LEDUVFRmDp1KpqamqzXzJw5EwcPHsT69euxdu1abN26FXPmzHF1uURepeP0W29f3TWQx4NoNBqs37YHKbc+h/hr7sen69ahtLSU4YXIk4SLTZ8+Xdx99902xzQajZg5c6YQQgiTySRSU1PFiy++aD1fV1cnwsLCxOrVq4UQQhw6dEgAEMXFxdZrPvvsMyFJktDpdE7VodfrBQCh1+t7e0tEHvHBBx+Ivn37CpgXGREAhEqlEh988IHcpdnV1tYmVCqVkCTJpmbLQ5IkoVarRVtbm9ylusUZvUH0e2iN6L9grSipOCl3OUR+w9nPb5e3wIwfPx4bNmzA4cOHAQDfffcdvvrqK1x77bUAgNLSUlRXVyM3N9f6nNjYWIwbNw7bt28HAGzfvh1xcXEYO3as9Zrc3FwEBQVhx44dri6ZSHa+OJvHdjyIrUAYDxKiCEJrrXkM0JET3JmayNNcHmAeeeQRzJgxA0OHDkVISAjGjBmD/Px8zJw5EwBQXV0NAEhJse0/TklJsZ6rrq5GcnKyzfng4GDEx8dbrzlfc3MzDAaDzYPIF1hWdxV2ZrUIL1/dVaPR4JU3/h8UMYk2xwNhPEhUVBRunjIBAHBc3ypzNUSBx+UB5r333sPKlSuxatUq7NmzBytWrMBLL72EFStWuPqlbCxevBixsbHWh1qtduvrEbmKr8/miRueg773voE+k81j1NYF0HiQwSkxAIDD1fUyV0IUeFweYB5++GFrK8zIkSNx++2344EHHsDixYsBAKmpqQCAmpoam+fV1NRYz6WmpuLEiRM259va2lBbW2u95nwLFy6EXq+3PsrLy119a0Ru4euzebYePgkpSAFTk/lDfOLEiX7bbXS+Ie0BpqSGMySJPM3lAebs2bMICrL9tgqFAiaTCQCQmZmJ1NRUbNiwwXreYDBgx44dyM7OBgBkZ2ejrq4Ou3fvtl6zceNGmEwmjBs3zu7rhoWFQalU2jyIfIEvz+ZpNZrw1RHzrsybVr0CIYRXL77nakNSzQHmxxMNaDOaZK6GKLAEu/obXn/99fjrX/+Kfv36Yfjw4fj222/x97//HXfffTcA8+C+/Px8PPvssxg0aBAyMzPx2GOPIT09HTfeeCMAYNiwYbjmmmtwzz334LXXXkNrayvmzZuHGTNmID093dUlE8kqJycHKpWqy9Vdc3JyZKiuc3vL61Df3Ia4yBCMUsXJXY7H9Y2LQGSoAmdbjDh2+iwuSo6WuySigOHyFpiXX34ZeXl5+OMf/4hhw4bhT3/6E37/+9/jmWeesV7z5z//Gffddx/mzJmDyy67DA0NDfj8888RHh5uvWblypUYOnQoJk+ejGnTpuHKK6/E8uXLXV0ukew6zuaxzN6x8PbZPFsPnwQA5AxKgiJI6uJq/xMUJFlDy9ETHAdD5EncC4nIS2i1Wtx///02U6nVajUKCgq8dkDsr/75FfZV6PHSzaORd6lK7nJk8eB7e6Hdo8ODvxyM+ycPkrscIp/n7Oe3y7uQiKhnNBoNcnNzERsbC8A8m2fKlCle2fICAKcamrGvQg8AmDgosYur/ZdlJtKRExzIS+RJ3MyRyIt0DCvePpvHMng3K02JZGV4F1f7r8Ep5i6kIzXsQiLyJAYYIupSY2MjJEmCJElobDSvOrulffzLVUOS5CxNdoOSzS0wP51s5EwkIg9igCHyIlFRURBCeP10ZJNJWAfwXjU4sANM37gIRIQo0GI04XjtWbnLIQoYDDBE1G0HKw043diC6LBgXNKvj9zlyKrjTKQjXNCOyGMYYIioSx33Ydq6dSs2fW9eFXj8wASEBvPPyCCOgyHyOP7lIaJOabVaZGVlWb+eNm0aHvnNRJwt2Rbw418sLONgOBOJyHMYYIjIIa1Wi7y8PJu1aQDgXN1JnPzwOZw9vE2myryLZSbSYbbAEHkMAwwR2WU0GjF//ny72xtYPPPoApvupUBlnYl0ijORiDyFAYaI7CoqKkJFRUWn15SXl6OoqMhDFXkvVZ8IhIcEoaXNhDLORCLyCAYYIi/VZjShsblNttevqqpy6XX+rONMpMOciUTkEdxKgMhLNLcZ8a9NP2JP2RmU155FxZlzaDMJTMlKwdyrL8JodZxH60lLS3Ppdf5ucHIMDugM7Zs6pspdDpHfY4Ah8gKnG5rx+/+3G7uOn7ng3BeHavDFoRrkDErEg78cjDEeWnclJycHKpUKOp3O7jgYSZKgUqmQk5PjkXq83UUpbIEh8iQGGCKZHT3RgLvfKkZZ7VnEhAfj4alDMDglBv3iI9HY3IZXt/yIj/ZWoujIKXzz02ksnTEG00a6v9VDoVBg6dKlyMvLgyRJNiFGkiQAQEFBgVfv1+RJgzmVmsijOAaGSEbFx2rx6399jbLas1DHR2DNH8fjjuwMXDEgAelxERiUEoO//+ZibP7TJEzJSkGrUWDeqj14r7jcI/VpNBoUFhYiPT3d5rhKpUJhYSE0Go1H6vAFlsXsfjzZAKPJ8cwtInINBhgimTQ0t+G+Vd+ivqkNY/v3wYd/nICL2v8Vfz51fCRe/e2lmHGZGiYB/PmDffhP0U8eqVOj0eDgwYOIn5aPxOsfxqKX30ZpaSnDy3lUfSI5E4nIgxhgiGTy9y8Oo9rQhH7xkfh/s8chITqs0+sVQRIWa0bi9xMHAACe/fR7vPFVqSdKxU+nmxAzMheRg8fjvluvY7eRHYogCQOTuKAdkacwwBDJ4IBOj7e2mcPHMzeOQESoc4Hg7NmzWDQ9C3VFbwMA/vrpIWz8ocap5zY2NkKSJEiShMbGxm7Vq91n3nl66igVUhNiu/XcQDI4xdyCdpTjYIjcjgGGyMOMJoFFa/bDJIDrRqXhqsHd309Iv+0d3DQmDSYB3L96L0qq3fcv/tMNzXhvl3nMzZ0TMtz2Ov7g57Vg2AJD5G4MMEQe9vY3x7GvQo+YsGA8fl1W10/ooOOy/ZOiq3F5Riwamtswe0UxTjc0O/3crVu3XrAFgKMWmhXbjqG5zYRRqlhkD0joVr2BxtICc4RTqYncjgGGyINONzTjpf+VAAAevmYIkpXhTj/3/F2hf3XddHz97AxEVe5CxZlzuPft3Whps78Pj70dpTMyMqDVajt9zcbmNqzYfhwAcO9VA63Tp8m+QcmciUTkKQwwRB60akcZ6pvb0FLzI2ZNGOj0WBRHu0JXVVbi+7efgqn0GxQfO4MnPzno9HN1Oh3y8vKsIcZeC827xeXQn2tFRkIkpg7n6rJdUcdHIiw4CM1tJpRzJhKRWzHAEHlIq9GElTvKAACGnWsA4dyuxZ3tCm051rT1/wBhxKodZVi543i3npufn4/CwsILWmj6Z2RgyWv/BQDcM3EAFEFsfemKwmZPJI6DIXInBhgiF3M0luSLgzWoNjQhPiIIjT9sBWB/LMr5utoVWgiBk9WVuCHV/IH5xEcHUXys1unnlpeX4+abb7bbQlOy8kkoju/ETZeoOr9psrJ0I3FFXiL3YoAh8pAV247hbMk2/PjyXYDJ3PrizFgUZ3d7HpciYfqoNLSZBP7w9m7o6s71bqfo9haa2g2vI4R/KZw2yDqQly0wRO7EP0tELmZvLMmhSgM2/28tTn74HAynbddtOX8syvmc3e05PT0dL+aNwrA0JU41tOCON3YgMq73s4bqTlahqKio198nULAFhsgzGGCIXMjRbJ9Ff1uO2g3L7T6n41gUe91Jll2hHc0AkiQJarUaOTk5iAwNxn9mjUV6bDh+PNmI134IRXrfvr2ePdSrlpwA03ExO85EInIfBhgiF+lsts9Hf38YxvpTDp9rGYtir6XDsis0gAuCiL1dofvGReDt341DYnQYvq9phGraHzt9rjOcbQUi25lIFWc4E4nIXRhgiFzAmdk+znDU0tHdXaEHJEXj/82+HLERIaiJH40r7vkrUlLTLnjue++953TrDjnHdk8kdiMRuQsDDJELdDXbx1mdtXRoNBocOnTI+vW6desu2BW64wyofkoFVtx9OaJCFajsMwoJs5cjPOMSm+fefPPN1tad89lr3SHnDErhVGoid2OAIXKB3o4Rcbalo2OQmDhxYpfB4mJ1HD6aNwGj1XFoaAVSbnkayXlP4mTMIGw9ehoHdHrsDxmC5F8vhCIm0ea5jlp3qGvc1JHI/RhgiFygO2NEnBnH0lP2ZkBdlByDD+7NxoJrhiJUEYSIgWPx+NoS3PVmMa57+Su8+fUxhA8ajzsKPkJQpHmnaXutO+Q8y2J273y2pUe7fxNR1xhgiFygq5lCgLmF5f3333d6HIs9UVFREEJACIGoqCibc53tdxSsCMIfJg3Ep/dfid9e0Q9XD0lCVpoSCVGhGJ6uxH/vvhwv3zIaprN6AM617pBjlhaYkAQ1IPHPLJE7SKI7Iwx9iMFgQGxsLPR6PZRKpdzlUACwzEICLhy4K0mSNaRYfjcBc0vHlClTeh0WLK9t73UBsCvIw4wmgaGPrkX98QM4+dELWFu42iU/Z6JA4OznN/9pQOQijmYKRcan2ASI7o5j6Yqz+x11tWUBuc5HH65B+auzUbN6EUxn9U7v/k1EzmMLDJGLWX734q6ahbD0ISi4/1bMuCLDba+3efNmXH311V1et2nTJkyaNMltdZAZW8OIeoctMEQyUSgUCO6TjtgrbkZ0xmhcMyq96yf1grMzoLiarvuxNYzIcxhgiNwgcsgEAMDlGXGIiwx162s5OwOKq+m6n7O7f3NvKaLeY4AhcrGoqChceet9AIBfXaxy++t1Z68kci+2hhF5DgMMkYsdP92Ig5UGKIIkTBme6vbX6+5eSeQ+bA0j8hwGGCIX2/jDCQDAZRl9EB/l3u4ji+7ulUTuwdYwIs9hgCFysa2HTwIAJg1J9ujrOrNXErkXW8OIPIcBhsiFmlqN2P7TaQDAVYOTPP76rl5jhrqPrWFEnhEsdwFE/mTXsTNoajUhOSYMQ1NjPP76lq0GSF4ajQa5ublIGnY5lJf+Cv1V6djx8n0MlEQu5JYWGJ1Oh9/+9rdISEhAREQERo4ciV27dlnPCyHw+OOPIy0tDREREcjNzcWRI0dsvkdtbS1mzpwJpVKJuLg4zJ49Gw0N3NmVvNuWw+bxLxMHJ3WyLxIFAoVCAWPDGURlXYW6uMEwgb8PRK7k8gBz5swZTJgwASEhIfjss89w6NAh/O1vf0OfPn2s1yxZsgTLli3Da6+9hh07diAqKgpTp05FU1OT9ZqZM2fi4MGDWL9+PdauXYutW7dizpw5ri6XyKW2Hj4FwBxgKLBFRUWh5Uw1okIVaDMJHDvFHamJXMnlXUgvvPAC1Go13nzzTeuxzMxM638LIVBQUIC//OUvuOGGGwAA//3vf5GSkoIPP/wQM2bMwPfff4/PP/8cxcXFGDt2LADg5ZdfxrRp0/DSSy9d0LdM5A2q9U0oqamHJAE5FyXKXQ55gaAgCYNTY/BtWR1KauoxKMXz3YpE/srlLTAff/wxxo4di5tvvhnJyckYM2YMXn/9dev50tJSVFdXIzc313osNjYW48aNw/bt2wEA27dvR1xcnDW8AEBubi6CgoKwY8cOV5dM5BKW2UejVHHo46Hp0+T9hrSHlsPV9TJXQuRfXB5gfvrpJ7z66qsYNGgQ/ve//+EPf/gD7r//fqxYsQIAUF1dDQBISUmxeV5KSor1XHV1NZKTbaegBgcHIz4+3nrN+Zqbm2EwGGweRJ605Yg5wMgx+4i81+D2AFNSwwBD5Eou70IymUwYO3YsnnvuOQDAmDFjcODAAbz22muYNWuWq1/OavHixXjqqafc9v2JOmM0CXx1xDz+hQGGOhrSPhvtcA0nIRC5kstbYNLS0pCVlWVzbNiwYSgrKwMApKaal1avqamxuaampsZ6LjU1FSdOnLA539bWhtraWus151u4cCH0er31UV5e7pL7IXLGdxV10J9rhTI8GKNVsXKXQ17E0gJz7HQjmlq5CzWRq7g8wEyYMAElJSU2xw4fPoz+/fsDMA/oTU1NxYYNG6znDQYDduzYgezsbABAdnY26urqsHv3bus1GzduhMlkwrhx4+y+blhYGJRKpc2DyFMs419yBiUhWMH1IelnidGhiI8KhRDA0RNshSFyFZf/pX3ggQfwzTff4LnnnsPRo0exatUqLF++HHPnzgVgXk47Pz8fzz77LD7++GPs378fd9xxB9LT03HjjTcCMLfYXHPNNbjnnnuwc+dOfP3115g3bx5mzJjBGUjklSwBZuJgzj4iW5IkYXBKNACghAN5iVzG5WNgLrvsMqxZswYLFy7E008/jczMTBQUFGDmzJnWa/785z+jsbERc+bMQV1dHa688kp8/vnnCA8Pt16zcuVKzJs3D5MnT0ZQUBBuuukmLFu2zNXlEvVaY3Mb9lXoAQDjBzLA0IWGpMTgm59qcZgDeYlcRhJ+uu64wWBAbGws9Ho9u5PIrbYcPolZ/7cTqj4R+GrBL+Quh7zQyh3H8eiaA5g0JAlv3XW53OUQeTVnP7/ZWU/US9+0b954xYAEmSshb8W1YIhcjwGGqJcYYKgrlhV4K/VNMDS1ylwNkX9ggCHqhY7jX64YEC9zNeStYiNCkBZrHuN3hONgiFyCAYaoF4qP1cJoElDHR0DVJ1LucsiLWdaD+YHdSEQuwQBD1Avf/FQLALgik91H1LmhqRwHQ+RKDDBEvcDxL+QsSwvM9wwwRC7BAEPUQw3Nbdivax//MpABhjo3NK19U8fqevjp6hVEHsUAQ9RDlvEv/eIj0TcuQu5yyMtdlByN4CAJ+nOtqNI3yV0Okc9jgCHqoZ+7jzj7iLoWFqzAwCTzlgI/VBtkrobI9zHAEPWQdQAvx7+QkyzdSN9XcRwMUW8xwBD1QH1TKw5Yxr8wwJCThqWZl0X/vootMES9xQBD1E2NjY1IHj7evP5Ln3Ckc/wLOckylfr7KgMaGxshSRIkSUJjY6PMlRH5HgYYom4yGo1QRCeg8dAWpDQchdFolLsk8hFZ7S0wpaca0djUYj2+detW/h4RdRMDDFE3aLVaZGVloXHf/3DqkxfxwbP3IiMjA1qtVu7SyAckxYQhPioUDT9sw8gRw63Hp02bxt8jom5igCFyklarRV5eHnQ6nc1xnU6HvLw8fvhQlyRJQnTVbpz88DmcqK6yOcffI6LukYSfrqhkMBgQGxsLvV4PpVIpdznk44xGIzIyMlBRUWH3vCRJUKlUKC0thUKh8HB15CuMRiPiU/rCcLrG7nn+HhE5//nNFhgiJxQVFTkMLwAghEB5eTmKioo8WBX5mqKiIofhBeDvEVF3MMAQOaGqqqrri7pxHQUm/h4RuQ4DDJET0tLSXHodBSb+HhG5DgMMkRNycnKgUqkgSZLd85IkQa1WIycnx8OVkS+x/B45wt8jIucxwBA5QaFQYOnSpbA35N0SagoKCjjwkjpl+T0CLgzC/D0i6h4GGCInaTQaTJ2/BIqYRJvjKpUKhYWF0Gg0MlVGvkSj0eCep/7J3yOiXgqWuwAiXyGEwOmki9H33jdQ9eZ8tJ46hnXr1mHKlCn8FzN1y6235OF/DSo0HNyI2nVL+XtE1AMMMEROKqs9i5P1zQgJDkZbXSUAYOLEifzQoW7LSlNCClIgbvQU6D78G8JD+DtE1F3sQiJy0s7SWgDAaHUcTK3NEEIgKipK5qrIFyXHhKFPZAiMJoEjNQ1yl0PkkxhgiJxUfMwcYC7LiJe5EvJ1kiRheHosAOBgpV7maoh8EwMMkZOKj50BAFye2UfmSsgfDO9rXiL9AAMMUY8wwBA54WR9M0pPNUKSgEv7sQWGem9EewvMAZ1B5kqIfBMDDJETdrV3Hw1JiUFsZIjM1ZA/GNHXHGC+rzKgzWiSuRoi38MAQ+QES/cRx7+Qq/SPj0R0WDCa20z48WSj3OUQ+RwGGCIn7DpuboEZm8HxL+QaQUESstLbx8HoOA6GqLsYYIi60NjchoOV5nEKl2eyBYZcxzoOhgN5ibqNAYaoC9+W1cFoEugbF4G02Ai5yyE/MqJ9JtJBDuQl6jYGGKIu7LSu/8LuI3KtjmvBmEx2dgolIocYYIi6YJmBdBm7j8jFBiZFISw4CI0tRhyvPSt3OUQ+hQGGqBOtRhO+LasDwBlI5HrBiiAMS+NAXqKeYIAh6sTBSgPOtRoRFxmCi5Ki5S6H/NAIrshL1CMMMESdKG7fwHFs/z4ICpJkrob8kWUmEgfyEnUPAwxRJ7iBI7mbZUXeA5V6CMGBvETOYoAhssNgMECSJHyw6i00le3DGHWs3CWRnxqUEo0QhYS6s63Q1Z2Tuxwin8EAQ3QerVaLrKwsAEDt/15BzepF0Fw1BlqtVubKyB+FBSswOCUGADd2JOoOBhiiDrRaLfLy8qDT6WyOV+p0yMvLY4ghtxjRYT0YInIOAwxRO6PRiPnz59sdh2A5lp+fD6PR6OnSyM9ZZiLt51RqIqcxwBC1KyoqQkVFhcPzQgiUl5ejqKjIg1VRIBipigMAfFdex4G8RE5igCFqV1VV5dLriJw1LC0GoYognDnbivJaDuQlcobbA8zzzz8PSZKQn59vPdbU1IS5c+ciISEB0dHRuOmmm1BTU2PzvLKyMkyfPh2RkZFITk7Gww8/jLa2NneXSwEsLS3NpdcROSssWIFh6eZupG/Lz8hcDZFvcGuAKS4uxr///W+MGjXK5vgDDzyATz75BO+//z62bNmCyspKaDQa63mj0Yjp06ejpaUF27Ztw4oVK/DWW2/h8ccfd2e5FOBycnKgUqkgSfYXrJMkCWq1Gjk5OR6ujALBGHUcAGBveZ2sdRD5CrcFmIaGBsycOROvv/46+vT5eRdfvV6PN954A3//+9/xi1/8ApdeeinefPNNbNu2Dd988w0A4IsvvsChQ4fw9ttv4+KLL8a1116LZ555Bq+88gpaWlrcVTIFOIVCgaVLl9o9Zwk1BQUFUCgUniyLAsTF7QHmOwYYIqe4LcDMnTsX06dPR25urs3x3bt3o7W11eb40KFD0a9fP2zfvh0AsH37dowcORIpKSnWa6ZOnQqDwYCDBw/afb3m5mYYDAabB1F3aTQa/HfVO1DEJNocV6lUKCwstGkpJHKl0e0B5kClAS1tJnmLIfIBbgkw77zzDvbs2YPFixdfcK66uhqhoaGIi4uzOZ6SkoLq6mrrNR3Di+W85Zw9ixcvRmxsrPWhVqtdcCcUiFRjJqHvvW8g4bqHAADr1q1DaWkpwwu5VUZCJOIiQ9DSZkJJdb3c5RB5PZcHmPLycsyfPx8rV65EeHi4q7+9QwsXLoRer7c+ysvLPfba5F+Kj9VCClLgzjtuhxAC1157LbuNyO0kScLo9unUezmQl6hLLg8wu3fvxokTJ3DJJZcgODgYwcHB2LJlC5YtW4bg4GCkpKSgpaUFdXV1Ns+rqalBamoqACA1NfWCWUmWry3XnC8sLAxKpdLmQdQTxcfMHx6XZfTp4koi17J0I33LcTBEXXJ5gJk8eTL279+PvXv3Wh9jx47FzJkzrf8dEhKCDRs2WJ9TUlKCsrIyZGdnAwCys7Oxf/9+nDhxwnrN+vXroVQqrXvUELlDc5vROguEO1CTp43hQF4ipwW7+hvGxMRgxIgRNseioqKQkJBgPT579mw8+OCDiI+Ph1KpxH333Yfs7GxcccUVAIApU6YgKysLt99+O5YsWYLq6mr85S9/wdy5cxEWFubqkomsDuj0aGkzITE6FJmJUXKXQwFmlMq8J9KPJxuhP9eK2IgQmSsi8l6yrMT7j3/8A9dddx1uuukmTJw4EampqTab5CkUCqxduxYKhQLZ2dn47W9/izvuuANPP/20HOVSANlZau4+Gts/3uF6METukhAdhn7xkQCAfRV18hZD5OVc3gJjz+bNm22+Dg8PxyuvvIJXXnnF4XP69++PdevWubkyIlu7jtUCAMZy/AvJ5GJ1HMpqz+K78jrkDEqSuxwir8W9kIjaGU0CO9sDzOWZHP9C8hjNFXmJnMIAQ9Ruv06P+qY2KMODMTw9Vu5yKEBd3CHAcGdqIscYYIjafX30FAAge2ACFEEc/0LyGJ6uRHCQhFMNLag4w52piRxhgCFqZwkwEy5K7OJKIvcJD1Egq31n6j1lXNCOyBEGGCIATa1G7Dpu/rBggCG5je1vHoNV3D4mi4guxABDBGDXsTNoaTMhVRmOAVz/hWR2eaZ5FlxxKVtgiBxhgCEC8FWH7iOu/0JyG9u+CnRJTT30Z1tlrobIOzHAEAHY9qMlwCTIXAkRkBgdhgFJ5pbAXcfZjURkDwMMBby6sy3Yr9MD4PgX8h6XtY+D2clxMER2McBQwPvmp9MQAhiUHI0UZbjc5RDBYDBg2cN3ovHQFnz6+XoYjUa5SyLyOgwwFPC+4vRp8iJarRZZWVloOvYtTn3yIr5eNh/9+2fY7BdHRAwwRNh29DQABhiSn1arRV5eHnQ6nc1xXaUOeXl5DDFEHTDAUECrrDuHn041IkgCxg3g/kckH6PRiPnz59vfPqD9WH5+PruTiNoxwFBAMhgMkCQJA0ZehqayfRjVNwbK8BC5y6IAVlRUhIqKCofnhRAoLy9HUVGRB6si8l4MMBRwLGMMAKC54iBqVi/C5qduYfM8yaqqqsql1xH5OwYYCiiOxhjoT9dwjAHJKi0tzaXXEfk7Sfjpfu0GgwGxsbHQ6/VQKpVyl0NewGg0IiMjw2EzvSRJUKlUKC0thUKh8HB1FOgsv586nc7+OBhIUKv5+0n+z9nPb7bAUMDgGAPyZgqFAkuXLgUAB9tZCBQUFDC8ELVjgKGAwTEG5O00Gg0KCwuRnp5uc1wRk4j+tzyGG278tUyVEXmfYLkLIPIUjjEgX6DRaHDDDTegqKgIVVVVSE5Owf2bm9DYKnCwUo9Rqji5SyTyCgwwFDBycnKgUqkcjjGwjIHJycmRoTqinykUCkyaNMn6dXbFLnz5fQ2KjpxigCFqxy4kChgdxxgAtmMMLGMOOMaAvFHOIPMq0V8dOSVzJUTegwGGAopljEFEnO22ASqVCoWFhdBoNDJVRuTYle0BZvfxMzjXwpV4iQB2IVEAuua6XyH93hA0HD+ARZNSMWpwJnJyctjyQl5rQGIU0mPDUalvws5jtbhqcJLcJRHJji0wFHB2ltaiTQRh4KhxuO+eOzFp0iSGF/JqkiRZW2G+OnJS5mqIvAMDDAWcbT9adp9OcLDeBpH3uXKQudWliONgiAAwwFAAsgyEnHBRYhdXEnmP8QMTAAA/VNfjZH2zzNUQyY8BhgJKlf4cDlUZIEnA+IEMMOQ7EqPDkJVmXlb966NshSFigKGA8uWhGgDAJf36ICkmTOZqiLrHMp2a3UhEDDAUYL5oDzC/zEqRuRKi7rMO5D160sGGj0SBg9OoKWAYmlrxzU/mAbwMMOSLLsuIR2hwEKrrzmLlms+gaNYjLS2NywBQQGKAoYCxueQkWo0CA5OiMDApWu5yiLotPESBtNrv8PXbf8PtL/7cjaRSqbB06VIuxEgBhV1IFDDWW7uPUmWuhKhntFottr66CMZ62zEwOp0OeXl50Gq1MlVG5HkMMBQQWtpM2PzDCQDsPiLfZDQaMX/+fAAXjn2xjIfJz8+H0citBigwMMBQQPjmp9Oob25DYnQYxqjj5C6HqNuKiopQUVHh8LwQAuXl5SgqKvJgVUTyYYChgPBz91EygoK4+i75nqqqKpdeR+TrGGDI7wkhOgQYdh+Rb0pLS3PpdUS+jgGG/N5+nR7VhiZEhiq4+i75rJycHKhUKof7d0mSBLVajZycHA9XRiQPBhjye+v2VwMArhqchPAQrpVBvkmhUGDp0qUAcEGIsXxdUFDA9WAoYDDAkF8zmQQ+3qsDAFw/Ol3maoh6R6PRoLCwEH379rU53revCoWFhVwHhgIKF7Ijv7bzWC0q9U2ICQvGL4Ymy10OUa9pNBrccMMN2Lx5C+5+bT2aQ5R496nZGD+Iv98UWNgCQ37JaDRi8+bNWPzyf9BUtg9Ts9h9RP5DoVBg8uRf4Kabb0F4v1HYWMLNHSnwMMCQ39Fqtejfvz+uvvpqfFzwCGpWL8J/86/nKqXkd6a0z6r77EA1TCZu7kiBhQGG/IpWq0VeXh50Op3N8VM1VVxqnfzOpCHJiA4Lhq7uHHYdPyN3OUQe5fIAs3jxYlx22WWIiYlBcnIybrzxRpSUlNhc09TUhLlz5yIhIQHR0dG46aabUFNTY3NNWVkZpk+fjsjISCQnJ+Phhx9GW1ubq8slP2JZat2yrHpHXGqd/FF4iALXjjDv7bXmW10XVxP5F5cHmC1btmDu3Ln45ptvsH79erS2tmLKlClobGy0XvPAAw/gk08+wfvvv48tW7agsrLSZvS80WjE9OnT0dLSgm3btmHFihV466238Pjjj7u6XPIjXGqdAtGvLzHPSPp0XyWaWhnOKXC4fBbS559/bvP1W2+9heTkZOzevRsTJ06EXq/HG2+8gVWrVuEXv/gFAODNN9/EsGHD8M033+CKK67AF198gUOHDuHLL79ESkoKLr74YjzzzDNYsGABnnzySYSGhrq6bPIDXGqdAtEVmQlIiw1Hlb4Jm0tO4JoRXImXAoPbx8Do9XoAQHx8PABg9+7daG1tRW5urvWaoUOHol+/fti+fTsAYPv27Rg5ciRSUn5e9n3q1KkwGAw4ePCg3ddpbm6GwWCweVBg4VLrFIiCgiTccLG5FUa7h91IFDjcGmBMJhPy8/MxYcIEjBgxAgBQXV2N0NBQxMXF2VybkpKC6upq6zUdw4vlvOWcPYsXL0ZsbKz1oVarXXw35O241DoFql+PMQeYTSUncKaxReZqiDzDrQFm7ty5OHDgAN555x13vgwAYOHChdDr9dZHeXm521+TvItlqXU7Y3i51Dr5tSGpMchKU6LVKPDpfnaRUmBwW4CZN28e1q5di02bNkGlUlmPp6amoqWlBXV1dTbX19TUIDU11XrN+bOSLF9brjlfWFgYlEqlzYMCzy+nXQ9V3qNQxNhu2qhScal18m+WVhjORqJA4fIAI4TAvHnzsGbNGmzcuBGZmZk25y+99FKEhIRgw4YN1mMlJSUoKytDdnY2ACA7Oxv79+/HiRMnrNesX78eSqUSWVlZri6Z/MgHuyugGHgFJj72DjZu3IhVq1Zh06ZNKC0tZXghv3bDxekIkoBdpafwzkefYfXq1di8eTOXDSC/5fJZSHPnzsWqVavw0UcfISYmxjpmJTY2FhEREYiNjcXs2bPx4IMPIj4+HkqlEvfddx+ys7NxxRVXAACmTJmCrKws3H777ViyZAmqq6vxl7/8BXPnzkVYWJirSyY/YTIJ/Hf7cQDAnVcOxNXZGfIWRORBycpw9DMcwFf/7yXc+uLPWwuoVCosXbqUAZ78jiTsrfrVm2/oYADlm2++iTvvvBOAeSG7hx56CKtXr0ZzczOmTp2Kf/3rXzbdQ8ePH8cf/vAHbN68GVFRUZg1axaef/55BAc7l7kMBgNiY2Oh1+vZnRQgth4+iTv+byeiw4LxzaLJiA7jXqUUOLRaLW7Ky8P5g8Asf5PZhUq+wtnPb5cHGG/BABN4Zr9VjA0/nMCd4zPw5K+Gy10OkccYjUZkZGQ4XMhRkiSoVCqUlpZyEDt5PWc/v7kXEvmFstNnsbHEPGbqjuz+MldD5FlchZoCEQMM+YXlRT9CCGDi4CQMSIqWuxwij+Iq1BSIGGDI55XXnsW7xeZ1f/44aaDM1RB5HlehpkDEAEM+b+mGI2g1CuQMSsQVAxLkLofI47gKNQUiBhjyaUdPNEC7x9z3/9CUITJXQyQPyyrUgL2ZoFyFmvwTAwz5tH98eRgmAeQOS8HF6ji5yyGSjUajQWFhIfr27WtzPESZiBUr3+EUavI7XCiDfNahSgM+3VcFSQIemjJY7nKIZKfRaHDDDTegqKgIOl0llm4/hZrIDFT24fuD/A8DDHkto9GIoqIiVFVVIS0tDTk5OTZN4C/97xCayvZhdAJQUxKFwck5bCKngKdQKDBp0iQAQMqYGvzuv7vw1tfHcPeETCTFcCVz8h/sQiKvpNVqkZGRgauvvhq33XYbrr76amRkZECr1QIAnlj6f/jv/OtRs3oRvvjnogvOExEweVgyRqvjcK7ViH9tPip3OUQuxQBDXker1SIvL++Chbl0Oh3y8vIw/8GH8HT+bBjrT9k9zxBDZCZJEv7U3r268psyVNadk7kiItdhgCGvYjQaMX/+fNjb4UIIASEEXl5aYPe5lufk5+dzB16idldelIjLM+PRYjTh5Y1shSH/wQBDXqWrJdEBQJhMjs9xyXQiG+ZWGPMSA+/vKsexU40yV0TkGgww5FVctdQ5l0wn+tnlmfGYODgJbSaBJz4+aLeFk8jXMMCQV3HVUudcMp3I1hPXZyFUEYQth0/ik30M+OT7GGDIq3S1JDoABAUFccl0om4amBSNuVdfBAB4+pODqDvbInNFRL3DAENepfMl0QFAwkMPPWT3vOVrLplOZN+9kwZgYGIEKg7twh2P/gObN2/mgHfyWQww5HUcLYkek5CCwsL3sWTJErvnVSoVCgsLuWQ6kQOffvwRDvztdtSsXoRPCh7h+knk0yThp6O5DAYDYmNjodfroVQq5S7H7bpatdYX/VhjwA2P/Qc11dUYcVF/rFs8BxFhIdbz/njPRO5iWV/p/D/5lpZLhn/yFs5+fjPAeJC7PnC1Wi3mz59vM/1YpVJh6dKlsv9B6uk9H9DpceebO3GqoQUZCZFY88cJ6BMV6oGKifyP0WhERkaGwyUKJEmCSqVCaWkp/xFAsnP285tdSC5kNBqxefNmrF69+oK+5a6Wxu+prlatlbNpuKf3/PXRU7jl39txqqEFWWlKvHdvNsMLUS90tb4S108iX8QA4yKdfVi7K2R0tWotIN+qtD25ZyEE3v7mOO56sxiNLUZkD0jAu7+/Askx4Z4qm8gvObsuEtdPIl/CLiQX6KxvWQiBhIQEnD592u5ze9N0u3nzZlx99dVdXrdp0ybr7rT2uLpry9nm6qNHj2Lbtm2oqqpCcHQfrKlSYttPZwAA00am4h+3XIywYDZnE/WWs38r3vnwM+Rd90uOLSNZOfv5HezBmvySM60gjsKL5RpL021nIcMeZ/+1pNPpsHnzZrt/kJwZP9PdgONsc7VKpcLJkyetxxUxiUiZ+ns8PX827hqfgaAgx2vBEJHzLOsr6XQ6h6vwKmISseidrzH/D7NRU1VpPe4t4+mIzscA0w32Psid2bvHGT1punV2tdkHHnjAJihY/iABsNtyZOnmKSwsBIBuDxB29l461gQAxvpTqPrgOfS59RIEBWU69T2IqGuW9ZXy8vKsLcMWlllI6rG5+OmdZy94bse/Bwwx5FWEn9Lr9QKA0Ov1Lvl+H3zwgVCpVAKA9ZGQkiY0t8+xOdbTx6ZNm7pdU1tbm1CpVEKSpG69luX6hISETq9JSEiw+70lSRKSJIkPPvjAbl2bNm3q8f8HSZKEWq0WbW1tvfyJEdH57P0dU6vV4r333hPpffvyfUlewdnPb46BcYKjMS6uISEuKQXPrtyIyiPf4Zz+FFJT0zEuewJiIkMRFRqMyFAFQhXAnh3bUXuyBn37plu7cSy1AfDoBm32xrFYWqUAICMjo9Pm6q50NW6HiHrGUUuyK8bTEbkCx8C4SGdjXKykIECYHJ4OCo+BqanewVkBU+Z4zL9pIoz1p6xHFTGJiJ88B5FDxuNsyTbUblhucz5EmYiM6+ai75hJGH3n0/hhzTI01f3cJROh7INzhjPO3ma3ifZxLKlp6ThT+/MYn9jEVFxySz4iJ86GWPVUj78/Z0MQuYdCobgghLhiPB2Rp7EFpgvOjt4H4LBv+aXXVqCpzYh/PL0Ip2p+/kMRl5SGkROvRdEHb8LcUnuh5Ak348TX7zt8zaQbFyFyyHgIkxHNFQdhbDgDRXQftNWfxum1f3OqbndIunERAEC/cTlaDD8Hr8SkJJw6b+yLPfyXHpHnOPt3Likpye54Oo6NIVfiSrwuCjCrV6/Gbbfd1uV1+fn5KCwstBnsqlarUVBQ4HA2z/jx4zFw4MBOBwErFAqH67hIkoTk1HSs3rALLSagqdWIplYjzrUY8V3xNhQ88Ntu3q2rSEhJS8ehkqOIjQyxe8+Oupe4IiiR51mWPuhuty+3ISB3cPrz222jcGTmqkG8zg5I3bRpk2hraxObNm0Sq1atsn7tiu/tzGufr6sBvh0H6Z5/jeXr+Pj4bg8Q7qouIcwDCR29bmeDg4nIfRy9L7t6cIAvuZqzn99cibcLlvUTLP/SOJ8kSVCr1da+4EmTJuHWW2/FpEmTumxBcNU4D3vfxzJt0lLj+TUDwPLlyx3u6vzBBx/g9ddft/v83tQFON5tmrtJE8nH0fsyKSmp0+cJH9iGoLNtXvxVQNyzZ/KU57lyGrW7Wgzc2QLTsXZ70yY71txZy5G95yclJfW6rq5el4jkcf778u2333bq/b5q1aou39NyvOft/Q1TqVR+3dLrinuW8++zs5/fDDBOciYIdJcz67goFIpOu4Gcabrt7S/i+c9vbm7usnuKTcpE/sHZf2gNu2626JOU6vBDs7cfqj0JR5Z/fNr7G+Wv3dWuuGe5Qx8DjIsDjBDuSaRdte48/PDDXjlehONYiAKDM//QCgqPcfiPmY5/xzr7UO1uS3BX4ahv375dLtZp+YeWXK0N7vrHZW/u2RtCHwOMGwKMu3TVuuOO1h9P1E1E/qGzf7AAEH3i4ztvoZGCOv1QTUhIcBhQuvpAdRSOnH089dRTsrQ2ONPK0d1Ql5iY2Kt7fu+995wKQM3NzW4NfFyJ14O7UbtCVxsmunrHaFfx1rqIyLXsbfyqVqvxu9/9Dk888YQbXlECIBCtjEODoc7hVUFBCphMrh2gev70cFf/nXO0unvH1wUc70MH2N/HrjfOX8esM+5eD4jrwPhYgCEi8nb2Psjfe+89p9bK8jWSZF7P6olnX8Azjy1ApU5nPdfxA7u74cay5o6j9b8kSUJ8fDxqa2vtBhwhBBISEnD69Gm7z5eDq9cDYoBhgCEicrvurFbub9STbsHJvRtttnGJjk/GL2cvwOicqQgLVkABE44f2oPGMycRn5SMIAG8JNsio+7jykVIGWAYYIiI3M6ZVXwVCgVMJpNHN5ztnLl7yp0s26mcv4+dFB4D4XBvPN/nim1gnP385kJ2RETUY10tmilJEh588EG75131+p0tNJqQkACVSmVzXK1W4amner7ZbNckNG78F05+uNgmvADwWHgJirD94FfEJCJ2wky3v64nN+JlgCEiol7panXtJUuWODyfkJDQZQCxBKHzz3UWjjquOH7s2DFs2rQJq1atwqZNm1BaWopHH32001XWe0fgrKEO7m7lsUeSJKT1VWH/4VKs+GAtXvjnf7D8nY/x1beH8Mn//Q1JqemAw3uWEJ+cht8/+TLiklJtzkQp+zj1+mlpab28g25w6dwnL+JL06iJiPxBbxab62xNKXctNdHV9HBPPyyva9mnztE1ne1j19VaLc6u4SXnAqZcB4YBhojIJ/R2yxNnznf3tS1rorgzzMSft36O5Z5dEep6+//b0fM8sYAp14HhIF4iIp8h55pSjl7bsl4LALcMQP7yyy+hUCjs3rOjdXcKCgqsU5V78/+sp891pq7e8otZSK+88gpefPFFVFdXY/To0Xj55Zdx+eWXO/VcBhgiIuotRx/YM2bMwEsvvQTANtx0XKvF3loulmucmXLsrQuFursunw8w7777Lu644w689tprGDduHAoKCvD++++jpKQEycnJXT6fAYaIiFyhsxYaR60RAOy23rh60Td/5PMBZty4cbjsssvwz3/+EwBgMpmgVqtx33334ZFHHuny+QwwRETkbp21Rniiu8Uf+XSAaWlpQWRkJAoLC3HjjTdaj8+aNQt1dXX46KOPLnhOc3MzmpubrV8bDAao1WoGGCIiko23dgN5M2cDTLAHa3LaqVOnYDQakZKSYnM8JSUFP/zwg93nLF682M0LExEREXWPQqHo9cq0ZJ/fLGS3cOFC6PV666O8vFzukoiIiMhNvLIFJjExEQqFAjU1NTbHa2pqkJqaavc5YWFhCAsL80R5REREJDOvbIEJDQ3FpZdeig0bNliPmUwmbNiwAdnZ2TJWRkRERN7AK1tgAODBBx/ErFmzMHbsWFx++eUoKChAY2Mj7rrrLrlLIyIiIpl5bYC55ZZbcPLkSTz++OOorq7GxRdfjM8///yCgb1EREQUeLxyGrUrcB0YIiIi3+Ps57dXjoEhIiIi6gwDDBEREfkcBhgiIiLyOQwwRERE5HO8dhZSb1nGJhsMBpkrISIiImdZPre7mmPktwGmvr4egHnnTyIiIvIt9fX1iI2NdXjeb6dRm0wmVFZWIiYmBpIk9ep7WXa2Li8v99sp2bxH/xEI98l79A+BcI9AYNynK+9RCIH6+nqkp6cjKMjxSBe/bYEJCgqCSqVy6fdUKpV++8tnwXv0H4Fwn7xH/xAI9wgExn266h47a3mx4CBeIiIi8jkMMERERORzGGCcEBYWhieeeAJhYWFyl+I2vEf/EQj3yXv0D4Fwj0Bg3Kcc9+i3g3iJiIjIf7EFhoiIiHwOAwwRERH5HAYYIiIi8jkMMERERORzGGAceP755yFJEvLz863HmpqaMHfuXCQkJCA6Oho33XQTampq5Cuyl+zd46RJkyBJks3j3nvvla/IHnjyyScvuIehQ4daz/vDz7Gre/SHnyMA6HQ6/Pa3v0VCQgIiIiIwcuRI7Nq1y3peCIHHH38caWlpiIiIQG5uLo4cOSJjxd3X1T3eeeedF/wsr7nmGhkr7r6MjIwL7kGSJMydOxeAf7wnu7pHf3hPGo1GPPbYY8jMzERERAQGDhyIZ555xmbPIk++J/12Jd7eKC4uxr///W+MGjXK5vgDDzyATz/9FO+//z5iY2Mxb948aDQafP311zJV2nOO7hEA7rnnHjz99NPWryMjIz1ZmksMHz4cX375pfXr4OCff9X95efY2T0Cvv9zPHPmDCZMmICrr74an332GZKSknDkyBH06dPHes2SJUuwbNkyrFixApmZmXjssccwdepUHDp0COHh4TJW7xxn7hEArrnmGrz55pvWr31tOm5xcTGMRqP16wMHDuCXv/wlbr75ZgD+8Z7s6h4B339PvvDCC3j11VexYsUKDB8+HLt27cJdd92F2NhY3H///QA8/J4UZKO+vl4MGjRIrF+/Xlx11VVi/vz5Qggh6urqREhIiHj//fet137//fcCgNi+fbtM1faMo3sUQlzwtS964oknxOjRo+2e85efY2f3KIR//BwXLFggrrzySofnTSaTSE1NFS+++KL1WF1dnQgLCxOrV6/2RIm91tU9CiHErFmzxA033OCZgjxk/vz5YuDAgcJkMvnNe/J8He9RCP94T06fPl3cfffdNsc0Go2YOXOmEMLz70l2IZ1n7ty5mD59OnJzc22O7969G62trTbHhw4din79+mH79u2eLrNXHN2jxcqVK5GYmIgRI0Zg4cKFOHv2rIcr7L0jR44gPT0dAwYMwMyZM1FWVgbAv36Oju7Rwtd/jh9//DHGjh2Lm2++GcnJyRgzZgxef/116/nS0lJUV1fb/CxjY2Mxbtw4n/lZdnWPFps3b0ZycjKGDBmCP/zhDzh9+rQM1bpGS0sL3n77bdx9992QJMmv3pMW59+jha+/J8ePH48NGzbg8OHDAIDvvvsOX331Fa699loAnn9Psgupg3feeQd79uxBcXHxBeeqq6sRGhqKuLg4m+MpKSmorq72UIW919k9AsBtt92G/v37Iz09Hfv27cOCBQtQUlICrVbr4Up7bty4cXjrrbcwZMgQVFVV4amnnkJOTg4OHDjgNz/Hzu4xJibGL36OP/30E1599VU8+OCDWLRoEYqLi3H//fcjNDQUs2bNsv68UlJSbJ7nSz/Lru4RMHcfaTQaZGZm4scff8SiRYtw7bXXYvv27VAoFDLfQfd9+OGHqKurw5133gnAf/62dnT+PQL+8bf1kUcegcFgwNChQ6FQKGA0GvHXv/4VM2fOBACPvycZYNqVl5dj/vz5WL9+vU/0nfeEM/c4Z84c63+PHDkSaWlpmDx5Mn788UcMHDjQU6X2iuVfAwAwatQojBs3Dv3798d7772HiIgIGStznc7ucfbs2X7xczSZTBg7diyee+45AMCYMWNw4MABvPbaa9YPd1/nzD3OmDHDev3IkSMxatQoDBw4EJs3b8bkyZNlqbs33njjDVx77bVIT0+XuxS3sXeP/vCefO+997By5UqsWrUKw4cPx969e5Gfn4/09HRZ3pPsQmq3e/dunDhxApdccgmCg4MRHByMLVu2YNmyZQgODkZKSgpaWlpQV1dn87yamhqkpqbKU3Q3dXWPHQegWYwbNw4AcPToUU+X6zJxcXEYPHgwjh49itTUVJ//OdrT8R7t8cWfY1paGrKysmyODRs2zNpVZvl5nT9bxZd+ll3doz0DBgxAYmKiT/0sLY4fP44vv/wSv/vd76zH/O09ae8e7fHF9+TDDz+MRx55BDNmzMDIkSNx++2344EHHsDixYsBeP49yQDTbvLkydi/fz/27t1rfYwdOxYzZ860/ndISAg2bNhgfU5JSQnKysqQnZ0tY+XO6+oe7TVH7927F4D5D62vamhowI8//oi0tDRceumlPv9ztKfjPdrjiz/HCRMmoKSkxObY4cOH0b9/fwBAZmYmUlNTbX6WBoMBO3bs8JmfZVf3aE9FRQVOnz7tUz9LizfffBPJycmYPn269Zi/vSft3aM9vviePHv2LIKCbGODQqGAyWQCIMN70uXDgv3I+aPG7733XtGvXz+xceNGsWvXLpGdnS2ys7PlK9AFOt7j0aNHxdNPPy127dolSktLxUcffSQGDBggJk6cKG+R3fTQQw+JzZs3i9LSUvH111+L3NxckZiYKE6cOCGE8I+fY2f36C8/x507d4rg4GDx17/+VRw5ckSsXLlSREZGirffftt6zfPPPy/i4uLERx99JPbt2yduuOEGkZmZKc6dOydj5c7r6h7r6+vFn/70J7F9+3ZRWloqvvzyS3HJJZeIQYMGiaamJpmr7x6j0Sj69esnFixYcME5f3hPCuH4Hv3lPTlr1izRt29fsXbtWlFaWiq0Wq1ITEwUf/7zn63XePI9yQDTifMDzLlz58Qf//hH0adPHxEZGSl+/etfi6qqKvkKdIGO91hWViYmTpwo4uPjRVhYmLjooovEww8/LPR6vbxFdtMtt9wi0tLSRGhoqOjbt6+45ZZbxNGjR63n/eHn2Nk9+svPUQghPvnkEzFixAgRFhYmhg4dKpYvX25z3mQyiccee0ykpKSIsLAwMXnyZFFSUiJTtT3T2T2ePXtWTJkyRSQlJYmQkBDRv39/cc8994jq6moZK+6Z//3vfwKA3Z+PP7wnhXB8j/7ynjQYDGL+/PmiX79+Ijw8XAwYMEA8+uijorm52XqNJ9+TkhAdltAjIiIi8gEcA0NEREQ+hwGGiIiIfA4DDBEREfkcBhgiIiLyOQwwRERE5HMYYIiIiMjnMMAQERGRz2GAISIiIp/DAENEREQ+hwGGiIiIfA4DDBEREfkcBhgiIiLyOf8f12cT2PznhvUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -4399,12 +11839,12 @@ "id": "9f464246-d333-4143-baf0-aa2a632c5be4", "metadata": {}, "source": [ - "Estimate ourselves:" + "Eine eigene Abschätzung für das $\\chi^2$ ergibt:" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 526, "id": "b0ad46ce-f541-40bb-898c-154ad5f94787", "metadata": {}, "outputs": [ @@ -4412,19 +11852,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "71.34036100527231 52 1.37193001933216\n" + "106.36771764289108 112 0.9497117646686704\n" ] } ], "source": [ - "def chi_squre_ndof(x_values, y_values, dy_values, fit_model, minuit):\n", + "def chi_square_ndof(x_values, y_values, dy_values, fit_model, minuit):\n", " ndof = len(x_values) - len(minuit.values)\n", - " chi = np.sum((y_values - fit_model(x_values, *minuit.values))**2/dy_values**2)\n", - " return chi, ndof\n", + " chi2 = np.sum((y_values - fit_model(x_values, *minuit.values))**2/dy_values**2)\n", + " return chi2, ndof\n", "\n", "\n", - "chi_squre, ndof = chi_squre_ndof(center, entries, np.sqrt(entries), fit_model, mi)\n", - "print(chi_squre, ndof, chi_squre/ndof)" + "chi_square, ndof = chi_square_ndof(center, entries, np.sqrt(entries), fit_model, mi)\n", + "print(chi_square, ndof, chi_square/ndof)" ] }, { @@ -4432,39 +11872,31 @@ "id": "295031f4-6d18-411c-b5dd-a62ed97da7f1", "metadata": {}, "source": [ - "### Chi-Squre hypothesis testing..." + "### Hypothesen-Test mittels $\\chi^2$\n", + "Wie schon im vorherigen Abschnitt erwähnt, kann man das $\\chi^2$ auch dazu verwenden, die Gültigkeit des gewählten Models zu prüfen.\n", + "Hierzu schauen wir uns die $\\chi^2$-Verteilung an. Der einzige freie Parameter ist die Anzahl der Freiheitsgrade. Die Anzahl der Freiheitsgrade ist auch gleichzeitig der Erwartungswert der $\\chi^2$-Verteilung. In unserem Beispiel oben ist die Anzahl der Freiheitsgrade 112 und die entsprechende Verteilung sieht wie folgt aus..." ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 527, "id": "8c11bc85-4e25-4d40-8397-257414d48a1f", "metadata": {}, "outputs": [], "source": [ "from scipy.stats import chi2\n", - "chi_distribution = lambda x, ndof: chi2.pdf(x, ndof)" + "# chi_distribution = lambda x, ndof: chi2.pdf(x, ndof)" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 528, "id": "76836863-109c-4e7c-989e-04b62ec4ca9d", "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "Text(0, 0.5, '$\\\\chi^2(x)$')" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmYElEQVR4nO3deVzUdf4H8NfMwMxwzXAzgiCoKJ6gqIhp6kpiWknboWZp5nZtmkZbaVvqVpu1ZVlrv1yrrbbVNK3MWKMQzQvyAPEGTwSR4RBhOGeYme/vD2CKRAU5vnO8no/HPNTvfOY77++I8PLz+Xw/H4kgCAKIiIiIqNWkYhdAREREZGsYoIiIiIjaiAGKiIiIqI0YoIiIiIjaiAGKiIiIqI0YoIiIiIjaiAGKiIiIqI2cxC7AHpnNZly6dAkeHh6QSCRil0NEREStIAgCKisrERgYCKn0+n1MDFCd4NKlSwgODha7DCIiIroJ+fn56N69+3XbMEB1Ag8PDwANfwEqlUrkaoiIiKg1dDodgoODLT/Hr4cBqhM0DdupVCoGKCIiIhvTmuk3nERORERE1EYMUERERERtxABFRERE1EYMUERERERtxABFRERE1EYMUERERERtxABFRERE1EYMUERERERtxABFRERE1EZWH6A++OADhIaGQqlUIiYmBvv3779u+40bNyIiIgJKpRKDBg3C1q1br9n2iSeegEQiwcqVK5sdLysrw8yZM6FSqeDp6Ym5c+eiqqqqIy6HiIiI7IBVB6gNGzYgMTERS5cuRWZmJiIjIxEfH4/i4uIW26elpWHGjBmYO3cuDh06hISEBCQkJODYsWNXtf3222/xyy+/IDAw8KrnZs6ciePHjyMlJQVJSUnYtWsXHnvssQ6/PiIiIrJNEkEQBLGLuJaYmBgMHz4cq1atAgCYzWYEBwdj/vz5WLRo0VXtp02bhurqaiQlJVmOjRw5ElFRUVi9erXlWEFBAWJiYvDjjz9iypQpWLhwIRYuXAgAOHnyJPr3748DBw5g2LBhAIDk5GRMnjwZFy9ebDFw/Z5Op4NarUZFRQX3wiMiIrIRbfn5bbU9UAaDARkZGYiLi7Mck0qliIuLQ3p6eouvSU9Pb9YeAOLj45u1N5vNeOihh/Dcc89hwIABLZ7D09PTEp4AIC4uDlKpFPv27WvxffV6PXQ6XbMHERER2S+rDVClpaUwmUwICAhodjwgIABarbbF12i12hu2f/PNN+Hk5ISnn376mufw9/dvdszJyQne3t7XfN/ly5dDrVZbHsHBwTe8PiK6OfllNdhzuhQVtfVil0JEDsxJ7AK6UkZGBt577z1kZmZCIpF02HkXL16MxMREy591Oh1DFFEHqdIbkX72MnafLsGuUyXIvVwDAJBKgMhgT4zp7YtbevtiSIgX5E5W+39CIrIzVhugfH19IZPJUFRU1Ox4UVERNBpNi6/RaDTXbb97924UFxcjJCTE8rzJZMKzzz6LlStXIjc3FxqN5qpJ6kajEWVlZdd8X4VCAYVC0eZrJKKWmcwC/vvLBfzvaCEyL1yB0fzrVE0nqQQBKiUKymtxKK8ch/LK8f72M3CTyxDT0wcPxfbA+L7+1zk7EVH7WW2AksvliI6ORmpqKhISEgA0zF9KTU3FvHnzWnxNbGwsUlNTLRPCASAlJQWxsbEAgIceeqjFOVIPPfQQ5syZYzlHeXk5MjIyEB0dDQDYvn07zGYzYmJiOvgqiej3qvRGLFyfhW0nf/3PUA8fV9wa7ocx4b6I7eUDD6UzCsprsfd0KXafKcXeM6UoqzZge3YxtmcX48/jeuHZiX0hk3ZcTzMR0W9ZbYACgMTERMyePRvDhg3DiBEjsHLlSlRXV1vCzqxZsxAUFITly5cDABYsWICxY8dixYoVmDJlCtavX4+DBw9izZo1AAAfHx/4+Pg0ew9nZ2doNBr07dsXANCvXz9MmjQJjz76KFavXo36+nrMmzcP06dPb9UdeER08y5eqcGfPj+IbG0l5E5S/GViH8QP0KCHj9tVbYM8XXD/8GDcPzwYZrOAE4U6rD+Qh//+kof/+/ksjhZU4L3pQ+DtJhfhSojI3ll1gJo2bRpKSkqwZMkSaLVaREVFITk52TJRPC8vD1Lpr3MeRo0ahXXr1uGll17Ciy++iPDwcGzevBkDBw5s0/uuXbsW8+bNw4QJEyCVSnHPPffg/fff79BrI6LmMi6U4fEvMlBaZYCvuwIfzYrGkBCvVr1WKpVgYJAarwUNwvBQbyz6+ih2ny7Fnf/cg9UPRmNQd3UnV09Ejsaq14GyVVwHiqhtvs64iMXfHIXBZEb/bip8PHsYAj1dbvp82VodnvgiA7mXayB3kuK1qQNx/3De2EFE12cX60ARkf0zmwW8mZyNZzcehsFkRvyAAGx6MrZd4QkAIjQqfDdvNOL6+cNgNOP5r49g8TdHYTSZO6hyInJ0DFBEJJpX/3cCH/58FgDw1Phe+HBmNFzlHTOzQO3ijDUPDcOzt/WBRAJ8uT8PbyZnd8i5iYgYoIhIFNuzi/Dp3lwAwNv3ReK5+AhIO/iuOalUgvkTwvH+9CEAgI92n8eWw5c69D2IyDExQBFRlyvW1eEvG48AAB65JQz3Rnfv1Pe7MzIQT47rBQB4YdMRnCzkdktE1D4MUETUpcxmAc9uPIyyagP6dVPhhdv7dsn7/mViX4wJ90VtvQmPf5GB8hpDl7wvEdknBigi6lL/3nseu0+XQuksxfvTo6BwknXJ+8qkEvxzxhAEe7sgr6wGC9ZnwWTmTchEdHMYoIioyxwrqLBM5H75jv4ID/Do0vf3dJXjXw8Og9JZip2nSvBuyqkufX8ish8MUETUJWoMRjy9/hDqTQLiBwTggREhN35RJ+gfqMKb9wwGAKzacQbJx7Si1EFEto0Bioi6xCvfn8C5kmpoVEq88cfBkEjE26dualQQ5o4OAwA8+1UWzhRXilYLEdkmBigi6nRbjxZi/YF8SCTAO9Mi4WUF+9Mtvj0CI3t6o9pgwsINnA9FRG3DAEVEnaqiph6LvzkKAHhybC+M6uUrckUNnGRS/HPGUHgonXCsoGEjYiKi1mKAIqJO9a9dZ1FRW4++AR545rY+YpfTjJ+HAs821vTWjzm4Us2lDYiodRigiKjTlFTqLauN/yW+L5xl1vct58GRPRCh8UB5TT3e/ilH7HKIyEZY33czIrIb//fzGdTWmxAZ7Im4fv5il9MiJ5kUf7trAABg3f48HCuoELkiIrIFDFBE1Ckulddi7S8N84r+MrGPqHfd3UhMTx8kRAVCEICXvzsGMyeUE9ENMEARUaf45/bTMJjMiAnzxuje1jFx/HoWT+4HN7kMh/LK8XXmRbHLISIrxwBFRB0ut7QaXx1sCCHPxfe16t6nJgEqJRbEhQMA3kzORkVtvcgVEZE1Y4Aiog63ctspmMwCxvX1w7BQb7HLabWHR4Whl58bSqsMWLmN27wQ0bUxQBFRh8rRVuK7w5cAAH+Z2FfkatpG7iTF3+4aCAD4T/oFZGt1IldERNaKAYqIOtQ7KTkQBOD2gRoMDFKLXU6bjQ73xeRBGpjMApZ8dxyCwAnlRHQ1Bigi6jBHLpbjx+NFkEiARCtbNLMt/jqlP5TOUuw/X4YdOcVil0NEVogBiog6zNs/NcwbujsqCOEBHiJXc/OCPF0wOzYUAPB+6hn2QhHRVRigiKhD7D9fhl2nSuAklWBhnO32PjX505ieUDpLkZVfjj1nSsUuh4isDAMUEXWIj3efAwDcNywYIT6uIlfTfn4eCjwwogcA4P3U0+yFIqJmGKCIqN0ulddi28kiAMAjt4SKW0wHenxsT8idpDiQewW/nCsTuxwisiIMUETUbuv358EsACN7etv03KffC1ApMW1YMICGldWJiJowQBFRuxiMZnx5IB8A8NDIUHGL6QRPjOsFZ5kEaWcvI+MCe6GIqAEDFBG1y08ntCip1MPPQ4GJAwLELqfDBXm64J6h3QE03JFHRAQwQBFRO/33lwsAgBnDg+Ess89vKX8e1xsyqQQ7T5UgK79c7HKIyArY53c7IuoSp4sq8cu5MsikEsyICRG7nE4T4uOKqVGBAIBVnAtFRGCAIqJ2aOp9mhDhj25qF5Gr6VxPje8NiQTYdrIYxy9ViF0OEYmMAYqIbkq13oivMwsAAA/F9hC5ms7Xy88ddwxu6oXiXCgiR8cARUQ35busS6jSGxHm64ZbevmKXU6XmDe+NwDgh2Na5GgrRa6GiMRk9QHqgw8+QGhoKJRKJWJiYrB///7rtt+4cSMiIiKgVCoxaNAgbN26tdnzy5YtQ0REBNzc3ODl5YW4uDjs27evWZvQ0FBIJJJmjzfeeKPDr43IVgmCgP+k5wIAZsaEQCqViFtQF+mr8cCkARoAwL92nhW5GiISk1UHqA0bNiAxMRFLly5FZmYmIiMjER8fj+LilndHT0tLw4wZMzB37lwcOnQICQkJSEhIwLFjxyxt+vTpg1WrVuHo0aPYs2cPQkNDMXHiRJSUlDQ71yuvvILCwkLLY/78+Z16rUS2JDPvCrK1lVA4SXFvdHexy+lST4zrBQBIOlKI0iq9yNUQkVgkghVv8BQTE4Phw4dj1apVAACz2Yzg4GDMnz8fixYtuqr9tGnTUF1djaSkJMuxkSNHIioqCqtXr27xPXQ6HdRqNbZt24YJEyYAaOiBWrhwIRYuXHhTdTeds6KiAiqV6qbOQWTNntmQhW8PFeC+6O54675IscvpclM/2IvD+eV49rY+mD8hXOxyiKiDtOXnt9X2QBkMBmRkZCAuLs5yTCqVIi4uDunp6S2+Jj09vVl7AIiPj79me4PBgDVr1kCtViMysvkPgTfeeAM+Pj4YMmQI3nrrLRiNxmvWqtfrodPpmj2I7NXlKj3+d6QQgGNMHm/Jw6Marvu/+y6g3mQWuRoiEoPVBqjS0lKYTCYEBDRf2TggIABarbbF12i12la1T0pKgru7O5RKJd59912kpKTA1/fXSbBPP/001q9fjx07duDxxx/H66+/jueff/6atS5fvhxqtdryCA4ObuvlEtmMrw5ehMFkxuDuagzu7il2OaKYPKgbfN3lKNLp8ePxlr8fEZF9s9oA1ZnGjx+PrKwspKWlYdKkSbj//vubzatKTEzEuHHjMHjwYDzxxBNYsWIF/vnPf0Kvb3m+w+LFi1FRUWF55Ofnd9WlEHUpQRCwbn/D2k8PjnTM3icAUDjJ8MCIhoVDP0/LFbcYIhKF1QYoX19fyGQyFBUVNTteVFQEjUbT4ms0Gk2r2ru5uaF3794YOXIkPvnkEzg5OeGTTz65Zi0xMTEwGo3Izc1t8XmFQgGVStXsQWSPMvOuIL+sFm5yGe5sXBPJUc0c2QNOUgkO5F7hwppEDshqA5RcLkd0dDRSU1Mtx8xmM1JTUxEbG9via2JjY5u1B4CUlJRrtv/tea/VuwQAWVlZkEql8Pf3b8MVENmf77IuAQDiB2jgIpeJXI24AlRKTBrY8J8z9kIROR6rDVBAw1DaRx99hM8//xwnT57Ek08+ierqasyZMwcAMGvWLCxevNjSfsGCBUhOTsaKFSuQnZ2NZcuW4eDBg5g3bx4AoLq6Gi+++CJ++eUXXLhwARkZGXjkkUdQUFCA++67D0DDRPSVK1fi8OHDOHfuHNauXYtnnnkGDz74ILy8vLr+QyCyEkaTGVuPNkwevzPKsXufmjw8KhQAsDnrEsqqDeIWQ0RdyknsAq5n2rRpKCkpwZIlS6DVahEVFYXk5GTLRPG8vDxIpb9mwFGjRmHdunV46aWX8OKLLyI8PBybN2/GwIEDAQAymQzZ2dn4/PPPUVpaCh8fHwwfPhy7d+/GgAEDADQMx61fvx7Lli2DXq9HWFgYnnnmGSQmJnb9B0BkRdLOXkZplQHebnKM7u0YK4/fSHQPLwwMUuFYgQ7rD+Thz+N6i10SEXURq14HylZxHSiyR89+dRhfZ17EgyND8FrCILHLsRobD+bjuU1HEKhWYtfz4+Eks+qOfSK6DrtYB4qIrEddvclyu/7UqCCRq7Eud0YGwttNjksVddh2sujGLyAiu8AARUQ3tCO7GFV6IwLVSkSHcC7gbymdZZg+vGHtt884mZzIYTBAEdENbTnccPfdnVGBDrNxcFs8OLIHZFIJfjlXhmwtdyIgcgQMUER0XZV19UjNblho9q5I3n3XkkBPF0zs33Bzy+dpF0Suhoi6AgMUEV3Xj8eLYDCa0cvPDf278aaIa5nduKTBt4cuQldXL24xRNTpGKCI6Lqahu+mRgVBIuHw3bXEhHkj3N8ddfVmbGlccJSI7BcDFBFdU2mVHnvPlALg8N2NSCQSTGucTP7VQe6HSWTvGKCI6Jq2Hi2EySwgsrsaob5uYpdj9e4eEgRnmQRHLlbgZCEnkxPZMwYoIrqmpqGoO9n71Co+7grE9WuYTL7hAHuhiOwZAxQRtejilRocvHAFEgkDVFs0DeN9e6gAdfUmkashos7CAEVELfr+cMPGwSPDfBCgUopcje0YE+6HQLUSFbX1+OkEVyYnslcMUETUou+yCgAAU6PY+9QWMqkE90Z3BwB8xWE8IrvFAEVEVzldVIlsbSWcZRLcPrCb2OXYnPuGNQzj7TlTivyyGpGrIaLOwABFRFfZerRh4+Bbw/2gdnUWuRrbE+ztilt6+wAANmZcFLkaIuoMDFBEdJWfTjQEqPiBGpErsV33N/ZCbTqYD5NZELkaIupoDFBE1ExBeS2OX9JBKgEmRPiLXY7Nih+ggdrFGZcq6rD7dInY5RBRB2OAIqJmtjXeOTashzd83BUiV2O7lM4yJDROwOfK5ET2hwGKiJpJaQxQt/UPELkS2zdteAiAhs/0cpVe5GqIqCMxQBGRRUVtPX45dxkAA1RH6B+owqAgNepNAr49VCB2OUTUgRigiMji55xiGM0Cwv3dufddB7n/NxsMCwInkxPZCwYoIrL4icN3He6uyEAonKQ4VVSFQ/nlYpdDRB2EAYqIAAB6owk7cxruFps4gMsXdBS1izMmD2pYjHQT14QishsMUEQEAPjlXBmq9Eb4eygwOEgtdjl25Z6hDVu7/O9IIfRGbjBMZA8YoIgIAPDT8YbFM+P6B0AqlYhcjX2J7eWDAJUCFbX12JFdLHY5RNQBGKCICGazgG0nOf+ps8ikEiREBQEAvsnk3XhE9oABiohwtKACRTo93OQyjOrlI3Y5dunuoQ0BakdOMa5UG0SuhojaiwGKiCyLZ47r6w+Fk0zkauxThEaFft1UqDcJSDpaKHY5RNRODFBExNXHu8gfhzT0Qm3moppENo8BisjBXbhcjZyiSsikEozvy82DO9PUqEBIJUDGhSu4cLla7HKIqB0YoIgcXFPvU0yYN9SuziJXY9/8VUrc0tsXALi1C5GNY4AicnBcfbxr/bFxMvm3hwq4tQuRDWOAInJgZdUGHMwtA8AA1VXiB2jgKpfhwuUaZOaVi10OEd0kBigiB7Y9uxhmAejfTYXuXq5il+MQXOVOmNS4Vc63h7i1C5GtYoAicmBNq4+z96lrNa0JlXSkEAajWeRqiOhmWH2A+uCDDxAaGgqlUomYmBjs37//uu03btyIiIgIKJVKDBo0CFu3bm32/LJlyxAREQE3Nzd4eXkhLi4O+/bta9amrKwMM2fOhEqlgqenJ+bOnYuqqqoOvzYiMemNJuw5UwqAAaqrjerlC38PBcpr6rEjh1u7ENkiqw5QGzZsQGJiIpYuXYrMzExERkYiPj4excUtf8NJS0vDjBkzMHfuXBw6dAgJCQlISEjAsWPHLG369OmDVatW4ejRo9izZw9CQ0MxceJElJSUWNrMnDkTx48fR0pKCpKSkrBr1y489thjnX69RF0pI/cKagwm+HkoMCBQJXY5DkUmlWBqVCAA4Ftu7UJkkySCFd8GEhMTg+HDh2PVqlUAALPZjODgYMyfPx+LFi26qv20adNQXV2NpKQky7GRI0ciKioKq1evbvE9dDod1Go1tm3bhgkTJuDkyZPo378/Dhw4gGHDhgEAkpOTMXnyZFy8eBGBgYFXnUOv10Ov1zc7Z3BwMCoqKqBS8QcTWafXt57Eml3ncM/Q7lhxf6TY5TicE5d0mPz+bshlUhz4axyXkCCyAk2ZoDU/v622B8pgMCAjIwNxcXGWY1KpFHFxcUhPT2/xNenp6c3aA0B8fPw12xsMBqxZswZqtRqRkZGWc3h6elrCEwDExcVBKpVeNdTXZPny5VCr1ZZHcHBwm66VSAw/Nw4djevrJ3Iljql/oAoRGg8YTGb8j1u7ENkcqw1QpaWlMJlMCAhoPjcjICAAWq22xddotdpWtU9KSoK7uzuUSiXeffddpKSkwNfX13IOf//mqzE7OTnB29v7mu+7ePFiVFRUWB75+fltulairnapvBaniqoglQBjwn3FLsdh3T2kaU0o3o1HZGusNkB1pvHjxyMrKwtpaWmYNGkS7r///mvOq2oNhUIBlUrV7EFkzXaeapjzNyTEC56ucpGrcVxTo4IgkQAHcq/g4pUascshojaw2gDl6+sLmUyGoqKiZseLioqg0WhafI1Go2lVezc3N/Tu3RsjR47EJ598AicnJ3zyySeWc/w+TBmNRpSVlV3zfYlsTdPw3dg+HL4Tk0atxMgwHwDA94c5jEdkS6w2QMnlckRHRyM1NdVyzGw2IzU1FbGxsS2+JjY2tll7AEhJSblm+9+et2kSeGxsLMrLy5GRkWF5fvv27TCbzYiJibnZyyGyGgajGXvPXAbA+U/W4K7Gu/G+y+LdeES2xGoDFAAkJibio48+wueff46TJ0/iySefRHV1NebMmQMAmDVrFhYvXmxpv2DBAiQnJ2PFihXIzs7GsmXLcPDgQcybNw8AUF1djRdffBG//PILLly4gIyMDDzyyCMoKCjAfffdBwDo168fJk2ahEcffRT79+/H3r17MW/ePEyfPr3FO/CIbE3GhSuo0hvh6y7HwEC12OU4vNsHauAskyBbW4nTRZVil0NErWTVAWratGl4++23sWTJEkRFRSErKwvJycmWieJ5eXkoLPy123vUqFFYt24d1qxZg8jISGzatAmbN2/GwIEDAQAymQzZ2dm455570KdPH9x55524fPkydu/ejQEDBljOs3btWkRERGDChAmYPHkyRo8ejTVr1nTtxRN1kp9PNQzf3RruB6lUInI15Okqtwylbjl8SeRqiKi1rHodKFvVlnUkiLrapJW7kK2txHvTozA1KkjscggNwenpLw8hxNsVO58bB4mEwZZIDHaxDhQRdTxtRR2ytZWQSIAx4Zz/ZC3i+vnDxVmGvLIaHL5YIXY5RNQKDFBEDmRn4/BdZHdPeLtx+QJr4Sp3wsQBDVMTOJmcyDYwQBE5kJ9zGtZ/4t131ueuyIabVJKOFMJk5swKImvHAEXkIOpNZuw5XQqA6z9ZozHhflC7OKOkUo9fzl0WuxwiugEGKCIHcSivHJV6I7xcnTG4u6fY5dDvyJ2kmDyoGwBgSxbvxiOydgxQRA6iafXxW/v4QcblC6xS0zDeD8cKoTeaRK6GiK6HAYrIQTTNf+LwnfUaEeYNjUoJXZ0ROxv/vojIOjFAETmAYl0dThTqADT0QJF1kkkluGNw4zAeF9UksmoMUEQOYOepht6Mwd3V8HVXiFwNXU/T3njbThahWm8UuRoiuhYGKCIH8HNjgBrH3ierNyhIjTBfN9TVm5FyokjscojoGhigiOyc0WTG7sYANZbrP1k9iUSCOxsnk3NRTSLrxQBFZOcOXyyHrs4ItYszooK9xC6HWqHpbrzdp0tRVm0QuRoiagkDFJGd23WqYfHM0b19uXyBjejt744BgSoYzQK2Hi0UuxwiagEDFJGd23OmMUCF+4pcCbXFr1u78G48ImvEAEVkx3R19cjKLwfQ0ANFtmNK43IG+86XoUhXJ3I1RPR7DFBEduyXs5dhMgsI9XFFsLer2OVQG3T3csXQEE8IAjiMR2SFGKCI7NheDt/ZtKa78b7noppEVocBisiO7W4KUL25fIEtmjKoGyQSIDOvHPllNWKXQ0S/wQBFZKculdfiXEk1pBIgtpeP2OXQTfBXKTEyrOHv7n8cxiOyKgxQRHZqz+mG3qfIYE+oXZxFroZu1h2RDZPJeTcekXVhgCKyU03Dd2N4951Nu31gN8ikEhwr0OFcSZXY5RBRIwYoIjtkNgu/mUDO+U+2zNtNblmCIukIh/GIrAUDFJEdOlGoQ1m1AW5yGYaEeIpdDrXTnVxUk8jqMEAR2aGm1cdH9vSBs4z/zG3dxAEBkMukOFVUhRxtpdjlEBEYoIjsUtMEcq7/ZB9USmeM7dswFMs1oYisAwMUkZ2pqzdhf24ZAGAMA5TdsCyqeeQSBEEQuRoiYoAisjMHcstgMJqhUSnRy89d7HKog8T184eLswwXLtfgWIFO7HKIHB4DFJGd+e3wnUQiEbka6iiucidM6OcPoKEXiojExQBFZGd2NwYoDt/ZnzsGN96Nd/gSzGYO4xGJiQGKyI6UVulxorBheGdULwYoezOurx/cFU64VFGHzLwrYpdD5NAYoIjsSNrZywCACI0H/DwUIldDHU3pLMPEAQEAuKgmkdgYoIjsyJ7TJQA4fGfPfl1UsxAmDuMRiYYBishOCILwmwnk3L7FXo3u7QtPV2eUVumx79xlscshclhWH6A++OADhIaGQqlUIiYmBvv3779u+40bNyIiIgJKpRKDBg3C1q1bLc/V19fjhRdewKBBg+Dm5obAwEDMmjULly41v6MlNDQUEomk2eONN97olOsj6ijnSqtxqaIOcpkUI0K9xS6HOomzTIrbB2oA8G48IjFZdYDasGEDEhMTsXTpUmRmZiIyMhLx8fEoLi5usX1aWhpmzJiBuXPn4tChQ0hISEBCQgKOHTsGAKipqUFmZiZefvllZGZm4ptvvkFOTg7uuuuuq871yiuvoLCw0PKYP39+p14rUXs19T4NC/WCi1wmcjXUme5svBvvh2Na1JvMIldD5JgkghUvaRsTE4Phw4dj1apVAACz2Yzg4GDMnz8fixYtuqr9tGnTUF1djaSkJMuxkSNHIioqCqtXr27xPQ4cOIARI0bgwoULCAkJAdDQA7Vw4UIsXLiwVXXq9Xro9XrLn3U6HYKDg1FRUQGVStXayyVqlz99fhDbThbh+Ul98edxvcUuhzqRySwg5vVUlFbp8emc4Rjf11/skojsgk6ng1qtbtXPb6vtgTIYDMjIyEBcXJzlmFQqRVxcHNLT01t8TXp6erP2ABAfH3/N9gBQUVEBiUQCT0/PZsffeOMN+Pj4YMiQIXjrrbdgNBqveY7ly5dDrVZbHsHBwa24QqKOYzSZLfNhRvfmBHJ7J5NKcMfgbgC4Nx6RWKw2QJWWlsJkMiEgIKDZ8YCAAGi12hZfo9Vq29S+rq4OL7zwAmbMmNEsaT799NNYv349duzYgccffxyvv/46nn/++WvWunjxYlRUVFge+fn5rb1Mog5xtKAClXoj1C7OGBCoFrsc6gJNAeqn40WoqzeJXA2R43ESuwCx1NfX4/7774cgCPjwww+bPZeYmGj5/eDBgyGXy/H4449j+fLlUCiuXltHoVC0eJyoq+w90zD/KbanD2RSbt/iCIaGeCFQrcSlijr8nFOCSY0Ty4moa1htD5Svry9kMhmKioqaHS8qKoJG0/I3Co1G06r2TeHpwoULSElJueE4Z0xMDIxGI3Jzc9t+IURdYO+ZhuG7W3r7iFwJdRWpVII7GteE4t14RF3PagOUXC5HdHQ0UlNTLcfMZjNSU1MRGxvb4mtiY2ObtQeAlJSUZu2bwtPp06exbds2+Pjc+AdOVlYWpFIp/P05UZOsT129CRmN23qM4vwnh9J0N17qySJU6689T5OIOp5VD+ElJiZi9uzZGDZsGEaMGIGVK1eiuroac+bMAQDMmjULQUFBWL58OQBgwYIFGDt2LFasWIEpU6Zg/fr1OHjwINasWQOgITzde++9yMzMRFJSEkwmk2V+lLe3N+RyOdLT07Fv3z6MHz8eHh4eSE9PxzPPPIMHH3wQXl5e4nwQRNdxMPcKDEYzNColevq6iV0OdaGBQSqE+rgi93INUrOLcVdjjxQRdT6rDlDTpk1DSUkJlixZAq1Wi6ioKCQnJ1smiufl5UEq/bUTbdSoUVi3bh1eeuklvPjiiwgPD8fmzZsxcOBAAEBBQQG2bNkCAIiKimr2Xjt27MC4ceOgUCiwfv16LFu2DHq9HmFhYXjmmWeazYsisiZ7zzbMf7qlty8kEs5/ciQSiQR3DA7Eqh1n8P3hSwxQRF3IqteBslVtWUeCqL3uWrUHRy5W4J37I/HHod3FLoe6WI62EvErd0Euk+LAS3FQuziLXRKRzbKLdaCI6MYqaupxtKACQEMPFDmevhoP9Alwh8Fkxk/HW16yhYg6HgMUkQ1LP3cZggD08nNDgEopdjkkkqbJ5N8fKRS5EiLHwQBFZMPSfjP/iRxX03IGe8+UoqzaIHI1RI6BAYrIhu1pXEBzVC8GKEcW5uuGgUEqmMwCfjjGXiiirsAARWSjtBV1OFdSDamkYQVycmyWYTzujUfUJRigiGxU0/Ytg4LUULvyzitHN6Vxb7x958tQpKsTuRoi+8cARWSjmtZ/4urjBADdvVwR3cMLggAkcTI5UadjgCKyQYIgIK1p/zvOf6JGdzb2Qm3hMB5Rp2OAIrJBZ0uqodXVQe4kxbBQbjFEDaYMDoRUAhzOL8eFy9Vil0Nk1xigiGxQ0/IF0SFeUDrLRK6GrIWfh8KypAUnkxN1LgYoIhvUNIF8dDiH76i5OxvXhOIwHlHnYoAisjEms4D0sw3zn0b14vIF1Fz8AA3kMilOFVUhW6sTuxwiu8UARWRjjl+qgK7OCA+FEwYFqcUuh6yM2sUZ4/r6AQC2ZLEXiqizMEAR2Zim1cdjevrAScZ/wnS1u6J+HcYTBEHkaojsU4d8962vr0d+fj5ycnJQVlbWEackomuwLF/Qm8N31LIJEQFwk8tw8UotMvPKxS6HyC7ddICqrKzEhx9+iLFjx0KlUiE0NBT9+vWDn58fevTogUcffRQHDhzoyFqJHF5dvQkHchv+kzKaC2jSNbjIZbitfwAA3o1H1FluKkC98847CA0Nxaeffoq4uDhs3rwZWVlZOHXqFNLT07F06VIYjUZMnDgRkyZNwunTpzu6biKHlJl3BXqjGX4eCvT2dxe7HLJiU6OCADSsSm40mUWuhsj+ON3Miw4cOIBdu3ZhwIABLT4/YsQIPPLII1i9ejU+/fRT7N69G+Hh4e0qlIh+M3zXywcSiUTkasiajQ73hZerM0qr9PjlXBmXvCDqYDcVoL788kvL7ysrK+Hh4dFiO4VCgSeeeOLmKiOiqzRNIOf+d3QjzjIpbh/UDev25WHL4QIGKKIO1u5J5GPGjIFWq+2IWojoOnR19ThysRwALKtNE13PXY2Lav5wTAu90SRyNUT2pd0BasiQIYiJiUF2dnaz41lZWZg8eXJ7T09EjfadK4NZAEJ9XBHk6SJ2OWQDRoR6Q6NSorLOiJ05JWKXQ2RX2h2gPv30Uzz88MMYPXo09uzZg1OnTuH+++9HdHQ0ZDLu0UXUUfZy+I7aSCqV4I7B3QBwaxeijnZTc6B+729/+xsUCgVuu+02mEwmTJgwAenp6RgxYkRHnJ6I8OsGwly+gNrirqhAfLznPLadLEK13gg3RYd82ydyeO3ugSoqKsKCBQvw2muvoX///nB2dsbDDz/M8ETUgYor63CqqAoSCRDbkwtoUusNClIjzNcNdfVmbDtZJHY5RHaj3QEqLCwMu3btwsaNG5GRkYGvv/4ajz32GN56662OqI+I8OvyBf27qeDlJhe5GrIlEokEdzZOJv+Oe+MRdZh2B6h///vfOHToEKZMmQIAmDRpEnbs2IF3330XTz31VLsLJKJf5z/x7ju6GVMb98bbdaoEl6v0IldDZB/aHaCmT59+1bGhQ4ciLS0N27dvb+/piRyeIAhIO9vQAzWqF4fvqO16+bljcHc1jGYB/ztaKHY5RHbhpgJUXl7eDduEhoYiLS0NAFBQUHAzb0NEAC5crkFBeS2cZRKMCPMWuxyyUQmNW7t8e4jfj4k6wk0FqOHDh+Pxxx+/7mbBFRUV2LRpEwYOHIivv/76pgskcnR7G+++GxLiBVc576Cim3NHZDdIJcChvHLkllaLXQ6Rzbup78YnTpzA3//+d9x2221QKpWIjo5GYGAglEolrly5ghMnTuD48eMYOnQo/vGPf3BBTaJ2+HX/O85/opvn76HE6HA/7DpVgu+yLmFBHPcnJWqPm+qB8vHxwTvvvIPCwkKsWrUK4eHhKC0txenTpwEAM2fOREZGBtLT0xmeiNrBbBYs6z/d0pvzn6h97h7SMJl8c1YBBEEQuRoi29au8QAXFxfce++9uPfeezuqHiL6jROFOlypqYebXIbIYE+xyyEbN7G/Bi7Ox3C+tBqHL1Ygil9TRDet3XfhEVHnaep9GhHmDWcZ/7lS+7gpnBA/IAAAsJmTyYnapc3fkWtra1u8q+748eMdUtDvffDBBwgNDYVSqURMTAz2799/3fYbN25EREQElEolBg0ahK1bt1qeq6+vxwsvvIBBgwbBzc0NgYGBmDVrFi5dar64XFlZGWbOnAmVSgVPT0/MnTsXVVVVnXJ9RNezt2n+E9d/og4ydUjD3XjfH76EepNZ5GqIbFebAtSmTZsQHh6OKVOmYPDgwdi3b5/luYceeqjDi9uwYQMSExOxdOlSZGZmIjIyEvHx8SguLm6xfVpaGmbMmIG5c+fi0KFDSEhIQEJCAo4dOwYAqKmpQWZmJl5++WVkZmbim2++QU5ODu66665m55k5cyaOHz+OlJQUJCUlYdeuXXjsscc6/PqIrsdgNGP/+TIAwChOIKcOMqa3L3zc5LhcbcCe06Vil0Nku4Q2iIyMFLRarSAIgnDw4EFhwIABwtq1awVBEISoqKi2nKpVRowYITz11FOWP5tMJiEwMFBYvnx5i+3vv/9+YcqUKc2OxcTECI8//vg132P//v0CAOHChQuCIAjCiRMnBADCgQMHLG1++OEHQSKRCAUFBa2qu6KiQgAgVFRUtKo9UUv2nbss9HghSRj6yk+CyWQWuxyyI0u/Oyb0eCFJePrLTLFLIbIqbfn53aYeqPr6egQENIyfR0dHY9euXfjXv/6FV155BRKJpEODncFgQEZGBuLi4izHpFIp4uLikJ6e3uJr0tPTm7UHgPj4+Gu2BxrWq5JIJPD09LScw9PTE8OGDbO0iYuLg1Qqbdbj9lt6vR46na7Zg6i99jRu3xLbywdSacf++yLHdnfjMN6Px7Wo0htFrobINrUpQPn7++PIkSOWP3t7eyMlJQUnT55sdrwjlJaWwmQyWQJbk4CAAGi12hZfo9Vq29S+rq4OL7zwAmbMmAGVSmU5h7+/f7N2Tk5O8Pb2vuZ5li9fDrVabXkEBwe36hqJrieN+99RJxncXY0wXzfU1Zvx0/GWv68R0fW1KUB98cUXV4ULuVyOL7/8Ejt37uzQwjpbfX097r//fgiCgA8//LBd51q8eDEqKiosj/z8/A6qkhxVtd6IrPxyAFxAkzqeRCLh1i5E7dSmANW9e3doNJpmx7Zt2wYAuOWWWzquKgC+vr6QyWQoKipqdryoqOiqGppoNJpWtW8KTxcuXEBKSoql96npHL+fpG40GlFWVnbN91UoFFCpVM0eRO2x/3wZjGYB3b1cEOLjKnY5ZIcSGhfV3HumFMW6OpGrIbI97V5YZsqUKUhMTITBYOiIeizkcjmio6ORmppqOWY2m5GamorY2NgWXxMbG9usPQCkpKQ0a98Unk6fPo1t27bBx8fnqnOUl5cjIyPDcmz79u0wm82IiYnpiEsjuqG9TcN37H2iTtLDxw1DQzxhFoAthy/d+AVE1Ey7A9SuXbuQlJSEYcOGWZYL+L3CwkLcc889bT53YmIiPvroI3z++ec4efIknnzySVRXV2POnDkAgFmzZmHx4sWW9gsWLEBycjJWrFiB7OxsLFu2DAcPHsS8efMANISne++9FwcPHsTatWthMpmg1Wqh1WotAbBfv36YNGkSHn30Uezfvx979+7FvHnzMH36dAQGBrb5GohuRtME8lvCGaCo8zRNJv8uiwGKqK3aHaBiYmKQmZmJYcOGYfjw4XjnnXcsz5nNZpw4cQJLlizB7t2723zuadOm4e2338aSJUsQFRWFrKwsJCcnWyaK5+XlobCw0NJ+1KhRWLduHdasWYPIyEhs2rQJmzdvxsCBAwEABQUF2LJlCy5evIioqCh069bN8khLS7OcZ+3atYiIiMCECRMwefJkjB49GmvWrLnZj4ioTYor65CtrQQA3NKL+99R55kyOBBOUgmOFlTgdFGl2OUQ2RSJIHTMjpJXrlzByy+/jA8//BBDhw61hCe9Xo8ePXrgpZdewty5czvirayeTqeDWq1GRUUF50NRm20+VICFG7IwIFCF/z09RuxyyM796fOD2HayCE+M7YVFt0eIXQ6RqNry87vdPVAff/wxQkJC4Ovri88++wwjRoyAk5MTDh06hD/96U8oKyvD+fPnHSY8EbXX7sbVoUdz+I66wL3RTXfjXYTJ3CH/nyZyCO0OUC+++CKmTJmCEydOoLKyEunp6UhPT8eKFSvw8ccfIzExETU1NR1RK5HdEwQBe86UAADG9PYTuRpyBH+ICICXqzOKdHrsPl0idjlENqPdAWrcuHFYtmwZ+vbt22w18meeeQb79+/HwYMHr9o3j4hadqa4CkU6PeROUgwL9RK7HHIAcicppjauCbUp46LI1RDZjnYHqK+++uqq1b+bDBo0CAcOHMAdd9yBW2+9tb1vRWT3mobvRoR6Q+ksE7kachT3RncHAPx0oggVtfUiV0NkG9odoG5EoVBg5cqVSEpK6uy3IrJ5TcsXcP4TdaUBgSr0DfCAwWhG0hEuaUDUGp0eoJrcdtttXfVWRDap3mTGL+cuAwBGc/876kISicTSC8VhPKLW6bIARUTXdyivHDUGE3zc5OjfjctfUNeaOiQQMqkEh/LKcbakSuxyiKweAxSRldjTeAfUqN6+kEolN2hN1LH8PZQY16fhzs+v2QtFdEMMUERWYnfj/KcxHL4jkdzTOIz3TWYB14QiugEGKCIrUFFbj8P55QC4/x2JZ0I/f6hdnKHV1Vk2tCailjFAEVmB9LOXYRaAnr5uCPJ0EbscclAKJxmmRjVsms7J5ETXxwBFZAX2cvkCshJNd+P9eFwLXR3XhCK6FgYoIitgWf+J859IZIOC1Aj3d4feaMb/jhSKXQ6R1WKAIhLZxSs1OF9aDZlUgpG9fMQuhxwc14Qiah0GKCKR7WncviUq2BMqpbPI1RABdw8JglQCZFy4gnNcE4qoRQxQRCLbzeE7sjL+KiXGNq0JlcleKKKWMEARichsFpDWtP4TJ5CTFbk3OhhAwzCe0WQWuRoi68MARSSi45d0uFJTD3eFEyKDPcUuh8jitv4B8HGTo0inx46cErHLIbI6DFBEImq6+25kT284y/jPkayH3ElqWZl8/f48kashsj78jk0koj1nGv5nz/lPZI2mDW8YxtuRU4zCilqRqyGyLgxQRCKpqzfhQO4VAMDocD+RqyG6Wi8/d4wI9YZZADYe5GRyot9igCISSfq5yzAYzQhUK9HLz03scohaNH1EQy/UhgP5MHODYSILBigikexsnJg7tq8fJBKJyNUQtWzyoG5QKZ1QUF5rWXKDiBigiESz61RjgOrjL3IlRNemdJbh7iFBADiZnOi3GKCIRJB3uQbnSqvhJJVgVG9u30LWbfqIEABAyokilFTqRa6GyDowQBGJYOfpht6noT28uH0LWb1+3VSIDPaE0SxwZXKiRgxQRCLYmVMMAJbtMois3Yzhv04mFwROJidigCLqYnqjCWlnLwNggCLbcWdkINzkMpwvrcYv58rELodIdAxQRF0sI/cKagwm+HkoMCBQJXY5RK3ipnDCXVGBAID1BziZnIgBiqiL7Wy8++7WcC5fQLZl+vCGyeQ/HNOivMYgcjVE4mKAIupiTQFqbF8O35FtGdxdjX7dVDAYzfgms0DscohExQBF1IUKK2qRra2ERAKM4f53ZGMkEglmNK5Mvv5AHieTk0NjgCLqQk2LZ0Z294SXm1zkaojabmpUEJTOUpwqqsLBC1fELodINFYfoD744AOEhoZCqVQiJiYG+/fvv277jRs3IiIiAkqlEoMGDcLWrVubPf/NN99g4sSJ8PHxgUQiQVZW1lXnGDduHCQSSbPHE0880ZGXRQ6qafhuHIfvyEapXZwxNbJhZfLP03LFLYZIRFYdoDZs2IDExEQsXboUmZmZiIyMRHx8PIqLi1tsn5aWhhkzZmDu3Lk4dOgQEhISkJCQgGPHjlnaVFdXY/To0XjzzTev+96PPvooCgsLLY9//OMfHXpt5HiMJjN2n27YS4zLF5Ateyi2BwAg+ZgWxbo6kashEodVB6h33nkHjz76KObMmYP+/ftj9erVcHV1xb///e8W27/33nuYNGkSnnvuOfTr1w+vvvoqhg4dilWrVlnaPPTQQ1iyZAni4uKu+96urq7QaDSWh0rF282pfbLyy1FZZ4SnqzMGd/cUuxyimzYwSI1hPbxgNAtYx/3xyEFZbYAyGAzIyMhoFnSkUini4uKQnp7e4mvS09OvCkbx8fHXbH89a9euha+vLwYOHIjFixejpqbmmm31ej10Ol2zB9Hv/ZzTMHw3JtwPMimXLyDb1tQLtW5fHupNZpGrIep6VhugSktLYTKZEBAQ0Ox4QEAAtFpti6/RarVtan8tDzzwAP773/9ix44dWLx4Mb744gs8+OCD12y/fPlyqNVqyyM4OLhN70eOwbJ8AYfvyA7cPrAbfN0VKK7U48fjbfseS2QPnMQuwBo99thjlt8PGjQI3bp1w4QJE3D27Fn06tXrqvaLFy9GYmKi5c86nY4hipoprdLjaEEFAODWPly+gGyf3EmKB2JC8H7qafwn7QLuGBwodklEXcpqe6B8fX0hk8lQVFTU7HhRURE0Gk2Lr9FoNG1q31oxMTEAgDNnzrT4vEKhgEqlavYg+q3dpxt6nwYEquDvoRS5GqKO8cCIEMikEuzPLcPJQk5dIMditQFKLpcjOjoaqamplmNmsxmpqamIjY1t8TWxsbHN2gNASkrKNdu3VtNSB926dWvXechxNc1/4vAd2RONWolJAxr+g/qf9AsiV0PUtaw2QAFAYmIiPvroI3z++ec4efIknnzySVRXV2POnDkAgFmzZmHx4sWW9gsWLEBycjJWrFiB7OxsLFu2DAcPHsS8efMsbcrKypCVlYUTJ04AAHJycpCVlWWZJ3X27Fm8+uqryMjIQG5uLrZs2YJZs2bh1ltvxeDBg7vw6slemMyCZQFNBiiyN7MaJ5NvPlSAitp6kash6jpWHaCmTZuGt99+G0uWLEFUVBSysrKQnJxsmSiel5eHwsJCS/tRo0Zh3bp1WLNmDSIjI7Fp0yZs3rwZAwcOtLTZsmULhgwZgilTpgAApk+fjiFDhmD16tUAGnq+tm3bhokTJyIiIgLPPvss7rnnHnz//fddeOVkT44VVOBKTT08FE4Y2sNL7HKIOtSIMG/0DfBAbb0JmzIuil0OUZeRCNzMqMPpdDqo1WpUVFRwPhThvW2n8e62U5g0QIPVD0WLXQ5Rh1u77wL++u0xhPq4Yvuz4yDlMh1ko9ry89uqe6CI7EFqdsONDeMjOHxH9ikhKggeSifkXq7BrsYbJojsHQMUUScq0tXhyMUKSCTAHyICbvwCIhvkpnDCvdHdAQBfcDI5OQgGKKJOlHqyYd/GyO6e8PNQiFwNUed5aGTDZPLtOcXIu3ztnRuI7AUDFFEn2nayYfjutv7sfSL71tPPHbf28YMgAJ+n54pdDlGnY4Ai6iQ1BiP2nikFAEzo5y9yNUSdb84toQCADQfyoavjkgZk3xigiDrJntOl0BvN6O7lgr4BHmKXQ9TpxvXxQ7i/O6r0Rqzfnyd2OUSdigGKqJM0Dd/F9QuARMLbusn+SSQSPHprTwDAv/fkwmA0i1wRUedhgCLqBGazgO3ZDRPI4/px/hM5jqlRgfDzUECrq8P/jl4SuxyiTsMARdQJsi6Wo7TKAA+FE0aEeYtdDlGXUTjJ8PCoUADAml3nwbWayV4xQBF1gtTG4btb+/pB7sR/ZuRYZsaEwFUuw8lCHfaeuSx2OUSdgt/ZiTrBthMNw3e3cfiOHJCnqxz3DwsGAKzZfU7kaog6BwMUUQfLL6tBTlElZFIJxvXl9i3kmOaODoNUAuw6VYKThTqxyyHqcAxQRB2s6e67YT284OkqF7kaInEEe7vi9kHdAAAf7z4vcjVEHY8BiqiDcfVxogaPjWlY0mDL4QIU6epEroaoYzFAEXUgXV099p0rAwBM4PwncnCRwZ4YEeqNepOAz9JyxS6HqEMxQBF1oJ05JTCaBfTyc0OYr5vY5RCJrmlhzbW/XECV3ihyNUQdhwGKqAP9dvVxIgImRPijp68bdHVGfHUgX+xyiDoMAxRRB6k3mbGjafVxzn8iAgBIpRL8qXEu1Cd7zqPexO1dyD4wQBF1kIO5V6CrM8LL1RlDQ7zELofIavxxaBB83RUoKK/Ft4cKxC6HqEMwQBF1kKbVx8dH+EMm5ebBRE2UzjI8MbahF+qDHWdgZC8U2QEGKKIOIAjCr8sXcP4T0VUeiAmBj5scFy7XYMthbjJMto8BiqgDnCysRO7lGsidpBjTh6uPE/2eq9zJckfequ1nYDJzk2GybQxQRB1g69FCAMC4Pn5wVziJXA2RdXpwZA94ujrjXGk1ko6wF4psGwMUUTsJgmAJUFMGdxO5GiLr5a5wwp9GhwEA/rn9DMzshSIbxgBF1E4nCytxrrQacicpVx8nuoFZo0KhUjrhTHEVfjimFbscopvGAEXUThy+I2o9ldIZj1h6oU6zF4psFgMUUTtw+I6o7eaMCoOHwgnZ2kr8dKJI7HKIbgoDFFE7cPiOqO3Urs54+JZQAMD7qachCOyFItvDAEXUDhy+I7o5j9wSBje5DCcKdUg9WSx2OURtxgBFdJM4fEd087zc5Jg1KhQA8P529kKR7WGAIrpJHL4jap8/jQ6Di7MMRy5WYEcOe6HItjBAEd0kDt8RtY+PuwKzYnsAAP6RnMM78simMEAR3QQO3xF1jCfH9YKHsuGOvO8OF4hdDlGrMUAR3YRsLYfviDqCp6scfx7XGwDw9o+noDeaRK6IqHWsPkB98MEHCA0NhVKpRExMDPbv33/d9hs3bkRERASUSiUGDRqErVu3Nnv+m2++wcSJE+Hj4wOJRIKsrKyrzlFXV4ennnoKPj4+cHd3xz333IOiIq5VQr/63xEO3xF1lDm3hEKjUqKgvBb//SVP7HKIWsWqA9SGDRuQmJiIpUuXIjMzE5GRkYiPj0dxccuTDdPS0jBjxgzMnTsXhw4dQkJCAhISEnDs2DFLm+rqaowePRpvvvnmNd/3mWeewffff4+NGzdi586duHTpEv74xz92+PWRbeLwHVHHUjrL8Mxt4QCAVdtPQ1dXL3JFRDcmEaz43tGYmBgMHz4cq1atAgCYzWYEBwdj/vz5WLRo0VXtp02bhurqaiQlJVmOjRw5ElFRUVi9enWztrm5uQgLC8OhQ4cQFRVlOV5RUQE/Pz+sW7cO9957LwAgOzsb/fr1Q3p6OkaOHHnV++r1euj1esufdTodgoODUVFRAZVK1a7PgKzPyUIdbn9vN+ROUmS+fBt7oIg6gNFkxqT3duNMcRXmje+Nv8T3FbskckA6nQ5qtbpVP7+ttgfKYDAgIyMDcXFxlmNSqRRxcXFIT09v8TXp6enN2gNAfHz8Ndu3JCMjA/X19c3OExERgZCQkGueZ/ny5VCr1ZZHcHBwq9+PbA+H74g6npNMiucaQ9PHe86hWFcnckVE12e1Aaq0tBQmkwkBAc0n6AYEBECrbXkHb61W26b21zqHXC6Hp6dnq8+zePFiVFRUWB75+fmtfj+yLRy+I+o8E/sHYGiIJ+rqzViZelrscoiuy2oDlC1RKBRQqVTNHmSfePcdUeeRSCRYdHs/AMCGA/k4W1IlckVE12a1AcrX1xcymeyqu9+Kioqg0WhafI1Go2lT+2udw2AwoLy8vF3nIfv0XdYlAMD4vhy+I+oMI8K8EdfPHyazgLd/zBG7HKJrstoAJZfLER0djdTUVMsxs9mM1NRUxMbGtvia2NjYZu0BICUl5ZrtWxIdHQ1nZ+dm58nJyUFeXl6bzkP2x2gy45vMiwCAPw7tLnI1RPbrufgISCXAD8e0yMy7InY5RC2y6v9CJyYmYvbs2Rg2bBhGjBiBlStXorq6GnPmzAEAzJo1C0FBQVi+fDkAYMGCBRg7dixWrFiBKVOmYP369Th48CDWrFljOWdZWRny8vJw6VJDT0JOTsP/cDQaDTQaDdRqNebOnYvExER4e3tDpVJh/vz5iI2NbfEOPHIcu8+UorhSD283Ocb39Re7HCK71VfjgXuGdsfGjIt4Y2s2Njw+EhKJROyyiJqx2h4ooGFZgrfffhtLlixBVFQUsrKykJycbJkonpeXh8LCQkv7UaNGYd26dVizZg0iIyOxadMmbN68GQMHDrS02bJlC4YMGYIpU6YAAKZPn44hQ4Y0W+bg3XffxR133IF77rkHt956KzQaDb755psuumqyVpsyGnqfpkYFQu5k1f90iGzeM7f1gdJZiv25Zdhy+JLY5RBdxarXgbJVbVlHgmxDRU09hv99GwwmM/739GgMCFSLXRKR3ftn6mmsSDmFAJUCqc+O47xD6nR2sQ4UkTXZcuQSDCYz+nVTMTwRdZFHb+2JHj6uKNLp8U8ua0BWhgGKqBWahu/ujebkcaKuonSWYemd/QEAn+w5jzPFXNaArAcDFNENnC6qxOH8cjhJJZgaFSh2OUQO5Q8RAYjr5w+jWcCyLcfBWSdkLRigiG5gU+PSBeMj/OHrrhC5GiLHs+SOAZA7SbHnTCmSj7V+ZwmizsQARXQdDWs/FQDg8B2RWEJ8XPHE2F4AgFeTTqDWYBK5IiIGKKLr2n26FCVc+4lIdE+O7YUgTxdcqqjD//18RuxyiBigiK6Haz8RWQcXuQxLGieU/2vnOeSWVotcETk6/kQguobyGgNSTjTsrcjhOyLxTewfgFv7+MFgMuOVpBNil0MOjgGK6Bq+P8y1n4isiUQiwbI7+8NZJsH27GIkHyu88YuIOgkDFNE1cO0nIuvT088dj9/aMKH8pc3HcaXaIHJF5KgYoIhacKqoEocvVnDtJyIrNH9Cb4T7u6O0So+/fX9c7HLIQTFAEbXg6wyu/URkrRROMrx9XySkEmBz1iXLXEWirsQARfQ7eqMJX2dy+I7ImkUGe+KxxqG8F789ivIaDuVR12KAIvqd7w8XorTKAI1KiT9EcO0nImu1MC4cvfzcUFKp51151OUYoIh+QxAEfLr3PADgodgecJbxnwiRtVI6y/BW41DeN5kF2J7NoTzqOvzpQPQbB3Kv4PglHRROUjwwIkTscojoBoaGeOFPY3oCABZ/cxQVtfUiV0SOggGK6Dc+S2vofbp7SBC83OQiV0NErZF4Wx/09HVDkU6P1ziUR12EAYqoUUF5LX483jAE8PAtoeIWQ0St1jCUNxgSCbAx4yJ25BSLXRI5AAYookb/Sc+FySxgVC8fRGhUYpdDRG0Q3cMbj9wSBgB4ftMRlFTqRa6I7B0DFBGAGoMR6/fnAwDmNH4TJiLb8peJfdEnwB0llXokfpUFs1kQuySyYwxQRAC+PVSAitp6hHi7cukCIhvlIpfhgweGQuksxe7Tpfhw51mxSyI7xgBFDk8QBHy2NxcAMHtUKGRSibgFEdFNCw/wwCtTBwIA3kk5hQO5ZSJXRPaKAYoc3t4zl3G6uApuchnuG8aVx4ls3X3R3XFXZCBMZgFPf3mIGw5Tp2CAIofXtHDmvdHdoVI6i1wNEbWXRCLBsrsGIEClQGFFHZ7deBiCwPlQ1LEYoMih5ZZWY3vjLc+zR4WKWwwRdRh3hRMev7UXnGQSbM8uxid7zotdEtkZBihyaJ+l5UIQgPF9/dDTz13scoioA4V4u2LasGAAwBs/ZCMrv1zcgsiuMECRw6qsq8emjIsAuHQBkb0a18cPw3p4wWgWMG9dJudDUYdhgCKH9Z/0C6jSG9Hb3x1jwn3FLoeIOoFEIsGs2B7wc1fg4pVaPLk2AwajWeyyyA4wQJFD0tXVY82ucwCAeeN7QyLh0gVE9spV7oSnxveCwkmKX86VYemWY5xUTu3GAEUO6ZPd51FRW49wf3fcGRkodjlE1Mm6e7ni8Vt7QgLgy/35nFRO7cYARQ6nvMaAfzd+81wY14cLZxI5iMHdPS1rvb2+9SS2ZxeJXBHZMgYocjhrdp1Dpd6ICI0Hbh+oEbscIupCt/ULwJjevjALwNNfZiFHWyl2SWSjGKDIoVyu0uOztFwAQOJtfSBl7xORQ5FIJJgZE4K+AR6o0hvxyGcHUFqlF7ssskFWH6A++OADhIaGQqlUIiYmBvv3779u+40bNyIiIgJKpRKDBg3C1q1bmz0vCAKWLFmCbt26wcXFBXFxcTh9+nSzNqGhoZBIJM0eb7zxRodfG3W91TvPosZgwuDuatzWP0DscohIBE4yKZ4c2wv+HgoUlNfi8S8yoDeaxC6LbIxVB6gNGzYgMTERS5cuRWZmJiIjIxEfH4/i4uIW26elpWHGjBmYO3cuDh06hISEBCQkJODYsWOWNv/4xz/w/vvvY/Xq1di3bx/c3NwQHx+Purq6Zud65ZVXUFhYaHnMnz+/U6+VOl+Rrg7/Sb8AoKH3iXfeETkud6UT5v+hN1ycZci4cAWJXx2Gycw786j1rDpAvfPOO3j00UcxZ84c9O/fH6tXr4arqyv+/e9/t9j+vffew6RJk/Dcc8+hX79+ePXVVzF06FCsWrUKQEPv08qVK/HSSy9h6tSpGDx4MP7zn//g0qVL2Lx5c7NzeXh4QKPRWB5ubm7XrFOv10On0zV7kPX5vx1noDeaEd3DC2P7+IldDhGJrJvaBU+O7QWZVIL/HSnEoq+PwMwQRa1ktQHKYDAgIyMDcXFxlmNSqRRxcXFIT09v8TXp6enN2gNAfHy8pf358+eh1WqbtVGr1YiJibnqnG+88QZ8fHwwZMgQvPXWWzAajdesdfny5VCr1ZZHcHBwm6+XOldBeS2+3J8PAHiWvU9E1Kh/oAqPjekJiQTYmHERrySd4BpR1CpWG6BKS0thMpkQENB8nkpAQAC0Wm2Lr9Fqtddt3/Trjc759NNPY/369dixYwcef/xxvP7663j++eevWevixYtRUVFheeTn57f+QqlLrNp+BgaTGSN7emNUb646TkS/iu7hhTmNm4l/lpaLt37MEbcgsglOYhdgjRITEy2/Hzx4MORyOR5//HEsX74cCoXiqvYKhaLF42Qd8i7XYOPBxt6niX1FroaIrNGoXr7QG81Yuy8P//fzWbgpnPDU+N5il0VWzGp7oHx9fSGTyVBU1Hyhs6KiImg0La/do9Fortu+6de2nBMAYmJiYDQakZub29bLICvw7rZTMJoFjAn3xfBQb7HLISIrNb6vP+6Lblho860fc/DpXq5WTtdmtQFKLpcjOjoaqamplmNmsxmpqamIjY1t8TWxsbHN2gNASkqKpX1YWBg0Gk2zNjqdDvv27bvmOQEgKysLUqkU/v7+7bkkEkH62cv49lABJBLgL+x9IqIbiB+gwZ2DuwEA/vb9CWw4kCdyRWStrHoILzExEbNnz8awYcMwYsQIrFy5EtXV1ZgzZw4AYNasWQgKCsLy5csBAAsWLMDYsWOxYsUKTJkyBevXr8fBgwexZs0aAA0LqC1cuBCvvfYawsPDERYWhpdffhmBgYFISEgA0DARfd++fRg/fjw8PDyQnp6OZ555Bg8++CC8vLxE+Rzo5uiNJvx181EAwAMjQhAZ7CluQURkE+6KDITeaMZPJ4qw6Juj0BvNmBUbKnZZZGWsOkBNmzYNJSUlWLJkCbRaLaKiopCcnGyZBJ6Xlwep9NdOtFGjRmHdunV46aWX8OKLLyI8PBybN2/GwIEDLW2ef/55VFdX47HHHkN5eTlGjx6N5ORkKJVKAA3zmdavX49ly5ZBr9cjLCwMzzzzTLN5UWQbVv98DudKquHrrsDzkyLELoeIbIREIsF90d1hNAvYnl2MJd8dx+UqAxbGhfMOXrKQCLxfs8PpdDqo1WpUVFRApVKJXY5DOl9ajfiVu2AwmvH+jCG4KzJQ7JKIqAsZjGbsOlXSrnMIgoDvjxRiy+FLAICHRvbA3+4awC2g7Fhbfn5b7RwoopslCAJe2nwUBqMZY8J9LfMZiIjaQiKR4K7IQDwwIgQSAF/8cgFPrz8Eg9EsdmlkBRigyO5szirA3jOXoXCS4rWEgexyJ6J2+UOEPx4d0xMyqQRJRwox9/MDqNZfe3FlcgwMUGRXymsMeC3pJABg/h96o4fPtbfgISJqrRFh3nj6D70hd5Ji9+lSzPx4H8qqDWKXRSJigCK78mZyNi5XG9Db3x2P3dpL7HKIyI4MCFTjL7f1gZtChqz8cty1ag+OX6oQuywSCQMU2Y2DuWWW/e5ev3sQ5E788iaijtXTzx0vxEfAz0OBi1dqcc+Hafguq0DsskgE/AlDdsFgNOPFbxvWfLp/WHeMCOOK40TUOQI9XfDS5H4YGKhCXb0ZC9Zn4bWkEzCaOLnckTBAkV14NekEThVVwdtNjsW39xO7HCKyc24KJzz9h3BMHtiwDdjHe85j1r/3c16UA2GAIpv37aGL+OKXCwCAt+8bDC83ucgVEZEjkEol+OPQ7nhibE8onKRIO3sZd/5zD44VcF6UI2CAIpuWrdVh8TcNQ3dP/6E3/hARIHJFRORohvXwxouT+8HfQ4GC8lr88f/S8K+dZ2Eyc51qe8YARTZLV1ePJ77IQF19w4KZC+L6iF0SETmoIE8XvDSlH6K6e8JgMmP5D9mYseYX5JfViF0adRIGKLJJgiDgL18dRu7lGgR5uuC96UMg4/YKRCQiV7kTnhrfCw/HhkLhJMX+3DJMWrkLGw7kgbum2R8GKLJJ/9p1Dj+dKIJcJsX/zRwKb857IiIrIJFIMDrcF8vuHIBwf3dUG0x44eujePQ/B1FSqRe7POpADFBkc9LOluIfydkAgKV39UdksKe4BRER/Y6fhwLPTeyL+6K7w0kqwbaTxYhfuQubMi7CzLlRdoEBimyKtqIOT395CGYBuGdodzwwIkTskoiIWiSVShA/QIOXpvRDsJcLyqoN+MvGw7h3dRrv1LMDDFBkMy5X6TH73/tRWmVAv24qbhRMRDahu5cr/jq5H+4ZGgSFkxSZeeW4c9Ue/PXbo7jCdaNsFgMU2YTLVXo88NE+5BRVwt9DgX89GA0XuUzssoiIWsVJJsXtA7vhtYSBGBHqDUEA1u7Lw/gVP2Ptvgtc8sAGMUCR1btcpcfMj38NT18+NhIhPq5il0VE1GZernI8dmtPPDexL4I8XVBeU4+/fnsMU97fjeRjWt6tZ0MYoMiqlVUbMPPjfcjWVsKvMTz18nMXuywionbpq/HAkjv6Y8bwYLg4y5CtrcQT/83AHf/cg20nihikbIBE4N9Sh9PpdFCr1aioqIBKpRK7HJtVVm3AAx/98mt4enQkevszPBHRjRmMZuw6VSJ2Ga1SpTci5UQRtp0sgt7YsCHx4O5qPHNbH4zr48e5nl2oLT+/GaA6AQNU+12pNuCBj/fhZKEOvu4KrH+M4YmIWs+WAlSTyrp6/Hi8CNtzimFoDFJDQjzx6JiemNg/AE4yDhp1NgYokTFAtU9+WQ0e/c9BZGsrG8NTDHr7e4hdFhHZEFsMUE10tfVIPq7Fjpxi1JsafkQHqpV4KDYUM0YEw9OVCwd3FgYokTFA3byfjmvx7MbDqKwzwtddgS8fjUF4AMMTEbWNLQeoJhW19diRXYydp0tQWWcEACidpbh7SBAeHhWGvhp+b+xoDFAiY4Bqu3qTGf9IzsZHu88DaOi2XvXAUAR5uohcGRHZInsIUE3qTWbsP1+GbSeLkH+l1nJ8eKgX7h7SHVMGd4PaxVnECu0HA5TIGKDaprCiFvPWHULGhSsAgLmjw/DCpAjInTjeT0Q3x54CVBNBEHC6uAqp2cXIzLuCpp/ecicp4vr5449DumNsXz84c67UTWvLz2+nLqqJqEW7TpVg4YYslFUb4KFwwlv3RWLSQI3YZRERWR2JRII+AR7oE+CB8hoD9p0vQ9rZyygor8XWo1psPaqFt5scdwzuhvgBGowI82aY6kTsgeoE7IG6sZJKPd7ddgpf7s+DIAADAlX4v5lD0cPHTezSiMgO2GMPVEsEQUD+lVqkn7uMfecuQ9c4VwoAVEonjI/wR1y/AIzr6wcPJYf5boRDeCJjgLq2WoMJn+w5hw9/PotqgwkA8EBMCJbc0R9KZ27NQkQdw1EC1G+ZzAJOFupw8MIVHL5Ybpl4DgDOMglG9vTB2D5+iO3lg34aFaRSri/1exzCI6tjNgv49lAB3v4pB4UVdQCAyO5q/HVKf4wI8xa5OiIi2yeTSjAwSI2BQWqYzQLOlVYjK78cWfnl0OrqsPt0KXafLgUAeLk6I7aXD2J7+WJULx/09HXjgp1txB6oTsAeqF+ZzQJ2nirBWz/m4EShDgAQ5OmCF26PwB2DuvF/QETUKRyxB+p6tBV1OHyxHNnaSpwqqrSseN7Ez0OBqGBPRAV7YkiIJwZ394S7wvH6WDiEJzIGqIY76zYevIgNB/JRUN5w262H0gnzxvfG7FGhHK4jok7FAHVtRrMZFy7X4GShDtnaSpwproLR3DwKSCRAH38PRAV7YkCQCn0DPBChUUHtat/zqDiER6IwmszYkVOC9fvzsCOnGE3/HlVKJ9w/LBh/Ht8b3m5cQZeISExOUil6+bmjl5877hjcEDYvlFXjfGk1zpVU41xpNcqqDcgpqkROUSVw8NfXBqqViOimQoSm4W7AMF83hPq6OeQ6VAxQ1C6Xq/TYe/Yy9pwuwY6cEpRU6i3PjQjzxowRwbh9YDf2OBERWSm5kxTh/h4I/82WWRW19ThXUoXcyzW4eKUGF6/U4nK1AZcq6nCpog7bs4ubncPXXY4wXzdLoOru5YruXi7o7ukCX3eFXU7XYICiNqkxGJF5oRy7z5Rgz+lSHL+ka/a8t5sc90Z3x7Thwejlx81/iYhskdrFGUNCvDAkxMtyrMZgRMGVWly8UouL5bUorKhFkU6Pitp6lFYZUFplwIHcK1edSy6TItBTie5ertColQhQKRCgUsLfQwF/lRIBKiX83BU2t3iy1QeoDz74AG+99Ra0Wi0iIyPxz3/+EyNGjLhm+40bN+Lll19Gbm4uwsPD8eabb2Ly5MmW5wVBwNKlS/HRRx+hvLwct9xyCz788EOEh4db2pSVlWH+/Pn4/vvvIZVKcc899+C9996Du7vjBAKTWcCFy9XI1lY2PAp1yCmqRF5ZDX4/ay5C44Ex4b4YHe6H2J4+NvePgIiIbsxV7oTwAI+r9ietqzehSFeHIp2+4dfKOlyuMuBytQFXagwwmMzIvVyD3Ms11z2/h9IJPm5yeLvJ4e2maPi9uxwh3q6YMSKkMy/tplh1gNqwYQMSExOxevVqxMTEYOXKlYiPj0dOTg78/f2vap+WloYZM2Zg+fLluOOOO7Bu3TokJCQgMzMTAwcOBAD84x//wPvvv4/PP/8cYWFhePnllxEfH48TJ05AqVQCAGbOnInCwkKkpKSgvr4ec+bMwWOPPYZ169Z16fV3BoPRjIraesujrNqAwopaFFbUobC8Fpcq6qBtfBhM5hbPoVEpcUtvX4wJ98UtvX3h56Ho4qsgIiJroXSWoYePW4sLIRvNZpTX1ONylQGl1XqU19SjoqYe5bWGht/X1qO8th4ms4DKOiMq64xXBa1efm74Q4Q/nKQSODtJG36VSUVfZd2q78KLiYnB8OHDsWrVKgCA2WxGcHAw5s+fj0WLFl3Vftq0aaiurkZSUpLl2MiRIxEVFYXVq1dDEAQEBgbi2WefxV/+8hcAQEVFBQICAvDZZ59h+vTpOHnyJPr3748DBw5g2LBhAIDk5GRMnjwZFy9eRGBg4A3r7qy78HR19fjqQD7qTQKMJjPqTWbUmwXUG80wmgXojWbo602obXoYTKhr/L2u1oiK2nrU1pta/X5KZyn6Bnigr8YDfTUq9NM0/N7HnYGJiKwb78KzHYIgoFpvQqW+3hKiqvRGVNY1/NlD6YQ7Bjf/2eumcEJsL58Or8Uu7sIzGAzIyMjA4sWLLcekUini4uKQnp7e4mvS09ORmJjY7Fh8fDw2b94MADh//jy0Wi3i4uIsz6vVasTExCA9PR3Tp09Heno6PD09LeEJAOLi4iCVSrFv3z7cfffdV72vXq+HXv/r5OmKigoADX8RHangSg1e+Saj3eeRSAB3hQwqF2d4ucgRoFZAo3JBgEoBjbrxV5USGrULZL+f+GfWQ6fTt3xiIiIrUW8yQy7UiV0GtZJCAXgrJIDKGUALd/T97u9SZpR1+M9Y4Nef263pW7LaAFVaWgqTyYSAgIBmxwMCApCdnd3ia7RabYvttVqt5fmmY9dr8/vhQScnJ3h7e1va/N7y5cvxt7/97arjwcHB17o8IiIislKVlZVQq9XXbWO1AcqWLF68uFnPl9lsRllZGXx8fDp8aXydTofg4GDk5+c75CKdjn79AD8DR79+gJ+Bo18/wM+gs65fEARUVla2arqO1QYoX19fyGQyFBUVNTteVFQEjUbT4ms0Gs112zf9WlRUhG7dujVrExUVZWlTXNx8fQuj0YiysrJrvq9CoYBC0XxekKen5/UvsJ1UKpVD/qNp4ujXD/AzcPTrB/gZOPr1A/wMOuP6b9Tz1MRq7zeXy+WIjo5Gamqq5ZjZbEZqaipiY2NbfE1sbGyz9gCQkpJiaR8WFgaNRtOsjU6nw759+yxtYmNjUV5ejoyMX+cabd++HWazGTExMR12fURERGS7rLYHCgASExMxe/ZsDBs2DCNGjMDKlStRXV2NOXPmAABmzZqFoKAgLF++HACwYMECjB07FitWrMCUKVOwfv16HDx4EGvWrAEASCQSLFy4EK+99hrCw8MtyxgEBgYiISEBANCvXz9MmjQJjz76KFavXo36+nrMmzcP06dPb1WXHhEREdk/qw5Q06ZNQ0lJCZYsWQKtVouoqCgkJydbJoHn5eVBKv21E23UqFFYt24dXnrpJbz44osIDw/H5s2bLWtAAcDzzz+P6upqPPbYYygvL8fo0aORnJxsWQMKANauXYt58+ZhwoQJloU033///a678OtQKBRYunTpVUOGjsLRrx/gZ+Do1w/wM3D06wf4GVjD9Vv1OlBERERE1shq50ARERERWSsGKCIiIqI2YoAiIiIiaiMGKCIiIqI2YoCyQsuXL8fw4cPh4eEBf39/JCQkICcnp1mburo6PPXUU/Dx8YG7uzvuueeeqxYRtWUffvghBg8ebFkkLTY2Fj/88IPleXu//t974403LMtwNLH3z2DZsmWQSCTNHhEREZbn7f36AaCgoAAPPvggfHx84OLigkGDBuHgwYOW5wVBwJIlS9CtWze4uLggLi4Op0+fFrHijhUaGnrV14BEIsFTTz0FwP6/BkwmE15++WWEhYXBxcUFvXr1wquvvtpsnzZ7/xqorKzEwoUL0aNHD7i4uGDUqFE4cOCA5XlRr18gqxMfHy98+umnwrFjx4SsrCxh8uTJQkhIiFBVVWVp88QTTwjBwcFCamqqcPDgQWHkyJHCqFGjRKy6Y23ZskX43//+J5w6dUrIyckRXnzxRcHZ2Vk4duyYIAj2f/2/tX//fiE0NFQYPHiwsGDBAstxe/8Mli5dKgwYMEAoLCy0PEpKSizP2/v1l5WVCT169BAefvhhYd++fcK5c+eEH3/8UThz5oylzRtvvCGo1Wph8+bNwuHDh4W77rpLCAsLE2pra0WsvOMUFxc3+/tPSUkRAAg7duwQBMH+vwb+/ve/Cz4+PkJSUpJw/vx5YePGjYK7u7vw3nvvWdrY+9fA/fffL/Tv31/YuXOncPr0aWHp0qWCSqUSLl68KAiCuNfPAGUDiouLBQDCzp07BUEQhPLycsHZ2VnYuHGjpc3JkycFAEJ6erpYZXY6Ly8v4eOPP3ao66+srBTCw8OFlJQUYezYsZYA5QifwdKlS4XIyMgWn3OE63/hhReE0aNHX/N5s9ksaDQa4a233rIcKy8vFxQKhfDll192RYldbsGCBUKvXr0Es9nsEF8DU6ZMER555JFmx/74xz8KM2fOFATB/r8GampqBJlMJiQlJTU7PnToUOGvf/2r6NfPITwbUFFRAQDw9vYGAGRkZKC+vh5xcXGWNhEREQgJCUF6erooNXYmk8mE9evXo7q6GrGxsQ51/U899RSmTJnS7FoBx/kaOH36NAIDA9GzZ0/MnDkTeXl5ABzj+rds2YJhw4bhvvvug7+/P4YMGYKPPvrI8vz58+eh1WqbfQZqtRoxMTF28xn8lsFgwH//+1888sgjkEgkDvE1MGrUKKSmpuLUqVMAgMOHD2PPnj24/fbbAdj/14DRaITJZGq20DUAuLi4YM+ePaJfv1WvRE4N+/8tXLgQt9xyi2VFda1WC7lcftWGxQEBAdBqtSJU2TmOHj2K2NhY1NXVwd3dHd9++y369++PrKwsh7j+9evXIzMzs9l4fxNH+BqIiYnBZ599hr59+6KwsBB/+9vfMGbMGBw7dswhrv/cuXP48MMPkZiYiBdffBEHDhzA008/DblcjtmzZ1uus2lnhib29Bn81ubNm1FeXo6HH34YgGP8G1i0aBF0Oh0iIiIgk8lgMpnw97//HTNnzgQAu/8a8PDwQGxsLF599VX069cPAQEB+PLLL5Geno7evXuLfv0MUFbuqaeewrFjx7Bnzx6xS+lyffv2RVZWFioqKrBp0ybMnj0bO3fuFLusLpGfn48FCxYgJSXlqv99OYqm/2UDwODBgxETE4MePXrgq6++gouLi4iVdQ2z2Yxhw4bh9ddfBwAMGTIEx44dw+rVqzF79myRq+t6n3zyCW6//XaH2pP0q6++wtq1a7Fu3ToMGDAAWVlZWLhwIQIDAx3ma+CLL77AI488gqCgIMhkMgwdOhQzZsxARkaG2KXxLjxrNm/ePCQlJWHHjh3o3r275bhGo4HBYEB5eXmz9kVFRdBoNF1cZeeRy+Xo3bs3oqOjsXz5ckRGRuK9995ziOvPyMhAcXExhg4dCicnJzg5OWHnzp14//334eTkhICAALv/DH7P09MTffr0wZkzZxzia6Bbt27o379/s2P9+vWzDGM2Xefv7zqzp8+gyYULF7Bt2zb86U9/shxzhK+B5557DosWLcL06dMxaNAgPPTQQ3jmmWewfPlyAI7xNdCrVy/s3LkTVVVVyM/Px/79+1FfX4+ePXuKfv0MUFZIEATMmzcP3377LbZv346wsLBmz0dHR8PZ2RmpqamWYzk5OcjLy0NsbGxXl9tlzGYz9Hq9Q1z/hAkTcPToUWRlZVkew4YNw8yZMy2/t/fP4Peqqqpw9uxZdOvWzSG+Bm655Zarli85deoUevToAQAICwuDRqNp9hnodDrs27fPbj6DJp9++in8/f0xZcoUyzFH+BqoqamBVNr8x7RMJoPZbAbgWF8Dbm5u6NatG65cuYIff/wRU6dOFf/6O32aOrXZk08+KajVauHnn39udgtvTU2Npc0TTzwhhISECNu3bxcOHjwoxMbGCrGxsSJW3bEWLVok7Ny5Uzh//rxw5MgRYdGiRYJEIhF++uknQRDs//pb8tu78ATB/j+DZ599Vvj555+F8+fPC3v37hXi4uIEX19fobi4WBAE+7/+/fv3C05OTsLf//534fTp08LatWsFV1dX4b///a+lzRtvvCF4enoK3333nXDkyBFh6tSpdnULuyAIgslkEkJCQoQXXnjhqufs/Wtg9uzZQlBQkGUZg2+++Ubw9fUVnn/+eUsbe/8aSE5OFn744Qfh3Llzwk8//SRERkYKMTExgsFgEARB3OtngLJCAFp8fPrpp5Y2tbW1wp///GfBy8tLcHV1Fe6++26hsLBQvKI72COPPCL06NFDkMvlgp+fnzBhwgRLeBIE+7/+lvw+QNn7ZzBt2jShW7duglwuF4KCgoRp06Y1WwPJ3q9fEATh+++/FwYOHCgoFAohIiJCWLNmTbPnzWaz8PLLLwsBAQGCQqEQJkyYIOTk5IhUbef48ccfBQAtXpe9fw3odDphwYIFQkhIiKBUKoWePXsKf/3rXwW9Xm9pY+9fAxs2bBB69uwpyOVyQaPRCE899ZRQXl5ueV7M65cIwm+WNCUiIiKiG+IcKCIiIqI2YoAiIiIiaiMGKCIiIqI2YoAiIiIiaiMGKCIiIqI2YoAiIiIiaiMGKCIiIqI2YoAiIiIiaiMGKCIiIqI2YoAiIiIiaiMGKCIiIqI2YoAiImqFkpISaDQavP7665ZjaWlpkMvlSE1NFbEyIhIDNxMmImqlrVu3IiEhAWlpaejbty+ioqIwdepUvPPOO2KXRkRdjAGKiKgNnnrqKWzbtg3Dhg3D0aNHceDAASgUCrHLIqIuxgBFRNQGtbW1GDhwIPLz85GRkYFBgwaJXRIRiYBzoIiI2uDs2bO4dOkSzGYzcnNzxS6HiETCHigiolYyGAwYMWIEoqKi0LdvX6xcuRJHjx6Fv7+/2KURURdjgCIiaqXnnnsOmzZtwuHDh+Hu7o6xY8dCrVYjKSlJ7NKIqItxCI+IqBV+/vlnrFy5El988QVUKhWkUim++OIL7N69Gx9++KHY5RFRF2MPFBEREVEbsQeKiIiIqI0YoIiIiIjaiAGKiIiIqI0YoIiIiIjaiAGKiIiIqI0YoIiIiIjaiAGKiIiIqI0YoIiIiIjaiAGKiIiIqI0YoIiIiIjaiAGKiIiIqI3+H66Wq1bPSmNzAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXg0lEQVR4nO3deXhU5d0+8PvMTGYm+0oyJGQDAmEJBAiE4ILWaKi44PKKFIVS6tIKoumriBWwtRWXQlHhlVf7av1ZEIulFJFSMSCgiRCysIYQ1gSyb5M9meX8/pjMwEiADJnMmeX+XNdc6syZM98TdXLzPN/zPIIoiiKIiIiIqNdkUhdARERE5GoYoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERERENlJIXYA7MhqNKC8vh7+/PwRBkLocIiIi6gVRFNHc3IzIyEjIZNceY2KA6gfl5eWIjo6WugwiIiK6AWVlZRg0aNA1j2GA6gf+/v4ATP8CAgICJK6GiIiIeqOpqQnR0dGW3+PXwgDVD8zTdgEBAQxQRERELqY37TdsIiciIiKyEQMUERERkY0YoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERERENmKAIiIiIrIRAxQRERGRjRigiIiIiGzEAEVERERkIwYoIiIiIhsxQBER2eBCQxv2nqxBTXOn1KUQkYQUUhdAROTscs/V4/PcMvxwpg4XGtotzw8e4IvU+FDMnRKLRE2AhBUSkaMxQBERXYXBKOK9XSV4J6sEomh6TiYAob4q1LZ04kxNK87UtOKLvDL89u4RmDslDoIgSFs0ETkEAxQRUQ+qmzvw3MZCZJ+uAwBMHhyCtMGhGDLAD2ovOVo69SipasbeklocuajFq18ex3en6vD2w2MQ7KuUuHoi6m+CKJr/XEX20tTUhMDAQGi1WgQEcFifyNVUN3Xg/rXfo0LbAaVChscnxyJtcGiPx4qiiKwT1fgi7wL0RhGDw3yx+ddTEOTDEEXkamz5/c0mciKiy3TpjfjV+nxUaDsQ4a/CK3ePuGp4AgBBEJA+IgIv3z0CIT5KnKltxa/X50NnMDqwaiJyNAYoIqLL/O7LY8g73wBvLzmevSMBkUHevXpfTIgPFt4xFCqFDNmn67B86zFwgJ/IfTFAERF123igFOv3l0IA8MQt8YgIUNv0/uhgHzxxy2AIADbsL8Vfs8/1R5lE5AQYoIiIABRXNmPpv44CAO5PjsSYQUE3dJ7k6CA8PGEQAOC1bcdx9KLWXiUSkRNhgCIijyeKIn6/7Rh0BhFjBgVietLAPp3vrpERSIkNhlEEfrvlKIxGTuURuRsGKCLyeDuPV+H7U3VQyAT8bFJMn9dyEgQBj06MhtpLhkNljdiYW2anSonIWTBAEZFH69Qb8MevigAAd42KQJifyi7nDfJRYkZyFADgzR0nUNfCrV+I3AkDFBF5tL9+fw7n69sQ6O2Fu0f3berux24fHo7oYG9o23V4498n7HpuIpIWAxQReaya5k68t+sUAODBcVFQe8nten65TMBjk2MBAJvyLiDvfINdz09E0mGAIiKPtW7PabR06jFyYADShlx9scy+GDLADzd1n/udrJJ++QwicjwGKCLySNp2HTYeKAUA/Oq2wZD14ybA94yJhEwA9p6sQWFZY799DhE5DgMUEXmkjQdK0dplwPAI/2tu1WIPA/xVmNz9GWt2cRSKyB0wQBGRx9EZjJZVwuffEt/nZQt64+7RAyEA+KaoGsfKubgmkatjgCIij/PV4QpUaDswwF+F+5MjHfKZmkA1JsaFAADW7j7lkM8kov7DAEVEHkUURXyw9wwAYG5aLFQK+955dy3mFc7/fbQSJVXNDvtcIrI/Bigi8ig5p+twvKIJ3l5yzE6NdehnRwV7Y1xMEEQRlhBHRK6JAYqIPMpH358DAPxXyiAE+yod/vkZIzUAgK2HyqFt0zn884nIPpw+QK1duxZxcXFQq9VITU3FgQMHrnn8pk2bkJiYCLVajaSkJGzfvt3ymk6nw+LFi5GUlARfX19ERkZizpw5KC8vtzpHXFwcBEGwerzxxhv9cn1E5Dg1zZ3YXVwNAJiTFidJDUMG+GJQsDc69UZsyuMeeUSuyqkD1Oeff47MzEwsX74c+fn5GDt2LDIyMlBdXd3j8dnZ2Zg1axbmz5+PgoICzJgxAzNmzMDRo0cBAG1tbcjPz8fSpUuRn5+PzZs3o7i4GPfdd98V5/r973+PiooKy2PhwoX9eq1E1P/+VXgRBqOI5OggDA33k6QGQRBw27ABAIAN+0shiqIkdRBR3wiiE//fm5qaiokTJ2LNmjUAAKPRiOjoaCxcuBAvvfTSFcfPnDkTra2t2LZtm+W5yZMnIzk5GevWrevxM3JzczFp0iScP38eMTExAEwjUM899xyee+65G6q7qakJgYGB0Gq1CAgIuKFzEJF9iaKIn76zDycqm/GHGaMtW6wAQF1LJwpKGx1WS4fOgP/+4hA6dEas/2Uqbhoa5rDPJqKrs+X3t9OOQHV1dSEvLw/p6emW52QyGdLT05GTk9Pje3JycqyOB4CMjIyrHg8AWq0WgiAgKCjI6vk33ngDoaGhGDduHN5++23o9fqrnqOzsxNNTU1WDyJyLsfKm3CishlKhQz3jnHM0gVXo/aSWxbv/NsP5yWthYhujNMGqNraWhgMBkRERFg9HxERgcrKyh7fU1lZadPxHR0dWLx4MWbNmmWVNJ999lls3LgRu3fvxlNPPYXXX38dL7744lVrXbFiBQIDAy2P6Ojo3l4mETnIP/IvAADuHBmBQB8viasBbhsWDgD4+ngVqpo6JK6GiGzltAGqv+l0OjzyyCMQRRHvv/++1WuZmZm47bbbMGbMGDz99NNYuXIl3nvvPXR2dvZ4riVLlkCr1VoeZWVsDCVyJl16I/5VaLpZ5OHxgySuxiQq2BsJ4X4wGEV81r0nHxG5DqcNUGFhYZDL5aiqqrJ6vqqqChqNpsf3aDSaXh1vDk/nz5/Hzp07rzvPmZqaCr1ej3PnzvX4ukqlQkBAgNWDiJzH7uJq1Ld2YYC/CrckOE+/kbmZfNPBCzAanbYdlYh64LQBSqlUYsKECcjKyrI8ZzQakZWVhbS0tB7fk5aWZnU8AOzcudPqeHN4KikpwTfffIPQ0OtvIlpYWAiZTIbw8PAbvBoiktI/8kzTdw+Mi4JC7jxfe+NiguHtJcfFxnbknquXuhwisoFC6gKuJTMzE3PnzkVKSgomTZqE1atXo7W1FfPmzQMAzJkzB1FRUVixYgUAYNGiRZg6dSpWrlyJ6dOnY+PGjTh48CA++OADAKbw9PDDDyM/Px/btm2DwWCw9EeFhIRAqVQiJycH+/fvx+233w5/f3/k5OTg+eefx2OPPYbg4GBpfhBEdMO07TrL2k8POcn0nZlSIcOE2GB8d6oWWwovInXw9f9AR0TOwakD1MyZM1FTU4Nly5ahsrISycnJ2LFjh6VRvLS0FDLZpT9NTpkyBRs2bMArr7yCl19+GQkJCdiyZQtGjx4NALh48SK2bt0KAEhOTrb6rN27d+O2226DSqXCxo0b8eqrr6KzsxPx8fF4/vnnkZmZ6ZiLJiK72n2iGjqDiKHhfhiu8Ze6nCtMHhyC707VYtvhCiy/dxTUXo7bm4+IbpxTrwPlqrgOFJHzeOrTg/jPsSos/MlQ/Oau4T0e4+h1oC5nFEUs/sdhNLTpsO6x8Zg2eqAkdRCRm6wDRUTUV21deuw5WQMAmDa655tPpCYTBKTGm6buNudflLgaIuotBigiclt7imvQoTMiOsQbIwc672iweVHN3cXVaGzrkrgaIuoNBigicls7jpluEvnp6IEQBEHiaq4uKtgb0cHe0BlEfHWkQupyiKgXGKCIyC116g3YVWS6+y5jlHNO311ucvco1JYCTuMRuQIGKCJyS9mn6tDcqUdEgArjooOkLue6UuNDIADIPdeA8sZ2qcshoutggCIit/Tvo6apsIxRGshkzjt9Zxbko8TQcD8AwI6jPe/fSUTOgwGKiNyO3mDEzuOmbZ2c9e67nkyINS3WywBF5PwYoIjI7eSdb0BDmw7BPl6YFBcidTm9Nj7GFKByz9ejurlD4mqI6FoYoIjI7XzbvfbT1GEDnGrvu+sJ8VUiPswXogh8fazq+m8gIsm4zjcLEVEv7T5huvvutuGutwH4+JggAJzGI3J2DFBE5FYqtR04UdkMQQBuHTZA6nJsZu6DyjlTh4ZWLqpJ5KwYoIjIrew5aRp9GjsoCCG+SomrsV24vxrRwd4wGEXsLOI0HpGzYoAiIrfybbGp/+m24a43+mRmbibnNB6R82KAIiK3oTMY8V1JLQDX7H8yG989jfddSS2aO3QSV0NEPWGAIiK3kXe+Ac2deoT4KjEmKlDqcm5YZKAamgA1ugxGy4gaETkXBigichvmsHFrQphLrD5+NYIgYGy0KQDu6r6jkIicCwMUEbmNb4tNYeP2RNedvjMbOygIALC7uBoGoyhtMUR0BQYoInILFdp2y/IFtyS4bgO52ZABfvBRytHYpkN+aYPU5RDRjzBAEZFb2Nu9+rirLl/wY3KZgKTuPq6sIk7jETkbBigicgvfn6oDANySECZxJfZjnsbL4npQRE6HAYqIXJ4oisg+bQpQU4a4T4AaFRkAmQCUVLegtK5N6nKI6DIMUETk8kqqW1Db0gmVQobxsUFSl2M3vioFhob7AQCyTnAUisiZMEARkcvLPmVaPHNiXAhUCrnE1diXeRqPyxkQORcGKCJyed+bp++Ghkpcif2ZA9QPZ+q4KjmRE2GAIiKXZjCK+OGMKUDd5Eb9T2YRASqE+6ugM4jY171NDRFJjwGKiFza0YtaNHfo4a9WYLQLb99yNYIgYMwg03Xt4bYuRE6DAYqIXNr3p02jMpMHh0Luwtu3XMvoyO4AdbIGoshVyYmcAQMUEbm0nNPm6Tv3638yGxbhDy+5gMqmDpRUt0hdDhGBAYqIXFin3oDcc/UAgClD3a//yUypkGFYhD8ATuMROQsGKCJyWQWljejQGRHmp0JC93pJ7so8jbe3hAGKyBkwQBGRyzKv/zRlSCgEwT37n8xGRwUAAPafqUdbl17iaoiIAYqIXNYPZ03Td2lu3P9kpglQI8RXiS6DEfvP1EtdDpHHY4AiIpfUqTegsKwRAJAaHyJtMQ4gCAJGR5pGofac5DQekdQYoIjIJR2+oEWX3ogwPyXiw3ylLschRpn7oBigiCTHAEVELulA9/TdpPgQt+9/Mhsx0B8yAThT24qy+japyyHyaAxQROSSzAFqYpz7T9+Z+SgVGDLAdLchp/GIpMUARUQuR28wIu98AwDTCJQnGdXdB8VpPCJpMUARkcspqmhGS6dp/7tETYDU5TiUuQ8q50wd9AajxNUQeS4GKCJyOfvPmrZvSYkNdtv9764mNsQHPko5mjv0OHJRK3U5RB6LAYqIXI55+5ZJ8e6//tOPyWQCEjWmbV2+715IlIgcjwGKiFyKKIqX3YEXLHE10hgx0DRt+R0DFJFkGKCIyKWcqm5BQ5sOKoUMSVFBUpcjiZHdASr/fCO3dSGSCAMUEbmUA93Td+NjgqFUeOZXWLi/CqHd27rknmuQuhwij+SZ3z5E5LIs6z952PIFlxMEwTKNxz4oImkwQBGRSznYPeIyyYMW0OyJeRpvXwkDFJEUGKCIyGVUaNtxsbEdMgEYFxMkdTmSMt+JV1TRhNqWTomrIfI8DFBE5DLyzzcCMN2F5qtSSFuMxAK8vRAd7A0AyD5dJ3E1RJ6HAYqIXIZ5+5YJsZ65fMGPWfqgOI1H5HAMUETkMvJKGaAuN5LrQRFJhgGKiFxCh86AY91bl4yPYYACgIRwP8gFARcb21FW3yZ1OUQehQGKiFzC4Qta6I0iwv1VGNTd++PpVF5yxIX5AABy2AdF5FAMUETkEi7vfxIEz9pA+FoSNaZpvJwzDFBEjsQARUQugQ3kPTMvZ/DDmTqIoihxNUSegwGKiJyeKIrI724gH88AZWXwAF8oZAIqtB04X8c+KCJHYYAiIqd3rq4N9a1dUCpkGBUZIHU5TkWlkCM+zBcAp/GIHMnpA9TatWsRFxcHtVqN1NRUHDhw4JrHb9q0CYmJiVCr1UhKSsL27dstr+l0OixevBhJSUnw9fVFZGQk5syZg/Lycqtz1NfXY/bs2QgICEBQUBDmz5+PlpaWfrk+Iro+8/TdmKhAqBRyiatxPuZpPDaSEzmOUweozz//HJmZmVi+fDny8/MxduxYZGRkoLq6usfjs7OzMWvWLMyfPx8FBQWYMWMGZsyYgaNHjwIA2trakJ+fj6VLlyI/Px+bN29GcXEx7rvvPqvzzJ49G8eOHcPOnTuxbds27N27F08++WS/Xy8R9Yz9T9c2nH1QRA4niE78f1tqaiomTpyINWvWAACMRiOio6OxcOFCvPTSS1ccP3PmTLS2tmLbtm2W5yZPnozk5GSsW7eux8/Izc3FpEmTcP78ecTExKCoqAgjR45Ebm4uUlJSAAA7duzA3XffjQsXLiAyMvK6dTc1NSEwMBBarRYBAZxuIOqrjD/vRXFVMz54fALuGqWx+/nrWjpRUNpo9/M6is5gxMLPCqA3isj6zVQMGeAndUlELsmW399OOwLV1dWFvLw8pKenW56TyWRIT09HTk5Oj+/JycmxOh4AMjIyrno8AGi1WgiCgKCgIMs5goKCLOEJANLT0yGTybB///4ez9HZ2YmmpiarBxHZR1OHDiermwGwgfxqvOQyS2jiNB6RYzhtgKqtrYXBYEBERITV8xEREaisrOzxPZWVlTYd39HRgcWLF2PWrFmWpFlZWYnw8HCr4xQKBUJCQq56nhUrViAwMNDyiI6O7tU1EtH1Hb2ghSgCg4K9Eeankrocp2Xpg2IjOZFDOG2A6m86nQ6PPPIIRFHE+++/36dzLVmyBFqt1vIoKyuzU5VEdOiCafuWsYOCpC3EyZn7oPazD4rIIRRSF3A1YWFhkMvlqKqqsnq+qqoKGk3PPRAajaZXx5vD0/nz57Fr1y6reU6NRnNFk7per0d9ff1VP1elUkGl4p+MifrDobJGAMCYQYHSFuLk4sN8oZTLUNvShVPVLUiI8Je6JCK35rQjUEqlEhMmTEBWVpblOaPRiKysLKSlpfX4nrS0NKvjAWDnzp1Wx5vDU0lJCb755huEhoZecY7Gxkbk5eVZntu1axeMRiNSU1PtcWlEZIPDFxoBAGOjgyStw9mZ+qC4HhSRozhtgAKAzMxMfPjhh/jkk09QVFSEX/3qV2htbcW8efMAAHPmzMGSJUssxy9atAg7duzAypUrceLECbz66qs4ePAgFixYAMAUnh5++GEcPHgQ69evh8FgQGVlJSorK9HV1QUAGDFiBKZNm4YnnngCBw4cwPfff48FCxbg0Ucf7dUdeERkPzXNnSjXdkAQgNFRHIG6nuFcD4rIYZx2Cg8wLUtQU1ODZcuWobKyEsnJydixY4elUby0tBQy2aUMOGXKFGzYsAGvvPIKXn75ZSQkJGDLli0YPXo0AODixYvYunUrACA5Odnqs3bv3o3bbrsNALB+/XosWLAAd9xxB2QyGR566CG8++67/X/BRGTFPPo0dIAf/FRO/XXlFEwbC5dj/9l6GI0iZDJuukzUX5x6HShXxXWgiOxj1c6TeDerBA+NH4SVj4ztt89x9XWgzPRGIxZtLESn3ogdz93SHaiIqLfcYh0oIiJzA/nYaE7f9YZCJsPQcK4HReQIDFBE5JREUbRM4Y3hEga9NjyCfVBEjsAARURO6UJDOxradPCSCxgxkLfk95Z5QU1zHxQR9Q8GKCJySoe6R59GDAyASiGXthgXEhvqC7WXDNp2HYoqua0UUX9hgCIip3S4ewVyLqBpG7lMQEI4p/GI+hsDFBE5pUsrkAdJWocrMvdB/cAFNYn6DQMUETkdg1HEkYvcA+9GXd4HZWAfFFG/YIAiIqdzuqYFbV0G+CjlltvyqfdiQnzg7SVHc4cex8q1UpdD5JYYoIjI6Zin70ZHBULO1bRtJpMJSIgwBc/9Z+olrobIPTFAEZHTMTeQj2UD+Q0z90HtP8s+KKL+wABFRE6HC2j2nTlAHWAfFFG/YIAiIqfSqTegqKIZABvI+yI6xAdqLxmaOvQ4wfWgiOyOAYqInMqJimZ0GYwI9vFCdIi31OW4LLlMsDTgsw+KyP4YoIjIqZin75IGBUEQ2EDeF+yDIuo/DFBE5FQOdTeQJ7OBvM+GXdYHxX3xiOyLAYqInAobyO0nNtQHKoUMDW06lFS3SF0OkVthgCIip9Haqcep7l/0Y6I5AtVXCpkMQwZ090FxGo/IrhigiMhpHL2ohVEEBgaqEe6vlroctzCMC2oS9QsGKCJyGocs03ccfbKXyxvJRZF9UET2wgBFRE7D3EDO/if7iQvzhZdcQG1LF07XtEpdDpHbYIAiIqdhbiBPjg6StA534iVnHxRRf2CAIiKnUN/ahbL6dgCmTYTJfszLGbAPish+GKCIyCmYR58Gh/ki0NtL2mLcjKWRnH1QRHbDAEVETuGwpf+Jo0/2NjjMDwqZgKqmTpyva5O6HCK3wABFRE7hUFkjADaQ9welQob4MF8AwA9n2AdFZA8MUEQkOVEULXfgjeUCmv3i0nIG7IMisgcGKCKSXIW2A7UtnZDLBIyKZIDqD5caydkHRWQPDFBEJDlzA/nwCH+oveTSFuOmhgzwhVwQUK7twIWGdqnLIXJ5DFBEJDlO3/U/lZcccWE+ANgHRWQPDFBEJLnDli1cgiStw90NYx8Ukd0wQBGRpIxGEYfLuISBI1y+Lx4R9Q0DFBFJ6mxdK5o79VApZJYREuofQ8P9IBOAsvp2lDeyD4qoLxigiEhS5um7UZEB8JLzK6k/qb3kiAkx9UFxFIqob/htRUSSOlRmbiAPkrYQDzGc++IR2QUDFBFJyjwCNZYN5A4xTMNGciJ7YIAiIsnoDEYcK28CwAZyR0kI94MA4GxtK6qbOqQuh8hlMUARkWSKK5vRqTfCX61AXKiv1OV4BB+lAtHdfVA/cBSK6IYxQBGRZA5fuLR8gUwmSFyN5xgW4QfAtK0LEd0YBigikgwX0JQGNxYm6jsGKCKSjGULFwYoh0oINwWoU9UtqG3plLgaItfEAEVEkmjvMuBkVTMA7oHnaH5qBaKCvAEABzgKRXRDGKCISBLHK7QwGEUM8FdBE6CWuhyPc2k9KPZBEd0IBigikkSheQHNQYEQBDaQO9owTXcjOUegiG4IAxQRSYIN5NIa1t0HdaKyGQ2tXRJXQ+R6GKCISBKXL2FAjhfg7YWBgaap0wPnOApFZCsGKCJyOG27DmdrWwHwDjwpDeO+eEQ3jAGKiBzuSPfoU0yID4J9lRJX47kurQfFRnIiWzFAEZHDHbL0P3H6TkrmFcmPVzRB266TuBoi18IARUQOd6isEQCn76QW5KNEhL8KoggcZB8UkU0YoIjI4dhA7jyGcVsXohvCAEVEDlXd1IHKpg7IBGB0FAOU1IZpuKAm0Y1ggCIihzLvf5cQ7g9flULiasjcSH60vAktnXqJqyFyHQxQRORQh9lA7lRCfJUI81PCYBTZB0VkAwYoInKowu4G8jHRQZLWQZewD4rIdk4foNauXYu4uDio1WqkpqbiwIED1zx+06ZNSExMhFqtRlJSErZv3271+ubNm3HXXXchNDQUgiCgsLDwinPcdtttEATB6vH000/b87KIPJIoijhy8dIeeOQcuLEwke3sEqB0Oh3KyspQXFyM+nr7/Qnm888/R2ZmJpYvX478/HyMHTsWGRkZqK6u7vH47OxszJo1C/Pnz0dBQQFmzJiBGTNm4OjRo5ZjWltbcfPNN+PNN9+85mc/8cQTqKiosDzeeustu10XkacqrW9DY5sOSrkMiZoAqcuhbuYRqMMXtGjrYh8UUW/ccIBqbm7G+++/j6lTpyIgIABxcXEYMWIEBgwYgNjYWDzxxBPIzc3tU3GrVq3CE088gXnz5mHkyJFYt24dfHx88NFHH/V4/DvvvINp06bhhRdewIgRI/Daa69h/PjxWLNmjeWYxx9/HMuWLUN6evo1P9vHxwcajcbyCAjglz1RX5kbyEcM9IdS4fQD4B4jzE+JEB8l9EYR+ecbpS6HyCXc0DfYqlWrEBcXh48//hjp6enYsmULCgsLcfLkSeTk5GD58uXQ6/W46667MG3aNJSUlNj8GV1dXcjLy7MKOjKZDOnp6cjJyenxPTk5OVcEo4yMjKsefy3r169HWFgYRo8ejSVLlqCtre2qx3Z2dqKpqcnqQURXOmxeQJP9T05FEAQM05hWJee2LkS9c0P3EOfm5mLv3r0YNWpUj69PmjQJv/jFL7Bu3Tp8/PHH2LdvHxISEmz6jNraWhgMBkRERFg9HxERgRMnTvT4nsrKyh6Pr6ystOmzf/aznyE2NhaRkZE4fPgwFi9ejOLiYmzevLnH41esWIHf/e53Nn0GkSe6tIBmkLSF0BWGRfjjhzP13FiYqJduKEB99tlnlr9vbm6Gv79/j8epVCqXbL5+8sknLX+flJSEgQMH4o477sDp06cxZMiQK45fsmQJMjMzLf/c1NSE6Ohoh9RK5Cr0BiMbyJ2YuZG8sKwRHToD1F5yiSsicm59bkK45ZZbbB7h6Y2wsDDI5XJUVVVZPV9VVQWNRtPjezQajU3H91ZqaioA4NSpUz2+rlKpEBAQYPUgImunalrQrjPAVynH4AF+UpdDPxLur0Kgtxe6DEYUlDZKXQ6R0+tzgBo3bhxSU1OvmFYrLCzE3XfffcPnVSqVmDBhArKysizPGY1GZGVlIS0trcf3pKWlWR0PADt37rzq8b1lXupg4MCBfToPkSc7XGYafRodFQi5TJC4GvoxQRAuLWfAPiii6+pzgPr444/x85//HDfffDO+++47nDx5Eo888ggmTJgAubxvQ8CZmZn48MMP8cknn6CoqAi/+tWv0Nrainnz5gEA5syZgyVLlliOX7RoEXbs2IGVK1fixIkTePXVV3Hw4EEsWLDAckx9fT0KCwtx/PhxAEBxcTEKCwsto2inT5/Ga6+9hry8PJw7dw5bt27FnDlzcOutt2LMmDF9uh4iT3aoewVyNpA7r2ER3Y3k7IMiui67bET1u9/9DiqVCnfeeScMBgPuuOMO5OTkYNKkSX0678yZM1FTU4Nly5ahsrISycnJ2LFjh6VRvLS0FDLZpQw4ZcoUbNiwAa+88gpefvllJCQkYMuWLRg9erTlmK1bt1oCGAA8+uijAIDly5fj1VdfhVKpxDfffIPVq1ejtbUV0dHReOihh/DKK6/06VqIPJ25gXwsG8idlnk9qPzSBnTqDVAp2AdFdDWCKIpiX05QVVWF119/HR9++CFGjBiBEydO4KOPPsLMmTPtVaPLaWpqQmBgILRaLfuhiAB06AxIevU/0BlE7HvxdkSH+EhdkpW6lk72/cC0UnzmpkNo7tBj09NpmBgXInVJRA5ly+/vPk/hxcfHY+/evdi0aRPy8vLwj3/8A08++STefvvtvp6aiNxEUUUTdAYRIb5KDAr2lrocugpBEC7ti8dtXYiuqc8B6qOPPkJBQQGmT58OAJg2bRp2796NP//5z3jmmWf6XCARub5L6z8FQhDYQO7MhnNjYaJe6XOAMvcQXW78+PHIzs7Grl27+np6InID5gZyLqDp/MyN5HnnG6AzGCWuhsh53VCAKi0tve4xcXFxyM7OBgBcvHjxRj6GiNzEpQZyLqDp7CKDvOGrlKOty2BZ+JSIrnRDAWrixIl46qmnrrlZsFarxRdffIHRo0fjH//4xw0XSESuraVTj9M1LQA4AuUKZFZ9UJzGI7qaG1rG4Pjx4/jjH/+IO++8E2q1GhMmTEBkZCTUajUaGhpw/PhxHDt2DOPHj8dbb73VpwU1ici1HbmghSgCUUHeGOCvkroc6oVhEf4oKGvE/rN1+NVtV25fRUQ3OAIVGhqKVatWoaKiAmvWrEFCQgJqa2tRUlICAJg9ezby8vKQk5PD8ETk4S71P3H6zlWYG8kPnmuAnn1QRD3q00Ka3t7eePjhh/Hwww/bqx4icjOH2UDucgYFe8PbS46WTj2OVzTx3x1RD/p8Fx4R0bUcKmMDuauRyQQkdN+N9wPXgyLqkc0Bqr29vce76o4dO2aXgojIfdS1dOJiYzsAYDQDlEtJ1Jim8bJPM0AR9cSmAPXFF18gISEB06dPx5gxY7B//37La48//rjdiyMi12ZevmDIAF8EqL0kroZsMUJj2sbiwNl6dOnZB0X0YzYFqD/84Q/Iy8tDYWEhPv74Y8yfPx8bNmwAYNpDiYjocuYGcm4g7Hqigr3hp1Kgrctg6WMjoktsaiLX6XSIiIgAAEyYMAF79+7FAw88gFOnTnF7BiK6wqGyRgC8A88VyQQBiRp/HDzfgO9P1SGFGwsTWbFpBCo8PByHDx+2/HNISAh27tyJoqIiq+eJiERRvLQHXnSQtMXQDRkx0DSNl326VuJKiJyPTQHq008/RXh4uNVzSqUSn332Gfbs2WPXwojItV1sbEddaxcUMgEju38Rk2sxN5IXlDaivcsgcTVEzsWmADVo0CBoNBqr57755hsAwE033WS/qojI5ZlHn4Zr/KH2kktcDd2IcH8VQnyU6DIYcfA8t3Uhulyf14GaPn06MjMz0dXVZY96iMhNWBrIOX3nsgRBQOJA0yjU96e4nAHR5focoPbu3Ytt27YhJSUFR48e7fGYiooKPPTQQ339KCJyIYe5gKZbMC9nkMM+KCIrfQ5QqampyM/PR0pKCiZOnIhVq1ZZXjMajTh+/DiWLVuGffv29fWjiMhFGI0ijlzsbiDnEgYuzTwCdeSiFtp2ncTVEDmPPu2FZ+bn54eVK1fCx8cHL7zwAj777DNLeOrs7ERsbCxWrFhhj48iIhdwprYFLZ16qL1kSAj3k7oc6oNgHyU0AWpUNnVg/5k63DVKc/03EXmAPo9A/eUvf0FMTAzCwsLw17/+FZMmTYJCoUBBQQF++ctfor6+HmfPnsX8+fPtUS8RuQDz/nejIwOhkHPLTVc3YiC3dSH6sT5/s7388suYPn06jh8/jubmZuTk5CAnJwcrV67EX/7yF2RmZqKtrc0etRKRiyjsXkAzmQ3kbiGxuw/q+1PsgyIy63OAuu222/Dqq69i+PDhVquRP//88zhw4AAOHjx4xb55ROTezAGKd+C5h+ER/hAAlFS3oLq5Q+pyiJxCnwPU3//+d8v2Lj+WlJSE3Nxc3HPPPbj11lv7+lFE5AI6dAYUVTQB4AiUu/BTKxAd4gMAyOE0HhEAOwSo61GpVFi9ejW2bdvW3x9FRE7gWLkWeqOIMD8lBgV7S10O2cmI7lXJs7keFBEABwQoszvvvNNRH0VEEioobQRgGn3iJuPuI7F7O57vuR4UEQAHBigi8gxsIHdPCeF+kAsCLjS0o6yeNwYRMUARkV2Zt3BJjg6WthCyK7WXHPFhvgB4Nx4RwABFRHZU19KJsvp2CAIwJppbuLgbrgdFdAkDFBHZjXn6bsgAPwSovaQthuzOvB5U9uk6iKIocTVE0mKAIiK7Yf+Texs8wBdKuQy1LZ0oqW6RuhwiSTFAEZHdMEC5Ny/5pb0N2QdFno4BiojswmgUGaA8QGJ3H9T3XA+KPBwDFBHZxZnaVjR36KFSyDC8e9FFcj8juvug9p+pg95glLgaIukwQBGRXZhHn5KiAuEl51eLu4oJ8YGvUo7mTr1lyQoiT8RvOSKyi8KyBgCcvnN3MpmAEd2rku89yT4o8lwMUERkF5b+p5ggSeug/jcq0hSg9pXUSFwJkXQYoIiozzp0BpyoaAbAEShPMLJ7BOrQBS207TqJqyGSBgMUEfXZsXIt9EYRYX4qRAV5S10O9bNQPxU0AWoYjCJyuCo5eSgGKCLqs4LSRgCm0SdBEKQthhxiJKfxyMMxQBFRn5n7n8ax/8ljXOqDYiM5eSYGKCLqMy6g6XmGR/hDLhNQWt+G83WtUpdD5HAMUETUJ7UtnbjQ0A5BAJIGBUpdDjmI2kuOIQN8AQB7OQpFHogBioj6pLC7/2nIAD8EqL2kLYYcalSkKTDvO8k+KPI8DFBE1CecvvNc5uUMck7XQcdtXcjDMEARUZ8wQHmu2BAf+KkUaO7UW/47IPIUDFBEdMOMRhGHGKA8lkwmWEahvi2ulrgaIsdigCKiG3amthXNnXqovWRI1PhLXQ5JYHSUOUCxD4o8CwMUEd0w87RNUlQgFHJ+nXgicyP5sfImVDd3SFwNkePwG4+IblhhWQMATt95skBvL8SG+gAA9p7kcgbkORigiOiGXWogD5a2EJJUUvcoFPugyJMwQBHRDWnt1KOoohkAMD42SNpiSFKjoi5t66LncgbkIRigiOiGHLrQCINRRGSgGgMDvaUuhyQ0OMwPPko5tO06HLqglbocIodggCKiG5J/3tT/ND6W03eeTn7ZcgZ7OI1HHoIBiohuSF53gJrAAEUw3YkJAN9yWxfyEE4foNauXYu4uDio1WqkpqbiwIED1zx+06ZNSExMhFqtRlJSErZv3271+ubNm3HXXXchNDQUgiCgsLDwinN0dHTgmWeeQWhoKPz8/PDQQw+hqqrKnpdF5NKMRhH53XvgMUARAIyKNI1AHb6gRW1Lp8TVEPU/pw5Qn3/+OTIzM7F8+XLk5+dj7NixyMjIQHV1z0PE2dnZmDVrFubPn4+CggLMmDEDM2bMwNGjRy3HtLa24uabb8abb7551c99/vnn8eWXX2LTpk3Ys2cPysvL8eCDD9r9+ohc1ZnaFmjbdVB7yTCie+qGPFuQjxLRwaZeuD1cVJM8gCCKoih1EVeTmpqKiRMnYs2aNQAAo9GI6OhoLFy4EC+99NIVx8+cOROtra3Ytm2b5bnJkycjOTkZ69atszr23LlziI+PR0FBAZKTky3Pa7VaDBgwABs2bMDDDz8MADhx4gRGjBiBnJwcTJ48+bp1NzU1ITAwEFqtFgEB/OVC7ufz3FIs/scRpMaH4POn0qQup8/qWjpR0D2iRjfunwUX8dWRCkwfMxBrfzZe6nKIbGbL72+nHYHq6upCXl4e0tPTLc/JZDKkp6cjJyenx/fk5ORYHQ8AGRkZVz2+J3l5edDpdFbnSUxMRExMzFXP09nZiaamJqsHkTtj/xP1ZMwgUx/U3uIa6LicAbk5pw1QtbW1MBgMiIiIsHo+IiIClZWVPb6nsrLSpuOvdg6lUomgoKBen2fFihUIDAy0PKKjo3v9eUSuiAGKehIf6gt/tQLNnXrknquXuhyifuW0AcqVLFmyBFqt1vIoKyuTuiSiftPQ2oXTNa0AgHExDFB0iUwmWO7G21XE5QzIvTltgAoLC4NcLr/i7reqqipoNJoe36PRaGw6/mrn6OrqQmNjY6/Po1KpEBAQYPUgclf5pabRp8EDfBHiq5S4GnI2YwcFAQB2nWCAIvfmtAFKqVRiwoQJyMrKsjxnNBqRlZWFtLSem1bT0tKsjgeAnTt3XvX4nkyYMAFeXl5W5ykuLkZpaalN5yFyV5bpO44+UQ9GDgyAXCbgTG0rztS0SF0OUb9RSF3AtWRmZmLu3LlISUnBpEmTsHr1arS2tmLevHkAgDlz5iAqKgorVqwAACxatAhTp07FypUrMX36dGzcuBEHDx7EBx98YDlnfX09SktLUV5eDsAUjgDTyJNGo0FgYCDmz5+PzMxMhISEICAgAAsXLkRaWlqv7sAjcnfsf6Jr8VbKMSzCD0UVzdh1ohqDB/hJXRJRv3DaESjAtCzBn/70JyxbtgzJyckoLCzEjh07LI3ipaWlqKiosBw/ZcoUbNiwAR988AHGjh2LL774Alu2bMHo0aMtx2zduhXjxo3D9OnTAQCPPvooxo0bZ7XMwZ///Gfcc889eOihh3DrrbdCo9Fg8+bNDrpqIuelMxhx6EIjAAYoujpO45EncOp1oFwV14Eid1VQ2oAH/icbgd5eKFh6J2QyQeqS7ILrQNlXdXMHXv7nUShkAvKX3YkAtZfUJRH1ilusA0VEzsd8a/rEuGC3CU9kf+H+amgC1dAbRew7WSt1OUT9ggGKiHrtwFlT/9PEuBCJKyFnN7Z7OYNviriPKLknBigi6hWjUcTB890jUPEMUHRtydFBAICsoiquSk5uiQGKiHrlVE0LGtt08PaSY3RkoNTlkJMbMsAP/moFmjr0OHCWq5KT+2GAIqJeMf8SHBcTBKWCXx10bTKZYLkb7+tjvd9Oi8hV8FuQiHrlUgM5p++od8bFBAEAvj5eBd7wTe6GAYqIeiW3ewRqEvufqJdGaAKgUshQoe3A0YtNUpdDZFcMUER0XRca2lCu7YBCJlhGFYiuR6mQWfrlvj7OaTxyLwxQRHRd5um7UVGB8FE69Q5Q5GSSzdN4x7icAbkXBigiui5zA/mkOG7fQrYZExUImQAUVzXjXG2r1OUQ2Q0DFBFdlzlAsYGcbOWrUmB4hD8AYOdxjkKR+2CAIqJrqmvpxOka08gBAxTdiHExppHLHVzOgNwIAxQRXZO5/ykh3A/BvkqJqyFXZL7xIO98Ayq1HdIWQ2QnDFBEdE05p+sAAGlDQiWuhFxVsI8SQwb4AgB2HK2QuBoi+2CAIqJryjnTHaAGM0DRjZsQa5rG236E03jkHhigiOiqals6cbKqBQCQygBFfZASa+qfyz1fj+omTuOR62OAIqKr2n/G1P+UqPFHCPufqA9CfJUYHOYLUWQzObkHBigiuqqcM7UAgMkcfSI7ME/jfXWYfVDk+higiOiq2EBO9pTSHaAOnKtHTXOnxNUQ9Q0DFBH1qLqpA6drWiEIQCo3ECY7CPVTIS7Uh9N45BYYoIioRz90rz4+QhOAIB/2P5F9mJvJ/32E03jk2higiKhHnL6j/mDug/rhTB2qm3k3HrkuBigi6tEPXP+J+sEAfxUGh/nCKALb2UxOLowBioiuUKntwNnaVsgEYNJg9j+RfU3q7qn716FyiSshunEMUER0BfPyBaOjAhGg9pK4GnI3E+NCIAhAQWkjSuvapC6H6IYwQBHRFb4/xek76j+B3l5I1PgDALYeuihxNUQ3hgGKiKyIoojvSkwjUDcnhElcDbmr1HhTOP9XYTlEUZS4GiLbMUARkZVT1S2obOqASiHDxDj2P1H/GB8TBIVMQEl1C05UNktdDpHNGKCIyMq+7tGnSfEhUHvJJa6G3JWPUoExgwIBmEahiFwNAxQRWfnuVPf03VBO31H/Mk/jfXmoHEYjp/HItTBAEZFFl95oWf/ploQBEldD7i4pKhDeXnJcbGxH7rl6qcshsgkDFBFZ5Jc2oK3LgDA/peUuKaL+olTILCuT/yP/gsTVENmGAYqILMx33900NAwymSBxNeQJpnRvFfTV4Qq0deklroao9xigiMhiX0kNAPY/keMkhPthgJ8KrV0G/OdYpdTlEPUaAxQRAQAa27pw+KIWAPufyHEEQcCUoaZRqC/yOI1HroMBiogAANmn6yCKphEBTaBa6nLIg0zpXvE++3QdLjRwaxdyDQxQRATg0vpPXH2cHC3UT4VEjT9EEfhnPrd2IdfAAEVEEEUR3xZXAwBuHcbpO3K8m4aYgvsX+Re4tQu5BAYoIsKJymZUaDug9pJxA2GSxPiYIKgUMpyva0PuuQapyyG6LgYoIsKuE6bRpylDwrh9C0lC5SVHSveaUJ/nlklcDdH1MUAREXZ3B6jbE8MlroQ8mXn6eNvhcmjbdBJXQ3RtDFBEHq6htQv5paYpk58wQJGEBof5IirIG516I/5ZwCUNyLkxQBF5uL0lNTCKwPAIf0QFeUtdDnkwQRAwtXsUasOBUjaTk1NjgCLycJy+I2cyeXAIlHIZTla1WEZGiZwRAxSRBzMYRew5adq+hdN35Ax8lApMjDM1k6/fXypxNURXxwBF5MEKyxrQ0KZDoLcXxscESV0OEQBYpvG+OlzBZnJyWgxQRB7MvHzBrcMGQCHn1wE5h/gwXwwKNjWTb2YzOTkpfmMSebBdJ0zTd7cP5+rj5DwEQcDU7g2tP/3hPIxGNpOT82GAIvJQZfVtKKpogkwAbhvO/idyLmlDQuHtJceZmlbsO1UrdTlEV2CAIvJQ/zlWCQCYFB+CEF+lxNUQWVN7yXHTUNO2Qh9/f1biaoiuxABF5KHMAWraKI3ElRD17CeJ4RAAfFtcgzM1LVKXQ2SFAYrIA9U0d+LgedMaO3cxQJGTCvdXY8ygQADAJ9nnpC2G6EcYoIg80M7jVRBFYOygQERy9XFyYnckRgAAvsi7gKYOLmlAzoMBisgD7eievssYzdEncm4jBvpjYKAarV0GbDrIJQ3IeTBAEXkYbbsO2d13NbH/iZydIAi4o3uV/L9mn4XeYJS4IiITpw9Qa9euRVxcHNRqNVJTU3HgwIFrHr9p0yYkJiZCrVYjKSkJ27dvt3pdFEUsW7YMAwcOhLe3N9LT01FSUmJ1TFxcHARBsHq88cYbdr82IinsPlENvVFEQrgfBg/wk7ocoutKGxwKP5UCZfXt+PfRSqnLIQLg5AHq888/R2ZmJpYvX478/HyMHTsWGRkZqK6u7vH47OxszJo1C/Pnz0dBQQFmzJiBGTNm4OjRo5Zj3nrrLbz77rtYt24d9u/fD19fX2RkZKCjo8PqXL///e9RUVFheSxcuLBfr5XIUXZ0/wKaxuk7chEqL7llsdd1e05DFLmwJknPqQPUqlWr8MQTT2DevHkYOXIk1q1bBx8fH3z00Uc9Hv/OO+9g2rRpeOGFFzBixAi89tprGD9+PNasWQPANPq0evVqvPLKK7j//vsxZswY/L//9/9QXl6OLVu2WJ3L398fGo3G8vD19b1qnZ2dnWhqarJ6EDmj9i4Dvj1p+gNIBqfvyIX8JDEcSrkMx8qb8B0X1iQn4LQBqqurC3l5eUhPT7c8J5PJkJ6ejpycnB7fk5OTY3U8AGRkZFiOP3v2LCorK62OCQwMRGpq6hXnfOONNxAaGopx48bh7bffhl6vv2qtK1asQGBgoOURHR1t8/USOULWiSp06IwYFOyNUZEBUpdD1Gv+ai/ckhAGwDQKRSQ1pw1QtbW1MBgMiIiIsHo+IiIClZU9z4FXVlZe83jzX693zmeffRYbN27E7t278dRTT+H111/Hiy++eNValyxZAq1Wa3mUlZX1/kKJHOhfheUAgPvGRkIQBImrIbLNXSMjIBOA70/V4cgFrdTlkIdTSF2AM8rMzLT8/ZgxY6BUKvHUU09hxYoVUKlUVxyvUql6fJ7ImWjbdPi22DR9d39ylMTVENku1E+FSfEh+OFMPdbtOY21s8dLXRJ5MKcdgQoLC4NcLkdVVZXV81VVVdBoeu7d0Gg01zze/FdbzgkAqamp0Ov1OHfunK2XQeQ0dhyrgM4gIlHjj+Eaf6nLIboh5qU3th+twKlqbu9C0nHaAKVUKjFhwgRkZWVZnjMajcjKykJaWlqP70lLS7M6HgB27txpOT4+Ph4ajcbqmKamJuzfv/+q5wSAwsJCyGQyhIdzx3pyXebpu3vHRkpcCdGNGxTsg+RBQRBF4N2skuu/gaifOPUUXmZmJubOnYuUlBRMmjQJq1evRmtrK+bNmwcAmDNnDqKiorBixQoAwKJFizB16lSsXLkS06dPx8aNG3Hw4EF88MEHAEwLsj333HP4wx/+gISEBMTHx2Pp0qWIjIzEjBkzAJga0ffv34/bb78d/v7+yMnJwfPPP4/HHnsMwcHBkvwciPqqqqkDOWfqAJj6n4hc2X1jI1F4oRFfHi7Hwp8MRUIER1TJ8Zw6QM2cORM1NTVYtmwZKisrkZycjB07dliawEtLSyGTXRpEmzJlCjZs2IBXXnkFL7/8MhISErBlyxaMHj3acsyLL76I1tZWPPnkk2hsbMTNN9+MHTt2QK1WAzD1M23cuBGvvvoqOjs7ER8fj+eff96qL4rI1Xx5qByiCEyIDUZ0iI/U5RD1SUyoD8bFBKGgtBHvZJVgzc/YC0WOJ4hckczumpqaEBgYCK1Wi4AA3ipO0rtvzXc4fEGL398/CnPS4qQux+nUtXSioLRR6jLIBmUNbfjdl8chCMCORbeyr4/swpbf307bA0VE9nG2thWHL2ghlwm4O2mg1OUQ2UV0sA8mxARDFIF3sk5KXQ55IAYoIje3Od+0g/1NQ8MQ5sflNsh93Dc2EgKA7UcqcbycO0CQYzFAEbkxvcGITQdNAeqRlEESV0NkX1HB3kiJM93c88aOExJXQ56GAYrIje0tqUFlUweCfbxw58iI67+ByMU8MC4KcpmAvSdrsK+kRupyyIMwQBG5sc9zTdsKPTBuEFQKucTVENlfuL8atw8fAAB4ffsJGI28L4ocgwGKyE1VN3cgq8i0dcvMidzgmtzX9KSB8PaSo6iiCf8suCh1OeQhGKCI3NTm/IvQG0WMiwniLd7k1vzVXrg7ybTFy8qvi9GhM0hcEXkCBigiNySKIv7ePX33KEefyAPckRiBEB8lyrUd+L/vzkpdDnkABigiN5R7rgFnalvhq5TjnjHcuoXcn1IhwwPjowAAa3adwsXGdokrInfHAEXkhtbvPw8AuGdMJHxVTr1jE5HdTI4PQUK4H9p1Bvxh23GpyyE3xwBF5Gaqmjrw1eEKAMBjk2MlrobIcQRBwM9SYyATgH8frcTek1zWgPoPAxSRm/nbD+ehN4qYGBeMpEGBUpdD5FDRwT74SWI4AODVrcfQqWdDOfUPBigiN9KhM2D9/lIAwC9uipe4GiJp3Dc2EgFqBc7UtuIv+9hQTv2DAYrIjfyr8CLqW7sQFeTNlcfJY/koFfivFNPdp+9kleB0TYvEFZE7YoAichOiKOLj788BAOZOiYVCzv+9yXNNjg/BqMgAdOmNWPzFYRi4QjnZGb9hidxEzuk6nKhsho9SjpkpMVKXQyQpQRAwZ3IsVAoZDp5vwCfZ56QuidwMAxSRmzAvHvjwhEEI9PGSuBoi6YX6qfBfEwYBAN76zwmcr2uVuCJyJwxQRG7g6EUtsk5UQyYAP58SJ3U5RE7j1mEDkKjxR4fOiBc5lUd2xABF5AbW7DoFALh3bCQGD/CTuBoi5yETBMxNi4NSIcP+s/X4372npS6J3AQDFJGLK6powo5jlRAEYMHtQ6Uuh8jpDPBX4WcTTX2Bq74+icKyRmkLIrfAAEXk4syjT3cnDURChL/E1RA5p5uGhiIlNhh6o4hnPytAc4dO6pLIxTFAEbmwk1XN2H7UtG3Lwp9w9InoagRBwJy0WIT6KlFa34alW45KXRK5OAYoIhf23q5TEEXgp6M1SNQESF0OkVPzUSrwxC2DIROALYXllk23iW4EAxSRizpWrsW2w+UAgAUcfSLqlaHhfnhgXBQA0155B8/VS1wRuSoGKCIXJIoi/vhVEUQRuGfMQIyK5KbBRL01bZQGE2KDoTOI+NX6fFQ1dUhdErkgBigiF5RVVI3s03VQKmRYPC1R6nKIXIogCJg3JQ5RQd6oae7E03/LQ6feIHVZ5GIYoIhcjM5gxOvbiwAA82+OR3SIj8QVEbketZccz9w+BD5KOQpKG7H4i8MwcpFNsgEDFJGLWf/DeZypbUWorxK/vm2I1OUQuaxwfzWeunUw5IKALYXleOs/xVKXRC6EAYrIhTS2dWF1VgkAIPOuYfBXc887or4YFRmIOWmxAIB1e07j/+Wck7YgchkMUEQu5I9fFaGxTYdhEX6YmRItdTlEbuGmoWGYkRwJAFi+9Rh2dK+tRnQtDFBELmJfSQ025V2AIACvP5AEhZz/+xLZy/Skgbg1IQyiCCz8rADfHK+SuiRycvwGJnIBrZ16LNl8BAAwNy0OKXEhEldE5F4EQcDs1FhMiguBziDi1+vzsftEtdRlkRNjgCJyAX/6uhgXGtoRFeSNFzKGS10OkVuSywTMvzkeKbHB6DIY8dTf8rDnZI3UZZGTYoAicnIHz9Xjr9nnAACvP5gEX5VC2oKI3JhcJuCXt8RjXEwQuvRGPPHJQXx1mD1RdCUGKCIn1tDahWc/K4AoAg+Oj8LUYQOkLonI7SlkMjx1y2BM6B6JWvBZPj7l3Xn0IwxQRE7KaBTxm02HUK7tQFyoD3533yipSyLyGAq5KUTdNmwARBFY+q9jWPV1MUSRi22SCQMUkZP6YN8Z7DpRDaVChrWzx3PNJyIHk8kEzE6NwX1jTUscvLvrFBZ8VoC2Lr3ElZEzYIAickK55+rxdveqyK/eO4qbBRNJRBAE3Dc2EnPSYiGXCfjqcAUefj8HFxvbpS6NJMYAReRkztW24qlP82Awirg/ORKzJnHBTCKp3ZowAP995zD4qxU4XtGE+977jnfoeTgGKCInUtvSibkfH0B9axeSogLx+gNJEARB6rKICEBChD9euXsEYkJ8UNfahbkfHcDr24vQpTdKXRpJgAGKyEm0dekx/6+5OF/XhugQb3z084lcsoDIyYT6qfDStETcPtx0R+wHe8/g4XXZOFXdInFl5GgMUEROoENnwK/X5+PQBS2Cfbzw13mTMMBfJXVZRNQDpUKG2amxeOa2IfBVynH4ghZ3v7MPa3aVQGfgaJSnYIAiklhrpx7zP8nFt8U1UClk+MvcFAwZ4Cd1WUR0HeNigrH83lEYHRmALoMRf/r6JO597zsUlDZIXRo5AAMUkYS07TrM+egAvj9VB1+lHH+dNwkTYrnPHZGrCPFVYtEdCZh/czz8VAqcqGzGA/+TjczPC1Gp7ZC6POpHDFBEEilvbMfPPvwBeecbEKBW4G+/TEXakFCpyyIiGwmCgLTBofj9faMwpfv/4c0FF3H7n77Fn3eeRFOHTuIKqT8IIpdVtbumpiYEBgZCq9UiICBA6nLICf1wpg7PrM9HXWsXQn2V+HR+KkZG8r8VqdS1dKKgtFHqMshNnK1txcbcUpyuaQUABHp74Zc3x+PnN8VxQVwnZ8vvbwaofsAARVcjiiI+/v4c/ri9CAajiJEDA/C/j09AdIiP1KV5NAYosjdRFJF3vgH/OlSOiu6pvEBvL/wsNQZz0+KgCVRLXCH1hAFKYgxQ1JOLje1YsvkI9nYvvjcjORIrHhwDb6Vc4sqIAYr6i9EoIvd8Pb48VIHKJlOQUsgE3Ds2Eo9NjsH4mGCu9eZEGKAkxgBFlzMaRaw/UIo3thehtcsApUKGJT9NxM+nxPGL00kwQFF/MxpFHLrQiK+PV6HksjWjhob74dGJ0bg/OYpLlzgBBiiJMUCR2b6SGry54wSOXmwCAEyIDcZbD4/hMgVOhgGKHOlsbSt2F1fj4LkGdHWvGyUTgLQhobhnTCQyRmkQ4quUuErPxAAlMQYozyaKIvJLG7Bq50l8f6oOAOCrlOM3dw3H3ClxkMs46uRsGKBICm1deuSea8B3p2pxtrbV8rxMAMbHBOOOERG4PXEAhoX7Q8bvDYdggJIYA5Rn6tIb8dWRcnz8/TkcvqAFAHjJBTw2ORYLbh+KUD8OzzsrBiiSWk1zJ3LP1SP3XD3KGtqtXgv28cLEuBBMig9BanwoRkYG8A9i/YQBSmIMUJ7DaBRx4Fw9vjxUju1HKtDQZlrvRamQYUZyJBb+JIF32LkABihyJnUtnTh8UYtDFxpRUtWCzh9tVuyvUmBCXDCSogIxYmAAEjX+iAv15SiVHTBASYwByr3Vt3bhu1O12HuyBntP1qC6udPyWri/Co9PjsXPUmM44uRCGKDIWemNRpTWteFkVQtOVjWjpLoF7TrDFcd5e8kxXOOPEQMDMCzCD7GhPogJ8UV0iDdUCt7p21u2/P52+q3e165di7fffhuVlZUYO3Ys3nvvPUyaNOmqx2/atAlLly7FuXPnkJCQgDfffBN333235XVRFLF8+XJ8+OGHaGxsxE033YT3338fCQkJlmPq6+uxcOFCfPnll5DJZHjooYfwzjvvwM+Pjb+eprGtCyXVLSiqaEJhaSMKyxpx5rJeBQDwVyswbZQG946NxJQhoVDIucA/EdmHQibD4AF+GDzAD9NGa2A0irjQ2I5T1S0oq29DWUMbLja2o11nQGGZ6TvqcoIADAxQIybUBzEhPtAEqBEeoEZEgBoRASpEBKgR6qvk99YNcOoA9fnnnyMzMxPr1q1DamoqVq9ejYyMDBQXFyM8PPyK47OzszFr1iysWLEC99xzDzZs2IAZM2YgPz8fo0ePBgC89dZbePfdd/HJJ58gPj4eS5cuRUZGBo4fPw612rSw2ezZs1FRUYGdO3dCp9Nh3rx5ePLJJ7FhwwaHXj/1H1EU0dShR31rF+pbO1HX0oW61i5UaDtwob4NFxracaa2FbUtnT2+f8TAANyaEIZbEgZgYnww/4RHRA4hkwmICTGFITOjUURVcwfK6ttR1tCGqqYO1DR3orq5E516I8q1HSjXduCHM/U9n1MwLfIZ5KNEgLcXgry9ENj9CPK59PeB3l7wUSrgrZTDp/vh7SXv/meFx/VlOfUUXmpqKiZOnIg1a9YAAIxGI6Kjo7Fw4UK89NJLVxw/c+ZMtLa2Ytu2bZbnJk+ejOTkZKxbtw6iKCIyMhK/+c1v8N///d8AAK1Wi4iICPz1r3/Fo48+iqKiIowcORK5ublISUkBAOzYsQN33303Lly4gMjIyOvW3V9TeO1dBuw5WQ0AuPzf2uX/Aq2fF6/y/OXH9/yvv1fn6cU5rc5uc209H28UAb3BCL1BhM5o+qveYITO2P1Xgwi90YgOnRHtXQa0dunR1mVAW/dfWzr0aGjrgs7Qu//0o4K8kRDhh7GDgpAcE4TkQUEI5i3GboVTeOSORFFEc4ceNS2mMFXb0gltmw6N7To0tnVB266Dtl0Ho51SgFIhg49SDrVCDi+FAC+5DEq5DF5yGbzk3f+s+NE/d78ulwtQyATIBAFymekhE7qfkwmQCwLkMiAq2BsPjBtkn4J74BZTeF1dXcjLy8OSJUssz8lkMqSnpyMnJ6fH9+Tk5CAzM9PquYyMDGzZsgUAcPbsWVRWViI9Pd3yemBgIFJTU5GTk4NHH30UOTk5CAoKsoQnAEhPT4dMJsP+/fvxwAMPXPG5nZ2d6Oy8NFKh1ZruwGpqarL9wq/hYkMbnvy/7+x6Tk/no5Qh2FeJYB8VQny9EO6vRlSwGlFBPhgU7I3BA/zgp/rR/yaGDjQ1cZd1d9LeoYNS5L9Tcj8qNRCmVmBEmAKA7xWvG4wimjv1aOnQo7Wr+6+dBsvft3Xp0dJpQGun6fVOnRFdegM6dEZ0Gozo0hktf7zt6AQ6Wq/4CLtKjg5CWrQPZIIAtZf9R/7Nv7d7M7bktAGqtrYWBoMBERERVs9HRETgxIkTPb6nsrKyx+MrKystr5ufu9YxP54eVCgUCAkJsRzzYytWrMDvfve7K56Pjo6+2uURERGRjcoADPxN/39Oc3MzAgMDr3mM0wYoV7JkyRKrkS+j0Yj6+nqEhobafauOpqYmREdHo6yszCPv8PP06wf4M/D06wf4M/D06wf4M+iv6xdFEc3Nzb1q13HaABUWFga5XI6qqiqr56uqqqDRaHp8j0ajuebx5r9WVVVh4MCBVsckJydbjqmurrY6h16vR319/VU/V6VSQaWyvmU9KCjo2hfYRwEBAR75P42Zp18/wJ+Bp18/wJ+Bp18/wJ9Bf1z/9UaezJz2vkWlUokJEyYgKyvL8pzRaERWVhbS0tJ6fE9aWprV8QCwc+dOy/Hx8fHQaDRWxzQ1NWH//v2WY9LS0tDY2Ii8vDzLMbt27YLRaERqaqrdro+IiIhcl9OOQAFAZmYm5s6di5SUFEyaNAmrV69Ga2sr5s2bBwCYM2cOoqKisGLFCgDAokWLMHXqVKxcuRLTp0/Hxo0bcfDgQXzwwQcAAEEQ8Nxzz+EPf/gDEhISLMsYREZGYsaMGQCAESNGYNq0aXjiiSewbt066HQ6LFiwAI8++mivhvSIiIjI/Tl1gJo5cyZqamqwbNkyVFZWIjk5GTt27LA0gZeWlkImuzSINmXKFGzYsAGvvPIKXn75ZSQkJGDLli2WNaAA4MUXX0RrayuefPJJNDY24uabb8aOHTssa0ABwPr167FgwQLccccdloU03333Xcdd+DWoVCosX778iilDT+Hp1w/wZ+Dp1w/wZ+Dp1w/wZ+AM1+/U60AREREROSOn7YEiIiIiclYMUEREREQ2YoAiIiIishEDFBEREZGNGKBcwBtvvGFZgsGso6MDzzzzDEJDQ+Hn54eHHnroikVEXd3Fixfx2GOPITQ0FN7e3khKSsLBgwctr4uiiGXLlmHgwIHw9vZGeno6SkpKJKzYfgwGA5YuXYr4+Hh4e3tjyJAheO2116w3anaz69+7dy/uvfdeREZGQhAEyx6WZr253vr6esyePRsBAQEICgrC/Pnz0dLS4sCruHHXun6dTofFixcjKSkJvr6+iIyMxJw5c1BeXm51Dne9/h97+umnIQgCVq9ebfW8K18/0LufQVFREe677z4EBgbC19cXEydORGlpqeV1V/7dcL3rb2lpwYIFCzBo0CB4e3tj5MiRWLdundUxjrx+Bignl5ubi//93//FmDFjrJ5//vnn8eWXX2LTpk3Ys2cPysvL8eCDD0pUpf01NDTgpptugpeXF/7973/j+PHjWLlyJYKDgy3HvPXWW3j33Xexbt067N+/H76+vsjIyEBHh+tvCvvmm2/i/fffx5o1a1BUVIQ333wTb731Ft577z3LMe52/a2trRg7dizWrl3b4+u9ud7Zs2fj2LFj2LlzJ7Zt24a9e/fiySefdNQl9Mm1rr+trQ35+flYunQp8vPzsXnzZhQXF+O+++6zOs5dr/9y//znP/HDDz/0uC6fK18/cP2fwenTp3HzzTcjMTER3377LQ4fPoylS5daLcPjyr8brnf9mZmZ2LFjB/72t7+hqKgIzz33HBYsWICtW7dajnHo9YvktJqbm8WEhARx586d4tSpU8VFixaJoiiKjY2NopeXl7hp0ybLsUVFRSIAMScnR6Jq7Wvx4sXizTfffNXXjUajqNFoxLffftvyXGNjo6hSqcTPPvvMESX2q+nTp4u/+MUvrJ578MEHxdmzZ4ui6P7XD0D85z//afnn3lzv8ePHRQBibm6u5Zh///vfoiAI4sWLFx1Wuz38+Pp7cuDAARGAeP78eVEUPeP6L1y4IEZFRYlHjx4VY2NjxT//+c+W19zp+kWx55/BzJkzxccee+yq73Gn3w09Xf+oUaPE3//+91bPjR8/Xvztb38riqLjr58jUE7smWeewfTp05Genm71fF5eHnQ6ndXziYmJiImJQU5OjqPL7Bdbt25FSkoK/uu//gvh4eEYN24cPvzwQ8vrZ8+eRWVlpdXPIDAwEKmpqW7xM5gyZQqysrJw8uRJAMChQ4fw3Xff4ac//SkA97/+H+vN9ebk5CAoKAgpKSmWY9LT0yGTybB//36H19zftFotBEGw7Lvp7tdvNBrx+OOP44UXXsCoUaOueN0Trv+rr77CsGHDkJGRgfDwcKSmplpNc7n774YpU6Zg69atuHjxIkRRxO7du3Hy5EncddddABx//QxQTmrjxo3Iz8+3bFNzucrKSiiVyis2LI6IiEBlZaWDKuxfZ86cwfvvv4+EhAT85z//wa9+9Ss8++yz+OSTTwDAcp3mVenN3OVn8NJLL+HRRx9FYmIivLy8MG7cODz33HOYPXs2APe//h/rzfVWVlYiPDzc6nWFQoGQkBC3+5l0dHRg8eLFmDVrlmUjVXe//jfffBMKhQLPPvtsj6+7+/VXV1ejpaUFb7zxBqZNm4avv/4aDzzwAB588EHs2bMHgPv/bnjvvfcwcuRIDBo0CEqlEtOmTcPatWtx6623AnD89Tv1Vi6eqqysDIsWLcLOnTut5rY9idFoREpKCl5//XUAwLhx43D06FGsW7cOc+fOlbi6/vf3v/8d69evx4YNGzBq1CgUFhbiueeeQ2RkpEdcP12dTqfDI488AlEU8f7770tdjkPk5eXhnXfeQX5+PgRBkLocSRiNRgDA/fffj+effx4AkJycjOzsbKxbtw5Tp06VsjyHeO+99/DDDz9g69atiI2Nxd69e/HMM88gMjLyipkaR+AIlBPKy8tDdXU1xo8fD4VCAYVCgT179uDdd9+FQqFAREQEurq60NjYaPW+qqoqaDQaaYq2s4EDB2LkyJFWz40YMcJyt4n5On98d4W7/AxeeOEFyyhUUlISHn/8cTz//POWEUl3v/4f6831ajQaVFdXW72u1+tRX1/vNj8Tc3g6f/48du7caRl9Atz7+vft24fq6mrExMRYvhPPnz+P3/zmN4iLiwPg3tcPAGFhYVAoFNf9XnTX3w3t7e14+eWXsWrVKtx7770YM2YMFixYgJkzZ+JPf/oTAMdfPwOUE7rjjjtw5MgRFBYWWh4pKSmYPXu25e+9vLyQlZVleU9xcTFKS0uRlpYmYeX2c9NNN6G4uNjquZMnTyI2NhYAEB8fD41GY/UzaGpqwv79+93iZ9DW1ma1UTYAyOVyy59C3f36f6w315uWlobGxkbk5eVZjtm1axeMRiNSU1MdXrO9mcNTSUkJvvnmG4SGhlq97s7X//jjj+Pw4cNW34mRkZF44YUX8J///AeAe18/ACiVSkycOPGa34sTJkxw298NOp0OOp3umt+LDr9+u7elU7+4/C48URTFp59+WoyJiRF37dolHjx4UExLSxPT0tKkK9DODhw4ICoUCvGPf/yjWFJSIq5fv1708fER//a3v1mOeeONN8SgoCDxX//6l3j48GHx/vvvF+Pj48X29nYJK7ePuXPnilFRUeK2bdvEs2fPips3bxbDwsLEF1980XKMu11/c3OzWFBQIBYUFIgAxFWrVokFBQWWu8x6c73Tpk0Tx40bJ+7fv1/87rvvxISEBHHWrFlSXZJNrnX9XV1d4n333ScOGjRILCwsFCsqKiyPzs5Oyznc9fp78uO78ETRta9fFK//M9i8ebPo5eUlfvDBB2JJSYn43nvviXK5XNy3b5/lHK78u+F61z916lRx1KhR4u7du8UzZ86IH3/8sahWq8X/+Z//sZzDkdfPAOUifhyg2tvbxV//+tdicHCw6OPjIz7wwANiRUWFdAX2gy+//FIcPXq0qFKpxMTERPGDDz6wet1oNIpLly4VIyIiRJVKJd5xxx1icXGxRNXaV1NTk7ho0SIxJiZGVKvV4uDBg8Xf/va3Vr8s3e36d+/eLQK44jF37lxRFHt3vXV1deKsWbNEPz8/MSAgQJw3b57Y3NwswdXY7lrXf/bs2R5fAyDu3r3bcg53vf6e9BSgXPn6RbF3P4P/+7//E4cOHSqq1Wpx7Nix4pYtW6zO4cq/G653/RUVFeLPf/5zMTIyUlSr1eLw4cPFlStXikaj0XIOR16/IIqXLW1MRERERNfFHigiIiIiGzFAEREREdmIAYqIiIjIRgxQRERERDZigCIiIiKyEQMUERERkY0YoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERL1QU1MDjUaD119/3fJcdnY2lEolsrKyJKyMiKTAzYSJiHpp+/btmDFjBrKzszF8+HAkJyfj/vvvx6pVq6QujYgcjAGKiMgGzzzzDL755hukpKTgyJEjyM3NhUqlkrosInIwBigiIhu0t7dj9OjRKCsrQ15eHpKSkqQuiYgkwB4oIiIbnD59GuXl5TAajTh37pzU5RCRRDgCRUTUS11dXZg0aRKSk5MxfPhwrF69GkeOHEF4eLjUpRGRgzFAERH10gsvvIAvvvgChw4dgp+fH6ZOnYrAwEBs27ZN6tKIyME4hUdE1AvffvstVq9ejU8//RQBAQGQyWT49NNPsW/fPrz//vtSl0dEDsYRKCIiIiIbcQSKiIiIyEYMUEREREQ2YoAiIiIishEDFBEREZGNGKCIiIiIbMQARURERGQjBigiIiIiGzFAEREREdmIAYqIiIjIRgxQRERERDZigCIiIiKy0f8HByiqFSq2NssAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -4474,14 +11906,15 @@ } ], "source": [ - "x = np.arange(20, 90)\n", - "plt.plot(x, chi_distribution(x, 52))\n", - "\n", - "x = np.arange(chi_squre, 90, 0.1)\n", - "plt.fill_between(x, chi_distribution(x, 52), alpha=0.3)\n", + "x = np.arange(40., 180.)\n", + "# plt.plot(x, chi_distribution(x, 112))\n", + "plt.plot(x,chi2.pdf(x, 112))\n", + "x = np.arange(chi_square, 180, 0.1)\n", + "plt.fill_between(x, chi2.pdf(x, 112), alpha=0.3)\n", "plt.ylim(0, None)\n", "plt.xlabel('x')\n", - "plt.ylabel('$\\chi^2(x)$')" + "plt.ylabel('$\\chi^2(x)$')\n", + "plt.show()" ] }, { @@ -4489,29 +11922,36 @@ "id": "b30829b3-a9e8-4d93-8895-9fd9f67ab9dc", "metadata": {}, "source": [ - "Explain p-value...." + "Der erste Schritt für den Hypothesen-Test ist die Berechnung des $P$-Werts\n", + "$$ P = \\int_{\\chi^2}^{\\infty} f(z,n_d)dz $$\n", + "wobei $f(z,n_d)$ die $\\chi^2$-Verteilung und $n_d$ die Anzahl der Freiheitsgrade ist.\n", + "Im Bild oben entspricht dies der ausgefüllten Fläche.\n", + "\n", + "Die praktische Berechnung erfolgt mittels der kumulativen Verteilungsfunktion via\n", + "$$ P = 1 - \\chi^2_{CDF}(x, n_d) $$\n", + "wobei für $x$ das im Fit bestimmte $\\chi^2$ eingesetzt wird. Die praktische Bedeutung des $P$-Werts ist die Wahrscheinlichkeit bei einer Wiederholung des Experiments in größeres $\\chi^2$ zu erhalten, wenn unser Model die Daten richtig beschreibt und die ermittelten Fitparameter den wahren Werten entsprechen." ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 529, "id": "cfa9d88a-eada-49dd-8cb3-73c7dd345c08", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.038725580428877526, 3.286394945067883e-08)" + "(0.6323451110506132, 0.884238547608047, 0.48222800598351057)" ] }, - "execution_count": 59, + "execution_count": 529, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p_value = lambda x, ndof: 1 - chi2.cdf(x, ndof)\n", - "p_value(chi_squre, ndof), p_value(chi_squre*10, ndof*10)" + "p_value(chi_square, ndof), p_value(chi_square*10, ndof*10), p_value(ndof, ndof)" ] }, { @@ -4519,12 +11959,12 @@ "id": "9cba146a-6309-42d1-92cb-8bdde2da42a2", "metadata": {}, "source": [ - "Try alternative fit model" + "Kehren wir zu unserem Doppelpeak-Spektrum zurück und änderen das Fitmodell, indem wir statt eines exponentiellen einen konstanten Untergrund annehmen." ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 530, "id": "9b91ee55-ac17-4dd6-9827-48677f772096", "metadata": {}, "outputs": [ @@ -4533,30 +11973,27 @@ "text/html": [ "\n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", " \n", - " \n", - " \n", - " \n", + " \n", " \n", "
Migrad Migrad
FCN = 247.8 (χ²/ndof = 4.7) Nfcn = 296 FCN = 369.6 (χ²/ndof = 3.3) Nfcn = 415
EDM = 5.03e-07 (Goal: 0.0002) EDM = 5.63e-05 (Goal: 0.0002)
Valid Minimum No Parameters at limit Valid Minimum Below EDM threshold (goal x 10)
Below EDM threshold (goal x 10) Below call limit No parameters at limit Below call limit
Covariance Hesse ok Accurate Pos. def. Not forced Covariance accurate
\n", " \n", @@ -4573,8 +12010,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4584,8 +12021,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4595,8 +12032,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4606,8 +12043,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4617,8 +12054,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4628,8 +12065,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4639,8 +12076,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -4660,126 +12097,1234 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - "
0 A_p1 635 14 319 7
1 A_p2 1.140e3 0.015e3 583 7
2 mu_p1 53.5 0.1 53.31 0.08
3 mu_p2 60.61 0.07 60.52 0.06
4 sigma_p1 2.42 0.08 2.23 0.07
5 sigma_p2 2.68 0.05 2.72 0.04
6 c 43.8 1.3 21.4 0.6 0
A_p1 182 0.02e3 (0.102) 0.357 (0.258) 0.290 (0.322) -0.095 (-0.093) -0.2364 (-0.388) 0.2 (0.014) 47.8 10 (0.148) 0.096 (0.167) 0.0895 (0.224) -0.108 (-0.235) -0.0881 (-0.301) 0.1 (0.023)
A_p2 0.02e3 (0.102) 217 -0.324 (-0.214) -0.151 (-0.153) -0.304 (-0.273) -0.1248 (-0.188) 0.2 (0.012) 10 (0.148) 52.4 -0.036 (-0.060) -0.0034 (-0.008) -0.064 (-0.132) -0.1062 (-0.347) 0.0 (0.005)
mu_p1 0.357 (0.258) -0.324 (-0.214) 0.0105 0.006 (0.837) 0.006 (0.803) -0.0035 (-0.751) 0.002 (0.017) 0.096 (0.167) -0.036 (-0.060) 0.00694 0.0038 (0.785) 0.004 (0.743) -0.0025 (-0.711) 0.002 (0.030)
mu_p2 0.290 (0.322) -0.151 (-0.153) 0.006 (0.837) 0.00446 0.004 (0.753) -0.0023 (-0.761) -0.005 (-0.058) 0.0895 (0.224) -0.0034 (-0.008) 0.0038 (0.785) 0.00333 0.0027 (0.695) -0.0017 (-0.714) -0.0018 (-0.051)
sigma_p1 -0.095 (-0.093) -0.304 (-0.273) 0.006 (0.803) 0.004 (0.753) 0.00569 -0.0021 (-0.608) -0.013 (-0.131) -0.108 (-0.235) -0.064 (-0.132) 0.004 (0.743) 0.0027 (0.695) 0.00444 -0.0016 (-0.559) -0.005 (-0.132)
sigma_p2 -0.2364 (-0.388) -0.1248 (-0.188) -0.0035 (-0.751) -0.0023 (-0.761) -0.0021 (-0.608) 0.00204 -0.0064 (-0.112) -0.0881 (-0.301) -0.1062 (-0.347) -0.0025 (-0.711) -0.0017 (-0.714) -0.0016 (-0.559) 0.00179 -0.0033 (-0.124)
c 0.2 (0.014) 0.2 (0.012) 0.002 (0.017) -0.005 (-0.058) -0.013 (-0.131) -0.0064 (-0.112) 1.62 0.1 (0.023) 0.0 (0.005) 0.002 (0.030) -0.0018 (-0.051) -0.005 (-0.132) -0.0033 (-0.124) 0.39
" + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:41:00.276254\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", - "│ FCN = 247.8 (χ²/ndof = 4.7) │ Nfcn = 296 │\n", - "│ EDM = 5.03e-07 (Goal: 0.0002) │ │\n", + "│ FCN = 369.6 (χ²/ndof = 3.3) │ Nfcn = 415 │\n", + "│ EDM = 5.63e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Valid Minimum │ No Parameters at limit │\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", - "│ Below EDM threshold (goal x 10) │ Below call limit │\n", - "├───────────────┬──────────────────┼───────────┬─────────────┬────────────┤\n", - "│ Covariance │ Hesse ok │ Accurate │ Pos. def. │ Not forced │\n", - "└───────────────┴──────────────────┴───────────┴─────────────┴────────────┘\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", - "│ 0 │ A_p1 │ 635 │ 14 │ │ │ │ │ │\n", - "│ 1 │ A_p2 │ 1.140e3 │ 0.015e3 │ │ │ │ │ │\n", - "│ 2 │ mu_p1 │ 53.5 │ 0.1 │ │ │ │ │ │\n", - "│ 3 │ mu_p2 │ 60.61 │ 0.07 │ │ │ │ │ │\n", - "│ 4 │ sigma_p1 │ 2.42 │ 0.08 │ │ │ │ │ │\n", - "│ 5 │ sigma_p2 │ 2.68 │ 0.05 │ │ │ │ │ │\n", - "│ 6 │ c │ 43.8 │ 1.3 │ │ │ 0 │ │ │\n", + "│ 0 │ A_p1 │ 319 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 583 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.31 │ 0.08 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.52 │ 0.06 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 2.23 │ 0.07 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.72 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ c │ 21.4 │ 0.6 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 c │\n", "├──────────┼────────────────────────────────────────────────────────────────┤\n", - "│ A_p1 │ 182 0.02e3 0.357 0.290 -0.095 -0.2364 0.2 │\n", - "│ A_p2 │ 0.02e3 217 -0.324 -0.151 -0.304 -0.1248 0.2 │\n", - "│ mu_p1 │ 0.357 -0.324 0.0105 0.006 0.006 -0.0035 0.002 │\n", - "│ mu_p2 │ 0.290 -0.151 0.006 0.00446 0.004 -0.0023 -0.005 │\n", - "│ sigma_p1 │ -0.095 -0.304 0.006 0.004 0.00569 -0.0021 -0.013 │\n", - "│ sigma_p2 │ -0.2364 -0.1248 -0.0035 -0.0023 -0.0021 0.00204 -0.0064 │\n", - "│ c │ 0.2 0.2 0.002 -0.005 -0.013 -0.0064 1.62 │\n", + "│ A_p1 │ 47.8 10 0.096 0.0895 -0.108 -0.0881 0.1 │\n", + "│ A_p2 │ 10 52.4 -0.036 -0.0034 -0.064 -0.1062 0.0 │\n", + "│ mu_p1 │ 0.096 -0.036 0.00694 0.0038 0.004 -0.0025 0.002 │\n", + "│ mu_p2 │ 0.0895 -0.0034 0.0038 0.00333 0.0027 -0.0017 -0.0018 │\n", + "│ sigma_p1 │ -0.108 -0.064 0.004 0.0027 0.00444 -0.0016 -0.005 │\n", + "│ sigma_p2 │ -0.0881 -0.1062 -0.0025 -0.0017 -0.0016 0.00179 -0.0033 │\n", + "│ c │ 0.1 0.0 0.002 -0.0018 -0.005 -0.0033 0.39 │\n", "└──────────┴────────────────────────────────────────────────────────────────┘" ] }, - "execution_count": 60, + "execution_count": 530, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYGUlEQVR4nO3deXhTVf4/8PdNulK60L0lgZZFoAiKoligqEMFgXFwQp1BURlFGB1QKjOOoiPjCoqOU1AHRn+Oy1dApUZUBhmRtUplU2S1FCzSlqYFSpMudEvO7480sYGkTdskN0nfr+fJo7n3pvlc0iTvnnPuOZIQQoCIiIjIhyjkLoCIiIiooxhgiIiIyOcwwBAREZHPYYAhIiIin8MAQ0RERD6HAYaIiIh8DgMMERER+RwGGCIiIvI5AXIX4C4mkwmnT59GeHg4JEmSuxwiIiJyghAC1dXVSE5OhkLhuJ3FbwPM6dOnoVar5S6DiIiIOqG4uBgqlcrhfr8NMOHh4QDM/wAREREyV0NERETOMBgMUKvV1u9xR/w2wFi6jSIiIhhgiIiIfEx7wz84iJeIiIh8DgMMERER+RwGGCIiIvI5DDBERETkcxhgiIiIyOcwwBAREZHPYYAhIiIin8MAQ0RERD6HAYaIiIh8DgMMERER+RwGGCIiIvI5DDBERETkcxhgiIiIyOcwwBCRT6utrYUkSZAkCbW1tXKXQ0QewgBDREREPocBhoiIiHwOAwwRERH5HAYYIiIi8jkMMETk04xGo/X/d+zYYXOfiPxXhwPMjh07cMsttyA5ORmSJGHdunXWfU1NTXj00UcxbNgwhIWFITk5GXfffTdOnz5t8zMqKysxY8YMREREICoqCrNmzUJNTY3NMQcOHEBGRgZCQkKgVquxdOnSzp0hEfktrVaLtLQ06/3JkycjJSUFWq1WxqqIyBM6HGBqa2txxRVX4PXXX79kX11dHb777js8+eST+O6776DValFQUIDf/OY3NsfNmDEDhw8fxqZNm7B+/Xrs2LEDc+bMse43GAyYMGEC+vbti3379uGll17CU089hTfeeKMTp0hE/kir1SIrKwulpaU220tLS5GVlcUQQ+TnJCGE6PSDJQmffPIJbr31VofH7NmzB9deey1+/vln9OnTB0ePHkVaWhr27NmDkSNHAgA2btyIyZMno6SkBMnJyVixYgWeeOIJ6HQ6BAUFAQAee+wxrFu3Dj/++KNTtRkMBkRGRkKv1yMiIqKzp0hEXshoNCIlJQUlJSV290uSBJVKhaKiIiiVSg9XR0Rd4ez3t9vHwOj1ekiShKioKABAfn4+oqKirOEFADIzM6FQKLBr1y7rMePGjbOGFwCYOHEiCgoKcP78ebvP09DQAIPBYHMjIv+Ul5fnMLwAgBACxcXFyMvL82BVRORJbg0w9fX1ePTRR3H77bdbU5ROp0N8fLzNcQEBAYiOjoZOp7Mek5CQYHOM5b7lmIstWbIEkZGR1ptarXb16RCRlygrK3PpcUTke9wWYJqamvC73/0OQgisWLHCXU9jtXDhQuj1euutuLjY7c9JRPJISkpy6rioqCguM0DkpwLc8UMt4eXnn3/Gli1bbPqwEhMTUVFRYXN8c3MzKisrkZiYaD2mvLzc5hjLfcsxFwsODkZwcLArT4OIvFRGRgZUKhVKS0vhaBhfYEQcqiIGeLgyIvIUl7fAWMJLYWEhvvrqK8TExNjsT09PR1VVFfbt22fdtmXLFphMJowaNcp6zI4dO9DU1GQ9ZtOmTRg0aBB69erl6pKJyMcolUosW7YM9qOLBACI+tVsPLH+GHoMGuPJ0ojIQzocYGpqarB//37s378fAFBUVIT9+/fj1KlTaGpqQlZWFvbu3YtVq1bBaDRCp9NBp9OhsbERADBkyBDcfPPNmD17Nnbv3o1vvvkG8+bNw/Tp05GcnAwAuOOOOxAUFIRZs2bh8OHD+PDDD7Fs2TIsWLDAdWdORD7B0WrTQ0ffBHXWE1CGx9ocr1arsHZtLu698/cwCSD2lr8guHfaxT+WiHyd6KCtW7cKAJfcZs6cKYqKiuzuAyC2bt1q/Rnnzp0Tt99+u+jZs6eIiIgQ99xzj6iurrZ5nh9++EGMHTtWBAcHi969e4sXXnihQ3Xq9XoBQOj1+o6eIhF5kZqaGuvnSE1NjRBCiGajSdzyap7o++h6Me21bQIKpQAgNmzYIJqbm63HzH5nl+j76HqRfN8KUVllkPM0iMhJzn5/d2keGG/GeWCI/ENtbS169uwJwNwCHBYWhre+LsKz648gPCQAn99/DVKTYmz2W5RUnMOIP74CGJuQNWYIXvvL3ZwXhsjLec08MERErlRhqMc/viwAACycNARx4fYH72u1Wlx31RU4u24xzn7+ElY+di/Uffpyhl4iP8EAQ0Q+5d38k6hrNOIKdRSmX2N/vidHywyUnT7NZQaI/AQDDBF5tdarS3+1dRvezy8CADxwfT8oFJLd4+fPn+/g8mrztuzsbK5aTeTjGGCIyGtdvNr0rbf8GodfuRuhp/fipjTznFBhYWEQQkAIgbCwMC4zQNRNMMAQkVdy1A1krD6LH//vaXy67hO7j+MyA0TdAwMMEXmdtruBAEly3A3k7DIDzh5HRN6JAYaIvE5XuoEsywxI0qXjYyzCohOQkZHhklqJSB4MMETkdbrSDWRZZgDAJSHGcr/nDbNwrrbpkscSke9ggCEir9PVbiCNRoPc3Fzr8iQWKpUKo2Y/j5CBo7Fuf6ndxxKRb2CAISKv0143kCRJUKvVbXYDaTQaHDlyxHp/w4YNKCoqwkOz7gQArPv+tGuLJiKPYoAhIq/TuhsIDrqBcnJy2l0WoPX+cePGQalU4ubLE6GQgCNlBhRX1rm2cCLyGAYYIvJKlm6gnr3ibLarVCrk5uZCo9F06udGhwXh2tRoAMD/Duu6XCcRyYMBhoi81tRbf4sBD76DhNsXIzC2j7UbqLPhxWLiUPMkeF8eLndFmUQkAwYYIvJau4sqcb7ehMC4FDRVllq7gZx18Sy9FhNaAsyenytxprrB5XUTkfsxwBCR19p4yHyZ9IXCbwGT69Yu6h0VimG9IyEE8NVRtsIQ+SIGGCLySiaTwBeHzGNUagt2uvzn35SWAADYXnDG5T+biNyPAYaIvNL3xedRUd2A8JAAVBV8e0k3UFeNu8w8OPibE2fRbDS57OcSkWcwwBCRV9pw0Nz6kjkkAcEBzo97cdaw3pGI6hGI6vpm7C+ucvnPJyL3YoAhIlnV1tZCkiRIkoTa2loA5rWONrZ0H918eaJbnlepkDBmQCwAYEfhWbc8BxG5DwMMEXmdQ6UGlFZdQI8gJa6/LK79B3TS9QPNP3vHMY6DIfI1DDBE5HV2FJoDxdgBsQgJdH33kUXGZeYWmAMlVaiqa3Tb8xCR6zHAEJHXsbSIZLix9QUAkiJDMTC+J0wC+Panc259LiJyLQYYIpKV0fjL/C47duyAoa4B3506DwDIaBmj4i61tbX4buMHAICvj3E+GCJfwgBDRLLRarVIS0uz3p88eTIG9E+F/sg3UPUKRd+YHm6vob74EABgz89Vbn8uInIdBhgikoVWq0VWVhZKS0tttp/R6XBm3WLEn/vBuvK0O1kCzLHyWujrmtz+fETkGgwwRORxRqMR8+fPhxDCzl7ztrz/e9mme8ldTLVVaDpXDAFg98lKtz8fEbkGAwwReVxeXh5KSkraPOas7jTy8vLcWoclIOl3a1F/6gDyCyvc+nxE5DoMMETkcWVlZS49rjNaj7+pPbAJ5Wsex5I/jIdWq3XbcxKR6zDAEJHHJSUlufS4jnI0/qa+6gyysrIYYoh8gCTsd0L7PIPBgMjISOj1ekRERMhdDhG1YjQakZKSgtLSUvvjYCQJapUKRUVFUCpdO5Gd5bkddmG58bmJqH3Ofn+zBYaIPE6pVGLZsmUAYPdKIwlATk6OWwJEu+NvhEBxcbHbx98QUdcwwBCRLDQaDXJzc5GcnGyzPSw6Abm5udBoNG55Xm8Yf0NEXRcgdwFE1H1pNBpkZmYiMjISEddlITT1Kjz3x9uguX6A255T7vE3ROQabIEhIlkplUpAoURk+nSE9BmOsYPi3fp8GRkZUKlUbU6Sl9xbhYyMDLfWQURdwwBDRLILSugPRVAIIkMDcFl8uFufq73xNwDwhz8/xQG8RF6OAYaIZBeiHgYAuFodCYXC/csHOBp/Ex6TiLhbH0fYoNFur4GIuoYBhohkFRYWhmkPPAoAGD3Qvd1HrWk0Ghw5csR6f8OGDXjjv/noMWg09p+q8lgdRNQ5HMRLRLIymgT2tKxBNCo1xqPP3bqbaNy4cThdYwIAHCzVo9loQoCSf+MReSu+O4lIVj/qDKiub0bP4AAMSXLv+Jf29I/rifDgAFxoMqKgvFrWWoiobQwwRCSr3UXm1per+/aSvcVDoZAwXB0JANhfXCVrLUTUNgYYIpLVrp/MAeba1GiPP3dYWBiEEBBCICwsDABwpToKADgOhsjLMcAQkWyEENhtHf/i+QBjz5XqXgCAH0qq5C2EiNrEAENEsjlxpgaVtY0IDlBguCpK7nIA/NICU1hRg+r6JnmLISKHGGCISDa7Wsa/XNWnF4ICvOPjKC48GL2jQiEEcLBEL3c5RORAhz8xduzYgVtuuQXJycmQJAnr1q2z2S+EwKJFi5CUlITQ0FBkZmaisLDQ5pjKykrMmDEDERERiIqKwqxZs1BTU2NzzIEDB5CRkYGQkBCo1WosXbq042dHRF7NMoBXjvEvbbmyTxQA4HsO5CXyWh0OMLW1tbjiiivw+uuv292/dOlSLF++HCtXrsSuXbsQFhaGiRMnor6+3nrMjBkzcPjwYWzatAnr16/Hjh07MGfOHOt+g8GACRMmoG/fvti3bx9eeuklPPXUU3jjjTc6cYpE5I2EENYBvN4y/sXiCpX5SqTDp9kCQ+StOjyR3aRJkzBp0iS7+4QQyMnJwd/+9jdMnToVAPDee+8hISEB69atw/Tp03H06FFs3LgRe/bswciRIwEAr776KiZPnoyXX34ZycnJWLVqFRobG/Gf//wHQUFBGDp0KPbv349XXnnFJugQke8qrrwAnaEegUoJI/r0krscG2lJ5gBz5LRB5kqIyBGXdjoXFRVBp9MhMzPTui0yMhKjRo1Cfn4+ACA/Px9RUVHW8AIAmZmZUCgU2LVrl/WYcePGISgoyHrMxIkTUVBQgPPnz9t97oaGBhgMBpsbEXkvy9VHw3pHIjTIuxZOTEuOAACcPFfHgbxEXsqlAUan0wEAEhISbLYnJCRY9+l0OsTH2653EhAQgOjoaJtj7P2M1s9xsSVLliAyMtJ6U6vVXT8hInKbfT+bA8w1Kd7VfQQA0WFBSIoMAQD8qOOMvETeyDuG/bvAwoULodfrrbfi4mK5SyKiNuw9aW5Nvbqvd3UfWaQlmVth2I1E5J1cGmASExMBAOXl5Tbby8vLrfsSExNRUVFhs7+5uRmVlZU2x9j7Ga2f42LBwcGIiIiwuRGRd6qqa0RhhfnKQ68NMMkMMETezKUBJjU1FYmJidi8ebN1m8FgwK5du5Ceng4ASE9PR1VVFfbt22c9ZsuWLTCZTBg1apT1mB07dqCp6Ze+502bNmHQoEHo1cs7P+yIyHn7fja3vvSLC0NMz2CZq7FvaEuAeW/9VkiShNraWpkrIqLWOhxgampqsH//fuzfvx+AeeDu/v37cerUKUiShOzsbDz33HP47LPPcPDgQdx9991ITk7GrbfeCgAYMmQIbr75ZsyePRu7d+/GN998g3nz5mH69OlITk4GANxxxx0ICgrCrFmzcPjwYXz44YdYtmwZFixY4LITJyL57G0JMCO9tPUF+OVKpKDYvoDCuwYZE1EnLqPeu3cvbrzxRut9S6iYOXMm3nnnHfz1r39FbW0t5syZg6qqKowdOxYbN25ESEiI9TGrVq3CvHnzMH78eCgUCkybNg3Lly+37o+MjMSXX36JuXPn4uqrr0ZsbCwWLVrES6iJ/MTeliuQRvb1vgG8FqpeoegZrEQNgMBoldzlENFFJCGEkLsIdzAYDIiMjIRer+d4GCIv0tBsxLCnvkRjswlb/nw9+sX1lLskh6b962vsO6XH2fX/QPmuz60rVhOR+zj7/e03VyERkW84VGpAY7MJMWFBSI317kAwKC4U9acOAMK8jIrRaJS7JCJqwQBDRB5lmf/lqr69IEmSzNU4ptVq8e+5v0b5msdRe2QrJk+ejJSUFGi1WrlLIyIwwBCRh+1pmf/lmhTvHcCr1WqRlZWFyjO2E2eWlpYiKyuLIYbICzDAEJHHCCHw3c+WCey8cwCv0WjE/PnzYW94oGVbdnY2u5OIZMYAQ0QeU3S2FudqGxEUoMDlvb1zcH1eXh5KSkoc7hdCoLi4GHl5eR6sioguxgBDRB5jWT7gClUkggO8c26VsrIylx5HRO7BAENEHrO3ZQDvSC9cwNEiKSnJpccRkXswwBCRx/jCDLwZGRlQqVQOr5CSJAlqtRoZGRkeroyIWmOAISKPOFfTgJ/OmNcT8tYFHAFAqVRi2bJlAHBJiLHcz8nJgVLpnV1gRN0FAwwReYRlAceB8T0R1SNI5mraptFokJuba12fzSI+MRm5ubnQaDQyVUZEFh1eC4mIqDMsAWakF8//0ppGo0FmZiYiIyMRMWoaQvtdjZfnTYdmdKrcpRER2AJDRB6y18vnf7HH0k2k6BGJkD7DcfxsncwVEZEFAwwRuV19kxEHS/QAvHsGXkeazp4CABwrr5a5EiKyYIAhIrc7WKpHo9GE2J7B6BPdQ+5ynBYWFgYhBL7+71oAwLHyGpkrIiILBhgicrudx8oBAD/v24K6Ot/rhhkY3xMAcLamAedrG2WuhogABhgi8oDvi83dRw2lR2WupHPCggOg6hUKgN1IRN6CAYaI3MpkEvi+ZfxLQ8kRmavpvMsSwgEAxyrYjUTkDRhgiMitfjpbg6raBtT9tBeNukLs2LHDJ1dyHphg7kY6pmMLDJE3YIAhIrf619urUbpyFs6sfQoQApMnT0ZKSgq0Wq3cpXXIZfEtLTDsQiLyCgwwROQ2Wq0W/3zsARirz9psLy0tRVZWlk+FmEGJ5gBTyC4kIq/AAENEbmE0GjF//nwA4pJ9Qpi3ZWdn+0x3Uv+4npAkoLK2EWdrGuQuh6jbY4AhIrfIy8tDSUmJw/1CCBQXFyMvL8+DVXVeaJDSOocNu5GI5McAQ0RuUVZW5tLjvMFAyzgYDuQlkh0DDBG5RVJSkkuP8waXWa5E4jgYItkxwBCRW2RkZCA4Ms7hfkmSoFarkZGR4cGqusYyF0whu5CIZMcAQ0RuUVnXjIgbZwMwh5XWLPdzcnKsKz77AutkduU11oHIRCQPBhgicov8n86hx6DRGHHPs0hOTrbZp1KpkJubC41GI1N1ndMvLgwKCdBfaMKZal6JRCQnBhgicov8E+a5XzQaDY4c+WUJgQ0bNqCoqMjnwgsAhAQqkRITBgAoYDcSkawYYIjILfJPnAMApPePsekmGjdunE91G13MuqRAOQfyEsmJAYaIXO501QWcPFcHpULCtanRcpfjUhzIS+QdAuQugIj8j6X1ZVjvSISHBAII9JtBr78M5GWAIZITW2CIyOV2tuo+8je/tMDwSiQiOTHAEJFLCSGsA3hH+2GASY0NQ4BCQnVDMwIj4yBJEmpra+Uui6jbYYAhIpc6VVmH0/p6BColjOzrX+NfACAoQIGUWPOVSIGxfWWuhqj7YoAhIpeydB+NUPdCaJDvXm3UFsuSAgwwRPJhgCEil8r34/EvFpclhEOYjJAk80fojh07YDQaZa6KqHthgCGiLqutrYUkSZAkCd8cPwPAvwPMmYN5KF05C4bdHwMAJk+ejJSUFGi1WpkrI+o+GGCIyGUCY9Q4V9uE4AAFRvSJkrsct9BqtVjy59kwVp+12V5aWoqsrCyGGCIPYYAhIpcJ7jMcADAypReCA/xv/IvRaMT8+fPtXj5t2Zadnc3uJCIPYIAhoi6zfGFLSiXqTx3AdSm9ZK7IPfLy8lBSUuJwvxACxcXFyMvL82BVRN0TAwwRdYlWq0VaWhoAoHrvZyhf8zieu/tXftmVUlZW5tLjiKjzGGCIqNO0Wi2ysrJQWlpqs/2Mrswvx4MkJSW59Dgi6jxJ+Olc2AaDAZGRkdDr9YiIiJC7HCKn1NbWomdP8xwjNTU1CAsLk7kix4xGI1JSUhx2qUiSBJVKhaKiIp9efbo1yzmXlpbaHQfjj+dM5GnOfn+zBYaIOqU7jgdRKpVYtmwZAHNYac1yPycnh+GFyANcHmCMRiOefPJJpKamIjQ0FP3798ezzz5r89eKEAKLFi1CUlISQkNDkZmZicLCQpufU1lZiRkzZiAiIgJRUVGYNWsWampqXF0uEXVSdx0PotFokJubi6SkZJvtKpUKubm50Gg0MlVG1L24PMC8+OKLWLFiBV577TUcPXoUL774IpYuXYpXX33VeszSpUuxfPlyrFy5Ert27UJYWBgmTpyI+vp66zEzZszA4cOHsWnTJqxfvx47duzAnDlzXF0ukVdpffmtt8/u2p3Hg2g0Ghw9egTREx9E7C2P4Pl/r0FRURHDC5EnCRebMmWKuPfee222aTQaMWPGDCGEECaTSSQmJoqXXnrJur+qqkoEBweLNWvWCCGEOHLkiAAg9uzZYz3miy++EJIkidLSUqfq0Ov1AoDQ6/VdPSUij/j4449F7969BQDrTaVSiY8//lju0uxqbm4WKpVKSJJkU7PlJkmSUKvVorm5We5S3aKmpkbE/PrPou+j68U/Nx6Wuxwiv+Hs97fLW2BGjx6NzZs349ixYwCAH374AV9//TUmTZoEACgqKoJOp0NmZqb1MZGRkRg1ahTy8/MBAPn5+YiKisLIkSOtx2RmZkKhUGDXrl2uLplIdo6u5vHm2V1bjwe5WHcZD9J09hQA4PiZWpkrIep+XB5gHnvsMUyfPh2DBw9GYGAgRowYgezsbMyYMQMAoNPpAAAJCQk2j0tISLDu0+l0iI+Pt9kfEBCA6Oho6zEXa2hogMFgsLkR+QJfnt1Vo9Hggw8/QkB4rM327jAeJCwsDLlvmbvGT5yrb+doInI1lweYjz76CKtWrcLq1avx3Xff4d1338XLL7+Md99919VPZWPJkiWIjIy03tRqtVufj8hVfP1qnpSRv0Ly/W8h9tbHAQAbNmzoNuNBLkswX/J+4kwNjCa/nJGCyGu5PMA88sgj1laYYcOG4a677sLDDz+MJUuWAAASExMBAOXl5TaPKy8vt+5LTExERUWFzf7m5mZUVlZaj7nYwoULodfrrbfi4mJXnxqRW/j61TxbfqyApFACxiYAwLhx4/y626g1da8eCAlUoLHZhJ/PsRuJyJNcHmDq6uqgUNj+WKVSCZPJBABITU1FYmIiNm/ebN1vMBiwa9cupKenAwDS09NRVVWFffv2WY/ZsmULTCYTRo0aZfd5g4ODERERYXMj8gW+fDWPEAJfHjZ36/7n2WwIIbx68j1XUygk9I8zt8Icr+A0D0Se5PIAc8stt+D555/Hf//7X5w8eRKffPIJXnnlFfz2t78FYB7cl52djeeeew6fffYZDh48iLvvvhvJycm49dZbAQBDhgzBzTffjNmzZ2P37t345ptvMG/ePEyfPh3JycltPDuR78nIyIBKpbpkYjQLSZKgVquRkZHh4crad7yiBj+drUWQUoEbBsXJXY4sBsa3BJgzDDBEnhTg6h/46quv4sknn8Sf/vQnVFRUIDk5GX/84x+xaNEi6zF//etfUVtbizlz5qCqqgpjx47Fxo0bERISYj1m1apVmDdvHsaPHw+FQoFp06Zh+fLlri6XSHaWq3mysrIgSZLNYF5vv5rnfy2tL2MGxCA8JFDmauQxwBJgyhlgiDyJayEReQmtVouHHnrI5lJqtVqNnJwcrx0Qe8urX+NgqR5LNMNw+7V95C5HFhsP6XD/+/swXBWJz+aNlbscIp/HtZCIfIxGo8GRI0es9739ap7Sqgs4WKqHJAGZQxLaf4CfsrbAVNTAxCuRiDyGAYbIi7TuJvL2q3k2tXQfjezbC3HhwTJXI5++MT0QqJRQ12hEmYHzwRB5CgMMEbWrtrYWkiRBkiTU1povF/7fYfNUCBOH2p/aoLsIVCqQEmO+8qqwvFrmaoi6DwYYIi8SFhYGIYTXX458vrYRu09WAmCAAYCBCbyUmsjTGGCIqMO+OloOo0lgSFIE1NE95C5HdgM4FwyRx7n8Mmoi8j+t12HasWMHvtBFAwAmDu2+g3dbG5AQDoABhsiT2AJDRG3SarVIS0uz3p88eTL+b/6vUVewk91HLSwtMIUVNXYX5SQi12OAISKHtFotsrKybOamAYDm6rM4s24xjuZ/JVNl3qVfXBgUEqC/0ISzNY1yl0PULTDAEJFdRqMR8+fPb6NFwbwsSOvupe4qJFBpHQtUWMErkYg8gQGGiOzKy8tDSUlJG0cIFBcXIy8vz2M1eTPLmkgnOA6GyCMYYIjIrrKyMpce5+/6x/8yDoaI3I8BhojsSkpKculx/o6XUhN5FgMMEdmVkZEBlUplXRH7YpIkQa1WIyMjw8OVeaeBLZdSswWGyDMYYIjILqVSiWXLlgHAJSHGcj8nJ8er12vypP5x5pmTz1Q3QF/XJHM1RP6PAYbIS/18rhYf7D6FT/eXYmtBBb47dR6Ges9+MWo0GuTm5iI2wXa+F5VKhdzcXK9dKVsO4SGBSIoMAQAcP8MrkYjcjTPxEnkRIQR2F1Xira+LsOloOS6+grlHkBK3X9sH92WkIiky1CM1aTQarD0Th63bv0bt0R34aPFDmDBhAlte7BgQ3xNl+nocr6jB1X2j5S6HyK8xwBB5iTPVDbj//X3Y9/N567ZrUnohQKGAob4JZ2saUG5owFtfF+G9/JOYemVvPDJxEBIiQtxaV17hGeQXGRDcewjOfbEc48aNY3hxYEB8T+QVnuVAXiIPYIAh8gLnahpwx5vforCiBsEBCmiuUmHW2BQMiA+3HiOEwJcHSzBzyftA3+HI3VeCzUfL8fJtV2D8kPbXJKqtrUXPnuYrZWpqapxa7dpkEliy4UcAwL3jBuLvL/GS6bYM4KXURB7DMTBEMjtf24gZ/28XCitqkBARjP9lj8MSzTCb8AKYB86O7R+N8g8eR9l7CzA4oSfO1zVh1rt78dRnh1Hf5PoZcT/9oRRHygwIDw7Ag78a6PKf728GxnNRRyJPYYAhkpG+rgl3vrULP+qqERcejDWzr0NKrOOWEcu0/Y1lxzB3YC3+cF0fAMA7O09C86+dKDlf1+5jAfOK0hcvAVBbWwtJkiBJEmpra1HfZMTL/zsGAHjgxv6IDgvq9Hl2F5YWmJLzF1DX2CxzNUT+jQGGSCZCCGR/+D0OnzYgtmcQ1swehX4tk6HZc/Gq0L+5ZQreenAy7kmuQExYEI6UGfCb177B7qLKdh87efJkpKSkQKvVOny+9/JPorTqApIiQ3DvmNROnmX3Eh0WhJiWoPfTmVqZqyHybwwwRB5maenoOXgsthacQZBSgffuHXVJl1FrjlaFLi0txdPZs3B/ylkMTY5AZW0j7njzW6zedcqpx2ZlZVlDTOsWmf9b9z/880vz2JeHb7oMIYEctOusX5YU4KXURO7EAEMkAykoFL0y5wAA7r+hP9KSIxwe29aq0JZtzz7xKD6cPQpThieh2STw+CcH8cjaH1B9oaHdx2ZnZyM3N9emheaBO6ehcPkf0MdwENOuUnXpXLsby6KOHAdD5F4MMEQudvFYkosZjUaEDb0RDcWHEV75I/6YkdLmz2tvVWghzKtC7921E6/dPgKPTBwESQLW7ivB9QtWOPXY22677ZIWGmP1WXy98nF8uu6Ttk+YbFivRCpngCFyJwYYIg/SarUYOGgwar7fgLOfv4RDb/4Fgwf2b3MsSkdWhZYkCXNvHIBV941CQkQwiktPd7nm7OzsSwb8kmPWK5HOMMAQuRMDDJGLObraxzIWpUJnG0guHotysc6sCj26fyw2PJSBq4d0bfCtpYUmLy+vSz+nO7G0wPx8rg6NzSaZqyHyXwwwRC7k6GqftWvXOjUWxV5LR2dXhY7pGYz1z89GdLxzAagtzrYCEZAQEYzw4AAYTQInz/FKJCJ3YYAhcpG2rvb53e9+59RYFHstHV1ZFTogIABvrnit5Tj7AcgZzrYCkfk16c9xMERuxwBD5ALOXCnkDEctHZZVoZOTk222O7MqtOWxvXvbPjYmIRlzn3sdsQlJHW7dobbxSiQi92OAIXKB9q4UclZbLR0ajQZHjhyx3t+wYQOKiopswoujK6DsPba89BRee+JP+Pe/XgPQ8dYdcmwA54IhcjsGGCIX6OoYEWdbOloHiY6uCu3osV1p3SH7BiawBYbI3RhgiFygI2NE3NnS0dZ6R2FhYRBCQAhxyUrUzrTukPMGxJkvpT5acg6SQml3PiAi6hoGGCIXaO9KIQBQhsfi2eVvdamlo60Q0pn1jmzq60LrDtnq3SsUIQEKSAFBCIhMkLscIr/EAEPkAm1dKWS5+ueK2+bjiXn3uKWlw9n1jtrSVjiijlEqJPTtFYz6UwcgBfewu/o3EXUNAwyRizgaSxIUGYu4Wx/H3+b9AZIkubylw5kroDibrmdptVp8s/h2lK95HE3lJzrcGkZE7WOAIXKhi8eS/PPtj5A45/8hYfg4TLrcPE7G1S0dzq6VxNl0PcPSGlZbWWGzvSOtYUTUPgYYIhdr3aJSHNofkkKJScMSERLonjElHVkridyLrWFEnsMAQ+QuykB8ecT8V/hvR6jc9jSdWSuJ3IOtYUSewwBD5GKWLqL13/2M6gYjekeFYlRqtNuer7NrJZHrsTWMyHMYYIjc5JPvzX+JT70yGQpF59chak9X1koi12JrGJHnMMAQucG5mgZsKzgDANBc1dvtz8fZdL0DW8OIPIcBhsgN/nuwDM0mgWG9IzEgPtwjz8nZdOXH1jAiz2GAIXID7XfmCeVuHeH+1pfWOJuu/NgaRuQZAXIXQORvis7WYn9xFZQKCb+5Irn9B7iQZQAxyUuj0SAzMxPR6gHodf0f0CMqFif+swABAfzIJXIVt7TAlJaW4s4770RMTAxCQ0MxbNgw7N2717pfCIFFixYhKSkJoaGhyMzMRGFhoc3PqKysxIwZMxAREYGoqCjMmjULNTVc2ZW838ZDOgDA6P4xiAsPlrkakotSqYSxphI9Bo2GlDwUuupGuUsi8isuDzDnz5/HmDFjEBgYiC+++AJHjhzBP/7xD/Tq1ct6zNKlS7F8+XKsXLkSu3btQlhYGCZOnIj6+nrrMTNmzMDhw4exadMmrF+/Hjt27MCcOXNcXS6Ry315xBxgJg5NlLkSklNYWBiEsRmDks2ffYXl/AOMyJVc3p754osvQq1W4+2337ZuS01Ntf6/EAI5OTn429/+hqlTpwIA3nvvPSQkJGDdunWYPn06jh49io0bN2LPnj0YOXIkAODVV1/F5MmT8fLLL1/St0zkLSoM9fj+VBUA4KY0rkJMwMCEcBwrr8Gx8mrcODhe7nKI/IbLW2A+++wzjBw5Erfddhvi4+MxYsQIvPnmm9b9RUVF0Ol0yMzMtG6LjIzEqFGjkJ+fDwDIz89HVFSUNbwAQGZmJhQKBXbt2uXqkolc5quj5pl3r1RHISEiROZqyBtc1nIV2jG2wBC5lMsDzE8//YQVK1Zg4MCB+N///ocHHngADz30EN59910AgE5nbl5PSLD96zQhIcG6T6fTIT7e9i+VgIAAREdHW4+5WENDAwwGg82NyNMs3UcThrL1hcwuS+gJADheUS1zJUT+xeVdSCaTCSNHjsTixYsBACNGjMChQ4ewcuVKzJw509VPZ7VkyRI8/fTTbvv5RO2prm/CzuPnAAAT0jj+hcwGJphbYAoramAyCbfOykzUnbi8BSYpKQlpaWk224YMGYJTp04BABITzR/s5eXlNseUl5db9yUmJqKiwnYp+ubmZlRWVlqPudjChQuh1+utt+LiYpecD5Gzth87g0ajCf1iwzAgvqfc5ZCXSInpgSClAnWNRpRWXZC7HCK/4fIAM2bMGBQUFNhsO3bsGPr27QvAPKA3MTERmzdvtu43GAzYtWsX0tPTAQDp6emoqqrCvn37rMds2bIFJpMJo0aNsvu8wcHBiIiIsLkRedKXh82h/CZ2H1ErAUoF+sWFAQAK2Y1E5DIuDzAPP/wwvv32WyxevBjHjx/H6tWr8cYbb2Du3LkAzNNpZ2dn47nnnsNnn32GgwcP4u6770ZycjJuvfVWAOYWm5tvvhmzZ8/G7t278c0332DevHmYPn06r0Air9TYbMLWH82thuw+ootZupE4kJfIdVw+Buaaa67BJ598goULF+KZZ55BamoqcnJyMGPGDOsxf/3rX1FbW4s5c+agqqoKY8eOxcaNGxES8stVG6tWrcK8efMwfvx4KBQKTJs2DcuXL3d1uUQusavoHKobmhHbMxgj1FFyl0Ne5rKWLsVj5WyBIXIVSfjpvOMGgwGRkZHQ6/XsTiK3e3LdIfzftz/j9mv7YIlmmNzlkJfZeEiH+9/fh2G9I/H5g2PlLofIqzn7/c3FHIm6SAiBLS3dRzelcaIyutQvl1Kbr0Qioq5jgCHqohNnalBadQFBAQqk94uVuxzyQn1jwhAUoMCFJiNKzvNKJCJXYIAh6qJtBWcAAKNSoxEapJS5GvJGSoWE/nEcB0PkSgwwRF20/Zg5wFx/WZzMlZA3s3QjHeOl1EQuwQBD1AUXGo3YVVQJALhhEAMMOXaZZUZeXkpN5BIMMERd8G3ROTQ2m9A7KtTaRUBkjyXAFOjYAkPkCgwwRF2wvWX8y7jL4iBJXOOGHBucaA4wxytq0GQ0yVwNke9jgCHqgh0c/0JO6h0VirAgJRqNJpw8Wyt3OUQ+jwGGqJNOnavDT2drEaCQMGZAjNzlkJdTKCQMammFOcpuJKIuY4Ah6qTthebWl6v79kJ4SKDM1ZAvGJRonlW0QGeQuRIi38cAQ9RJlvEv1/PqI3KSZRwMB/ISdR0DDFEH1dbWQlIG4ssfTgLg+BdyniXAHC2rNv8eSRIkSUJtLcfEEHUUAwxRBxmNRgTGqnHh+G4EnzmKQfFhcpdEPmJwSxdSadUF6OsarNt37NgBo9EoV1lEPokBhqgDtFot0tLS0FRRhLOfv4Rj/3kEqamp0Gq1cpdGPiCyRyASI0JQV7ATVw6/3Lp98uTJSElJ4e8RUQcwwBA5SavVIisrC6WlpTbbS0tLkZWVxS8fckpI6V6cWbcYZ3RlNtv5e0TUMZIQwi/XdjcYDIiMjIRer0dERITc5ZCPMxqNSElJQUlJid39kiRBpVKhqKgISiUXdCT7jEYjohN7w3C23O5+/h4ROf/9zRYYIifk5eU5DC8AIIRAcXEx8vLyPFgV+Zq8vDyH4QXg7xFRRzDAEDmhrKys/YM6cBx1T/w9InIdBhgiJyQlJbn0OOqe+HtE5DoMMEROyMjIgEqlcrhgoyRJUKvVyMjI8HBl5Essv0eO8PeIyHkMMEROUCqVWLZsGewNebeEmpycHA68pDZZfo+AS4Mwf4+IOoYBhshJGo0Gv17wEpThsTbbVSoVcnNzodFoZKqMfIlGo8F9T73K3yOiLgqQuwAiXyGEgC76CvS+/y2UvZuNpooibNiwARMmTOBfzNQh03+XhS9r1ag5uBmVG5fz94ioExhgiJxUWFGDM9UNCA0KRNM58yXV48aN45cOddigxHBICiV6jZiIss//iaAANoYTdRTfNURO+rrwLADgmtRoiOZGCCEQFsZ1kKjjekeFIjw4AM0mgRNnauQuh8gnMcAQOemb4+YAM3ZAbDtHErVNkiQMSTLPMHrktEHmaoh8EwMMkROajSbsKqoEAIxhgCEXSEtuCTBlDDBEncEAQ+SEA6V61DQ0IzI0EGlJXFuLus4SYA6f1stcCZFvYoAhckL+iXMAgPR+MVAo7E9mR9QRQ5N/6ULy0zV1idyKAYbICTtPmMe/jB4QI3Ml5C8GxocjUCnBUN+MkvMX5C6HyOcwwBC1o77JiL0nzwMARvdngCHXCApQ4LKEcADsRiLqDAYYonZ8f6oKDc0mxIcHo39cT7nLIT/SuhuJiDqGAYaoHfmW7qP+MQ4XcyTqDMuA8MMMMEQdxgBD1I5vWgbwju7Py6fJtYb2jgTAAEPUGQwwRG2oaWjGD8VVAIB0jn8hFxuSFAFJAnSGepyraZC7HCKfwgBD1IY9JyvRbBJQR4dCHd1D7nLIz/QMDkBKjHk5CrbCEHUMAwxRGyzzv4zux+4jcg/OyEvUOQwwRG3g/C/kbhzIS9Q5DDBEDlTVNVq/VDj+hdxlKJcUIOoUBhgiOwwGAxIGjUDN4e2I1h9DTI9AuUsiPzU02XwlUtHZWtQ2NMtcDZHvYIAhuohWq0VaWhoaS47g7Ocv4fuVC5CSkgKtVit3aeSH4sKDER8eDCGAH3XsRiJyFgMMUStarRZZWVkoLS212V5aWoqsrCyGGHILzshL1HEMMEQtjEYj5s+fb3dlYMu27OxsGI1GT5dGfs7SjcSBvETOY4AhapGXl4eSkhKH+4UQKC4uRl5engerou7A0gJzoIQDeYmcxQBD1KKsrMylxxE5a7g6CgBQUF6N+ia28BE5w+0B5oUXXoAkScjOzrZuq6+vx9y5cxETE4OePXti2rRpKC8vt3ncqVOnMGXKFPTo0QPx8fF45JFH0NzMEfrkPklJSS49jshZyZEhiO0ZDKNJsBuJyEluDTB79uzBv//9bwwfPtxm+8MPP4zPP/8ca9euxfbt23H69GloNBrrfqPRiClTpqCxsRE7d+7Eu+++i3feeQeLFi1yZ7nUzWVkZEClUjlccVqSJKjVamRkZHi4MvJ3kiThSrV5HIxl7S0iapvbAkxNTQ1mzJiBN998E7169bJu1+v1eOutt/DKK6/gV7/6Fa6++mq8/fbb2LlzJ7799lsAwJdffokjR47g/fffx5VXXolJkybh2Wefxeuvv47GxkZ3lUzdnFKpxLJly2BnDK811OTk5ECpVHq4MuoOhquiAAAHSqpkrYPIV7gtwMydOxdTpkxBZmamzfZ9+/ahqanJZvvgwYPRp08f5OfnAwDy8/MxbNgwJCQkWI+ZOHEiDAYDDh8+bPf5GhoaYDAYbG5EHaXRaDD54aVQhtuufaRSqZCbm2vTUkjkSle0jIP5gQN5iZzilgDzwQcf4LvvvsOSJUsu2afT6RAUFISoqCib7QkJCdDpdNZjWocXy37LPnuWLFmCyMhI602tVrvgTKi7EUKgIuZK9L7/LQTGpQAANmzYgKKiIoYXcqvhvX+ZkVdf1yRzNUTez+UBpri4GPPnz8eqVasQEhLi6h/v0MKFC6HX66234uJijz03+Y/jFTU4U92AkKBAVJ8+DiEEJk2axG4jcrteYUHoG9MDAHCgtEreYoh8gMsDzL59+1BRUYGrrroKAQEBCAgIwPbt27F8+XIEBAQgISEBjY2NqKqqsnlceXk5EhMTAQCJiYmXXJVkuW855mLBwcGIiIiwuRF11M4T5wAA16REIziAoYU865dxMOxGImqPywPM+PHjcfDgQezfv996GzlyJGbMmGH9/8DAQGzevNn6mIKCApw6dQrp6ekAgPT0dBw8eBAVFRXWYzZt2oSIiAikpaW5umQiq50nzgLg6tMkjytU5m6k/bwSiahdAa7+geHh4bj88stttoWFhSEmJsa6fdasWViwYAGio6MRERGBBx98EOnp6bjuuusAABMmTEBaWhruuusuLF26FDqdDn/7298wd+5cBAcHu7pkIgBAs9GE/JYWmNEMMCSDK1sG8vJKJKL2uTzAOOOf//wnFAoFpk2bhoaGBkycOBH/+te/rPuVSiXWr1+PBx54AOnp6QgLC8PMmTPxzDPPyFEudRM/lOhhqG9GZGigtSmfyJOGJkdCqZBQbmiATl+PxEjPjSMk8jUeCTDbtm2zuR8SEoLXX38dr7/+usPH9O3bFxs2bHBzZUS/yCs8AwAYOyAWSoX9yeyI3Ck0SInLEsJxtMyA/cVVuDnS/pg/IuJaSERWO46ZA8y4y2LbOZLIfSzjYNiNRNQ2BhgiAPq6JuvAyYyBcfIWQ93aLxPaVclaB5G3Y4AhgvnqI5MABsT3RHJUqNzlUDc23NoCo4fJZGddCyICwABDBADY0TL+ZRxbX0hmlyWEIyRQger6ZhSdq5W7HCKvxQBD3Z4QAjuOmed/yeD4F5JZoFKBYS3LCnz383mZqyHyXgww1O39dLYWpVUXEKRU4LpUzv9C8huZEg0A2HuSAYbIEQYY6vYsVx9dk9oLoUFcPoDkd01KLwDAnp8rZa6EyHsxwFC3Z718muNfyEtc3cfcAvPTmVqcq2mQuRoi78QAQ91aQ7MR3/5k/it33GUMMOQdInsEYlBCOABgL8fBENnFAEPd2r6T53GhyYi48GAMTgyXuxwiAIDBYED+6ldQe2Q71nyyHkajUe6SiLwOAwx1a9tbLp/OGBgLSeLyASQ/rVaLtLQ0VO/9FGc/fwnvPjkbKSkp0Gq1cpdG5FUYYKhby2u5fPp6dh+RF9BqtcjKykJpaanN9tLSUmRlZTHEELXCAEPd1pnqBhwpMwAAxgzg/C8kL6PRiPnz50OIS2fftWzLzs5mdxJRCwYY6pYMBgP6DL8OtUe2I6GmEL1CPbIwO5FDeXl5KCkpcbhfCIHi4mLk5eV5sCoi78UAQ92OZYxB/cn9OPv5S9j9+sMcY0CyKysrc+lxRP6OAYa6FY4xIG+VlJTk0uOI/J0k7HW4+gGDwYDIyEjo9XpERETIXQ55AaPRiJSUFIfN9JIkQaVSoaioCEolZ+Qlz7L8fpaWltodB8PfT+ounP3+ZgsMdRscY0DeTKlUYtmyZQBg95J+IYCcnByGF6IWDDDUbXCMAXk7jUaD3NxcJCcn22xXhsdiYvZSaDQamSoj8j689IK6DY4xIF+g0WgwdepU5OXloaysDOdFD7y4X8LZiFAIITjhIlELBhjqNjIyMqBSqVBSWmpuj7+IZYxBRkaGDNUR/UKpVOKGG24AYF6v69Wjm3C2phEF5dUYnMgxfUQAu5CoG7GOMbAzbN3yVy3HGJC3CQ5Q4tpU8+rUXxeelbkaIu/BAEPdikajweV3PwVluO3MuyqVCrm5uRxjQF5pbMtM0V8fZ4AhsmAXEnUrJ87UoDrpaqTM/Q+W3RgKw7kzSEpKQkZGBlteyGuNHWgOMLt+qkRjswlBAfzbk4gBhrqVTUfKAQDpA+IxZcIomashcs6ghHDE9gzC2ZpGfH/qPEb1i5G7JCLZMcZTt/LlYR0AYMLQRJkrIXKeQiFhdH92IxG1xgBD3caZ6gZ8X1wFALhpSIK8xRB1EMfBENligKFuY/PRcggBDFdFIjEyRO5yiDpkTMs4mB+Kq2Cob5K5GiL5McBQt2EZ/zIhja0v5Ht6R4WiX2wYTAL49sQ5ucshkh0DDHULtQ3NyGtper8pjeNfyDeNYTcSkRUDDHULeYVn0NhsQp/oHrgsoafc5RB1iiXA5B0rx7Zt27BmzRps27YNRqNR5sqIPI+XUVO38GVL99FNaQlcS4Z8Vnr/GFw4thN5X72BG6t/aYVRqVRYtmwZJ2KkboUtMOT3mo0mbPmxAgDHv5Bv2/zF56j4ZDGM1bZdSKWlpcjKyoJWq5WpMiLPY4Ahv7fn5HlU1TWhV49AXN23l9zlEHWK0WjE/Pnz7e4TLYuTZmdnszuJug0GGPJ7XxwqAwCMH5KAACV/5ck35eXloaSkxOF+IQSKi4uRl5fnwaqI5MNPc/JrzUYTNhw0B5hfD0+SuRqizisrK3PpcUS+jgGG/Nq3P1XibE0jevUItF7BQeSLkpKcC+DOHkfk6xhgyK99/sNpAMCkYUkIZPcR+bCMjAyoVCqHV9FJkgS1Wo2MjAwPV0YkD36ik99qbDZZx7/cMjxZ5mqIukapVGLZsmUAcEmIsdzPycmBUqn0eG1EcmCAIb+VV3gGhvpmxIcH49rUaLnLIeoyjUaD3Nxc9O7d22a7SqVCbm4u54GhboUT2ZHf+qyl++jXw5OhVHDyOvIPGo0GU6dOxT/e+xQvffItEpMS8f3rDyEggB/n1L2wBYb8Us2FRqzbsAm1R7Yjqe4E58Ygv6JUKjFvxm8QPfxGVPcahONn6+QuicjjGGDI72i1WqSk9MWp/3sUZz9/CXOm/wYpKSmcpZT8So+gAIxtubJu0+Fymash8jwGGPIrWq0WWVlZOFehs9nOqdbJH00Yal4aY+NhXTtHEvkflweYJUuW4JprrkF4eDji4+Nx6623oqCgwOaY+vp6zJ07FzExMejZsyemTZuG8nLbvyBOnTqFKVOmoEePHoiPj8cjjzyC5uZmV5dLfsQy1bplWvXWONU6+aOb0hIRoJBw+LQBheXVcpdD5FEuDzDbt2/H3Llz8e2332LTpk1oamrChAkTUFtbaz3m4Ycfxueff461a9di+/btOH36tM3oeaPRiClTpqCxsRE7d+7Eu+++i3feeQeLFi1ydbnkRzjVOnU30WFBuGFQPABA+32pzNUQeZhws4qKCgFAbN++XQghRFVVlQgMDBRr1661HnP06FEBQOTn5wshhNiwYYNQKBRCp9NZj1mxYoWIiIgQDQ0NTj2vXq8XAIRer3fh2ZA3W716tQDQ7m316tVyl0rkMv89cFr0fXS9SF/8lTAaTXKXQ9Rlzn5/u30MjF6vBwBER5vn4di3bx+ampqQmZlpPWbw4MHo06cP8vPzAQD5+fkYNmwYEhISrMdMnDgRBoMBhw8ftvs8DQ0NMBgMNjfqXjjVOnVHvxocj/CQAJzW1+PbonNyl0PkMW4NMCaTCdnZ2RgzZgwuv/xyAIBOp0NQUBCioqJsjk1ISIBOp7Me0zq8WPZb9tmzZMkSREZGWm9qtdrFZ0PeLiMjA+ExCQ73c6p18kchgUrrQqWffMduJOo+3Bpg5s6di0OHDuGDDz5w59MAABYuXAi9Xm+9FRcXu/05ybtcaBaIuHG2+Q6nWqdu5LcjVACALw7pcKGRg9Spe3BbgJk3bx7Wr1+PrVu3QqVSWbcnJiaisbERVVVVNseXl5cjMTHReszFVyVZ7luOuVhwcDAiIiJsbtS9rP/hNAL6X4fL734aKk61Tt3IyL69oOoVipqGZnx5hJdUU/fg8gAjhMC8efPwySefYMuWLUhNTbXZf/XVVyMwMBCbN2+2bisoKMCpU6eQnp4OAEhPT8fBgwdRUVFhPWbTpk2IiIhAWlqaq0smP/HBHnOr27x7Z+DkyZPYunUrVq9eja1bt6KoqIjhhfyWQiHhtyPMof3jfaewbds2rFmzBtu2beO0AeS3JCHsTJrRBX/605+wevVqfPrppxg0aJB1e2RkJEJDQwEADzzwADZs2IB33nkHERERePDBBwEAO3fuBGC+jPrKK69EcnIyli5dCp1Oh7vuugv33XcfFi9e7FQdBoMBkZGR0Ov1bI3pBn7UGXBzTh4CFBK+fXw8YnsGy10SkUf9dKYG181ZgsrNb8BYfda6XaVSYdmyZQzw5DOc/f52eQvMihUroNfrccMNNyApKcl6+/DDD63H/POf/8Svf/1rTJs2DePGjUNiYqLNDKlKpRLr16+HUqlEeno67rzzTtx999145plnXF0u+Yn38n8GANyUlsDwQt3S/rwvcWbdYpvwAnAWavJfLm+B8RZsgek+ztY0YPQLW9DYbMKHc67DqH4xcpdE5FFGoxEpKSkOJ3KUJAkqlQpFRUUcxE5eT7YWGCJPe2/nSTQ2m3CFOgrXpkbLXQ6Rx3EWauqOGGDIp11oNOK9b83dR38c1896uTRRd1JWVubS44h8AQMM+bS1+4pRVdeEvjE9MHGo/UvsifwdZ6Gm7ogBhnyW0STw//KKAAD3jU2FUsHWF+qeMjIyoFKpHLZAchZq8kcMMOSzNh7S4VRlHXr1CETW1Vw6grovpVKJZcuWAcAlIYazUJO/YoAhnySEwBs7TgAA7kpPQWgQP5ipe9NoNMjNzUXvi2ahjohN4CzU5JcC5C6AqDM2HSnHDyV6hAQqcHd6X7nLIfIKGo0GU6dORV5eHjbuPop39lchdsAV+NXNmXKXRuRybIEhr2U0Gu1Oid5sNGHp/wogTEbcEH4Gmz7Xcsp0ohZKpRI33HADnv/L/bjy2jGoaRRYuf0nucsicjm2wJBX0mq1mD9/vs3cFpYp0RtVI3Eg70tUbXkD/zacxb8v2s+mciJAqZDwyMRBmPXuXryzswj3jElBQkSI3GURuQxn4iWvo9VqkZWVhYt/NS2DERPGZkGXt/aSx1n2s7+fyEwIgayV+dj383nMGNUHz/92mNwlEbWLM/GSTzIajZg/f/4l4QUwfxgLIaD7+mO7j7U8Jjs7m91JRDCH+kdvHgzAvFp70dlamSsich0GGPIq7U2JDgAQJse7OGU6kY1rU6Nx46A4GE0Cr2w6Jnc5RC7DAENexVVTnXPKdKJfPDLR3Arz+Q+ncaCkSt5iiFyEAYa8iqumOueU6US/SEuOwK1XJgMAHvv4IJqMjlsxiXwFAwx5lfamRAfMl4lyynSijnliShqiegTiSJkB/95+Qu5yiLqMAYa8SltTolu2LViwwO5+TplO5FhceDCeumUohMmIF/6jxSsr/8P5k8inMcCQ13E0JXp8YjJyc3OxdOlSu/tVKhUvoSZqg/Gnb3H2/81G6arH8OcHZuHGG29ESkoKtFqt3KURdRjngfETRqMReXl5KCsrQ1JSEjIyMny+FUJf14Ab/rwCJaWn8aurLsPqJ++xOSd/PGcid2lvfiWGf/IWzn5/M8B4kLu+cNuatVbuD6TOnrPJJPDH9/dh05FyJEQE48vs6xHZI9ADFRP5H6PRiJSUFIdTFEiSBJVKhaKiIv4RQLLjRHYycLR2D2AOGSkpKbjxxhtxxx13uKzp1vJX1cUfTKWlpcjKypK1abgr55yzuRCbjpQjSKnAyjuvZngh6oL25lfi/EnkixhgXKStL2t3hYz2Zq0F5JuVtivnvPFQGZZvLgQALNYMw4g+vdxaK5G/c3ZeJM6fRL6EXUgu0FbfshACMTExOHfunN3HdqXpdtu2bbjxxhvbPW7r1q244YYbHO53ddeWs83Vx48fx86dO22e91hFLaat2Im6RiPuHZOKRbekdboOIjJz9rNi8+YtuP76cRxbRrJy9vubq1F3kTOtII7Ci+UYS9NtWyHDHmf/WiotLcW2bdvsfiA5M36mowHH2eZqlUqFM2fOWLcnJCWjx/X3wdT3WowZEIPHJw926vyIqG2W+ZVKS0vtflYBgDI8Fv/4fC/unnk3Sr1wPB3RJYSf0uv1AoDQ6/Uu+5nNzc1i69atYvXq1WLr1q3W+wC6fFu9enWH63H2uePi4mzuq1Qq8fHHH4uPP/5YSJJ0yfGSJAlJkqzHqFQqu493ZPXq1V36txg56zlRVdvYlZeKiC5ieb9f/J6XJElAkkTkKI3d92PrzwMiT3D2+5sBxkmOvsizs7NdEmC2bt3a4Zqam5uFSqWyG0LaulmOj4mJafOYmJiYdgOOPV0Ndb1VKtHc3NzFV4yILmbvc0ytVouPPvpIxCUmt/l5oFar+b4kj3D2+5tjYJzQ3hiXrmhrPIgzc55YagPQ5VpcVTcApKSktNlc3Z72xu0QUefY+yzJy8tzyXg6IlfgGBgXcWaMi1KphMlksnuMJEmIjo5GZWWlzWMs+wBg+vTp6N+/v8NxKO2NU8nNzb1kf1xcnM34ElcTDsaxWOpatmwZsrKyOh3yeDUEkXsolcpLQogrxtMReZwbW4Fk5aoupI50h9jrW25rLIlarRaPPPJIm9007e23dONcPD7n/fffd0nXVkdv7Z3zxeNxHN0606VGRJ3T1fF0RK7ELiQXdSGtWbMGd9xxR7vHZWdnIzc316YVRK1WIycnx+HVPKNHj76k5eViSqXS4TwubV2C7exlk+7Qui4A1nMODI+G9nQYPvrLb2GsPtvuY/mXHZFnWKY+6Gi3L5chIHfgTLwukpSU5NRxU6dOxcmTJ7F161asXr0aW7duRVFRkc2b2tJ0e/vtt+OGG27Azp072wwvANqchE60MXum5bJJeys6A+YPnpiYGEiS5HBVZ8v+jmpdl1KpxHVjMmDqNxpP7wF2/qRH/IQ/AnD8vFxNmsiz2lsF3hEh84SZ1L0xwLTDmSCgVqutfcGtA0p7X8KuGudh7+e09YFkuf/GG284XNX5448/xhtvvGH38c7KP3QcT3xyENc8/xWe+OQQqhuacaU6Cjv+9Rg+/pirSRN5E0erwMfFxbX5uLb+kPIWbS3z4q+6xTm7uy9LLq68jLqt+RO6Mj+Cq+aQaWu8iKOxN61rtje/TVuPd3YcS8Lti0XfR9eLvo+uF6OXbBZv7jghmpqNTj0vEcmjs+PpFix+TZRX1bb5npbjPd+Zuax8nSvOWc7PZ84D44F5YC4OAh3lzDwuSqXS4X5n52bo6i/ixY9vaGhov+7wWDFw4edi/prvxNeFZ4TRaOr0vxMRycfZP7Qix94hlOGxNtt69/7lS7OrX6rtfY7Z2+/MZJ3+xhXnLHfoY4Dx0Ey8XdVe647lKiRXt/50xIXGZnHqXK3Ye7JSbDhwWvzjywJx49wX2vwwm79kpaiq42y6RL6u3T+0JEn0CI9q8/Ng2KS7BND2l2pHW4Jbf6Ha29+7d+92J+u0/AEoV2uDu/647Mo5e0Po41VIblrM8VxNA+oaXdOXaPmX/2L9p3j68UdQdrrUui+ptwp/f34pJv16Kr5Yvw5PPf5X6FrtT0jqjewnn8fYzCloNpnQbBRoNpnQZBQwmgSajCY0m4T5ZjTvbzKZYDQKNFm2mcRFjzMf12g04XxdIyoMDaioboD+QpPd+usKdqJy8xs2VxQlJffGa68u5zgWIj/iaMJMZxasNR+oAITJ4W5laAQUgUFoMvzyWRIUGYfLps6DQpJw4N1FDh879OY7cXjj+x04G1tT7pmPnes/xPkzOuu26Pgk/OHPT2FM5mQoFRICFIqW/0pQKlv+q5CglCQEKCUoFQrrtl/+q0Bbwwe/+PxTPHXx535ybzy1+CVMumUqAPM4lt3536CiXIf4hERcmz7GOrbS3uOjY2JRec7+FZ6tLXjsb1jz3tuXPPei517EM3971GZ7a5IkITG5N/L2HsS+3d+iolyHASlq3PSr9sd8doSz398MMB300Jrv8dkPp1328yyEyYiGksMw1pyHsmcvBKuGQlIond7vbkFKBeLCgxEfEYx+sT0xrHcEhqmiMCg+DHt3OZ5BmIj8g70JNdVqNe677z78/e9/d9vzKkLCYaqvdnxAO+GoK+JufRw9Bo12+edvXcFOnFm3uM3nBXDJH4jK8FhEj58DAG0+3t0UoREwXTBY77t6wU8GGDcFmD9/9AM2HHTu6iFnLt5x9voepUJCoFKBAKU52Qe0/BUQqGz5y0CpQKBCumi/+a+CAGXLYy/Z3/pxipbnMO+P6hGI+PAQxEcEIz48GJGhgZ2+GomI/IO9ZQg++ugjp+bK8kU9eiVgxO8ewncfLsOFqgrr9uDIOAy69UHEXJ6BZmMzKk8cQL3+HJQ9oxGqToMRCjQbBQQu/XoVJiN+evUeNDuYCwsAFKHhMF1wHNra2+9prp4PiAHGTQGGiIh+IeekmXKxfGH/5S9/wZo1axwu8wJcGvqMRiMyMzNlqdudXDkJKQMMAwwRkds5M4tvW+vFycEVC/G29bMBc2sEgEu63VqvjedJ7jzn1lyx4Cdn4iUiIrdrb9JMSZKwYMECu/td9fztzTiuUqlstqtUKjz99NMurwX4ZZDznDlzkJWVdcls654KLxdPQNjRc+7sa+XJhXgZYIiIqEsczeJrmV176dKlDve3tWRJe0uetBWOWs84bm+ZlyeeeKLNWda7QgiBc+fOydLiZJkdvqSkpMPnbHns2rVrOzwjs4Wzy++4hDuu4fYG7pgHhoiIHOvKZHNtzXXV3kSinZ1otK3nBuzPpeLOm+V5Y2Ji2pzA1LK/M/ODOTuzfEcnMHV2YlVncCI7BhgiIp/Q1SVPnNnf0ef+6KOP2p1xvKu36Ohou+fsilDX1X9vR4/zxMSqnMiOg3iJiHyGvUu0PTWnlKPndjSBn6t89dVXUCqVds/Z0bw7OTk5Dq9w6si/WWcf60xdXeUXVyG9/vrreOmll6DT6XDFFVfg1VdfxbXXXuvUYxlgiIioqxx9YU+fPh0vv/wyAMezE1dWVtoNPs5ecixnqGuLu+vy+QDz4Ycf4u6778bKlSsxatQo5OTkYO3atSgoKEB8fHy7j2eAISIiV2irhcZRawQAh8svAK6b9M0f+XyAGTVqFK655hq89tprAACTyQS1Wo0HH3wQjz32WLuPZ4AhIiJ3a6s1whPdLf7IpwNMY2MjevTogdzcXNx6663W7TNnzkRVVRU+/fTTSx7T0NCAhoYG632DwQC1Ws0AQ0REsvHWbiBv5myACfBgTU47e/YsjEYjEhISbLYnJCTgxx9/tPuYJUuWuG1iIiIios5QKpVdnpmW7PObiewWLlwIvV5vvRUXF8tdEhEREbmJV7bAxMbGQqlUory83GZ7eXk5EhMT7T4mODgYwcHBniiPiIiIZOaVLTBBQUG4+uqrsXnzZus2k8mEzZs3Iz09XcbKiIiIyBt4ZQsMACxYsAAzZ87EyJEjce211yInJwe1tbW455575C6NiIiIZOa1Aeb3v/89zpw5g0WLFkGn0+HKK6/Exo0bLxnYS0RERN2PV15G7QqcB4aIiMj3OPv97ZVjYIiIiIjawgBDREREPocBhoiIiHwOAwwRERH5HK+9CqmrLGOTDQaDzJUQERGRsyzf2+1dY+S3Aaa6uhqAeeVPIiIi8i3V1dWIjIx0uN9vL6M2mUw4ffo0wsPDIUlSl36WZWXr4uJiv70km+foP7rDefIc/UN3OEege5ynK89RCIHq6mokJydDoXA80sVvW2AUCgVUKpVLf2ZERITf/vJZ8Bz9R3c4T56jf+gO5wh0j/N01Tm21fJiwUG8RERE5HMYYIiIiMjnMMA4ITg4GH//+98RHBwsdyluw3P0H93hPHmO/qE7nCPQPc5TjnP020G8RERE5L/YAkNEREQ+hwGGiIiIfA4DDBEREfkcBhgiIiLyOQwwDrzwwguQJAnZ2dnWbfX19Zg7dy5iYmLQs2dPTJs2DeXl5fIV2UX2zvGGG26AJEk2t/vvv1++IjvhqaeeuuQcBg8ebN3vD69je+foD68jAJSWluLOO+9ETEwMQkNDMWzYMOzdu9e6XwiBRYsWISkpCaGhocjMzERhYaGMFXdce+f4hz/84ZLX8uabb5ax4o5LSUm55BwkScLcuXMB+Md7sr1z9If3pNFoxJNPPonU1FSEhoaif//+ePbZZ23WLPLke9JvZ+Ltij179uDf//43hg8fbrP94Ycfxn//+1+sXbsWkZGRmDdvHjQaDb755huZKu08R+cIALNnz8Yzzzxjvd+jRw9PluYSQ4cOxVdffWW9HxDwy6+6v7yObZ0j4Puv4/nz5zFmzBjceOON+OKLLxAXF4fCwkL06tXLeszSpUuxfPlyvPvuu0hNTcWTTz6JiRMn4siRIwgJCZGxeuc4c44AcPPNN+Ptt9+23ve1y3H37NkDo9FovX/o0CHcdNNNuO222wD4x3uyvXMEfP89+eKLL2LFihV49913MXToUOzduxf33HMPIiMj8dBDDwHw8HtSkI3q6moxcOBAsWnTJnH99deL+fPnCyGEqKqqEoGBgWLt2rXWY48ePSoAiPz8fJmq7RxH5yiEuOS+L/r73/8urrjiCrv7/OV1bOschfCP1/HRRx8VY8eOdbjfZDKJxMRE8dJLL1m3VVVVieDgYLFmzRpPlNhl7Z2jEELMnDlTTJ061TMFecj8+fNF//79hclk8pv35MVan6MQ/vGenDJlirj33ntttmk0GjFjxgwhhOffk+xCusjcuXMxZcoUZGZm2mzft28fmpqabLYPHjwYffr0QX5+vqfL7BJH52ixatUqxMbG4vLLL8fChQtRV1fn4Qq7rrCwEMnJyejXrx9mzJiBU6dOAfCv19HROVr4+uv42WefYeTIkbjtttsQHx+PESNG4M0337TuLyoqgk6ns3ktIyMjMWrUKJ95Lds7R4tt27YhPj4egwYNwgMPPIBz587JUK1rNDY24v3338e9994LSZL86j1pcfE5Wvj6e3L06NHYvHkzjh07BgD44Ycf8PXXX2PSpEkAPP+eZBdSKx988AG+++477Nmz55J9Op0OQUFBiIqKstmekJAAnU7noQq7rq1zBIA77rgDffv2RXJyMg4cOIBHH30UBQUF0Gq1Hq6080aNGoV33nkHgwYNQllZGZ5++mlkZGTg0KFDfvM6tnWO4eHhfvE6/vTTT1ixYgUWLFiAxx9/HHv27MFDDz2EoKAgzJw50/p6JSQk2DzOl17L9s4RMHcfaTQapKam4sSJE3j88ccxadIk5OfnQ6lUynwGHbdu3TpUVVXhD3/4AwD/+Wxt7eJzBPzjs/Wxxx6DwWDA4MGDoVQqYTQa8fzzz2PGjBkA4PH3JANMi+LiYsyfPx+bNm3yib7zznDmHOfMmWP9/2HDhiEpKQnjx4/HiRMn0L9/f0+V2iWWvwYAYPjw4Rg1ahT69u2Ljz76CKGhoTJW5jptneOsWbP84nU0mUwYOXIkFi9eDAAYMWIEDh06hJUrV1q/3H2dM+c4ffp06/HDhg3D8OHD0b9/f2zbtg3jx4+Xpe6ueOuttzBp0iQkJyfLXYrb2DtHf3hPfvTRR1i1ahVWr16NoUOHYv/+/cjOzkZycrIs70l2IbXYt28fKioqcNVVVyEgIAABAQHYvn07li9fjoCAACQkJKCxsRFVVVU2jysvL0diYqI8RXdQe+fYegCaxahRowAAx48f93S5LhMVFYXLLrsMx48fR2Jios+/jva0Pkd7fPF1TEpKQlpams22IUOGWLvKLK/XxVer+NJr2d452tOvXz/Exsb61Gtp8fPPP+Orr77CfffdZ93mb+9Je+dojy++Jx955BE89thjmD59OoYNG4a77roLDz/8MJYsWQLA8+9JBpgW48ePx8GDB7F//37rbeTIkZgxY4b1/wMDA7F582brYwoKCnDq1Cmkp6fLWLnz2jtHe83R+/fvB2D+oPVVNTU1OHHiBJKSknD11Vf7/OtoT+tztMcXX8cxY8agoKDAZtuxY8fQt29fAEBqaioSExNtXkuDwYBdu3b5zGvZ3jnaU1JSgnPnzvnUa2nx9ttvIz4+HlOmTLFu87f3pL1ztMcX35N1dXVQKGxjg1KphMlkAiDDe9Llw4L9yMWjxu+//37Rp08fsWXLFrF3716Rnp4u0tPT5SvQBVqf4/Hjx8Uzzzwj9u7dK4qKisSnn34q+vXrJ8aNGydvkR305z//WWzbtk0UFRWJb775RmRmZorY2FhRUVEhhPCP17Gtc/SX13H37t0iICBAPP/886KwsFCsWrVK9OjRQ7z//vvWY1544QURFRUlPv30U3HgwAExdepUkZqaKi5cuCBj5c5r7xyrq6vFX/7yF5Gfny+KiorEV199Ja666ioxcOBAUV9fL3P1HWM0GkWfPn3Eo48+esk+f3hPCuH4HP3lPTlz5kzRu3dvsX79elFUVCS0Wq2IjY0Vf/3rX63HePI9yQDThosDzIULF8Sf/vQn0atXL9GjRw/x29/+VpSVlclXoAu0PsdTp06JcePGiejoaBEcHCwGDBggHnnkEaHX6+UtsoN+//vfi6SkJBEUFCR69+4tfv/734vjx49b9/vD69jWOfrL6yiEEJ9//rm4/PLLRXBwsBg8eLB44403bPabTCbx5JNPioSEBBEcHCzGjx8vCgoKZKq2c9o6x7q6OjFhwgQRFxcnAgMDRd++fcXs2bOFTqeTseLO+d///icA2H19/OE9KYTjc/SX96TBYBDz588Xffr0ESEhIaJfv37iiSeeEA0NDdZjPPmelIRoNYUeERERkQ/gGBgiIiLyOQwwRERE5HMYYIiIiMjnMMAQERGRz2GAISIiIp/DAENEREQ+hwGGiIiIfA4DDBEREfkcBhgiIiLyOQwwRERE5HMYYIiIiMjnMMAQERGRz/n/Cw9+8r+i/7QAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -4812,12 +13357,21 @@ "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", "mi.migrad()\n", "mi.fixed[:] = False\n", - "mi.migrad()" + "mi.migrad()\n", + "mi.hesse()" + ] + }, + { + "cell_type": "markdown", + "id": "c9fbbebc", + "metadata": {}, + "source": [ + "Diese Änderung ist gering und der Fit scheint die Daten weiterhin zu beschreiben. Allerdings gibt bei kleinen Energien eine deutlich sichtbare Diskrepanz. Dies zeigt sich auch in einem größeren $\\chi^2$-Wert. Wie wirkt sich dies auf den $P$-Wert aus?" ] }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 478, "id": "4aa0f3d9-1d0b-4b4c-b816-2a0cb9ae9793", "metadata": {}, "outputs": [ @@ -4825,13 +13379,43 @@ "name": "stdout", "output_type": "stream", "text": [ - "247.75609338750667 53 4.67464327146239\n" + "329.01941626278426 113 2.911676250113135\n" ] } ], "source": [ - "chi_squre, ndof = chi_squre_ndof(center, entries, np.sqrt(entries), alternative_fit_model, mi)\n", - "print(chi_squre, ndof, chi_squre/ndof)" + "chi_square, ndof = chi_square_ndof(center, entries, np.sqrt(entries), alternative_fit_model, mi)\n", + "print(chi_square, ndof, chi_square/ndof)" + ] + }, + { + "cell_type": "code", + "execution_count": 479, + "id": "607ddd33", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "329.01941626278426 113\n" + ] + }, + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 479, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_value = lambda x, ndof: 1 - chi2.cdf(x, ndof)\n", + "print(chi_square, ndof)\n", + "p_value(chi_square, ndof)" ] }, { @@ -4839,58 +13423,19 @@ "id": "bcb62098-1e8b-4c9f-8aa3-048037f0d21e", "metadata": {}, "source": [ - "Fit obviusly worse...\n", + "Der Fit ist offensichtlich viel schlechter und der $P$-Wert liegt nahe bei null, so dass man dieses Model ausschließen sollte.\n", "\n", - "But is p-value of 0.4 better than 0.2? No ! Hypothesis test -> need to decide on threshold before..." + "Was aber, wenn die Änderung nicht so dramatisch ist? Ist ein $P$-Wert von 0,4 besser als 0,2? Nein, das kann man so nicht beantworten. Aber für einen Hypothesen-Test sollten man vorher eine Schwelle festlegen für die Akzeptanz oder Ablehnung des Models.\n", + "\n", + "Wie ein solcher Hypothesen-Test aussehen kann, wollen wir im Folgenden betrachten. Hierbei benutzen wir\n", + "1. ein korrektes Model (Normalverteilung),\n", + "2. ein korrektes Model mit überschätztem Fehler (10% größer),\n", + "3. und ein falsches Model (Lorentzverteilung)" ] }, { "cell_type": "code", - "execution_count": null, - "id": "2aa83565-40bf-4a06-a289-772af9201699", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "19e53c1c-a95b-416f-a461-55786b812a96", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1d790f2a-d2ca-454b-b207-eced7c2c498a", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c020ed79-cf0d-4de4-855a-ef6b5307c6c7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "9e474fae-192a-4067-91fc-d0b03b47d762", - "metadata": {}, - "source": [ - "When do assumptions break? \n", - "\n", - "E.g. low stats. \n", - "\n", - "Should we add ML and unbinned fits here? Maybe as outlook as otherwise too much?" - ] - }, - { - "cell_type": "code", - "execution_count": 62, + "execution_count": 264, "id": "c3f1f1d4-4b84-45a1-9d23-4cbb8ba32c8c", "metadata": {}, "outputs": [], @@ -4899,16 +13444,45 @@ " return a * gam**2 / ( gam**2 + ( x - x0 )**2)" ] }, + { + "cell_type": "markdown", + "id": "0e3fcfd5", + "metadata": {}, + "source": [ + "Den Fit der drei Modelle und die Bestimmung des entsprechenden $P$-Werts wiederholen wir 5000-mal um eine ausreichende Statistik zu erhalten." + ] + }, { "cell_type": "code", - "execution_count": 63, + "execution_count": null, + "id": "9667c766", + "metadata": {}, + "outputs": [], + "source": [ + "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `tqdm` zu installieren!\n", + "# import sys\n", + "# import subprocess\n", + "# subprocess.check_call([\n", + "# sys.executable, \n", + "# '-m',\n", + "# 'pip',\n", + "# 'install',\n", + "# '--proxy',\n", + "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", + "# 'tqdm'\n", + "# ])" + ] + }, + { + "cell_type": "code", + "execution_count": 531, "id": "c3b58808-f155-4194-b02e-e5f649cb86aa", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f30ca0a8ec7f4a79a2bcb3743b624c3e", + "model_id": "9401e27e0abe463ab485a539ee58e61e", "version_major": 2, "version_minor": 0 }, @@ -4949,7 +13523,7 @@ " )\n", " mi.migrad()\n", " \n", - " chi, ndof = chi_squre_ndof(center, entries, np.sqrt(entries), peak, mi)\n", + " chi, ndof = chi_square_ndof(center, entries, np.sqrt(entries), peak, mi)\n", " res_good_model.append(p_value(chi, ndof))\n", "\n", "\n", @@ -4961,7 +13535,7 @@ " )\n", " mi.migrad()\n", " \n", - " chi, ndof = chi_squre_ndof(center, entries, np.sqrt(entries)*1.1, peak, mi)\n", + " chi, ndof = chi_square_ndof(center, entries, np.sqrt(entries)*1.1, peak, mi)\n", " res_overfitting.append(p_value(chi, ndof))\n", "\n", "\n", @@ -4973,22 +13547,31 @@ " )\n", " mi.migrad()\n", " \n", - " chi, ndof = chi_squre_ndof(center, entries, np.sqrt(entries), lorentzian, mi)\n", + " chi, ndof = chi_square_ndof(center, entries, np.sqrt(entries), lorentzian, mi)\n", " res_wrong_model.append(p_value(chi, ndof))\n", "\n", "res_wrong_model = np.array(res_wrong_model)\n", - "res_good_model = np.array(res_good_model)" + "res_good_model = np.array(res_good_model)\n", + "res_overfit_model = np.array(res_overfitting)" + ] + }, + { + "cell_type": "markdown", + "id": "7ec4cf79", + "metadata": {}, + "source": [ + "Die Schwelle des $P$-Werts für den Hypothesen-Test setzen wir auf 0,1, d.h. Ergebnisse mit eine, $P$-Wert $<$ 0,1 werden verworfen, alle anderen akzeptiert." ] }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 266, "id": "f41e0b38-56b6-4f2a-bc75-075f622a2068", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHdCAYAAAD8YWZMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbSklEQVR4nO3de1yO9/8H8Ffn80Ghg4qIyDnHGAqTsX0Z28yimM1YGeU8x9mGmbOFHazsO8Zs7CAiEUNEipCcsjIdHFI6nz6/P/y6vrspOtx3d7lez8fjfsx9XZ/rc72va3Xfrz7XSUMIIUBEREQkY5rqLoCIiIhI3RiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIlCg5ORnu7u5wcXFBhw4dsGvXLnWXRESVoMGHuxIRKU9KSgrS0tLQqVMnpKamokuXLrh69SqMjIzUXRoRPQNHiIhI1tzd3TFt2jSl9WdjY4NOnToBAKytrdGwYUM8ePBAaf0TkWowEBFRnTdu3DhoaGhAQ0MDOjo6cHR0xKxZs5Cfn6/u0p4pOjoaJSUlsLe3V3cpRPQc2uougIioMgYPHoygoCAUFRUhOjoaPj4+0NDQwBdffKHu0sr14MEDeHt749tvv1V3KURUCRwhIqJ6QU9PD9bW1rC3t8fw4cMxcOBAhIWFSfNLS0uxbNkyODo6wsDAAB07dsQvv/yi0EdOTg68vb1hbGwMGxsbrFq1qsp1vPnmm2jUqBG++eYbadrp06ehq6uLgwcPAgAKCgowfPhwzJkzB7169armFhNRbWIgIqJ65+LFizh58iR0dXWlacuWLcMPP/yAzZs349KlS/D398eYMWNw9OhRqc3MmTNx9OhR/P777zh48CAiIiJw7ty5Kq17/fr1GDlyJJYsWQIAyM7OxpgxYzB58mQMGjQIQgiMGzcO/fv3x9ixY5WzwUSkcrzKjIjqvHHjxuHHH3+Evr4+iouLUVBQAE1NTfz8888YOXIkCgoKYGFhgUOHDsHNzU1a7r333kNubi62b9+O7OxsWFpa4scff8Sbb74J4PFhLTs7O0ycOBFr166tdD1XrlxBmzZtcO/ePcycORNRUVE4e/Ys9PX1cfz4cfTt2xcdOnSQ2v/3v/9F+/btlbY/iEj5eA4REdULHh4e2LRpE3JycrBmzRpoa2tj5MiRAIDr168jNzcXL7/8ssIyhYWF6Ny5MwDgxo0bKCwsRI8ePaT5FhYWcHZ2rnItrVq1gqGhIRYuXIht27YhKioK+vr6AICXXnoJpaWl1d1MIlITBiIiqheMjIzg5OQEAPj+++/RsWNHbNmyBRMmTEB2djYAICQkBE2aNFFYTk9PT+m1aGpqon379ti4cSNWrFiBjh07Kn0dRFS7eA4REdU7mpqa+PjjjzF//nzk5eXBxcUFenp6SEpKgpOTk8Kr7JL3Fi1aQEdHB6dPn5b6ycjIwNWrV6u8/rIzDVxdXTF9+nTlbBQRqRUDERHVS2+++Sa0tLQQGBgIExMTzJgxA/7+/ti6dStu3LiBc+fOYcOGDdi6dSsAwNjYGBMmTMDMmTNx+PBhXLx4EePGjYOm5v8+Br/66isMGDDgueteu3YtTp8+jdLSUoXliaj+4iEzIqqXtLW14efnhxUrVmDy5Mn49NNP0ahRIyxbtgw3b96Eubk5XF1d8fHHH0vLfPnll8jOzsZrr70GExMTTJ8+HZmZmdL8e/fu4caNG89cb1xcHObOnYsPP/wQ3333HYqLi6GtzY9SovqOV5kREVVSfn4+unXrBldXV6xduxYWFhaIi4tDu3bt1F0aEdUQx3qJiCppzpw5yMnJwVdffYUGDRqgadOmWLt2Le7cuaPu0oiohhiIiIgq4eDBgwgMDMSPP/4IExMTAMD8+fPx22+/wdfXV83VEVFN8ZAZERERyR5HiIiIiEj2GIiIiIhI9hiIiIiISPYYiOiFcOzYMbz22muwtbWFhoYGfvvtN3WXRPUAf26oNvHnrW5jIKI64c6dOyguLq728jk5OejYsSMCAwOVWBW96PhzQ8qUkZEhPVevPPx5q9t4e1WqE7799lts2rQJY8aMgY+PD9q3b1+l5V955RW88sorKqqOXlT8uaGaKi4uxoEDBxAcHIw///wTp0+frvBhv/x5q9s4QkR1wuzZs7Fu3TrEx8fD1dUVrq6uWL9+Pe7evavu0oiInhIXF4fp06fDzs4O3t7eaNSoEY4cOVJhGKK6j4GI6gR9fX2MGjUKISEh+Oeff+Dt7Y3g4GA0adIEw4cPx549e2p0SI2IqKbu37+PdevWwdXVFV27dsXNmzexceNGpKSkYOPGjXBzc1N3iVQDDERU5zRu3BjTpk3DuXPn8PvvvyMyMhIjRozAxYsX1V0aEcnYhg0bMG3aNBgbG+P69evYs2cPRowYAV1dXXWXRkrAQER1zqNHjxAUFIT+/fvjtddeQ7t27bB161a4uLiouzQikrGJEyfi008/RWpqKtq2bYvx48fj8OHDKC0tVXdppAQMRFQnlJSUYP/+/XjnnXdgZWWF5cuXY8CAAbh58ybCw8Ph7e3Nv8KISK1sbW0xf/58XL16FaGhodDV1cWIESPQtGlTzJkzB5cuXVJ3iVQDDERUJyxduhSjR4+GiYkJDh06hISEBMybNw8ODg6VWj47OxuxsbGIjY0FACQmJiI2NhZJSUkqrJrqO/7cUHX16tULX3/9NVJTU/Hll18iNjYWHTt2RFxcXIXL8OetbuPDXalOuHXrFqytraGvr1+t5SMiIuDh4fHUdB8fHwQHB9ewOnpR8eeGlOnOnTswNjaGqalpufP581a3MRARERGR7PGQGREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEdU7BQUFWLx4MQoKCtRdCr0A+PNEysafqfqJ9yGieicrKwtmZmbIzMys8AZoRJXFnydSNv5M1U8cISIiIiLZYyAiIiIi2dNWdwH1QXFxMWJiYmBlZQVNTWZIdXv06BEA4J9//kFWVpaaq6H6jj9PpGz8mao7SktLkZaWhs6dO0Nb+9mRh+cQVcKZM2fQvXt3dZdBRERE1RAVFYVu3bo9sw1HiCrBysoKwOMdamNjo+Zq1Cs3NxfOzs4AgISEBBgaGqq5IiIiovKlpKSge/fu0vf4szAQVULZYTIbGxvY2dmpuRr1ysnJkf7dpEkTGBkZqbEaIiKi56vM6S48IYaIiIhkj4GIiIiIZI+BiIiIiGSP5xARUb1XWlqKwsJCdZdBRGqgq6urlFviMBARUb1WWFiIxMRElJaWqrsUIlIDTU1NODo6QldXt0b9MBARUb0lhEBKSgq0tLRgb2/PG6cSyUxpaSnu3LmDlJQUODg4QENDo9p9MRARUb1VXFyM3Nxc2Nra8p5YRDLVqFEj3LlzB8XFxdDR0al2P/xziojqrZKSEgCo8VA5EdVfZb//ZZ8H1cVARET1Xk2GyYmoflPW7z8DEREREcmeWgPR4sWLoaGhofBq3bq1ND8/Px++vr6wtLSEsbExRo4cibS0NIU+kpKSMHToUBgaGqJx48aYOXMmiouLFdpERETA1dUVenp6cHJyQnBwcG1sHhGpSWZSJlLOpdTaKzMpU92bXGUaGhr47bff1F0GAMDd3R3Tpk2rdPvg4GCYm5urrB6SJ7WfVN22bVscOnRIeq+t/b+S/P39ERISgl27dsHMzAx+fn4YMWIETpw4AeDx8cKhQ4fC2toaJ0+eREpKCry9vaGjo4OlS5cCABITEzF06FBMmjQJ27ZtQ3h4ON577z3Y2NjA09OzdjeWiFQuMykTgW0CUZRbVGvr1DHUgW+8L8wczCq9TGpqKpYtW4aQkBDcvn0bZmZmcHJywpgxY+Dj48OTxIlqmdoDkba2NqytrZ+anpmZiS1btmD79u3o378/ACAoKAht2rTBqVOn0LNnTxw8eBCXL1/GoUOHYGVlhU6dOuHTTz/F7NmzsXjxYujq6mLz5s1wdHTEqlWrAABt2rTB8ePHsWbNGgYiohdQ7r1cFOUW4fUfX0ejNo1Uvr678XexZ8we5N7LrXQgunnzJnr37g1zc3MsXboU7du3h56eHuLi4vDNN9+gSZMm+M9//qPiyono39R+DtG1a9dga2uL5s2bw8vLC0lJSQCA6OhoFBUVYeDAgVLb1q1bw8HBAZGRkQCAyMhItG/fHlZWVlIbT09PZGVl4dKlS1Kbf/dR1qasj/IUFBQgKytLej169Ehp20tEtaNRm0awcbVR+as6oevDDz+EtrY2zp49i7feegtt2rRB8+bNMWzYMISEhOC1116T2iYlJWHYsGEwNjaGqakp3nrrradOHdi0aRNatGgBXV1dODs747///a/C/GvXrqFv377Q19eHi4sLwsLCnluju7s7pkyZgmnTpqFBgwawsrLCt99+i5ycHIwfPx4mJiZwcnLC/v37FZY7evQounfvDj09PdjY2GDOnDkKpzHk5OTA29sbxsbGsLGxkf5Y/beCggLMmDEDTZo0gZGREXr06IGIiIjK7FqialNrIOrRoweCg4MRGhqKTZs2ITExEX369MGjR4+QmpoKXV3dp44TW1lZITU1FcDjIed/h6Gy+WXzntUmKysLeXl55da1bNkymJmZSS8XFxdlbG7FcpKAB+dq/spJUm2dRFRj9+/fx8GDB+Hr6wsjI6Ny25RdNVNaWophw4bhwYMHOHr0KMLCwnDz5k2MGjVKartnzx5MnToV06dPx8WLF/HBBx9g/PjxOHLkiNTHiBEjoKuri9OnT2Pz5s2YPXt2pWrdunUrGjZsiKioKEyZMgWTJ0/Gm2++iV69euHcuXMYNGgQxo4di9zcXADAP//8gyFDhqBbt244f/48Nm3ahC1btuCzzz6T+pw5cyaOHj2K33//HQcPHkRERATOnTunsF4/Pz9ERkZix44duHDhAt58800MHjwY165dq/yOJqoitR4ye+WVV6R/d+jQAT169EDTpk3x888/w8DAQG11zZ07FwEBAdL7f/75R3WhKCcJ2NsGKMmteV9ahsCr8YCRQ837IiKVuH79OoQQcHZ2VpjesGFD5OfnAwB8fX3xxRdfIDw8HHFxcUhMTIS9vT0A4IcffkDbtm1x5swZdOvWDStXrsS4cePw4YcfAgACAgJw6tQprFy5Eh4eHjh06BCuXLmCAwcOwNbWFgCwdOlShc/finTs2BHz588H8Phzcfny5WjYsCHef/99AMDChQuxadMmXLhwAT179sTGjRthb2+Pr776SrpI5s6dO5g9ezYWLlyI3NxcbNmyBT/++CMGDBgA4HHosrOzk9aZlJSEoKAgJCUlSfXOmDEDoaGhCAoKks4PJVI2tZ9D9G/m5uZo1aoVrl+/jpdffhmFhYV4+PChwihRWlqadM6RtbU1oqKiFPooG0r+d5snh5fT0tJgampaYejS09ODnp6e9D4rK6vG21ahgnuPw5Dbj4BZm+r3kxkPRI553B8DEVG9ExUVhdLSUnh5eaGgoAAAEB8fD3t7eykMAYCLiwvMzc0RHx+Pbt26IT4+HhMnTlToq3fv3li3bp1CH2XhAgDc3NwqVVOHDh2kf2tpacHS0hLt27eXppWNvqenp0vrcnNzU7gvTO/evZGdnY3bt28jIyMDhYWF6NGjhzTfwsJCIRzGxcWhpKQErVq1UqiloKAAlpaWlaqbqDrqVCDKzs7GjRs3MHbsWHTp0gU6OjoIDw/HyJEjAQAJCQlISkqSfpnd3Nzw+eefIz09HY0bNwYAhIWFwdTUVBrRcXNzw759+xTWExYWVukPhFpj1gawcFV3FUSkYk5OTtDQ0EBCQoLC9ObNmwOAWkfHn/TkYxA0NDQUpv370J6yZGdnQ0tLC9HR0dDS0lKYZ2xsrLT1ED1JrecQzZgxA0ePHsWtW7dw8uRJvP7669DS0sLo0aNhZmaGCRMmICAgAEeOHEF0dDTGjx8PNzc39OzZEwAwaNAguLi4YOzYsTh//jwOHDiA+fPnw9fXVxrhmTRpEm7evIlZs2bhypUr2LhxI37++Wf4+/urc9OJSKYsLS3x8ssv46uvvkJOTs4z27Zp0wbJyclITk6Wpl2+fBkPHz6U/uhr06aNdCuSMidOnFCYn5ycjJSUFGn+qVOnlLU5T9UbGRkJIYRCLSYmJrCzs0OLFi2go6OD06dPS/MzMjJw9epV6X3nzp1RUlKC9PR0ODk5KbzKuyKZSFnUGohu376N0aNHw9nZGW+99RYsLS1x6tQpNGr0+KqNNWvW4NVXX8XIkSPRt29fWFtbY/fu3dLyWlpa2Lt3L7S0tODm5oYxY8bA29sbS5Yskdo4OjoiJCQEYWFh6NixI1atWoXvvvuOl9wTkdps3LgRxcXF6Nq1K3bu3In4+HgkJCTgxx9/xJUrV6SRkYEDB6J9+/bw8vLCuXPnEBUVBW9vb/Tr1w9du3YF8Pgk5eDgYGzatAnXrl3D6tWrsXv3bsyYMUPqo1WrVvDx8cH58+fx119/Yd68eSrZrg8//BDJycmYMmUKrly5gt9//x2LFi1CQEAANDU1YWxsjAkTJmDmzJk4fPgwLl68iHHjxkFT839fRa1atYKXlxe8vb2xe/duJCYmIioqSrpnE5GqqPWQ2Y4dO545X19fH4GBgQgMDKywTdOmTZ86JPYkd3d3xMTEVKtGIqqf7sbfrbPradGiBWJiYrB06VLMnTsXt2/fhp6eHlxcXDBjxgzpBGkNDQ38/vvvmDJlCvr27QtNTU0MHjwYGzZskPoaPnw41q1bh5UrV2Lq1KlwdHREUFAQ3N3dAQCamprYs2cPJkyYgO7du6NZs2ZYv349Bg8erJTt/7cmTZpg3759mDlzJjp27AgLCwtMmDBBOjEbAL788ktkZ2fjtddeg4mJCaZPn47MTMU7fQcFBeGzzz7D9OnT8c8//6Bhw4bo2bMnXn31VaXXTFRGQ/x7bJPKdfv2bdjb2yM5OVnhagileHAOCO0CDI6u2TlEyurnOXJycqTj+NnZ2RVeNkxUG/Lz85GYmAhHR0fo6+sDqD93qiYi5Sjvc6BMVb6/69RJ1URENWXmYAbfeF/k3lPCrSwqybChIcMQUT3HQERELxwzBzMGFCKqErU/uoOIiIhI3RiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9ngfIiJ68eQkAQX3am99eg0BI4faW5/MjBs3Dg8fPsRvv/1WqfYRERHw8PBARkYGzM3NVVobvTgYiIjoxZKTBOxtA5TU3p2qoWUIvBpfqVC0efNmzJw5ExkZGdDWfvwRnJ2djQYNGqB3796IiIiQ2pZ9sV+/fh0tWrRQVfVEBAYiInrRFNx7HIbcfgTM2qh+fZnxQOSYx+utRCDy8PBAdnY2zp49i549ewIA/vrrL1hbW+P06dPIz8+Xnsd05MgRODg4lBuGCgsLoaurq9xtIZIxnkNERC8mszaPH3Ss6lcVQ5ezszNsbGyeGgkaNmwYHB0dcerUKYXpHh4eAB4fNho+fDg+//xz2NrawtnZGQAQFxeH/v37w8DAAJaWlpg4cSKys7OlPsqWW7lyJWxsbGBpaQlfX18UFf3v4bcpKSkYOnQoDAwM4OjoiO3bt6NZs2ZYu3ZthdtR1u/SpUthZWUFc3NzLFmyBMXFxZg5cyYsLCxgZ2eHoKAgheWeV29JSQkCAgJgbm4OS0tLzJo1C08+g7y0tBTLli2Do6MjDAwM0LFjR/zyyy+V/59AVA4GIiKiWubh4YEjR45I748cOQJ3d3f069dPmp6Xl4fTp09LgQgAwsPDkZCQgLCwMOzduxc5OTnw9PREgwYNcObMGezatQuHDh2Cn5+fwvqOHDmCGzdu4MiRI9i6dSuCg4MRHBwszff29sadO3cQERGBX3/9Fd988w3S09Ofux2HDx/GnTt3cOzYMaxevRqLFi3Cq6++igYNGuD06dOYNGkSPvjgA9y+fRsAKlXvqlWrEBwcjO+//x7Hjx/HgwcPsGfPHoX1Llu2DD/88AM2b96MS5cuwd/fH2PGjMHRo0cr/z+B6EmCnis5OVkAEMnJycrv/H60ENvw+L91oZ/nyM7OFgAEAJGdna3SdRE9T15enrh8+bLIy8v738Ra+l2oyfq+/fZbYWRkJIqKikRWVpbQ1tYW6enpYvv27aJv375CCCHCw8MFAPH3338LIYTw8fERVlZWoqCgQOrnm2++EQ0aNFD4XQwJCRGampoiNTVVWq5p06aiuLhYavPmm2+KUaNGCSGEiI+PFwDEmTNnpPnXrl0TAMSaNWsq3IayfktKSqRpzs7Ook+fPtL74uJiYWRkJH766adK12tjYyNWrFghzS8qKhJ2dnZi2LBhQggh8vPzhaGhoTh58qRCPRMmTBCjR48WQghx5MgRAUBkZGRUWD+9OMr9HPh/Vfn+5jlERES1zN3dHTk5OThz5gwyMjLQqlUrNGrUCP369cP48eORn5+PiIgING/eHA4O/zsvqX379grnDcXHx6Njx44wMjKSpvXu3RulpaVISEiAlZUVAKBt27bQ0tKS2tjY2CAuLg4AkJCQAG1tbbi6ukrznZyc0KBBg+duR9u2baGp+b8DDVZWVmjXrp30XktLC5aWltJo0/Pq1dfXR0pKCnr06CHN19bWRteuXaXDZtevX0dubi5efvllhVoKCwvRuXPn59ZMVBEGIiKiWubk5AQ7OzscOXIEGRkZ6NevHwDA1tYW9vb2OHnyJI4cOYL+/fsrLPfvIFEVOjo6Cu81NDRQWlpaveKf06+q1lWm7HyjkJAQNGnSRGGenp6e0tZD8sNziIiI1MDDwwMRERGIiIiAu7u7NL1v377Yv38/oqKiFM4fKk+bNm1w/vx55OTkSNNOnDgBTU1N6aTr53F2dkZxcTFiYmKkadevX0dGRkbVNqgSnlevmZkZbGxscPr0aWl+cXExoqOjpfcuLi7Q09NDUlISnJycFF729vZKr5nkg4GIiEgNPDw8cPz4ccTGxkojRADQr18/fP311ygsLHxuIPLy8oK+vj58fHxw8eJFHDlyBFOmTMHYsWOlw2XP07p1awwcOBATJ05EVFQUYmJiMHHiRBgYGEBDQ6NG21ideqdOnYrly5fjt99+w5UrV/Dhhx/i4cOHUh8mJiaYMWMG/P39sXXrVty4cQPnzp3Dhg0bsHXrVqXWS/LCQ2ZE9GLKjK/T6/Hw8EBeXh5at26tEF769euHR48eSZfnP4uhoSEOHDiAqVOnolu3bjA0NMTIkSOxevXqKtXyww8/YMKECejbty+sra2xbNkyXLp0SbofkrJUpt7p06cjJSUFPj4+0NTUxLvvvovXX38dmZmZUptPP/0UjRo1wrJly3Dz5k2Ym5vD1dUVH3/8sVLrJXnREOKJGzzQU27fvg17e3skJyfDzs5OuZ0/OAeEdgEGRz++p4m6+3mOnJwcGBsbA3h8LL+65zQQKUN+fj4SExPh6Oj4vy/vOn6n6vqg7DPv0KFDGDBggLrLIXqmcj8H/l9Vvr85QkRELxYjh8fhhM8yq7TDhw8jOzsb7du3R0pKCmbNmoVmzZqhb9++6i6NqNYwEBHRi8fIoV4HlNpWVFSEjz/+GDdv3oSJiQl69eqFbdu2PXXFGNGLjIGIiEjmPD094enpqe4yiNSKV5kRERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHs8bJ7Inrh5N65g8IHD2ptfboWFjC0ta219VVFREQEPDw8kJGRAXNzc3WXIxsaGhrYs2cPhg8fXqN+mjVrhmnTpmHatGlKqas84eHh8PPzw8WLF6GlpaWy9VRHaGgo5syZg3PnzkFTU7VjOAxERPRCyb1zBxGDBqEkL6/W1qllYAD3gwcrFYqe98DURYsWYfHixUqqjGri1q1bcHR0RExMDDp16lSlZVNSUtCgQYNKtw8ODsa0adMUHmQLAGfOnFH5I5JmzZqF+fPnS2EoJSUF06dPx9mzZ3H9+nV89NFHWLt27VPL7dq1CwsWLMCtW7fQsmVLfPHFFxgyZEiF64mJicG7776La9euwcPDA1u3boWFhQUAoLi4GD169MCmTZvQvXt3aZnBgwdjwYIF2LZtG8aOHavcDX8CAxERvVAKHzxASV4eOq9eDeMWLVS+vuwbNxATEIDCBw8qFYhSUlKkf+/cuRMLFy5EQkKCNK3sWYF1SWFhIXR1ddVdRq0qLCys0fLW1tZKqaNRo0ZK6acix48fx40bNzBy5EhpWkFBARo1aoT58+djzZo15S538uRJjB49GsuWLcOrr76K7du3Y/jw4Th37hzatWtX7jLvvfce+vfvj507d+K9997D0qVLsXLlSgDAqlWr0Lt3b4UwVGbcuHFYv369ygMRBD1XcnKyACCSk5OV3/n9aCG24fF/60I/z5GdnS0ACAAiOztbpesiep68vDxx+fJlkZeXJ03LiIsTfzRvLjLi4mqlhpqsLygoSJiZmUnvS0pKxCeffCKaNGkidHV1RceOHcX+/fsVlrlw4YLw8PAQ+vr6wsLCQrz//vvi0aNHFa7jyJEjAoDIyMgQQghx79498fbbbwtbW1thYGAg2rVrJ7Zv366wTL9+/YSvr6+YOnWqsLS0FO7u7kIIIX7//Xfh5OQk9PT0hLu7uwgODlboWwgh/vrrL/HSSy8JfX19YWdnJ6ZMmfLMzwofHx8xbNgwhWlTp04V/fr1U6hnypQpYubMmaJBgwbCyspKLFq0SGGZjIwMMXHiRNG4cWOhp6cn2rZtK/78889K19W0aVOxZMkSMXbsWGFiYiJ8fHykz7qyV1lNUVFRYuDAgcLS0lKYmpqKvn37iuhoxc9eAGLPnj1CCCESExMFAPHrr78Kd3d3YWBgIDp06CBOnjyp8P/o36+y7WvatKlYs2aNwnZOmDBBNGzYUJiYmAgPDw8RGxsrzY+NjRXu7u7C2NhYmJiYCFdXV3HmzJkK97+vr6944403Kpzfr18/MXXq1Kemv/XWW2Lo0KEK03r06CE++OCDCvsyMDAQ8fHxQgghNm7cKIYMGSKEEOLGjRuiZcuWIisrq9zl/v77bwFAXL9+vdz55X0OlKnK9zdPqiYiqiPWrVuHVatWYeXKlbhw4QI8PT3xn//8B9euXQMA5OTkwNPTEw0aNMCZM2ewa9cuHDp0CH5+fpVeR35+Prp06YKQkBBcvHgREydOxNixYxEVFaXQbuvWrdDV1cWJEyewefNmJCYm4o033sDw4cNx/vx5fPDBB5g3b57CMjdu3MDgwYMxcuRIXLhwATt37sTx48erVF9Ftm7dCiMjI5w+fRorVqzAkiVLEBYWBgAoLS3FK6+8ghMnTuDHH3/E5cuXsXz5cukQUGXrWrlyJTp27IiYmBgsWLBA2ieHDh1CSkoKdu/eDQB49OgRfHx8cPz4cZw6dQotW7bEkCFD8OjRo2duw7x58zBjxgzExsaiVatWGD16NIqLi9GrVy+sXbsWpqamSElJQUpKCmbMmFFuH2+++SbS09Oxf/9+REdHw9XVFQMGDMCD/z9nzsvLC3Z2djhz5gyio6MxZ86cZz6T7q+//kLXrl0r8X9AUWRkJAYOHKgwzdPTE5GRkRUu07FjR4SFhaG4uBjh4eHo0KEDAGDSpElYsWIFTExMyl3OwcEBVlZW+Ouvv6pcZ5U8NzIRR4j+hSNEVJe8aCNEtra24vPPP1do061bN/Hhhx8KIYT45ptvRIMGDRR+90JCQoSmpqZITU0tdx1PjhCVZ+jQoWL69OnS+379+onOnTsrtJk9e7Zo166dwrR58+Yp9D1hwgQxceJEhTZ//fWX0NTULPevdyEqP0L00ksvKbTp1q2bmD17thBCiAMHDghNTU2RkJBQ7joqU1fTpk3F8OHDFdqUjezExMSU22+ZkpISYWJiojAihXJGiL777jtp/qVLlwQAacTkyZ+FMv8eIfrrr7+EqampyM/PV2jTokUL8fXXXwshhDAxMRHBwcHPrPffzMzMxA8//FDh/IpGiHR0dJ4aWQwMDBSNGzeusK+LFy+Kvn37CgcHBzF69GiRmZkpfvjhBzFs2DBx+/ZtMWjQINGiRQsxb968p5bt3LmzWLx4cbn9KmuEiOcQERHVAVlZWbhz5w569+6tML137944f/48ACA+Ph4dO3ZUOMm2d+/eKC0tRUJCAqysrJ67npKSEixduhQ///wz/vnnHxQWFqKgoACGhoYK7bp06aLwPiEhAd26dVOY9uT5HufPn8eFCxewbds2aZoQAqWlpUhMTESbNm2eW19FykYTytjY2CA9PR0AEBsbCzs7O7Rq1arcZStbV2VHStLS0jB//nxEREQgPT0dJSUlyM3NRVJSUqW3wcbGBgCQnp6O1q1bV2q958+fR3Z2NiwtLRWm5+Xl4caNGwCAgIAAvPfee/jvf/+LgQMH4s0330SLZ5xLl5eXB319/Uqtv6batm2Lo0ePSu/v37+PRYsW4dixY5gyZQp69eqF3bt3o1u3bujRowdee+01qa2BgQFyc3NVWh8DERGRjHz55ZdYt24d1q5di/bt28PIyAjTpk176iTi6lzZlJ2djQ8++AAfffTRU/McHBzKXUZTUxNCCIVpRUVFT7V78rCPhoYGSktLATz+slRGXZXdZh8fH9y/fx/r1q1D06ZNoaenBzc3t+eeiP3vbSi72rBsGyojOzsbNjY2iIiIeGpe2S0VFi9ejHfeeQchISHYv38/Fi1ahB07duD1118vt8+GDRsiIyOj0jWUsba2RlpamsK0tLS0Kp1MHhAQgGnTpsHOzg4RERH47LPPYGRkhKFDhyIiIkIhED148EDlJ5gzEBER1QGmpqawtbXFiRMn0K9fP2n6iRMnpJGYNm3aIDg4GDk5OdKX94kTJ6CpqQlnZ+dKrefEiRMYNmwYxowZA+DxF/LVq1fh4uLyzOWcnZ2xb98+hWlnzpxReO/q6orLly/DycmpUrUAj6+iunjxosK02NjYZ5738qQOHTrg9u3buHr1armjRNWpC4B0ZV1JSYnC9BMnTmDjxo3SJebJycm4d+9elfoub11PrudJrq6uSE1Nhba2Npo1a1Zhu1atWqFVq1bw9/fH6NGjERQUVGEg6ty5My5fvlzlet3c3BAeHq5wf6SwsDC4ublVavnw8HDEx8cjKCgIwON9XBaEnwzE+fn5uHHjBjp37lzlOquCJ1UTEdURM2fOxBdffIGdO3ciISEBc+bMQWxsLKZOnQrg8Qmz+vr68PHxwcWLF3HkyBFMmTIFY8eOrdThMgBo2bIlwsLCcPLkScTHx+ODDz546i/98nzwwQe4cuUKZs+ejatXr+Lnn39GcHAwgP+NdsyePRsnT56En58fYmNjce3aNfz+++/PPKm6f//+OHv2LH744Qdcu3YNixYteiogPU+/fv3Qt29fjBw5EmFhYUhMTMT+/fsRGhpa7boAoHHjxjAwMEBoaCjS0tKQmZkJ4PE+/O9//4v4+HicPn0aXl5ezx2lep5mzZohOzsb4eHhuHfvXrmHhwYOHAg3NzcMHz4cBw8exK1bt3Dy5EnMmzcPZ8+eRV5eHvz8/BAREYG///4bJ06cwJkzZ555qNLT0xPHjx9/anpsbCxiY2ORnZ2Nu3fvIjY2ViE4TZ06FaGhoVi1ahWuXLmCxYsX4+zZs5U6gT4/Px9+fn745ptvpJst9u7dG4GBgTh//jx+/fVXhUPHp06dkkbhVIkjRET0Qsr+/3Mq6tN6PvroI2RmZmL69OlIT0+Hi4sL/vjjD7Rs2RIAYGhoiAMHDmDq1Kno1q0bDA0NMXLkSKxevbrS65g/fz5u3rwJT09PGBoaYuLEiRg+fLj0ZV8RR0dH/PLLL5g+fTrWrVsHNzc3zJs3D5MnT4aenh6AxyM1R48exbx589CnTx8IIdCiRQuMGjWqwn49PT2xYMECzJo1C/n5+Xj33Xfh7e2NuLi4Sm8TAPz666+YMWMGRo8ejZycHDg5OWH58uXVrgsAtLW1sX79eixZsgQLFy5Enz59EBERgS1btmDixIlwdXWFvb09li5dWuFVYZXVq1cvTJo0CaNGjZLOrXnyBp0aGhrYt28f5s2bh/Hjx+Pu3buwtrZG3759YWVlBS0tLdy/fx/e3t5IS0tDw4YNMWLECHzyyScVrtfLywuzZs1CQkKCwijjv0djoqOjsX37djRt2hS3bt2S6t2+fTvmz5+Pjz/+GC1btsRvv/1W4T2I/u2TTz7B0KFDFW52uX79erzzzjvo27cvvLy8FO6L9NNPP8HLy+up89yUTUM8efCWnnL79m3Y29sjOTkZdnZ2yu38wTkgtAswOBqwcFV/P8+Rk5Mj3TguOztb5XdQJXqW/Px8JCYmwtHRUToxtK7fqfpF8vnnn2Pz5s1ITk5WdylUAzNnzkRWVha+/vprdZfylHv37sHZ2Rlnz56Fo6NjuW3K+xwoU5Xvb44QEdELxdDWFu4HD/JZZiqwceNGdOvWDZaWljhx4gS+/PJLpdxjiNRr3rx52LhxI0pLS1X+vLCqunXrFjZu3FhhGFImBiIieuEY2trKIqDUtmvXruGzzz7DgwcP4ODggOnTp2Pu3LnqLotqyNzcHB9//LG6yyhX165dq3XjyOpgICIiokpZs2ZNhc+2Iqrv6tbYGBEREZEaMBARUb3Ha0OI5EtZv/8MRERUb5U9vPN5dwgmohdX2e9/2edBdfEcIiKqt7S1tWFoaIi7d+9CR0enzl0hQ0SqVVpairt378LQ0BDa2jWLNAxERFRvaWhowMbGBomJifj777/VXQ4RqYGmpiYcHBykO6ZXFwMREdVrurq6aNmyJQ+bEcmUrq6uUkaHGYiIqN7T1NR86g61RERVwQPuREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHt1JhAtX74cGhoamDZtmjQtPz8fvr6+sLS0hLGxMUaOHIm0tDSF5ZKSkjB06FAYGhqicePGmDlzJoqLixXaREREwNXVFXp6enByckJwcHAtbBERERHVF3UiEJ05cwZff/01OnTooDDd398ff/75J3bt2oWjR4/izp07GDFihDS/pKQEQ4cORWFhIU6ePImtW7ciODgYCxculNokJiZi6NCh8PDwQGxsLKZNm4b33nsPBw4cqLXtIyIiorpN7YEoOzsbXl5e+Pbbb9GgQQNpemZmJrZs2YLVq1ejf//+6NKlC4KCgnDy5EmcOnUKAHDw4EFcvnwZP/74Izp16oRXXnkFn376KQIDA6Xb+G/evBmOjo5YtWoV2rRpAz8/P7zxxhtYs2ZNhTUVFBQgKytLej169Ei1O4GIiIjUSu2ByNfXF0OHDsXAgQMVpkdHR6OoqEhheuvWreHg4IDIyEgAQGRkJNq3bw8rKyupjaenJ7KysnDp0iWpzZN9e3p6Sn2UZ9myZTAzM5NeLi4uNd5OIiIiqrvUGoh27NiBc+fOYdmyZU/NS01Nha6uLszNzRWmW1lZITU1VWrz7zBUNr9s3rPaZGVlIS8vr9y65s6di8zMTOl1+fLlam0fERER1Q9qe7hrcnIypk6dirCwsDr3UEY9PT3o6elJ77OystRYDREREama2kaIoqOjkZ6eDldXV2hra0NbWxtHjx7F+vXroa2tDSsrKxQWFuLhw4cKy6WlpcHa2hoAYG1t/dRVZ2Xvn9fG1NQUBgYGKto6IiIiqk/UFogGDBiAuLg4xMbGSq+uXbvCy8tL+reOjg7Cw8OlZRISEpCUlAQ3NzcAgJubG+Li4pCeni61CQsLg6mpqXTej5ubm0IfZW3K+iAiIiJS2yEzExMTtGvXTmGakZERLC0tpekTJkxAQEAALCwsYGpqiilTpsDNzQ09e/YEAAwaNAguLi4YO3YsVqxYgdTUVMyfPx++vr7SIa9Jkybhq6++wqxZs/Duu+/i8OHD+PnnnxESElK7G0xERER1ltoCUWWsWbMGmpqaGDlyJAoKCuDp6YmNGzdK87W0tLB3715MnjwZbm5uMDIygo+PD5YsWSK1cXR0REhICPz9/bFu3TrY2dnhu+++g6enpzo2iYiIiOqgOhWIIiIiFN7r6+sjMDAQgYGBFS7TtGlT7Nu375n9uru7IyYmRhklEhER0QtI7fchIiIiIlI3BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikr0qB6LQ0FAcP35ceh8YGIhOnTrhnXfeQUZGhlKLIyIiIqoNVQ5EM2fORFZWFgAgLi4O06dPx5AhQ5CYmIiAgAClF0hERESkatpVXSAxMREuLi4AgF9//RWvvvoqli5dinPnzmHIkCFKL5CIiIhI1ao8QqSrq4vc3FwAwKFDhzBo0CAAgIWFhTRyRERERFSfVHmE6KWXXkJAQAB69+6NqKgo7Ny5EwBw9epV2NnZKb1AIiIiIlWr8gjRV199BW1tbfzyyy/YtGkTmjRpAgDYv38/Bg8erPQCiYiIiFStyiNEDg4O2Lt371PT16xZo5SCiIiIiGpblUeItLS0kJ6e/tT0+/fvQ0tLSylFEREREdWmKgciIUS50wsKCqCrq1vjgoiIiIhqW6UPma1fvx4AoKGhge+++w7GxsbSvJKSEhw7dgytW7dWfoVEREREKlbpQFR2jpAQAps3b1Y4PKarq4tmzZph8+bNyq+QiIiISMUqHYgSExMBAB4eHti9ezcaNGigsqKIiIiIalOVrzI7cuSIKuogIiIiUptKBaKAgAB8+umnMDIyeu7zylavXq2UwoiIiIhqS6UCUUxMDIqKigAA586dg4aGRrntKppOREREVJdVKhCtW7cOpqamAICIiAhV1kNERERU6yp1H6LOnTvj3r17AIDmzZvj/v37Ki2KiIiIqDZVKhCZm5tLV5ndunULpaWlSln5pk2b0KFDB5iamsLU1BRubm7Yv3+/ND8/Px++vr6wtLSEsbExRo4cibS0NIU+kpKSMHToUBgaGqJx48aYOXMmiouLFdpERETA1dUVenp6cHJyQnBwsFLqJyIiohdDpQ6ZjRw5Ev369YONjQ00NDTQtWvXCh/TcfPmzUqv3M7ODsuXL0fLli0hhMDWrVsxbNgwxMTEoG3btvD390dISAh27doFMzMz+Pn5YcSIEThx4gSAxzeEHDp0KKytrXHy5EmkpKTA29sbOjo6WLp0KYDHtwsYOnQoJk2ahG3btiE8PBzvvfcebGxs4OnpWelaiYiI6MWlISp6FscTQkNDcf36dXz00UdYsmQJTExMym03derUGhVkYWGBL7/8Em+88QYaNWqE7du344033gAAXLlyBW3atEFkZCR69uyJ/fv349VXX8WdO3dgZWUFANi8eTNmz56Nu3fvQldXF7Nnz0ZISAguXrworePtt9/Gw4cPERoaWqmabt++DXt7eyQnJ8POzq5G2/eUB+eA0C7A4GjAwlX9/TxHTk6OdJfy7OxsGBkZqWxdRERENVGV7+9K34do8ODBAIDo6GhMnTq1wkBUXSUlJdi1axdycnLg5uaG6OhoFBUVYeDAgVKb1q1bw8HBQQpEkZGRaN++vRSGAMDT0xOTJ0/GpUuX0LlzZ0RGRir0UdZm2rRpFdZSUFCAgoIC6f2jR4+Ut6FERERU51T54a5BQUFKDUNxcXEwNjaGnp4eJk2ahD179sDFxQWpqanQ1dWFubm5QnsrKyukpqYCAFJTUxXCUNn8snnPapOVlYW8vLxya1q2bBnMzMykl4uLizI2lYiIiOqoKgciZXN2dkZsbCxOnz6NyZMnw8fHB5cvX1ZrTXPnzkVmZqb0Unc9REREpFpVfnSHsunq6sLJyQkA0KVLF5w5cwbr1q3DqFGjUFhYiIcPHyqMEqWlpcHa2hoAYG1tjaioKIX+yq5C+3ebJ69MS0tLg6mpKQwMDMqtSU9PD3p6etL7rKysmm0kERER1WlqHyF6UmlpKQoKCtClSxfo6OggPDxcmpeQkICkpCS4ubkBANzc3BAXF4f09HSpTVhYGExNTaXDXG5ubgp9lLUp64OIiIioUoHI1dUVGRkZAIAlS5YgNzdXKSufO3cujh07hlu3biEuLg5z585FREQEvLy8YGZmhgkTJiAgIABHjhxBdHQ0xo8fDzc3N/Ts2RMAMGjQILi4uGDs2LE4f/48Dhw4gPnz58PX11ca4Zk0aRJu3ryJWbNm4cqVK9i4cSN+/vln+Pv7K2UbiIiIqP6rVCCKj49HTk4OAOCTTz5Bdna2Ulaenp4Ob29vODs7Y8CAAThz5gwOHDiAl19+GQCwZs0avPrqqxg5ciT69u0La2tr7N69W1peS0sLe/fuhZaWFtzc3DBmzBh4e3tjyZIlUhtHR0eEhIQgLCwMHTt2xKpVq/Ddd9/xHkREREQkqdQ5RJ06dcL48ePx0ksvQQiBlStXSveiedLChQsrvfItW7Y8c76+vj4CAwMRGBhYYZumTZti3759z+zH3d0dMTExla6LiIiI5KVSgSg4OBiLFi3C3r17oaGhgf3790Nb++lFNTQ0qhSIiIiIiOqCSgUiZ2dn7NixAwCgqamJ8PBwNG7cWKWFEREREdWWKl92r6wHuxIRERHVFdW6D9GNGzewdu1axMfHAwBcXFwwdepUtGjRQqnFEREREdWGKt+H6MCBA3BxcUFUVBQ6dOiADh064PTp02jbti3CwsJUUSMRERGRSlV5hGjOnDnw9/fH8uXLn5o+e/Zs6ZJ5IiIiovqiyiNE8fHxmDBhwlPT3333XT7zi4iIiOqlKgeiRo0aITY29qnpsbGxvPKMiIiI6qUqHzJ7//33MXHiRNy8eRO9evUCAJw4cQJffPEFAgIClF4gERERkapVORAtWLAAJiYmWLVqFebOnQsAsLW1xeLFi/HRRx8pvUAiIiIiVatyINLQ0IC/vz/8/f3x6NEjAICJiYnSCyMiIiKqLdW6D1EZBiEiIiJ6EVT5pGoiIiKiFw0DEREREckeAxERERHJXpUCUVFREQYMGIBr166pqh4iIiKiWlelQKSjo4MLFy6oqhYiIiIitajyIbMxY8Zgy5YtqqiFiIiISC2qfNl9cXExvv/+exw6dAhdunSBkZGRwvzVq1crrTgiIiKi2lDlQHTx4kW4uroCAK5evaowT0NDQzlVEREREdWiKgeiI0eOqKIOIiIiIrWp9mX3169fx4EDB5CXlwcAEEIorSgiIiKi2lTlQHT//n0MGDAArVq1wpAhQ5CSkgIAmDBhAqZPn670AomIiIhUrcqByN/fHzo6OkhKSoKhoaE0fdSoUQgNDVVqcURERES1ocrnEB08eBAHDhyAnZ2dwvSWLVvi77//VlphRERERLWlyiNEOTk5CiNDZR48eAA9PT2lFEVERERUm6ociPr06YMffvhBeq+hoYHS0lKsWLECHh4eSi2OiIiIqDZU+ZDZihUrMGDAAJw9exaFhYWYNWsWLl26hAcPHuDEiROqqJGIiIhIpao8QtSuXTtcvXoVL730EoYNG4acnByMGDECMTExaNGihSpqJCIiIlKpKo8QAYCZmRnmzZun7FqIiIiI1KJagSgjIwNbtmxBfHw8AMDFxQXjx4+HhYWFUosjIiIiqg1VPmR27NgxNGvWDOvXr0dGRgYyMjKwfv16ODo64tixY6qokYiIiEilqjxC5Ovri1GjRmHTpk3Q0tICAJSUlODDDz+Er68v4uLilF4kERERkSpVeYTo+vXrmD59uhSGAEBLSwsBAQG4fv26UosjIiIiqg1VDkSurq7SuUP/Fh8fj44dOyqlKCIiIqLaVKlDZhcuXJD+/dFHH2Hq1Km4fv06evbsCQA4deoUAgMDsXz5ctVUSURERKRClQpEnTp1goaGBoQQ0rRZs2Y91e6dd97BqFGjlFcdERERUS2oVCBKTExUdR1EREREalOpQNS0aVNV10FERESkNtW6MeOdO3dw/PhxpKeno7S0VGHeRx99pJTCiIiIiGpLlQNRcHAwPvjgA+jq6sLS0hIaGhrSPA0NDQYiIiIiqneqHIgWLFiAhQsXYu7cudDUrPJV+0RERER1TpUTTW5uLt5++22GISIiInphVDnVTJgwAbt27VJFLURERERqUeVDZsuWLcOrr76K0NBQtG/fHjo6OgrzV69erbTiiIiIiGpDtQLRgQMH4OzsDABPnVRNREREVN9UORCtWrUK33//PcaNG6eCcoiIiIhqX5XPIdLT00Pv3r1VUQsRERGRWlQ5EE2dOhUbNmxQRS1EREREalHlQ2ZRUVE4fPgw9u7di7Zt2z51UvXu3buVVhwRERFRbahyIDI3N8eIESNUUQsRERGRWlQ5EAUFBamiDiIiIiK14e2miYiISPaqPELk6Oj4zPsN3bx5s0YFEREREdW2KgeiadOmKbwvKipCTEwMQkNDMXPmTGXVRURERFRrqhyIpk6dWu70wMBAnD17tsYFEREREdU2pZ1D9Morr+DXX39VVndEREREtUZpgeiXX36BhYWFsrojIiIiqjVVPmTWuXNnhZOqhRBITU3F3bt3sXHjRqUWR0RERFQbqhyIhg8frvBeU1MTjRo1gru7O1q3bq2suoiIiIhqTZUPmS1atEjhtWDBAkyaNKlaYWjZsmXo1q0bTExM0LhxYwwfPhwJCQkKbfLz8+Hr6wtLS0sYGxtj5MiRSEtLU2iTlJSEoUOHwtDQEI0bN8bMmTNRXFys0CYiIgKurq7Q09ODk5MTgoODq1wvERERvZjUemPGo0ePwtfXF6dOnUJYWBiKioowaNAg5OTkSG38/f3x559/YteuXTh69Cju3Lmj8OiQkpISDB06FIWFhTh58iS2bt2K4OBgLFy4UGqTmJiIoUOHwsPDA7GxsZg2bRree+89HDhwoFa3l4iIiOooUUkaGhpCU1PzmS8tLa3Kdleu9PR0AUAcPXpUCCHEw4cPhY6Ojti1a5fUJj4+XgAQkZGRQggh9u3bJzQ1NUVqaqrUZtOmTcLU1FQUFBQIIYSYNWuWaNu2rcK6Ro0aJTw9PStVV3JysgAgkpOTa7R95bofLcQ2PP5vXejnObKzswUAAUBkZ2erdF1EREQ1UZXv70qfQ7Rnz54K50VGRmL9+vUoLS2tUTjLzMwEAOlqtejoaBQVFWHgwIFSm9atW8PBwQGRkZHo2bMnIiMj0b59e1hZWUltPD09MXnyZFy6dAmdO3dGZGSkQh9lbZ68yWSZgoICFBQUSO8fPXpUo+0iIiKiuq3SgWjYsGFPTUtISMCcOXPw559/wsvLC0uWLKl2IaWlpZg2bRp69+6Ndu3aAQBSU1Ohq6sLc3NzhbZWVlZITU2V2vw7DJXNL5v3rDZZWVnIy8uDgYGBwrxly5bhk08+qfa2EBERUf1SrXOI7ty5g/fffx/t27dHcXExYmNjsXXrVjRt2rTahfj6+uLixYvYsWNHtftQlrlz5yIzM1N6Xb58Wd0lERERkQpVKRBlZmZi9uzZcHJywqVLlxAeHo4///xTGtGpLj8/P+zduxdHjhyBnZ2dNN3a2hqFhYV4+PChQvu0tDRYW1tLbZ686qzs/fPamJqaPjU6BAB6enowNTWVXiYmJjXaPiIiIqrbKh2IVqxYgebNm2Pv3r346aefcPLkSfTp06dGKxdCwM/PD3v27MHhw4fh6OioML9Lly7Q0dFBeHi4NC0hIQFJSUlwc3MDALi5uSEuLg7p6elSm7CwMJiamsLFxUVq8+8+ytqU9UFERETyVulziObMmQMDAwM4OTlh69at2Lp1a7ntdu/eXemV+/r6Yvv27fj9999hYmIinfNjZmYGAwMDmJmZYcKECQgICICFhQVMTU0xZcoUuLm5oWfPngCAQYMGwcXFBWPHjsWKFSuQmpqK+fPnw9fXF3p6egCASZMm4auvvsKsWbPw7rvv4vDhw/j5558REhJS6VqJiIjoxVXpQOTt7a3wyA5l2LRpEwDA3d1dYXpQUBDGjRsHAFizZg00NTUxcuRIFBQUwNPTU+ERIVpaWti7dy8mT54MNzc3GBkZwcfHR+EEb0dHR4SEhMDf3x/r1q2DnZ0dvvvuO3h6eip1e4iIiKh+0hBCCHUXUdfdvn0b9vb2SE5OVjjHSSkenANCuwCDowELV/X38xw5OTkwNjYGAGRnZ8PIyEhl6yIiIqqJqnx/q/VO1URERER1AQMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyZ5aA9GxY8fw2muvwdbWFhoaGvjtt98U5gshsHDhQtjY2MDAwAADBw7EtWvXFNo8ePAAXl5eMDU1hbm5OSZMmIDs7GyFNhcuXECfPn2gr68Pe3t7rFixQtWbRkRERPWIWgNRTk4OOnbsiMDAwHLnr1ixAuvXr8fmzZtx+vRpGBkZwdPTE/n5+VIbLy8vXLp0CWFhYdi7dy+OHTuGiRMnSvOzsrIwaNAgNG3aFNHR0fjyyy+xePFifPPNNyrfPiIiIqoftNW58ldeeQWvvPJKufOEEFi7di3mz5+PYcOGAQB++OEHWFlZ4bfffsPbb7+N+Ph4hIaG4syZM+jatSsAYMOGDRgyZAhWrlwJW1tbbNu2DYWFhfj++++hq6uLtm3bIjY2FqtXr1YITkRERCRfdfYcosTERKSmpmLgwIHSNDMzM/To0QORkZEAgMjISJibm0thCAAGDhwITU1NnD59WmrTt29f6OrqSm08PT2RkJCAjIyMctddUFCArKws6fXo0SNVbCIRERHVEXU2EKWmpgIArKysFKZbWVlJ81JTU9G4cWOF+dra2rCwsFBoU14f/17Hk5YtWwYzMzPp5eLiUvMNIiIiojqrzgYidZo7dy4yMzOl1+XLl9VdEhEREalQnQ1E1tbWAIC0tDSF6WlpadI8a2trpKenK8wvLi7GgwcPFNqU18e/1/EkPT09mJqaSi8TE5OabxARERHVWXU2EDk6OsLa2hrh4eHStKysLJw+fRpubm4AADc3Nzx8+BDR0dFSm8OHD6O0tBQ9evSQ2hw7dgxFRUVSm7CwMDg7O6NBgwa1tDVERERUl6k1EGVnZyM2NhaxsbEAHp9IHRsbi6SkJGhoaGDatGn47LPP8McffyAuLg7e3t6wtbXF8OHDAQBt2rTB4MGD8f777yMqKgonTpyAn58f3n77bdja2gIA3nnnHejq6mLChAm4dOkSdu7ciXXr1iEgIEBNW01ERER1jVovuz979iw8PDyk92UhxcfHB8HBwZg1axZycnIwceJEPHz4EC+99BJCQ0Ohr68vLbNt2zb4+flhwIAB0NTUxMiRI7F+/XppvpmZGQ4ePAhfX1906dIFDRs2xMKFC3nJPREREUk0hBBC3UXUdbdv34a9vT2Sk5NhZ2en3M4fnANCuwCDowELV/X38xw5OTkwNjYG8HiEz8jISGXrIiIiqomqfH/X2XOIiIiIiGoLAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREcmetroLICIiovor984dFD54UON+dC0sYGhrq4SKqoeBiIiIiKol984dRAwahJK8vBr3pWVgAPeDB9UWihiIiIiIqFoKHzxASV4eOq9eDeMWLardT/aNG4gJCEDhgwcMRERERFQ/GbdoAfN27dRdRo3wpGoiIiKSPQYiIiIikj0GIiIiIpI9nkNEREQkQ8q4XD77xg0lVaN+DEREREQyo+zL5XUtLJRQlXoxEBEREcmMsi6XB9R/Q0VlYSAiIiKSqRfhcnllYSAiIiKqR3juj2owEBEREdUTPPdHdRiIiIiI6gme+6M6DERERET1DM/9UT4GIiIiolrAc3/qNgYiIiIiFeO5P3UfAxEREdEzKGtkh+f+1G0MRERERBVQ9siORbduDDN1FAMRERG9kDiyQ1XBQEQqk5mUidx7uTXux7ChIcwczJRQERGpkjICiLIUPniAsx9+yJEdqjQGIlKJzKRMBLYJRFFuUY370jHUgW+8L0MRkYooI8goM4Aoi5aBAXoEBdX4BGSO7MgDA1EdcffKXRTrp1R7ee38u2ikxHpqKvdeLopyi/D6j6+jUZvqV3Y3/i72jNmD3Hu5dSYQceSrdnA/1w5lniOjqa+PlvNWQdvUvEb96Jvrw9jauMb1MMhQVTAQqdmj1EcwAbDbazdSb52qdj/Wze7gg8//v786dDVmozaNYONqo+4ylIYjX8+njCCTczcHP4/4+YXcz8oKepolmdAzKK5xP8o6RyY7NRs/vf4Hzk44X+OalPX/LDMpEynnqv+HprIpK5zzjwXVYCBSs/yH+TAB0P+z/jBu07fa/WTHHwPwDVJjUpGdr7oPgNy8//0SpsamwtDAsNx2d+PvKnW9yu6vuu7G31XqyNfff/1do36AuvUhq+wg4xXqBaNGRtXu4278Xez1+S+u7jyMBo4NalSPSVNrWHVrXaM+lBWodbSy0db+D2hq1jwQAY9Hdmp6jkxeYQpys/XqzKiwMv94URYdQx28tfutGv1MK/t3rKb1AC9OsGIgqiPMHc3RqAYjKY/0rYFY4PD8w0i9dUV5hT2hEIXSv79/6XvoQrfCtjqGOjBsWH5gqizDhobQMdTBnjF7atSPMukY6qBpn6Y1+gBQ5nbVxQ/ZmgYZQDkfspolmWhr/wdSN+9Gao16AkpLtdFqaRDMnR2r3cfd+LtAQQaGrOhVo4CWGX8Vd4KLkZj+EvILa/5FpKFrjJeKa/b/q4yyRoVr+keQsv54UZay37Ftg7fVuC9l/I4pu54afwbdvFfjOmqKgegFYWJtAgAYsW0EivU7qGw9uXm5WPrSUgDAu8ffrXCECFDOF5qZgxl8432VMjysLHVpu3Lu5mDPG99j93/W16gfANDX18Zr37wMgwYGNern8UiKU43rUQY9g2JoahbD8aOF0G/StNr9PA4gXyBs4tc1CiDaWvloa39UKQFNU18f//llGvQaWdeoH2WNViprFFfZfyzU9I8XZVLWZ5myRmSU9RmkjGBloHsfbeweH3o1V9Mj2hiIXjCNWjcCLFR3zk5OTo70b+tO1jAyUs5flc9i5mBWZz7QlEkZ25V75w5cHH5HaX6+Umq6tfz3GvehZWAA94MHa3wyqzKf+2Q3oEuNHoSZe6cVUnesg2Pj4zWqB3gcZLpt+rbOXPmk7ABS01FhZf4RVNcO5dS1zzJl1aOM/1+3w08hdXMI8h8q57OsOhiIiNREWV/4pfn5SrlpnDJk37iBmIAAPDhzBoU1qEfZ95CpafgwtLWFR1iYUu6xU9eufKqLAaSuBQd6NmX8/8q52aDGo6Y1xUBEpAYv6uMAdC0soGVggJiAgBr3VdfuIWNoa1sn9rEqMIAQMRARVRkfB1AxQ1tbuB88+EKOpBDRi42BiGSjrt2Nty6N7CjTizySQkQvLgYiUpkX+blGdelQDhER1RwDET3lWUEmJ/d/J14+vHQJRYblX1HC5xoREVF9wkD0Asl9qIXCKzcB04pvlvg8zwsy+aWl0r9PjhoFfU3NCvtSVgBRFgYZIiKqiKwCUWBgIL788kukpqaiY8eO2LBhA7p3767uspD7UAs5t5KgY3qx2n0U/h2Ls+vtUVI0u8b1PCvI5OTmAj16AAB67dwJowpGiAAGECIiqj9kE4h27tyJgIAAbN68GT169MDatWvh6emJhIQENG7cWG11Fdx7gDPr7VFStLzGfWnpAD3Wz4Nu05qFvGcFGZ1/3ZjRvG3bWrkxIxERkarJJhCtXr0a77//PsaPHw8A2Lx5M0JCQvD9999jzpw5aqurODsbJUWacJo0DjavvF79jrKuQDf2bRi66AFmhc9v/yx6ynlgJBERUX0hi0BUWFiI6OhozJ07V5qmqamJgQMHIjIy8qn2BQUFKCgokN5nZmYCAFJSlP8U+ZT7GbhXXIyG+nowMTevfke69gB08GDvmJoXpaUP9PgW0LV8alZu3v9uq/7PpYMwNNCv+fqIiEjW7qbE4V5xMVLu34X+7dtK67fse7v0X+e/VkjIwD///CMAiJMnTypMnzlzpujevftT7RctWiQA8MUXX3zxxRdfL8ArKirquVlBFiNEVTV37lwE/OvRA8XFxYiPj4e9vT00n3FVVXU8evQILi4uuHz5MkxMTJTaN/0P93Pt4H6uHdzPtYf7unaoaj+XlpYiLS0NnTt3fm5bWQSihg0bQktLC2lpaQrT09LSYG1t/VR7PT096OnpKUzr3bu3SmrLysoCADRp0gSmpqYqWQdxP9cW7ufawf1ce7iva4cq97ODg0Ol2il3uKOO0tXVRZcuXRAeHi5NKy0tRXh4ONzc3NRYGREREdUFshghAoCAgAD4+Piga9eu6N69O9auXYucnBzpqjMiIiKSL9kEolGjRuHu3btYuHAhUlNT0alTJ4SGhsLKykqtdenp6WHRokVPHaIj5eJ+rh3cz7WD+7n2cF/XjrqwnzWEEEJtayciIiKqA2RxDhERERHRszAQERERkewxEBEREZHsMRARERGR7DEQ1YLAwEA0a9YM+vr66NGjB6Kiop7ZfteuXWjdujX09fXRvn177Nu3r5Yqrd+qsp+//fZb9OnTBw0aNECDBg0wcODA5/5/oceq+vNcZseOHdDQ0MDw4cNVW+ALoqr7+eHDh/D19YWNjQ309PTQqlUrfnZUUlX39dq1a+Hs7AwDAwPY29vD398f+fn5z1xGzo4dO4bXXnsNtra20NDQwG+//fbcZSIiIuDq6go9PT04OTkhODhY5XXK4llm6rRjxw6hq6srvv/+e3Hp0iXx/vvvC3Nzc5GWllZu+xMnTggtLS2xYsUKcfnyZTF//nyho6Mj4uLiarny+qWq+/mdd94RgYGBIiYmRsTHx4tx48YJMzMzcfv27VquvH6p6n4uk5iYKJo0aSL69Okjhg0bVjvF1mNV3c8FBQWia9euYsiQIeL48eMiMTFRREREiNjY2FquvP6p6r7etm2b0NPTE9u2bROJiYniwIEDwsbGRvj7+9dy5fXHvn37xLx588Tu3bsFALFnz55ntr9586YwNDQUAQEB4vLly2LDhg1CS0tLhIaGqrROBiIV6969u/D19ZXel5SUCFtbW7Fs2bJy27/11lti6NChCtN69OghPvjgA5XWWd9VdT8/qbi4WJiYmIitW7eqqsQXQnX2c3FxsejVq5f47rvvhI+PDwNRJVR1P2/atEk0b95cFBYW1laJL4yq7mtfX1/Rv39/hWkBAQGid+/eKq3zRVGZQDRr1izRtm1bhWmjRo0Snp6eKqxMCB4yU6HCwkJER0dj4MCB0jRNTU0MHDgQkZGR5S4TGRmp0B4APD09K2xP1dvPT8rNzUVRUREsLCxUVWa9V939vGTJEjRu3BgTJkyojTLrvers5z/++ANubm7w9fWFlZUV2rVrh6VLl6KkpKS2yq6XqrOve/XqhejoaOmw2s2bN7Fv3z4MGTKkVmqWA3V9D8rmTtXqcO/ePZSUlDx1N2wrKytcuXKl3GVSU1PLbZ+amqqyOuu76uznJ82ePRu2trZP/RLS/1RnPx8/fhxbtmxBbGxsLVT4YqjOfr558yYOHz4MLy8v7Nu3D9evX8eHH36IoqIiLFq0qDbKrpeqs6/feecd3Lt3Dy+99BKEECguLsakSZPw8ccf10bJslDR92BWVhby8vJgYGCgkvVyhIhkb/ny5dixYwf27NkDfX19dZfzwnj06BHGjh2Lb7/9Fg0bNlR3OS+00tJSNG7cGN988w26dOmCUaNGYd68edi8ebO6S3vhREREYOnSpdi4cSPOnTuH3bt3IyQkBJ9++qm6S6Ma4giRCjVs2BBaWlpIS0tTmJ6WlgZra+tyl7G2tq5Se6refi6zcuVKLF++HIcOHUKHDh1UWWa9V9X9fOPGDdy6dQuvvfaaNK20tBQAoK2tjYSEBLRo0UK1RddD1fl5trGxgY6ODrS0tKRpbdq0QWpqKgoLC6Grq6vSmuur6uzrBQsWYOzYsXjvvfcAAO3bt0dOTg4mTpyIefPmQVOT4ww1VdH3oKmpqcpGhwCOEKmUrq4uunTpgvDwcGlaaWkpwsPD4ebmVu4ybm5uCu0BICwsrML2VL39DAArVqzAp59+itDQUHTt2rU2Sq3XqrqfW7dujbi4OMTGxkqv//znP/Dw8EBsbCzs7e1rs/x6ozo/z71798b169elwAkAV69ehY2NDcPQM1RnX+fm5j4VesqCqOCjQZVCbd+DKj1lm8SOHTuEnp6eCA4OFpcvXxYTJ04U5ubmIjU1VQghxNixY8WcOXOk9idOnBDa2tpi5cqVIj4+XixatIiX3VdCVffz8uXLha6urvjll19ESkqK9Hr06JG6NqFeqOp+fhKvMqucqu7npKQkYWJiIvz8/ERCQoLYu3evaNy4sfjss8/UtQn1RlX39aJFi4SJiYn46aefxM2bN8XBgwdFixYtxFtvvaWuTajzHj16JGJiYkRMTIwAIFavXi1iYmLE33//LYQQYs6cOWLs2LFS+7LL7mfOnCni4+NFYGAgL7t/UWzYsEE4ODgIXV1d0b17d3Hq1ClpXr9+/YSPj49C+59//lm0atVK6OrqirZt24qQkJBarrh+qsp+btq0qQDw1GvRokW1X3g9U9Wf539jIKq8qu7nkydPih49egg9PT3RvHlz8fnnn4vi4uJarrp+qsq+LioqEosXLxYtWrQQ+vr6wt7eXnz44YciIyOj9guvJ44cOVLu523ZfvXx8RH9+vV7aplOnToJXV1d0bx5cxEUFKTyOjWE4BgfERERyRvPISIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIqx+LFi9GpUyd1l0FEtYSBiIiIiGSPgYiIiIhkj4GIiOo8d3d3+Pn5wc/PD2ZmZmjYsCEWLFiA8h7FmJWVBQMDA+zfv19h+p49e2BiYoLc3FwAwOzZs9GqVSsYGhqiefPmWLBgAYqKip5Zw7Rp0xSmDR8+HOPGjZPeFxQUYMaMGWjSpAmMjIzQo0cPREREVHu7iaj2MBARUb2wdetWaGtrIyoqCuvWrcPq1avx3XffPdXO1NQUr776KrZv364wfdu2bRg+fDgMDQ0BACYmJggODsbly5exbt06fPvtt1izZk2NavTz80NkZCR27NiBCxcu4M0338TgwYNx7dq1GvVLRKqnre4CiIgqw97eHmvWrIGGhgacnZ0RFxeHNWvW4P3333+qrZeXF8aOHYvc3FwYGhoiKysLISEh2LNnj9Rm/vz50r+bNWuGGTNmYMeOHZg1a1a16ktKSkJQUBCSkpJga2sLAJgxYwZCQ0MRFBSEpUuXVqtfIqodHCEionqhZ8+e0NDQkN67ubnh2rVr+Pzzz2FsbCy9kpKSMGTIEOjo6OCPP/4AAPz6668wNTXFwIEDpeV37tyJ3r17w9raGsbGxpg/fz6SkpKqXV9cXBxKSkrQqlUrhXqOHj2KGzduVH/DiahWcISIiOq1SZMmYdSoUdJ7W1tbaGtr44033sD27dvx9ttvY/v27Rg1ahS0tR9/5EVGRsLLywuffPIJPD09YWZmhh07dmDVqlUVrkdTU/Opc5b+fc5RdnY2tLS0EB0dDS0tLYV2xsbGythUIlIhBiIiqhdOnz6t8P7UqVNo2bIlLC0tYWlp+VR7Ly8vvPzyy7h06RIOHz6Mzz77TJp38uRJNG3aFPPmzZOm/f33389cf6NGjZCSkiK9LykpwcWLF+Hh4QEA6Ny5M0pKSpCeno4+ffpUaxuJSH14yIyI6oWkpCQEBAQgISEBP/30EzZs2ICpU6dW2L5v376wtraGl5cXHB0d0aNHD2ley5YtkZSUhB07duDGjRtYv369wvlF5enfvz9CQkIQEhKCK1euYPLkyXj48KE0v1WrVvDy8oK3tzd2796NxMREREVFYdmyZQgJCanx9hORajEQEVG94O3tjby8PHTv3h2+vr6YOnUqJk6cWGF7DQ0NjB49GufPn4eXl5fCvP/85z/w9/eHn58fOnXqhJMnT2LBggXPXP+7774LHx8feHt7o1+/fmjevLk0OlQmKCgI3t7emD59OpydnTF8+HCcOXMGDg4O1d9wIqoVGqK8G3kQEdUh7u7u6NSpE9auXavuUojoBcURIiIiIpI9BiIiIiKSPR4yIyIiItnjCBERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyd7/AQ2HLrr4tWlYAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHdCAYAAAD8YWZMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABahElEQVR4nO3de1yO9/8H8Fenu/NBoYOKiMg5xxgKk7F9+bLNLIrZjJUh5znONsycLexgsu+Yzcb2nYhEDBERITllZTo4pHQ+fX5/+HV9dxO66767q+v1fDzux9zX9bk+1/u6Vvf96nOddIQQAkREREQypqvtAoiIiIi0jYGIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIhIjZKTk+Hl5QV3d3e0a9cOO3fu1HZJRFQBOny4KxGR+qSkpCAtLQ0dOnRAamoqOnXqhKtXr8LU1FTbpRHRc3CEiIhkzcvLC1OmTFFbf/b29ujQoQMAwM7ODvXr18eDBw/U1j8RaQYDERHVeGPGjIGOjg50dHRgYGAAFxcXzJw5E/n5+dou7bliYmJQUlICJycnbZdCRC+gr+0CiIgqYuDAgdiyZQuKiooQExMDf39/6Ojo4PPPP9d2aeV68OAB/Pz88M0332i7FCKqAI4QEVGtYGhoCDs7Ozg5OWHo0KHo378/wsPDpfmlpaVYunQpXFxcYGxsjPbt2+OXX35R6iMnJwd+fn4wMzODvb09Vq5cqXIdb7zxBho0aICvv/5amnbq1CkoFAocOHAAAFBQUIChQ4di9uzZ6NGjRyW3mIiqEwMREdU6Fy9exIkTJ6BQKKRpS5cuxffff49Nmzbh0qVLmDp1KkaNGoUjR45IbWbMmIEjR47g999/x4EDBxAZGYmzZ8+qtO5169Zh+PDhWLx4MQAgOzsbo0aNwsSJEzFgwAAIITBmzBj07dsXo0ePVs8GE5HG8SozIqrxxowZgx9++AFGRkYoLi5GQUEBdHV18fPPP2P48OEoKCiAtbU1Dh48CE9PT2m5d999F7m5udi+fTuys7NhY2ODH374AW+88QaAx4e1HB0dMX78eKxZs6bC9Vy5cgWtWrXCvXv3MGPGDERHR+PMmTMwMjLCsWPH0Lt3b7Rr105q/5///Adt27ZV2/4gIvXjOUREVCt4e3tj48aNyMnJwerVq6Gvr4/hw4cDAK5fv47c3Fy8/PLLSssUFhaiY8eOAIAbN26gsLAQ3bp1k+ZbW1vDzc1N5VpatGgBExMTLFiwANu2bUN0dDSMjIwAAC+99BJKS0sru5lEpCUMRERUK5iamsLV1RUA8N1336F9+/bYvHkzxo0bh+zsbABAaGgoGjVqpLScoaGh2mvR1dVF27ZtsWHDBixfvhzt27dX+zqIqHrxHCIiqnV0dXXx0UcfYd68ecjLy4O7uzsMDQ2RlJQEV1dXpVfZJe/NmjWDgYEBTp06JfWTkZGBq1evqrz+sjMNPDw8MG3aNPVsFBFpFQMREdVKb7zxBvT09BAcHAxzc3NMnz4dU6dOxdatW3Hjxg2cPXsW69evx9atWwEAZmZmGDduHGbMmIFDhw7h4sWLGDNmDHR1//cx+OWXX6Jfv34vXPeaNWtw6tQplJaWKi1PRLUXD5kRUa2kr6+PwMBALF++HBMnTsQnn3yCBg0aYOnSpbh58yasrKzg4eGBjz76SFrmiy++QHZ2Nl577TWYm5tj2rRpyMzMlObfu3cPN27ceO564+LiMGfOHHzwwQf49ttvUVxcDH19fpQS1Xa8yoyIqILy8/PRpUsXeHh4YM2aNbC2tkZcXBzatGmj7dKIqIo41ktEVEGzZ89GTk4OvvzyS9SrVw+NGzfGmjVrcOfOHW2XRkRVxEBERFQBBw4cQHBwMH744QeYm5sDAObNm4fffvsNAQEBWq6OiKqKh8yIiIhI9jhCRERERLLHQERERESyx0BEREREssdARHXC0aNH8dprr8HBwQE6Ojr47bfftF0S1QL8uaHqxJ+3mo2BiGqEO3fuoLi4uNLL5+TkoH379ggODlZjVVTX8eeG1CkjI0N6rl55+PNWs/H2qlQjfPPNN9i4cSNGjRoFf39/tG3bVqXlX3nlFbzyyisaqo7qKv7cUFUVFxdj//79CAkJwR9//IFTp04982G//Hmr2ThCRDXCrFmzsHbtWsTHx8PDwwMeHh5Yt24d7t69q+3SiIieEhcXh2nTpsHR0RF+fn5o0KABDh8+/MwwRDUfAxHVCEZGRhgxYgRCQ0Px999/w8/PDyEhIWjUqBGGDh2K3bt3V+mQGhFRVd2/fx9r166Fh4cHOnfujJs3b2LDhg1ISUnBhg0b4Onpqe0SqQoYiKjGadiwIaZMmYKzZ8/i999/R1RUFIYNG4aLFy9quzQikrH169djypQpMDMzw/Xr17F7924MGzYMCoVC26WRGjAQUY3z6NEjbNmyBX379sVrr72GNm3aYOvWrXB3d9d2aUQkY+PHj8cnn3yC1NRUtG7dGmPHjsWhQ4dQWlqq7dJIDRiIqEYoKSnBvn378Pbbb8PW1hbLli1Dv379cPPmTURERMDPz49/hRGRVjk4OGDevHm4evUqwsLCoFAoMGzYMDRu3BizZ8/GpUuXtF0iVQEDEdUIS5YswciRI2Fubo6DBw8iISEBc+fOhbOzc4WWz87ORmxsLGJjYwEAiYmJiI2NRVJSkgarptqOPzdUWT169MBXX32F1NRUfPHFF4iNjUX79u0RFxf3zGX481az8eGuVCPcunULdnZ2MDIyqtTykZGR8Pb2fmq6v78/QkJCqlgd1VX8uSF1unPnDszMzGBhYVHufP681WwMRERERCR7PGRGREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEtU5BQQEWLVqEgoICbZdCdQB/nkjd+DNVO/E+RFTrZGVlwdLSEpmZmc+8ARpRRfHnidSNP1O1E0eIiIiISPYYiIiIiEj29LVdQG1QXFyMc+fOwdbWFrq6zJDa9ujRIwDA33//jaysLC1XQ7Udf55I3fgzVXOUlpYiLS0NHTt2hL7+8yMPzyGqgNOnT6Nr167aLoOIiIgqITo6Gl26dHluG44QVYCtrS2AxzvU3t5ey9VoV25uLtzc3AAACQkJMDEx0XJFRERE5UtJSUHXrl2l7/HnYSCqgLLDZPb29nB0dNRyNdqVk5Mj/btRo0YwNTXVYjVEREQvVpHTXXhCDBEREckeAxERERHJHgMRERERyR7PISKiWq+0tBSFhYXaLoOItEChUKjlljgMRERUqxUWFiIxMRGlpaXaLoWItEBXVxcuLi5QKBRV6oeBiIhqLSEEUlJSoKenBycnJ944lUhmSktLcefOHaSkpMDZ2Rk6OjqV7ouBiIhqreLiYuTm5sLBwYH3xCKSqQYNGuDOnTsoLi6GgYFBpfvhn1NEVGuVlJQAQJWHyomo9ir7/S/7PKgsBiIiqvWqMkxORLWbun7/GYiIiIhI9rQaiBYtWgQdHR2lV8uWLaX5+fn5CAgIgI2NDczMzDB8+HCkpaUp9ZGUlITBgwfDxMQEDRs2xIwZM1BcXKzUJjIyEh4eHjA0NISrqytCQkKqY/OISEsykzKRcjal2l6ZSZna3mSV6ejo4LffftN2GQAALy8vTJkypcLtQ0JCYGVlpbF6SJ60flJ169atcfDgQem9vv7/Spo6dSpCQ0Oxc+dOWFpaIjAwEMOGDcPx48cBPD5eOHjwYNjZ2eHEiRNISUmBn58fDAwMsGTJEgBAYmIiBg8ejAkTJmDbtm2IiIjAu+++C3t7e/j4+FTvxhKRxmUmZSK4VTCKcouqbZ0GJgYIiA+ApbNlhZdJTU3F0qVLERoaitu3b8PS0hKurq4YNWoU/P39eZI4UTXTeiDS19eHnZ3dU9MzMzOxefNmbN++HX379gUAbNmyBa1atcLJkyfRvXt3HDhwAJcvX8bBgwdha2uLDh064JNPPsGsWbOwaNEiKBQKbNq0CS4uLli5ciUAoFWrVjh27BhWr17NQERUB+Xey0VRbhH+/cO/0aBVA42v7278XewetRu593IrHIhu3ryJnj17wsrKCkuWLEHbtm1haGiIuLg4fP3112jUqBH+9a9/abhyIvonrZ9DdO3aNTg4OKBp06bw9fVFUlISACAmJgZFRUXo37+/1LZly5ZwdnZGVFQUACAqKgpt27aFra2t1MbHxwdZWVm4dOmS1OaffZS1KeujPAUFBcjKypJejx49Utv2ElH1aNCqAew97DX+qkzo+uCDD6Cvr48zZ87gzTffRKtWrdC0aVMMGTIEoaGheO2116S2SUlJGDJkCMzMzGBhYYE333zzqVMHNm7ciGbNmkGhUMDNzQ3/+c9/lOZfu3YNvXv3hpGREdzd3REeHv7CGr28vDBp0iRMmTIF9erVg62tLb755hvk5ORg7NixMDc3h6urK/bt26e03JEjR9C1a1cYGhrC3t4es2fPVjqNIScnB35+fjAzM4O9vb30x+o/FRQUYPr06WjUqBFMTU3RrVs3REZGVmTXElWaVgNRt27dEBISgrCwMGzcuBGJiYno1asXHj16hNTUVCgUiqeOE9va2iI1NRXA4yHnf4ahsvll857XJisrC3l5eeXWtXTpUlhaWkovd3d3dWzus+UkAQ/OVv2Vk6TZOomoyu7fv48DBw4gICAApqam5bYpu2qmtLQUQ4YMwYMHD3DkyBGEh4fj5s2bGDFihNR29+7dmDx5MqZNm4aLFy/i/fffx9ixY3H48GGpj2HDhkGhUODUqVPYtGkTZs2aVaFat27divr16yM6OhqTJk3CxIkT8cYbb6BHjx44e/YsBgwYgNGjRyM3NxcA8Pfff2PQoEHo0qULzp8/j40bN2Lz5s349NNPpT5nzJiBI0eO4Pfff8eBAwcQGRmJs2fPKq03MDAQUVFR2LFjBy5cuIA33ngDAwcOxLVr1yq+o4lUpNVDZq+88or073bt2qFbt25o3Lgxfv75ZxgbG2utrjlz5iAoKEh6//fff2suFOUkAXtaASW5Ve9LzwR4NR4wda56X0SkEdevX4cQAm5ubkrT69evj/z8fABAQEAAPv/8c0RERCAuLg6JiYlwcnICAHz//fdo3bo1Tp8+jS5dumDFihUYM2YMPvjgAwBAUFAQTp48iRUrVsDb2xsHDx7ElStXsH//fjg4OAAAlixZovT5+yzt27fHvHnzADz+XFy2bBnq16+P9957DwCwYMECbNy4ERcuXED37t2xYcMGODk54csvv5Qukrlz5w5mzZqFBQsWIDc3F5s3b8YPP/yAfv36AXgcuhwdHaV1JiUlYcuWLUhKSpLqnT59OsLCwrBlyxbp/FAiddP6OUT/ZGVlhRYtWuD69et4+eWXUVhYiIcPHyqNEqWlpUnnHNnZ2SE6Olqpj7Kh5H+2eXJ4OS0tDRYWFs8MXYaGhjA0NJTeZ2VlVXnbnqng3uMw5PkDYNmq8v1kxgNRox73x0BEVOtER0ejtLQUvr6+KCgoAADEx8fDyclJCkMA4O7uDisrK8THx6NLly6Ij4/H+PHjlfrq2bMn1q5dq9RHWbgAAE9PzwrV1K5dO+nfenp6sLGxQdu2baVpZaPv6enp0ro8PT2V7gvTs2dPZGdn4/bt28jIyEBhYSG6desmzbe2tlYKh3FxcSgpKUGLFi2UaikoKICNjU2F6iaqjBoViLKzs3Hjxg2MHj0anTp1goGBASIiIjB8+HAAQEJCApKSkqRfZk9PT3z22WdIT09Hw4YNAQDh4eGwsLCQRnQ8PT2xd+9epfWEh4dX+AOh2li2Aqw9tF0FEWmYq6srdHR0kJCQoDS9adOmAKDV0fEnPfkYBB0dHaVp/zy0py7Z2dnQ09NDTEwM9PT0lOaZmZmpbT1ET9LqOUTTp0/HkSNHcOvWLZw4cQL//ve/oaenh5EjR8LS0hLjxo1DUFAQDh8+jJiYGIwdOxaenp7o3r07AGDAgAFwd3fH6NGjcf78eezfvx/z5s1DQECANMIzYcIE3Lx5EzNnzsSVK1ewYcMG/Pzzz5g6dao2N52IZMrGxgYvv/wyvvzyS+Tk5Dy3batWrZCcnIzk5GRp2uXLl/Hw4UPpj75WrVpJtyIpc/z4caX5ycnJSElJkeafPHlSXZvzVL1RUVEQQijVYm5uDkdHRzRr1gwGBgY4deqUND8jIwNXr16V3nfs2BElJSVIT0+Hq6ur0qu8K5KJ1EWrgej27dsYOXIk3Nzc8Oabb8LGxgYnT55EgwaPr9pYvXo1Xn31VQwfPhy9e/eGnZ0ddu3aJS2vp6eHPXv2QE9PD56enhg1ahT8/PywePFiqY2LiwtCQ0MRHh6O9u3bY+XKlfj22295yT0Rac2GDRtQXFyMzp0746effkJ8fDwSEhLwww8/4MqVK9LISP/+/dG2bVv4+vri7NmziI6Ohp+fH/r06YPOnTsDeHySckhICDZu3Ihr165h1apV2LVrF6ZPny710aJFC/j7++P8+fP4888/MXfuXI1s1wcffIDk5GRMmjQJV65cwe+//46FCxciKCgIurq6MDMzw7hx4zBjxgwcOnQIFy9exJgxY6Cr+7+vohYtWsDX1xd+fn7YtWsXEhMTER0dLd2ziUhTtHrIbMeOHc+db2RkhODgYAQHBz+zTePGjZ86JPYkLy8vnDt3rlI1ElHtdDf+bo1dT7NmzXDu3DksWbIEc+bMwe3bt2FoaAh3d3dMnz5dOkFaR0cHv//+OyZNmoTevXtDV1cXAwcOxPr166W+hg4dirVr12LFihWYPHkyXFxcsGXLFnh5eQEAdHV1sXv3bowbNw5du3ZFkyZNsG7dOgwcOFAt2/9PjRo1wt69ezFjxgy0b98e1tbWGDdunHRiNgB88cUXyM7OxmuvvQZzc3NMmzYNmZnKd/resmULPv30U0ybNg1///036tevj+7du+PVV19Ve81EZXTEP8c2qVy3b9+Gk5MTkpOTla6GUIsHZ4GwTsDAmKqdQ6Sufl4gJydHOo6fnZ39zMuGiapDfn4+EhMT4eLiAiMjIwC1507VRKQe5X0OlFHl+7tGnVRNRFRVls6WCIgPQO49NdzKooJM6pswDBHVcgxERFTnWDpbMqAQkUq0/ugOIiIiIm1jICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItnjfYiIqO7JSQIK7lXf+gzrA6bO1bc+mRkzZgwePnyI3377rULtIyMj4e3tjYyMDFhZWWm0Nqo7GIiIqG7JSQL2tAJKqu9O1dAzAV6Nr1Ao2rRpE2bMmIGMjAzo6z/+CM7Ozka9evXQs2dPREZGSm3LvtivX7+OZs2aaap6IgIDERHVNQX3Hochzx8Ay1aaX19mPBA16vF6KxCIvL29kZ2djTNnzqB79+4AgD///BN2dnY4deoU8vPzpecxHT58GM7OzuWGocLCQigUCvVuC5GM8RwiIqqbLFs9ftCxpl8qhi43NzfY29s/NRI0ZMgQuLi44OTJk0rTvb29ATw+bDR06FB89tlncHBwgJubGwAgLi4Offv2hbGxMWxsbDB+/HhkZ2dLfZQtt2LFCtjb28PGxgYBAQEoKvrfw29TUlIwePBgGBsbw8XFBdu3b0eTJk2wZs2aZ25HWb9LliyBra0trKyssHjxYhQXF2PGjBmwtraGo6MjtmzZorTci+otKSlBUFAQrKysYGNjg5kzZ+LJZ5CXlpZi6dKlcHFxgbGxMdq3b49ffvml4v8TiMrBQEREVM28vb1x+PBh6f3hw4fh5eWFPn36SNPz8vJw6tQpKRABQEREBBISEhAeHo49e/YgJycHPj4+qFevHk6fPo2dO3fi4MGDCAwMVFrf4cOHcePGDRw+fBhbt25FSEgIQkJCpPl+fn64c+cOIiMj8euvv+Lrr79Genr6C7fj0KFDuHPnDo4ePYpVq1Zh4cKFePXVV1GvXj2cOnUKEyZMwPvvv4/bt28DQIXqXblyJUJCQvDdd9/h2LFjePDgAXbv3q203qVLl+L777/Hpk2bcOnSJUydOhWjRo3CkSNHKv4/gehJgl4oOTlZABDJycnq7/x+jBDb8Pi/NaGfF8jOzhYABACRnZ2t0XURvUheXp64fPmyyMvL+9/EavpdqMr6vvnmG2FqaiqKiopEVlaW0NfXF+np6WL79u2id+/eQgghIiIiBADx119/CSGE8Pf3F7a2tqKgoEDq5+uvvxb16tVT+l0MDQ0Vurq6IjU1VVqucePGori4WGrzxhtviBEjRgghhIiPjxcAxOnTp6X5165dEwDE6tWrn7kNZf2WlJRI09zc3ESvXr2k98XFxcLU1FT8+OOPFa7X3t5eLF++XJpfVFQkHB0dxZAhQ4QQQuTn5wsTExNx4sQJpXrGjRsnRo4cKYQQ4vDhwwKAyMjIeGb9VHeU+znw/1T5/uY5RERE1czLyws5OTk4ffo0MjIy0KJFCzRo0AB9+vTB2LFjkZ+fj8jISDRt2hTOzv87L6lt27ZK5w3Fx8ejffv2MDU1lab17NkTpaWlSEhIgK2tLQCgdevW0NPTk9rY29sjLi4OAJCQkAB9fX14eHhI811dXVGvXr0Xbkfr1q2hq/u/Aw22trZo06aN9F5PTw82NjbSaNOL6jUyMkJKSgq6desmzdfX10fnzp2lw2bXr19Hbm4uXn75ZaVaCgsL0bFjxxfWTPQsDERERNXM1dUVjo6OOHz4MDIyMtCnTx8AgIODA5ycnHDixAkcPnwYffv2VVrun0FCFQYGBkrvdXR0UFpaWrniX9CvptZVpux8o9DQUDRq1EhpnqGhodrWQ/LDc4iIiLTA29sbkZGRiIyMhJeXlzS9d+/e2LdvH6Kjo5XOHypPq1atcP78eeTk5EjTjh8/Dl1dXemk6xdxc3NDcXExzp07J027fv06MjIyVNugCnhRvZaWlrC3t8epU6ek+cXFxYiJiZHeu7u7w9DQEElJSXB1dVV6OTk5qb1mkg8GIiIiLfD29saxY8cQGxsrjRABQJ8+ffDVV1+hsLDwhYHI19cXRkZG8Pf3x8WLF3H48GFMmjQJo0ePlg6XvUjLli3Rv39/jB8/HtHR0Th37hzGjx8PY2Nj6OjoVGkbK1Pv5MmTsWzZMvz222+4cuUKPvjgAzx8+FDqw9zcHNOnT8fUqVOxdetW3LhxA2fPnsX69euxdetWtdZL8sJDZkRUN2XG1+j1eHt7Iy8vDy1btlQKL3369MGjR4+ky/Ofx8TEBPv378fkyZPRpUsXmJiYYPjw4Vi1apVKtXz//fcYN24cevfuDTs7OyxduhSXLl2S7oekLhWpd9q0aUhJSYG/vz90dXXxzjvv4N///jcyMzOlNp988gkaNGiApUuX4ubNm7CysoKHhwc++ugjtdZL8qIjxBM3eKCn3L59G05OTkhOToajo6N6O39wFgjrBAyMeXxPE2338wI5OTkwMzMD8PhYfmXPaSBSh/z8fCQmJsLFxeV/X941/E7VtUHZZ97BgwfRr18/bZdD9Fzlfg78P1W+vzlCRER1i6nz43DCZ5lV2KFDh5CdnY22bdsiJSUFM2fORJMmTdC7d29tl0ZUbRiIiKjuMXWu1QGluhUVFeGjjz7CzZs3YW5ujh49emDbtm1PXTFGVJcxEBERyZyPjw98fHy0XQaRVvEqMyIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj1edk9EdU7unTsofPCg2tansLaGiYNDta1PFZGRkfD29kZGRgasrKy0XY5s6OjoYPfu3Rg6dGiV+mnSpAmmTJmCKVOmqKWu8kRERCAwMBAXL16Enp6extZTGWFhYZg9ezbOnj0LXV3NjuEwEBFRnZJ75w4iBwxASV5eta1Tz9gYXgcOVCgUveiBqQsXLsSiRYvUVBlVxa1bt+Di4oJz586hQ4cOKi2bkpKCevXqVbh9SEgIpkyZovQgWwA4ffq0xh+RNHPmTMybN08KQykpKZg2bRrOnDmD69ev48MPP8SaNWueWm7nzp2YP38+bt26hebNm+Pzzz/HoEGDnrmec+fO4Z133sG1a9fg7e2NrVu3wtraGgBQXFyMbt26YePGjejatau0zMCBAzF//nxs27YNo0ePVu+GP4GBiIjqlMIHD1CSl4eOq1bBrFkzja8v+8YNnAsKQuGDBxUKRCkpKdK/f/rpJyxYsAAJCQnStLJnBdYkhYWFUCgU2i6jWhUWFlZpeTs7O7XU0aBBA7X08yzHjh3DjRs3MHz4cGlaQUEBGjRogHnz5mH16tXlLnfixAmMHDkSS5cuxauvvort27dj6NChOHv2LNq0aVPuMu+++y769u2Ln376Ce+++y6WLFmCFStWAABWrlyJnj17KoWhMmPGjMG6des0Hogg6IWSk5MFAJGcnKz+zu/HCLENj/9bE/p5gezsbAFAABDZ2dkaXRfRi+Tl5YnLly+LvLw8aVpGXJz4b9OmIiMurlpqqMr6tmzZIiwtLaX3JSUl4uOPPxaNGjUSCoVCtG/fXuzbt09pmQsXLghvb29hZGQkrK2txXvvvScePXr0zHUcPnxYABAZGRlCCCHu3bsn3nrrLeHg4CCMjY1FmzZtxPbt25WW6dOnjwgICBCTJ08WNjY2wsvLSwghxO+//y5cXV2FoaGh8PLyEiEhIUp9CyHEn3/+KV566SVhZGQkHB0dxaRJk577WeHv7y+GDBmiNG3y5MmiT58+SvVMmjRJzJgxQ9SrV0/Y2tqKhQsXKi2TkZEhxo8fLxo2bCgMDQ1F69atxR9//FHhuho3biwWL14sRo8eLczNzYW/v7/0WVf2KqspOjpa9O/fX9jY2AgLCwvRu3dvEROj/NkLQOzevVsIIURiYqIAIH799Vfh5eUljI2NRbt27cSJEyeU/h/981W2fY0bNxarV69W2s5x48aJ+vXrC3Nzc+Ht7S1iY2Ol+bGxscLLy0uYmZkJc3Nz4eHhIU6fPv3M/R8QECBef/31Z87v06ePmDx58lPT33zzTTF48GClad26dRPvv//+M/syNjYW8fHxQgghNmzYIAYNGiSEEOLGjRuiefPmIisrq9zl/vrrLwFAXL9+vdz55X0OlFHl+5snVRMR1RBr167FypUrsWLFCly4cAE+Pj7417/+hWvXrgEAcnJy4OPjg3r16uH06dPYuXMnDh48iMDAwAqvIz8/H506dUJoaCguXryI8ePHY/To0YiOjlZqt3XrVigUChw/fhybNm1CYmIiXn/9dQwdOhTnz5/H+++/j7lz5yotc+PGDQwcOBDDhw/HhQsX8NNPP+HYsWMq1fcsW7duhampKU6dOoXly5dj8eLFCA8PBwCUlpbilVdewfHjx/HDDz/g8uXLWLZsmXQIqKJ1rVixAu3bt8e5c+cwf/58aZ8cPHgQKSkp2LVrFwDg0aNH8Pf3x7Fjx3Dy5Ek0b94cgwYNwqNHj567DXPnzsX06dMRGxuLFi1aYOTIkSguLkaPHj2wZs0aWFhYICUlBSkpKZg+fXq5fbzxxhtIT0/Hvn37EBMTAw8PD/Tr1w8P/v+cOV9fXzg6OuL06dOIiYnB7Nmzn/tMuj///BOdO3euwP8BZVFRUejfv7/SNB8fH0RFRT1zmfbt2yM8PBzFxcWIiIhAu3btAAATJkzA8uXLYW5uXu5yzs7OsLW1xZ9//qlynSp5YWQijhD9A0eIqCapayNEDg4O4rPPPlNq06VLF/HBBx8IIYT4+uuvRb169ZR+90JDQ4Wurq5ITU0tdx1PjhCVZ/DgwWLatGnS+z59+oiOHTsqtZk1a5Zo06aN0rS5c+cq9T1u3Dgxfvx4pTZ//vmn0NXVLfevdyEqPkL00ksvKbXp0qWLmDVrlhBCiP379wtdXV2RkJBQ7joqUlfjxo3F0KFDldqUjeycO3eu3H7LlJSUCHNzc6URKZQzQvTtt99K8y9duiQASCMmT/4slPnnCNGff/4pLCwsRH5+vlKbZs2aia+++koIIYS5ubkICQl5br3/ZGlpKb7//vtnzn/WCJGBgcFTI4vBwcGiYcOGz+zr4sWLonfv3sLZ2VmMHDlSZGZmiu+//14MGTJE3L59WwwYMEA0a9ZMzJ0796llO3bsKBYtWlRuv+oaIeI5RERENUBWVhbu3LmDnj17Kk3v2bMnzp8/DwCIj49H+/btlU6y7dmzJ0pLS5GQkABbW9sXrqekpARLlizBzz//jL///huFhYUoKCiAiYmJUrtOnTopvU9ISECXLl2Upj15vsf58+dx4cIFbNu2TZomhEBpaSkSExPRqlWrF9b3LGWjCWXs7e2Rnp4OAIiNjYWjoyNatGhR7rIVrauiIyVpaWmYN28eIiMjkZ6ejpKSEuTm5iIpKanC22Bvbw8ASE9PR8uWLSu03vPnzyM7Oxs2NjZK0/Py8nDjxg0AQFBQEN5991385z//Qf/+/fHGG2+g2XPOpcvLy4ORkVGF1l9VrVu3xpEjR6T39+/fx8KFC3H06FFMmjQJPXr0wK5du9ClSxd069YNr732mtTW2NgYubm5Gq2PgYiISEa++OILrF27FmvWrEHbtm1hamqKKVOmPHUScWWubMrOzsb777+PDz/88Kl5zs7O5S6jq6sLIYTStKKioqfaPXnYR0dHB6WlpQAef1mqo66KbrO/vz/u37+PtWvXonHjxjA0NISnp+cLT8T+5zaUXW1Ytg0VkZ2dDXt7e0RGRj41r+yWCosWLcLbb7+N0NBQ7Nu3DwsXLsSOHTvw73//u9w+69evj4yMjArXUMbOzg5paWlK09LS0lQ6mTwoKAhTpkyBo6MjIiMj8emnn8LU1BSDBw9GZGSkUiB68OCBxk8wZyAiIqoBLCws4ODggOPHj6NPnz7S9OPHj0sjMa1atUJISAhycnKkL+/jx49DV1cXbm5uFVrP8ePHMWTIEIwaNQrA4y/kq1evwt3d/bnLubm5Ye/evUrTTp8+rfTew8MDly9fhqura4VqAR5fRXXx4kWlabGxsc897+VJ7dq1w+3bt3H16tVyR4kqUxcA6cq6kpISpenHjx/Hhg0bpEvMk5OTce/ePZX6Lm9dT67nSR4eHkhNTYW+vj6aNGnyzHYtWrRAixYtMHXqVIwcORJbtmx5ZiDq2LEjLl++rHK9np6eiIiIULo/Unh4ODw9PSu0fEREBOLj47FlyxYAj/dxWRB+MhDn5+fjxo0b6Nixo8p1qoInVRMR1RAzZszA559/jp9++gkJCQmYPXs2YmNjMXnyZACPT5g1MjKCv78/Ll68iMOHD2PSpEkYPXp0hQ6XAUDz5s0RHh6OEydOID4+Hu+///5Tf+mX5/3338eVK1cwa9YsXL16FT///DNCQkIA/G+0Y9asWThx4gQCAwMRGxuLa9eu4ffff3/uSdV9+/bFmTNn8P333+PatWtYuHDhUwHpRfr06YPevXtj+PDhCA8PR2JiIvbt24ewsLBK1wUADRs2hLGxMcLCwpCWlobMzEwAj/fhf/7zH8THx+PUqVPw9fV94SjVizRp0gTZ2dmIiIjAvXv3yj081L9/f3h6emLo0KE4cOAAbt26hRMnTmDu3Lk4c+YM8vLyEBgYiMjISPz11184fvw4Tp8+/dxDlT4+Pjh27NhT02NjYxEbG4vs7GzcvXsXsbGxSsFp8uTJCAsLw8qVK3HlyhUsWrQIZ86cqdAJ9Pn5+QgMDMTXX38t3WyxZ8+eCA4Oxvnz5/Hrr78qHTo+efKkNAqnSRwhIqI6Kfv/z6moTev58MMPkZmZiWnTpiE9PR3u7u7473//i+bNmwMATExMsH//fkyePBldunSBiYkJhg8fjlWrVlV4HfPmzcPNmzfh4+MDExMTjB8/HkOHDpW+7J/FxcUFv/zyC6ZNm4a1a9fC09MTc+fOxcSJE2FoaAjg8UjNkSNHMHfuXPTq1QtCCDRr1gwjRox4Zr8+Pj6YP38+Zs6cifz8fLzzzjvw8/NDXFxchbcJAH799VdMnz4dI0eORE5ODlxdXbFs2bJK1wUA+vr6WLduHRYvXowFCxagV69eiIyMxObNmzF+/Hh4eHjAyckJS5YseeZVYRXVo0cPTJgwASNGjJDOrXnyBp06OjrYu3cv5s6di7Fjx+Lu3buws7ND7969YWtrCz09Pdy/fx9+fn5IS0tD/fr1MWzYMHz88cfPXK+vry9mzpyJhIQEpVHGf47GxMTEYPv27WjcuDFu3bol1bt9+3bMmzcPH330EZo3b47ffvvtmfcg+qePP/4YgwcPVrrZ5bp16/D222+jd+/e8PX1Vbov0o8//ghfX9+nznNTNx3x5MFbesrt27fh5OSE5ORkODo6qrfzB2eBsE7AwBjA2kP7/bxATk6OdOO47Oxsjd9Bleh58vPzkZiYCBcXF+nE0Jp+p+q65LPPPsOmTZuQnJys7VKoCmbMmIGsrCx89dVX2i7lKffu3YObmxvOnDkDFxeXctuU9zlQRpXvb44QEVGdYuLgAK8DB/gsMw3YsGEDunTpAhsbGxw/fhxffPGFWu4xRNo1d+5cbNiwAaWlpRp/Xpiqbt26hQ0bNjwzDKkTAxER1TkmDg6yCCjV7dq1a/j000/x4MEDODs7Y9q0aZgzZ462y6IqsrKywkcffaTtMsrVuXPnSt04sjIYiIiIqEJWr179zGdbEdV2NWtsjIiIiEgLGIiIqNbjtSFE8qWu338GIiKqtcoe3vmiOwQTUd1V9vtf9nlQWTyHiIhqLX19fZiYmODu3bswMDCocVfIEJFmlZaW4u7duzAxMYG+ftUiDQMREdVaOjo6sLe3R2JiIv766y9tl0NEWqCrqwtnZ2fpjumVxUBERLWaQqFA8+bNediMSKYUCoVaRocZiIio1tPV1X3qDrVERKrgAXciIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSvRoTiJYtWwYdHR1MmTJFmpafn4+AgADY2NjAzMwMw4cPR1pamtJySUlJGDx4MExMTNCwYUPMmDEDxcXFSm0iIyPh4eEBQ0NDuLq6IiQkpBq2iIiIiGqLGhGITp8+ja+++grt2rVTmj516lT88ccf2LlzJ44cOYI7d+5g2LBh0vySkhIMHjwYhYWFOHHiBLZu3YqQkBAsWLBAapOYmIjBgwfD29sbsbGxmDJlCt59913s37+/2raPiIiIajatB6Ls7Gz4+vrim2++Qb169aTpmZmZ2Lx5M1atWoW+ffuiU6dO2LJlC06cOIGTJ08CAA4cOIDLly/jhx9+QIcOHfDKK6/gk08+QXBwsHQb/02bNsHFxQUrV65Eq1atEBgYiNdffx2rV69+Zk0FBQXIysqSXo8ePdLsTiAiIiKt0nogCggIwODBg9G/f3+l6TExMSgqKlKa3rJlSzg7OyMqKgoAEBUVhbZt28LW1lZq4+Pjg6ysLFy6dElq82TfPj4+Uh/lWbp0KSwtLaWXu7t7lbeTiIiIai6tBqIdO3bg7NmzWLp06VPzUlNToVAoYGVlpTTd1tYWqampUpt/hqGy+WXzntcmKysLeXl55dY1Z84cZGZmSq/Lly9XavuIiIiodtDaw12Tk5MxefJkhIeH17iHMhoaGsLQ0FB6n5WVpcVqiIiISNO0NkIUExOD9PR0eHh4QF9fH/r6+jhy5AjWrVsHfX192NraorCwEA8fPlRaLi0tDXZ2dgAAOzu7p646K3v/ojYWFhYwNjbW0NYRERFRbaK1QNSvXz/ExcUhNjZWenXu3Bm+vr7Svw0MDBARESEtk5CQgKSkJHh6egIAPD09ERcXh/T0dKlNeHg4LCwspPN+PD09lfooa1PWBxEREZHWDpmZm5ujTZs2StNMTU1hY2MjTR83bhyCgoJgbW0NCwsLTJo0CZ6enujevTsAYMCAAXB3d8fo0aOxfPlypKamYt68eQgICJAOeU2YMAFffvklZs6ciXfeeQeHDh3Czz//jNDQ0OrdYCIiIqqxtBaIKmL16tXQ1dXF8OHDUVBQAB8fH2zYsEGar6enhz179mDixInw9PSEqakp/P39sXjxYqmNi4sLQkNDMXXqVKxduxaOjo749ttv4ePjo41NIiIiohqoRgWiyMhIpfdGRkYIDg5GcHDwM5dp3Lgx9u7d+9x+vby8cO7cOXWUSERERHWQ1u9DRERERKRtDEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsqB6KwsDAcO3ZMeh8cHIwOHTrg7bffRkZGhlqLIyIiIqoOKgeiGTNmICsrCwAQFxeHadOmYdCgQUhMTERQUJDaCyQiIiLSNH1VF0hMTIS7uzsA4Ndff8Wrr76KJUuW4OzZsxg0aJDaCyQiIiLSNJVHiBQKBXJzcwEABw8exIABAwAA1tbW0sgRERERUW2i8gjRSy+9hKCgIPTs2RPR0dH46aefAABXr16Fo6Oj2gskIiIi0jSVR4i+/PJL6Ovr45dffsHGjRvRqFEjAMC+ffswcOBAtRdIREREpGkqjxA5Oztjz549T01fvXq1WgoiIiIiqm4qjxDp6ekhPT39qen379+Hnp6eWooiIiIiqk4qByIhRLnTCwoKoFAoqlwQERERUXWr8CGzdevWAQB0dHTw7bffwszMTJpXUlKCo0ePomXLluqvkIiIiEjDKhyIys4REkJg06ZNSofHFAoFmjRpgk2bNqm/QiIiIiINq3AgSkxMBAB4e3tj165dqFevnsaKIiIiIqpOKl9ldvjwYU3UQURERKQ1FQpEQUFB+OSTT2BqavrC55WtWrVKLYURERERVZcKBaJz586hqKgIAHD27Fno6OiU2+5Z04mIiIhqsgoForVr18LCwgIAEBkZqcl6iIiIiKpdhe5D1LFjR9y7dw8A0LRpU9y/f1+jRRERERFVpwoFIisrK+kqs1u3bqG0tFQtK9+4cSPatWsHCwsLWFhYwNPTE/v27ZPm5+fnIyAgADY2NjAzM8Pw4cORlpam1EdSUhIGDx4MExMTNGzYEDNmzEBxcbFSm8jISHh4eMDQ0BCurq4ICQlRS/1ERERUN1TokNnw4cPRp08f2NvbQ0dHB507d37mYzpu3rxZ4ZU7Ojpi2bJlaN68OYQQ2Lp1K4YMGYJz586hdevWmDp1KkJDQ7Fz505YWloiMDAQw4YNw/HjxwE8viHk4MGDYWdnhxMnTiAlJQV+fn4wMDDAkiVLADy+XcDgwYMxYcIEbNu2DREREXj33Xdhb28PHx+fCtdKREREdZeOeNazOJ4QFhaG69ev48MPP8TixYthbm5ebrvJkydXqSBra2t88cUXeP3119GgQQNs374dr7/+OgDgypUraNWqFaKiotC9e3fs27cPr776Ku7cuQNbW1sAwKZNmzBr1izcvXsXCoUCs2bNQmhoKC5evCit46233sLDhw8RFhZWoZpu374NJycnJCcnw9HRsUrb95QHZ4GwTsDAGMDaQ/v9vEBOTo50l/Ls7GyYmppqbF1ERERVocr3d4XvQzRw4EAAQExMDCZPnvzMQFRZJSUl2LlzJ3JycuDp6YmYmBgUFRWhf//+UpuWLVvC2dlZCkRRUVFo27atFIYAwMfHBxMnTsSlS5fQsWNHREVFKfVR1mbKlCnPrKWgoAAFBQXS+0ePHqlvQ4mIiKjGUfnhrlu2bFFrGIqLi4OZmRkMDQ0xYcIE7N69G+7u7khNTYVCoYCVlZVSe1tbW6SmpgIAUlNTlcJQ2fyyec9rk5WVhby8vHJrWrp0KSwtLaWXu7u7OjaViIiIaiiVA5G6ubm5ITY2FqdOncLEiRPh7++Py5cva7WmOXPmIDMzU3ppux4iIiLSLJUf3aFuCoUCrq6uAIBOnTrh9OnTWLt2LUaMGIHCwkI8fPhQaZQoLS0NdnZ2AAA7OztER0cr9Vd2Fdo/2zx5ZVpaWhosLCxgbGxcbk2GhoYwNDSU3mdlZVVtI4mIiKhG0/oI0ZNKS0tRUFCATp06wcDAABEREdK8hIQEJCUlwdPTEwDg6emJuLg4pKenS23Cw8NhYWEhHeby9PRU6qOsTVkfRERERBUKRB4eHsjIyAAALF68GLm5uWpZ+Zw5c3D06FHcunULcXFxmDNnDiIjI+Hr6wtLS0uMGzcOQUFBOHz4MGJiYjB27Fh4enqie/fuAIABAwbA3d0do0ePxvnz57F//37MmzcPAQEB0gjPhAkTcPPmTcycORNXrlzBhg0b8PPPP2Pq1Klq2QYiIiKq/SoUiOLj45GTkwMA+Pjjj5Gdna2Wlaenp8PPzw9ubm7o168fTp8+jf379+Pll18GAKxevRqvvvoqhg8fjt69e8POzg67du2SltfT08OePXugp6cHT09PjBo1Cn5+fli8eLHUxsXFBaGhoQgPD0f79u2xcuVKfPvtt7wHEREREUkqdA5Rhw4dMHbsWLz00ksQQmDFihXSvWietGDBggqvfPPmzc+db2RkhODgYAQHBz+zTePGjbF3797n9uPl5YVz585VuC4iIiKSlwoFopCQECxcuBB79uyBjo4O9u3bB339pxfV0dFRKRARERER1QQVCkRubm7YsWMHAEBXVxcRERFo2LChRgsjIiIiqi4qX3avrge7EhEREdUUlboP0Y0bN7BmzRrEx8cDANzd3TF58mQ0a9ZMrcURERERVQeV70O0f/9+uLu7Izo6Gu3atUO7du1w6tQptG7dGuHh4ZqokYiIiEijVB4hmj17NqZOnYply5Y9NX3WrFnSJfNEREREtYXKI0Tx8fEYN27cU9PfeecdPvOLiIiIaiWVA1GDBg0QGxv71PTY2FheeUZERES1ksqHzN577z2MHz8eN2/eRI8ePQAAx48fx+eff46goCC1F0hERESkaSoHovnz58Pc3BwrV67EnDlzAAAODg5YtGgRPvzwQ7UXSERERKRpKgciHR0dTJ06FVOnTsWjR48AAObm5movjIiIiKi6VOo+RGUYhIiIiKguUPmkaiIiIqK6hoGIiIiIZI+BiIiIiGRPpUBUVFSEfv364dq1a5qqh4iIiKjaqRSIDAwMcOHCBU3VQkRERKQVKh8yGzVqFDZv3qyJWoiIiIi0QuXL7ouLi/Hdd9/h4MGD6NSpE0xNTZXmr1q1Sm3FEREREVUHlQPRxYsX4eHhAQC4evWq0jwdHR31VEVERERUjVQORIcPH9ZEHURERERaU+nL7q9fv479+/cjLy8PACCEUFtRRERERNVJ5UB0//599OvXDy1atMCgQYOQkpICABg3bhymTZum9gKJiIiINE3lQDR16lQYGBggKSkJJiYm0vQRI0YgLCxMrcURERERVQeVzyE6cOAA9u/fD0dHR6XpzZs3x19//aW2woiIiIiqi8ojRDk5OUojQ2UePHgAQ0NDtRRFREREVJ1UDkS9evXC999/L73X0dFBaWkpli9fDm9vb7UWR0RERFQdVD5ktnz5cvTr1w9nzpxBYWEhZs6ciUuXLuHBgwc4fvy4JmokIiIi0iiVR4jatGmDq1ev4qWXXsKQIUOQk5ODYcOG4dy5c2jWrJkmaiQiIiLSKJVHiADA0tISc+fOVXctRERERFpRqUCUkZGBzZs3Iz4+HgDg7u6OsWPHwtraWq3FEREREVUHlQ+ZHT16FE2aNMG6deuQkZGBjIwMrFu3Di4uLjh69KgmaiQiIiLSKJVHiAICAjBixAhs3LgRenp6AICSkhJ88MEHCAgIQFxcnNqLJCIiItIklUeIrl+/jmnTpklhCAD09PQQFBSE69evq7U4IiIiouqgciDy8PCQzh36p/j4eLRv314tRRERERFVpwodMrtw4YL07w8//BCTJ0/G9evX0b17dwDAyZMnERwcjGXLlmmmSiIiIiINqlAg6tChA3R0dCCEkKbNnDnzqXZvv/02RowYob7qiIiIiKpBhQJRYmKipusgIiIi0poKBaLGjRtrug4iIiIiranUjRnv3LmDY8eOIT09HaWlpUrzPvzwQ7UURkRERFRdVA5EISEheP/996FQKGBjYwMdHR1pno6ODgMRERER1ToqB6L58+djwYIFmDNnDnR1Vb5qn4iIiKjGUTnR5Obm4q233mIYIiIiojpD5VQzbtw47Ny5UxO1EBEREWmFyofMli5dildffRVhYWFo27YtDAwMlOavWrVKbcURERERVYdKBaL9+/fDzc0NAJ46qZqIiIiotlE5EK1cuRLfffcdxowZo4FyiIiIiKqfyucQGRoaomfPnpqohYiIiEgrVA5EkydPxvr16zVRCxEREZFWqHzILDo6GocOHcKePXvQunXrp06q3rVrl9qKIyIiIqoOKgciKysrDBs2TBO1EBEREWmFyoFoy5YtmqiDiIiISGt4u2kiIiKSPZVHiFxcXJ57v6GbN29WqSAiIiKi6qZyIJoyZYrS+6KiIpw7dw5hYWGYMWOGuuoiIiIiqjYqB6LJkyeXOz04OBhnzpypckFERERE1U1t5xC98sor+PXXX9XVHREREVG1UVsg+uWXX2Btba2u7oiIiIiqjcqHzDp27Kh0UrUQAqmpqbh79y42bNig1uKIiIiIqoPKgWjo0KFK73V1ddGgQQN4eXmhZcuW6qqLiIiIqNqofMhs4cKFSq/58+djwoQJlQpDS5cuRZcuXWBubo6GDRti6NChSEhIUGqTn5+PgIAA2NjYwMzMDMOHD0daWppSm6SkJAwePBgmJiZo2LAhZsyYgeLiYqU2kZGR8PDwgKGhIVxdXRESEqJyvURERFQ3afXGjEeOHEFAQABOnjyJ8PBwFBUVYcCAAcjJyZHaTJ06FX/88Qd27tyJI0eO4M6dO0qPDikpKcHgwYNRWFiIEydOYOvWrQgJCcGCBQukNomJiRg8eDC8vb0RGxuLKVOm4N1338X+/furdXuJiIiohhIVpKOjI3R1dZ/70tPTq2h35UpPTxcAxJEjR4QQQjx8+FAYGBiInTt3Sm3i4+MFABEVFSWEEGLv3r1CV1dXpKamSm02btwoLCwsREFBgRBCiJkzZ4rWrVsrrWvEiBHCx8enQnUlJycLACI5OblK21eu+zFCbMPj/9aEfl4gOztbABAARHZ2tkbXRUREVBWqfH9X+Byi3bt3P3NeVFQU1q1bh9LS0iqFs8zMTACQrlaLiYlBUVER+vfvL7Vp2bIlnJ2dERUVhe7duyMqKgpt27aFra2t1MbHxwcTJ07EpUuX0LFjR0RFRSn1UdbmyZtMlikoKEBBQYH0/tGjR1XaLiIiIqrZKhyIhgwZ8tS0hIQEzJ49G3/88Qd8fX2xePHiShdSWlqKKVOmoGfPnmjTpg0AIDU1FQqFAlZWVkptbW1tkZqaKrX5Zxgqm18273ltsrKykJeXB2NjY6V5S5cuxccff1zpbSEiIqLapVLnEN25cwfvvfce2rZti+LiYsTGxmLr1q1o3LhxpQsJCAjAxYsXsWPHjkr3oS5z5sxBZmam9Lp8+bK2SyIiIiINUikQZWZmYtasWXB1dcWlS5cQERGBP/74QxrRqazAwEDs2bMHhw8fhqOjozTdzs4OhYWFePjwoVL7tLQ02NnZSW2evOqs7P2L2lhYWDw1OgQAhoaGsLCwkF7m5uZV2j4iIiKq2SociJYvX46mTZtiz549+PHHH3HixAn06tWrSisXQiAwMBC7d+/GoUOH4OLiojS/U6dOMDAwQEREhDQtISEBSUlJ8PT0BAB4enoiLi4O6enpUpvw8HBYWFjA3d1davPPPsralPVBRERE8lbhc4hmz54NY2NjuLq6YuvWrdi6dWu57Xbt2lXhlQcEBGD79u34/fffYW5uLp3zY2lpCWNjY1haWmLcuHEICgqCtbU1LCwsMGnSJHh6eqJ79+4AgAEDBsDd3R2jR4/G8uXLkZqainnz5iEgIACGhoYAgAkTJuDLL7/EzJkz8c477+DQoUP4+eefERoaWuFaiYiIqO6qcCDy8/NTemSHOmzcuBEA4OXlpTR9y5YtGDNmDABg9erV0NXVxfDhw1FQUAAfHx+lR4To6elhz549mDhxIjw9PWFqagp/f3+lE7xdXFwQGhqKqVOnYu3atXB0dMS3334LHx8ftW4PERER1U46Qgih7SJqutu3b8PJyQnJyclK5zipxYOzQFgnYGAMYO2h/X5eICcnB2ZmZgCA7OxsmJqaamxdREREVaHK97dW71RNREREVBMwEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsaTUQHT16FK+99hocHBygo6OD3377TWm+EAILFiyAvb09jI2N0b9/f1y7dk2pzYMHD+Dr6wsLCwtYWVlh3LhxyM7OVmpz4cIF9OrVC0ZGRnBycsLy5cs1vWlERERUi2g1EOXk5KB9+/YIDg4ud/7y5cuxbt06bNq0CadOnYKpqSl8fHyQn58vtfH19cWlS5cQHh6OPXv24OjRoxg/frw0PysrCwMGDEDjxo0RExODL774AosWLcLXX3+t8e0jIiKi2kFfmyt/5ZVX8Morr5Q7TwiBNWvWYN68eRgyZAgA4Pvvv4etrS1+++03vPXWW4iPj0dYWBhOnz6Nzp07AwDWr1+PQYMGYcWKFXBwcMC2bdtQWFiI7777DgqFAq1bt0ZsbCxWrVqlFJyIiIhIvmrsOUSJiYlITU1F//79pWmWlpbo1q0boqKiAABRUVGwsrKSwhAA9O/fH7q6ujh16pTUpnfv3lAoFFIbHx8fJCQkICMjo9x1FxQUICsrS3o9evRIE5tIRERENUSNDUSpqakAAFtbW6Xptra20rzU1FQ0bNhQab6+vj6sra2V2pTXxz/X8aSlS5fC0tJSerm7u1d9g4iIiKjGqrGBSJvmzJmDzMxM6XX58mVtl0REREQaVGMDkZ2dHQAgLS1NaXpaWpo0z87ODunp6Urzi4uL8eDBA6U25fXxz3U8ydDQEBYWFtLL3Ny86htERERENVaNDUQuLi6ws7NDRESENC0rKwunTp2Cp6cnAMDT0xMPHz5ETEyM1ObQoUMoLS1Ft27dpDZHjx5FUVGR1CY8PBxubm6oV69eNW0NERER1WRaDUTZ2dmIjY1FbGwsgMcnUsfGxiIpKQk6OjqYMmUKPv30U/z3v/9FXFwc/Pz84ODggKFDhwIAWrVqhYEDB+K9995DdHQ0jh8/jsDAQLz11ltwcHAAALz99ttQKBQYN24cLl26hJ9++glr165FUFCQlraaiIiIahqtXnZ/5swZeHt7S+/LQoq/vz9CQkIwc+ZM5OTkYPz48Xj48CFeeuklhIWFwcjISFpm27ZtCAwMRL9+/aCrq4vhw4dj3bp10nxLS0scOHAAAQEB6NSpE+rXr48FCxbwknsiIiKS6AghhLaLqOlu374NJycnJCcnw9HRUb2dPzgLhHUCBsYA1h7a7+cFcnJyYGZmBuDxCJ+pqanG1kVERFQVqnx/19hziIiIiIiqCwMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyZ6+tgsgIiKi2iv3zh0UPnhQ5X4U1tYwcXBQQ0WVw0BERERElZJ75w4iBwxASV5elfvSMzaG14EDWgtFDERERERUKYUPHqAkLw8dV62CWbNmle4n+8YNnAsKQuGDBwxEREREVDuZNWsGqzZttF1GlfCkaiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPV5lRkREJEPquKFi9o0baqpG+xiIiIiIZEbdN1RUWFuroSrtYiAiIiKSGXXdUBHQ/iM31IWBiIiIqBqo65lf6lB2qKsu3FBRXRiIiIiINEydh6jUpa4c6lIXBiIiIiINU+chKnWpK4e61IWBiIiI6DnUeTUWD1HVXAxERERUJ6kjyBQ+eIAzH3zAq7FkgIGIiIjqHHVfVt5ty5YqhxkeoqrZGIiIiKjO4WXlpCoGIiIiqrN4zg5VFAMREZHM1aT746hLXXqkBFUPBqI65u6Vuyg2StFY/7l5udK/U2NTYWJsorF1qZtJfRNYOltWuZ/MpEzk3st9ccNqqofkSV0hRp0nDdc0PImZVMFAVENUNcgUpyTDCcAu311IvXVSfYU9oRCF0r+/e+k7KKDQ2LrUzcDEAAHxAVUKIZlJmQhuFYyi3CK11PPmrjdh2sC0Sv3UtKCnLnU1MKpjPxfcTcWloFEozc9XS026RkZoPncl9C2s1NJfVRlZGcHMzqzK/fDcH1IFA5GWPUp9BHNUPcjYNbmD9z8DBn05CPr2XdVX4BNy83Kx5KUlAIB3jr1Ta0aI7sbfxe5Ru/HXn3+hQasGVeqnKLcI//7h31XqJ+duDn4e9jO2DdxW6T7K1LSgpy7qCozqoluSCUPj4ir1kZ2ajR///V/kZhtWqR9jxX20csyHw5hZsGzVokp95WXkISzoT5wZd75K/aiTuv7f6xSr5/Oppo0K848XzWAg0rL8h/kwB9D3074wa9W70v3o518Abn0NJ08nwNpefQU+IScnR/q3XQc7mJrWjC+rFzGpbwIDEwPsHrW7yn0ZmBigca/GVf4ACIgPqPKHWk0Leuqi1sColw19vYIq9aGvl49mtkegq1u1QAQAzevrw3nZBth7ule6j3sxsbi1LBQRn15EXmHVD5EbmJjBN6xmhE91/7FQ1WBVVo+6RoXr6h8vVd2umoCBqIawcrFCA48qBJkHKcAttZVT51g6W6olgADq+2vI0tmyyv3UxKCnLuMih+HRX6lV6qM46yFurJiL0oKqH1oqLdXHtZR+KC4xqnQfRopMuDQ8BjOjdBgrbCvdT72GhbgFYNi2YTBt6lbpfsrUtL/w1fG7qu5g5RvmW6VgVVf/eFHXduXcvKfGqiqHgYhkQx0BpKaxdLZUS3AAHp+3IbKS8fBishoqq5rCBw8Qo8a7A6vjpnoFefroqle1n5/H5/6cQcKSeUioUk+Pt8uhRwuYOGhuRFhb1PW7WpP+CKqrf7yoa7seHwZ+fFjZSkt3SWAgItISdT1WQF3Boaapm3cHtkfD8HC1XB1Ws7arZqpJfwTVxFFqdVDXdt2OOInUTaHIf6ieCwUqg4GISEU18flI6ggONU1d/cI3cXCok9tFL1aTApo6qWO7cm7WQ9XHuauGgYhko64GmboaHIiIqhMDEdV4DDJERKRpDESkMQwyRERUWzAQ0VOeF2Rycv934tzDS5dQZFL+jc8YZIiIqDZhIKpDch/qofDKTcCi8o/TeFGQyS8tlf59YsQIGOnqPrMvBhkiIqotZBWIgoOD8cUXXyA1NRXt27fH+vXr0bWr5h5zUVG5D/WQcysJBhYXK91H4V+xOLPOCSVFs6pcz/OCTE5uLtCtGwCgx08/wfQZI0QAgwwREdUesglEP/30E4KCgrBp0yZ069YNa9asgY+PDxISEtCwYUOt1VVw7wFOr3NCSdGyKvelZwB0WzcXisZVC3nPCzIG/3h0h1Xr1rXm0R1ERETPI5tAtGrVKrz33nsYO3YsAGDTpk0IDQ3Fd999h9mzZ2utruLsbJQU6cJ1whjYv/LvyneUdQWK2Ldg4m4IWBa+uP3zGFb9eU1ERES1iSwCUWFhIWJiYjBnzhxpmq6uLvr374+oqKin2hcUFKCg4H8Pg8zMzAQApKRU/SGKT0q5n4F7xcWob2QIcyurynekcAJggAd7RlW9KD0joNs3gMLmqVm5ef+7i+jflw7AxLjyz3UiIiICgLspcbhXXIyU+3dhdPu22vot+94u/cf5r88kZODvv/8WAMSJEyeUps+YMUN07dr1qfYLFy4UAPjiiy+++OKLrzrwio6OfmFWkMUIkarmzJmDoKAg6X1xcTHi4+Ph5OQE3edcVVUZjx49gru7Oy5fvgxzc3O19k3/w/1cPbifqwf3c/Xhvq4emtrPpaWlSEtLQ8eOHV/YVhaBqH79+tDT00NaWprS9LS0NNjZ2T3V3tDQEIaGhkrTevbsqZHasrKyAACNGjWChYWFRtZB3M/Vhfu5enA/Vx/u6+qhyf3s7OxcoXbqHe6ooRQKBTp16oSIiAhpWmlpKSIiIuDp6anFyoiIiKgmkMUIEQAEBQXB398fnTt3RteuXbFmzRrk5ORIV50RERGRfMkmEI0YMQJ3797FggULkJqaig4dOiAsLAy2trZarcvQ0BALFy586hAdqRf3c/Xgfq4e3M/Vh/u6etSE/awjhBBaWzsRERFRDSCLc4iIiIiInoeBiIiIiGSPgYiIiIhkj4GIiIiIZI+BqBoEBwejSZMmMDIyQrdu3RAdHf3c9jt37kTLli1hZGSEtm3bYu/evdVUae2myn7+5ptv0KtXL9SrVw/16tVD//79X/j/hR5T9ee5zI4dO6Cjo4OhQ4dqtsA6QtX9/PDhQwQEBMDe3h6GhoZo0aIFPzsqSNV9vWbNGri5ucHY2BhOTk6YOnUq8vPzn7uMnB09ehSvvfYaHBwcoKOjg99+++2Fy0RGRsLDwwOGhoZwdXVFSEiIxuuUxbPMtGnHjh1CoVCI7777Tly6dEm89957wsrKSqSlpZXb/vjx40JPT08sX75cXL58WcybN08YGBiIuLi4aq68dlF1P7/99tsiODhYnDt3TsTHx4sxY8YIS0tLcfv27WquvHZRdT+XSUxMFI0aNRK9evUSQ4YMqZ5iazFV93NBQYHo3LmzGDRokDh27JhITEwUkZGRIjY2tporr31U3dfbtm0ThoaGYtu2bSIxMVHs379f2Nvbi6lTp1Zz5bXH3r17xdy5c8WuXbsEALF79+7ntr9586YwMTERQUFB4vLly2L9+vVCT09PhIWFabROBiIN69q1qwgICJDel5SUCAcHB7F06dJy27/55pti8ODBStO6desm3n//fY3WWdupup+fVFxcLMzNzcXWrVs1VWKdUJn9XFxcLHr06CG+/fZb4e/vz0BUAaru540bN4qmTZuKwsLC6iqxzlB1XwcEBIi+ffsqTQsKChI9e/bUaJ11RUUC0cyZM0Xr1q2Vpo0YMUL4+PhosDIheMhMgwoLCxETE4P+/ftL03R1ddG/f39ERUWVu0xUVJRSewDw8fF5Znuq3H5+Um5uLoqKimBtba2pMmu9yu7nxYsXo2HDhhg3blx1lFnrVWY///e//4WnpycCAgJga2uLNm3aYMmSJSgpKamusmulyuzrHj16ICYmRjqsdvPmTezduxeDBg2qlprlQFvfg7K5U7U23Lt3DyUlJU/dDdvW1hZXrlwpd5nU1NRy26empmqsztquMvv5SbNmzYKDg8NTv4T0P5XZz8eOHcPmzZsRGxtbDRXWDZXZzzdv3sShQ4fg6+uLvXv34vr16/jggw9QVFSEhQsXVkfZtVJl9vXbb7+Ne/fu4aWXXoIQAsXFxZgwYQI++uij6ihZFp71PZiVlYW8vDwYGxtrZL0cISLZW7ZsGXbs2IHdu3fDyMhI2+XUGY8ePcLo0aPxzTffoH79+toup04rLS1Fw4YN8fXXX6NTp04YMWIE5s6di02bNmm7tDonMjISS5YswYYNG3D27Fns2rULoaGh+OSTT7RdGlURR4g0qH79+tDT00NaWprS9LS0NNjZ2ZW7jJ2dnUrtqXL7ucyKFSuwbNkyHDx4EO3atdNkmbWeqvv5xo0buHXrFl577TVpWmlpKQBAX18fCQkJaNasmWaLroUq8/Nsb28PAwMD6OnpSdNatWqF1NRUFBYWQqFQaLTm2qoy+3r+/PkYPXo03n33XQBA27ZtkZOTg/Hjx2Pu3LnQ1eU4Q1U963vQwsJCY6NDAEeINEqhUKBTp06IiIiQppWWliIiIgKenp7lLuPp6anUHgDCw8Of2Z4qt58BYPny5fjkk08QFhaGzp07V0eptZqq+7lly5aIi4tDbGys9PrXv/4Fb29vxMbGwsnJqTrLrzUq8/Pcs2dPXL9+XQqcAHD16lXY29szDD1HZfZ1bm7uU6GnLIgKPhpULbT2PajRU7ZJ7NixQxgaGoqQkBBx+fJlMX78eGFlZSVSU1OFEEKMHj1azJ49W2p//Phxoa+vL1asWCHi4+PFwoULedl9Bai6n5ctWyYUCoX45ZdfREpKivR69OiRtjahVlB1Pz+JV5lVjKr7OSkpSZibm4vAwECRkJAg9uzZIxo2bCg+/fRTbW1CraHqvl64cKEwNzcXP/74o7h586Y4cOCAaNasmXjzzTe1tQk13qNHj8S5c+fEuXPnBACxatUqce7cOfHXX38JIYSYPXu2GD16tNS+7LL7GTNmiPj4eBEcHMzL7uuK9evXC2dnZ6FQKETXrl3FyZMnpXl9+vQR/v7+Su1//vln0aJFC6FQKETr1q1FaGhoNVdcO6mynxs3biwAPPVauHBh9Rdey6j68/xPDEQVp+p+PnHihOjWrZswNDQUTZs2FZ999pkoLi6u5qprJ1X2dVFRkVi0aJFo1qyZMDIyEk5OTuKDDz4QGRkZ1V94LXH48OFyP2/L9qu/v7/o06fPU8t06NBBKBQK0bRpU7FlyxaN16kjBMf4iIiISN54DhERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DERFRORYtWoQOHTpouwwiqiYMRERERCR7DEREREQkewxERFTjeXl5ITAwEIGBgbC0tET9+vUxf/58lPcoxqysLBgbG2Pfvn1K03fv3g1zc3Pk5uYCAGbNmoUWLVrAxMQETZs2xfz581FUVPTcGqZMmaI0bejQoRgzZoz0vqCgANOnT0ejRo1gamqKbt26ITIystLbTUTVh4GIiGqFrVu3Ql9fH9HR0Vi7di1WrVqFb7/99ql2FhYWePXVV7F9+3al6du2bcPQoUNhYmICADA3N0dISAguX76MtWvX4ptvvsHq1aurVGNgYCCioqKwY8cOXLhwAW+88QYGDhyIa9euValfItI8fW0XQERUEU5OTli9ejV0dHTg5uaGuLg4rF69Gu+9995TbX19fTF69Gjk5ubCxMQEWVlZCA0Nxe7du6U28+bNk/7dpEkTTJ8+HTt27MDMmTMrVV9SUhK2bNmCpKQkODg4AACmT5+OsLAwbNmyBUuWLKlUv0RUPThCRES1Qvfu3aGjoyO99/T0xLVr1/DZZ5/BzMxMeiUlJWHQoEEwMDDAf//7XwDAr7/+CgsLC/Tv319a/qeffkLPnj1hZ2cHMzMzzJs3D0lJSZWuLy4uDiUlJWjRooVSPUeOHMGNGzcqv+FEVC04QkREtdqECRMwYsQI6b2DgwP09fXx+uuvY/v27Xjrrbewfft2jBgxAvr6jz/yoqKi4Ovri48//hg+Pj6wtLTEjh07sHLlymeuR1dX96lzlv55zlF2djb09PQQExMDPT09pXZmZmbq2FQi0iAGIiKqFU6dOqX0/uTJk2jevDlsbGxgY2PzVHtfX1+8/PLLuHTpEg4dOoRPP/1UmnfixAk0btwYc+fOlab99ddfz11/gwYNkJKSIr0vKSnBxYsX4e3tDQDo2LEjSkpKkJ6ejl69elVqG4lIe3jIjIhqhaSkJAQFBSEhIQE//vgj1q9fj8mTJz+zfe/evWFnZwdfX1+4uLigW7du0rzmzZsjKSkJO3bswI0bN7Bu3Tql84vK07dvX4SGhiI0NBRXrlzBxIkT8fDhQ2l+ixYt4OvrCz8/P+zatQuJiYmIjo7G0qVLERoaWuXtJyLNYiAiolrBz88PeXl56Nq1KwICAjB58mSMHz/+me11dHQwcuRInD9/Hr6+vkrz/vWvf2Hq1KkIDAxEhw4dcOLECcyfP/+563/nnXfg7+8PPz8/9OnTB02bNpVGh8ps2bIFfn5+mDZtGtzc3DB06FCcPn0azs7Old9wIqoWOqK8G3kQEdUgXl5e6NChA9asWaPtUoiojuIIEREREckeAxERERHJHg+ZERERkexxhIiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZO//AF5JuaCdGy58AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -4998,12 +13581,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHdCAYAAAAU4dNnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVxklEQVR4nO3deVxU5f4H8M+wr4KAsgi4S6KG4nZdUjC6LmWi3vKWC5pp5WAo7ruVaVkq6h3ztih2y7RFbDFXAs0lURRTQVTEcAHcEGVAEHh+f/hjahKUYc4ww5nP+/XilXPOmed85zTMfHjOc56jEEIIEBEREcmQhbELICIiIjIUBh0iIiKSLQYdIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki0GHSIiIpItBh0iIiKSLQYdIqJqunTpEkJCQhAYGIgnn3wS33zzjbFLIqLHUPCmnkRE1ZOdnY3c3Fy0b98eOTk56NixI86ePQtHR0djl0ZEVWCPDhHJVkhICCZNmiRZe97e3mjfvj0AwMvLCx4eHrh165Zk7ROR9Bh0iMioRo8eDYVCAYVCAWtrazRt2hTTp0/HvXv3jF3aIyUnJ6OsrAx+fn7GLoWIHsHK2AUQEfXr1w/r16/H/fv3kZycjIiICCgUCrz//vvGLq1St27dwqhRo/DJJ58YuxQiegz26BCR0dna2sLLywt+fn4IDw9HWFgYdu/erVlfXl6OJUuWoGnTprC3t0dQUBC+/fZbrTbUajVGjRoFJycneHt7Y9myZTrX8cILL6BBgwb4+OOPNcsOHz4MGxsb7Nq1CwBQXFyM8PBwzJw5E927d6/hKyai2sKgQ0Qm5dSpUzh48CBsbGw0y5YsWYLPP/8ca9euxenTpzF58mSMGDECe/fu1Wwzbdo07N27F99//z127dqFxMREHDt2TKd9r1q1CkOHDsXbb78NACgoKMCIESPwxhtv4J///CeEEBg9ejT69OmDkSNHSvOCicigeNUVERnV6NGj8cUXX8DOzg6lpaUoLi6GhYUFvv76awwdOhTFxcVwc3PDnj170K1bN83zXn31VRQWFmLjxo0oKCiAu7s7vvjiC7zwwgsAHpxe8vX1xfjx4xETE1Ptes6cOYPWrVvjxo0bmDZtGpKSknD06FHY2dlh//796NWrF5588knN9v/73//Qrl07yY4HEUmLY3SIyOhCQ0Px0UcfQa1WY8WKFbCyssLQoUMBAOfPn0dhYSGeeeYZreeUlJSgQ4cOAICMjAyUlJSga9eumvVubm4ICAjQuZZWrVrBwcEB8+fPx5dffomkpCTY2dkBAHr27Iny8vKavkwiMgIGHSIyOkdHR7Ro0QIAsG7dOgQFBeGzzz7D2LFjUVBQAADYtm0bGjVqpPU8W1tbyWuxsLBAu3btsGbNGixduhRBQUGS74OIag/H6BCRSbGwsMDs2bMxd+5cFBUVITAwELa2tsjKykKLFi20fiou7W7evDmsra1x+PBhTTt5eXk4e/aszvuvOJsfHByMKVOmSPOiiMhoGHSIyOS88MILsLS0hEqlgrOzM6ZOnYrJkydjw4YNyMjIwLFjx7B69Wps2LABAODk5ISxY8di2rRp+OWXX3Dq1CmMHj0aFhZ/fsT95z//wdNPP/3YfcfExODw4cMoLy/Xej4R1U08dUVEJsfKygqRkZFYunQp3njjDbzzzjto0KABlixZggsXLsDV1RXBwcGYPXu25jkffPABCgoKMHDgQDg7O2PKlCnIz8/XrL9x4wYyMjIeud+TJ09i1qxZmDBhAj799FOUlpbCyoofk0R1Ga+6IiICcO/ePXTu3BnBwcGIiYmBm5sbTp48ibZt2xq7NCLSA/tliYgAzJw5E2q1Gv/5z39Qv359NG7cGDExMbh69aqxSyMiPTDoEJHZ27VrF1QqFb744gs4OzsDAObOnYutW7dCqVQauToi0gdPXREREZFssUeHiIiIZItBh4iIiGSLQYeIiIhki0GHTNq+ffswcOBA+Pj4QKFQYOvWrcYuieoAvm+oNvH9ZtoYdMigrl69itLS0ho/X61WIygoCCqVSsKqSO74viEp5eXlae65Vhm+30wbp/wkg/rkk0/w0UcfYcSIEYiIiEC7du10en7//v3Rv39/A1VHcsX3DemrtLQUO3fuRGxsLH788UccPny4yhu88v1m2tijQwY1Y8YMrFy5EmlpaQgODkZwcDBWrVqF69evG7s0IqKHnDx5ElOmTIGvry9GjRqFBg0aICEhgXexr8MYdMig7OzsMGzYMGzbtg1XrlzBqFGjEBsbi0aNGiE8PBxxcXF6ndoiItLXzZs3sXLlSgQHB6NTp064cOEC1qxZg+zsbKxZswbdunUzdomkBwYdqjUNGzbEpEmTcOzYMXz//fc4dOgQhgwZglOnThm7NCIyY6tXr8akSZPg5OSE8+fPIy4uDkOGDIGNjY2xSyMJMOhQrbl79y7Wr1+PPn36YODAgWjbti02bNiAwMBAY5dGRGZs/PjxeOedd5CTk4M2bdpgzJgx+OWXX1BeXm7s0kgCDDpkUGVlZdi+fTtefvlleHp64r333sPTTz+NCxcuID4+HqNGjeJfTURkVD4+Ppg7dy7Onj2LHTt2wMbGBkOGDEHjxo0xc+ZMnD592tglkh4YdMigFi9ejJdeegnOzs7Ys2cP0tPTMWfOHPj7+1fr+QUFBUhJSUFKSgoAIDMzEykpKcjKyjJg1VTX8X1DNdW9e3f897//RU5ODj744AOkpKQgKCgIJ0+erPI5fL+ZNt7Ukwzq4sWL8PLygp2dXY2en5iYiNDQ0IeWR0REIDY2Vs/qSK74viEpXb16FU5OTqhXr16l6/l+M20MOkRERCRbPHVFREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDJqO4uBgLFy5EcXGxsUshmeB7iqTE91PdxHl0yGTcuXMHLi4uyM/Pr3JiLiJd8D1FUuL7qW5ijw4RERHJFoMOERERyZaVsQswttLSUhw/fhyenp6wsGDuM6a7d+8CAK5cuYI7d+4YuRqSA76nSEp8P5mW8vJy5ObmokOHDrCyqjrOmP0YnSNHjqBLly7GLoOIiIhqICkpCZ07d65yvdn36Hh6egJ4cKC8vb2NXI3xFBYWIiAgAACQnp4OBwcHI1dERERUtezsbHTp0kXzPV4Vsw86FaervL294evra+RqjEetVmv+3ahRIzg6OhqxGiIioup53LATDkohIiIi2TLboKNSqRAYGIiQkBBjl0JEREQGYrZBR6lUIjU1FYmJicYuhYiIiAzE7MfoEJFpKysrw/37941dBhHVMmtra1haWurdDoMOEZkkIQRycnJw+/ZtY5dCREbi6uoKLy8vKBSKGrfBoENEJqki5DRs2BAODg56fdARUd0ihEBhYSGuXbsGAHpN/8KgQ0Qmp6ysTBNy3N3djV0OERmBvb09AODatWto2LBhjU9jme1gZF51RWS6KsbkcOJKIvNW8Rmgzzg9sw06vOqKyPTxdBWReZPiM8Bsgw4RERHJH8foEFGdkZ+Vj8IbhbW2PwcPB7j4u9Ta/qSgUCgQFxeH8PBwY5eCkJAQtG/fHjExMdXaPjY2FpMmTeKVdiQpBh0iqhPys/Khaq3C/cLam1PH2sEayjSlTmEnJycHS5YswbZt23D58mW4uLigRYsWGDFiBCIiIjjuiKiWMegQUZ1QeKMQ9wvvY/AXg9GgdQOD7+962nXEjYhD4Y3CagedCxcuoEePHnB1dcXixYvRrl072Nra4uTJk/j444/RqFEjPP/88waunIj+ikHHkNRZQPEN/dux9QAc/fVvh0gGGrRuAO/gms+pYUgTJkyAlZUVjh49CkdHR83yZs2aYdCgQRBCaJZlZWVh4sSJiI+Ph4WFBfr164fVq1fD09NTs81HH32EDz/8EJcuXULTpk0xd+5cjBw5UrP+3LlzGDt2LJKSktCsWTOsXLnysTWGhISgXbt2sLS0xIYNG2BjY4NFixbh5ZdfRmRkJL799lt4enpi9erV6N+/v+Z5e/fuxbRp03DixAm4ubkhIiICixYtgpXVg68RtVqNN954A1u2bIGzszOmTp360L6Li4sxZ84cfPXVV7h9+zbatm2L999/n1e/kkGZbdBRqVRQqVQoKSkxzA7UWcBPrYEyCcYTWDoAz6Ux7BCZsJs3b2LXrl1YvHixVsj5q4orSMrLyzFo0CA4OTlh7969KC0thVKpxLBhwzRXgsbFxSEqKgoxMTEICwvDTz/9hDFjxsDX1xehoaEoLy/HkCFD4OnpicOHDyM/Px+TJk2qVq0bNmzA9OnTkZSUhM2bN+ONN95AXFwcBg8ejNmzZ2PFihUYOXIksrKy4ODggCtXrmDAgAEYPXo0Pv/8c5w5cwbjxo2DnZ0dFi5cCACYNm0a9u7di++//x4NGzbE7NmzcezYMbRv316z38jISKSmpmLTpk3w8fFBXFwc+vXrh5MnT6Jly5Y1PfREjybM3KVLlwQAcenSJWkbvpksxJcQ4sIXD/5d058LXzxo52aytPX9TUFBgQAgAIiCggKD7ovocYqKikRqaqooKirSLLuafFUsxEJxNflqrdSg6/5+++03AUBs2bJFa7m7u7twdHQUjo6OYvr06UIIIXbt2iUsLS1FVlaWZrvTp08LACIpKUkIIUT37t3FuHHjtNp64YUXxIABA4QQQuzcuVNYWVmJK1euaNZv375dABBxcXFV1tm7d2/Rs2dPzePS0lLh6OgoRo4cqVmWnZ0tAIhDhw4JIYSYPXu2CAgIEOXl5ZptVCqVcHJyEmVlZeLu3bvCxsZGfP3115r1N2/eFPb29iIqKkoIIcQff/whLC0tteoVQoinn35azJo1SwghxPr164WLi0uVtZP5qeyzoEJ1v7/Ntken1ri0BtyCjV0FERlJUlISysvLMXz4cBQXFwMA0tLS4OfnBz8/P812gYGBcHV1RVpaGjp37oy0tDSMHz9eq60ePXpoTk9VtOHj46NZ361bt2rV9OSTT2r+bWlpCXd3d7Rr106zrOL0WcX0+2lpaejWrZvWnCY9evRAQUEBLl++jLy8PJSUlKBr166a9W5ubggICNA8PnnyJMrKytCqVSutWoqLizn7NRkUgw4RkQRatGgBhUKB9PR0reXNmjUD8Od09qbA2tpa67FCodBa9tdTbFIpKCiApaUlkpOTH5rK38nJSbL9EP0dJwwkIpKAu7s7nnnmGfznP/+BWq1+5LatW7fGpUuXcOnSJc2y1NRU3L59G4GBgZptDhw4oPW8AwcOaK2/dOkSsrOzNet/++03qV7OQ/UeOnRIazD1gQMH4OzsDF9fXzRv3hzW1tY4fPiwZn1eXh7Onj2redyhQweUlZXh2rVraNGihdaPl5eXQeomAhh0iIgks2bNGpSWlqJTp07YvHkz0tLSkJ6eji+++AJnzpzR9GSEhYWhXbt2GD58OI4dO4akpCSMGjUKvXv3RqdOnQA8GNwbGxuLjz76COfOncPy5cuxZcsWzdVMYWFhaNWqFSIiInDixAn8+uuvmDNnjkFe14QJE3Dp0iVMnDgRZ86cwffff48FCxYgOjoaFhYWcHJywtixYzFt2jT88ssvOHXqFEaPHg0Liz+/Ylq1aoXhw4dj1KhR2LJlCzIzM5GUlKSZc4jIUHjqiojqlOtp1012P82bN8fx48exePFizJo1C5cvX4atrS0CAwMxdepUTJgwAcCDU0Pff/89Jk6ciF69emldXl4hPDwcK1euxIcffoioqCg0bdoU69ev11yKbWFhgbi4OIwdOxZdunRBkyZNsGrVKvTr10+S1/9XjRo1ws8//4xp06YhKCgIbm5uGDt2LObOnavZ5oMPPkBBQQEGDhwIZ2dnTJkyBfn5+VrtrF+/HosWLcKUKVNw5coVeHh44B//+Aeee+45yWsmqqAQf+2LNEOXL1+Gn58fLl26BF9fX+kavnUM2NER6Jes32Bkqdp5DLVarTlPXlBQUOXlsUS14d69e8jMzETTpk1hZ2cHoO7MjExE0qnss6BCdb+/2aNDRHWCi78LlGlK3uuKiHRitkHH4BMGEpHkXPxdGDyISCdmOxhZqVQiNTVVMwspERERyY/ZBh0iIiKSPwYdIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki0GHSIiIpIts51Hh4jqIHUWUHyj9vZn6wE4+tfe/szM6NGjcfv2bWzdurVa2ycmJiI0NBR5eXlwdXU1aG0kHww6RFQ3qLOAn1oDZbU3MzIsHYDn0qoVdtauXYtp06YhLy8PVlYPPloLCgpQv3599OjRQ2vOroov7PPnz6N58+aGqp6IwKBDRHVF8Y0HIafbF4BLa8PvLz8NODTiwX6rEXRCQ0NRUFCAo0eP4h//+AcA4Ndff4WXlxcOHz6Me/fuae7Vk5CQAH9//0pDTklJCWxsbKR9LURmzGzH6KhUKgQGBmruBExEdYRL6wc3uDX0j45hKiAgAN7e3g/13AwaNAhNmzbFb7/9prU8NDQUwIPTN+Hh4Xj33Xfh4+ODgIAAAMDJkyfRp08f2Nvbw93dHePHj0dBQYGmjYrnffjhh/D29oa7uzuUSiXu3//zpqfZ2dl49tlnYW9vj6ZNm2Ljxo1o0qQJYmJiqnwdFe0uXrwYnp6ecHV1xdtvv43S0lJMmzYNbm5u8PX1xfr167We97h6y8rKEB0dDVdXV7i7u2P69On4+z2ly8vLsWTJEjRt2hT29vYICgrCt99+W/3/CUSVMNugw1tAEJHUQkNDkZCQoHmckJCAkJAQ9O7dW7O8qKgIhw8f1gQdAIiPj0d6ejp2796Nn376CWq1Gn379kX9+vVx5MgRfPPNN9izZw8iIyO19peQkICMjAwkJCRgw4YNiI2NRWxsrGb9qFGjcPXqVSQmJuK7777Dxx9/jGvXrj32dfzyyy+4evUq9u3bh+XLl2PBggV47rnnUL9+fRw+fBivv/46XnvtNVy+fBkAqlXvsmXLEBsbi3Xr1mH//v24desW4uLitPa7ZMkSfP7551i7di1Onz6NyZMnY8SIEdi7d2/1/ycQ/Z0wc5cuXRIAxKVLl6Rt+GayEF/iwX9NoZ3HKCgoEAAEAFFQUGDQfRE9TlFRkUhNTRVFRUV/Lqyl3wV99vfJJ58IR0dHcf/+fXHnzh1hZWUlrl27JjZu3Ch69eolhBAiPj5eABB//PGHEEKIiIgI4enpKYqLizXtfPzxx6J+/fpav4vbtm0TFhYWIicnR/O8xo0bi9LSUs02L7zwghg2bJgQQoi0tDQBQBw5ckSz/ty5cwKAWLFiRZWvoaLdsrIyzbKAgADx1FNPaR6XlpYKR0dH8dVXX1W7Xm9vb7F06VLN+vv37wtfX18xaNAgIYQQ9+7dEw4ODuLgwYNa9YwdO1a89NJLQgghEhISBACRl5dXZf0kL5V+Fvy/6n5/c4wOEZFEQkJCoFarceTIEeTl5aFVq1Zo0KABevfujTFjxuDevXtITExEs2bN4O//57ifdu3aaY3LSUtLQ1BQEBwdHTXLevTogfLycqSnp8PT0xMA0KZNG1haWmq28fb2xsmTJwEA6enpsLKyQnBwsGZ9ixYtUL9+/ce+jjZt2sDC4s8Of09PT7Rt21bz2NLSEu7u7preocfVa2dnh+zsbHTt2lWz3srKCp06ddKcvjp//jwKCwvxzDPPaNVSUlKCDh06PLZmoqow6BARSaRFixbw9fVFQkIC8vLy0Lt3bwCAj48P/Pz8cPDgQSQkJKBPnz5az/trQNCFtbW11mOFQoHy8vKaFf+Ydg21rwoV43m2bduGRo0aaa2ztbWVbD9kfsx2jA4RkSGEhoYiMTERiYmJWhc79OrVC9u3b0dSUpLW+JzKtG7dGidOnIBardYsO3DgACwsLDSDlR8nICAApaWlOH78uGbZ+fPnkZeXp9sLqobH1evi4gJvb28cPnxYs760tBTJycmax4GBgbC1tUVWVhZatGih9ePn5yd5zWQ+GHSIiCQUGhqK/fv3IyUlRdOjAwC9e/fGf//7X5SUlDw26AwfPhx2dnaIiIjAqVOnkJCQgIkTJ2LkyJGa01aP88QTTyAsLAzjx49HUlISjh8/jvHjx8Pe3h4KhUKv11iTeqOiovDee+9h69atOHPmDCZMmIDbt29r2nB2dsbUqVMxefJkbNiwARkZGTh27BhWr16NDRs2SFovmReeuiKiuiU/zaT3ExoaiqKiIjzxxBNaoaR37964e/eu5jL0R3FwcMDOnTsRFRWFzp07w8HBAUOHDsXy5ct1quXzzz/H2LFj0atXL3h5eWHJkiU4ffq0Zj4fqVSn3ilTpiA7OxsRERGwsLDAK6+8gsGDByM/P1+zzTvvvIMGDRpgyZIluHDhAlxdXREcHIzZs2dLWi+ZF4UQf5vIwMxcvnwZfn5+uHTpEnx9faVr+NYxYEdHoF/ygzk5jN3OY6jVajg5OQF4cK68pmMGiKRw7949ZGZmomnTpn9+KZv4zMh1QcXn3Z49e/D0008buxyix6r0s+D/Vff7mz06RFQ3OPo/CB2811W1/fLLLygoKEC7du2QnZ2N6dOno0mTJujVq5exSyOqNQw6RFR3OPrX6eBR2+7fv4/Zs2fjwoULcHZ2Rvfu3fHll18+dAUVkZwx6BARyVTfvn3Rt29fY5dBZFS86oqIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhky2yDjkqlQmBgoNYU7URERCQvZht0lEolUlNTkZiYaOxSiIiIyEB4eTkR1RmFV6+i5NatWtufjZsbHHx8am1/ukhMTERoaCjy8vLg6upq7HLMhkKhQFxcHMLDw/Vqp0mTJpg0aRImTZokSV2ViY+PR2RkJE6dOgVLS0uD7acmduzYgZkzZ+LYsWOwsDBsnwuDDhHVCYVXryLxn/9EWVFRre3T0t4eIbt2VSvsPO5GmQsWLMDChQslqoz0cfHiRTRt2hTHjx9H+/btdXpudnY26tevX+3tY2NjMWnSJK0bmALAkSNHDH6rnenTp2Pu3LmakJOdnY0pU6bg6NGjOH/+PN58803ExMQ89LxvvvkG8+bNw8WLF9GyZUu8//77GDBgQJX7OX78OF555RWcO3cOoaGh2LBhA9zc3AA8uEt9165d8dFHH6FLly6a5/Tr1w/z5s3Dl19+iZEjR0r7wv+GQYeI6oSSW7dQVlSEDsuXw6l5c4PvryAjA8ejo1Fy61a1gk52drbm35s3b8b8+fORnp6uWVZxLzlTUlJSAhsbG2OXUatKSkr0er6Xl5ckdTRo0ECSdqqyf/9+ZGRkYOjQoZplxcXFaNCgAebOnYsVK1ZU+ryDBw/ipZdewpIlS/Dcc89h48aNCA8Px7Fjx9C2bdtKn/Pqq6+iT58+2Lx5M1599VUsXrwYH374IQBg2bJl6NGjh1bIqTB69GisWrXK4EEHwsxdunRJABCXLl2StuGbyUJ8iQf/NYV2HqOgoEAAEABEQUGBQfdF9DhFRUUiNTVVFBUVaZblnTwpfmjWTOSdPFkrNeizv/Xr1wsXFxfN47KyMvHWW2+JRo0aCRsbGxEUFCS2b9+u9Zzff/9dhIaGCjs7O+Hm5ibGjRsn7t69W+U+EhISBACRl5cnhBDixo0b4t///rfw8fER9vb2om3btmLjxo1az+ndu7dQKpUiKipKuLu7i5CQECGEEN9//71o0aKFsLW1FSEhISI2NlarbSGE+PXXX0XPnj2FnZ2d8PX1FRMnTnzkZ0VERIQYNGiQ1rKoqCjRu3dvrXomTpwopk2bJurXry88PT3FggULtJ6Tl5cnxo8fLxo2bChsbW1FmzZtxI8//ljtuho3bizefvttMXLkSOHs7CwiIiI0n3UVPxU1JSUlibCwMOHu7i7q1asnevXqJZKTtT97AYi4uDghhBCZmZkCgPjuu+9ESEiIsLe3F08++aQ4ePCg1v+jv/5UvL7GjRuLFStWaL3OsWPHCg8PD+Hs7CxCQ0NFSkqKZn1KSooICQkRTk5OwtnZWQQHB4sjR45UefyVSqX417/+VeX63r17i6ioqIeWv/jii+LZZ5/VWta1a1fx2muvVdmWvb29SEtLE0IIsWbNGjFgwAAhhBAZGRmiZcuW4s6dO5U+748//hAAxPnz56tsu7LPggrV/f4228HIRES1ZeXKlVi2bBk+/PBD/P777+jbty+ef/55nDt3DgCgVqvRt29f1K9fH0eOHME333yDPXv2IDIystr7uHfvHjp27Iht27bh1KlTGD9+PEaOHImkpCSt7TZs2AAbGxscOHAAa9euRWZmJv71r38hPDwcJ06cwGuvvYY5c+ZoPScjIwP9+vXD0KFD8fvvv2Pz5s3Yv3+/TvVVZcOGDXB0dMThw4exdOlSvP3229i9ezcAoLy8HP3798eBAwfwxRdfIDU1Fe+9957mVEx16/rwww8RFBSE48ePY968eZpjsmfPHmRnZ2PLli0AgLt37yIiIgL79+/Hb7/9hpYtW2LAgAG4e/fuI1/DnDlzMHXqVKSkpKBVq1Z46aWXUFpaiu7duyMmJgb16tVDdnY2srOzMXXq1ErbeOGFF3Dt2jVs374dycnJCA4OxtNPP41b/z8mbfjw4fD19cWRI0eQnJyMmTNnPvKeZb/++is6depUjf8D2g4dOoSwsDCtZX379sWhQ4eqfE5QUBB2796N0tJSxMfH48knnwQAvP7661i6dCmcnZ0rfZ6/vz88PT3x66+/6lynTh4Zg8wAe3QeYI8OmRK59ej4+PiId999V2ubzp07iwkTJgghhPj4449F/fr1tX73tm3bJiwsLEROTk6l+/h7j05lnn32WTFlyhTN4969e4sOHTpobTNjxgzRtm1brWVz5szRanvs2LFi/PjxWtv8+uuvwsLCotK/tIWofo9Oz549tbbp3LmzmDFjhhBCiJ07dwoLCwuRnp5e6T6qU1fjxo1FeHi41jYVPTHHjx+vtN0KZWVlwtnZWasHCZX06Hz66aea9adPnxYAND0cf38vVPhrj86vv/4q6tWrJ+7du6e1TfPmzcV///tfIYQQzs7OIjY29pH1/pWLi4v4/PPPq1xfVY+OtbX1Qz2BKpVKNGzYsMq2Tp06JXr16iX8/f3FSy+9JPLz88Xnn38uBg0aJC5fviz++c9/iubNm4s5c+Y89NwOHTqIhQsXVtm2FD06HKNDRGRAd+7cwdWrV9GjRw+t5T169MCJEycAAGlpaQgKCtIanNqjRw+Ul5cjPT0dnp6ej91PWVkZFi9ejK+//hpXrlxBSUkJiouL4eDgoLVdx44dtR6np6ejc+fOWsv+Pp7ixIkT+P333/Hll19qlgkhUF5ejszMTLRu3fqx9VWl4q//Ct7e3rh27RoAICUlBb6+vmjVqlWlz61uXdXt2cjNzcXcuXORmJiIa9euoaysDIWFhcjKyqr2a/D29gYAXLt2DU888US19nvixAkUFBTA3d1da3lRUREyMjIAANHR0Xj11Vfxv//9D2FhYXjhhRfQ/BFj1YqKimBnZ1et/eurTZs22Lt3r+bxzZs3sWDBAuzbtw8TJ05E9+7dsWXLFnTu3Bldu3bFwIEDNdva29ujsLDQoPUx6BARycAHH3yAlStXIiYmBu3atYOjoyMmTZr00ODbmlzpU1BQgNdeew1vvvnmQ+v8/f0rfY6FhQWEEFrL7t+//9B2fz/9olAoUF5eDuDBl6AUdVX3NUdERODmzZtYuXIlGjduDFtbW3Tr1u2xA5j/+hoqrr6reA3VUVBQAG9v70rndauYOmDhwoV4+eWXsW3bNmzfvh0LFizApk2bMHjw4Erb9PDwQF5eXrVrqODl5YXc3FytZbm5uToNwo6OjsakSZPg6+uLxMRELFq0CI6Ojnj22WeRmJioFXRu3bpl8IHZDDpERAZUr149+Pj44MCBA+jdu7dm+YEDBzQ9J61bt0ZsbCzUarXmS/nAgQOwsLBAQEBAtfZz4MABDBo0CCNGjADw4Iv27NmzCAwMfOTzAgIC8PPPP2stO3LkiNbj4OBgpKamokWLFtWqBXhwVdGpU6e0lqWkpDxyXMnfPfnkk7h8+TLOnj1baa9OTeoCoLnSrKysTGv5gQMHsGbNGs2l1JcuXcKNGzd0aruyff19P38XHByMnJwcWFlZoUmTJlVu16pVK7Rq1QqTJ0/GSy+9hPXr11cZdDp06IDU1FSd6+3WrRvi4+O15vfZvXs3unXrVq3nx8fHIy0tDevXrwfw4BhXBNy/B9179+4hIyMDHTp00LlOXXAwMhGRgU2bNg3vv/8+Nm/ejPT0dMycORMpKSmIiooC8GCgqZ2dHSIiInDq1CkkJCRg4sSJGDlyZLVOWwFAy5YtsXv3bhw8eBBpaWl47bXXHvrLvDKvvfYazpw5gxkzZuDs2bP4+uuvERsbC+DP3okZM2bg4MGDiIyMREpKCs6dO4fvv//+kYOR+/Tpg6NHj+Lzzz/HuXPnsGDBgoeCz+P07t0bvXr1wtChQ7F7925kZmZi+/bt2LFjR43rAoCGDRvC3t4eO3bsQG5uLvLz8wE8OIb/+9//kJaWhsOHD2P48OGP7VV6nCZNmqCgoADx8fG4ceNGpadpwsLC0K1bN4SHh2PXrl24ePEiDh48iDlz5uDo0aMoKipCZGQkEhMT8ccff+DAgQM4cuTII08Z9u3bF/v3739oeUpKClJSUlBQUIDr168jJSVFKxBFRUVhx44dWLZsGc6cOYOFCxfi6NGj1Rp4fu/ePURGRuLjjz/WTALYo0cPqFQqnDhxAt99953WKdzffvtN02tmSOzRIaI6peD/xyzUpf28+eabyM/Px5QpU3Dt2jUEBgbihx9+QMuWLQEADg4O2LlzJ6KiotC5c2c4ODhg6NChWL58ebX3MXfuXFy4cAF9+/aFg4MDxo8fj/DwcM2XeFWaNm2Kb7/9FlOmTMHKlSvRrVs3zJkzB2+88QZsbW0BPOhZ2bt3L+bMmYOnnnoKQgg0b94cw4YNq7Ldvn37Yt68eZg+fTru3buHV155BaNGjcLJkyer/ZoA4LvvvsPUqVPx0ksvQa1Wo0WLFnjvvfdqXBcAWFlZYdWqVXj77bcxf/58PPXUU0hMTMRnn32G8ePHIzg4GH5+fli8eHGVV0lVV/fu3fH6669j2LBhmrErf584UqFQ4Oeff8acOXMwZswYXL9+HV5eXujVqxc8PT1haWmJmzdvYtSoUcjNzYWHhweGDBmCt956q8r9Dh8+HNOnT0d6erpWr+Bfe0+Sk5OxceNGNG7cGBcvXtTUu3HjRsydOxezZ89Gy5YtsXXr1irn0Pmrt956C88++6zWJIyrVq3Cyy+/jF69emH48OFa8/p89dVXGD58+EPjyKSmEH8/iWpmLl++DD8/P1y6dAm+vr7SNXzrGLCjI9AvGXALNn47j6FWqzUTmhUUFBh8xk6iR7l37x4yMzPRtGlTzYBKU58ZWU7effddrF27FpcuXTJ2KaSHadOm4c6dO/jvf/9r7FIecuPGDQQEBODo0aNo2rRpldtV9llQobrf3+zRIaI6wcHHByG7dvFeVwawZs0adO7cGe7u7jhw4AA++OADSebIIeOaM2cO1qxZg/LycoPfT0pXFy9exJo1ax4ZcqTCoENEdYaDj49ZBI/adu7cOSxatAi3bt2Cv78/pkyZglmzZhm7LNKTq6srZs+ebewyKtWpU6caTWhYEww6RERmbsWKFVXe+4iorjOtviwiIiIiCTHoEJHJMvNrJYjMnhSfAQw6RGRyKiaVM/TU8ERk2io+A3SZaPLvOEaHiEyOpaUlXF1dNfc8cnBw0ExeR0TyJ4RAYWEhrl27BldXV80d62uCQYeITFLFvXUqwg4RmR9XV1ed7rNVmTofdG7fvo2wsDCUlpaitLQUUVFRGDdunLHLIiI9KRQKeHt7o2HDhpXeDJKI5M3a2lqvnpwKdT7oODs7Y9++fXBwcIBarUbbtm0xZMiQh253T0R1k6WlpSQfdkRknur8YGRLS0vNfTKKi4shhOCVGkRERATABILOvn37MHDgQPj4+EChUGDr1q0PbaNSqdCkSRPY2dmha9euSEpK0lp/+/ZtBAUFwdfXF9OmTYOHh0ctVU9ERESmzOhBR61WIygoCCqVqtL1mzdvRnR0NBYsWIBjx44hKCgIffv21Rqg6OrqihMnTiAzMxMbN25Ebm5ulfsrLi7GnTt3ND93796V/DURERGRaTB60Onfvz8WLVqEwYMHV7p++fLlGDduHMaMGYPAwECsXbsWDg4OWLdu3UPbenp6IigoCL/++muV+1uyZAlcXFw0P4GBgZK9FiIiIjItRg86j1JSUoLk5GSEhYVplllYWCAsLAyHDh0CAOTm5mp6ZfLz87Fv3z4EBARU2easWbOQn5+v+UlNTTXsiyAiIiKjMemrrm7cuIGysjJ4enpqLff09MSZM2cAAH/88QfGjx+vGYQ8ceJEtGvXrso2bW1tYWtrq3l8584dwxRPRERERmfSQac6unTpgpSUFGOXQURERCbIpE9deXh4wNLS8qHBxbm5uXrPlKhSqRAYGIiQkBC92iEiIiLTZdJBx8bGBh07dkR8fLxmWXl5OeLj49GtWze92lYqlUhNTUViYqKeVRIREZGpMvqpq4KCApw/f17zODMzEykpKXBzc4O/vz+io6MRERGBTp06oUuXLoiJiYFarcaYMWOMWDURERHVBUYPOkePHkVoaKjmcXR0NAAgIiICsbGxGDZsGK5fv4758+cjJycH7du3x44dOx4aoExERET0d0YPOiEhIY+9ZUNkZCQiIyNrqSIiIiKSC5Meo2NIHIxMREQkf2YbdDgYmYiISP7MNugQERGR/DHoEBERkWwx6BAREZFsmW3Q4WBkIiIi+TPboMPByERERPJntkGHiIiI5I9Bh4iIiGSLQYeIiIhki0GHiIiIZMtsgw6vuiIiIpI/sw06vOqKiIhI/sw26BAREZH8MegQERGRbFkZuwAiIiIyPYVXr6Lk1i2927Fxc4ODj48EFdUMgw4RERFpKbx6FYn//CfKior0bsvS3h4hu3YZLeww6BAREZGWklu3UFZUhA7Ll8OpefMat1OQkYHj0dEouXWLQYeIiIhMi1Pz5nBt29bYZejFbAcjcx4dIiIi+TPboMN5dIiIiOTPbIMOERERyR+DDhEREckWgw4RERHJFq+6IiIikhEpJvoryMiQqBrjY9AhIiKSCakn+rNxc5OgKuNi0CEiIpIJqSb6A4x/6wapmG3QUalUUKlUKCkpMXYpREREkpLDRH9SMdugo1QqoVQqcfnyZfj5+Rm7HCIiMnMcW2MYZht0iIiITAXH1hgOgw4REZGRcWyN4TDoEBERmQiOrZEeJwwkIiIi2WLQISIiItniqSsiIiI98Gop08agQ0REVEO8Wsr0MegQERHVEK+WMn0MOkRERHri1VKmi4ORiYiISLbMNuioVCoEBgYiJCTE2KUQERGRgZjtqSve64qIyLzxainzYLZBh4iIzBevljIfDDpERFSnSNUTw6ulzAODDhER1RlS98S4de7MkCJzDDpERPRIUvSgANL0fHDeGtIVgw7pLD8rH4U3CvVux8HDAS7+LhJURESGInUPSqc1a/Qaz1Ix+Jfz1lB1MeiQTvKz8qFqrcL9wvt6t2XtYA1lmpJhh8iESdWDUnLrFo5OmIDDY8boXRMH/5IuGHRIJ4U3CnG/8D4GfzEYDVo3qHE719OuI25EHApvFDLoENUBUvSghOzaZTKnwMh86Bx0duzYAScnJ/Ts2RPAg4n3PvnkEwQGBkKlUqF+/fqSF0mmp0HrBvAO9jZ2GUT0CKY2T4yDjw8DCtU6nYPOtGnT8P777wMATp48iSlTpiA6OhoJCQmIjo7G+vXrJS+SiIh0w3liiB7QOehkZmYiMDAQAPDdd9/hueeew+LFi3Hs2DEMGDBA8gLruutnrqPULrvGz7e6dx01P0FEuuAga5ITKa9OKi6yQn6OAvk5Nf8sA/i7Qcahc9CxsbFBYeGDL4M9e/Zg1KhRAAA3NzfcuXNH2urqsLs5d+EMYMvwLci5+FuN2/FqchWvvfv/7fEPKoPhIOvaxVBZe/QdW5OflY/PuvJ3g+ounYNOz549ER0djR49eiApKQmbN28GAJw9exa+vr6SF1hX3bt9D84A+izqA6fWvWrcTkHaPgAfa9ojw+Ag68eTKpyor6vx9ZCv+cVZR5ji74ZU70WpMHCbNp2Dzn/+8x9MmDAB3377LT766CM0atQIALB9+3b069dP8gLrOtemrmigx6Dd6/dcgYuSlUOPwUHWlZOyxwt4EFCG7xgOxwaONW7DFEOlVF/AFmX5sLUv1asNqW82aSq/G1K/F6UgVeBmT6dh6Bx0/P398dNPPz20fMWKFZIURIbzqF+iwqI/l+ek5MDB3qHS7a6nXZe0Jina4y+14Un1V30FOf4/k+oL2NqyAG38foCFhX5BB5DnIGKp34v6kipw8/S54egcdCwtLZGdnY2GDRtqLb958yYaNmyIsrIyyYozJJVKBZVKhZKSEmOXUise90tUgj+Pw7qe62ADmyrbsnawhoNH5UGouhw8HGDtYI24EXF6tVNRD3+pa4ep/FVfwdqyAOoL6bhtc1OvdqSYl0WqL+DL8b8hZ+0WuA+dhIZd2ulVk3NjL9lezm1q70V9/2i7nnZd0lOEf/z6h95BUC5/kOgcdIQQlS4vLi6GjU3VX46mRqlUQqlU4vLly/Dz8zN2OY91O/O2XldvPe6XqLCoEIt7LgYAvLL/lSp7dABp3vwu/i5Qpin17qaV6pdazj1VUnSHS318pFB8PQeBfj8gbcYWvduysLND6O7deocCa8sCONjegr2NRY3bcHG7hxwA+1eeQ1GJfnPg8I8Aw5P6j7bGTzXW6/+X1PW8uOVFvU4xqy/c0LsOfVU76KxatQoAoFAo8Omnn8LJyUmzrqysDPv27cMTTzwhfYVmzs7VDgDwy9xfkHPxjF5tPeqXSK1Wa/7t1d4Ljo41f2NXl4u/i94fwFL/UptaT5XeHzISD/zV9/hIycqyGJYWpci81hP3Smr+PrKzyUfThvtxKzVLr6AjdfB68YcxsG3gVeM2THEMEyBNz4cpkeqPNsC0/ois+Oz4st+XerVjb3MTrX2BgpwCuBrp1mTVDjoVY3CEEFi7di0sLS0162xsbNCkSROsXbtW+grNnLPXg2uthnw5BKV2T+rVlly6If+KHzKPJ8XAX8D03j9OXg/+2BqwfgwcmwXUuJ0Hp4r2I/t4Nizd9Og1/f0iLC1K0fTN+fB9umON2wHkeYsDU/ujREpS/NEmJanqkeKz7MHv1zbcu31P73pqqtpBJzMzEwAQGhqKLVu28FYPtazBEw0AN9M5H21K+CHzaKYWUKTm8YQHXNvW/Hej7JY3cgAkzE1A0fTfa9xOxV+urm0CeFftSpjaHyX0eFJ8lqkv1EeORPXUlM5jdBISEgxRBxH9jakFOLnS9Awt7Qi7Ro1r3M69K38gc9U2TXumwpROFfE9TcZQraATHR2Nd955B46OjoiOjn7ktsuXL5ekMCJzJ8UNGQF5ngaRko2bGyzt7ZG56m292zKly7nlfKqISBfVCjrHjx/H/fsPBjMeO3YMCoWi0u2qWk5EupH6howhu3Yx7FTBwccHIbt2yS5U8lQR0QPVCjorV65EvXr1AACJiYmGrIeIIN0NGQsyMnA8Ohq3jhxBiZ43djSlL3GpOfj4yPK18VQRUTWDTocOHTSTBDZr1gxHjhyBu7u7oWsjMnv63pCx4rTM8ceccq4O9gwRUV1UraDj6uqKzMxMNGzYEBcvXkR5ebmh6yIiCUh1WqaiZ6jk1i0GHSKqU6oVdIYOHYrevXvD29sbCoUCnTp10ppH568uXLggaYFEpB9TPC0jxUBrqW9aSUTyVK2g8/HHH2PIkCE4f/483nzzTYwbNw7Ozs6Gro2IZEjqgdamcpUTEZmmas+j069fPwBAcnIyoqKiGHSIzJAUvSgFGRmSDLQG5D1AmoikofOEgevXrzdEHURkwqQc1Aw86Ilx69yZIYWIDE7noENEjybH8SdSzjUDsCeGiGoPgw6RhOQ8/sQUBzUTET0Ogw6RhKSa6A9grwcRkRSqFXSCg4MRHx+P+vXr4+2338bUqVPh4MD7nhBVRd+J/oiISBoW1dkoLS0NarUaAPDWW2+hoKDAoEURERERSaFaPTrt27fHmDFj0LNnTwgh8OGHH8LJyanSbefPny9pgUREREQ1Va2gExsbiwULFuCnn36CQqHA9u3bYWX18FMVCgWDDhEREZmMagWdgIAAbNq0CQBgYWGB+Ph4NGzY0KCFVdelS5cwcuRIXLt2DVZWVpg3bx5eeOEFY5dFREREJkDnq65M7YaeVlZWiImJQfv27ZGTk4OOHTtiwIABcHR0NHZpVMfIcf4bIiJzV6PLyzMyMhATE4O0tDQAQGBgIKKiotBcz8tpa8Lb2xve3t4AAC8vL3h4eODWrVsMOqQTOc9/Q0RkznQOOjt37sTzzz+P9u3bo0ePHgCAAwcOoE2bNvjxxx/xzDPP6NTevn378MEHHyA5ORnZ2dmIi4tDeHi41jYqlQoffPABcnJyEBQUhNWrV6NLly4PtZWcnIyysjL4+fnp+rLIzHH+GyIiedI56MycOROTJ0/Ge++999DyGTNm6Bx01Go1goKC8Morr2DIkCEPrd+8eTOio6Oxdu1adO3aFTExMejbty/S09O1xgndunULo0aNwieffPLI/RUXF6O4uFjz+O7duzrVS/LG+W+IiOSlWvPo/FVaWhrGjh370PJXXnkFqampOhfQv39/LFq0CIMHD650/fLlyzFu3DiMGTMGgYGBWLt2LRwcHLBu3TrNNsXFxQgPD8fMmTPRvXv3R+5vyZIlcHFx0fwEBgbqXDMRERHVDToHnQYNGiAlJeWh5SkpKZJfiVVSUoLk5GSEhYVplllYWCAsLAyHDh0CAAghMHr0aPTp0wcjR458bJuzZs1Cfn6+5qcm4YyIiIjqBp1PXY0bNw7jx4/HhQsXNL0nBw4cwPvvv4/o6GhJi7tx4wbKysrg6emptdzT0xNnzpzR7Hvz5s148sknsXXrVgDA//73P7Rr167SNm1tbWFra6t5fOfOHUlrptrHq6WIiKgqOgedefPmwdnZGcuWLcOsWbMAAD4+Pli4cCHefPNNyQt8nJ49e5rcJe9Ue3i1FBERPYrOQUehUGDy5MmYPHmyZiCvs7Oz5IUBgIeHBywtLZGbm6u1PDc3F15eXnq1rVKpoFKpUFJSolc7ZFy8WoqIiB6lRvPoVDBUwKlgY2ODjh07Ij4+XnPJeXl5OeLj4xEZGalX20qlEkqlEpcvX+bl6DLAq6WIiKgyegUdKRQUFOD8+fOax5mZmUhJSYGbmxv8/f0RHR2NiIgIdOrUCV26dEFMTAzUajXGjBljxKqJiIioLjB60Dl69ChCQ0M1jysGNEdERCA2NhbDhg3D9evXMX/+fOTk5KB9+/bYsWPHQwOUiYiIiP7O6EEnJCQEQohHbhMZGan3qSqSjhRXOUmFV0sREdGj6BR07t+/j379+mHt2rVo2bKloWqqFRyMXDNSXuUkFV4tRUREVdEp6FhbW+P33383VC21ioORa0bKq5ykwquliIioKjqfuhoxYgQ+++yzh+51ReaFVzkREVFdoHPQKS0txbp167Bnzx507NgRjo6OWuuXL18uWXFERERE+tA56Jw6dQrBwcEAgLNnz2qtUygU0lRFBvGoQcTqwkLNv2+fPo37Dg6VbsfBv0REVJfoHHQSEhIMUUetM7fByI8bRHzvL7fRODhsGOwsqr7fKwf/EhFRXVHjy8vPnz+PjIwM9OrVC/b29hBC1KkeHXMbjPy4QcTqwkKga1cAQPfNm+FYRY8OwMG/RERUd+gcdG7evIkXX3wRCQkJUCgUOHfuHJo1a4axY8eifv36WLZsmSHqJIlUNYjYWq3W/Nu1TZuHxl4RERHVRVWfn6jC5MmTYW1tjaysLDj85a/+YcOGYceOHZIWR0RERKQPnXt0du3ahZ07d8LX11drecuWLfHHH39IVhgRERGRvnTu0VGr1Vo9ORVu3boFW1tbSYoiIiIikoLOQeepp57C559/rnmsUChQXl6OpUuXat2c09SpVCoEBgYiJCTE2KUQERGRgeh86mrp0qV4+umncfToUZSUlGD69Ok4ffo0bt26hQMHDhiiRoMwt6uuiIiIzJHOPTpt27bF2bNn0bNnTwwaNAhqtRpDhgzB8ePH0dxE7n1EREREBNRwHh0XFxfMmTNH6lqIiIiIJFWjoJOXl4fPPvsMaWlpAIDAwECMGTMGbpwtl4iIiEyIzqeu9u3bhyZNmmDVqlXIy8tDXl4eVq1ahaZNm2Lfvn2GqJGIiIioRnTu0VEqlRg2bBg++ugjWFpaAgDKysowYcIEKJVKnDx5UvIiiYiIiGpC56Bz/vx5fPvtt5qQAwCWlpaIjo7WuuycpFN42xIlZy4A9Wxq3AbvOk5EROZI56ATHByMtLQ0BAQEaC1PS0tDUFCQZIUZWl25e3lhznUkrvJD2f0ZerfFu44TEZG5qVbQ+f333zX/fvPNNxEVFYXz58/jH//4BwDgt99+g0qlwnvvvWeYKg2grsyjU3L7LsruW6DD22/CKehpvdriXceJiMjcVCvotG/fHgqFAkIIzbLp06c/tN3LL7+MYcOGSVcdaTg1bVTpXceJiIioatUKOpmZmYaug4iIiEhy1Qo6jRs3NnQdRERERJKr0YSBV69exf79+3Ht2jWUl5drrXvzzTclKYyIiIhIXzoHndjYWLz22muwsbGBu7s7FAqFZp1CoWDQISIiIpOhc9CZN28e5s+fj1mzZsHCQueJlYmIiIhqjc5JpbCwEP/+97/rfMhRqVQIDAxESEiIsUshIiIiA9E5rYwdOxbffPONIWqpVUqlEqmpqUhMTDR2KURERGQgOp+6WrJkCZ577jns2LED7dq1g7W1tdb65cuXS1ZcXVd42xLqi1mwrneqxm0UZF6RsCIiIiLzUqOgs3PnTs0tIP4+GJkeKL5xC0dW+aHsvv6zRVtal8PG1VmCqoiIiMyLzkFn2bJlWLduHUaPHm2AcuSjtKAAZfct0OL10fDuP7jmDd05A5uUf8PBq4F0xREREZkJnYOOra0tevToYYhaZMm+kZd+t264VQJcLJOuICIiIjOi82DkqKgorF692hC1EBEREUlK5x6dpKQk/PLLL/jpp5/Qpk2bhwYjb9myRbLiiIiIiPShc9BxdXXFkCFDDFELERERkaR0Djrr1683RB1EREREkqvb0xsTERERPYLOPTpNmzZ95Hw5Fy5c0KsgIiIiIqnoHHQmTZqk9fj+/fs4fvw4duzYgWnTpklVl8GpVCqoVCqUlJQYuxQiIiIyEJ2DTlRUVKXLVSoVjh49qndBtUWpVEKpVOLy5cvw8/MzdjlERERkAJKN0enfvz++++47qZojIiIi0ptkQefbb7+Fm5ubVM0RERER6U3nU1cdOnTQGowshEBOTg6uX7+ONWvWSFocERERkT50Djrh4eFajy0sLNCgQQOEhITgiSeekKouIiIiIr3pHHQWLFhgiDqIiIiIJMcJA4mIiEi2qt2jY2Fh8ciJAgFAoVCgtLRU76KIiIiIpFDtoBMXF1flukOHDmHVqlUoLy+XpCgiIiIiKVQ76AwaNOihZenp6Zg5cyZ+/PFHDB8+HG+//bakxRERERHpo0ZjdK5evYpx48ahXbt2KC0tRUpKCjZs2IDGjRtLXR8RERFRjekUdPLz8zFjxgy0aNECp0+fRnx8PH788Ue0bdvWUPURERER1Vi1T10tXboU77//Pry8vPDVV19VeiqLiIiIyJRUO+jMnDkT9vb2aNGiBTZs2IANGzZUut2WLVskK46IiIhIH9UOOqNGjXrs5eVEREREpqTaQSc2NtaAZdQ+lUoFlUqFkpISY5dCREREBmK2MyMrlUqkpqYiMTHR2KUQERGRgZht0CEiIiL5Y9AhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2ZJF0Bk8eDDq16+Pf/3rX8YuhYiIiEyILIJOVFQUPv/8c2OXQURERCZGFkEnJCQEzs7Oxi6DiIiITIzRg86+ffswcOBA+Pj4QKFQYOvWrQ9to1Kp0KRJE9jZ2aFr165ISkqq/UKJiIiozjF60FGr1QgKCoJKpap0/ebNmxEdHY0FCxbg2LFjCAoKQt++fXHt2rUa7a+4uBh37tzR/Ny9e1ef8omIiMiEGT3o9O/fH4sWLcLgwYMrXb98+XKMGzcOY8aMQWBgINauXQsHBwesW7euRvtbsmQJXFxcND+BgYH6lE9EREQmzOhB51FKSkqQnJyMsLAwzTILCwuEhYXh0KFDNWpz1qxZyM/P1/ykpqZKVS4RERGZGCtjF/AoN27cQFlZGTw9PbWWe3p64syZM5rHYWFhOHHiBNRqNXx9ffHNN9+gW7dulbZpa2sLW1tbzeM7d+4YpngiIiIyOpMOOtW1Z88eY5dgePlp+rdh6wE4+uvfDhERUR1h0kHHw8MDlpaWyM3N1Vqem5sLLy8vvdpWqVRQqVQoKSnRqx2Ds/UALB2AQyP0b8vSAXgujWGHiIjMhkkHHRsbG3Ts2BHx8fEIDw8HAJSXlyM+Ph6RkZF6ta1UKqFUKnH58mX4+flJUK2BOPo/CCfFN/RrJz/tQVgqvsGgQ0REZsPoQaegoADnz5/XPM7MzERKSgrc3Nzg7++P6OhoREREoFOnTujSpQtiYmKgVqsxZswYI1Zdyxz9GU6IiIhqwOhB5+jRowgNDdU8jo6OBgBEREQgNjYWw4YNw/Xr1zF//nzk5OSgffv22LFjx0MDlImIiIj+zuhBJyQkBEKIR24TGRmp96kqIiIiMj8mPY+OIalUKgQGBiIkJMTYpRAREZGBmG3QUSqVSE1NRWJiorFLISIiIgMx26BDRERE8segQ0RERLLFoENERESyZbZBh4ORiYiI5M9sgw4HIxMREcmf2QYdIiIikj8GHSIiIpItBh0iIiKSLQYdIiIiki2zDTq86oqIiEj+zDbo8KorIiIi+TPboENERETyx6BDREREssWgQ0RERLLFoENERESyxaBDREREsmW2QYeXlxMREcmf2QYdXl5OREQkf2YbdIiIiEj+GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2zDbocMJAIiIi+TPboMMJA4mIiOTPbIMOERERyR+DDhEREckWgw4RERHJFoMOERERyRaDDhEREckWgw4RERHJFoMOERERyRaDDhEREckWgw4RERHJlpWxC6Balp9W+XJ10Z//vpUCFNtX3YatB+DoL2lZREREhmC2QUelUkGlUqGkpMTYpdQOWw/A0gE4NKLy9ff+8u/dPQG7R7Rl6QA8l8awQ0REJs9sg45SqYRSqcTly5fh5+dn7HIMz9H/QTgpvlH5enURgJ4P/v3MfsCxih6d/LQHYan4BoMOERGZPLMNOmbJ0b/qcGKr/vPfbu0BR8daKYmIiMiQOBiZiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZMtsg45KpUJgYCBCQkKMXQoREREZiNkGHaVSidTUVCQmJhq7FCIiIjIQsw06REREJH8MOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFuyCDo//fQTAgIC0LJlS3z66afGLoeIiIhMhJWxC9BXaWkpoqOjkZCQABcXF3Ts2BGDBw+Gu7u7sUsjIiIiI6vzPTpJSUlo06YNGjVqBCcnJ/Tv3x+7du0ydllERERkAowedPbt24eBAwfCx8cHCoUCW7dufWgblUqFJk2awM7ODl27dkVSUpJm3dWrV9GoUSPN40aNGuHKlSu1UToRERGZOKMHHbVajaCgIKhUqkrXb968GdHR0ViwYAGOHTuGoKAg9O3bF9euXavlSomIiKiuMfoYnf79+6N///5Vrl++fDnGjRuHMWPGAADWrl2Lbdu2Yd26dZg5cyZ8fHy0enCuXLmCLl26VNlecXExiouLNY/v3r0rwaugGlFnAcU3jF3Fn2w9AEd/Y1dBREQSMnrQeZSSkhIkJydj1qxZmmUWFhYICwvDoUOHAABdunTBqVOncOXKFbi4uGD79u2YN29elW0uWbIEb731lsFrp8dQZwE/tQbKCo1dyZ8sHYDn0hh2iIhkxKSDzo0bN1BWVgZPT0+t5Z6enjhz5gwAwMrKCsuWLUNoaCjKy8sxffr0R15xNWvWLERHR2seX7lyBYGBgYZ5AVS14hsPQk63LwCX1sauBshPAw6NeFAXgw4RkWyYdNCprueffx7PP/98tba1tbWFra2t5vGdO3cMVRZVh0trwC3Y2FUQEZFMGX0w8qN4eHjA0tISubm5Wstzc3Ph5eVlpKqIiIiorjDpoGNjY4OOHTsiPj5es6y8vBzx8fHo1q2bXm2rVCoEBgYiJCREzyqJiIjIVBn91FVBQQHOnz+veZyZmYmUlBS4ubnB398f0dHRiIiIQKdOndClSxfExMRArVZrrsKqKaVSCaVSicuXL8PPz0/fl0FEREQmyOhB5+jRowgNDdU8rhgoHBERgdjYWAwbNgzXr1/H/PnzkZOTg/bt22PHjh0PDVAmIiIi+jujB52QkBAIIR65TWRkJCIjI2upIiIiIpILkx6jQ0RERKQPsw06HIxMREQkf2YbdJRKJVJTU5GYmGjsUoiIiMhAzDboEBERkfwx6BAREZFsMegQERGRbJlt0OFgZCIiIvkz26DDwchERETyZ/QJA42tvLwcAJCdnS1pu9k383CjtBTZN/NgdfmypG0bQmFhoebfV65cgYODQ+Ub5uUCNwFcyQUK9XhdUrUjFVOrh4hIBrJvXv//78LrsJP4u7Die7vie7wqCvG4aYll7siRI+jSpYuxyyAiIqIaSEpKQufOnatcb/ZBp7S0FMePH4enpycsLKQ7k3f37l0EBgYiNTUVzs7OkrVL2nicawePc+3hsa4dPM61w5DHuby8HLm5uejQoQOsrKo+QWX2QcdQ7ty5AxcXF+Tn56NevXrGLke2eJxrB49z7eGxrh08zrXDFI6z2Q5GJiIiIvlj0CEiIiLZYtAxEFtbWyxYsAC2trbGLkXWeJxrB49z7eGxrh08zrXDFI4zx+gQERGRbLFHh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQUcPKpUKTZo0gZ2dHbp27YqkpKRHbv/NN9/giSeegJ2dHdq1a4eff/65liqt23Q5zp988gmeeuop1K9fH/Xr10dYWNhj/7/QA7q+nyts2rQJCoUC4eHhhi1QRnQ91rdv34ZSqYS3tzdsbW3RqlUrfn5Ug67HOSYmBgEBAbC3t4efnx8mT56Me/fu1VK1ddO+ffswcOBA+Pj4QKFQYOvWrY99TmJiIoKDg2Fra4sWLVogNjbWsEUKqpFNmzYJGxsbsW7dOnH69Gkxbtw44erqKnJzcyvd/sCBA8LS0lIsXbpUpKamirlz5wpra2tx8uTJWq68btH1OL/88stCpVKJ48ePi7S0NDF69Gjh4uIiLl++XMuV1y26HucKmZmZolGjRuKpp54SgwYNqp1i6zhdj3VxcbHo1KmTGDBggNi/f7/IzMwUiYmJIiUlpZYrr1t0Pc5ffvmlsLW1FV9++aXIzMwUO3fuFN7e3mLy5Mm1XHnd8vPPP4s5c+aILVu2CAAiLi7ukdtfuHBBODg4iOjoaJGamipWr14tLC0txY4dOwxWI4NODXXp0kUolUrN47KyMuHj4yOWLFlS6fYvvviiePbZZ7WWde3aVbz22msGrbOu0/U4/11paalwdnYWGzZsMFSJslCT41xaWiq6d+8uPv30UxEREcGgU026HuuPPvpINGvWTJSUlNRWibKg63FWKpWiT58+Wsuio6NFjx49DFqnnFQn6EyfPl20adNGa9mwYcNE3759DVYXT13VQElJCZKTkxEWFqZZZmFhgbCwMBw6dKjS5xw6dEhrewDo27dvldtTzY7z3xUWFuL+/ftwc3MzVJl1Xk2P89tvv42GDRti7NixtVGmLNTkWP/www/o1q0blEolPD090bZtWyxevBhlZWW1VXadU5Pj3L17dyQnJ2tOb124cAE///wzBgwYUCs1mwtjfBdWfbtPqtKNGzdQVlYGT09PreWenp44c+ZMpc/JycmpdPucnByD1VnX1eQ4/92MGTPg4+Pz0C8W/akmx3n//v347LPPkJKSUgsVykdNjvWFCxfwyy+/YPjw4fj5559x/vx5TJgwAffv38eCBQtqo+w6pybH+eWXX8aNGzfQs2dPCCFQWlqK119/HbNnz66Nks1GVd+Fd+7cQVFREezt7SXfJ3t0SLbee+89bNq0CXFxcbCzszN2ObJx9+5djBw5Ep988gk8PDyMXY7slZeXo2HDhvj444/RsWNHDBs2DHPmzMHatWuNXZqsJCYmYvHixVizZg2OHTuGLVu2YNu2bXjnnXeMXRrpiT06NeDh4QFLS0vk5uZqLc/NzYWXl1elz/Hy8tJpe6rZca7w4Ycf4r333sOePXvw5JNPGrLMOk/X45yRkYGLFy9i4MCBmmXl5eUAACsrK6Snp6N58+aGLbqOqsl72tvbG9bW1rC0tNQsa926NXJyclBSUgIbGxuD1lwX1eQ4z5s3DyNHjsSrr74KAGjXrh3UajXGjx+POXPmwMKC/QJSqOq7sF69egbpzQHYo1MjNjY26NixI+Lj4zXLysvLER8fj27dulX6nG7dumltDwC7d++ucnuq2XEGgKVLl+Kdd97Bjh070KlTp9ootU7T9Tg/8cQTOHnyJFJSUjQ/zz//PEJDQ5GSkgI/P7/aLL9Oqcl7ukePHjh//rwmTALA2bNn4e3tzZBThZoc58LCwofCTEW4FLwlpGSM8l1osGHOMrdp0yZha2srYmNjRWpqqhg/frxwdXUVOTk5QgghRo4cKWbOnKnZ/sCBA8LKykp8+OGHIi0tTSxYsICXl1eDrsf5vffeEzY2NuLbb78V2dnZmp+7d+8a6yXUCboe57/jVVfVp+uxzsrKEs7OziIyMlKkp6eLn376STRs2FAsWrTIWC+hTtD1OC9YsEA4OzuLr776Sly4cEHs2rVLNG/eXLz44ovGegl1wt27d8Xx48fF8ePHBQCxfPlycfz4cfHHH38IIYSYOXOmGDlypGb7isvLp02bJtLS0oRKpeLl5aZs9erVwt/fX9jY2IguXbqI3377TbOud+/eIiIiQmv7r7/+WrRq1UrY2NiINm3aiG3bttVyxXWTLse5cePGAsBDPwsWLKj9wusYXd/Pf8Wgoxtdj/XBgwdF165dha2trWjWrJl49913RWlpaS1XXffocpzv378vFi5cKJo3by7s7OyEn5+fmDBhgsjLy6v9wuuQhISESj9zK45tRESE6N2790PPad++vbCxsRHNmjUT69evN2iNCiHYJ0dERETyxDE6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEZFYWLlyI9u3bG7sMIqolDDpEREQkWww6REREJFsMOkRkNCEhIYiMjERkZCRcXFzg4eGBefPmobJb8N25cwf29vbYvn271vK4uDg4OzujsLAQADBjxgy0atUKDg4OaNasGebNm4f79+8/soZJkyZpLQsPD8fo0aM1j4uLizF16lQ0atQIjo6O6Nq1KxITE2v8uomo9jDoEJFRbdiwAVZWVkhKSsLKlSuxfPlyfPrppw9tV69ePTz33HPYuHGj1vIvv/wS4eHhcHBwAAA4OzsjNjYWqampWLlyJT755BOsWLFCrxojIyNx6NAhbNq0Cb///jteeOEF9OvXD+fOndOrXSIyPCtjF0BE5s3Pzw8rVqyAQqFAQEAATp48iRUrVmDcuHEPbTt8+HCMHDkShYWFcHBwwJ07d7Bt2zbExcVptpk7d67m302aNMHUqVOxadMmTJ8+vUb1ZWVlYf369cjKyoKPjw8AYOrUqdixYwfWr1+PxYsX16hdIqod7NEhIqP6xz/+AYVCoXncrVs3nDt3Du+++y6cnJw0P1lZWRgwYACsra3xww8/AAC+++471KtXD2FhYZrnb968GT169ICXlxecnJwwd+5cZGVl1bi+kydPoqysDK1atdKqZ+/evcjIyKj5CyeiWsEeHSIySa+//jqGDRumeezj4wMrKyv861//wsaNG/Hvf/8bGzduxLBhw2Bl9eCj7NChQxg+fDjeeust9O3bFy4uLti0aROWLVtW5X4sLCweGhP01zE9BQUFsLS0RHJyMiwtLbW2c3JykuKlEpEBMegQkVEdPnxY6/Fvv/2Gli1bwt3dHe7u7g9tP3z4cDzzzDM4ffo0fvnlFyxatEiz7uDBg2jcuDHmzJmjWfbHH388cv8NGjRAdna25nFZWRlOnTqF0NBQAECHDh1QVlaGa9eu4amnnqrRayQi4+GpKyIyqqysLERHRyM9PR1fffUVVq9ejaioqCq379WrF7y8vDB8+HA0bdoUXbt21axr2bIlsrKysGnTJmRkZGDVqlVa43cq06dPH2zbtg3btm3DmTNn8MYbb+D27dua9a1atcLw4cMxatQobNmyBZmZmUhKSsKSJUuwbds2vV8/ERkWgw4RGdWoUaNQVFSELl26QKlUIioqCuPHj69ye4VCgZdeegknTpzA8OHDtdY9//zzmDx5MiIjI9G+fXscPHgQ8+bNe+T+X3nlFURERGDUqFHo3bs3mjVrpunNqbB+/XqMGjUKU6ZMQUBAAMLDw3HkyBH4+/vX/IUTUa1QiMomrCAiqgUhISFo3749YmJijF0KEckUe3SIiIhIthh0iIiISLZ46oqIiIhkiz06REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRb/wdOYLfV3fN1AQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHdCAYAAAAU4dNnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUhElEQVR4nO3dd1gU1/4G8HfpVRBQioBdIhYUC9cSBUOuJTGiXuNNLGiMJhEMir2bxKgxFtS7xpui6I1GU8TcG2MloLFEFMWoIDYMFsCGhQVB4Pz+8Mcmq6AsO8sus+/neXjCzsye+e642X05c+aMQgghQERERCRDZoYugIiIiEhfGHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIgq6cqVKwgODoa/vz9at26N7777ztAlEdFzKHhTTyKiysnKykJOTg7atGmD7OxstGvXDufOnYO9vb2hSyOiCrBHh4hkKzg4GOPHj5esPU9PT7Rp0wYA4OHhATc3N9y5c0ey9olIegw6RGRQI0aMgEKhgEKhgKWlJRo2bIgpU6bg4cOHhi7tmZKTk1FSUgIfHx9Dl0JEz2Bh6AKIiHr16oV169bh0aNHSE5ORnh4OBQKBT755BNDl1auO3fuYPjw4fjiiy8MXQoRPQd7dIjI4KytreHh4QEfHx+EhYUhNDQUe/bsUa8vLS3FwoUL0bBhQ9ja2iIgIADff/+9RhsqlQrDhw+Hg4MDPD09sXTpUq3rGDRoEOrUqYPPP/9cvezIkSOwsrLC7t27AQCFhYUICwvDtGnT0Llz5yq+YiKqLgw6RGRUTp8+jUOHDsHKykq9bOHChdiwYQPWrFmDM2fOYMKECRg6dCj27dun3mby5MnYt28ffvzxR+zevRuJiYk4fvy4VvteuXIlBg4ciA8//BAAkJeXh6FDh+K9997D3//+dwghMGLECPTo0QPDhg2T5gUTkV7xqisiMqgRI0bg66+/ho2NDYqLi1FYWAgzMzN8++23GDhwIAoLC+Hi4oK9e/eiU6dO6ue9/fbbyM/Px6ZNm5CXlwdXV1d8/fXXGDRoEIDHp5e8vb0xZswYxMTEVLqes2fPonnz5rh16xYmT56MpKQkHDt2DDY2Njhw4AC6deuG1q1bq7f/z3/+g1atWkl2PIhIWhyjQ0QGFxISgs8++wwqlQrLly+HhYUFBg4cCAC4cOEC8vPz8fLLL2s8p6ioCG3btgUAXLx4EUVFRQgKClKvd3FxgZ+fn9a1NGvWDHZ2dpgzZw42btyIpKQk2NjYAAC6du2K0tLSqr5MIjIABh0iMjh7e3s0adIEALB27VoEBATgq6++wqhRo5CXlwcA2L59O+rVq6fxPGtra8lrMTMzQ6tWrbB69WosXrwYAQEBku+DiKoPx+gQkVExMzPDjBkzMGvWLBQUFMDf3x/W1tbIzMxEkyZNNH7KLu1u3LgxLC0tceTIEXU7ubm5OHfunNb7LzubHxgYiIkTJ0rzoojIYBh0iMjoDBo0CObm5lAqlXB0dMSkSZMwYcIErF+/HhcvXsTx48exatUqrF+/HgDg4OCAUaNGYfLkyfjll19w+vRpjBgxAmZmf37E/etf/8JLL7303H3HxMTgyJEjKC0t1Xg+EdVMPHVFREbHwsICkZGRWLx4Md577z189NFHqFOnDhYuXIhLly7B2dkZgYGBmDFjhvo5n376KfLy8tC3b184Ojpi4sSJuHfvnnr9rVu3cPHixWfu99SpU5g+fTrGjh2LL7/8EsXFxbCw4MckUU3Gq66IiAA8fPgQHTp0QGBgIGJiYuDi4oJTp06hZcuWhi6NiHTAflkiIgDTpk2DSqXCv/71L9SuXRv169dHTEwMrl+/bujSiEgHDDpEZPJ2794NpVKJr7/+Go6OjgCAWbNmYdu2bYiIiDBwdUSkC566IiIiItlijw4RERHJFoMOERERyRaDDhEREckWgw4Ztf3796Nv377w8vKCQqHAtm3bDF0S1QB831B14vvNuDHokF5dv34dxcXFVX6+SqVCQEAAlEqlhFWR3PF9Q1LKzc1V33OtPHy/GTdO+Ul69cUXX+Czzz7D0KFDER4ejlatWmn1/N69e6N37956qo7kiu8b0lVxcTF27dqF2NhY/O9//8ORI0cqvMEr32/GjT06pFdTp07FihUrkJaWhsDAQAQGBmLlypW4efOmoUsjInrKqVOnMHHiRHh7e2P48OGoU6cOEhISeBf7GoxBh/TKxsYGgwcPxvbt23Ht2jUMHz4csbGxqFevHsLCwhAXF6fTqS0iIl3dvn0bK1asQGBgINq3b49Lly5h9erVyMrKwurVq9GpUydDl0g6YNChalO3bl2MHz8ex48fx48//ojDhw9jwIABOH36tKFLIyITtmrVKowfPx4ODg64cOEC4uLiMGDAAFhZWRm6NJIAgw5VmwcPHmDdunXo0aMH+vbti5YtW2L9+vXw9/c3dGlEZMLGjBmDjz76CNnZ2WjRogVGjhyJX375BaWlpYYujSTAoEN6VVJSgh07duDNN9+Eu7s7Fi1ahJdeegmXLl1CfHw8hg8fzr+aiMigvLy8MGvWLJw7dw47d+6ElZUVBgwYgPr162PatGk4c+aMoUskHTDokF4tWLAAb7zxBhwdHbF3716kp6dj5syZ8PX1rdTz8/LykJKSgpSUFABARkYGUlJSkJmZqceqqabj+4aqqnPnzvj3v/+N7OxsfPrpp0hJSUFAQABOnTpV4XP4fjNuvKkn6dXly5fh4eEBGxubKj0/MTERISEhTy0PDw9HbGysjtWRXPF9Q1K6fv06HBwcUKtWrXLX8/1m3Bh0iIiISLZ46oqIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeMRmFhIebNm4fCwkJDl0IywfcUSYnvp5qJ8+iQ0bh//z6cnJxw7969CifmItIG31MkJb6faib26BAREZFsMegQERGRbFkYugBDKy4uxokTJ+Du7g4zM+Y+Q3rw4AEA4Nq1a7h//76BqyE54HuKpMT3k3EpLS1FTk4O2rZtCwuLiuOMyY/ROXr0KDp27GjoMoiIiKgKkpKS0KFDhwrXm3yPjru7O4DHB8rT09PA1RhOfn4+/Pz8AADp6emws7MzcEVEREQVy8rKQseOHdXf4xUx+aBTdrrK09MT3t7eBq7GcFQqlfr3evXqwd7e3oDVEBERVc7zhp1wUAoRERHJlskGHaVSCX9/fwQHBxu6FCIiItITkw06ERERSE1NRWJioqFLISIiIj0x+TE6RGTcSkpK8OjRI0OXQUTVzNLSEubm5jq3w6BDREZJCIHs7GzcvXvX0KUQkYE4OzvDw8MDCoWiym0w6BCRUSoLOXXr1oWdnZ1OH3REVLMIIZCfn48bN24AgE7TvzDoEJHRKSkpUYccV1dXQ5dDRAZga2sLALhx4wbq1q1b5dNYJjsYmVddERmvsjE5nLiSyLSVfQboMk7PZIMOr7oiMn48XUVk2qT4DDDZoENERETyxzE6RFRj3Mu8h/xb+dW2Pzs3Ozj5OlXb/qSgUCgQFxeHsLAwQ5eC4OBgtGnTBjExMZXaPjY2FuPHj+eVdiQpBh0iqhHuZd6DsrkSj/Krb04dSztLRKRFaBV2srOzsXDhQmzfvh1Xr16Fk5MTmjRpgqFDhyI8PJzjjoiqGYMOEdUI+bfy8Sj/Efp/3R91mtfR+/5upt1E3NA45N/Kr3TQuXTpErp06QJnZ2csWLAArVq1grW1NU6dOoXPP/8c9erVw2uvvabnyonorxh09EmVCRTe0r0dazfA3lf3dohkoE7zOvAMrPqcGvo0duxYWFhY4NixY7C3t1cvb9SoEfr16wchhHpZZmYmxo0bh/j4eJiZmaFXr15YtWoV3N3d1dt89tlnWLJkCa5cuYKGDRti1qxZGDZsmHr9+fPnMWrUKCQlJaFRo0ZYsWLFc2sMDg5Gq1atYG5ujvXr18PKygrz58/Hm2++icjISHz//fdwd3fHqlWr0Lt3b/Xz9u3bh8mTJ+PkyZNwcXFBeHg45s+fDwuLx18jKpUK7733HrZu3QpHR0dMmjTpqX0XFhZi5syZ+Oabb3D37l20bNkSn3zyCa9+Jb0y2aCjVCqhVCpRVFSknx2oMoGfmgMlEownMLcDXk1j2CEyYrdv38bu3buxYMECjZDzV2VXkJSWlqJfv35wcHDAvn37UFxcjIiICAwePFh9JWhcXByioqIQExOD0NBQ/PTTTxg5ciS8vb0REhKC0tJSDBgwAO7u7jhy5Aju3buH8ePHV6rW9evXY8qUKUhKSsKWLVvw3nvvIS4uDv3798eMGTOwfPlyDBs2DJmZmbCzs8O1a9fQp08fjBgxAhs2bMDZs2cxevRo2NjYYN68eQCAyZMnY9++ffjxxx9Rt25dzJgxA8ePH0ebNm3U+42MjERqaio2b94MLy8vxMXFoVevXjh16hSaNm1a1UNP9GzCxF25ckUAEFeuXJG24dvJQmyEEJe+fvx7VX8uff24ndvJ0tb3hLy8PAFAABB5eXl63RfR8xQUFIjU1FRRUFCgXnY9+bqYh3nievL1aqlB2/399ttvAoDYunWrxnJXV1dhb28v7O3txZQpU4QQQuzevVuYm5uLzMxM9XZnzpwRAERSUpIQQojOnTuL0aNHa7Q1aNAg0adPHyGEELt27RIWFhbi2rVr6vU7duwQAERcXFyFdXbv3l107dpV/bi4uFjY29uLYcOGqZdlZWUJAOLw4cNCCCFmzJgh/Pz8RGlpqXobpVIpHBwcRElJiXjw4IGwsrIS3377rXr97du3ha2trYiKihJCCPHHH38Ic3NzjXqFEOKll14S06dPF0IIsW7dOuHk5FRh7WR6yvssKFPZ72+T7dGpNk7NAZdAQ1dBRAaSlJSE0tJSDBkyBIWFhQCAtLQ0+Pj4wMfHR72dv78/nJ2dkZaWhg4dOiAtLQ1jxozRaKtLly7q01NlbXh5eanXd+rUqVI1tW7dWv27ubk5XF1d0apVK/WystNnZdPvp6WloVOnThpzmnTp0gV5eXm4evUqcnNzUVRUhKCgIPV6FxcX+Pn5qR+fOnUKJSUlaNasmUYthYWFnP2a9IpBh4hIAk2aNIFCoUB6errG8kaNGgH4czp7Y2BpaanxWKFQaCz76yk2qeTl5cHc3BzJyclPTeXv4OAg2X6InsQJA4mIJODq6oqXX34Z//rXv6BSqZ65bfPmzXHlyhVcuXJFvSw1NRV3796Fv7+/epuDBw9qPO/gwYMa669cuYKsrCz1+t9++02ql/NUvYcPH9YYTH3w4EE4OjrC29sbjRs3hqWlJY4cOaJen5ubi3Pnzqkft23bFiUlJbhx4waaNGmi8ePh4aGXuokABh0iIsmsXr0axcXFaN++PbZs2YK0tDSkp6fj66+/xtmzZ9U9GaGhoWjVqhWGDBmC48ePIykpCcOHD0f37t3Rvn17AI8H98bGxuKzzz7D+fPnsWzZMmzdulV9NVNoaCiaNWuG8PBwnDx5Er/++itmzpypl9c1duxYXLlyBePGjcPZs2fx448/Yu7cuYiOjoaZmRkcHBwwatQoTJ48Gb/88gtOnz6NESNGwMzsz6+YZs2aYciQIRg+fDi2bt2KjIwMJCUlqeccItIXnroiohrlZtpNo91P48aNceLECSxYsADTp0/H1atXYW1tDX9/f0yaNAljx44F8PjU0I8//ohx48ahW7duGpeXlwkLC8OKFSuwZMkSREVFoWHDhli3bp36UmwzMzPExcVh1KhR6NixIxo0aICVK1eiV69ekrz+v6pXrx5+/vlnTJ48GQEBAXBxccGoUaMwa9Ys9Taffvop8vLy0LdvXzg6OmLixIm4d++eRjvr1q3D/PnzMXHiRFy7dg1ubm7429/+hldffVXymonKKMRf+yJN0NWrV+Hj44MrV67A29tbuobvHAd2tgN6Jes2GFmqdp5DpVKpz5Pn5eVVeHksUXV4+PAhMjIy0LBhQ9jY2ACoOTMjE5F0yvssKFPZ72/26BBRjeDk64SItAje64qItGKyQUfvEwYSkeScfJ0YPIhIKyY7GDkiIgKpqanqWUiJiIhIfkw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsMegQERGRbDHoEBERkWyZ7Dw6RFQDqTKBwlvVtz9rN8Det/r2Z2JGjBiBu3fvYtu2bZXaPjExESEhIcjNzYWzs7NeayP5YNAhoppBlQn81Bwoqb6ZkWFuB7yaVqmws2bNGkyePBm5ubmwsHj80ZqXl4fatWujS5cuGnN2lX1hX7hwAY0bN9ZX9UQEBh0iqikKbz0OOZ2+Bpya639/99KAw0Mf77cSQSckJAR5eXk4duwY/va3vwEAfv31V3h4eODIkSN4+PCh+l49CQkJ8PX1LTfkFBUVwcrKStrXQmTCTHaMjlKphL+/v/pOwERUQzg1f3yDW33/aBmm/Pz84Onp+VTPTb9+/dCwYUP89ttvGstDQkIAPD59ExYWho8//hheXl7w8/MDAJw6dQo9evSAra0tXF1dMWbMGOTl5anbKHvekiVL4OnpCVdXV0RERODRoz9vepqVlYVXXnkFtra2aNiwITZt2oQGDRogJiamwtdR1u6CBQvg7u4OZ2dnfPjhhyguLsbkyZPh4uICb29vrFu3TuN5z6u3pKQE0dHRcHZ2hqurK6ZMmYIn7yldWlqKhQsXomHDhrC1tUVAQAC+//77yv8jEJXDZIMObwFBRFILCQlBQkKC+nFCQgKCg4PRvXt39fKCggIcOXJEHXQAID4+Hunp6dizZw9++uknqFQq9OzZE7Vr18bRo0fx3XffYe/evYiMjNTYX0JCAi5evIiEhASsX78esbGxiI2NVa8fPnw4rl+/jsTERPzwww/4/PPPcePGjee+jl9++QXXr1/H/v37sWzZMsydOxevvvoqateujSNHjuDdd9/FO++8g6tXrwJApepdunQpYmNjsXbtWhw4cAB37txBXFycxn4XLlyIDRs2YM2aNThz5gwmTJiAoUOHYt++fZX/RyB6kjBxV65cEQDElStXpG34drIQG/H4v8bQznPk5eUJAAKAyMvL0+u+iJ6noKBApKamioKCgj8XVtP/C7rs74svvhD29vbi0aNH4v79+8LCwkLcuHFDbNq0SXTr1k0IIUR8fLwAIP744w8hhBDh4eHC3d1dFBYWqtv5/PPPRe3atTX+X9y+fbswMzMT2dnZ6ufVr19fFBcXq7cZNGiQGDx4sBBCiLS0NAFAHD16VL3+/PnzAoBYvnx5ha+hrN2SkhL1Mj8/P/Hiiy+qHxcXFwt7e3vxzTffVLpeT09PsXjxYvX6R48eCW9vb9GvXz8hhBAPHz4UdnZ24tChQxr1jBo1SrzxxhtCCCESEhIEAJGbm1th/SQv5X4W/L/Kfn9zjA4RkUSCg4OhUqlw9OhR5ObmolmzZqhTpw66d++OkSNH4uHDh0hMTESjRo3g6/vnuJ9WrVppjMtJS0tDQEAA7O3t1cu6dOmC0tJSpKenw93dHQDQokULmJubq7fx9PTEqVOnAADp6emwsLBAYGCgen2TJk1Qu3bt576OFi1awMzszw5/d3d3tGzZUv3Y3Nwcrq6u6t6h59VrY2ODrKwsBAUFqddbWFigffv26tNXFy5cQH5+Pl5++WWNWoqKitC2bdvn1kxUEQYdIiKJNGnSBN7e3khISEBubi66d+8OAPDy8oKPjw8OHTqEhIQE9OjRQ+N5fw0I2rC0tNR4rFAoUFpaWrXin9OuvvZVpmw8z/bt21GvXj2NddbW1pLth0yPyY7RISLSh5CQECQmJiIxMVHjYodu3bphx44dSEpK0hifU57mzZvj5MmTUKlU6mUHDx6EmZmZerDy8/j5+aG4uBgnTpxQL7tw4QJyc3O1e0GV8Lx6nZyc4OnpiSNHjqjXFxcXIzk5Wf3Y398f1tbWyMzMRJMmTTR+fHx8JK+ZTAeDDhGRhEJCQnDgwAGkpKSoe3QAoHv37vj3v/+NoqKi5wadIUOGwMbGBuHh4Th9+jQSEhIwbtw4DBs2TH3a6nleeOEFhIaGYsyYMUhKSsKJEycwZswY2NraQqFQ6PQaq1JvVFQUFi1ahG3btuHs2bMYO3Ys7t69q27D0dERkyZNwoQJE7B+/XpcvHgRx48fx6pVq7B+/XpJ6yXTwlNXRFSz3Esz6v2EhISgoKAAL7zwgkYo6d69Ox48eKC+DP1Z7OzssGvXLkRFRaFDhw6ws7PDwIEDsWzZMq1q2bBhA0aNGoVu3brBw8MDCxcuxJkzZ9Tz+UilMvVOnDgRWVlZCA8Ph5mZGd566y30798f9+7dU2/z0UcfoU6dOli4cCEuXboEZ2dnBAYGYsaMGZLWS6ZFIcQTExmYmKtXr8LHxwdXrlyBt7e3dA3fOQ7sbAf0Sn48J4eh23kOlUoFBwcHAI/PlVd1zACRFB4+fIiMjAw0bNjwzy9lI58ZuSYo+7zbu3cvXnrpJUOXQ/Rc5X4W/L/Kfn+zR4eIagZ738ehg/e6qrRffvkFeXl5aNWqFbKysjBlyhQ0aNAA3bp1M3RpRNWGQYeIag573xodPKrbo0ePMGPGDFy6dAmOjo7o3LkzNm7c+NQVVERyxqBDRCRTPXv2RM+ePQ1dBpFB8aorIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki2TDTpKpRL+/v4aU7QTERGRvJhs0ImIiEBqaioSExMNXQoRERHpCS8vJ6IaI//6dRTduVNt+7NycYGdl1e17U8biYmJCAkJQW5uLpydnQ1djslQKBSIi4tDWFiYTu00aNAA48ePx/jx4yWpqzzx8fGIjIzE6dOnYW5urrf9VMXOnTsxbdo0HD9+HGZm+u1zYdAhohoh//p1JP797ygpKKi2fZrb2iJ49+5KhZ3n3Shz7ty5mDdvnkSVkS4uX76Mhg0b4sSJE2jTpo1Wz83KykLt2rUrvX1sbCzGjx+vcQNTADh69Kjeb7UzZcoUzJo1Sx1ysrKyMHHiRBw7dgwXLlzA+++/j5iYmKee991332H27Nm4fPkymjZtik8++QR9+vSpcD8nTpzAW2+9hfPnzyMkJATr16+Hi4sLgMd3qQ8KCsJnn32Gjh07qp/Tq1cvzJ49Gxs3bsSwYcOkfeFPYNAhohqh6M4dlBQUoO2yZXBo3Fjv+8u7eBEnoqNRdOdOpYJOVlaW+vctW7Zgzpw5SE9PVy8ru5ecMSkqKoKVlZWhy6hWRUVFOj3fw8NDkjrq1KkjSTsVOXDgAC5evIiBAweqlxUWFqJOnTqYNWsWli9fXu7zDh06hDfeeAMLFy7Eq6++ik2bNiEsLAzHjx9Hy5Yty33O22+/jR49emDLli14++23sWDBAixZsgQAsHTpUnTp0kUj5JQZMWIEVq5cqfegA2Hirly5IgCIK1euSNvw7WQhNuLxf42hnefIy8sTAAQAkZeXp9d9ET1PQUGBSE1NFQUFBepluadOif82aiRyT52qlhp02d+6deuEk5OT+nFJSYn44IMPRL169YSVlZUICAgQO3bs0HjO77//LkJCQoSNjY1wcXERo0ePFg8ePKhwHwkJCQKAyM3NFUIIcevWLfHPf/5TeHl5CVtbW9GyZUuxadMmjed0795dREREiKioKOHq6iqCg4OFEEL8+OOPokmTJsLa2loEBweL2NhYjbaFEOLXX38VXbt2FTY2NsLb21uMGzfumZ8V4eHhol+/fhrLoqKiRPfu3TXqGTdunJg8ebKoXbu2cHd3F3PnztV4Tm5urhgzZoyoW7eusLa2Fi1atBD/+9//Kl1X/fr1xYcffiiGDRsmHB0dRXh4uPqzruynrKakpCQRGhoqXF1dRa1atUS3bt1EcrLmZy8AERcXJ4QQIiMjQwAQP/zwgwgODha2traidevW4tChQxr/Rn/9KXt99evXF8uXL9d4naNGjRJubm7C0dFRhISEiJSUFPX6lJQUERwcLBwcHISjo6MIDAwUR48erfD4R0REiH/84x8Vru/evbuIiop6avnrr78uXnnlFY1lQUFB4p133qmwLVtbW5GWliaEEGL16tWiT58+QgghLl68KJo2bSru379f7vP++OMPAUBcuHChwrbL+ywoU9nvb5MdjExEVF1WrFiBpUuXYsmSJfj999/Rs2dPvPbaazh//jwAQKVSoWfPnqhduzaOHj2K7777Dnv37kVkZGSl9/Hw4UO0a9cO27dvx+nTpzFmzBgMGzYMSUlJGtutX78eVlZWOHjwINasWYOMjAz84x//QFhYGE6ePIl33nkHM2fO1HjOxYsX0atXLwwcOBC///47tmzZggMHDmhVX0XWr18Pe3t7HDlyBIsXL8aHH36IPXv2AABKS0vRu3dvHDx4EF9//TVSU1OxaNEi9amYyta1ZMkSBAQE4MSJE5g9e7b6mOzduxdZWVnYunUrAODBgwcIDw/HgQMH8Ntvv6Fp06bo06cPHjx48MzXMHPmTEyaNAkpKSlo1qwZ3njjDRQXF6Nz586IiYlBrVq1kJWVhaysLEyaNKncNgYNGoQbN25gx44dSE5ORmBgIF566SXc+f8xaUOGDIG3tzeOHj2K5ORkTJs27Zn3LPv111/Rvn37SvwLaDp8+DBCQ0M1lvXs2ROHDx+u8DkBAQHYs2cPiouLER8fj9atWwMA3n33XSxevBiOjo7lPs/X1xfu7u749ddfta5TK8+MQSaAPTqPsUeHjIncenS8vLzExx9/rLFNhw4dxNixY4UQQnz++eeidu3aGv/vbd++XZiZmYns7Oxy9/Fkj055XnnlFTFx4kT14+7du4u2bdtqbDN16lTRsmVLjWUzZ87UaHvUqFFizJgxGtv8+uuvwszMrNy/tIWofI9O165dNbbp0KGDmDp1qhBCiF27dgkzMzORnp5e7j4qU1f9+vVFWFiYxjZlPTEnTpwot90yJSUlwtHRUaMHCeX06Hz55Zfq9WfOnBEA1D0cT74Xyvy1R+fXX38VtWrVEg8fPtTYpnHjxuLf//63EEIIR0dHERsb+8x6/8rJyUls2LChwvUV9ehYWlo+1ROoVCpF3bp1K2zr9OnTolu3bsLX11e88cYb4t69e2LDhg2iX79+4urVq+Lvf/+7aNy4sZg5c+ZTz23btq2YN29ehW1L0aPDMTpERHp0//59XL9+HV26dNFY3qVLF5w8eRIAkJaWhoCAAI3BqV26dEFpaSnS09Ph7u7+3P2UlJRgwYIF+Pbbb3Ht2jUUFRWhsLAQdnZ2Gtu1a9dO43F6ejo6dOigsezJ8RQnT57E77//jo0bN6qXCSFQWlqKjIwMNG/e/Ln1VaTsr/8ynp6euHHjBgAgJSUF3t7eaNasWbnPrWxdle3ZyMnJwaxZs5CYmIgbN26gpKQE+fn5yMzMrPRr8PT0BADcuHEDL7zwQqX2e/LkSeTl5cHV1VVjeUFBAS5evAgAiI6Oxttvv43//Oc/CA0NxaBBg9D4GWPVCgoKYGNjU6n966pFixbYt2+f+vHt27cxd+5c7N+/H+PGjUPnzp2xdetWdOjQAUFBQejbt696W1tbW+Tn5+u1PgYdIiIZ+PTTT7FixQrExMSgVatWsLe3x/jx458afFuVK33y8vLwzjvv4P33339qna+vb7nPMTMzgxBCY9mjR4+e2u7J0y8KhQKlpaUAHn8JSlFXZV9zeHg4bt++jRUrVqB+/fqwtrZGp06dnjuA+a+voezqu7LXUBl5eXnw9PQsd163sqkD5s2bhzfffBPbt2/Hjh07MHfuXGzevBn9+/cvt003Nzfk5uZWuoYyHh4eyMnJ0ViWk5Oj1SDs6OhojB8/Ht7e3khMTMT8+fNhb2+PV155BYmJiRpB586dO3ofmM2gQ0SkR7Vq1YKXlxcOHjyI7t27q5cfPHhQ3XPSvHlzxMbGQqVSqb+UDx48CDMzM/j5+VVqPwcPHkS/fv0wdOhQAI+/aM+dOwd/f/9nPs/Pzw8///yzxrKjR49qPA4MDERqaiqaNGlSqVqAx1cVnT59WmNZSkrKM8eVPKl169a4evUqzp07V26vTlXqAqC+0qykpERj+cGDB7F69Wr1pdRXrlzBrVu3tGq7vH09uZ8nBQYGIjs7GxYWFmjQoEGF2zVr1gzNmjXDhAkT8MYbb2DdunUVBp22bdsiNTVV63o7deqE+Ph4jfl99uzZg06dOlXq+fHx8UhLS8O6desAPD7GZQH3yaD78OFDXLx4EW3bttW6Tm1wMDIRkZ5NnjwZn3zyCbZs2YL09HRMmzYNKSkpiIqKAvB4oKmNjQ3Cw8Nx+vRpJCQkYNy4cRg2bFilTlsBQNOmTbFnzx4cOnQIaWlpeOedd576y7w877zzDs6ePYupU6fi3Llz+PbbbxEbGwvgz96JqVOn4tChQ4iMjERKSgrOnz+PH3/88ZmDkXv06IFjx45hw4YNOH/+PObOnftU8Hme7t27o1u3bhg4cCD27NmDjIwM7NixAzt37qxyXQBQt25d2NraYufOncjJycG9e/cAPD6G//nPf5CWloYjR45gyJAhz+1Vep4GDRogLy8P8fHxuHXrVrmnaUJDQ9GpUyeEhYVh9+7duHz5Mg4dOoSZM2fi2LFjKCgoQGRkJBITE/HHH3/g4MGDOHr06DNPGfbs2RMHDhx4anlKSgpSUlKQl5eHmzdvIiUlRSMQRUVFYefOnVi6dCnOnj2LefPm4dixY5UaeP7w4UNERkbi888/V08C2KVLFyiVSpw8eRI//PCDxinc3377Td1rpk/s0SGiGiXv/8cs1KT9vP/++7h37x4mTpyIGzduwN/fH//973/RtGlTAICdnR127dqFqKgodOjQAXZ2dhg4cCCWLVtW6X3MmjULly5dQs+ePWFnZ4cxY8YgLCxM/SVekYYNG+L777/HxIkTsWLFCnTq1AkzZ87Ee++9B2trawCPe1b27duHmTNn4sUXX4QQAo0bN8bgwYMrbLdnz56YPXs2pkyZgocPH+Ktt97C8OHDcerUqUq/JgD44YcfMGnSJLzxxhtQqVRo0qQJFi1aVOW6AMDCwgIrV67Ehx9+iDlz5uDFF19EYmIivvrqK4wZMwaBgYHw8fHBggULKrxKqrI6d+6Md999F4MHD1aPXXly4kiFQoGff/4ZM2fOxMiRI3Hz5k14eHigW7ducHd3h7m5OW7fvo3hw4cjJycHbm5uGDBgAD744IMK9ztkyBBMmTIF6enpGr2Cf+09SU5OxqZNm1C/fn1cvnxZXe+mTZswa9YszJgxA02bNsW2bdsqnEPnrz744AO88sorGpMwrly5Em+++Sa6deuGIUOGaMzr880332DIkCFPjSOTmkI8eRLVxFy9ehU+Pj64cuUKvL29pWv4znFgZzugVzLgEmj4dp5DpVKpJzTLy8vT+4ydRM/y8OFDZGRkoGHDhuoBlcY+M7KcfPzxx1izZg2uXLli6FJIB5MnT8b9+/fx73//29ClPOXWrVvw8/PDsWPH0LBhwwq3K++zoExlv7/Zo0NENYKdlxeCd+/mva70YPXq1ejQoQNcXV1x8OBBfPrpp5LMkUOGNXPmTKxevRqlpaV6v5+Uti5fvozVq1c/M+RIhUGHiGoMOy8vkwge1e38+fOYP38+7ty5A19fX0ycOBHTp083dFmkI2dnZ8yYMcPQZZSrffv2VZrQsCoYdIiITNzy5csrvPcRUU1nXH1ZRERERBJi0CEio2Xi10oQmTwpPgMYdIjI6JRNKqfvqeGJyLiVfQZoM9HkkzhGh4iMjrm5OZydndX3PLKzs1NPXkdE8ieEQH5+Pm7cuAFnZ2f1HeurgkGHiIxS2b11ysIOEZkeZ2dnre6zVZ4aH3Tu3r2L0NBQFBcXo7i4GFFRURg9erShyyIiHSkUCnh6eqJu3brl3gySiOTN0tJSp56cMjU+6Dg6OmL//v2ws7ODSqVCy5YtMWDAgKdud09ENZO5ubkkH3ZEZJpq/GBkc3Nz9X0yCgsLIYTglRpEREQEwAiCzv79+9G3b194eXlBoVBg27ZtT22jVCrRoEED2NjYICgoCElJSRrr7969i4CAAHh7e2Py5Mlwc3OrpuqJiIjImBk86KhUKgQEBECpVJa7fsuWLYiOjsbcuXNx/PhxBAQEoGfPnhoDFJ2dnXHy5ElkZGRg06ZNyMnJqXB/hYWFuH//vvrnwYMHkr8mIiIiMg4GDzq9e/fG/Pnz0b9//3LXL1u2DKNHj8bIkSPh7++PNWvWwM7ODmvXrn1qW3d3dwQEBODXX3+tcH8LFy6Ek5OT+sff31+y10JERETGxeBB51mKioqQnJyM0NBQ9TIzMzOEhobi8OHDAICcnBx1r8y9e/ewf/9++Pn5Vdjm9OnTce/ePfVPamqqfl8EERERGYxRX3V169YtlJSUwN3dXWO5u7s7zp49CwD4448/MGbMGPUg5HHjxqFVq1YVtmltbQ1ra2v14/v37+uneCIiIjI4ow46ldGxY0ekpKQYugwiIiIyQkZ96srNzQ3m5uZPDS7OycnReaZEpVIJf39/BAcH69QOERERGS+jDjpWVlZo164d4uPj1ctKS0sRHx+PTp066dR2REQEUlNTkZiYqGOVREREZKwMfuoqLy8PFy5cUD/OyMhASkoKXFxc4Ovri+joaISHh6N9+/bo2LEjYmJioFKpMHLkSANWTURERDWBwYPOsWPHEBISon4cHR0NAAgPD0dsbCwGDx6MmzdvYs6cOcjOzkabNm2wc+fOpwYoExERET3J4EEnODj4ubdsiIyMRGRkZDVVRERERHJh1GN09ImDkYmIiOTPZIMOByMTERHJn8kGHSIiIpI/Bh0iIiKSLQYdIiIiki2TDTocjExERCR/Jht0OBiZiIhI/kw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsmWzQ4VVXRERE8meyQYdXXREREcmfyQYdIiIikj8GHSIiIpItBh0iIiKSLQYdIiIiki0LQxdARERExif/+nUU3bmjcztWLi6w8/KSoKKqYdAhIiIiDfnXryPx739HSUGBzm2Z29oiePdug4Udkw06SqUSSqUSRUVFhi6FiIjIqBTduYOSggK0XbYMDo0bV7mdvIsXcSI6GkV37jDoVLeIiAhERETg6tWr8PHxMXQ5RERERsehcWM4t2xp6DJ0wsHIREREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWyZ7eTnn0SEiIjmSYkbjvIsXJarG8Ew26HAeHSIikhupZzS2cnGRoCrDMtmgQ0REJDdSzWgMGP4eVVJh0CEiIpIZOcxoLBUORiYiIiLZYo8OERGRDqQY/CsVOQ0ilgqDDhERURVJOfhXKnIZRCwVBh0iIqIqknLwr1TkMohYKgw6REREOuLgX+PFwchEREQkWww6REREJFs8dUVERCaJt0owDSYbdHivKyKimkmKgFJ05w6OjR3LWyWYAJMNOrzXFRFRzSP1vZyC1q3TOaTwKifjZrJBh4iIah7ey4m0xaBDREQ1Di/npsriVVdEREQkWww6REREJFsMOkRERCRbDDpEREQkWxyMTEREzyTFvDVS4QR9pC2tg87OnTvh4OCArl27Ang88d4XX3wBf39/KJVK1K5dW/IiiYhIe8Y2sZ5UOEEfaUProDN58mR88sknAIBTp05h4sSJiI6ORkJCAqKjo7Fu3TrJiyTg5tmbKLbJ0lv7+QX56t+zU7JhZ2tX4bZ2bnZw8nXSWy1Eps7YAopUE+tJhfPfkDa0DjoZGRnw9/cHAPzwww949dVXsWDBAhw/fhx9+vSRvEBT9yD7ARwBbB2yFdmXf9Pbforw560w1nZdCytYVbitpZ0lXt/6Ouzr2OutHm1IFbzuZd5D/q38529YTfWQaeLMv0TS0jroWFlZIT//8ZfB3r17MXz4cACAi4sL7t+/L211hId3H8IRQI/5PeDQvJve9pNfkI8FXRcAAN468FaFPTqqmyp8O+BbbOy1UW+1aMvSzhIRaRE6hYt7mfegbK7Eo/xHRlEPmS5jnPn3XuY9ZB3XvUeZfwSQIWgddLp27Yro6Gh06dIFSUlJ2LJlCwDg3Llz8Pb2lrzAmk7XU055GXdRRwE4N3RGnUBPCSvTpFKp1L97tPGAvX3FvTURaRGS9HxI4WbaTcQNjUP+rXydPkDzb+XjUf4j9P+6P+o0r6NzPX/8+odO7QDsqTJ1xjLzL/8IoJpO66Dzr3/9C2PHjsX333+Pzz77DPXq1QMA7NixA7169ZK8wJpKqlNOHg2uo+nHgI2zjXTF6cjJ10m2H1R1mteBpw6B0s7NDpZ2logbGqdzLcbYUyXVKUu5hiYpQqXq0i2JqpGmnptpNyX9I0DXP0qItKV10PH19cVPP/301PLly5dLUpBcSHXKyeLh78Dlz+Ho4ShdcTJ0M+2mQZ9fxsnXSZIeL2PrqZL6lKVUoUmqwCTF4N+87Dx80/+/yM+z1qkdW6vbaO79uD1nHTp0pA659V+sz4BCNZLWQcfc3BxZWVmoW7euxvLbt2+jbt26KCkpkaw4fVIqlVAqlSgqKnr+xjrQ+ZTTnSzgsmTlyI7UPSh2bhVfbVZZxtjjpWtPFSDdKUspQ5MUganwZjbORA9F6cOHOtfT1M0CvotWw7OTf5XbuBr/G7LXbEfWiSyYu1T9tLdUPTGAtD1wUvxRwR7B6iGX46x10BFClLu8sLAQVlYVX6ljbCIiIhAREYGrV6/Cx8fH0OVQFUnVgwLI539qfZEywEnxbyZVYHrcg/IQfjPmo25Qqyq3czU+GRkrP0Qtd3OdQmXJHU9kA0iYlYCCKb9XuR3AuHpijO20LmBc49ek7IGTilzGVFU66KxcuRIAoFAo8OWXX8LBwUG9rqSkBPv378cLL7wgfYVEz2GMPSj0bFL9m0kRmMp6UMycPHUa/HvrrDRjaxw8Hn+2Dtg4APaN/HRqy5jCu7Gd1jW2QdZSnWaWipzGVFU66JSNwRFCYM2aNTA3N1evs7KyQoMGDbBmzRrpKyQyYcYy9shYWVqoYGul29gaW6vH02LkZuTqdAl1bkauTnU8ye0FNzi31N+VloZgTH+USH2lpVSBQIrTzKSp0kEnIyMDABASEoKtW7fyVg9EemSMY4+MjZQT65WWWmDP9EN4VFL1U0Vlg4iN6QpJOZPqjwAGC/nTeoxOQkKCPuogor/g2KPnk3JivcICC3Q01+0YqS6lI23qdkCVg7unT1e5Hd608tmM9Y8Aufa+6lqXlNMlVFWlgk50dDQ++ugj2NvbIzo6+pnbLlu2TJLCiEydMXXzGzNjmVgv30PgnK0tTjznM7IyeNPKihnbHwHGGrx0JdXrkmq6BF1UKuicOHECjx49HrB1/PhxKBSKcreraDkR0V9JMm+NkfV82Hl5IXj3bp1fF8B7Sz2PMf0RYGzBSypSva6ywf4P7+o+fUNVVSrorFixArVq1QIAJCYm6rMeIpKYFKFCSlLfVduYej7svLwYUEyQMQUvKUnxulSXaiNbonqqqlJBp23btupJAhs1aoSjR4/C1dVV37URkY6kHLArJd5Vm4iqS6WCjrOzMzIyMlC3bl1cvnwZpaWl+q6LiCQg5YBdKTGgEFF1qVTQGThwILp37w5PT08oFAq0b99eYx6dv7p06ZKkBRKZKinHsRjLgF0ioupWqaDz+eefY8CAAbhw4QLef/99jB49Go6OvMkkkb5IecrJ2MaxEBFVp0rPo9OrVy8AQHJyMqKiohh0iCogVU+MVKeceJqIiEyZ1hMGrlu3Th91EMmC1D0xLh06MKQQEelA66BDRBWTcvAve2KIiHTHoEOkBxz8S0RkHMwMXQARERGRvlQq6AQGBiI3NxcA8OGHHyI/X/epromIiIj0rVJBJy0tDSqVCgDwwQcfIC8vT69FEREREUmhUmN02rRpg5EjR6Jr164QQmDJkiVwcHAod9s5c+ZIWiBRdZHjjSaJiExdpYJObGws5s6di59++gkKhQI7duyAhcXTT1UoFAw6VO2kCChyvtEkEZEpq1TQ8fPzw+bNmwEAZmZmiI+PR926dfVaWGVduXIFw4YNw40bN2BhYYHZs2dj0KBBhi6LqonU89bwRpNERPKi9eXlxnZDTwsLC8TExKBNmzbIzs5Gu3bt0KdPH9jb2xu6NKoGnLeGiIiepUrz6Fy8eBExMTFIS0sDAPj7+yMqKgqNDXB3ZE9PT3h6egIAPDw84Obmhjt37jDomBjOW0NEROXReh6dXbt2wd/fH0lJSWjdujVat26NI0eOoEWLFtizZ4/WBezfvx99+/aFl5cXFAoFtm3b9tQ2SqUSDRo0gI2NDYKCgpCUlFRuW8nJySgpKYGPj4/WdRAREZH8aN2jM23aNEyYMAGLFi16avnUqVPx8ssva9WeSqVCQEAA3nrrLQwYMOCp9Vu2bEF0dDTWrFmDoKAgxMTEoGfPnkhPT9cYJ3Tnzh0MHz4cX3zxxTP3V1hYiMLCQvXjBw8eaFUvERER1Rxa9+ikpaVh1KhRTy1/6623kJqaqnUBvXv3xvz589G/f/9y1y9btgyjR4/GyJEj4e/vjzVr1sDOzg5r165Vb1NYWIiwsDBMmzYNnTt3fub+Fi5cCCcnJ/WPv7+/1jUTERFRzaB1j06dOnWQkpKCpk2baixPSUmR/EqsoqIiJCcnY/r06eplZmZmCA0NxeHDhwEAQgiMGDECPXr0wLBhw57b5vTp0xEdHa1+fO3aNYYdA+G8NUREpG9aB53Ro0djzJgxuHTpkrr35ODBg/jkk080AoQUbt26hZKSEri7u2ssd3d3x9mzZ9X73rJlC1q3bq0e3/Of//wHrVq1KrdNa2trWFtbqx/fv39f0pqpcqS+LJzz1hARUXm0DjqzZ8+Go6Mjli5dqu5p8fLywrx58/D+++9LXuDzdO3a1egueafn42XhRERUHbQOOgqFAhMmTMCECRPUA3kdHR0lLwwA3NzcYG5ujpycHI3lOTk58PDw0KltpVIJpVKJoqIindoh3fCycCIi0ietByP/laOjo95CDgBYWVmhXbt2iI+PVy8rLS1FfHw8OnXqpFPbERERSE1NRWJioo5VEhERkbGq0oSBUsrLy8OFCxfUjzMyMpCSkgIXFxf4+voiOjoa4eHhaN++PTp27IiYmBioVCqMHDnSgFUTERFRTWDwoHPs2DGEhISoH5cNaA4PD0dsbCwGDx6MmzdvYs6cOcjOzkabNm2wc+fOpwYoExERET3J4EEnODgYQohnbhMZGYnIyMhqqoiIiIjkQqug8+jRI/Tq1Qtr1qx5ah6dmoaDkauO898QEVFNoVXQsbS0xO+//66vWqpVREQEIiIicPXqVd4bSwuc/4aIiGoSrU9dDR06FF999dVT97oi08D5b4iIqCbROugUFxdj7dq12Lt3L9q1awd7e3uN9cuWLZOsODJenP+GiIhqAq2DzunTpxEYGAgAOHfunMY6hUIhTVVEREREEtA66CQkJOijjmrHwchERETyV+XLyy9cuICLFy+iW7dusLW1hRCiRvXomOJg5GddLaXKz1f/fvfMGTyysyt3O14tRURENYnWQef27dt4/fXXkZCQAIVCgfPnz6NRo0YYNWoUateujaVLl+qjTtLR866WeviXG6MeGjwYNmYV3x2EV0sREVFNoXXQmTBhAiwtLZGZmYnmzZurlw8ePBjR0dEMOkbqeVdLqfLzgaAgAEDnLVtgX0GPDsCrpYiIqObQOujs3r0bu3btgre3t8bypk2b4o8//pCsMNKPiq6WslSp1L87t2jx1NV0RERENZHWdy9XqVSwK+ev/Tt37sDa2lqSooiIiIikoHXQefHFF7Fhwwb1Y4VCgdLSUixevFjj5pzGTqlUwt/fH8HBwYYuhYiIiPRE61NXixcvxksvvYRjx46hqKgIU6ZMwZkzZ3Dnzh0cPHhQHzXqhSledUVERGRqtO7RadmyJc6dO4euXbuiX79+UKlUGDBgAE6cOIHGOt4SgIiIiEhKVZpHx8nJCTNnzpS6FiIiIiJJVSno5Obm4quvvkJaWhoAwN/fHyNHjoQL51YhIiIiI6L1qav9+/ejQYMGWLlyJXJzc5Gbm4uVK1eiYcOG2L9/vz5qJCIiIqoSrXt0IiIiMHjwYHz22WcwNzcHAJSUlGDs2LGIiIjAqVOnJC+SiIiIqCq0DjoXLlzA999/rw45AGBubo7o6GiNy85JOvl3zVF09hJQy6rKbfAeVUREZIq0DjqBgYFIS0uDn5+fxvK0tDQEBARIVpi+1ZS7l+dn30TiSh+UPJqqc1u8RxUREZmaSgWd33//Xf37+++/j6ioKFy4cAF/+9vfAAC//fYblEolFi1apJ8q9aCmzKNTdPcBSh6Zoe2H78Mh4CWd2uI9qoiIyNRUKui0adMGCoUCQgj1silTpjy13ZtvvonBgwdLVx2pOTSsV+49qoiIiKhilQo6GRkZ+q6DiIiISHKVCjr169fXdx1EREREkqvShIHXr1/HgQMHcOPGDZSWlmqse//99yUpjIiIiEhXWged2NhYvPPOO7CysoKrqysUCoV6nUKhYNAhIiIio6F10Jk9ezbmzJmD6dOnw8xM64mViYiIiKqN1kklPz8f//znP2t8yFEqlfD390dwcLChSyEiIiI90TqtjBo1Ct99950+aqlWERERSE1NRWJioqFLISIiIj3R+tTVwoUL8eqrr2Lnzp1o1aoVLC0tNdYvW7ZMsuKIiIiIdFGloLNr1y71LSCeHIxMREREZCy0DjpLly7F2rVrMWLECD2UIy/5d82hupwJy1qnq9xGXsY1CSsiIiIyLVoHHWtra3Tp0kUftchK4a07OLrSByWPdL//l7llKaycHSWoioiIyLRoHXSioqKwatUqrFy5Uh/1yEZxXh5KHpmhybsj4Nm7f9Ubun8WVin/hJ1HHemKIyIiMhFaB52kpCT88ssv+Omnn9CiRYunBiNv3bpVsuLkwLaeh24347xTBFwuka4gIiIiE6J10HF2dsaAAQP0UQsRERGRpLQOOuvWrdNHHURERESSq9nTGxMRERE9g9Y9Og0bNnzmfDmXLl3SqSAiIiIiqWgddMaPH6/x+NGjRzhx4gR27tyJyZMnS1WX3imVSiiVShQVFRm6FCIiItKTKl1eXh6lUoljx47pXFB1iYiIQEREBK5evQofHx9Dl0NERER6INkYnd69e+OHH36QqjkiIiIinUkWdL7//nu4uLhI1RwRERGRzrQ+ddW2bVuNwchCCGRnZ+PmzZtYvXq1pMURERER6ULroBMWFqbx2MzMDHXq1EFwcDBeeOEFqeoiIiIi0pnWQWfu3Ln6qIOIiIhIcpwwkIiIiGSr0j06ZmZmz5woEAAUCgWKi4t1LoqIiIhICpUOOnFxcRWuO3z4MFauXInS0lJJiiIiIiKSQqWDTr9+/Z5alp6ejmnTpuF///sfhgwZgg8//FDS4oiIiIh0UaUxOtevX8fo0aPRqlUrFBcXIyUlBevXr0f9+vWlro+IiIioyrQKOvfu3cPUqVPRpEkTnDlzBvHx8fjf//6Hli1b6qs+IiIioiqr9KmrxYsX45NPPoGHhwe++eabck9lERERERmTSgedadOmwdbWFk2aNMH69euxfv36crfbunWrZMURERER6aLSQWf48OHPvbyciIiIyJhUOujExsbqsYzqp1QqoVQqUVRUZOhSiIiISE9MdmbkiIgIpKamIjEx0dClEBERkZ6YbNAhIiIi+WPQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItmSRdDp378/ateujX/84x+GLoWIiIiMiCyCTlRUFDZs2GDoMoiIiMjIyCLoBAcHw9HR0dBlEBERkZExeNDZv38/+vbtCy8vLygUCmzbtu2pbZRKJRo0aAAbGxsEBQUhKSmp+gslIiKiGsfC0AWoVCoEBATgrbfewoABA55av2XLFkRHR2PNmjUICgpCTEwMevbsifT0dNStW1fr/RUWFqKwsFD9+MGDBzrVX23upenehrUbYO+reztEREQ1hMGDTu/evdG7d+8K1y9btgyjR4/GyJEjAQBr1qzB9u3bsXbtWkybNk3r/S1cuBAffPBBleutdtZugLkdcHio7m2Z2wGvpjHsEBGRyTB40HmWoqIiJCcnY/r06eplZmZmCA0NxeHDh6vU5vTp0xEdHa1+fO3aNfj7++tcq97Y+z4OJ4W3dGvnXtrjsFR4i0GHiIhMhlEHnVu3bqGkpATu7u4ay93d3XH27Fn149DQUJw8eRIqlQre3t747rvv0KlTp3LbtLa2hrW1tfrx/fv39VO8lOx9GU6IiIiqwKiDTmXt3bvX0CUQERGRETL4VVfP4ubmBnNzc+Tk5Ggsz8nJgYeHh05tK5VK+Pv7Izg4WKd2iIiIyHgZddCxsrJCu3btEB8fr15WWlqK+Pj4Ck9NVVZERARSU1ORmJioY5VERERkrAx+6iovLw8XLlxQP87IyEBKSgpcXFzg6+uL6OhohIeHo3379ujYsSNiYmKgUqnUV2ERERERVcTgQefYsWMICQlRPy67Iio8PByxsbEYPHgwbt68iTlz5iA7Oxtt2rTBzp07nxqgTERERPQkgwed4OBgCCGeuU1kZCQiIyOrqSIiIiKSC6Meo6NPHIxMREQkfyYbdDgYmYiISP5MNugQERGR/DHoEBERkWwx6BAREZFsmWzQ4WBkIiIi+TPZoMPByERERPJnskGHiIiI5I9Bh4iIiGSLQYeIiIhki0GHiIiIZMtkgw6vuiIiIpI/kw06vOqKiIhI/kw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsMegQERGRbJls0OHl5URERPJnskGHl5cTERHJn8kGHSIiIpI/Bh0iIiKSLQYdIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki0GHSIiIpItkw06nDCQiIhI/kw26HDCQCIiIvkz2aBDRERE8segQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREsmWyQYf3uiIiIpI/kw06vNcVERGR/Jls0CEiIiL5Y9AhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2TLZoKNUKuHv74/g4GBDl0JERER6YrJBJyIiAqmpqUhMTDR0KURERKQnJht0iIiISP4YdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLZkEXR++ukn+Pn5oWnTpvjyyy8NXQ4REREZCQtDF6Cr4uJiREdHIyEhAU5OTmjXrh369+8PV1dXQ5dGREREBlbje3SSkpLQokUL1KtXDw4ODujduzd2795t6LKIiIjICBg86Ozfvx99+/aFl5cXFAoFtm3b9tQ2SqUSDRo0gI2NDYKCgpCUlKRed/36ddSrV0/9uF69erh27Vp1lE5ERERGzuBBR6VSISAgAEqlstz1W7ZsQXR0NObOnYvjx48jICAAPXv2xI0bN6q5UiIiIqppDD5Gp3fv3ujdu3eF65ctW4bRo0dj5MiRAIA1a9Zg+/btWLt2LaZNmwYvLy+NHpxr166hY8eOFbZXWFiIwsJC9eMHDx5I8CpqkHtp5S9XFfz5+50UoNC2WsqRhLUbYO9r6CqIiMgIGTzoPEtRURGSk5Mxffp09TIzMzOEhobi8OHDAICOHTvi9OnTuHbtGpycnLBjxw7Mnj27wjYXLlyIDz74QO+1Gx1rN8DcDjg8tPz1D//y+56ugE21VCUNczvg1TSGHSIieopRB51bt26hpKQE7u7uGsvd3d1x9uxZAICFhQWWLl2KkJAQlJaWYsqUKc+84mr69OmIjo5WP7527Rr8/f318wKMib3v4zBQeKv89aoCAF0f//7yAcC+hvTo3Et7HN4KbzHoEBHRU4w66FTWa6+9htdee61S21pbW8Pa2lr9+P79+/oqy/jY+1YcBqxVf/7u0gawt6+WkoiIiPTJ4IORn8XNzQ3m5ubIycnRWJ6TkwMPDw8DVUVEREQ1hVEHHSsrK7Rr1w7x8fHqZaWlpYiPj0enTp10alupVMLf3x/BwcE6VklERETGyuCnrvLy8nDhwgX144yMDKSkpMDFxQW+vr6Ijo5GeHg42rdvj44dOyImJgYqlUp9FVZVRUREICIiAlevXoWPj4+uL4OIiIiMkMGDzrFjxxASEqJ+XDZQODw8HLGxsRg8eDBu3ryJOXPmIDs7G23atMHOnTufGqBMRERE9CSDB53g4GAIIZ65TWRkJCIjI6upIiIiIpILox6jQ0RERKQLkw06HIxMREQkfyYbdCIiIpCamorExERDl0JERER6YrJBh4iIiOSPQYeIiIhki0GHiIiIZMtkgw4HIxMREcmfyQYdDkYmIiKSP4NPGGhopaWlAICsrCxJ2826nYtbxcXIup0Li6tXJW1bH/Lz89W/X7t2DXZ2dgasRgu5OcBtANdygHzjP85ERKYk6/bN//8uvAkbib8Ly763y77HK6IQz5uWWOaOHj2Kjh07GroMIiIiqoKkpCR06NChwvUmH3SKi4tx4sQJuLu7w8xMujN5Dx48gL+/P1JTU+Ho6ChZu6SJx7l68DhXHx7r6sHjXD30eZxLS0uRk5ODtm3bwsKi4hNUJh909OX+/ftwcnLCvXv3UKtWLUOXI1s8ztWDx7n68FhXDx7n6mEMx9lkByMTERGR/DHoEBERkWwx6OiJtbU15s6dC2tra0OXIms8ztWDx7n68FhXDx7n6mEMx5ljdIiIiEi22KNDREREssWgQ0RERLLFoENERESyxaBDREREssWgowOlUokGDRrAxsYGQUFBSEpKeub23333HV544QXY2NigVatW+Pnnn6up0ppNm+P8xRdf4MUXX0Tt2rVRu3ZthIaGPvffhR7T9v1cZvPmzVAoFAgLC9NvgTKi7bG+e/cuIiIi4OnpCWtrazRr1oyfH5Wg7XGOiYmBn58fbG1t4ePjgwkTJuDhw4fVVG3NtH//fvTt2xdeXl5QKBTYtm3bc5+TmJiIwMBAWFtbo0mTJoiNjdVvkYKqZPPmzcLKykqsXbtWnDlzRowePVo4OzuLnJyccrc/ePCgMDc3F4sXLxapqali1qxZwtLSUpw6daqaK69ZtD3Ob775plAqleLEiRMiLS1NjBgxQjg5OYmrV69Wc+U1i7bHuUxGRoaoV6+eePHFF0W/fv2qp9gaTttjXVhYKNq3by/69OkjDhw4IDIyMkRiYqJISUmp5sprFm2P88aNG4W1tbXYuHGjyMjIELt27RKenp5iwoQJ1Vx5zfLzzz+LmTNniq1btwoAIi4u7pnbX7p0SdjZ2Yno6GiRmpoqVq1aJczNzcXOnTv1ViODThV17NhRREREqB+XlJQILy8vsXDhwnK3f/3118Urr7yisSwoKEi88847eq2zptP2OD+puLhYODo6ivXr1+urRFmoynEuLi4WnTt3Fl9++aUIDw9n0KkkbY/1Z599Jho1aiSKioqqq0RZ0PY4R0REiB49emgsi46OFl26dNFrnXJSmaAzZcoU0aJFC41lgwcPFj179tRbXTx1VQVFRUVITk5GaGioepmZmRlCQ0Nx+PDhcp9z+PBhje0BoGfPnhVuT1U7zk/Kz8/Ho0eP4OLioq8ya7yqHucPP/wQdevWxahRo6qjTFmoyrH+73//i06dOiEiIgLu7u5o2bIlFixYgJKSkuoqu8apynHu3LkzkpOT1ae3Ll26hJ9//hl9+vSplppNhSG+Cyu+3SdV6NatWygpKYG7u7vGcnd3d5w9e7bc52RnZ5e7fXZ2tt7qrOmqcpyfNHXqVHh5eT31Pxb9qSrH+cCBA/jqq6+QkpJSDRXKR1WO9aVLl/DLL79gyJAh+Pnnn3HhwgWMHTsWjx49wty5c6uj7BqnKsf5zTffxK1bt9C1a1cIIVBcXIx3330XM2bMqI6STUZF34X3799HQUEBbG1tJd8ne3RIthYtWoTNmzcjLi4ONjY2hi5HNh48eIBhw4bhiy++gJubm6HLkb3S0lLUrVsXn3/+Odq1a4fBgwdj5syZWLNmjaFLk5XExEQsWLAAq1evxvHjx7F161Zs374dH330kaFLIx2xR6cK3NzcYG5ujpycHI3lOTk58PDwKPc5Hh4eWm1PVTvOZZYsWYJFixZh7969aN26tT7LrPG0Pc4XL17E5cuX0bdvX/Wy0tJSAICFhQXS09PRuHFj/RZdQ1XlPe3p6QlLS0uYm5urlzVv3hzZ2dkoKiqClZWVXmuuiapynGfPno1hw4bh7bffBgC0atUKKpUKY8aMwcyZM2Fmxn4BKVT0XVirVi299OYA7NGpEisrK7Rr1w7x8fHqZaWlpYiPj0enTp3KfU6nTp00tgeAPXv2VLg9Ve04A8DixYvx0UcfYefOnWjfvn11lFqjaXucX3jhBZw6dQopKSnqn9deew0hISFISUmBj49PdZZfo1TlPd2lSxdcuHBBHSYB4Ny5c/D09GTIqUBVjnN+fv5TYaYsXAreElIyBvku1NswZ5nbvHmzsLa2FrGxsSI1NVWMGTNGODs7i+zsbCGEEMOGDRPTpk1Tb3/w4EFhYWEhlixZItLS0sTcuXN5eXklaHucFy1aJKysrMT3338vsrKy1D8PHjww1EuoEbQ9zk/iVVeVp+2xzszMFI6OjiIyMlKkp6eLn376SdStW1fMnz/fUC+hRtD2OM+dO1c4OjqKb775Rly6dEns3r1bNG7cWLz++uuGegk1woMHD8SJEyfEiRMnBACxbNkyceLECfHHH38IIYSYNm2aGDZsmHr7ssvLJ0+eLNLS0oRSqeTl5cZs1apVwtfXV1hZWYmOHTuK3377Tb2ue/fuIjw8XGP7b7/9VjRr1kxYWVmJFi1aiO3bt1dzxTWTNse5fv36AsBTP3Pnzq3+wmsYbd/Pf8Wgox1tj/WhQ4dEUFCQsLa2Fo0aNRIff/yxKC4uruaqax5tjvOjR4/EvHnzROPGjYWNjY3w8fERY8eOFbm5udVfeA2SkJBQ7mdu2bENDw8X3bt3f+o5bdq0EVZWVqJRo0Zi3bp1eq1RIQT75IiIiEieOEaHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeITMq8efPQpk0bQ5dBRNWEQYeIiIhki0GHiIiIZItBh4gMJjg4GJGRkYiMjISTkxPc3Nwwe/ZslHcLvvv378PW1hY7duzQWB4XFwdHR0fk5+cDAKZOnYpmzZrBzs4OjRo1wuzZs/Ho0aNn1jB+/HiNZWFhYRgxYoT6cWFhISZNmoR69erB3t4eQUFBSExMrPLrJqLqw6BDRAa1fv16WFhYICkpCStWrMCyZcvw5ZdfPrVdrVq18Oqrr2LTpk0ayzdu3IiwsDDY2dkBABwdHREbG4vU1FSsWLECX3zxBZYvX65TjZGRkTh8+DA2b96M33//HYMGDUKvXr1w/vx5ndolIv2zMHQBRGTafHx8sHz5cigUCvj5+eHUqVNYvnw5Ro8e/dS2Q4YMwbBhw5Cfnw87Ozvcv38f27dvR1xcnHqbWbNmqX9v0KABJk2ahM2bN2PKlClVqi8zMxPr1q1DZmYmvLy8AACTJk3Czp07sW7dOixYsKBK7RJR9WCPDhEZ1N/+9jcoFAr1406dOuH8+fP4+OOP4eDgoP7JzMxEnz59YGlpif/+978AgB9++AG1atVCaGio+vlbtmxBly5d4OHhAQcHB8yaNQuZmZlVru/UqVMoKSlBs2bNNOrZt28fLl68WPUXTkTVgj06RGSU3n33XQwePFj92MvLCxYWFvjHP/6BTZs24Z///Cc2bdqEwYMHw8Li8UfZ4cOHMWTIEHzwwQfo2bMnnJycsHnzZixdurTC/ZiZmT01JuivY3ry8vJgbm6O5ORkmJuba2zn4OAgxUslIj1i0CEigzpy5IjG499++w1NmzaFq6srXF1dn9p+yJAhePnll3HmzBn88ssvmD9/vnrdoUOHUL9+fcycOVO97I8//njm/uvUqYOsrCz145KSEpw+fRohISEAgLZt26KkpAQ3btzAiy++WKXXSESGw1NXRGRQmZmZiI6ORnp6Or755husWrUKUVFRFW7frVs3eHh4YMiQIWjYsCGCgoLU65o2bYrMzExs3rwZFy9exMqVKzXG75SnR48e2L59O7Zv346zZ8/ivffew927d9XrmzVrhiFDhmD48OHYunUrMjIykJSUhIULF2L79u06v34i0i8GHSIyqOHDh6OgoAAdO3ZEREQEoqKiMGbMmAq3VygUeOONN3Dy5EkMGTJEY91rr72GCRMmIDIyEm3atMGhQ4cwe/bsZ+7/rbfeQnh4OIYPH47u3bujUaNG6t6cMuvWrcPw4cMxceJE+Pn5ISwsDEePHoWvr2/VXzgRVQuFKG/CCiKiahAcHIw2bdogJibG0KUQkUyxR4eIiIhki0GHiIiIZIunroiIiEi22KNDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLL1f5QROv7aux+5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "execution_count": 64, + "execution_count": 266, "metadata": {}, "output_type": "execute_result" } @@ -5026,9 +13609,17 @@ "fig" ] }, + { + "cell_type": "markdown", + "id": "86237b4b", + "metadata": {}, + "source": [ + "Wie man sieht, wird das falsche Modell nahezu immer verworfen während das richtige Modell meistens nicht verworfen wird. Das Modell mit dem überschätzten Fehler wird sogar häufiger akzeptiert, so dass man hier keine Unterscheidung vornehmen kann." + ] + }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 532, "id": "fc58ee5c-308c-4479-9236-751d7f158fe5", "metadata": {}, "outputs": [ @@ -5036,19 +13627,29 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fraction of wrong model fits rejected: 0.9996\n", - "Fraction of good model fits rejected: 0.1010\n" + "Fraction of wrong model fits rejected: 0.9998\n", + "Fraction of good model fits rejected: 0.1002\n", + "Fraction of overfitting model fits rejected: 0.0250\n" ] } ], "source": [ "print(f'Fraction of wrong model fits rejected: {np.sum(res_wrong_model<0.1)/len(res_wrong_model):.4f}')\n", - "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.1)/len(res_good_model):.4f}')" + "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.1)/len(res_good_model):.4f}')\n", + "print(f'Fraction of overfitting model fits rejected: {np.sum(res_overfit_model<0.1)/len(res_overfit_model):.4f}')" + ] + }, + { + "cell_type": "markdown", + "id": "392f4ef2", + "metadata": {}, + "source": [ + "Wenn man das Limit für den Hypothesen-Test auf 0,05 festlegt, ändern die Ergebnisse wie folgt:" ] }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 533, "id": "d5f5efbe-ef8f-48b0-b27b-166f21cb5a06", "metadata": {}, "outputs": [ @@ -5056,14 +13657,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fraction of wrong model fits rejected: 0.9980\n", - "Fraction of good model fits rejected: 0.0526\n" + "Fraction of wrong model fits rejected: 0.9986\n", + "Fraction of good model fits rejected: 0.0534\n", + "Fraction of overfitting model fits rejected: 0.0114\n" ] } ], "source": [ "print(f'Fraction of wrong model fits rejected: {np.sum(res_wrong_model<0.05)/len(res_wrong_model):.4f}')\n", - "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.05)/len(res_good_model):.4f}')" + "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.05)/len(res_good_model):.4f}')\n", + "print(f'Fraction of overfitting model fits rejected: {np.sum(res_overfit_model<0.05)/len(res_overfit_model):.4f}')" ] }, { @@ -5071,21 +13674,13 @@ "id": "de9861f6-7870-4dd8-8366-15e0c7dd5125", "metadata": {}, "source": [ - "Failed to reject model, NOT confirms model!" + "Der Hypothesen-Test kann das Modell nicht ablehnen, statt es zu bestätigen!" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e69f0a15-81a8-43e9-bda5-463705ad19c2", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "jupyter", "language": "python", "name": "python3" }, @@ -5099,7 +13694,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.10.11" } }, "nbformat": 4, diff --git a/Kapitel_1._Einstieg_in_die_Welt_von_Python.ipynb b/Kapitel_1._Einstieg_in_die_Welt_von_Python.ipynb deleted file mode 100644 index 986ecdf..0000000 --- a/Kapitel_1._Einstieg_in_die_Welt_von_Python.ipynb +++ /dev/null @@ -1,1172 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Kapitel 1. Einstieg in die Welt von Python:\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Ihrer Vorbereitung haben Sie bisher die folgenden Konzepte kennengelernt:\n", - "\n", - "* Aufbau eines Jupyter-Notebooks (Aufgabe 1).\n", - "* Einfache Rechenoperationen (Aufgabe 2 a.)\n", - "* Einfache Zeichenketten (engl. Strings) und formatierte Strings (Aufgabe 2 b.).\n", - "* Das Definieren von Funktionen (Aufgabe 3.)\n", - "* Das Definieren von Messtabellen.\n", - "\n", - "Hierauf wollen wir an unserem heutigen Versuchstag aufbauen." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Arbeiten mit Messreihen:\n", - "\n", - "Bisher hat uns das programmieren eher mehr Arbeit gemacht als uns welche abgenommen. Zeitersparnis bekommen wir, wenn wir viele Rechnungen hintereinander ausführen müssen. Hierfür gibt es die **for**-Schleife. Diese Schleife führt die gleichen Zeilen eins Codes wiederholt für die Elemente in einer Liste aus:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:07:49.905202Z", - "start_time": "2019-11-04T12:07:49.889579Z" - } - }, - "outputs": [], - "source": [ - "liste = [1, 2, 3, 4]\n", - "\n", - "for wert in liste:\n", - " print('Wert:', wert)\n", - " rechnung = wert + 2\n", - "\n", - "print('Rechnung:', rechnung)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bei einer Schleife ist darauf zu achten, dass der Anweisungsblock, welcher wiederholt ausgeführt werden soll, mit 4x Leerzeichen eingrückt wurde. Dies entspricht einmal die **Tab-Taste**:\n", - "\n", - "\"Tab-Taste\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:08:53.901374Z", - "start_time": "2019-11-04T12:08:53.885753Z" - } - }, - "outputs": [], - "source": [ - "liste = [1, 2, 3, 4]\n", - "print('Hier läuft das Hauptprogramm')\n", - "\n", - "for wert in liste:\n", - " print('Schleife')\n", - " print('Wert:', wert)\n", - " rechnung = wert + 2\n", - " \n", - "print('Hier läuft wieder das Hauptprogramm')\n", - "rechnung = rechnung + 5\n", - "print('Letztes Ergebnis + 5: ', rechnung)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Statt das Ergebnis lediglich per `print`-Anweisung darstellen zu lassen, können wir auch unser Wissen um Listen benutzen und die berechneten Werte einer neuen Liste anfügen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# (Funktion haben wir bereits in der Vorbereitung definiert)\n", - "def Spannung(Strom, Widerstand):\n", - " '''\n", - " Diese Funktion berechnet die Spannung eines Ohmschen \n", - " Widerstands.\n", - " \n", - " Args:\n", - " Strom (float): Der gemessene Strom in mA.\n", - " Widerstand (float): Der Wert des verwendeten Widerstands\n", - " in Ohm.\n", - " \n", - " Returns:\n", - " float: Die berechnete Spannung in V.\n", - " '''\n", - " return Widerstand * Strom/1000" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:10:08.503300Z", - "start_time": "2019-11-04T12:10:08.472059Z" - } - }, - "outputs": [], - "source": [ - "Stromwerte = [101, 105, 98, 87, 112] # mA\n", - "Spannungswerte = [] # Einheit? <-- Deshalb Docstrings und Help!\n", - "Widerstand = 100 # Ohm\n", - "\n", - "for Strom in Stromwerte:\n", - " res = Spannung(Strom, Widerstand)\n", - " Spannungswerte.append(res)\n", - "\n", - "Spannungswerte" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Python ermöglicht uns auch eine kompaktere Schreibweise, die so genannte \"list comprehension\": " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:11:40.799393Z", - "start_time": "2019-11-04T12:11:40.783772Z" - } - }, - "outputs": [], - "source": [ - "Spannungswerte = [Spannung(Strom, 100) for Strom in Stromwerte]\n", - "Spannungswerte" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wir können auch über mehrere Daten gleichzeitig \"loopen\". Hierzu kann die `zip` Anweisung genutzt werden. `zip` verbindet hierbei die einzelnen Elemente einer Liste wie bei einem Reißverschluss miteinander:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:12:42.522873Z", - "start_time": "2019-11-04T12:12:42.507254Z" - } - }, - "outputs": [], - "source": [ - "Werte1 = ['A', 'B', 'C', 'D']\n", - "Werte2 = [0, 1, 2, 3]\n", - "\n", - "for w1, w2 in zip(Werte1, Werte2):\n", - " print(w1, ' und ', w2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dies kann zum Beispiel dann hilfreich sein, wenn sich mehr als eine Variable ändern soll, z.B. bei einer Messreihe für die Schallgeschwindigkeit in Luft:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:13:30.363510Z", - "start_time": "2019-11-04T12:13:30.347888Z" - } - }, - "outputs": [], - "source": [ - "# Gemessene Werte:\n", - "frequenzen = [30.17, 30.63, 30.01, 29.98, 30.12, 29.87, 29.94] #kHz\n", - "wellenlängen = [11.12, 11.34, 11.45, 11.25, 11.01, 11.45, 11.23] # mm\n", - "\n", - "# Variante 1:\n", - "schallgeschindigkeiten = [] # m/s\n", - "\n", - "for f, l in zip(frequenzen, wellenlängen):\n", - " schallgeschindigkeiten.append(f*l)\n", - "\n", - "print(schallgeschindigkeiten)\n", - "\n", - "# oder Variante 2:\n", - "schallgeschindigkeiten2 = [f*l for f,l in zip(frequenzen, wellenlängen)]\n", - "print(schallgeschindigkeiten2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wir können auch die `zip`-Anweisung mit mehr als nur zwei Listen verwenden:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:13:49.912658Z", - "start_time": "2019-11-04T12:13:49.897039Z" - } - }, - "outputs": [], - "source": [ - "l1 = ['a', 'b', 'c']\n", - "l2 = [1, 2, 3]\n", - "l3 = ['x', 'y', 'z']\n", - "\n", - "for i,j,k in zip(l1, l2, l3):\n", - " print(i, 'und', j, 'und', k)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "#### Aufgabe 4.b.: Werte berechnen:\n", - "Kopieren Sie Ihre Lösung von Aufgabe 4.a. aus der Vorbereitung in das Notebook und berechnen Sie nun für die Messwerte aus Aufgabe 4 a. die Leistung $P$ und den Widerstand $R$ sowie deren Fehler. Nutzen Sie hierfür die ausführliche schrebweise der **for**-Schleife im Fall des Widerstands $R$ und den list-comprehension Syntax für die Leistung $P$.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:46:37.221396Z", - "start_time": "2019-11-04T12:46:37.190151Z" - } - }, - "outputs": [], - "source": [ - "# Hier eine kleine Hilfestellung für den Start:\n", - "# Messwerttabelle aus Aufgabe 4. a.:\n", - "spannung_werte = [12., 11.78, 12.56, 12.34, 12.01, 11.94]\n", - "strom_werte = [110, 98, 102, 124, 105, 95]\n", - "dspannung_werte = [0.32, 0.15, 0.63, 0.12, 0.20, 0.17]\n", - "dstrom_werte = [10] * len(strom_werte)\n", - "widerstand_werte = []\n", - "\n", - "# Beispiel für die Berechnung des Widerstandes:\n", - "def res(i, u):\n", - " r = u / i\n", - " return r\n", - "\n", - "for strom, spannung in zip(strom_werte, spannung_werte):\n", - " widerstand_werte.append(res(strom, spannung))\n", - "\n", - "# Jetzt sind Sie gefragt:\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Darstellung von Messdaten mittels `Matplotlib`:\n", - "Das Plotten von Daten ist eines der wichtigsten Mittel, um eine Fülle von Informationen kompakt und verständlich seinem Gegenüber darzubieten. Gute Plots zu erstellen kann eine regelrechte Kunst sein und ist für ein gutes Paper, bzw. eine gute Bachelor- bzw. Masterarbeit unverzichtbar. \n", - "\n", - "
\n", - "\"{{\n", - "
Resultate des XENON1T Dunkle Materie Experiments. Die Graphik wurde mittels Matplotlib in Python erstellt.
\n", - "
\n", - "\n", - "Jede Programmiersprache verfügt über zusätzliche Pakete (im Englischen \"packages\"), welche die Funktionalität der verwendeten Programmiersprache erweitern. **Matplotlib** ist ein umfangreiches Package, welches das Zeichnen von 2D und 3D Grafiken ermöglicht. Alle Parameter und Einstellungen einer Grafik werden entsprechend des Python-Codes eingestellt. Dadurch wird das Erstellen der Grafik reproduzierbar und man kann schnell dieselbe Grafik mit neuen Daten füttern.\n", - "\n", - "Es ist unmöglich, alle Möglichkeiten und Einstellungen, die **Matplotlib** bietet, auswendig zu kennen. Mit der Zeit werden Sie ein solides Grundwissen der gängisten Befehle haben. Für alles Weitere hilft die [Matplotlib-Dokumentation mit ihren Beispielen](http://matplotlib.org/). Des Weiteren ist insbesondere hier die **IPython-Hilfe** und die **automatische Vervollständigung von Befehlen** besonders hilfreich.\n", - "\n", - "Für das Praktikum wollen wir uns zunächst lediglich drei unterschiedliche Arten von Plots angucken:\n", - "\n", - "* Normale Liniengrafiken\n", - "* Plots mit Fehlerbalken\n", - "* Histogramme " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Zunächst müssen wir Python mitteilen, dass wir das **Matplotlib** package nutzen wollen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:52:38.927838Z", - "start_time": "2019-11-04T12:52:36.881444Z" - } - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`import` läd für uns aus dem package matplotlib das Modul `pyplot`. Mit Hilfe des Zusatzes `as plt` wird ein \"alias\" (Abkürzung) erstellt. Dieser Alias erspart uns im Nachfolgenden Arbeit, wie wir im nachfolgenden Beispiel sehen können:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:53:06.331480Z", - "start_time": "2019-11-04T12:53:05.987810Z" - } - }, - "outputs": [], - "source": [ - "plt.plot([1,2,3,4,5], # <-- x-Daten\n", - " [1,2,3,4,5] # <-- y-Daten\n", - " )\n", - "plt.show() # <-- Zeigen des Plots" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hätten wir den Alias nicht definiert, hätten wir den folgenden etwas länglichen Code benötigt, den Sie niemals nutzen sollten:\n", - "\n", - "```python\n", - "matplotlib.pyplot.plot([1,2,3,4,5], [1,2,3,4,5])\n", - "matplotlib.pyplot.show()\n", - "```\n", - "\n", - "Innerhalb der Python-Community haben sich ein paar Standards etabliert, an welche man sich halten sollte. So ist für `matplotlib.pyplot` der Alias `plt` zu verwenden.\n", - "\n", - "Im oberen Beispiel haben Sie nun auch bereits gesehen, wie wir einfache Liniengrafiken erstellen können. Dabei sieht der Plot noch etwas blass aus. Dies können wir mit ein paar zusätzlichen Befehlen und Argumenten ändern." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:54:21.547247Z", - "start_time": "2019-11-04T12:54:21.226301Z" - } - }, - "outputs": [], - "source": [ - "xdaten = [1,2,3,4,5]\n", - "ydaten = [1,2,2,4,5]\n", - "\n", - "plt.plot(xdaten, ydaten, # <-- Wie eben die x und y daten\n", - " color='red', # <-- Farbe der Linie\n", - " linestyle='dashed', # <-- Linientyp\n", - " label='Spannungskurve', # <-- Name der Linie\n", - " )\n", - "plt.xlabel('X-Achse') # <-- Beschriftung der x-Achse\n", - "plt.ylabel('Y-Achse') # <-- Beschiftung der y-Achse\n", - "plt.legend() # <-- Hinzufügen der Legend mit den \n", - " # in plot definierten labels\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Viele der eben verwendeten Optionen bieten euch unterschiedliche Auswahlmöglichkeiten:\n", - "\n", - "**Linestyle:**\n", - "* `''`: keine Linie\n", - "* `'-'`: durchgehende Linie\n", - "* `'--'`: gestrichelte Linie\n", - "* `'-.'`: Strich-Punktlinie\n", - "* `':'`: Punktlinie\n", - "\n", - "**Color**:\n", - "* red, blue, yellow, ...\n", - "* RGB Werte von 0 bis 1 (statt von 0 bis 255): (1, 1, 1), (1, 0.2, 0.4)\n", - "\n", - "Darüber hinaus gibt es auch noch andere nützliche Styleoptionen wie `alpha`, was die Transparenz der Linie ändert (Werte zwischen 0-1), oder die `linewidth`-Option, mit dessen Hilfe Sie die Linienbreite ändern können.\n", - "\n", - "Auch die anderen Befehle, welche wir verwendetet haben, verfügen über zusätzliche Optionen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:55:35.863633Z", - "start_time": "2019-11-04T12:55:35.535586Z" - } - }, - "outputs": [], - "source": [ - "xdaten = [1,2,3,4,5]\n", - "ydaten = [1,2,2,4,5]\n", - "\n", - "plt.plot(xdaten, ydaten, \n", - " color='red', \n", - " linestyle='dashed', \n", - " label='Graph 1' \n", - " )\n", - "plt.xlabel('X-Achse',\n", - " color=(0,1,0) # <-- Beschriftungsfrabe\n", - " ) \n", - "\n", - "plt.ylabel('Y-Achse', \n", - " fontsize=14) # <-- Beschiftungsgröße\n", - "\n", - "plt.legend(title='Messwerte', # <-- Legendentitel\n", - " loc=3) # <-- Legendenposition: \n", - " # 0: Best, \n", - " # 1: Oben Rechts \n", - " # 2: Oben Links\n", - " # 3: Unten Links \n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sofern ihr mehrere Graphen in einen Plot zeichnen möchtet geht dies auch ganz einfach." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:56:56.976082Z", - "start_time": "2019-11-04T12:56:56.644588Z" - } - }, - "outputs": [], - "source": [ - "xdaten = [-3, -2, -1, 0, 1, 2, 3]\n", - "ydaten1 = xdaten\n", - "ydaten2 = [x**2 for x in xdaten]\n", - "ydaten3 = [x**3 for x in xdaten]\n", - "\n", - "plt.plot(xdaten, ydaten1, label='Linear')\n", - "plt.plot(xdaten, ydaten2, label='Quadratisch')\n", - "plt.plot(xdaten, ydaten3, label='Cubisch')\n", - "\n", - "plt.legend(title='Exponent')\n", - "plt.xlabel('X-Werte')\n", - "plt.ylabel('Y-Werte')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ihr seht, das `plot` zwischen den angegebene Werte interpoliert. Möchtet ihr eine glatte Kurve zeichnen so müsst ihr die Anzahl an Punkten für die Interpolation erhöhen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T12:58:19.439740Z", - "start_time": "2019-11-04T12:58:19.116107Z" - } - }, - "outputs": [], - "source": [ - "def cubic(x):\n", - " '''\n", - " Eine Funktion, die den cubischen Wert einer Zahl zurück gibt.\n", - " '''\n", - " return x**3\n", - "\n", - "\n", - "x1 = range(-3, 4, 1) # <- Werte zwischen -3 und 3\n", - "x2 = [i / 10 for i in range(-30, 31, 1)] # <- 10 mal mehr Werte\n", - "\n", - "y1 = [cubic(j) for j in x1]\n", - "y2 = [cubic(value) for value in x2]\n", - "\n", - "\n", - "plt.plot(x1, y1, label='Werte 1', linestyle='dashed')\n", - "plt.plot(x2, y2, label='Werte 2')\n", - "\n", - "plt.xlabel('x-Werte')\n", - "plt.ylabel('y-Werte')\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Errorbarplot\n", - "\n", - "In der Physik gehören zu jedem gemessen Wert eine Messunsicherheit / ein Messfehler. Diese Fehler sollten natürlich auch in unseren Grafiken korrekt dargestellt werden. Hierfür können wir den `errorbar`-Plot verwenden." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:11:34.208204Z", - "start_time": "2019-11-04T13:11:33.895770Z" - } - }, - "outputs": [], - "source": [ - "spannung = [0.9, 2.0, 3.0, 4.1, 4.9, 6.2] # [V]\n", - "strom = [105, 204, 298, 391, 506, 601] # [mA]\n", - "spannung_error = [0.3]*len(spannung) # Konstanter Ablesefehler [V]\n", - "strom_error = [14, 9, 12, 8, 7, 11] # gemessener schwankender Fehler[mA]\n", - "\n", - "# plt.errorbar() # <--- Wie verwende ich den errorbar plot?\n", - "\n", - "plt.ylabel('Spannung [V]')\n", - "plt.xlabel('Strom [mA]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "#### Aufgabe 5.: Erstellen einer `errorbar`-Plot:\n", - "\n", - "Editieren Sie die obere Zelle so, dass Sie mithilfe des Befehls \n", - "\n", - "```python\n", - "plt.errorbar()\n", - "```\n", - "\n", - "einen Errorbarplot erstellen. Verwenden Sie hierfür die IPython-Hilfe-Funktion, um die exakte Syntax zu erfahren. \n", - "\n", - "**Erinnerung:**\n", - "Sie können die IPython-Hilfe aufrufen, indem Sie den Cursor innerhalb des Worts errorbar von plt.errorbar bewegen und die Tastenkombination **Shift + Tab** verwenden. Lesen Sie nun nach, wie Sie die x- und y-Werte und deren Fehler an die Funktion übergeben müssen." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Leider ist diese Standardvariante des Errorbar-Plots noch nicht das, was wir möchten. Die Messwerte sind linear interpoliert und die errorbars sehen noch etwas eigenartig aus. Dies können wir jedoch im Handumdrehen ändern. Kümmern wir uns zunächst um die Plotmarker:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-10-31T12:32:08.949153Z", - "start_time": "2019-10-31T12:32:08.543000Z" - } - }, - "outputs": [], - "source": [ - "#plt.errorbar(, \n", - "# ,\n", - "# ,\n", - "# , \n", - "# # Änderungen für plotmarker: | Kurzform:\n", - "# linestyle='', # <-- Schaltet den Linienstyle aus | ls=''\n", - "# marker='d', # <-- Ändert den Markertyp in Diamanten | -----\n", - "# markerfacecolor='orange', # <-- Ändert die Markerfarbe zu Orange | mfc='orange'\n", - "# markeredgecolor='k', # <-- Setzt die Kantenfarbe auf schwarz | mec='k'\n", - "# markersize=7 # <-- Ändert die Markergröße | ms='7'\n", - "# ) \n", - "\n", - "plt.ylabel('Spannung [V]')\n", - "plt.xlabel('Strom [mA]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "All die Optionen, welche wir hier für die Plotmarker verwendet haben, können wir auch in der normalen `plt.plot`-Anweisung verwenden. Dabei gibt es eine ganze Fülle an unterschiedlichen [Marker-Symbole](http://matplotlib.org/api/markers_api.html):\n", - " \n", - "* `+`: Plus\n", - "* `o`: Kreis\n", - "* `*`: Stern\n", - "* `,`,`.`: kleiner und sehr kleiner Punkt\n", - "* `s`: Quadrat\n", - "* `p`: Pentagon\n", - "* `h`: Hexagon\n", - "* `1`, `2`, `3`, `4`: nach unten, oben, links, rechts zeigendes Dreieck\n", - " \n", - "Nach dem wir uns um unsere Marker gekümmert haben, müssen wir nun auch noch unsere Fehlerbalken enstprechend anpassen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:11:52.919783Z", - "start_time": "2019-11-04T13:11:52.638600Z" - } - }, - "outputs": [], - "source": [ - "plt.errorbar(strom, \n", - " spannung,\n", - " xerr=strom_error,\n", - " yerr=spannung_error, \n", - " ls='', \n", - " marker='d', \n", - " mfc='orange', \n", - " mec='k', \n", - " ms=7,\n", - " # Fehlerbalken optionen:\n", - " ecolor='k', # <-- Ändert die Linienfarbe der errorbars\n", - " elinewidth=2, # <-- Ändert die Fehlerbalkenbreite\n", - " capsize=5, # <-- Ändert die Breite der Endkappen der Fehlerbalken\n", - " capthick=2, # <-- Ändert die Dicke der Endkappen\n", - " ) \n", - "\n", - "plt.ylabel('Spannung [V]')\n", - "plt.xlabel('Strom [mA]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Histogramme:\n", - "\n", - "Ein weiterer Plottyp, welcher häufig Verwendung findet, ist das Histogramm. Um unser Histogramm mit Pseudozufallszahlen zu bestücken, müssen wir diese erst erzeugen. Hierfür können wir das `numpy`-Modul verwenden. `numpy` ist ein weiteres Standardmodul, welches viele nützliche Funktionen mit sich bringt. Hier wollen wir uns jedoch nur auf die Erstellung von Zufallszahlen beschränken. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:13:40.357937Z", - "start_time": "2019-11-04T13:13:40.342316Z" - } - }, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`np` ist eine konvetionelle Abkürkung." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:13:40.844488Z", - "start_time": "2019-11-04T13:13:40.828850Z" - } - }, - "outputs": [], - "source": [ - "rnd_numbers = np.random.normal(0, 1, 1000) # <-- Hier werden 1000 gausförmig verteile Zufallszahlen\n", - " # mit einem Mittelwert von 0 und einer Standardabweichung \n", - " # von 1 erzeugt." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Das Histgromm lässt sich ganz einfach mit der `plt.hist`-Anweisung erstellt:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:13:52.473958Z", - "start_time": "2019-11-04T13:13:52.177152Z" - } - }, - "outputs": [], - "source": [ - "plt.hist(rnd_numbers)\n", - "\n", - "plt.xlabel('Zufallswert')\n", - "plt.ylabel('Anzahl der Einträge')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Auch für Histogramme gibt es viele unterschiedliche Optionen, welche Sie entweder mithilfe der Help-Funktion oder anhand der Beispiele in der [Matplolib-Dokumentation](http://matplotlib.org/) herrausfinden können." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:15:09.390753Z", - "start_time": "2019-11-04T13:15:09.031464Z" - } - }, - "outputs": [], - "source": [ - "rnd_numbers2 = np.random.normal(1, 2, 1000)\n", - "\n", - "\n", - "plt.hist(rnd_numbers, \n", - " bins=13, \n", - " range=(-3,5), # <-- Achtung: Im Gegensatz zur range-Anweisung ist \n", - " # das Intervall hier geschlossen [-3, 5]\n", - " histtype='step', # Ändert den Balkentyp in Stufen\n", - " linestyle='dashed',\n", - " label='Verteilung 1'\n", - " )\n", - "\n", - "plt.hist(rnd_numbers2, \n", - " bins=13,\n", - " range=(-3,5),\n", - " alpha=0.5, # Ändert die Transparenz der Balken \n", - " label='Verteilung 2'\n", - " )\n", - "\n", - "plt.legend()\n", - "plt.xlabel('Zufallswert')\n", - "plt.ylabel('Anzahl der Einträge')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Bei Histogrammen sollten Sie immer darauf achten, dass das \"binning\" sinnvoll gewählt ist. Weder zu viele noch zu wenige Bins führen zu einer sinnvollen Darstellung Ihrer Daten." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T13:15:48.283946Z", - "start_time": "2019-11-04T13:15:47.327389Z" - } - }, - "outputs": [], - "source": [ - "plt.hist(rnd_numbers, \n", - " bins=100, \n", - " range=(-3,3),\n", - " label='Zu viele bins'\n", - " )\n", - "\n", - "plt.legend()\n", - "plt.xlabel('Zufallswert')\n", - "plt.ylabel('Anzahl der Einträge')\n", - "plt.show()\n", - "\n", - "plt.hist(rnd_numbers, \n", - " bins=3, \n", - " range=(-3,3),\n", - " label='Zu wenige bins'\n", - " )\n", - "\n", - "plt.legend()\n", - "plt.xlabel('Zufallswert')\n", - "plt.ylabel('Anzahl der Einträge')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Nach dem wir jetzt die verschiedenen Plottypen mit ihren unterschiedlichen Optionen kennengelernt haben, möchten wir diese natürlich auch speichern können. Dies können wir auf zwei unterschiedliche Arten machen.\n", - "\n", - "Entweder Sie machen mit Ihrer Maus einen Rechtsklick auf die Grafik und wählen \"Grafik speichern als\" aus, oder Sie verwenden statt der `plt.show`- die `plt.savefig`-Anweisung dafür, wobei Letzteres empfohlen ist." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "#### Aufgabe 6.: Erstellen einer gauss'schen Wahrscheinlichkeitsdichte:\n", - "\n", - "Im folgenden wollen wir ein Plot mit einer gauss'schen Wahrscheinlichkeitsdichte erstellen. Gehen Sie hierfür wie folgt vor:\n", - "\n", - "1. Erstellen Sie 500000 pseudo-Zufallszahlen, welche einer Gaußverteilung mit $µ=5$ und $sigma=2$ folgen.\n", - "2. Tragen Sie die Zufallszahlen in ein Histogramm ein und normieren Sie dieses, sodass die Gesamtfläche 1 beträgt. **Tipp: `plt.hist` hat hierfür einen optionalen Parameter. Benutzen Sie die Help oder das Internet, um herrauszufinden, welcher es ist.**\n", - "3. Wählen Sie eine geeignete `range` und ein `binning` von 100 für das Histogram.\n", - "4. Plotten Sie anschließend die dazugehörige Gaußverteilung als Funktion. Gehen Sie dabei wie folgt vor:\n", - " 1. Erstellen Sie eine Gaußfunktion. *Erinnerung:* eine Gaußverteilung ist gegeben durch:\n", - " $$g(x, \\mu, \\sigma) = \\frac{1}{\\sqrt{2 \\pi} \\, \\sigma} \\exp\\bigg( \\frac{ -(x - \\mu)^2}{2 \\sigma^2}\\bigg) $$\n", - " **Tipp:** Das Numpy-Paket beinhaltet die Zahlen $\\pi$ und die Exponentialfunktion. Sie können diese über `np.pi` und `np.exp()` verwenden. \n", - " 2. Erstellen Sie eine Liste von x-Werten in der von Ihnen gewählten range in 0.1er Schritten. Verwenden Sie hierfür die `range`-Funktion zusammen mit der list-comprehension.\n", - " 3. Erstellen Sie den plot.\n", - "Das Ergebnis sollte wie folgt aussehen:\n", - "\n", - "
\n", - "\"{{\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fitten von Messdaten:\n", - "\n", - "### Methode der kleinsten Quadrate\n", - "\n", - "Die Herleitung dieser Methode befindet sich im separaten Notebook `Herleitung_Methode_der_kleinsten_Quadarate.ipynb`.\n", - "\n", - "Diese Methode ist in der Funktion `curve_fit` implementiert." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T14:03:03.767521Z", - "start_time": "2019-11-04T14:03:02.583918Z" - } - }, - "outputs": [], - "source": [ - "from scipy.optimize import curve_fit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Gucken wir uns einen Fit ohne Messfehler an um die Funktion etwas näher kennenzulernen." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T14:04:02.759738Z", - "start_time": "2019-11-04T14:04:02.714523Z" - } - }, - "outputs": [], - "source": [ - "# Und jetzt fitten wir:\n", - "para, pcov = curve_fit(Spannung, # <-- Funktion, die an die Messdaten gefittet werden soll\n", - " strom, # <-- gemessenen \"X\"-Werte\n", - " spannung # <-- gemessenen \"Y\"-Werte \n", - " )\n", - "\n", - "print(para[0])\n", - "print(pcov[0,0]**0.5)\n", - "\n", - "print(f'Widerstand R {para[0]:.2f} +/- {pcov[0,0]**0.5:.2f} Ohm')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sie sehen `curve_fit` gibt uns zwei unterschiedliche Listen zurück. Die erste Liste `para` beinhaltet die berechneten Fitparameter. `pcov` hingegen ist eine [Kovarianzmatrix](https://de.wikipedia.org/wiki/Kovarianzmatrix) auf deren Diagonalen Sie die Varianzen ($\\sigma^2$) der einzelnen Parameter finden (auf der Nebendiagonalen befinden sich die Kovarianzen). D.h. bei einer Funktion mit drei Parametern `def f(x, p1, p2, p3):` würde `para` und `pcov` allgemein so aussehen:\n", - "\n", - "```\n", - "para = [p1, p2, p3]\n", - "pcov = [[cov_1,1, cov_1,2, cov_1,3], \n", - " [cov_2,1, cov_2,2, cov_2,3],\n", - " [cov_3,1, cov_3,2, cov_3,3]]\n", - "```\n", - "wobei `cov_i,i` wie bereits erwähnt die einzelnen Kovarianzen bzw. Varianzen sind. Aber was genau macht jetzt curve_fit eigentlich, um auf diese Werte zu kommen? Wie bereits erklärt, basiert `curve_fit` auf der Methode der kleinsten Quadrate. D.h. die Funktion probiert etliche verschiedene Varianten Ihrer Parameter durch, bis es die Kombination gefunden hat, bei der das $\\chi^2$ klein wird. Gucken wir uns mal ein paar Zwischenschritte für unser Beispiel des ohm'schen Widerstandes an: \n", - "\n", - "
\n", - "\"{{\n", - "
\n", - "\n", - "Nach dem wir nun wissen, was genau `curve_fit` macht, wollen wir unser Resultat etwas schöner darstellen:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T14:06:00.969312Z", - "start_time": "2019-11-04T14:06:00.676047Z" - } - }, - "outputs": [], - "source": [ - "plt.plot(strom, \n", - " spannung, \n", - " ls='', \n", - " marker='d', \n", - " mfc='orange', \n", - " mec='k', \n", - " ms=7,\n", - " label='Messwerte aus A. 5 (ohne Fehler)'\n", - " ) \n", - "plt.plot(strom, \n", - " [Spannung(value, para[0]) for value in strom], \n", - " ls ='dashed',\n", - " color='orange',\n", - " label = f'Fitgerade mit R = {para[0]:0.2f} +/- {pcov[0,0]**(1/2):0.2f} Ohm'\n", - " )\n", - "\n", - "plt.legend()\n", - "plt.ylabel('Spannung [V]')\n", - "plt.xlabel('Strom [mA]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Das Ergebnis sieht bereits ganz gut aus, allerdings kennt hier unsere Funktion `curve_fit` die Fehler unserer Messwerte noch gar nicht. Da dies sehr unphysikalisch ist, wiederholen wir das Ganze nochmal mit Unsicherheiten:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T14:08:11.387120Z", - "start_time": "2019-11-04T14:08:11.137181Z" - } - }, - "outputs": [], - "source": [ - "para2, pcov2 = curve_fit(Spannung, \n", - " strom, \n", - " spannung,\n", - " sigma=spannung_error, # <-- Diesesmal mit Fehler\n", - " absolute_sigma=True # <-- Diese Option müssen wir auf True (wahr) setzen, da \n", - " # wir in der Regel absolute und keine relativen \n", - " # Unsicherheiten messen.\n", - " )\n", - "\n", - "plt.plot(strom,\n", - " [Spannung(value, para2[0]) for value in strom], \n", - " ls ='dashed',\n", - " color='orange',\n", - " label = f'Fitgerade mit R = {para2[0]:0.2f} +/- {pcov2[0,0]**(1/2):0.2f} ohm'\n", - " )\n", - "\n", - "plt.errorbar(strom, \n", - " spannung,\n", - " xerr=strom_error,\n", - " yerr=spannung_error, \n", - " ls='', \n", - " marker='d', \n", - " mfc='orange', \n", - " mec='k', \n", - " ms=7,\n", - " ecolor='k', \n", - " elinewidth=2, \n", - " capsize=5, \n", - " capthick=2, \n", - " label='Messwerte aus A. 5'\n", - " ) \n", - "\n", - "\n", - "plt.legend()\n", - "plt.ylabel('Spannung [V]')\n", - "plt.xlabel('Strom [mA]')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wie Sie sehen können, ist der Wert für den Widerstand zwar gleich geblieben, jedoch die Unsicherheit des Wertes hat sich erhöht.\n", - "\n", - "Wie gut fittet unsere obige Funktion unsere Messdaten? Sehr gut? Gut? Befriedigend? Oder doch eher schlecht? Wäre es nicht gut, ein Maß für die Güte des Fits zu haben? Wie könnte ein solches Maß aussehen?\n", - "\n", - "Sie haben das entscheidende Kriterium bereits kennengelernt, bei der Methode der kleinsten Quadrate geht es darum, das $\\chi^2$ zu minimieren. Gucken wir uns hierzu erst noch einmal an, wie sich das $\\chi^2$ berechnet:\n", - "\n", - "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", - "\n", - "Dies bedeute in unserem Fall:\n", - "\n", - "$$ \\chi(R)^2 = \\sum_{i = 1}^{N} \\frac{ (U_i - u(I_i; R))^2}{\\Delta U_i^2}$$\n", - "\n", - "wobei hier groß $U$ unsere gemessene Spannung und klein $u$ unsere Funktion entspricht." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T14:09:37.708408Z", - "start_time": "2019-11-04T14:09:37.683983Z" - } - }, - "outputs": [], - "source": [ - "chi_2 = [(u - Spannung(i, para2[0]))**2 / du**2 for i, u, du in zip(strom, spannung, spannung_error)]\n", - "chi_2 = sum(chi_2)\n", - "print(f'Das chi-qudrat ist {chi_2:.2f}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wie vergleicht sich dieses $\\chi^2$ nun mit einer Funktion, welche unsere Daten schlechter beschreibt? Zum Beispiel sofern wir die Spannung über die Funktion\n", - "\n", - "$$ U(R,I) = R \\cdot I $$\n", - "\n", - "$$ U(R,I) = R \\cdot I^2 $$\n", - "\n", - "beschreiben würden." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-11-04T14:10:02.649772Z", - "start_time": "2019-11-04T14:10:02.619695Z" - } - }, - "outputs": [], - "source": [ - "def Spannung2(I, R):\n", - " return R * I**2\n", - "\n", - "para3, pcov3 = curve_fit(Spannung2, \n", - " strom, \n", - " spannung,\n", - " sigma=spannung_error,\n", - " absolute_sigma=True,\n", - " )\n", - "\n", - "chi_2_new = [(u - Spannung2(I, *para3))**2 / du**2 for I, u, du in zip(strom, spannung, spannung_error)]\n", - "chi_2_new = sum(chi_2_new)\n", - "print(f'Chi-qudrat nach URI: {chi_2:.2f}\\nChi-qudrat nach URI-Parabel: {chi_2_new:.2f}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Wie Sie sehen können, ist das $\\chi^2$ für unsere zweite Funktion etwas größer als für das klassische ohm'sche Gesetzt. Somit würden wir unseren zweiten Ansatz verwerfen.\n", - "\n", - "Damit man für einen gegebenen Datensatz nicht hunderte von verschiedenen Funktionen durchprobieren muss, gibt es für das $\\chi^2$ eine allgemeine Faustregel, welche den berechneten $\\chi^2$-Wert mit der Anzahl unserer Freiheitsgrade vergleicht. Die Anzahl an Freiheitsgrade ist allgemeinhin gegeben als *Anzahl der Messwerte - Anzahl der Funktionsparameter* ($m - n$).\n", - "\n", - "1. Sofern $\\chi^2/\\text{ndof} >> 1$: sollte die Hypothese bzw. die Fitfunktion angezweifelt werden. Sie beschreibt in diesem Fall die Messdaten nur unzureichend. (Bzw. sollte $\\chi^2/\\text{ndof} > 1$ kann dies auch bedeuten, dass die Unsicherheiten unterschätzt sind)\n", - "2. Sofern $\\chi^2/\\text{ndof} \\approx 1$: beschreibt die Hypothese bzw. die Fitfunktion die Daten wie erwartet und wird nicht abgelehnt. \n", - "3. Falls $\\chi^2/\\text{ndof} << 1$ beschreibt die Hypothese bzw. die Fitfunktion die Daten wesentlich besser als erwartet. In diesem Fall heißt es nicht, dass unsere Hypothese falsch ist, aber man sollte überprüfen, ob die gemessenen Fehler nicht überschätzt worden sind (oder eine Korrelation zwischen den Messfehlern vorliegt). \n", - "\n", - "Sofern Sie eine Arbeit schreiben und Ihre **Goodness-of-the-Fit** ($\\chi^2/\\text{ndof}$) angeben wollen, so geben Sie immer beides an, das $\\chi^2$ und die Anzahl an Freiheitsgraden ndof. Beide Werte getrennt haben einen größeren Informationsgehalt als der resultierende Quotient (Genaueres lernen Sie z.B. in der Vorlesung *Statistik, Datenanalyse und Simulationen* im Master)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - "#### Aufgabe 7.: Fitten:\n", - "\n", - "Jetzt sind Sie ein letztes mal gefordert. In dieser Aufgabe wollen wir alles, was wir heute gelernt haben, nochmal reflektieren und anwenden. Erstellen Sie hierfür **ein neues Jupyter-Notebook** und bearbeiten Sie die folgende Aufgabe:\n", - "\n", - "Bestimmen Sie mithilfe Ihrer Vorbereitungsaufgabe 1 im anderen Notebook und der entsprechenden Funktion die Fallbeschleunigung $g_X$ mittels eines **$\\chi^2$-Fits**. Diskutieren Sie anschließend mittels der **Fit-Güte** Ihres Fits, ob Ihre Fitfunktion die gemessenen Daten gut widerspiegelt. Auf welchen Planeten in unserem Sonnensystem befinden Sie sich?\n", - "\n", - "Testen Sie anschließend, ob nicht ein **linearer Fit** mit der linearen Funktion `h(t, g, h0) = t * g + h0` besser geeignet wäre. Begründen Sie Ihre Antwort.\n", - "\n", - "Ist die lineare Funktion physikalisch sinnvoll?\n", - "\n", - "Vergessen Sie nicht, dass zu jedem Fit ein **Plot** gehört!\n", - "\n", - "---\n", - "\n", - "Es ist für das PGP (und später das fortgeschrittene Praktikum) **sehr wichtig**, sich mit der Vorgehensweise dieser Aufgabe vertraut zu machen! Wenn Sie Fragen bzw. Probleme haben, vergessen Sie nicht auf die folgenden Hilfsmöglichkeiten zurückzugreifen:\n", - "\n", - "1. Verwendung der IPython-Hilfe unter Verwendung der **Shift + Tab** Tasten.\n", - "2. Die ausführliche Dokumentation von Python und das Angebot etlicher nützlicher Hilfsbeiträge in verschiedenen Foren (z.B. stackoverflow) im Internet.\n", - "3. **Fragen Sie** den Assistenten per E-Mail :)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Neues Notebook nutzen!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/README.md b/README.md index 1e8e380..76dfd19 100644 --- a/README.md +++ b/README.md @@ -1,12 +1,12 @@ -# PGP1 Python Einfuehrung +# PGP2 Vorversuch *Erweiterte Statistik* Im folgenden finden Sie die Installationsanweisungen für Python und das Kursmaterial. Sofern Sie Fragen haben, bzw. Hilfe benötigen, können Sie an diese Personen eine Email schreiben: -Mo (Mohamad Bitar): mobitar@students.uni-mainz.de +Matthias Hoek: matthias.hoek@uni-mainz.de ## Kursmaterial installieren: -Die installation des Kursmaterials geschieht vollständig automatisch. Einfach den Anweisungen im PGP-Skript folgen und diesen Link verwenden: [Kursmaterial Installieren](https://jupyterhub.zdv.uni-mainz.de/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgitlab.rlp.net%2Fpgp%2Fpgp1-python-einfuehrung&urlpath=tree%2Fpgp1-python-einfuehrung%2F&branch=master) +Die installation des Kursmaterials geschieht vollständig automatisch. Einfach den Anweisungen im PGP-Skript folgen und diesen Link verwenden: [Kursmaterial Installieren](https://jupyterhub.zdv.uni-mainz.de/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgitlab.rlp.net%2Fpgp%2Fpgp1-python-einfuehrung&urlpath=tree%2Fpgp1-python-einfuehrung%2F&branch=add_pgp2_lecture) ## Einloggen auf dem Jupyterhub: diff --git a/Vertiefung_iminuit.ipynb b/Vertiefung_iminuit.ipynb new file mode 100644 index 0000000..47c13b5 --- /dev/null +++ b/Vertiefung_iminuit.ipynb @@ -0,0 +1,10788 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "5064e2e2", + "metadata": {}, + "source": [ + "# Fortgeschrittenes Beispiel\n", + "In diesem Abschnitt wollen wir uns mit einem komplexeren Beispiel beschäftigen, um weitere Methoden von `iminuit` kennzulernen.\n", + "Hierzu betrachten wir ein Zählexperiment, z.B. ein Teilchendetektor, bei dem ein Energiespektrum aufgenommen wird. Für jedes Energieintervall (Bin) wird die Anzahl der registrierten Ereignisse bestimmt. Hierbei können wir annehmen, dass die Verteilung der gemessenen Anzahl durch eine Poisson-Verteilung beschrieben wird. Dann entspricht der Fehler in jedem Bin gerade $\\sqrt n$. \n", + "Dieses Spektrum soll aus zwei gauß-förmigen Peaks über einem exponentiellen Untergrund bestehen und wird mit Hilfe eines Zufallszahlengenerator \"erzeugt\"." + ] + }, + { + "cell_type": "markdown", + "id": "100a4fe4-a5c4-4be3-a7f7-13337b97a194", + "metadata": {}, + "source": [ + "Nun wollen wir die Messdaten mit Hilfe von `iminuit` fitten. Hierzu müssen wir zunächste zwei Module des packages importieren und eine Funktion für die Entladekurve des Kondensators definieren:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "520f4973", + "metadata": {}, + "outputs": [], + "source": [ + "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `iminuit` zu installieren!\n", + "# import sys\n", + "# import subprocess\n", + "# subprocess.check_call([\n", + "# sys.executable, \n", + "# '-m',\n", + "# 'pip',\n", + "# 'install',\n", + "# '--proxy',\n", + "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", + "# 'iminuit'\n", + "# ])" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2ffe340b-cd0f-45ec-b5b8-42e7a0349d4c", + "metadata": {}, + "outputs": [], + "source": [ + "from iminuit import Minuit, cost\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "143a2a23-0a62-439f-9d28-9f555ae85589", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Number of counts per bin')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR2UlEQVR4nO3deXhTVfoH8G9aupemLF2H0hZEa6EgFIT8UECoIFTFaYcBBhGxAw6WtcimgAJCC6PI4CAIw6aCC4rKoiBlKSOUddhBoFgsSlNEIAVKW9re3x+YS5ImTW6b9Ca338/z5Hlyl6TvJSR5c857zlEJgiCAiIiISKHc5A6AiIiIyJGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlK0enIH4AwqKipw+fJl1K9fHyqVSu5wiIiIyAaCIODmzZsIDw+Hm5vl9hsmOwAuX76MiIgIucMgIiKiarh06RKaNGli8TiTHQD169cHcO8fKyAgQOZoiIiIyBaFhYWIiIgQv8ctYbIDiF1XAQEBTHaIiIhcjLUSFBYoExERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0REBopKyxA1eTOiJm9GUWmZ3OEQkR0w2SEiIiJFY7JDRIrH1hqiuo3JDhERESkakx0iIiJSNCY7REREpGhMdoiIqsB6HyLXx2SHiIiIFI3JDhERESkakx0iqlPYLUVU9zDZISKyQKsrljsEIrIDJjtERAa+PPyLeD9hfpbRNhG5pnpyB0BEVFNFpWWInb4VAHB6Zi/4elr+aCsoNG6tMXzsjvFd8caGU+KxCgFG20TkmtiyQ0SKZ9g688x7eyye9/Pvt1EhGO8z3SYi18Nkh4gULV93p1JrjSWRjfzgpjLeZ7pNRK5H9mTn119/xfPPP49GjRrBx8cHcXFxOHTokHhcEARMnz4dYWFh8PHxQUJCAs6fP2/0HNeuXcOgQYMQEBCAwMBApKSk4NatW7V9KUTkhHKvVm6tsSRU7Y0Zz7YUt91UMNomItcka7Jz/fp1dO7cGR4eHvjuu+9w+vRpvPPOO2jQoIF4zrx587Bw4UIsWbIE+/fvh5+fH3r16oXi4vv97oMGDcKpU6ewbds2bNq0Cbt378bw4cPluCQicgKGw8tDA7wltc4kxzcR72emdTXaJiLXJGuB8ty5cxEREYGVK1eK+6Kjo8X7giBgwYIFmDp1Kvr27QsA+PDDDxESEoKvv/4aAwYMwJkzZ7BlyxYcPHgQ7du3BwC899576NOnD95++22Eh4fX7kURkVPRt9ZM++ZeV5abyvY6nFC1t9G2VleMZkH+9g6RiBxM1padDRs2oH379ujXrx+Cg4PRtm1bLFu2TDyem5sLrVaLhIQEcZ9arUbHjh2RnZ0NAMjOzkZgYKCY6ABAQkIC3NzcsH//frN/t6SkBIWFhUY3IlIuw9aZjaM6S3qs6VD0zw7m2S0uIqodsiY7P/30ExYvXowWLVpg69atGDFiBEaPHo3Vq1cDALRaLQAgJCTE6HEhISHiMa1Wi+DgYKPj9erVQ8OGDcVzTKWnp0OtVou3iIgIe18aETmpkID7rTXWJg3U6oorFTe/tv4k8nV3HBYfEdmfrMlORUUF2rVrhzlz5qBt27YYPnw4hg0bhiVLljj0706ZMgU6nU68Xbp0yaF/j4icx9dHLov3rU0aaG4oerkg4OLVIkeFR0QOIGuyExYWhtjYWKN9Dz/8MPLy7jUTh4aGAgAKCgqMzikoKBCPhYaG4sqVK0bHy8rKcO3aNfEcU15eXggICDC6EVHdMOfbM+J9a5MGmhuK7q5SIaqxr6PCIyIHkDXZ6dy5M86ePWu079y5c4iMjARwr1g5NDQU27dvF48XFhZi//790Gg0AACNRoMbN27g8OHD4jk7duxARUUFOnbsWAtXQUTOxFrXVFWTBpo+1txQ9DlJrRCm9qlxnERUe2RNdsaNG4d9+/Zhzpw5yMnJwdq1a7F06VKkpqYCAFQqFcaOHYu33noLGzZswIkTJ/DCCy8gPDwczz33HIB7LUFPPfUUhg0bhgMHDmDPnj0YOXIkBgwYwJFYRHWElPWsTFtqDDfNPdZ0KHr/Dk1rFCsR1T5Zk50OHTrgq6++wieffIJWrVph1qxZWLBgAQYNGiSeM3HiRIwaNQrDhw9Hhw4dcOvWLWzZsgXe3veLDNesWYOYmBj06NEDffr0wWOPPYalS5fKcUlEVMvMzZBcVdfUa30eFu+bTr9j7bGmQ9GJyDXIvhDo008/jaefftricZVKhZkzZ2LmzJkWz2nYsCHWrl3riPCIyMmZmyG5qnl0nmsbjrc236vbebtfa4xfd9zmxxKRa5I92SEiqonoxn6VJgo03Nbqii22yLRt2qDSY91VKvww+QmxLqeotMxRoRNRLZF9bSwiopoIU/tUKiJ+ts39er2qanhYgExUNzDZISKXZ1hE/MmwTthw7P5cOhUC8OaG08ie0h0XMxLh61nP4mNZgEykTEx2iEhRikrLqj0RIAuQiZSJyQ4RKQonAiQiU0x2iEhRWIdDRKaY7BCR4rAOh4gMceg5ESlaTetwfD3r4WJGop2iISI5sGWHiIiIFI0tO0RUp5i21HDSQCLlY8sOERERKRqTHSIiIlI0dmMRkcurSdcUC5CJlI8tO0TkcopKyxA1eTOiJm9mzQ0RWcVkh4iIiBSNyQ4REREpGmt2iEhxWIdDRIbYskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdojIpWl1xXKHQEROjskOEbmcLw//It5PmJ+Fzw7myRgNETk7JjtE5FLydXfwxoZT4naFALy2/iTydXdkjIqInBmTHSJyeoZrYf2YX4gKwfh4uSDg4tUiWePiGl1EzovJDhG5lMhGfnBTGe9zV6kQ1djX4X+byQ2Ra2KyQ0QuJVTtjRnPthS33VTAnKRWCFP7yBgVETkzJjtE5HKS45uI9zPTuqJ/h6YyRkNEzo7JDhG5tFC1t9whEJGTY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0TkUpx1LSxnjYuImOwQkQswXQvLcFsuWl0x1+gichH15A6AiKgq5tbCMtyuTYbJTY93soyO6dfo6vJgECc4JHIyTHaIyKnlXr1daS2sCgH4ZFgnaJo3qrU4TJMuwcw5+jW6mOwQORd2YxGRU4tuLN9aWIbMJV2m5IiLiKxjskNETi1M7eMUa2GZS7oMN7lGF5HzYrJDRE7PGdbCMpd0zex7f5trdBE5LyY7ROQUikrLEDV5M6Imb0ZRaZnF8+RcC8s06TLc5hpdRM6LyQ4RUTUwuSFyHbImO2+++SZUKpXRLSYmRjxeXFyM1NRUNGrUCP7+/khOTkZBQYHRc+Tl5SExMRG+vr4IDg7GhAkTUFZm+VchERER1S2yDz1v2bIlMjMzxe169e6HNG7cOGzevBnr1q2DWq3GyJEjkZSUhD179gAAysvLkZiYiNDQUOzduxf5+fl44YUX4OHhgTlz5tT6tRAREZHzkT3ZqVevHkJDQyvt1+l0WL58OdauXYvu3bsDAFauXImHH34Y+/btQ6dOnfD999/j9OnTyMzMREhICB555BHMmjULkyZNwptvvglPT0+zf7OkpAQlJSXidmFhoWMujoiIiGQne83O+fPnER4ejmbNmmHQoEHIy7s33frhw4dx9+5dJCQkiOfGxMSgadOmyM7OBgBkZ2cjLi4OISEh4jm9evVCYWEhTp2yPMNqeno61Gq1eIuIiHDQ1REREZHcZE12OnbsiFWrVmHLli1YvHgxcnNz8fjjj+PmzZvQarXw9PREYGCg0WNCQkKg1WoBAFqt1ijR0R/XH7NkypQp0Ol04u3SpUv2vTAiIiJyGrJ2Y/Xu3Vu837p1a3Ts2BGRkZH4/PPP4ePjuIm5vLy84OXl5bDnJyIiIuche82OocDAQDz44IPIycnBk08+idLSUty4ccOodaegoECs8QkNDcWBAweMnkM/WstcHRARuY6i0jLETt8KADg9sxcuZiTKHFFlvp71nDIuIjIme82OoVu3buHChQsICwtDfHw8PDw8sH37dvH42bNnkZeXB41GAwDQaDQ4ceIErly5Ip6zbds2BAQEIDY2ttbjJyL70OqK5Q7BLH1yczEjEb6eTvVbkYiqIGuy8+qrryIrKwsXL17E3r178ec//xnu7u4YOHAg1Go1UlJSkJaWhp07d+Lw4cMYOnQoNBoNOnXqBADo2bMnYmNjMXjwYBw7dgxbt27F1KlTkZqaym4qIhfz5eFfxPsJ87OMtomIakLWnya//PILBg4ciN9//x1BQUF47LHHsG/fPgQFBQEA3n33Xbi5uSE5ORklJSXo1asX3n//ffHx7u7u2LRpE0aMGAGNRgM/Pz8MGTIEM2fOlOuSiKga8nV38MaG+yMoKwQYbRMR1YRKEARB7iDkVlhYCLVaDZ1Oh4CAALnDIapz9l64ir8t22/x+OmZvdhtRESV2Pr97VQ1O0RUN0U39oObynif6TYRUXUx2SEi2YWpfTDj2ZbitpsKRttERDVRrXbh8+fPY+fOnbhy5QoqKiqMjk2fPt0ugRFR3ZIc3wTTvrlXp5OZ1hWham9x21WZDp9nVxyRPCS/85YtW4YRI0agcePGCA0NhUp1v61ZpVIx2SGiGgtVe8sdAhEpiORk56233sLs2bMxadIkR8RDRFSJVleMZkH+codBRC5Kcs3O9evX0a9fP0fEQkQkMp1357ODeTJGQ0SuTHKy069fP3z//feOiIWICMC9lhzTeXdeW38S+bo7MkZFRK5KcjfWAw88gGnTpmHfvn2Ii4uDh4eH0fHRo0fbLTgiqpt+/v02KkxmACsXBFy8WoQwteMWCSYiZZKc7CxduhT+/v7IyspCVlaW0TGVSsVkh4hqLLLRvXl3DBMed5UKUY195QvKBqajr4jIOUhOdnJzcx0RBxGRKFTtjRnPthSHnrupgDlJrdiqQ0TVwkkFicgpJcc3Ee9npnVF/w5NZYyGiFyZTS07aWlpmDVrFvz8/JCWllblufPnz7dLYERUt/h61sPFjERxu6i0TLyvhHl3OHyeSD42JTtHjhzB3bt3xfuWGE4wSERU15kOn09PimMLFZEMbEp2du7cafY+ERGZZ2n4fJcHg1h7RFTLalSzc+nSJVy6dMlesRARKUZVw+eJqHZJTnbKysowbdo0qNVqREVFISoqCmq1GlOnThW7uoiI6jr98HlDrjB8nkiJJCc7o0aNwtKlSzFv3jwcOXIER44cwbx587B8+XLOsUNENisqLUPU5M2ImrzZqBhZKfTD5/U4fJ5IPpLn2Vm7di0+/fRT9O7dW9zXunVrREREYODAgVi8eLFdAyQickVaXTGS45uIcwVlpnXlaCwimUhOdry8vBAVFVVpf3R0NDw9Pe0RExFRpaHorsB09JVhy44Shs8TuSrJ3VgjR47ErFmzUFJSIu4rKSnB7NmzMXLkSLsGR0TkKvJ1dyqNvjLcJiL52NSyk5SUZLSdmZmJJk2aoE2bNgCAY8eOobS0FD169LB/hERELiD3auXRV6bbRCQPm5IdtVpttJ2cnGy0HRERYb+IiIhcUHTjyouXmm4TkTxsSnZWrlzp6DiIiFxamNqn0uKlhttEJB8uBEpEZCemi5cabhORfJjsEBE5AEdfETkPyUPPiYjsTakrgrvi8HkiJWLLDhHJwnROms8O5skYDREpmaRk5+7du+jRowfOnz/vqHiIqA4wNyfNa+tPIl93R8aoiEipJCU7Hh4eOH78uKNiIaI6wtycNFwRnIgcRXI31vPPP4/ly5c7IhYiqiP0c9IY4orgROQokguUy8rKsGLFCmRmZiI+Ph5+fn5Gx+fPn2+34IhImczNScMVwYnIUVSCIEia3/OJJ56w/GQqFXbs2FHjoGpbYWEh1Go1dDodAgIC5A6HqE4oKi1D7PStAIAd47kiOBFJZ+v3t+SWnZ07d9YoMCIiU5yThogcqdpDz3NycrB161bcuXNv9ITEBiIiIiKiWiE52fn999/Ro0cPPPjgg+jTpw/y8/MBACkpKRg/frzdAyQiIiKqCcnJzrhx4+Dh4YG8vDz4+t4fOdG/f39s2bLFrsERERER1ZTkmp3vv/8eW7duRZMmxgvctWjRAj///LPdAiMiIiKyB8ktO7dv3zZq0dG7du0avLy87BIUEUlTVFqGqMmbETV5M4pKy+QOh4jIqUhOdh5//HF8+OGH4rZKpUJFRQXmzZtX5bB0IiIiIjlI7saaN28eevTogUOHDqG0tBQTJ07EqVOncO3aNezZs8cRMRKRAnFFcCKqLZJbdlq1aoVz587hscceQ9++fXH79m0kJSXhyJEjaN68uSNiJCIiIqo2yS07AKBWq/H666/bOxYiIiIiu6vWpILXr1/H22+/jZSUFKSkpOCdd97BtWvXahRIRkYGVCoVxo4dK+4rLi5GamoqGjVqBH9/fyQnJ6OgoMDocXl5eUhMTISvry+Cg4MxYcIElJWxQJOIiIjukZzs7N69G1FRUVi4cCGuX7+O69evY+HChYiOjsbu3burFcTBgwfxwQcfoHXr1kb7x40bh40bN2LdunXIysrC5cuXkZSUJB4vLy9HYmIiSktLsXfvXqxevRqrVq3C9OnTqxUHERERKY/kZCc1NRX9+/dHbm4u1q9fj/Xr1+Onn37CgAEDkJqaKjmAW7duYdCgQVi2bBkaNGgg7tfpdFi+fDnmz5+P7t27Iz4+HitXrsTevXuxb98+APfm/Dl9+jQ+/vhjPPLII+jduzdmzZqFRYsWobS0VHIsREqg1RXLHQIRkVORnOzk5ORg/PjxcHd3F/e5u7sjLS0NOTk5kgNITU1FYmIiEhISjPYfPnwYd+/eNdofExODpk2bIjs7GwCQnZ2NuLg4hISEiOf06tULhYWFOHXqlMW/WVJSgsLCQqMbkSv78vAv4v2E+Vn47GCejNGQJZwPiUgekpOddu3a4cyZM5X2nzlzBm3atJH0XJ9++in+97//IT09vdIxrVYLT09PBAYGGu0PCQmBVqsVzzFMdPTH9ccsSU9Ph1qtFm8RERGS4iZyJvm6O3hjw/3kvkIAXlt/Evm6OzJGRUTkPCSPxho9ejTGjBmDnJwcdOrUCQCwb98+LFq0CBkZGTh+/Lh4rmkNjqFLly5hzJgx2LZtG7y9vasRevVNmTIFaWlp4nZhYSETHnJZuVdvo0Iw3lcuCLh4tQhhah95giIiciKSk52BAwcCACZOnGj2mEqlgiAIUKlUKC8vt/g8hw8fxpUrV9CuXTtxX3l5OXbv3o1///vf2Lp1K0pLS3Hjxg2j1p2CggKEhoYCAEJDQ3HgwAGj59WP1tKfY46XlxeXtiDFiG7sBzcVjBIed5UKUY0rL+tCRFQXSU52cnNz7fKHe/TogRMnThjtGzp0KGJiYjBp0iRERETAw8MD27dvR3JyMgDg7NmzyMvLg0ajAQBoNBrMnj0bV65cQXBwMABg27ZtCAgIQGxsrF3iJHJ2YWofzHi2JaZ9c68ry00FzElqxVYdIqI/SE52IiMj7fKH69evj1atWhnt8/PzQ6NGjcT9KSkpSEtLQ8OGDREQEIBRo0ZBo9GI3Wc9e/ZEbGwsBg8ejHnz5kGr1WLq1KlITU1lyw3VKcnxTcRkJzOtK5oF+Vs8t6i0DLHTtwIATs/sBV/Pas0tSkTkMpz6U+7dd9+Fm5sbkpOTUVJSgl69euH9998Xj7u7u2PTpk0YMWIENBoN/Pz8MGTIEMycOVPGqInkFeBTD1GTNwNgMkNEBDhZsrNr1y6jbW9vbyxatAiLFi2y+JjIyEh8++23Do6MiMi+tLriKlvgiMh+qrVcBBERScf5kIjkwWSHyAVwMjrXx/mQiOQjOdm5dOkSfvnl/q+TAwcOYOzYsVi6dKldAyMiy1wh+XGFGGtTVfMhEZFjSU52/va3v2Hnzp0A7s1S/OSTT+LAgQN4/fXXWRhMRBbV9eRHPx+SqYHL9tXJfw+i2iQ52Tl58iQeffRRAMDnn3+OVq1aYe/evVizZg1WrVpl7/iIiBRBPx+SnrnEh4gcQ3Kyc/fuXXEOm8zMTDz77LMA7i3SmZ+fb9/oiMgmvp71cDEjERczEiUNNecK6bUrOb6JeH/jqM4yRkJUt0hOdlq2bIklS5bgv//9L7Zt24annnoKAHD58mU0atTI7gESUfWZS2Y4Isg5hATU7pqARHWZ5GRn7ty5+OCDD9CtWzcMHDhQXOl8w4YNYvcWEcmnqmSGI4KIqC6SPKlgt27dcPXqVRQWFqJBgwbi/uHDh8PPz8+uwRFRZVpdMULV5lsFLCUzXR4MQpjahyukE1GdJLllp3v37rh586ZRogMADRs2RP/+/e0WGFFdZjpyybS1xnDbsKvK2vBmcyOCamOFdNYGEZGcJCc7u3btQmlpaaX9xcXF+O9//2uXoIjoPq2uuFJrzfRv7m8bdlWZS2bcVPeGN0dN3gy1j0elEUGOWiG9qgSNiKg22ZzsHD9+HMePHwcAnD59Wtw+fvw4jhw5guXLl+NPf/qTwwIlqqt+/r1ya43hpmHdjbnhzYbbgPGIoMy0rujfoandYzbXnWa4zZYeY/z3IHIsm2t2HnnkEahUKqhUKnTv3r3ScR8fH7z33nt2DY6IgMhG91prTBMeQ4Z1N8nxTTDtj5afzLSuCFV7i9umQtXeKCotQ+z0rQDst0q6ue40w+2E+VlIT4pzSKLlKr4+clm8z38PIsey+VMtNzcXgiCgWbNmOHDgAIKCgsRjnp6eCA4Ohru7u0OCJKrLQtXemPFsSzFh0fdSGeYSlupuLBUyO5q+O81SgmZaOF1X6OdDytfdQeeMHeL+uvrvQVRbbO7GioyMRFRUFCoqKtC+fXtERkaKt7CwMCY6RA5k2PW0fXxXzOxbO3U31WXanWZusuC6vC4U18kiql3Vaq8+f/48du7ciStXrqCiosLo2PTp0+0SGBGZF6r2rtRV1SzIX+aoKjOM8dPhnTBw2T6jL/jaGAXmrMy1fNXlfw8iR5Oc7CxbtgwjRoxA48aNERoaCpXq/m82lUrFZIfIzqqaVweQr6tKirgmaqOuOGdsjapN+pYv/nsQ1Q7Jyc5bb72F2bNnY9KkSY6Ih4hQedi26Yiq6rKWODmSK7RG1Sb+exDVHsnJzvXr19GvXz9HxEJEsD5sWyrTxCk9KQ4XMxLFfUWlZUb3azIyy/Dxh6b2sHieK7RG1Sb+exA5luRJBfv164fvv//eEbEQEawP27bGcAV03Z27ktbCKiiUNt+L6UzPRETOSHLLzgMPPIBp06Zh3759iIuLg4eHh9Hx0aNH2y04orrIXPGqtXl2LLFlLSzDlp9n3ttTnZCJiJya5GRn6dKl8Pf3R1ZWFrKysoyOqVQqJjtENWSueNVwWwpro37MdZkRESmN5GQnNzfXEXEQkQFzxauDNVFG5xjW3VhibdSPuZYfe9F3p+mxm4uI5CK5ZoeIaldNi1erWgvL3MKhVWGNDhG5IsktOy+99FKVx1esWFHtYIjIsUwTJ3MtP/Zq6dHqio2GU5u29NR1/Pcgqj2SW3auX79udLty5Qp27NiB9evX48aNGw4IkYgcybDlZ+OozuL96qzEbTrM/bODeTULjojIDiS37Hz11VeV9lVUVGDEiBFo3ry5XYIiInlkX7gm3pe6EveJX3Rmh7lzcUsikptdanbc3NyQlpaGd9991x5PR0QymfPtGfG+tTl5AOOWnAFL93FxSyJySnYrUL5w4QLKyliwSOTKpCQrWl2xUUuOuVIfLm5JRM5AcjdWWlqa0bYgCMjPz8fmzZsxZMgQuwVGpHRVLc0gV/GqlJW4f/696mHrXNySiJyF5GTnyJEjRttubm4ICgrCO++8Y3WkFhHVPimJ02t9HsZbm+91ZVlLVnw961U50zMXtyQiZyE52dm5c6cj4iAimRgmQ0WlZWKyYy5ZMazRGbhsH55tE46vj14GUHmmZy5uSUTOoto1O7/99ht++OEH/PDDD/jtt9/sGRMROQHTZMXc0hIbjl0WtzPTuhoNYycichaSk53bt2/jpZdeQlhYGLp06YIuXbogPDwcKSkpKCriqAsipbK2GjtbcojIWUlOdtLS0pCVlYWNGzfixo0buHHjBr755htkZWVh/PjxjoiRiJyAuaUlpCw1QUQkF8nJzpdffonly5ejd+/eCAgIQEBAAPr06YNly5bhiy++cESMRIqXe/WW0685pV9aQk9fo0NE5OwkJztFRUUICQmptD84OJjdWEQSGBb7PvPeHhkjsZ3poqKs0SEiVyA52dFoNHjjjTdQXHx/3Zw7d+5gxowZ0Gg0dg2OSKnMFfu6GnM1OvqRXRczEo3mDSIikpPkT6N//etf6NWrF5o0aYI2bdoAAI4dOwZvb29s3brV7gESKZG5Yl9nYDonj+nEh0RErkhystOqVSucP38ea9aswY8//ggAGDhwIAYNGgQfH86USmQLfbGvMyY8Usg10zMRkRTVamf29fXFsGHD7B0LUZ2hL/bVT8CnhMSHiMhZSa7ZSU9Px4oVKyrtX7FiBebOnWuXoIjqAsPi3o2jOov3tbpic6cTEVE1SU52PvjgA8TExFTa37JlSyxZskTScy1evBitW7cWh7BrNBp899134vHi4mKkpqaiUaNG8Pf3R3JyMgoKCoyeIy8vD4mJifD19UVwcDAmTJjA1dfJ5WRfuCbeT5ifhc8O5skYjWUsQHacotIyp59+gMhVSU52tFotwsLCKu0PCgpCfn6+pOdq0qQJMjIycPjwYRw6dAjdu3dH3759cerUvab9cePGYePGjVi3bh2ysrJw+fJlJCUliY8vLy9HYmIiSktLsXfvXqxevRqrVq3C9OnTpV4WkazmfHtGvF8hAK+tP4l83R0ZIyIiUg7JyU5ERAT27Kk8J8iePXsQHh4u6bmeeeYZ9OnTBy1atMCDDz6I2bNnw9/fH/v27YNOp8Py5csxf/58dO/eHfHx8Vi5ciX27t2Lffv2AQC+//57nD59Gh9//DEeeeQR9O7dG7NmzcKiRYtQWloq9dKIHKqqX+6m9TrlgoCLV51r3ip2rxGRq5Kc7AwbNgxjx47FypUr8fPPP+Pnn3/GihUrMG7cuBoVLZeXl+PTTz/F7du3odFocPjwYdy9excJCQniOTExMWjatCmys7MBANnZ2YiLizOa5LBXr14oLCwUW4fMKSkpQWFhodGNSE6myy64q1SIauwrTzAGDCc+dObuNSKiqkjudJ8wYQJ+//13vPLKK2Lribe3NyZNmoQpU6ZIDuDEiRPQaDQoLi6Gv78/vvrqK8TGxuLo0aPw9PREYGCg0fkhISHQarUA7nWpmc7mrN/Wn2NOeno6ZsyYITlWIkd5rc/DeGvzva4sNxUwJ6kVwtTyTuVgbuLD19afRJcHg2SPjYhICsktOyqVCnPnzsVvv/2Gffv24dixY7h27Vq162QeeughHD16FPv378eIESMwZMgQnD59ulrPZaspU6ZAp9OJt0uXLjn07xFZ81zb+13AmWld0b9DUxmjucfcxIfO2L1GRGRNtYdT+Pv7o0OHDjUOwNPTEw888AAAID4+HgcPHsS//vUv9O/fH6Wlpbhx44ZR605BQQFCQ0MBAKGhoThw4IDR8+lHa+nPMcfLywteXl41jp2oJgwn5DOs4TG3DIMczE186Czda0qn1RWjWZC/3GEQKYbklh1Hq6ioQElJCeLj4+Hh4YHt27eLx86ePYu8vDxxDS6NRoMTJ07gypUr4jnbtm1DQEAAYmNjaz12IiUxt8q5M3SvKRXro4gcR9aJMqZMmYLevXujadOmuHnzJtauXYtdu3Zh69atUKvVSElJQVpaGho2bIiAgACMGjUKGo0GnTp1AgD07NkTsbGxGDx4MObNmwetVoupU6ciNTWVLTdEdpAc30Sc5TkzrStbGxyE9VFEjiVrsnPlyhW88MILyM/Ph1qtRuvWrbF161Y8+eSTAIB3330Xbm5uSE5ORklJCXr16oX3339ffLy7uzs2bdqEESNGQKPRwM/PD0OGDMHMmTPluiQim7hiN4WzdK8pUVX1UUx2iGrOpmSnXbt22L59Oxo0aICZM2fi1Vdfha9vzfvtly9fXuVxb29vLFq0CIsWLbJ4TmRkJL799tsax0LkaKbdFOlJcU5RiEzyY30UkWPZVLNz5swZ3L59GwAwY8YM3Lp1y6FBESmNpW4KzpJMAOujiBzNppadRx55BEOHDsVjjz0GQRDw9ttvw9/ffBM8l2ogqsxaN4XhyCyqm1gfReQ4NiU7q1atwhtvvIFNmzZBpVLhu+++Q716lR+qUqmY7BCZwW4KkoL1UUT2ZVOy89BDD+HTTz8FALi5uWH79u0IDg52aGBESqLvptD/cneVbgq2OBGREkieZ6eiooKJDlE1JMc3Ee87yyzJRER1QbWGnl+4cAELFizAmTP31vKJjY3FmDFj0Lx5c7sGR6RU7KYgIqo9klt2tm7ditjYWBw4cACtW7dG69atsX//frRs2RLbtm1zRIxERERE1Sa5ZWfy5MkYN24cMjIyKu2fNGmSOCEgERHZjvVRRI4juWXnzJkzSElJqbT/pZdecvhq5URERERSSU52goKCcPTo0Ur7jx49ysJlIiIicjqSu7GGDRuG4cOH46effsL//d//AQD27NmDuXPnIi0tze4BEikFuymIiOShEgRBsH7afYIgYMGCBXjnnXdw+fJlAEB4eDgmTJiA0aNHQ6VSOSRQRyosLIRarYZOp0NAQIDc4RAREZENbP3+lpzsGLp58yYAoH79+tV9CqfAZIeIiMj12Pr9Xa15dvRcPckhsqei0jLETt8KADg9sxcAGG37etbo7UZERNUkuUCZiIiIyJUw2SEiIiJFY7JDREREiiYp2bl79y569OiB8+fPOyoeIiLCvRqwqMmbETV5M4pKy+QOh8ilSUp2PDw8cPz4cUfFQkRERGR3kruxnn/+eSxfvtwRsRAphlZXXOU2ERHVHsljYcvKyrBixQpkZmYiPj4efn5+Rsfnz59vt+CIXMmXh38R7yfMz8KzbcKNttOT4tC/Q1M5QiMFMJ3agFMZENlO8rvl5MmTaNeuHQDg3LlzRsdccfZkInvI193BGxtOidsVAvD10ctG26+tP4kuDwYhTO0jR4hERHWW5GRn586djoiDyKXlXr2NCitzkZcLAi5eLWKyQ5JpdcUIVXvLHQaRy6r20POcnBxs3boVd+7cAXBvzSyiuiq6sR/crDRsuqtUiGrsWzsBkcsz7RY13CYiaSQnO7///jt69OiBBx98EH369EF+fj4AICUlBePHj7d7gESuIEztgxnPthS33VTAc4+EG23PSWrFVh2yibluUcNtIpJGcrIzbtw4eHh4IC8vD76+93+l9u/fH1u2bLFrcESuJDm+iXg/M60r5iTFGW2zOJlsZa5b1HCbo/uIpJGc7Hz//feYO3cumjRpYrS/RYsW+Pnnn+0WGJErM62vYL0FSWGuW9RwM2F+Fj47mFerMRG5MsnJzu3bt41adPSuXbsGLy8vuwRFRFSXmXaLmpaD6Uf35evu1G5gRC5KcrLz+OOP48MPPxS3VSoVKioqMG/ePDzxxBN2DY6IqK4y7BZ9u19rmA4B0Y/uIyLrJA89nzdvHnr06IFDhw6htLQUEydOxKlTp3Dt2jXs2bPHETESEdVpbZs2gJvKuG6Ho/uIbCc52WnVqhXOnTuHf//736hfvz5u3bqFpKQkpKamIiwszBExErkEX896uJiRaLTPdJuoOkLV3pjxbEtM++beiCyO7iOSplrzjavVarz++uv2joWIiCxIjm8iJjuZaV3RLMhf5oiIXEe1kp3r169j+fLlOHPmDAAgNjYWQ4cORcOGDe0aHBERVcbRfUTSSC5Q3r17N6KiorBw4UJcv34d169fx8KFCxEdHY3du3c7IkYiojpH3y16MSORi34S1ZDkd1Bqair69++PxYsXw93dHQBQXl6OV155BampqThx4oTdgyQiIiKqLsktOzk5ORg/fryY6ACAu7s70tLSkJOTY9fgiIiIiGpKcstOu3btcObMGTz00ENG+8+cOYM2bdrYLTAiIrrP3Gg/IrKNTcnO8ePHxfujR4/GmDFjkJOTg06dOgEA9u3bh0WLFiEjI8MxURIRERFVk0oQBNOJOStxc3ODSqWCtVNVKhXKy8vtFlxtKSwshFqthk6nQ0BAgNzhEBERkQ1s/f62qWUnNzfXboERERER1Sabkp3IyEhHx0FERETkENWavOHy5cv44YcfcOXKFVRUVBgdGz16tF0CIyIiIrIHycnOqlWr8PLLL8PT0xONGjWCSqUSj6lUKiY7RERE5FQkz7Mzbdo0TJ8+HTqdDhcvXkRubq54++mnnyQ9V3p6Ojp06ID69esjODgYzz33HM6ePWt0TnFxMVJTU9GoUSP4+/sjOTkZBQUFRufk5eUhMTERvr6+CA4OxoQJE1BWVib10oiIiEiBJCc7RUVFGDBgANzcJD+0kqysLKSmpmLfvn3Ytm0b7t69i549e+L27dviOePGjcPGjRuxbt06ZGVl4fLly0hKShKPl5eXIzExEaWlpdi7dy9Wr16NVatWYfr06TWOj4iIiFyfTUPPDU2cOBENGzbE5MmT7R7Mb7/9huDgYGRlZaFLly7Q6XQICgrC2rVr8Ze//AUA8OOPP+Lhhx9GdnY2OnXqhO+++w5PP/00Ll++jJCQEADAkiVLMGnSJPz222/w9PSs9HdKSkpQUlIibhcWFiIiIoJDz4mIiFyIXYeeG0pPT8fTTz+NLVu2IC4uDh4eHkbH58+fLz3aP+h0OgAQV08/fPgw7t69i4SEBPGcmJgYNG3aVEx2srOzERcXJyY6ANCrVy+MGDECp06dQtu2bc1ew4wZM6odJxEREbmOaiU7W7duFZeLMC1Qrq6KigqMHTsWnTt3RqtWrQAAWq0Wnp6eCAwMNDo3JCQEWq1WPMcw0dEf1x8zZ8qUKUhLSxO39S07RFIUlZYhdvpWAMDpmb24MjURkZOS/On8zjvvYMWKFXjxxRftGkhqaipOnjyJH374wa7Pa46Xlxe8vLwc/neIiIhIfpKrjL28vNC5c2e7BjFy5Ehs2rQJO3fuRJMmTcT9oaGhKC0txY0bN4zOLygoQGhoqHiO6egs/bb+HCIiIqq7JCc7Y8aMwXvvvWeXPy4IAkaOHImvvvoKO3bsQHR0tNHx+Ph4eHh4YPv27eK+s2fPIi8vDxqNBgCg0Whw4sQJXLlyRTxn27ZtCAgIQGxsrF3iJCIiItcluRvrwIED2LFjBzZt2oSWLVtWKlBev369zc+VmpqKtWvX4ptvvkH9+vXFGhu1Wg0fHx+o1WqkpKQgLS0NDRs2REBAAEaNGgWNRiOuuN6zZ0/ExsZi8ODBmDdvHrRaLaZOnYrU1FR2VVGt0eqK0SzIX+4wiIjIDMnJTmBgoNE8NzWxePFiAEC3bt2M9q9cuVKsCXr33Xfh5uaG5ORklJSUoFevXnj//ffFc93d3bFp0yaMGDECGo0Gfn5+GDJkCGbOnGmXGIks+fLwL+L9hPlZSE+KQ/8OTWWMiOoSFsgT2U7yPDtKZOs4fSK9fN0ddM7YgQqDd4+7SoUfJj+BMLWPfIFRncFkh8j27++aT4NMVAflXr1tlOgAQLkg4OLVInkCIiIiiyT/FIiOjq5yPh2p62MRuaLoxn5wU6FSy05UY1/5giIiIrMkJztjx4412r579y6OHDmCLVu2YMKECfaKi8iphal9MOPZlpj2zSkAgJsKmJPUil1YJAsWyBNVTXKyM2bMGLP7Fy1ahEOHDtU4ICJXkRzfREx2MtO68suGahUL5IlsZ7eand69e+PLL7+019MRuZRQtbfcIVAdkq+7gzc2nBK3KwTgtfUnka+7I2NURM7LbsnOF198IS7gSUREjsMCeSJpJHdjtW3b1qhAWRAEaLVa/Pbbb0bz3xARkWOYK5AHgIHL9nEYOpEZkt8Rzz33nNG2m5sbgoKC0K1bN8TExNgrLiIissBcgbxp4kNE93FSQXBSQSJyPYaTCm4e3RmJC/cA4ASDVLdwUkEiojoiJIAF8kRVsTnZcXNzg7u7e5W3evX4a4KISE5aXbHcIRA5HZuzk6+++srisezsbCxcuBAVFRV2CYrIWXE9InJGXx+5LN7nnDtEldn8Sd23b99K+86ePYvJkydj48aNGDRoEFcaJyKqJb6e9XAxI1FclFZPP+dOlweDOKM30R+qVbNz+fJlDBs2DHFxcSgrK8PRo0exevVqREZG2js+IiKqAufcIbJOUrKj0+kwadIkPPDAAzh16hS2b9+OjRs3olWrVo6Kj4iIqqCfc8eQm+renDtRkzejqLRMnsCInIjNyc68efPQrFkzbNq0CZ988gn27t2Lxx9/3JGxETk1FoKSM9DPuaPnpoLRNhFJmGfHzc0NPj4+SEhIgLu7u8Xz1q9fb7fgagvn2SFbfZR90WgiNxaCkjMwLJzfMb4rQtXeLKSnOsHW72+b3wEvvPCC0TIRRHWNpcUXWQhKzsR0UVqtrhjNgvxliobIOdic7KxatcqBYRA5v6oKQZnskDP58vAv4n0ORSeqxtpYRHWVucUX3VUqRDX2lS8oItwfhg6wBZLIHC4XQVSFotIyRE3ejKjJm6H28ahUCDonqRW/QMipcCg6UWVMdogkSI5vIt7PTOvKrgFyOuaGorMFkuo6JjtE1WRaCErkDMwNRWcLJNV1THaIbMR5dchVsAWSyBiTHaIqmI5qMdwmcgVsgSTiaCwii8yNanlzw2lkT+nOLgEiIhfClh0iCziqhYhIGdiyQ2TAdNp9zqtDrshw3h0iYssOkUWham+OaiEiUgAmO0RV4KgWIiLXx2SHyALToeYc1UJE5JqY7BAZ4FBzIiLlYYEy0R841JyISJnYskP0Bw41J6UyXNC2qLRM7nCIah2THaI/cAFFIiJlYrJD9AcuoEhEpExMdogMcKg5KR0XtKW6iMkOkQUcak5KYTrK8LODeTJGQ1T7mOwQESmYuVGGr60/iXzdHRmjIqpdHHpOZIBrCpHSVDXKkPVoVFewZYeISME4ypCIyQ4RkaJxlCGRzMnO7t278cwzzyA8PBwqlQpff/210XFBEDB9+nSEhYXBx8cHCQkJOH/+vNE5165dw6BBgxAQEIDAwECkpKTg1q1btXgVRETOjaMMqa6TNdm5ffs22rRpg0WLFpk9Pm/ePCxcuBBLlizB/v374efnh169eqG4+P7QyUGDBuHUqVPYtm0bNm3ahN27d2P48OG1dQlERC6FowypLpK1QLl3797o3bu32WOCIGDBggWYOnUq+vbtCwD48MMPERISgq+//hoDBgzAmTNnsGXLFhw8eBDt27cHALz33nvo06cP3n77bYSHh9fatZBrKiotQ+z0rQCA0zN7wdeTNftERErjtDU7ubm50Gq1SEhIEPep1Wp07NgR2dnZAIDs7GwEBgaKiQ4AJCQkwM3NDfv377f43CUlJSgsLDS6EREplX6U4cWMRCb0VCc5bbKj1WoBACEhIUb7Q0JCxGNarRbBwcFGx+vVq4eGDRuK55iTnp4OtVot3iIiIuwcPbkizixLRKRMTpvsONKUKVOg0+nE26VLl+QOiWTCmWWJiJTPaZOd0NBQAEBBQYHR/oKCAvFYaGgorly5YnS8rKwM165dE88xx8vLCwEBAUY3qns4syzVVUWlZYiavBlRkzejqLRM7nCIHM5pk53o6GiEhoZi+/bt4r7CwkLs378fGo0GAKDRaHDjxg0cPnxYPGfHjh2oqKhAx44daz1mcg36D3pN+g6LM8sSEZFyyFqpduvWLeTk5Ijbubm5OHr0KBo2bIimTZti7NixeOutt9CiRQtER0dj2rRpCA8Px3PPPQcAePjhh/HUU09h2LBhWLJkCe7evYuRI0diwIABHIlFNnFTwSjh4cyyVNdodcVoFuQvdxhEDiVry86hQ4fQtm1btG3bFgCQlpaGtm3bYvr06QCAiRMnYtSoURg+fDg6dOiAW7duYcuWLfD2vj9PxJo1axATE4MePXqgT58+eOyxx7B06VJZrodcz8juD4j3ObMs1RWmtWofZV9ktxYpmkoQBMH6acpWWFgItVoNnU7H+p064KPsi5j2zb1aHcOWnR3ju/IXLilevu4OOmcYd+HyfUCuytbvb6et2SFyBHNFyXqcWZbqAnOroBtuc1QiKRGTHapTzH3QA8AnwzpxsjWqE8ytgm6IoxJJiZjsUJ1i7oOeRclUl5iugm4u7+GoRFIaJjtUp5h+0LMomeoiw1XQPx3eiT8ASPGY7FCdY/hBn5nWFf07NJUxGiJ5xTVR8wcAKR6LFKhOY1Ey1UX6hUH1kuObiCMUM9M4GouUh8kO1TmmH/REdB9/AJASMdkhIqrj+AOAlI41O0RERKRoTHZI8bjCMxFR3cZkh+oUra5Y7hCIiKiWMdkhxTFtyTFd9JBT4RNZxpZQUiImO+TyqvpwPvGLrtJaWJwKn8g2bAklpWCyQ4qi1RUbteQMWLqv0lpYnAqfyDK2hJISceg5uYSi0jLETt8KADg9s5fRop2GH8493skyepyZNT85FT6RBfm6O2ZbQrs8GMQZlcmlsWWHXI5h07rph7MA8wmOHqfCJ7Is9+ptqy2hrOkhV8Rkx0lU9QFieOyn327JFKG8cVhqWjf34WzKcJFDroVFZFl0Y79Ki4K6qYCBy/aZfd+zpodcBZMdJ2T6AWL6Rf9R9kVZflnJ1ZdvqWk9X3fH7Iez4aabCkhPisPFjERczEjkmj9EVQhT+1RaFPTZNuHidsL8LLy2/oTRNmt6yBUw2ZGJrcOjzX3RG27X1i+rqhIOR6uqad3ch/PMvve32ZJDJE1yfBPx/ifDOmHDscvidoUAfH3UeJujG8kVMNlxAlUNjzb3RW+4XVu/rCwlHJr0HQ7v1jLXemNYZGz44ZyZ1hWDNVFsySGqJv06WRczElEuCFa7iTm6kVwBkx0HsVbfYuvwaHNf9Ias/bKSWkxo6Xxr3UU1TbqqitNc640+0SoqLTP6cGZyQ2Q/1j5/AI5uJNfAZMdBqqpvMTeCyJT+A8T0i97c546toyWkdnkZnm8tDns2Z5uL07D1ZuOozlWeS0T2Ye6HxnOPhBttc3QjuQImOw5grb7F2ggi0w8Qwy/6T4d3kjRa4sPsn8X7trS+VJWkGcbxdr/WlZK0mjRnWyt+Nmy9+d/PN6o8l4jsx7SbeE5SnNE2a+LIFagEQbDSI6t8hYWFUKvV0Ol0CAgIqPHz7b1wFX9btr/S/k+GdYKmeSPk6+6gc8YOo4THTXW/FmfH+K5Vdsd8lH0R0745JT7u2TbhYtGg6bapqv6OubjcVSr8MPmJSr/cpJxrjuEkgZ8N74SBy/bVyt8lIiLlsPX7my07DmCtoNZc07Dh8OhQtXeV9T5SRkuYqqq42ZYJxfTMXYOU5mxbapbMFT9LiZGIiAhgsuMQ5hKBN5+NNfryHqyJQvaU7vhkWCfsmdzdqClYSpeOLaMlLDHtXrNUjDhw2T6rSZe55mxLtUO21CxZKn62lkgSERGZYrLjIKaJgCH9l3eY2gea5o2MWkOkzmdjy2gJPWvFzVUVIVtLuqyNgjIsJLZWs1RV8XNNW5SIiKju4UKgDqJPBABpi+tZm0DPlP7Lv6oanklPxaB1k0D4errhz+/vrVTvYtgqMlgThYTYEBy+eB2jPz0CfUVXdRYENG2h0v/dz/4osjaNY/0rGhSVVuD32yUYufaIxX8DfYwXrxaJI9aIiIgsYbJTC6QkMPqWmqoSElPJ8U3EZCcz7V7R8aTeMWaTAdPEyFyrSJjaBw39pSVdQOWiY9MET2/gsn2VErI5Sa3QJqIBgHvJobV/gzC1D5McIidg+L63NrjCFf5OTeNwljjJGLuxaoGUOpPqdNOY604y10UGmK+zydfdwd4LV426yqpTG2Ot6FivQoBRUbVpvQ+7qohchyPXzDP8bJJrbT5T1uJwljjJGIeew/5Dz80xHS6enhRncX6K2vxlUFVcUmI2NyTcGv1QfHP464jI+VX1vte/b/XL3kQ39pP0g8Xw80f/u8vwz1ibcsIRnyHWpr7g1Bi1z9bvb3Zj1RIpdSaG9T6OZK2WSErM1oqOTVlrJaqtfwMiqr6q3vcJ87MqdVenJ8Why4NBVSY/+bo7OHTxmtURm9a61U1bWCY9FYO4JmpEN/aD2sfDaiJkLkmzVpIgtebSmVU3SXVWTHZqkbPVmdjyxrQ1Zku1Rvqi48M/X8Pb358DwG4pIqUw977XM7dC+uQvT4iJi7nWYsPWHGuq+sFk7odc+nc/in/32Tb3l7xImJ9VZRyGcVqrqaxOzaUzJhVSWvUB12iJZ81OHWbPOWss1dm0iWgATfNGGNm9hcV5hYjINZm+760xzIlMp9UwTVBMGX5UWfvBVFWLk7kkrKo4pEx9IbXe8KPsi9Ck78Dflu1H54wdTlHfI3X6E8A16pRYs4PaqdlxVlIzeGvydXc4JJyojsnX3RGnq6juJKfv9GuN8euOmz1m2AWm/3ypqiuqOjWE1uL498C2aOjviejGfgBQ5eec6eegudYbe9f32Kt1xdpyR6bkrlNizQ7ZxN5z1jhbVx0ROV6Y2gdPt/HB7dIyvLb+JMoFAe4qFZ5pEya2opgrMlYZbL+67rjRNnCv6+G9v7VFu8gGRq0nwL0fanoJ87OMptXYMb4r0pPixFissRaHCsDIT+7N/WXLj0LDz0HTH5T62qFrt0trNL3H5tGdkbhwj3i9e3KuGv172PLD1TAJA+61iPl5ukvqinOVOiW27KBut+wQEdmTuVYN/Xbm6YIqR1gZJhlVJRXmWhPMPVbfEmRaM/jntn/C10cuo1wQ4PbH4yzFUZ2RYFXFafg3zD3v+lc0uF1aLrYCGSYkpv9+NYnRdLSb4b+ducJy09dBH5efp3ulyWrdACz8W1vE/5GkOrIuydbvbyY7YLJDRFRb9MmPuZnSgXvdRY38vapsabbU1WLI9MveUhJmLQ5Lxw27dSx9mVuL01qSYbhtLqGxxrDrzTDpMJegGDIcXGLudTBtrTJMHquTONUEu7GIiMjp6Lt4LM2UHh/VwOqv/6pGgelZG1lqaxzWZnSvqu7RWpwC7idV+uV89EwLqaW2Sph2vZkmTlU9X7kgoKi0wqhGxzBRMi1g/vrIZax/RYNL1+5UWmbIXDG4lGWH7IWjsYiIqNaFqX2QnhQHd9W9Ngt3lcrmKSlMH+uGygsI2zqy1FocVR23NnLJ9LGm9EmVpnkj3C4tr3ZxN3Dv+vWja02/2KUmTqb/dp8dzEPnjHujxp5bVLlFSJ8cNfT3tHoNhotP1ya27BARkSz6d2hqNMJKyq9908fuPvebUXG0lLm8rMVh6bgtxbmGjz3+6w3M++6s2Rhtaa1SAVD9cY7qjx2CcD8B0/8dS11vptyqeC7D7r8p60+IcZkLzzA5snYN1Z3epKaY7BARkWxqMoLT8LE1SZxsicPccVsnEdQ/VtO8EZ5tE242Rn0rkGHC9lzbcLEWxjSh0f8N0+ey1PVmyrQux9xzAZbnLNI/v2lyZMs1yDFKiwXKYIEyERFVz2cH8yq1KNlzrrLqzl1mGpe5pMOWOC3No1NVAbO9rsEWdW401qJFi/DPf/4TWq0Wbdq0wXvvvYdHH33Upscy2SEioupy1slUHZU41TShs6c6lex89tlneOGFF7BkyRJ07NgRCxYswLp163D27FkEBwdbfTyTHSIiIsucNaGrU8lOx44d0aFDB/z73/8GAFRUVCAiIgKjRo3C5MmTK51fUlKCkpIScbuwsBARERFMdoiIiFyIrcmOyw89Ly0txeHDh5GQkCDuc3NzQ0JCArKzs80+Jj09HWq1WrxFRETUVrhERERUy1w+2bl69SrKy8sREhJitD8kJARardbsY6ZMmQKdTifeLl26VBuhEhERkQzq5NBzLy8veHl5yR0GERER1QKXb9lp3Lgx3N3dUVBQYLS/oKAAoaGhMkVFREREzsLlkx1PT0/Ex8dj+/bt4r6Kigps374dGo1GxsiIiIjIGSiiGystLQ1DhgxB+/bt8eijj2LBggW4ffs2hg4dKndoREREJDNFJDv9+/fHb7/9hunTp0Or1eKRRx7Bli1bKhUtExERUd2jiHl2aoqTChIREbmeOjPPDhEREVFVmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFE0RQ89rSj8grbCwUOZIiIiIyFb6721rA8uZ7AC4efMmAHD1cyIiIhd08+ZNqNVqi8c5zw7uLS9x+fJl1K9fHyqVqsbPV1hYiIiICFy6dEmx8/bwGpWB1+j6lH59AK9RKRxxjYIg4ObNmwgPD4ebm+XKHLbsAHBzc0OTJk3s/rwBAQGK/U+rx2tUBl6j61P69QG8RqWw9zVW1aKjxwJlIiIiUjQmO0RERKRoTHYcwMvLC2+88Qa8vLzkDsVheI3KwGt0fUq/PoDXqBRyXiMLlImIiEjR2LJDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO3aSkZEBlUqFsWPHivuKi4uRmpqKRo0awd/fH8nJySgoKJAvyBoyd43dunWDSqUyuv3jH/+QL0iJ3nzzzUrxx8TEiMeV8Bpau0ZXfw31fv31Vzz//PNo1KgRfHx8EBcXh0OHDonHBUHA9OnTERYWBh8fHyQkJOD8+fMyRiydtWt88cUXK72WTz31lIwRSxMVFVUpfpVKhdTUVADKeD9au0ZXfz+Wl5dj2rRpiI6Oho+PD5o3b45Zs2YZrV0lx3uRMyjbwcGDB/HBBx+gdevWRvvHjRuHzZs3Y926dVCr1Rg5ciSSkpKwZ88emSKtPkvXCADDhg3DzJkzxW1fX9/aDK3GWrZsiczMTHG7Xr37bwulvIZVXSPg+q/h9evX0blzZzzxxBP47rvvEBQUhPPnz6NBgwbiOfPmzcPChQuxevVqREdHY9q0aejVqxdOnz4Nb29vGaO3jS3XCABPPfUUVq5cKW670lDmgwcPory8XNw+efIknnzySfTr1w+AMt6P1q4RcO3349y5c7F48WKsXr0aLVu2xKFDhzB06FCo1WqMHj0agEzvRYFq5ObNm0KLFi2Ebdu2CV27dhXGjBkjCIIg3LhxQ/Dw8BDWrVsnnnvmzBkBgJCdnS1TtNVj6RoFQai07WreeOMNoU2bNmaPKeU1rOoaBcH1X0NBEIRJkyYJjz32mMXjFRUVQmhoqPDPf/5T3Hfjxg3By8tL+OSTT2ojxBqzdo2CIAhDhgwR+vbtWzsB1YIxY8YIzZs3FyoqKhTzfjRleI2C4Prvx8TEROGll14y2peUlCQMGjRIEAT53ovsxqqh1NRUJCYmIiEhwWj/4cOHcffuXaP9MTExaNq0KbKzs2s7zBqxdI16a9asQePGjdGqVStMmTIFRUVFtRxhzZw/fx7h4eFo1qwZBg0ahLy8PADKeg0tXaOeq7+GGzZsQPv27dGvXz8EBwejbdu2WLZsmXg8NzcXWq3W6LVUq9Xo2LGjy7yW1q5Rb9euXQgODsZDDz2EESNG4Pfff5ch2porLS3Fxx9/jJdeegkqlUpR70c902vUc+X34//93/9h+/btOHfuHADg2LFj+OGHH9C7d28A8r0X2Y1VA59++in+97//4eDBg5WOabVaeHp6IjAw0Gh/SEgItFptLUVYc1VdIwD87W9/Q2RkJMLDw3H8+HFMmjQJZ8+exfr162s50urp2LEjVq1ahYceegj5+fmYMWMGHn/8cZw8eVIxr2FV11i/fn2Xfw0B4KeffsLixYuRlpaG1157DQcPHsTo0aPh6emJIUOGiK9XSEiI0eNc6bW0do3AvS6spKQkREdH48KFC3jttdfQu3dvZGdnw93dXeYrkObrr7/GjRs38OKLLwJQzmeqIdNrBFz/M3Xy5MkoLCxETEwM3N3dUV5ejtmzZ2PQoEEAINt7kclONV26dAljxozBtm3bXKK/vzpsucbhw4eL9+Pi4hAWFoYePXrgwoULaN68eW2FWm36XxsA0Lp1a3Ts2BGRkZH4/PPP4ePjI2Nk9lPVNaakpLj8awgAFRUVaN++PebMmQMAaNu2LU6ePIklS5aIiYCrs+UaBwwYIJ4fFxeH1q1bo3nz5ti1axd69OghS9zVtXz5cvTu3Rvh4eFyh+Iw5q7R1d+Pn3/+OdasWYO1a9eiZcuWOHr0KMaOHYvw8HBZ34vsxqqmw4cP48qVK2jXrh3q1auHevXqISsrCwsXLkS9evUQEhKC0tJS3Lhxw+hxBQUFCA0NlSdoiaxdo2GRnV7Hjh0BADk5ObUdrl0EBgbiwQcfRE5ODkJDQ13+NTTH8BrNccXXMCwsDLGxsUb7Hn74YbG7Tv96mY7ccaXX0to1mtOsWTM0btzYpV5LAPj555+RmZmJv//97+I+pb0fzV2jOa72fpwwYQImT56MAQMGIC4uDoMHD8a4ceOQnp4OQL73IpOdaurRowdOnDiBo0ePirf27dtj0KBB4n0PDw9s375dfMzZs2eRl5cHjUYjY+S2s3aN5prFjx49CuDeB7MrunXrFi5cuICwsDDEx8e7/GtojuE1muOKr2Hnzp1x9uxZo33nzp1DZGQkACA6OhqhoaFGr2VhYSH279/vMq+ltWs055dffsHvv//uUq8lAKxcuRLBwcFITEwU9ynt/WjuGs1xtfdjUVER3NyMUwt3d3dUVFQAkPG96LDS5zrItIr+H//4h9C0aVNhx44dwqFDhwSNRiNoNBr5ArQDw2vMyckRZs6cKRw6dEjIzc0VvvnmG6FZs2ZCly5d5A1SgvHjxwu7du0ScnNzhT179ggJCQlC48aNhStXrgiCoIzXsKprVMJrKAiCcODAAaFevXrC7NmzhfPnzwtr1qwRfH19hY8//lg8JyMjQwgMDBS++eYb4fjx40Lfvn2F6Oho4c6dOzJGbjtr13jz5k3h1VdfFbKzs4Xc3FwhMzNTaNeundCiRQuhuLhY5uhtV15eLjRt2lSYNGlSpWNKeD8KguVrVML7cciQIcKf/vQnYdOmTUJubq6wfv16oXHjxsLEiRPFc+R4LzLZsSPTZOfOnTvCK6+8IjRo0EDw9fUV/vznPwv5+fnyBWgHhteYl5cndOnSRWjYsKHg5eUlPPDAA8KECRMEnU4nb5AS9O/fXwgLCxM8PT2FP/3pT0L//v2FnJwc8bgSXsOqrlEJr6Hexo0bhVatWgleXl5CTEyMsHTpUqPjFRUVwrRp04SQkBDBy8tL6NGjh3D27FmZoq2eqq6xqKhI6NmzpxAUFCR4eHgIkZGRwrBhwwStVitjxNJt3bpVAGD2tVHC+1EQLF+jEt6PhYWFwpgxY4SmTZsK3t7eQrNmzYTXX39dKCkpEc+R472oEgSDaQ2JiIiIFIY1O0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0REALp16waVSgWVSiWuR7Rr1y6oVKpKi0/a25tvvin+7QULFjj0bxHVRUx2iEiyF198UfxyNrw99dRTcodWI8OGDUN+fj5atWpV4+cqKCiAh4cHPv30U7PHU1JS0K5dOwDAq6++ivz8fDRp0qTGf5eIKmOyQ0TV8tRTTyE/P9/o9sknnzj0b5aWljr0+X19fREaGop69erV+LlCQkKQmJiIFStWVDp2+/ZtfP7550hJSQEA+Pv7IzQ0FO7u7jX+u0RUGZMdIqoWLy8vhIaGGt0aNGggHlepVPjPf/6DP//5z/D19UWLFi2wYcMGo+c4efIkevfuDX9/f4SEhGDw4MG4evWqeLxbt24YOXIkxo4di8aNG6NXr14AgA0bNqBFixbw9vbGE088gdWrV4vdTbdv30ZAQAC++OILo7/19ddfw8/PDzdv3qz2NRcVFaF3797o3Lmz2LX1n//8Bw8//DC8vb0RExOD999/Xzw/JSUF27dvR15entHzrFu3DmVlZRg0aFC1YyEi2zHZISKHmTFjBv7617/i+PHj6NOnDwYNGoRr164BAG7cuIHu3bujbdu2OHToELZs2YKCggL89a9/NXqO1atXw9PTE3v27MGSJUuQm5uLv/zlL3juuedw7NgxvPzyy3j99dfF8/38/DBgwACsXLnS6HlWrlyJv/zlL6hfv361ruXGjRt48sknUVFRgW3btiEwMBBr1qzB9OnTMXv2bJw5cwZz5szBtGnTsHr1agBAnz59EBISglWrVlWKJSkpCYGBgdWKhYgkcuia6kSkSEOGDBHc3d0FPz8/o9vs2bPFcwAIU6dOFbdv3bolABC+++47QRAEYdasWULPnj2NnvfSpUsCAOHs2bOCIAhC165dhbZt2xqdM2nSJKFVq1ZG+15//XUBgHD9+nVBEARh//79gru7u3D58mVBEAShoKBAqFevnrBr1y6L19S1a1dhzJgxRvt27twpABDOnDkjtG7dWkhOThZKSkrE482bNxfWrl1r9JhZs2YJGo1G3J48ebIQHR0tVFRUCIIgCDk5OYJKpRIyMzMrxRAZGSm8++67FmMkouphyw4RVcsTTzyBo0ePGt3+8Y9/GJ3TunVr8b6fnx8CAgJw5coVAMCxY8ewc+dO+Pv7i7eYmBgAwIULF8THxcfHGz3n2bNn0aFDB6N9jz76aKXtli1bii0sH3/8MSIjI9GlS5dqXeuTTz6JBx54AJ999hk8PT0B3Ku7uXDhAlJSUoyu4a233jKK/6WXXkJubi527twJ4F6rTlRUFLp3716tWIhIuppX4RFRneTn54cHHnigynM8PDyMtlUqFSoqKgAAt27dwjPPPIO5c+dWelxYWJjR36mOv//971i0aBEmT56MlStXYujQoVCpVNV6rsTERHz55Zc4ffo04uLixPgBYNmyZejYsaPR+YaFxi1atMDjjz+OlStXolu3bvjwww8xbNiwasdCRNIx2SEiWbRr1w5ffvkloqKiJI1+euihh/Dtt98a7Tt48GCl855//nlMnDgRCxcuxOnTpzFkyJBqx5qRkQF/f3/06NEDu3btQmxsLEJCQhAeHo6ffvrJaqFxSkoKRowYgWeffRa//vorXnzxxWrHQkTSsRuLiKqlpKQEWq3W6GY4ksqa1NRUXLt2DQMHDsTBgwdx4cIFbN26FUOHDkV5ebnFx7388sv48ccfMWnSJJw7dw6ff/65WABs2FrSoEEDJCUlYcKECejZs2eN57B5++23MWjQIHTv3h0//vgjgHsF2Onp6Vi4cCHOnTuHEydOYOXKlZg/f77RY/v16wcPDw+8/PLL6NmzJyIiImoUCxFJw2SHiKply5YtCAsLM7o99thjNj8+PDwce/bsQXl5OXr27Im4uDiMHTsWgYGBcHOz/NEUHR2NL774AuvXr0fr1q2xePFicTSWl5eX0bkpKSkoLS3FSy+9VL2LNPHuu+/ir3/9K7p3745z587h73//O/7zn/9g5cqViIuLQ9euXbFq1SpER0cbPc7X1xcDBgzA9evX7RYLEdlOJQiCIHcQREQ1MXv2bCxZsgSXLl0y2v/RRx9h3LhxuHz5slhYbEm3bt3wyCOPyLpcQ1RUFMaOHYuxY8fKFgORErFlh4hczvvvv4+DBw/ip59+wkcffYR//vOfRjU5RUVFuHDhAjIyMvDyyy9bTXQMn9ff3x8nTpxwVOhmzZkzB/7+/pUmHyQi+2DLDhG5nHHjxuGzzz7DtWvX0LRpUwwePBhTpkwRC53ffPNNzJ49G126dME333wDf39/q8/566+/4s6dOwCApk2b2pwg2cO1a9fEyRaDgoKgVqtr7W8T1QVMdoiIiEjR2I1FREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJF+3+J4z6lPwcyhwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rnd_bkd = np.random.exponential(39.7, 5000)\n", + "rnd_bkd += 40\n", + "\n", + "peak1 = np.random.normal(53.3, 2.1, 5000)\n", + "peak2 = np.random.normal(60.5, 2.78, 12000)\n", + "data = np.concatenate([rnd_bkd, peak1, peak2])\n", + "\n", + "entries, edges = np.histogram(data, bins=120, range=(40, 80))\n", + "center = edges[:-1] + np.diff(edges)/2\n", + "\n", + "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", + "plt.xlabel('Energy [keV]')\n", + "plt.ylabel('Number of counts per bin')" + ] + }, + { + "cell_type": "markdown", + "id": "b582615c-9251-409d-bcfc-d19fd579e161", + "metadata": {}, + "source": [ + "Zunächst wollen wir das Fitmodel in der Form\n", + "\n", + "$$f(x) = A_1 \\cdot \\exp \\bigg\\{\\frac{-(x - \\mu_1)^2}{2 \\cdot \\sigma_1^2}\\bigg\\} + A_2 \\cdot \\exp \\bigg\\{\\frac{-(x - \\mu_2)^2}{2 \\cdot \\sigma_2^2}\\bigg\\} + A_3 \\exp\\{-x/\\tau\\}$$\n", + "\n", + "definieren. Hier lohnt es sich, erst Funktionen für die einzelnen Komponenten zu definieren und dann das Gesamtmodel. Hierdurch lassen sich später die einzelnen Komponenten besser darstellen." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f84d7527-c0d2-475d-966d-5363a8e09369", + "metadata": {}, + "outputs": [], + "source": [ + "def peak(x, A, mu, sigma):\n", + " return A*np.exp(-(x-mu)**2/(2*sigma**2))\n", + "\n", + "def bkg(x, A, tau):\n", + " return A*np.exp(-x/tau)\n", + "\n", + "def fit_model(x, A_p1, A_p2, mu_p1, mu_p2, sigma_p1, sigma_p2, A_bkg, tau_bkg):\n", + " return peak(x, A_p1, mu_p1, sigma_p1) + peak(x, A_p2, mu_p2, sigma_p2) + bkg(x, A_bkg, tau_bkg)" + ] + }, + { + "cell_type": "markdown", + "id": "32014861-316c-4692-9d52-48f2fb71321c", + "metadata": {}, + "source": [ + "Nun wollen wir wieder die Kostenfunktion und die Minimierungsfunktion definieren. Startwerte können wir anhand unseres Plots ablesen, lediglich $\\tau$ lässt sich auf diese Weise nicht gut bestimmen." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a31901cf-a0ce-4db8-a072-a661fbbb7296", + "metadata": {}, + "outputs": [], + "source": [ + "ls = cost.LeastSquares(center, entries, np.sqrt(entries), fit_model)\n", + "\n", + "mi = Minuit(ls, \n", + " A_p1 = 400, \n", + " A_p2 = 700,\n", + " mu_p1 = 54,\n", + " mu_p2 = 60,\n", + " sigma_p1 = 2,\n", + " sigma_p2 = 2,\n", + " A_bkg = 100,\n", + " tau_bkg = 10, \n", + " )\n", + "mi.limits['tau_bkg'] = (0, None)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1e69a046-770f-4c38-9b91-0176bb0686a1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB74klEQVR4nO3deViU5foH8O/LvsmgyKoIKCou4JYLaWpqbqSZHo+aqZnHzB/mQset0lxyyU7WsWyxTO2czLKsXEoUFyrFNXcRBVFQWURkkH2Z9/cHZ8aZYYCZYYZZ+H6ua654l3nnfqUZ7nme+3keQRRFEURERERWysbUARAREREZE5MdIiIismpMdoiIiMiqMdkhIiIiq8Zkh4iIiKwakx0iIiKyakx2iIiIyKrZmToAcyCTyXDv3j00atQIgiCYOhwiIiLSgiiKePToEfz9/WFjU337DZMdAPfu3UNAQICpwyAiIiI9pKWloXnz5tUeZ7IDoFGjRgAq/7Hc3d1NHA0RERFpIy8vDwEBAYq/49VhsgMouq7c3d2Z7BAREVmY2kpQWKBMREREVo3JDhEREVk1JjtERERk1VizQ0REZqeiogJlZWWmDoNMzN7eHra2tnW+DpMdIiIyG6IoIiMjA7m5uaYOhcyEh4cHfH196zQPHpMdIiIyG/JEx9vbGy4uLpzotQETRRGFhYXIysoCAPj5+el9LSY7RERkFioqKhSJjqenp6nDITPg7OwMAMjKyoK3t7feXVosUCYiIrMgr9FxcXExcSRkTuT/P9SlhovJDhERmRV2XZEyQ/z/wGSHiIiIrBqTHSIiIrJqTHaIiIhMQBAE/PzzzzWe89JLL2HUqFFaX/PWrVsQBAHnz5+vU2zWhqOxiMhqiaKIBw8ewMnJCW5ubqYOh6zYSy+9hNzc3FqTF2Xp6elo3LgxgMokJTg4GOfOnUPnzp0V5/z73/+GKIoGjrbhMWnLTlBQEARBqPKIiooCABQXFyMqKgqenp5wc3PDmDFjkJmZqXKN1NRUREZGwsXFBd7e3pg/fz7Ky8tNcTtEZEauXbuGrl27wsvLC56enli2bBk/G8is+Pr6wtHRscZzJBIJPDw86icgK2bSZOf06dNIT09XPA4ePAgAGDt2LABg3rx52LNnD3bu3Im4uDjcu3cPo0ePVjy/oqICkZGRKC0txfHjx7Ft2zZs3boVS5cuNcn9EJF5uHXrFiIiIhRN+aWlpVi+fDkWLVpk2sBIZ6IooqCgwCSPurSo9O/fH7Nnz8aCBQvQpEkT+Pr6YtmyZSrnKHdjBQcHAwC6dOkCQRDQv39/AFW7sfbv348+ffrAw8MDnp6eePbZZ5GcnKxTbOnp6YiMjISzszOCg4Oxfft2BAUF4cMPPwSguSssNzcXgiDg6NGjin2XL1/GsGHD4ObmBh8fH0yaNAnZ2dmK4z/88APCwsLg7OwMT09PDBo0CAUFBQCAo0ePokePHnB1dYWHhwd69+6N27dv63QfujBpsuPl5QVfX1/FY+/evWjVqhX69esHqVSKzZs3Y/369RgwYAC6deuGLVu24Pjx4zhx4gQA4MCBA7h69Sr++9//onPnzhg2bBhWrlyJjRs3orS0tNrXLSkpQV5ensqDiKyDTCbDlClTkJubi27duiE9PR2bN28GALz//vvYv3+/iSMkXRQWFsLNzc0kj8LCwjrFvm3bNri6uuLkyZNYt24dVqxYofhSr+7UqVMAgNjYWKSnp2PXrl0azysoKEB0dDTOnDmDQ4cOwcbGBs8//zxkMpnWcU2ePBn37t3D0aNH8eOPP2LTpk2KWYq1lZubiwEDBqBLly44c+YM9u/fj8zMTPz9738HUJlQTZgwAS+//DISEhJw9OhRjB49GqIoory8HKNGjUK/fv1w8eJFxMfH45VXXjHulAOimSgpKRE9PT3FVatWiaIoiocOHRIBiA8fPlQ5r0WLFuL69etFURTFJUuWiJ06dVI5fvPmTRGA+Ndff1X7Wm+//bYIoMpDKpUa9J6IqP599913IgDR1dVVTEpKUuyfNWuWCEDs1KmTKJPJTBghVaeoqEi8evWqWFRUpNiXn5+v8fO6Ph75+flaxz5lyhTxueeeU2z369dP7NOnj8o53bt3FxcuXKjYBiD+9NNPoiiKYkpKighAPHfuXI3XVXf//n0RgHjp0qUaryOXkJAgAhBPnz6t2Hfjxg0RgPjBBx9Ue42HDx+KAMQjR46IoiiKK1euFAcPHqxy7bS0NBGAmJiYKJ49e1YEIN66datKDA8ePBABiEePHq32vpRp+v9CTiqVavX322xGY/3888/Izc3FSy+9BKByfRQHB4cqfZU+Pj7IyMhQnOPj41PluPxYdRYvXgypVKp4pKWlGe5GiMhkRFHEmjVrAAD//Oc/0apVK8WxZcuWwc3NDRcuXMCePXtMFSLpyMXFBfn5+SZ51HUm5/DwcJVtPz8/nVtQ1N24cQMTJkxAy5Yt4e7ujqCgIACV9avaSExMhJ2dHbp27arYFxISoiiU1taFCxdw5MgRlZaw0NBQAEBycjI6deqEgQMHIiwsDGPHjsUXX3yBhw8fAgCaNGmCl156CUOGDMGIESPw73//G+np6Tq9vq7MJtnZvHkzhg0bBn9/f6O/lqOjI9zd3VUeRGT5YmNjcf78ebi6umL27Nkqxzw9PRWDH+S1CWT+BEGAq6urSR517Vaxt7evci+6dDdpMmLECOTk5OCLL77AyZMncfLkSQCosXRDVzY2lamBqFSzpL5UQ35+PkaMGIHz58+rPG7cuIG+ffvC1tYWBw8exG+//Yb27dvjo48+Qtu2bZGSkgIA2LJlC+Lj4/Hkk0/iu+++Q5s2bRQlKsZgFsnO7du3ERsbi3/84x+Kfb6+vigtLUVubq7KuZmZmfD19VWcoz46S74tP4eIGo4tW7YAqCzqbNKkSZXjr776KoDK4khtvwkT1QcHBwcAlQNvqvPgwQMkJibirbfewsCBA9GuXTtFa4m22rZti/Lycpw7d06xLykpSeU6Xl5eAKDS2qI+b0/Xrl1x5coVBAUFISQkROXh6uoKoDK56927N5YvX45z587BwcEBP/30k+IaXbp0weLFi3H8+HF07NgR27dv1+ledGEWyc6WLVvg7e2NyMhIxb5u3brB3t4ehw4dUuxLTExEamoqIiIiAAARERG4dOmSSrPgwYMH4e7ujvbt29ffDRCRyeXl5SlGtkyZMkXjOUFBQejfvz9EUcQ333xTj9ER1czb2xvOzs6KQl+pVFrlnMaNG8PT0xObNm1CUlISDh8+jOjoaJ1eJzQ0FIMGDcIrr7yCU6dO4dy5c3jllVfg7OysaMlydnZGr169sHbtWiQkJCAuLg5vvfWWynWioqKQk5ODCRMm4PTp00hOTkZMTAymTp2KiooKnDx5EqtXr8aZM2eQmpqKXbt24f79+2jXrh1SUlKwePFixMfH4/bt2zhw4ABu3LiBdu3a6f8PWAuTJzsymQxbtmzBlClTYGf3eI5DiUSCadOmITo6GkeOHMHZs2cxdepUREREoFevXgCAwYMHo3379pg0aRIuXLiAmJgYvPXWW4iKiqp17gIisi67du1CUVERQkND8cQTT1R73uTJkwEA3377bX2FRlQrOzs7bNiwAZ9//jn8/f3x3HPPVTnHxsYGO3bswNmzZ9GxY0fMmzcP7733ns6v9fXXX8PHxwd9+/bF888/j+nTp6NRo0ZwcnJSnPPVV1+hvLwc3bp1w9y5c/HOO++oXMPf3x/Hjh1DRUUFBg8ejLCwMMydOxceHh6wsbGBu7s7fv/9dwwfPhxt2rTBW2+9hffffx/Dhg2Di4sLrl27hjFjxqBNmzZ45ZVXEBUVhRkzZuj+D6ctrUqhjSgmJkZRva2uqKhI/L//+z+xcePGoouLi/j888+L6enpKufcunVLHDZsmOjs7Cw2bdpUfP3118WysjKdYtC2mpuIzNeoUaNEAOKyZctqPC87O1u0sbERAYi3b9+up+hIGzWNuiHjkY+iio2NNXUoGhliNJYgipyHOi8vDxKJBFKplMXKRBaouLgYnp6eKCwsxF9//YUuXbrUeH6fPn1w7NgxfPLJJ5g5c2Y9RUm1KS4uRkpKCoKDg1VaGciwDh8+jPz8fISFhSE9PR0LFizA3bt3cf369SpF1eagpv8vtP37bfJuLCKiujp69CgKCwvRrFkzlXWFqvPss88CAPbt22fkyIjMT1lZGd544w106NABzz//PLy8vHD06FGzTHQMhckOEVk8edLy7LPPajVcWD4Y4vDhwwYdsktkCYYMGYLLly+jsLAQmZmZ+OmnnxAYGGjqsIyKyQ4RWTz5qM3BgwdrdX7Hjh3RtGlTFBUV4cyZM8YMjfTA6gpSZoj/H5jsEJFFy8jIQEJCgsriibURBAH9+vUDAMTFxRkxOtKFvBulrmtSkXWR//9Ql242u9pPISIyX/JVmDt37qxxIsHq9OvXDz/++COOHj2KxYsXGyk60oWtrS08PDwUc6e5uLgYd3FIMmuiKKKwsBBZWVnw8PCAra2t3tdiskNEFu3w4cMAgKefflqn58lbdo4dO4by8nKVeb7IdOSz39d1DSmyHh4eHnVeFYHvbiKyaMeOHQPwOHnRVseOHRVDVi9fvqzVKC4yPkEQ4OfnB29v7yrrMVHDY29vX6cWHTkmO0RksfLy8pCQkAAA6Nmzp07PtbGxQffu3REbG4uTJ08y2TEztra2BvkjRwSwQJmILNiZM2cgiiICAwPh4+Oj8/PlCZJ85Wgisk5MdojIYsmTFF1bdeSY7BA1DEx2iMhinTp1CgDQo0cPvZ4vT3YSEhKQl5dnsLiIyLww2SEiiySKYp1bdry9vREYGAhRFHHu3DlDhkdEZoTJDhFZpLt37yI9PR22trbo2rWr3teRLxrKZIfIejHZISKLJG/VCQsLg4uLi97XYbJDZP2Y7BCRRaprvY4ckx0i68dkh4gskrxlp67Jjnx+natXr6K4uLiuYRGRGWKyQ0QWp6KiQrFaeV2TnebNm8PT0xMVFRW4fPmyIcIjIjPDZIeILM7NmzdRUFAAJycntGvXrk7XEgQBnTp1AgAmO0RWiskOEVmcixcvAgA6dOhgkAU8O3ToAKCyK4uIrA+THSKyOJcuXQIAhIeHG+R67du3B8Bkh8haMdkhIosjb9lhskNE2mCyQ0QWx1jJzq1bt1BQUGCQaxKR+WCyQ0QWJT8/H8nJyQAqJxQ0hKZNm8LLywuiKOLatWsGuSYRmQ8mO0RkUeQjpvz8/ODl5WWw68pbd85dvISgRfsQtGgfCkvLDXZ9IjIdJjtEZFH06cIqLC2vNYGRJzvXEhLqHiQRmRUmO0RkUQxdryPHZIfIejHZISKLIk92DFWvIyefa4fJDpH1YbJDRBZDFEWjt+ykpNyErKzEoNcmItNiskNEFuPOnTuQSqWws7NDaGioQa/t7e2NJk2aQCaTofzhXYNem4hMi8kOEVkM+czJbdu2haOjo0GvLQiConWnLDtNsV+b4mYiMm9MdojIYiT8r55GnpQYmvy6pdmpRrk+EZkGkx0ishjyZKeuK51X11rTtm1bAED5w3t1uj4RmRcmO0RkMQyV7FQnJCQEACArqVwyIkNabJTXIaL6xWSHiCyCKIoGSXZqSmBat24Nt/Bn4P23ZQCAQevj8OPZO3q/FhGZBztTB0BEpI2srCw8fPgQgiCgTZs2VY4Xlpaj/dIYAMDVFUPg4vD44005YRm0Pg7LR3bQ+FyxvBRNhrwGwabye6BMBN7efcUYt0NE9YjJDhFZBHmrTnBwMJydnbV+Xrq0SCVhqSmBEewcquyTiToGSkRmx+TdWHfv3sWLL74IT09PODs7IywsDGfOnFEcF0URS5cuhZ+fH5ydnTFo0CDcuHFD5Ro5OTmYOHEi3N3d4eHhgWnTpiE/P7++b4WIjEjfLqyU7IIqCUuNCYwoU9m0EXR6OSIyQyZNdh4+fIjevXvD3t4ev/32G65evYr3338fjRs3Vpyzbt06bNiwAZ999hlOnjwJV1dXDBkyBMXFj/vdJ06ciCtXruDgwYPYu3cvfv/9d7zyyiumuCUiMhJdkh3l0Va+7k5VEpaaEpi2+RcgyioU5yl3ebFgmcgymTTZeffddxEQEIAtW7agR48eCA4OxuDBg9GqVSsAla06H374Id566y0899xzCA8Px9dff4179+7h559/BlD5Abh//358+eWX6NmzJ/r06YOPPvoIO3bswL17HD5KZC30bdnxlTipJCzqCYy63s3scPezl5H753bERvdTOTZofRy+O805eIgsjUmTnd27d+OJJ57A2LFj4e3tjS5duuCLL75QHE9JSUFGRgYGDRqk2CeRSNCzZ0/Ex8cDAOLj4+Hh4YEnnnhCcc6gQYNgY2ODkydPanzdkpIS5OXlqTyIyLzVZSTWmG7NFT/HRvdT2VYX3LIVKh49QFFS5eeHer3PG7suI11apHMMRGQ6Jk12bt68iU8//RStW7dGTEwMZs6cidmzZ2Pbtm0AgIyMDACAj4+PyvN8fHwUxzIyMuDt7a1y3M7ODk2aNFGco27NmjWQSCSKR0BAgKFvjYgM6NGjR7h7t3K9qrquieUrcVLZVu+aavm/uXbKHqbj1oOq9T4Voohb2YV1ioGI6pdJkx2ZTIauXbti9erV6NKlC1555RVMnz4dn332mVFfd/HixZBKpYpHWlpa7U8iIpO5du0agMovOso1ffpSH4quvB0YFAxAgFhaCDcUVanvsRUEBDV1qXMMRFR/TJrs+Pn5VVnjpl27dkhNrewT9/X1BQBkZmaqnJOZmak45uvri6ysLJXj5eXlyMnJUZyjztHREe7u7ioPIjJfhpw5OUNaXONQdCcnJ9i6NwUA5GemVqn3WT26I/wk2g99JyLTM2my07t3byQmJqrsu379OgIDAwFUzqfh6+uLQ4cOKY7n5eXh5MmTiIiIAABEREQgNzcXZ8+eVZxz+PBhyGQy9OzZsx7ugoiMTd6yo22yk5lX/aip2xq6ppS3M/OKYd/YDwCQlJRUpd5nXPcWWkZNRObCpMnOvHnzcOLECaxevRpJSUnYvn07Nm3ahKioKACAIAiYO3cu3nnnHezevRuXLl3C5MmT4e/vj1GjRgGo/PAbOnQopk+fjlOnTuHYsWOYNWsWxo8fD39/fxPeHREZyvXr1wE8XqhTE+WuqBEfHav2vEBP1ypdU8qbIz46BtcOAwEAN5OTVc5Tr/chIstg0mSne/fu+Omnn/Dtt9+iY8eOWLlyJT788ENMnDhRcc6CBQvw2muv4ZVXXkH37t2Rn5+P/fv3w8np8YfON998g9DQUAwcOBDDhw9Hnz59sGnTJlPcEhEZgTzZad26tcbjmmZJro76UHT1KXdkIuDa8WnYNvJEslqyQ0SWyeTLRTz77LN49tlnqz0uCAJWrFiBFStWVHtOkyZNsH37dmOER0QmJpPJkJSUBAAa18QCNM+SLJchLa7SIjOmW3Ms+aUyOfrX2HC8vvOiynFBsIGdhz9SkpPqGD0RmQOTLxdBRFSTe/fuoaioCHZ2dggKCtJ4TnDTql1TcrWtXN6lRWONMyyX595DSkqKnlETkTlhskNEZk3ehRUcHAw7O82N0X4S52pnRZaJwLLdVxG/eABurY1UWQ0d0DzD8tvDW6Pi0QPk5ORw0lEiK8Bkh4jMmnzh3+q6sORqmhW5tokA1UdcTXmqDTw9PQEAt26xdYfI0jHZISKzVltxsiZ1mQhQXt8THBwMALidckvr1yUi88Rkh4jMmrYtO8reGP54Ph59JwKU1wfdvn1Lp+cRkfkx+WgsIqKa6NOyM6qLP97ZVznrcmx0P7T0ctP5deUtO3fTUnHr36/r/HwiMh9s2SEis1VeXo6bN28C0K1lR5m+EwHKkx2OyCKyfGzZISKzdfv2bZSVlcHJyQnNm1dfgKwrFwc73FobqdguLC2vcg6THSLrwZYdIjJb8nqdkJAQ2NjU78eVcrIjijVMyUxEZo/JDhGZLX3qdQxFviBxQUEBsrOz6/31ichw2I1FRGarppFYhaXlaL80BgBwdcUQla4pTd1SNVHv1gIAJycn+Pn5IT09Hbdu3YKXl5c+t0BEZoAtO0RktkzZsgOwbofIWjDZISKzJW/ZYbJDRHXBbiwiMkslJSW4ffs2AN2HnWvqltIHkx0i68CWHSIySzdv3oRMJoObmxt8fHxMEoN8FmUmO0SWjckOEZkl5eJkQRBqOds45C07t27dMsnrE5FhMNkhIrNk6uJkQDXZkclkJouDiOqGyQ4RmSV9FgA1tICAANjY2KC0tBTp6ekmi4OI6obJDhGZJV1adjKkxUaJwc7ODs2aNQMApKWlGeU1iMj4mOwQkVmqrWXnx7N3FD8PWh+H706nGiUO+UzKqanGuT4RGR+THSIyOwUFBbh79y4AzS076dIivL37imJbJgJv7LqMdGmRwWNp0aIFACiGwROR5WGyQ0RmJykpCQDg6emJJk2aAKhcAiJo0T4ELdqHa+l5kKmtzVkhiriVXWjwWOTJTnUtO8px6bpMBRHVDyY7RGR2aqvXCfR0hY3aaHRbQUBQUxeDx1JbskNE5o/JDhGZndqWifCVOGH5yA6KbRsBWD26I/wkzgaPRT3ZYUsOkeVhskNEZkfeslPTsPMx3Zorfo6N7odx3VsYJRa27BBZPr3Wxrpx4waOHDmCrKysKhNtLV261CCBEVHDpesCoL4SJ6PFIh+NlZOTg/z8fNg4GO+1iMg4dE52vvjiC8ycORNNmzaFr6+vyjTugiAw2SGiOtOmZae+uLu7QyKRQCqVIjU1FUEhpo+JiHSjc7LzzjvvYNWqVVi4cKEx4iGiBu7hw4fIzs4GAISEhJg4mkotWrTApUuXmOwQWSida3YePnyIsWPHGiMWIiJFF5afnx8aNWpk4mgqsW6HyLLpnOyMHTsWBw4cMEYsRERa1esYa3mI6mib7NR3XESkHZ27sUJCQrBkyRKcOHECYWFhsLe3Vzk+e/ZsgwVHRA1PdctEqC8PoTz03NiqWzIiQ1qMY0nZKnGtGR1mtJFhRKQfnZOdTZs2wc3NDXFxcYiLi1M5JggCkx0iqhNNEwpqWh5CedvYlFt2lJOuge+rfgbKl63o28bLKHP+EJF+dE52UlJSjBEHEREAzd1YKdkFVZaHUN82JnmycytLqpJkaQpBvmwFkx0i86HXPDtERMYgiqLGYefBTSuXh1BOcGwFAX8uerpekgp5snO/GPCqJcky1rIVRKQ/rZKd6OhorFy5Eq6uroiOjq7x3PXr1xskMCJqeO7fv4+8vDwIgoBWrVop9vtJnLF8ZAcs+aWyVcWYy0No4ufnB1tbW5Rkp1VJugQ8buGp77iISDtaJTvnzp1DWVmZ4ufqKE8wSESkK3mrTkBAAJycVGcqHtOtuSLZiY3uh5ZebvUWl52dHZo1a4bU1FRM6eiELZcqR13ZCFBJwuo7LiLSjlbJzpEjRzT+TERkKIWl5Ri1eicAIKR1zRP3GXN5iOoEBgYiNTUVwcgEIAFQmdz4SpwUyY4p4iKi2tVpIdC0tDSkpaXp/fxly5ZBEASVR2hoqOJ4cXExoqKi4OnpCTc3N4wZMwaZmZkq10hNTUVkZCRcXFzg7e2N+fPno7ycKxETWaKynHsAtF8Tqz7J63bSUh9/5jG5IbIMOic75eXlWLJkCSQSCYKCghAUFASJRIK33npL0dWliw4dOiA9PV3x+PPPPxXH5s2bhz179mDnzp2Ii4vDvXv3MHr0aMXxiooKREZGorS0FMePH8e2bduwdetWrs9FZKHKHt4FAISYdbJz28SREJGudB6N9dprr2HXrl1Yt24dIiIiAADx8fFYtmwZHjx4gE8//VS3AOzs4OvrW2W/VCrF5s2bsX37dgwYMAAAsGXLFrRr1w4nTpxAr169cODAAVy9ehWxsbHw8fFB586dsXLlSixcuBDLli2Dg4ODrrdHRCZUniNPdsxv/SlFspOWJu/FIiILoXPLzvbt27F161bMmDED4eHhCA8Px4wZMxSJia5u3LgBf39/tGzZEhMnTlTMUHr27FmUlZVh0KBBinNDQ0PRokULxMfHA6hMssLCwuDj46M4Z8iQIcjLy8OVK9VPOFZSUoK8vDyVBxGZVkVFBcoepgMw826sNK6PRWRpdE52HB0dERQUVGV/cHCwzi0pPXv2xNatW7F//358+umnSElJwVNPPYVHjx4hIyMDDg4O8PDwUHmOj48PMjIyAAAZGRkqiY78uPxYddasWQOJRKJ4BAQE6BQ3ERnenbQ0oKIMsLFDi/8tz2BO5EtG3KlDnSIRmYbOyc6sWbOwcuVKlJSUKPaVlJRg1apVmDVrlk7XGjZsGMaOHYvw8HAMGTIEv/76K3Jzc/H999/rGpZOFi9eDKlUqnjUpciaiAxDPnOyfePKOW3MjfxL0cOHDyErKTRxNESkC61qdpSLggEgNjYWzZs3R6dOnQAAFy5cQGlpKQYOHFinYDw8PNCmTRskJSXhmWeeQWlpKXJzc1VadzIzMxU1Pr6+vjh16pTKNeSjtTTVAck5OjrC0dGxTrESkWEl3bgO20aecG7zJDKkxfCVOKH90hgAwNUVQ+DiYIdbayNNFp+7uzs8PDyQm5uL8kfZcHCs7NYydVxEVDutkh2JRLUab8yYMSrbhuoGys/PR3JyMiZNmoRu3brB3t4ehw4dUrxeYmIiUlNTFYXRERERWLVqFbKysuDt7Q0AOHjwINzd3dG+fXuDxERE9ePIrSI0e3ULBBubel/VXFstWrRAbm4uNo8JwrBhw0wdDhFpSatkZ8uWLUZ58X/+858YMWIEAgMDce/ePbz99tuwtbXFhAkTIJFIMG3aNERHR6NJkyZwd3fHa6+9hoiICPTq1QsAMHjwYLRv3x6TJk3CunXrkJGRgbfeegtRUVFsuSGyIOnSIlxy7ABBqOxZr+9VzbXVokULXLx4UTGQgogsg0kXAr1z5w4mTJiABw8ewMvLC3369MGJEyfg5eUFAPjggw9gY2ODMWPGoKSkBEOGDMEnn3yieL6trS327t2LmTNnIiIiAq6urpgyZQpWrFhhqlsiIj2kZBcAgmoJYX2uaq4t+YgsJjtElsWkyc6OHTtqPO7k5ISNGzdi48aN1Z4TGBiIX3/91dChEVE9atbIHqJMBsHmccKjvuCmOZB32XNQA5FlqdNyEUREhlCQfRc5MR9BlFUAeLzAprlhskNkmZjsEJHJXb9+HfkXDyLrx5UAKhfYHNOtuYmjqkrXZKewtBxBi/YhaNE+FJZyzT4iU9Ep2SkrK8PAgQMV82EQERnC9evXAQA2Tq4Aqi6wmSEtrveYNJHX7Ny5cwcymczE0RCRtnRKduzt7XHx4kVjxUJEDZQ82bFv3Eyx78ezdxQ/D1ofh+9Om74ouFmzZhAEASUlJbh//76pwyEiLencjfXiiy9i8+bNxoiFiBooRbLTpDLZyZAWqww9l4nAG7suI11aZJL45Ozt7RUTlrJuh8hy6Dwaq7y8HF999RViY2PRrVs3uLq6qhxfv369wYIjooZBnuzY/S/Zuf2goMpIrApRxK3sQvhJnOs7PBUBAQFIT09HWloannjiCZPGQkTa0TnZuXz5Mrp27Qrg8QeUnCAIhomKiBoMqVSqWObFvrE/ACDQ07XK0HNbQUBQUxdThKgiICAAp06dYssOkQXROdk5cuSIMeIgogZKPuDBx9cXNo6VyYyvxAnLR3bAkl8qu7JsBGD16I4mb9UBah6RVVharrKeFxGZB72HniclJSEmJgZFRZV96KJoZrN/EZFFkLcQt27dWmW/8tDz2Oh+GNe9Rb3GVR3OtUNkeXRu2Xnw4AH+/ve/48iRIxAEATdu3EDLli0xbdo0NG7cGO+//74x4iQiKyVPdkLbtsUfSquHK89Loz4U3ZTkw891TXYypMVo6eVmjJCIqBY6t+zMmzcP9vb2SE1NhYvL4/7zcePGYf/+/QYNjois37Vr1wAAbdq0MXEk2pG37GizPpY5Dp8naoh0btk5cOAAYmJi0Ly56uymrVu3xu3btw0WGBE1DAkJCQCA9u3bmzgS7ciTnXv37qG8vBx2dpo/RqsbPt+3jZdZ1B4RNSQ6t+wUFBSotOjI5eTkwNHR0SBBEVHDUFFRgcTERABAu3btTByNdnx8fGBnZweZTIb09PRqz6tp+DwR1S+dk52nnnoKX3/9tWJbEATIZDKsW7cOTz/9tEGDIyLrlpKSgpKSEjg5OSEwMNDU4WjF1tYWzZpVzgdUU92OfPi8ynPNZPg8UUOjczfWunXrMHDgQJw5cwalpaVYsGABrly5gpycHBw7dswYMRKRlTp/8TIAoMLdDyUVIlxsTRyQlgICAnD79u1ai5TNdfg8UUOjc8tOx44dcf36dfTp0wfPPfccCgoKMHr0aJw7dw6tWrUyRoxEZKXkxcn2ngEmjkQ31Y3IUi9IVmZOw+eJGhqdW3YAQCKR4M033zR0LETUwCQmVhYna0p2XBzscEtpKLo50TTXTrq0qEpBsvK2OQ2fJ2po9Ep2Hj58iM2bN6uMopg6dSqaNGli0OCIyLolWmjLjqbh5ynZVQuS1beJyDR07sb6/fffERQUhA0bNuDhw4d4+PAhNmzYgODgYPz+++/GiJGIrJAoikrJTvNazjYvmlp2gptWLUhW3yYi09A52YmKisK4ceOQkpKCXbt2YdeuXbh58ybGjx+PqKgoY8RIRFYoPT0deXl5gGAD+8bNTB2OTjQlO34SZywf2UGxbSNAZZuITEfnZCcpKQmvv/46bG0fD5uwtbVFdHQ0kpKSDBocEVmvq1evAgDsGvtBsLM3cTS6kSc7WVlZKCkpUexXX89LeZuITEfnZKdr166KWh1lCQkJ6NSpk0GCIiLrJ/8ccWxeOXNyhrTYlOHoxNPTE87OlUPI79y5o/EcFiQTmQ+dC5Rnz56NOXPmICkpCb169QIAnDhxAhs3bsTatWtx8eJFxbnh4eGGi5SIrEpCQgLcwp9Bk6GvAagcqr1mdJhFDM8WBAEBAQG4fv060tLSqp12w5xHlBE1JDonOxMmTAAALFiwQOMxQRAgiiIEQUBFRUXdIyQiq3QpOQ1NhrwGQahsYLa0taPkyY42C4ISkWnpnOykpKQYIw4iakBEUcT19Fw4d1HtSZevHWUpyQ5Q85IRRGQedE52LGX9GiIyX5mZmXhwKwHNZDIINo8THktaO4rJDpHl0LlAmYiori5evIiKRw9gf36nYp+lrR3FZIfIcug1gzIRUV3IBzKENyrEX//bFxvdDy293EwXlI40JTssSCYyT2zZIaJ6d+nSJQBAx7AwxT5LG6pd3WKgRGR+mOwQUb2Tt+x07BhWy5nmS96yk5ubi0ePHpk4GiKqic7JTlpamsokWqdOncLcuXOxadMmgwZGRNaprKxMMXtyh44dTRyN/ho1agSJRAKArTtE5k7nZOeFF17AkSNHAAAZGRl45plncOrUKbz55ptYsWKFwQMkIuty48YNlJaWws3NDYFBQaYOp05YpExkGXROdi5fvowePXoAAL7//nt07NgRx48fxzfffIOtW7caOj4i0lJhaTmCFu1D0KJ9KCwtN3U41ZJ3YYWFhcHGxrJ70pnsEFkGnT9pysrK4OjoCACIjY3FyJEjAQChoaFIT083bHREZHWUkx1Lx2SHyDLoPPS8Q4cO+OyzzxAZGYmDBw9i5cqVAIB79+7B09PT4AESkX7u378PQRDg6ekJQRBMHY6CfCRWeHi4xQ/V5ogsIsugc8vOu+++i88//xz9+/fHhAkTFCud7969W9G9RUSmIYoi8q8cQbdO4fD29oaXlxfatWuHL7/8EqIomjo8AEpz7FjBQsFs2SGyDIKoxydgRUUF8vLy0LhxY8W+W7duwdXVFV5eXgYNsD7k5eVBIpFAKpXC3d3d1OEQ6eVRUQn8ejyLgsuxGo+PHDkSO3bsgLOz6WYozs3NVXxu5OTkqHyGWKIjR45gwIABaNu2La5du2bqcIgaHG3/fuvcsjNgwAA8evSoyodUkyZNMG7cON0j/Z+1a9dCEATMnTtXsa+4uBhRUVHw9PSEm5sbxowZg8zMTJXnpaamIjIyEi4uLvD29sb8+fNRXm6+xZlExhI9Z3ZlomNji6XLliM3NxdSqRTr1q2Dk5MTdu/ejZEjR6K0tNRkMZ49exYAEBwcbPGJDvC4ZSc1NdVsWs6IqCqdk52jR49q/LAsLi7GH3/8oVcQp0+fxueff16lWXvevHnYs2cPdu7cibi4ONy7dw+jR49WHK+oqEBkZCRKS0tx/PhxbNu2DVu3bsXSpUv1ioPIUu3YsQNffrEJEGzQdMR8LFz8BiQSCdzd3TF//nwcPHgQbm5uiI2NVflCUd9Onz4NAHjiiSdMFoMhNW/eHABQVFSEnJwcE0dDRNXROtm5ePGioq/96tWriu2LFy/i3Llz2Lx5M5o1a6ZzAPn5+Zg4cSK++OILlW96UqkUmzdvxvr16zFgwAB069YNW7ZswfHjx3HixAkAwIEDB3D16lX897//RefOnTFs2DCsXLkSGzdurPHba0lJCfLy8lQeRJbq/v37mDlzJgDAo99LcA3tgwxpsco5ffr0wY4dOyAIAj799FP88MMPpggVZ86cAQB0797dJK9vaE5OToque23qdixlegAia6N1stO5c2d06dIFgiBgwIAB6Ny5s+LRrVs3vPPOO3q1qERFRSEyMhKDBg1S2X/27FmUlZWp7A8NDUWLFi0QHx8PAIiPj0dYWBh8fHwU5wwZMgR5eXm4cuVKta+5Zs0aSCQSxUPeFE1kid5++23k5uYiNHIa3Hs8DwAYtD4O351OVTkvMjISixcvBgDMnDkT9+/fr/dY5S071pLsAByRRWQJtE52UlJSkJycDFEUcerUKaSkpCged+/eRV5eHl5++WWdXnzHjh3466+/sGbNmirHMjIy4ODgAA8PD5X9Pj4+yMjIUJyjnOjIj8uPVWfx4sWQSqWKBz+kyFJdv34dn3/+OWwbeaK44/OKIeYyEXhj12WkS4tUzl+6dCnCwsKQnZ2Nt99+u15jzcrKQmpqKgRBQNeuXev1tY2JI7KIzJ/W8+wEBgYCAGQymUFeOC0tDXPmzMHBgwfh5FS/qx07OjoqJkYksmTr1q2DTCZD/2FjkKJ2rEIUcSu7EH6Sx6OvHB0d8dFHH6F///7YtGkTZs+ejdDQ0HqJVd6F1bZtW6sa9chkh8j86TypIFC5ts2RI0eQlZVVJfnRtivr7NmzyMrKUvmGV1FRgd9//x0ff/wxYmJiUFpaitzcXJXWnczMTPj6+gIAfH19cerUKZXrykdryc8hslZ37tzB119/DQB4fcZkzD6YC5nSgCBbQUBQU5cqz+vXrx9GjhyJ3bt3Y+HChfjll1/qJV5r7MICmOwQWQKdk50vvvgCM2fORNOmTeHr66syM6sgCFonOwMHDlTMpCo3depUhIaGYuHChQgICIC9vT0OHTqEMWPGAAASExORmpqKiIgIAEBERARWrVqFrKwseHt7AwAOHjwId3d3tG/fXtdbI7IomzZtQllZGZ566ik8O6A3HjrfwpJfKmvVbARg9eiOKq06ypatXIXde/Zi9+7d2H/wEIY+M9Do8Vp7spOamlrLmURkKjonO++88w5WrVqFhQsX1umFGzVqhI4dO6rsc3V1haenp2L/tGnTEB0djSZNmsDd3R2vvfYaIiIi0KtXLwDA4MGD0b59e0yaNAnr1q1DRkYG3nrrLURFRbGbiqxaWVkZvvzySwDArFmzAABjujVXJDt7XuuNyA3HsPDHS7i6YghcHFTf6m1DQ+HWeSjyz/2Kd1YsM3qyI4qi1Q07l2PLDpH503menYcPH2Ls2LHGiKWKDz74AM8++yzGjBmDvn37wtfXF7t27VIct7W1xd69e2Fra4uIiAi8+OKLmDx5MlasWFEv8RGZyt69e5Geng5vb2+MGjWqynEf99rr4CQRfwds7XDszz/1niNLW3fu3EFWVhbs7OzQuXNno75WfZMnO3fv3tWpplF9egAiMh6dk52xY8fiwIEDxogFR48exYcffqjYdnJywsaNG5GTk4OCggLs2rWrSi1OYGAgfv31VxQWFuL+/fv417/+BTs7vUqRiCyGvFbnpZdegoODg17XsGvUFG4dK6d20DQi0pDktXUdOnQw6XIVxuDv7w8bGxuUlZVVmeFd3Y9n7yh+1jQ9ABEZh85ZQUhICJYsWYITJ04gLCwM9vb2Ksdnz55tsOCI6LHC0nK0XxqDiqJHyNy3DwDwn+wW+G7RPlxdMUSva7r3HIPCSwfw22+/4dy5c+jSpYshQ1bEnHPoPwCAJ5980qDXNwd2dnbw9/fHnTt3kJaWBj8/P43npUuL8Pbux/N/yacH6NvGq9raKiIyDJ2TnU2bNsHNzQ1xcXGIi4tTOSYIApMdIiMrTDyGsrIydAwLwyOvoDpdy76xH8aOG4fvvv0Wq1evxs6dOw0TpJqSO1cBVM7kbI0CAgIUyU6PHj00npOSXaAyWg7QPD0AERmezslOSor6bB5EVJ8Krx8HAIwdNx5fPar79V6fvwDfffstfvzxRyQlJSEkJKTuF1UiKy1CaWYyAOCJnhEIWlTZKqWpcNpSBQQEID4+vsYi5eCmrrARoJLw2AjAhC8ql7+xpn8PInOjc80OEZmOrKQQxbcr16gbMWKkyjEXBzvcWhuJW2sjdfqj6dk8BMOHD4coivjggw8MGi8AlNxLBEQZAlq0QHMrXZpFm+HnfhJnLB/ZQbFtI0Blm4iMR+evEbUtCfHVV1/pHQwR1awo5S9AVo7WrdugbWgogNu1PidDWoyWXm4q+9QLZadMmItff/0VW7ZswfLly9G0aVODxVySWjmf1pO9exvsmuZG2+HnytMDxEb3g6/ESbFNRMaj19Bz5UdWVhYOHz6MXbt2ITc31wghEpFcUdJJAMDwZ5+t8byaRv1oKpT9+kopuvQegKKiImzcuNGgMRffvgAA6Nf/aYNe15zosxior6R+l8khash0btn56aefquyTyWSYOXMmWrVqZZCgiKiq8vJylGYmw7FFGCIGRaocU269qW3Uj+ZCWeBvL83EuWOH8fHHH2P+/Plwcam61ISupFIpyh89gGOLMIT17Fvn65krTixIZN4MUrNjY2OD6Ohoo/T3EzVUhaXlCFq0D0GL9qGwtBzv7YyD39SP4TthDRb/UYQ3dj1ebkW59aamUT/A40JZZbaCgEnPD0VQUBCys7Oxbds2g9zD+h//RLNXN8N3whpM3pGk0uJkTeTJTnp6OsrKykwcDRGpM1iBcnJyMsrLyw11OSJSkiEtxn+ulkGwqXzLykTg5/P3FMflrTfp0iKNyYx81E/Qon2QONtXKZRdPbojAjzdEB0dDQB4//33UVFRUaeY06VF2JliqxKzcouTNc0g7OXlBQcHB4iiiHv37tX+BA2s6d+DyNzo3I0l/zCUE0UR6enp2LdvH6ZMmWKwwIjosdsPCgBBqPEceetNRCtPLB/ZQWVRUOVtQHOhbNCifZCV+qNJkyZITk7GL7/8gtGjR+sdc8r9qjErtzgNWh+HNaPDMK57C71fw1zY2NigefPmuHnzJlJTUxEYGKjV89Rrq6zl34PI3OjcsnPu3DmVx8WLlcNg33//fZWlHojIcBxL8yDWsu6SrSAgqGllnc2Ybs0V+2Oj+6lsq1MulLVxcML0Ga8CAN577z2Ioljd02pV8iCtxpiVW6OsgTZ1O8rTA0iLyjTWVlnLvweROdG5ZefIkSPGiIOIanD59B/IidmBJkNeg2BjAxsBGNnJX9GVJe+K0jQTr66jfmbM/D98uP59nDhxAseOHdN71uP4Q78hJ+aoImYBgHrqZE0zCOs6IoszKhPVH71rdu7fv48///wTf/75J+7fv2/ImIhIzdEjh5F/8SCkJ38EUNlas3p0mOJ4bHQ/g3V/+Pj4YPLkyQAqW3f09dNPPyH/4kEUJFQuK7PjlV4aC6PlrVGWTtcRWdUVilvLvweROdE52SkoKMDLL78MPz8/9O3bF3379oW/vz+mTZuGwsJCY8RI1KCJooi4U+cBAI5+rQFUba0x9Jwtr7/+OgRBwO7du3Ht2jWdn3/9+nWcOXMGtra2cA7uCgAIay7RWBhtLa0YuiY7mmZUtqZ/DyJzonOyEx0djbi4OOzZswe5ubnIzc3FL7/8gri4OLz++uvGiJGoQZIXrwqCALtRa+DRdTgcm7Wr83W1GfXTtm1bjBxZuRzFO++8o/W15cPle7y8HAAwcNAzsHWRKI6r1xJZUzGuPnPtWPO/B5E50TnZ+fHHH7F582YMGzYM7u7ucHd3x/Dhw/HFF1/ghx9+MEaMRA2O+sSAgo0NJINehY29o17XUx/1s+fCvWrX0UrJzkfQon046VE54/H27dtx/vx5rV9LFGUouFJZ2/f38eOrPc/aZhCu68SC1vbvQWROdE52CgsL4ePjU2W/t7c3u7GIDERT8SoE7d+uuo76UU6GRnx0DADg6BuCsePGQxRFLFy4sNrXUp/8sDjlHMpz0yGRSDBi5HNax2zp5MlOdnY2PwuJzIzOyU5ERATefvttFBc/bgovKirC8uXLERERYdDgiBqq6iYG1EdtMyprWl5C7u1ly2Fvb48DBw4gNjZWq9d79NdeAMCLk6fAzc2tlrOth4eHB1xdXQEAd+5Y50zRRJZK56Hn//73vzFkyBA0b94cnTp1AgBcuHABTk5OiImJMXiARA2RvHj1rZ8vQxAEiLIKvDM6HC/0ClI579baSM0XUCJPnJSTGOVRPxpbkeTPbdkSM2fOxIYNGxAdHY0zZ87AwcGh2te6eOE8ipJPAxDwyoxXFS1McoWl1jvLuiAIaNGiBRISEpCWloY2bdqYOiQi+h+dW3Y6duyIGzduYM2aNejcuTM6d+6MtWvX4saNG+jQoUPtFyAirYzp1hwFV44gY/tiBF78qkqio63aRv1oakVStmTJEjRt2hSXLl3C2rVrq3RbKVu9YhkAwKV9X4S0bq1XvJaMC4ISmSedW3YAwMXFBdOnTzd0LESkpijlLErSLqHvS8/X6Trqy0PIV0gHHidDystLKLf0NG3aFBs2bMALL7yAFStWoEdEb42vUXDtTxw6EANbd2807j9VZSV2OfWWHmuja7Jj7f8eROZC55adNWvW4Kuvvqqy/6uvvsK7775rkKCIqFLJnQQAQK+IJw12TU2jfpSHQO957XEyIx+mPn78eLz44ouoqKjApBfGozTrpsrzyx7eQ07MRriFP4Nmr34Ju0ZNVVZibyjYskNknnROdj7//HOEhoZW2d+hQwd89tlnBgmKiIC7d+6gIi8LEGzQvUePenvd+OQcxc/yhEUQBHz++ed44oknkJ2djYzti/Ho/H5kZGTg1717kf3Lu3AMDIfn0NcgCI9XOW9oaz0x2SEyTzp3Y2VkZMDPz6/Kfi8vL6SnpxskKCIC4uOPAwAcvIPRqFGjenvd1b8mKH6WJyx923jBT+KCgwcPYtjw4TgRH4+cmI/RKvBjuIU/A9/JH0CwqfrdqaGt9SRPdlJTG1aLFpG507llJyAgAMeOHauy/9ixY/D39zdIUEQNRU3FvvH/e585Nm9frzHVNEzdw8MDMbGH0fjpl2HX2A+2jTwVC31q0tDWetJ1MVAiqh86t+xMnz4dc+fORVlZGQYMGAAAOHToEBYsWMDlIogM6OSJeADAlwterDLLsTHVNEwdAOzs7ODeYzTce4zGu8+3w8KfEjRcpWGu9SRv2Xn06BGkUikkEkktzyCi+qDzJ+j8+fPx4MED/N///R9KS0sBAE5OTli4cCEWL15s8ACJGqJHjx7hwoULAIDevTWPftKFLqN+3hjeDu/sq0xgNCUsyrMtL/opAQIATdP0qI/6aghcXFzQpEkT5OTkIC0tjckOkZnQOdkRBAHvvvsulixZgoSEBDg7O6N169ZwdNRvzR4iqurEiROQyWQICgpCs2bNjP56yslQYWm5ItlRT1jUZ1sWAShP0aPcKtRQ13oKCAhQJDsdO3Y0dThEBD1qduTc3NzQvXt3dOzYkYkOkYGdOHECAEy+BIt6wqJptmXlTeVh6w0VR2QRmR+9kx0iMp5Tp04BAHr27GniSFTVtmaXj3vDbM1RxmSHyPww2SEyEynZ+QhatA+BC/fixMmTAMwv2dG09ITyNnH4OZE5YrJDZELKxb4jPqocal4uzUT2/fuwt7dH586dTRRZ9ZRnW46N7qeyTRx+TmSOtEp2unbtiocPHwIAVqxYgcLCQqMGRdQQqBf7ymthyu7fAgB06tQJTk713y0kL1a+tTay1iHv6jU9ujzXWrEbi8j8aJXsJCQkoKCgAACwfPly5OfnGzUoooZAU7EvAJTnZQMwny6smiY+BJjgqJMnO3fu3IEoahqUT0T1TatPps6dO2Pq1Kno06cPRFHEv/71L7i5aZ4/Y+nSpQYNkMhayYt91ROe4tvnAZhPskO6adasGQRBQHFxMbKzs+Hl5WXqkIgaPK2Sna1bt+Ltt9/G3r17IQgCfvvtN9jZVX2qIAhMdoi0JC/2XfJLZVeWjQBUVFRALC+FbSNP9KjHxT/JcBwcHODj44OMjAykpaUx2SEyA1p1Y7Vt2xY7duzA6dOnIYoiDh06hHPnzlV5/PXXXzq9+Kefforw8HC4u7vD3d0dERER+O233xTHi4uLERUVBU9PT7i5uWHMmDHIzMxUuUZqaioiIyPh4uICb29vzJ8/H+XlVZvaicyRcnHvrAEhgGADn7+vQLNXt+AvKYdxWyp963Zq6zIkIv3oPBpLJpPB29vbIC/evHlzrF27FmfPnsWZM2cwYMAAPPfcc7hypfKb7rx587Bnzx7s3LkTcXFxuHfvHkaPHq14fkVFBSIjI1FaWorjx49j27Zt2Lp1K1uXyCJ9fDgJglA5aY1gY4O3frqCdGmRiaOqijU6tZOPyOLwcyLzoNcnVXJyMj788EMkJFROKd++fXvMmTMHrVq10uk6I0aMUNletWoVPv30U5w4cQLNmzfH5s2bsX37dsWCo1u2bEG7du1w4sQJ9OrVCwcOHMDVq1cRGxsLHx8fdO7cGStXrsTChQuxbNkyODg46HN7RCZR3Wrj5rSQZoa0uMGtd6UPjsgiMi86t+zExMSgffv2OHXqFMLDwxEeHo6TJ0+iQ4cOOHjwoN6BVFRUYMeOHSgoKEBERATOnj2LsrIyDBo0SHFOaGgoWrRogfj4ytWg4+PjERYWBh8fH8U5Q4YMQV5enqJ1SJOSkhLk5eWpPIjqQ03dFOozE6uvNm4qynMBDVofh+9Os7WiNpxYkMi86JzsLFq0CPPmzcPJkyexfv16rF+/HidPnsTcuXOxcOFCnQO4dOkS3Nzc4OjoiFdffRU//fQT2rdvj4yMDDg4OMDDw0PlfHnhHwBkZGSoJDry4/Jj1VmzZg0kEoniIf9gIjKl+c+0giirAKB5tXFT0DQX0Bu7Lptl95o5CQoKAgDcunXLpHEQUSWdu7ESEhLw/fffV9n/8ssv48MPP9Q5gLZt2+L8+fOQSqX44YcfMGXKFMTFxel8HV0sXrwY0dHRiu28vDwmPGQSyquN/37sOO5+9jIcfFvj0p8H0Mq7kYmj0zwXkDl2r5mb4OBgAHVLdthlSGQ4OrfseHl54fz581X2nz9/Xq/CZQcHB4SEhKBbt25Ys2YNOnXqhH//+9/w9fVFaWkpcnNzVc7PzMyEr68vAMDX17fK6Cz5tvwcTRwdHRUjwOQPIlM799dfqHj0AGJ5Gfw8zCOR0LTwp7l0r5kzectOZmamTjPOs8uQyDh0TnamT5+OV155Be+++y7++OMP/PHHH1i7di1mzJiB6dOn1zkgmUyGkpISdOvWDfb29jh06JDiWGJiIlJTUxEREQEAiIiIwKVLl5CVlaU45+DBg3B3d0f79u3rHAtRfTp3rnLqBgffEBNH8pimhT/NoXvN3DVu3BgSiQQAcPv2ba2ewy5DIuPRuRtryZIlaNSoEd5//30sXrwYAODv749ly5Zh9uzZOl1r8eLFGDZsGFq0aIFHjx5h+/btOHr0KGJiYiCRSDBt2jRER0ejSZMmcHd3x2uvvYaIiAj06tULADB48GC0b98ekyZNwrp165CRkYG33noLUVFRcHR01PXWiOqVejfF+XPnAACOPrqNajS2Md2aKyY+jI3ux64VLQUFBeHChQtISUlBu3btaj2fXYZExqNzsiMIAubNm4d58+bh0aNHAIBGjfSrLcjKysLkyZORnp4OiUSC8PBwxMTE4JlnngEAfPDBB7CxscGYMWNQUlKCIUOG4JNPPlE839bWFnv37sXMmTMREREBV1dXTJkyBStWrNArHiJjU++mWDM6DOO6t0BJSQmu/m8EoTm17KhTX/iTqhccHIwLFy5oXbejafkQdhkSGUadZgTTN8mR27x5c43HnZycsHHjRmzcuLHacwIDA/Hrr7/WKQ6i+lBdN0XfNl64e+MKysrKYOPsDlt3Li9gDeR1OykpKVqdr2n5EHYZEhmGzjU7RKSfmrop5EutDOzTE7fffZYzE1sBfYafKy8fEhvdD+O6tzBwVEQNE5MdonpS08ims2fPAgC6detmgsjIGOTDz7Vt2VHHLkMiw2GyQ1RPahrZZM7JDtfC0g8nFiQyHzolO2VlZRg4cCBu3LhhrHiIrJqmborS0lJcunQJANC1a1dThUYGJk92Hjx4oBjMQUSmoVOyY29vj4sXLxorFqIGRd5NceXKFZSWlqJx48aKrg+yfO7u7mjSpAkAtu4QmZrO3VgvvvhiraOoiEh78i6srl27QhCEWs4mS6Jr3Q67DImMQ+d3U3l5Ob766ivExsaiW7ducHV1VTm+fv16gwVH1BAoJztkXYKCgnD27Fm27BCZmM7JzuXLlxUfytevX1c5xm+lRLqTDzs3x+Jkqpu6jsgiIsPQOdk5cuSIMeIgahCUVzkHKov+L1y4AIDJjjXiiCwi86D30POkpCTExMSgqKhykTpRFGt5BhGpu3r1KkpKSuDu7o6WLVuaOhwyMLbsEJkHnZOdBw8eYODAgWjTpg2GDx+O9PR0AMC0adPw+uuvGzxAImsm78Lq2rUrbGw47ZW1YcsOkXnQ+dN13rx5sLe3R2pqKlxcHi9QN27cOOzfv9+gwRFZmsLScgQt2oegRftQWFpeZVudOU8mSHUXGBgIAJBKpXj48KGJoyFquHSu2Tlw4ABiYmLQvHlzlf2tW7fG7du3DRYYUUPAkVjWzdXVFd7e3sjKysKtW7fQuHFjU4dE1CDp3LJTUFCg0qIjl5OTA0dHR4MERdQQlJeXszi5AdB19XMiMjydk52nnnoKX3/9tWJbEATIZDKsW7cOTz/9tEGDI7Jm165dQ1FREdzc3NC6dWtTh0NGIi9S1rVup7YuUCLSns7dWOvWrcPAgQNx5swZlJaWYsGCBbhy5QpycnJw7NgxY8RIZJXkXVhdunRhcbIVY8sOkenp/AnbsWNHXL9+HX369MFzzz2HgoICjB49GufOnUOrVq2MESORRcqQFte4zckEGwZ9W3aIyHD0WnxFIpHgzTffNHQsRBbvx7N3FD8PWh+HkZ38VbbXjA7DuO4tAHAkVkNhqOHnhaXlaL80BgBwdcUQrp1FpAO93i0PHz7E5s2bkZCQAABo3749pk6dqljhl6ghSpcW4e3dVxTbMhH4+fw9le03dl1G3zZe8HZzwLlz5wBwJJa1U55YUBRFvZbVyZAWw1fiZOjQiBoMnbuxfv/9dwQFBWHDhg14+PAhHj58iA0bNiA4OBi///67MWIksggp2QWQ1TKReIUo4lZ2Ia5fv47CwkK4urqibdu29RMgmURgYCAEQUBBQQHu37+v9fPUWwmVt4lINzonO1FRURg3bhxSUlKwa9cu7Nq1Czdv3sT48eMRFRVljBiJLEJwU1fY1PKl3VYQENTURdGF1blzZ9ja2tZDdGQqjo6OinnJkpOTtXqOplZC5W0i0o3OyU5SUhJef/11lQ9oW1tbREdHIykpyaDBEVkSP4kzlo/soNi2EYBRnf1VtleP7gg/iTMnE2xgQkJCAEDrz0hNrYTK2+rF7kRUM52Tna5duypqdZQlJCSgU6dOBgmKyFKN6fZ4ZvHY6H5YPTpMZVtenMyRWA2LfKSqtsmOplZC5c1B6+Pw3elUA0VHZP20KlC+ePGi4ufZs2djzpw5SEpKQq9evQAAJ06cwMaNG7F27VrjRElkgdQLSuXbMplMUZzMZKdhkLfsaNuNJW8lXPJLZdeVeu+ocrG7n8TZkKESWSWtkp3OnTtDEASI4uN21AULFlQ574UXXsC4ceMMFx2RFbpx4wYePXoEZ2dnhIaGmjocqge6dmMBla2E8mTnX2PD8frOiyrH5cXuTHaIaqdVssOZP4kMR96F1alTJ9jZca6UhkDejaVty466Li0aw0ZQrduRF7sTUe20+qQNDAw0dhxEVsHFwQ631kaq7FPf5mSCDY882cnOzkZubi48PDx0er6vxEmlW0u52J2IaqfX18p79+7hzz//RFZWFmQymcqx2bNnGyQwImt15swZAEx2GpJGjRrB29sbWVlZSE5O1ut3r9ytFRvdDy293AwdJpHV0jnZ2bp1K2bMmAEHBwd4enqqzAYqCAKTHaIayGQyjsRqoEJCQuqU7CjjbMpEutE52VmyZAmWLl2KxYsXc6VmIh0lJSXh0aNHcHJyQvv27U0dDtWjkJAQHD9+XOsiZfUu0cLScmOFRmT1dM5WCgsLMX78eCY6RHpQnjmZxckNS12LlIlIfzpnLNOmTcPOnTuNEQuR1WNxcsOlz/BzZfKWnltrI7niOZGOdH7HrFmzBs8++yz279+PsLAw2Nvbqxxfv369wYIjsjZMdhoutuwQmY5eyU5MTIxipWb1AmUi0kwmkzHZacDkLTt3795FYWEhXFw4Rw5RfdE52Xn//ffx1Vdf4aWXXjJCOETWi8XJDVuTJk3g4eGB3Nxc3Lx5Ex07djR1SEQNhs41O46Ojujdu7cxYiGyavJWHc6c3DAJgqBo3blx44aJoyFqWHROdubMmYOPPvrIGLEQWTV5svPEE0+YOBIylTZt2gAArl+/buJIiBoWnZOdU6dOYdu2bWjZsiVGjBiB0aNHqzx0sWbNGnTv3l0xu+ioUaOQmJiock5xcTGioqLg6ekJNzc3jBkzBpmZmSrnpKamIjIyEi4uLvD29sb8+fNRXs45Kci8sF6H5LWO6p9zRGRcOrele3h46JzUVCcuLg5RUVHo3r07ysvL8cYbb2Dw4MG4evUqXF1dAQDz5s3Dvn37sHPnTkgkEsyaNQujR4/GsWPHAAAVFRWIjIyEr68vjh8/jvT0dEyePBn29vZYvXq1QeIkqivOnEwAkx0iUxFEURRrP61+3L9/H97e3oiLi0Pfvn0hlUrh5eWF7du3429/+xsA4Nq1a2jXrh3i4+PRq1cv/Pbbb3j22Wdx7949+Pj4AAA+++wzLFy4EPfv34eDg0Otr5uXlweJRAKpVAp3d3ej3iM1TNevX0fbtm3h5OSER48esWangTp//jy6dOkCT09PZGdnmzocIoun7d9vs5oGWSqVAqgctQBUNvuXlZVh0KBBinNCQ0PRokULxMfHAwDi4+MRFhamSHQAYMiQIcjLy8OVK1c0vk5JSQny8vJUHkTGxOJkAoDWrVsDAB48eIAHDx6YOBqihkPnT93g4OAa59O5efOmXoHIZDLMnTsXvXv3VgzJzMjIgIODAzw8PFTO9fHxQUZGhuIc5URHflx+TJM1a9Zg+fLlesVJpK6wtBztl8YAAK6uGKJxdlvW6xAAuLq6IiAgAGlpaUhMTMSTTz5p6pCIGgSdk525c+eqbJeVleHcuXPYv38/5s+fr3cgUVFRuHz5Mv7880+9r6GtxYsXIzo6WrGdl5eHgIAAo78uNVxMdkiubdu2THaI6pnOyc6cOXM07t+4cSPOnDmjVxCzZs3C3r178fvvv6N58+aK/b6+vigtLUVubq5K605mZiZ8fX0V55w6dUrlevLRWvJz1Dk6OsLR0VGvWIl0pVyczGHn1LZtW8TGxrJImageGaxmZ9iwYfjxxx91eo4oipg1axZ++uknHD58GMHBwSrHu3XrBnt7exw6dEixLzExEampqYiIiAAARERE4NKlS8jKylKcc/DgQbi7u3OWWjILycnJyMvL48zJBIAjsohMwWCVkj/88IOisFhbUVFR2L59O3755Rc0atRIUWMjkUjg7OwMiUSCadOmITo6Gk2aNIG7uztee+01REREoFevXgCAwYMHo3379pg0aRLWrVuHjIwMvPXWW4iKimLrDdW7DGkxWnq5qeyTt3iyOJkAwyU72tSKEVElnd8dXbp0USlQFkURGRkZuH//Pj755BOdrvXpp58CAPr376+yf8uWLYq1tz744APY2NhgzJgxKCkpwZAhQ1Rex9bWFnv37sXMmTMREREBV1dXTJkyBStWrND11oj08uPZO4qfB62Pw5rRYRjXvYViH+t1SJk82UlKSkJ5eTkTYKJ6oPO7bNSoUSrbNjY28PLyQv/+/REaGqrTtbSZ4sfJyQkbN27Exo0bqz0nMDAQv/76q06vTWQI6dIivL378RQHMhF4Y9dl9G3jBT+JMwAmO6QqICAAzs7OKCoqwq1btxTrZRGR8eic7Lz99tvGiIPIIqVkF0CmlrNXiCJuZRfCT+KMiooKJjukwsbGBq1bt8bFixeRmJjIZIeoHpjVpIJElia4qSts1KadshUEBDV1AVA54/ejR4/g6uqKDh06mCBCMkeGLlLOkBYb5DpE1krrZMfGxga2trY1Ptj3TA2Nn8QZy0c+TmJsBGD16I6KLqyTJ08CqBxyzvcHycm7/K9du6b3NdRrxb47nVrnuIisldafvj/99FO1x+Lj47FhwwbIZDKDBEVkScZ0a44lv1TW7cRG91MZjSVPdnr27GmS2Mg8yacgqG5Jm9poUytGRI9pnew899xzVfYlJiZi0aJF2LNnDyZOnMgRUNTg+UqcVLaZ7JAm8iVxLl++DFEUa1yCR5PaasWISJVeNTv37t3D9OnTERYWhvLycpw/fx7btm1DYGCgoeMjslgFBQW4dOkSACY7pKpNmzaws7NDXl4e7t69q/PzNdWK2QjAhC9OIGjRPhSWlhsoUiLroFOyI5VKsXDhQoSEhODKlSs4dOgQ9uzZo/iWQtQQuTjY4dbaSNxaG6kysdvZs2chk8nQrFkzNGvWzIQRkrlxcHBQrICuT1eWplox5W0iUqV1srNu3Tq0bNkSe/fuxbfffovjx4/jqaeeMmZsRBaNXVhUE/noPH3rdsZ0e7yOYGx0P5VtIlKldc3OokWL4OzsjJCQEGzbtg3btm3TeN6uXbsMFhyRJTtx4gQAJjukWYcOHfDDDz/g8uXLdb6Weq2YpmVLiBoyrZOdyZMn61xER9SQsWWHaiLv/te3ZUddbcuWEDVkgqjNmg1WLi8vDxKJBFKpFO7u7qYOh8ycNgsw3r17F82bN4eNjQ3y8vLg6upa32GSmUtISED79u3h5uaGvLy8On2ZTJcWoffawyojtGwFAX8uepqjs8iqafv3mzMoExmBvFUnLCyMiQ5pFBISAnt7e+Tn5yM1tW4TAtY0FJ2ImOwQ1Ul10/SzC4tqY29vr1g2oq51O5qGogOVQ9E5DJ2IyQ6RzrSZpp/JDmmjriOy5DQNRSeix5jsEOmgumn606VFin0VFRU4c+YMACY7VDNDFikrDz3f81pvxc9cJJSIyQ6RTrSpjbhy5QoKCgrQqFEjxYKPRJrIW3bkM20bSnxyjuJnLhJKxGSHSCeaaiNsBQFBTV0U28ePHwcA9OjRA7a2tvUZHlmYTp06AahMkMvKygx23dW/Jih+1tT6SNTQMNkhqkVhaTmCFu1D0KJ9kDjbV6mNWD26o8rw3j///BMAOMM41SooKAju7u4oLS1FQkJC7U+ogXzZku3Te3JkFpEaJjtEOlKfpl994jZ5stOnT596jYssj42NDTp37gwAOH/+vEGuqU3rI1FDw2SHqA7Up+lPS0vD7du3YWtry+Jk0kqXLl0AAOfOnTPI9TSNzFJvfSRqaJjsEOmgtpEtx44dAwB07twZbm5cm4hqJ2/ZMVSyA9Te+kjU0Gi9NhZRQ6VpzaFbayM1nssuLNKVvGXn/PnzEEXR4GsQqrc+EjVEbNkhqoE28+ooY7JDumrXrh0cHBwglUpx69YtU4dDZJWY7BDVQJc1h6RSKS5evAgA6N27d5XjRJo4ODgo5tsxVJGyfGTWrbWRGheqJWpomOwQqVEeau7r7qT1yJb4+HiIoohWrVrBz8+vnqIla2DoImUiUsVkh6gGvhInrUe2/PHHHwDYqkO6Y7JDZFxMdohqkCEt1npky9GjRwEA/fr1q4/QyIoYeq4dIlLFZIdIjfroK+Xt6ka25Ofn49SpUwCAp59+2rgBktXp1KkTBEHAnTt3kJWVZepwiKwOkx0iJZpGXy3bfRXxiwfUWOx57NgxlJeXIzAwEMHBwfUVLlmJRo0aoV27dgCgSJqJyHCY7BAp0WX0lbIjR44AYKsO6U8+4/aJEycMfm3lovvC0nKDX5/I3DHZIVKi77pC8mRnwIABxgqNrFyvXr0AACdPnjRxJETWh8kOkRJ91hWSSqU4c+YMALbskP7kLTunTp2CTCYz2uvUtuQJkTViskOkRtd1hf744w/IZDKEhISgefPmNZ5LVJ0OHTrAxcUFeXl5uHbtmkGvrV50/93pVINen8jcMdkhqoE26wqxXocMwc7ODt27dwdg2K4sXZc8IbJGTHaI1Og61f7hw4cBMNmhujNGkbK+RfdE1oTJDlEdZGRkKCaCGzhwoGmDIYtnjCJlfYvuiawJkx2iOjhw4AAAoFu3bvD29jZxNGTp5C07ly5dQn5+vkGuqU/RPZG1MWmy8/vvv2PEiBHw9/eHIAj4+eefVY6LooilS5fCz88Pzs7OGDRoEG7cuKFyTk5ODiZOnAh3d3d4eHhg2rRpBvuQIKrN/v37AQBDhw41cSRkDfz9/REQEACZTKYY4WcIuhbdE1kbkyY7BQUF6NSpEzZu3Kjx+Lp167BhwwZ89tlnOHnyJFxdXTFkyBAUFz8eOjlx4kRcuXIFBw8exN69e/H777/jlVdeqa9bICuhz6RrFRUVipYdJjtkKE8++SSAxwvLGpo2RfdEVkc0EwDEn376SbEtk8lEX19f8b333lPsy83NFR0dHcVvv/1WFEVRvHr1qghAPH36tOKc3377TRQEQbx79261r1VcXCxKpVLFIy0tTQQgSqVSw98YWYSCkjIxcOFeMXDhXrGgpEyr55w6dUoEILq7u4ulpaVGjpAaik8//VQEIA4YMMDUoRCZPalUqtXfb7Ot2UlJSUFGRgYGDRqk2CeRSNCzZ0/Ex8cDAOLj4+Hh4YEnnnhCcc6gQYNgY2NTY4HfmjVrIJFIFI+AgADj3QhZHG0nXZN3YQ0aNAj29vbGDIkakP79+wMAjh8/jpKSEtMGQ2QlzDbZycjIAAD4+Pio7Pfx8VEcy8jIqFIUamdnhyZNmijO0WTx4sWQSqWKR1pamoGjJ0ujz6RrrNchY2jbti18fHxQXFzMRUGJDMRskx1jcnR0hLu7u8qDGi59Jl3LyclRzIUyZMgQo8dIDYcgCIrWnaNHj5o0FiJrYbbJjq+vLwAgMzNTZX9mZqbimK+vL7KyslSOl5eXIycnR3EOUW30mXRt7969kMlkCA8PR4sWHNlChmXsZIeroFNDY7bJTnBwMHx9fXHo0CHFvry8PJw8eRIREREAgIiICOTm5uLs2bOKcw4fPgyZTKaYr4JIE+UPe193J50nXZNPkzBq1CjjBUkNVn3W7XBhUGoITJrs5Ofn4/z584oZaFNSUnD+/HmkpqZCEATMnTsX77zzDnbv3o1Lly5h8uTJ8Pf3V/yBadeuHYYOHYrp06fj1KlTOHbsGGbNmoXx48fD39/fdDdGFkeXSdcKCwsV9TpMdsgYjF23o16j9p/4W2zpIatm0mTnzJkz6NKlC7p06QIAiI6ORpcuXbB06VIAwIIFC/Daa6/hlVdeQffu3ZGfn4/9+/fDyenxPBHffPMNQkNDMXDgQAwfPhx9+vTBpk2bTHI/ZDnUP+yV1Tbp2sGDB1FUVITAwEB07tzZWCFSA6ZctyNfaNZQNNWoKW+zpYeskSCKolj7adYtLy8PEokEUqmUxcoNQLq0CL3XHlap07ERoNi+umJIjQuATp06FVu3bsWcOXPw4YcfGjdYarA2bdqEGTNmICIiAsePHzfYdY8nZ+OFL6qfmsNGANaMDuMsy2QRtP37bbY1O0TGoqkgWSYC307vVetK5+Xl5dizZw8AdmGRcQ0bNgxA5Qro2dnZBruupoVBlWkzGpHI0jDZoQanLqtA//HHH3jw4AE8PT3Rp08fI0VIBAQEBCA8PByiKCImJsZg11VfGFRT3lPbaEQiS8NkhxqcuqwC/e233wIAnnvuOdjZVd8CRGQIkZGRAIB9+/YZ9LrKC4PueKWX3sk/kaVgskMNkj6rQJeUlGDnzp0AKhegJTI2ebKzf/9+lJcbbpSUi4Mdbq2NxK21kejZ0lPv5J/IUrBAGSxQJu388ssvGDVqFPz9/ZGamgpbW1tTh0RWrqKiAt7e3sjJycEff/xhtK7TwtJytF9a2VV2+PV+aOnlZpTXITI0FigTGdg333wDAJgwYQITHaoXtra2iuVIDN2VpUy5pYeJDlkjJjtEWsjLy1OMwmIXFtUneVeW/P8/ItIdkx1qEJSXh7h5P1/n5+/atQvFxcUIDQ3lRIJUr4YPHw57e3tcuXIFV65cqf0JRFQFkx2ySuoLHarPmPzd6VSdrvfVV18BAF588UUIQg2TlBAZWOPGjTF06FAAwI4dO4z+elwklKwRkx2yepfuSKtMj6/LpGmXL1/GH3/8AVtbW0ydOtVYYRJVa8KECQAqk536HFPCpSPIWjDZIaug3k2l3JIzftOJKjMm6zJp2ueffw6gcm4dLjBLpjBixAg4OzsjKSkJZ8+eNepr1bUVlMgcMdkhi1FT87ryB/TA9+Ow9JfHLTmavgdrO2laQUEBvv76awDAzJkz9QucqI7c3NwwcuRIAI8ntjQGTYuEcukIsgZMdsgiKTevq39Ai9Cc4MjpOmNyXl4eQkJCMGDAgDpETFQ348ePBwB89913kMlkRnkNTevGqbeCsqaHLBGTHTNS24dIXUcUGYqp4qiueV3TB7Q65enwtZ0xWRRFbNy4EQAwY8YM2Njw7UKmM2zYMHh4eODu3bs4ePCgUV5D07pxNgIw4YsTGt/vrOkhS8FPbzOl6UNE/Y/9f+JvmeQblin69GtqXtf0Aa28aSMAa0aH6Txp2oEDB3D+/Hm4urqyMJlMztHREVOmTAEAfPLJJ0Z5DU3rxo3s9LhObdD6OLyx65LKNmt6yBJwuQiYdrkI5WnaZw8MwYZDSQAe/4GWt0CkS4vQe+1hlRYMGwGK7fqa4t1UcRxPzsYLX5yssv/b6b0Q0coT/4m/hSX/q9OR/9v1beOFW9mFCGrqotc6P/3790dcXBzmzZuH9evX1/keiOoqMTERoaGhsLGxwc2bNxEYGGiU10mXFuFWdiFcHGzw/CfHa2w5tRUE/Lnoaa6lRSbB5SLMRG1dPsqtJPJEB6haGKipq0Z5u76+YZkqDk2tN8pFxpoW9vSTOCOiladeH8LHjx9HXFwc7O3tER0dXafYiQylbdu2GDhwIGQyGTZt2mS015G/dwpKK2rtItZlZCORqTDZMbKaunzUu2bUKX+IaPpjr6y2URO61NnUdG5d49D3dTU1ry8b2R4Raw4jaNE+ZEiLDbq2z5o1awAAkyZNQvPmzWs5m6j+yEcFfvnllygpKTHqa9X2fge0H9lIZEpMdoyotmGctRXWKn+IqP+x1/T5UyGKiFhzGDfv59c470xtrS81nattHPp806stxkkRQYhfPADfTu+FY4tUR0YZskXp1KlT2Lt3LwRBwIIFCwxyTSJDGTlyJPz9/ZGVlWX0GZU1fckY1dlfZVvbkY1EpsSaHRivZqe2OhNN9S9y6jU7ctr0pcuLCn8+fw/A44REVDtHU52Nppg09cnXFIcuffjKNUuCAIhaXkfbOHUliiL69euHP/74A5MnT8a2bdv0vhaRsbz77rtYtGgRQkJCkJCQADs7O6O+nvz9Lq9/U98mMhXW7JiB2upMNH1rWjwsVNFyMaKTf5VuHXlfeqeAxirPVSYToUh0AM3zzlRXZ6PNPBs1xaHrNz3l1hz1tFveUqWpW0vbOHX1888/448//oCTkxNWrVpVp2sRGUtUVBQ8PT2RlJSE7du3G/311Ovf6lIPR2QKTHaMqLY6k5v386t0zczo10rxIaJtt85bke3qFGdtw7hrmmcD0FwcLFdTHU5tNUvKYajff22JpD5KS0sV3Vavv/46a3XIbLm5uWH+/PkAgJUrV6K8nJP7EdWEyY6RqScCyuR/wDV9S9J22nY/iTMiw/1qLSIUqvlZTt4qos08G+pJl4uDXbXFwZoStnRpEY4nZ+Ps7YfV1iypx6h+/5rirGvtwPvvv4+kpCR4e3tj4cKFel+HqD5ERUWhadOmSEpKwn/+8x9Th0Nk1lizg/qbZ0eXOpPa6n3Uqc8zo1yzoz7vjDZ1NoaoydF0vwIed6lprCUC8NELXSACmLX9XK33b6jagatXr6JLly4oLS3Ftm3bMHnyZL2vRVRf3nvvPSxYsAC+vr64du0aJBKJSeJIlxYhJbsAwU1d2bUF/nvUJ23/fhu3qo1U1FRnov6GkHfTqCcZ1XXTTIoIwqD2Pip/+BcOC62SCMj/u3xkB5XkSL1VxE/iDD+JM44nZ2sdM6BacPz+2PAqzxXVftY003FkuD/SpUVa3b88zrooLy/H1KlTUVpaiuHDh2PSpEl1uh5RfZk9eza+/PJLXL9+HUuWLMGGDRvqPQZNE3pqsxyLrpQ/W+prElV94qivfw/SDbux6pEudSb6dNPoUkSoXiukqRha15gB1W6rf+68qLHLTJkI4OMJXRRxyD8UjNFNVZ1169bh1KlTkEgk2LRpEwShtqiJzIOjo6Ni6YiNGzfi7Nmz9fr61XW3X0h7iOPJ2UiXFim6rXWde6su02fIY9PndWujy9xpXDXefLAbC/W7XISuWX99DfGsKS5tY9an26q2LjFj339MTAyGDRsGURSxZcsWvPTSSwZ/DSJjmzhxIrZv347OnTsjPj4eTk5O9fK61XW3yym//5W702vq4pF3Af11+yH+deC64jqA9p8d1S0fo/y6NXU1VXestlIEXcsPzJmldMWxG8tMaepuqokhumlqU923kb5tvOAncdY6Zk3ddPKWG083RwQ1dUHs1cwau8/UGfP+k5OTMX78eIiiiH/84x+KRRaJLM3777+PmJgYnD9/HtHR0UZbKFSdpu52Zcq7ZSKw6MdLVZIf5S9OyklKddeRq647XdPnmfrraqpp1ObLXW2lCLqWH8jjNbekQp8v5eZ2D+qY7JhAfSQwutCmlkibmKt7o3cLaqx4rq7JnrFkZWVhxIgRyM3NRc+ePfHxxx+z+4oslq+vL/773/9i+PDh+PTTT9G7d29MnDjR6K8r726W/2FUbsnRRD35eWPXZYT6NkJBaQVcHWxrnIpCna0gwMXBBseTs1X+yFb3pUv5dZXnIVOOIzWnsMYvfrUlM+r/HrV9oTN0fY8hko7avvyqs5QaJXZjwbSrnpsDQ85G/N3pVLyx6zIqRBG2goDVozua3f/4Dx48wNNPP41Lly6hWbNmOHnyJJo1a2bqsIjqbOnSpVi5ciVcXFwQGxuLiIiIenldXVZJr05tiZKAylnWZWLl59OITn4aR5yeuZWDOTvO6xVDdT6e0AVN3BwQ3NQVv1+/X+tnnHL3OwC9usQ0UU9mlLfVW831TTp06Yoz1kz2utD27zeTHTDZAQybpJjzVPLp6emIjIzEuXPn4Ofnh7i4OLRu3drUYREZREVFBZ599lns378fEokEhw8fRteuXes1BuXPktpq9rQl/0yqafqMKq/1v+VnbKB5FnltVVd3pM1nXE21QzkFpRqn11BOrABUm8zUtiSQvomTq4Ot1tONVJcYKd+Dsf8GMNnRAZOdSuacpBjCX3/9hZEjR+Lu3bvw8vJCXFwc2rWr2+zTROamoKAAQ4cOxZ9//glPT0/ExMSgW7du9RqDesuG/GflP9i1teTYCMDCoaEIb+5R5TOptsJo4PGcXV0DG1dJFJ7v0gw/n7uHClGEDQBZNdfQNonQ1H2kz4AN9eN1TRTfimyHyHC/Kp/ntc3LVlNNk/L9akqM1JPDhUNDEdZcYrTEh8mODpjsWDeZTIbPP/8cr7/+OoqKihAaGoo9e/YgJCTE1KERGUVeXh4GDRqE06dPw9nZGVu2bMG4ceNMHRaA2ics3fV/ESgsldX4paumRZSVKXe9VLeYqaY4dJnc9LvTqVi86xJkompioE1CZqiWr5qotyhpSlDU1fR7UE+U1BPH6lrRjFXPw9FYRABu3LiBV199FYcPHwYADB06FDt27DDZTLNE9cHd3R0HDx7ECy+8gF9//RXjx4/HsWPHsHr1ari5mWYyPjnlwQ5rRodV6T7vFNBYq2soP1fTH1n1UVDqgyxqi0ObyU3TpUWKRAdQLeatbaQaoDpa9UFBicbESlvKNU3K1Eej1daiBlQOUCkslakkivJESb14+edz9xSJUU33UFuhs7Ex2SGrlJqainfeeQdfffUVKioq4OzsjLVr12LWrFmwseFcmmT9JBIJdu/ejcWLF+O9997DRx99hN27d+Pf//43Ro4caRajD8d1b6F1/Uttz9VUOKzt9aqLQz2pUr9uTSNZI1p5apWQyUerakqslKkXaI/q4q9oUVGuadp3MR3v7EtQea76zPW1UU7olFtyNCVKyolRbfdQ0+z7xsZuLLAby1qUlpbi0KFD2LRpE3bv3g2ZrLInPjIyEh9++CG7rajBiomJwYwZM3D79m0AQNeuXfHmm29i5MiRsLOznu+8xqo7rO662oxGUn5ubSO51Iu75UXW6gXa6l1xynFp28VnU0viNK57C62upX6/yvdQ27mG0OBqdjZu3Ij33nsPGRkZ6NSpEz766CP06NFDq+cy2bFMMpkM165dw/Hjx3H06FHs27cPubm5iuMDBgzA8uXL0adPH9MFSWQmCgoK8M477+Cjjz5CQUEBAMDHxwcTJ07Ec889h4iICNjb25s4Ssuj60jW2hKy6oq7dUkQlGOqrkVJvSZHU1zV1R0pJ0o1Db2/eDcX635LNOpUJA0q2fnuu+8wefJkfPbZZ+jZsyc+/PBD7Ny5E4mJifD29q71+Ux2zJMoipBKpcjKykJWVhYyMzNx8+ZNXL9+HdevX8fFixdVkhsA8Pb2xrhx4/Dqq6+iffv2pgmcyIzdv38fH3zwAb788kvcv39fsd/d3R29evVC165d0a1bN4SFhSEwMLDelp6wZOY4klWXFqWarqGp5UqbInJNcXA0Vh317NkT3bt3x8cffwyg8ht/QEAAXnvtNSxatKjW5xsr2enYsSMSExNhY2MDQRAs8r+6nCuKouIhk8m0+lkmk6G4uBiFhYUoKipS+W9+fj7Kyspq/Dd2cXFBjx498OSTT2LYsGGIiIiAra2twX6HRNaqrKwMv/32G7777jvExMTgwYMHGs/z9fVFixYt4OXlhSZNmigejRo1gpOTk8rD0dERTk5OsLOzU/kMUf8s0fTZok0NUW3nGOIalnpObe7nl+FuXimauTvAy61qC151r7Ev4SHe//2eYrTZ6339Edmu9iJyTZo1a2bw1sMGk+yUlpbCxcUFP/zwA0aNGqXYP2XKFOTm5uKXX36p8pySkhKUlJQotvPy8hAQEGDwZKdt27a4fv26wa7XULm7u8Pb2xteXl4IDAxEmzZt0KZNG7Rr1w5hYWFseieqo4qKCpw/fx5nzpzBX3/9hbNnzyIxMRH5+fmmDo3MgG0jT9h5+KM89x4qHmlOirWRmJiINm3aGDCyBjT0PDs7GxUVFfDx8VHZ7+Pjg2vXrml8zpo1a7B8+XKjx/b777+jrKxMpUXDUP81xjXr8l+ZTKb4dqb8TU19W/1nGxsbODk5wcXFBc7OznB2dlb87OrqCi8vLzg7m0ezMJG1srW1Rbdu3VQmHxRFETk5Obh9+zZSU1ORk5ODBw8eKP5bUFCA4uJiFBcXo6SkRPFzcXExKioqFJ8L6p8T1e3XhrbfzU11nqlf22jXqCiCmJ0EBwCow+exKUcAWnyyo4/FixcjOjpasS1v2TE09QSMiMhSCIIAT09PeHp61vuSE0SGZvHJTtOmTWFra4vMzEyV/ZmZmfD19dX4HEdHRzg6OtZHeERERGRiFj+7moODA7p164ZDhw4p9slkMhw6dKjeVvwlIiIi82XxLTsAEB0djSlTpuCJJ55Ajx498OGHH6KgoABTp041dWhERERkYlaR7IwbNw7379/H0qVLkZGRgc6dO2P//v2smSEiIiLLH3puCJxUkIiIyPJo+/fb4mt2iIiIiGrCZIeIiIisGpMdIiIismpMdoiIiMiqMdkhIiIiq8Zkh4iIiKwakx0iIiKyakx2iIiIyKox2SEiIiKrZhXLRdSVfBLpvLw8E0dCRERE2pL/3a5tMQgmOwAePXoEAAgICDBxJERERKSrR48eQSKRVHuca2MBkMlkuHfvHho1agRBEAx23by8PAQEBCAtLc1q19yy9nu09vsDrP8erf3+AOu/R2u/P8D679FY9yeKIh49egR/f3/Y2FRfmcOWHQA2NjZo3ry50a7v7u5ulf/zKrP2e7T2+wOs/x6t/f4A679Ha78/wPrv0Rj3V1OLjhwLlImIiMiqMdkhIiIiq8Zkx4gcHR3x9ttvw9HR0dShGI2136O13x9g/fdo7fcHWP89Wvv9AdZ/j6a+PxYoExERkVVjyw4RERFZNSY7REREZNWY7BAREZFVY7JDREREVo3JjoGtXbsWgiBg7ty5in3FxcWIioqCp6cn3NzcMGbMGGRmZpouyDrSdI/9+/eHIAgqj1dffdV0Qepo2bJlVeIPDQ1VHLf032Ft92fpvz8AuHv3Ll588UV4enrC2dkZYWFhOHPmjOK4KIpYunQp/Pz84OzsjEGDBuHGjRsmjFh3td3jSy+9VOX3OHToUBNGrJugoKAq8QuCgKioKACW/z6s7f4s/X1YUVGBJUuWIDg4GM7OzmjVqhVWrlypsm6Vqd6HnEHZgE6fPo3PP/8c4eHhKvvnzZuHffv2YefOnZBIJJg1axZGjx6NY8eOmShS/VV3jwAwffp0rFixQrHt4uJSn6HVWYcOHRAbG6vYtrN7/Pawht9hTfcHWPbv7+HDh+jduzeefvpp/Pbbb/Dy8sKNGzfQuHFjxTnr1q3Dhg0bsG3bNgQHB2PJkiUYMmQIrl69CicnJxNGrx1t7hEAhg4dii1btii2LWko8+nTp1FRUaHYvnz5Mp555hmMHTsWgOW/D2u7P8Cy34fvvvsuPv30U2zbtg0dOnTAmTNnMHXqVEgkEsyePRuACd+HIhnEo0ePxNatW4sHDx4U+/XrJ86ZM0cURVHMzc0V7e3txZ07dyrOTUhIEAGI8fHxJopWP9XdoyiKVbYtzdtvvy126tRJ4zFr+B3WdH+iaPm/v4ULF4p9+vSp9rhMJhN9fX3F9957T7EvNzdXdHR0FL/99tv6CLHOartHURTFKVOmiM8991z9BFQP5syZI7Zq1UqUyWRW8T5Up3x/omj578PIyEjx5ZdfVtk3evRoceLEiaIomvZ9yG4sA4mKikJkZCQGDRqksv/s2bMoKytT2R8aGooWLVogPj6+vsOsk+ruUe6bb75B06ZN0bFjRyxevBiFhYX1HGHd3LhxA/7+/mjZsiUmTpyI1NRUANbzO6zu/uQs+fe3e/duPPHEExg7diy8vb3RpUsXfPHFF4rjKSkpyMjIUPkdSiQS9OzZ02J+h7Xdo9zRo0fh7e2Ntm3bYubMmXjw4IEJoq270tJS/Pe//8XLL78MQRCs5n0op35/cpb8PnzyySdx6NAhXL9+HQBw4cIF/Pnnnxg2bBgA074P2Y1lADt27MBff/2F06dPVzmWkZEBBwcHeHh4qOz38fFBRkZGPUVYdzXdIwC88MILCAwMhL+/Py5evIiFCxciMTERu3btqudI9dOzZ09s3boVbdu2RXp6OpYvX46nnnoKly9ftorfYU3316hRI4v//d28eROffvopoqOj8cYbb+D06dOYPXs2HBwcMGXKFMXvycfHR+V5lvQ7rO0egcourNGjRyM4OBjJycl44403MGzYMMTHx8PW1tbEd6Cbn3/+Gbm5uXjppZcAWM9nqZz6/QGW/zm6aNEi5OXlITQ0FLa2tqioqMCqVaswceJEADDp+5DJTh2lpaVhzpw5OHjwoEX0++tDm3t85ZVXFD+HhYXBz88PAwcORHJyMlq1alVfoepN/s0DAMLDw9GzZ08EBgbi+++/h7OzswkjM4ya7m/atGkW//uTyWR44oknsHr1agBAly5dcPnyZXz22WeKRMDSaXOP48ePV5wfFhaG8PBwtGrVCkePHsXAgQNNEre+Nm/ejGHDhsHf39/UoRiFpvuz9Pfh999/j2+++Qbbt29Hhw4dcP78ecydOxf+/v4mfx+yG6uOzp49i6ysLHTt2hV2dnaws7NDXFwcNmzYADs7O/j4+KC0tBS5ubkqz8vMzISvr69pgtZRbfeoXHAn17NnTwBAUlJSfYdrEB4eHmjTpg2SkpLg6+tr8b9Ddcr3p4ml/f78/PzQvn17lX3t2rVTdNXJf0/qI3cs6XdY2z1q0rJlSzRt2tRifo9yt2/fRmxsLP7xj38o9lnT+1DT/Wliae/D+fPnY9GiRRg/fjzCwsIwadIkzJs3D2vWrAFg2vchk506GjhwIC5duoTz588rHk888QQmTpyo+Nne3h6HDh1SPCcxMRGpqamIiIgwYeTaq+0eNTWPnz9/HkDlB7Qlys/PR3JyMvz8/NCtWzeL/x2qU74/TSzt99e7d28kJiaq7Lt+/ToCAwMBAMHBwfD19VX5Hebl5eHkyZMW8zus7R41uXPnDh48eGAxv0e5LVu2wNvbG5GRkYp91vQ+1HR/mlja+7CwsBA2Nqppha2tLWQyGQATvw+NWv7cQKlX1L/66qtiixYtxMOHD4tnzpwRIyIixIiICNMFaADK95iUlCSuWLFCPHPmjJiSkiL+8ssvYsuWLcW+ffuaNkgdvP766+LRo0fFlJQU8dixY+KgQYPEpk2billZWaIoWv7vsKb7s4bf36lTp0Q7Oztx1apV4o0bN8RvvvlGdHFxEf/73/8qzlm7dq3o4eEh/vLLL+LFixfF5557TgwODhaLiopMGLn2arvHR48eif/85z/F+Ph4MSUlRYyNjRW7du0qtm7dWiwuLjZx9NqrqKgQW7RoIS5cuLDKMUt/H4pi9fdnDe/DKVOmiM2aNRP37t0rpqSkiLt27RKbNm0qLliwQHGOqd6HTHaMQD3ZKSoqEv/v//5PbNy4seji4iI+//zzYnp6uukCNADle0xNTRX79u0rNmnSRHR0dBRDQkLE+fPni1Kp1LRB6mDcuHGin5+f6ODgIDZr1kwcN26cmJSUpDhu6b/Dmu7PGn5/oiiKe/bsETt27Cg6OjqKoaGh4qZNm1SOy2QyccmSJaKPj4/o6OgoDhw4UExMTDRRtPqp6R4LCwvFwYMHi15eXqK9vb0YGBgoTp8+XczIyDBhxLqLiYkRAWj83Vj6+1AUq78/a3gf5uXliXPmzBFbtGghOjk5iS1bthTffPNNsaSkRHGOqd6HgigqTW1IREREZGVYs0NERERWjckOERERWTUmO0RERGTVmOwQERGRVWOyQ0RERFaNyQ4RERFZNSY7REREZNWY7BAREZFVY7JDRASgf//+EAQBgiAo1iQ6evQoBEGosvikoS1btkzx2h9++KFRX4uoIWKyQ0Q6e+mllxR/nJUfQ4cONXVodTJ9+nSkp6ejY8eOdb5WZmYm7O3tsWPHDo3Hp02bhq5duwIA/vnPfyI9PR3Nmzev8+sSUVVMdohIL0OHDkV6errK49tvvzXqa5aWlhr1+i4uLvD19YWdnV2dr+Xj44PIyEh89dVXVY4VFBTg+++/x7Rp0wAAbm5u8PX1ha2tbZ1fl4iqYrJDRHpxdHSEr6+vyqNx48aK44Ig4Msvv8Tzzz8PFxcXtG7dGrt371a5xuXLlzFs2DC4ubnBx8cHkyZNQnZ2tuJ4//79MWvWLMydOxdNmzbFkCFDAAC7d+9G69at4eTkhKeffhrbtm1TdDcVFBTA3d0dP/zwg8pr/fzzz3B1dcWjR4/0vufCwkIMGzYMvXv3VnRtffnll2jXrh2cnJwQGhqKTz75RHH+tGnTcOjQIaSmpqpcZ+fOnSgvL8fEiRP1joWItMdkh4iMZvny5fj73/+OixcvYvjw4Zg4cSJycnIAALm5uRgwYAC6dOmCM2fOYP/+/cjMzMTf//53lWts27YNDg4OOHbsGD777DOkpKTgb3/7G0aNGoULFy5gxowZePPNNxXnu7q6Yvz48diyZYvKdbZs2YK//e1vaNSokV73kpubi2eeeQYymQwHDx6Eh4cHvvnmGyxduhSrVq1CQkICVq9ejSVLlmDbtm0AgOHDh8PHxwdbt26tEsvo0aPh4eGhVyxEpCOjr6tORFZnypQpoq2trejq6qryWLVqleIcAOJbb72l2M7PzxcBiL/99psoiqK4cuVKcfDgwSrXTUtLEwGIiYmJoiiKYr9+/cQuXbqonLNw4UKxY8eOKvvefPNNEYD48OFDURRF8eTJk6Ktra147949URRFMTMzU7SzsxOPHj1a7T3169dPnDNnjsq+I0eOiADEhIQEMTw8XBwzZoxYUlKiON6qVStx+/btKs9ZuXKlGBERodhetGiRGBwcLMpkMlEURTEpKUkUBEGMjY2tEkNgYKD4wQcfVBsjEemHLTtEpJenn34a58+fV3m8+uqrKueEh4crfnZ1dYW7uzuysrIAABcuXMCRI0fg5uameISGhgIAkpOTFc/r1q2byjUTExPRvXt3lX09evSost2hQwdFC8t///tfBAYGom/fvnrd6zPPPIOQkBB89913cHBwAFBZd5OcnIxp06ap3MM777yjEv/LL7+MlJQUHDlyBEBlq05QUBAGDBigVyxEpLu6V+ERUYPk6uqKkJCQGs+xt7dX2RYEATKZDACQn5+PESNG4N13363yPD8/P5XX0cc//vEPbNy4EYsWLcKWLVswdepUCIKg17UiIyPx448/4urVqwgLC1PEDwBffPEFevbsqXK+cqFx69at8dRTT2HLli3o378/vv76a0yfPl3vWIhId0x2iMgkunbtih9//BFBQUE6jX5q27Ytfv31V5V9p0+frnLeiy++iAULFmDDhg24evUqpkyZonesa9euhZubGwYOHIijR4+iffv28PHxgb+/P27evFlrofG0adMwc+ZMjBw5Enfv3sVLL72kdyxEpDt2YxGRXkpKSpCRkaHyUB5JVZuoqCjk5ORgwoQJOH36NJKTkxETE4OpU6eioqKi2ufNmDED165dw8KFC3H9+nV8//33igJg5daSxo0bY/To0Zg/fz4GDx5c5zls/vWvf2HixIkYMGAArl27BqCyAHvNmjXYsGEDrl+/jkuXLmHLli1Yv369ynPHjh0Le3t7zJgxA4MHD0ZAQECdYiEi3TDZISK97N+/H35+fiqPPn36aP18f39/HDt2DBUVFRg8eDDCwsIwd+5ceHh4wMam+o+m4OBg/PDDD9i1axfCw8Px6aefKkZjOTo6qpw7bdo0lJaW4uWXX9bvJtV88MEH+Pvf/44BAwbg+vXr+Mc//oEvv/wSW7ZsQVhYGPr164etW7ciODhY5XkuLi4YP348Hj58aLBYiEh7giiKoqmDICKqi1WrVuGzzz5DWlqayv7//Oc/mDdvHu7du6coLK5O//790blzZ5Mu1xAUFIS5c+di7ty5JouByBqxZYeILM4nn3yC06dP4+bNm/jPf/6D9957T6Ump7CwEMnJyVi7di1mzJhRa6KjfF03NzdcunTJWKFrtHr1ari5uVWZfJCIDIMtO0RkcebNm4fvvvsOOTk5aNGiBSZNmoTFixcrCp2XLVuGVatWoW/fvvjll1/g5uZW6zXv3r2LoqIiAECLFi20TpAMIScnRzHZopeXFyQSSb29NlFDwGSHiIiIrBq7sYiIiMiqMdkhIiIiq8Zkh4iIiKwakx0iIiKyakx2iIiIyKox2SEiIiKrxmSHiIiIrBqTHSIiIrJq/w+xzFBpiLLyOwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", + "plt.xlabel('Energy [keV]')\n", + "plt.ylabel('Number of counts per bin')\n", + "\n", + "x = np.arange(40, 80, 0.1)\n", + "plt.plot(x, fit_model(x, *mi.values), color='k', label='Initial guess')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "89f755f4-b780-43a6-a923-49662c4c701a", + "metadata": {}, + "source": [ + "Unsere Startparameter sind bereits nicht schlecht, aber weichen noch stark von den Daten ab. Bei komplexeren Daten und Fitmodellen lohnt es sich, den Fit schrittweise durchzuführen. Bevor wir uns den beiden Peaks widmen, welche uns eigentlich interessieren, sollten wir versuchen, den Untergrund etwas besser zu beschreiben. Um den Untergrund besser fitten zu können, sollten wir erst den Fitbereich auf einen Energiebereich limitieren, in welchem der Untergrund dominiert. Dem Plot können wir entnehmen, dass dies für alle Werte unterhalb von 45 keV und oberhalb von 70 keV der Fall ist. Im Allgemeinen können wir Wertebereiche in Python mit Hilfe von „Masken“ selektieren. Eine Maske lässt sich wie folgt erstellen:" + ] + }, + { + "cell_type": "code", + "execution_count": 505, + "id": "d53e8386-ea7f-43fa-b4fe-65229308a2ec", + "metadata": {}, + "outputs": [], + "source": [ + "mask_outside_of_peaks = (center < 45) | (center >= 70)" + ] + }, + { + "cell_type": "markdown", + "id": "84cef7a6-13a0-4ba8-ac40-eb86a54411dc", + "metadata": {}, + "source": [ + "Die Maske hat hierbei die Selbe länge wie unseren Daten…" + ] + }, + { + "cell_type": "code", + "execution_count": 506, + "id": "d1d06116-d726-4163-b414-6ccde6a19027", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(120, 120)" + ] + }, + "execution_count": 506, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(mask_outside_of_peaks), len(mask_outside_of_peaks)" + ] + }, + { + "cell_type": "markdown", + "id": "80db0ae0-5cbd-4db9-b184-610d77bf1c58", + "metadata": {}, + "source": [ + "… und beinhaltet Wahrheitswerte `True` und `False`, bzw. 1 und 0, mit welchen wir unsere Daten selektieren können:" + ] + }, + { + "cell_type": "code", + "execution_count": 507, + "id": "f24d19d8-3483-45b5-aee9-1d3f8755da22", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True, True, True, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " False, False, False, False, False, False, False, False, False,\n", + " True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True, True, True, True, True, True,\n", + " True, True, True, True, True, True, True, True, True,\n", + " True, True, True]),\n", + " array([40.16666667, 40.5 , 40.83333333, 41.16666667, 41.5 ,\n", + " 41.83333333, 42.16666667, 42.5 , 42.83333333, 43.16666667,\n", + " 43.5 , 43.83333333, 44.16666667, 44.5 , 44.83333333,\n", + " 70.16666667, 70.5 , 70.83333333, 71.16666667, 71.5 ,\n", + " 71.83333333, 72.16666667, 72.5 , 72.83333333, 73.16666667,\n", + " 73.5 , 73.83333333, 74.16666667, 74.5 , 74.83333333,\n", + " 75.16666667, 75.5 , 75.83333333, 76.16666667, 76.5 ,\n", + " 76.83333333, 77.16666667, 77.5 , 77.83333333, 78.16666667,\n", + " 78.5 , 78.83333333, 79.16666667, 79.5 , 79.83333333]))" + ] + }, + "execution_count": 507, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mask_outside_of_peaks, center[mask_outside_of_peaks]" + ] + }, + { + "cell_type": "markdown", + "id": "5b5c07e7-1865-48f2-bd9e-0540661fd71e", + "metadata": {}, + "source": [ + "Unsere Selektion können wir an unsere Kostenfunktion direkt übergeben." + ] + }, + { + "cell_type": "code", + "execution_count": 508, + "id": "3034bb22-0b96-498d-9736-ed9bb2189460", + "metadata": {}, + "outputs": [], + "source": [ + "ls.mask = (center < 45) | (center >= 70)" + ] + }, + { + "cell_type": "markdown", + "id": "77a664fd-513e-4c89-ba52-945b6f68512f", + "metadata": {}, + "source": [ + "Nun können wir nochmal unsere Funktion und Messwerte für den ausgewählten Bereich plotten…" + ] + }, + { + "cell_type": "code", + "execution_count": 509, + "id": "81232354-a7b8-4e2a-9ac0-159ce0a03da4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 509, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF6klEQVR4nO3deViUZffA8e+wbwKKsikCueGC+0aZmpq7WdpiWWmammGmlpplZmpp9qvMXlssU3tfzbJs0UpzN/cl11xRFBUQFQFFZZvn9wfNMAMDzMAMs3A+1zWXM896HmGGM/dz7vtWKYqiIIQQQgjhoJysHYAQQgghhCVJsiOEEEIIhybJjhBCCCEcmiQ7QgghhHBokuwIIYQQwqFJsiOEEEIIhybJjhBCCCEcmou1A7AFarWaxMREqlSpgkqlsnY4QgghhDCCoijcvHmT0NBQnJyKb7+RZAdITEwkLCzM2mEIIYQQogwuXrxIrVq1il0vyQ5QpUoVIP8/y9fX18rRCCGEEMIYGRkZhIWFaf+OF0eSHdDeuvL19ZVkRwghhLAzpZWgSIGyEEIIIRyaJDtCCCGEcGiS7AghhBDCoUnNjhBCCJuTl5dHTk6OtcMQVubq6oqzs3O5jyPJjhBCCJuhKArJycmkpaVZOxRhI/z9/QkODi7XOHiS7AghhLAZmkQnMDAQLy8vGei1ElMUhdu3b5OSkgJASEhImY8lyY4QQgibkJeXp010AgICrB2OsAGenp4ApKSkEBgYWOZbWlKgLIQQwiZoanS8vLysHImwJZrfh/LUcEmyI4QQwqbIrSuhyxy/D5LsCCGEEMKhSbIjhBBCCIcmyY4QQghhBSqVip9//rnEbYYOHcrDDz9s9DHPnz+PSqXi0KFD5YrN0UhvLCGEw1IUhevXr+Ph4YGPj4+1wxEObOjQoaSlpZWavOhKSkqiatWqQH6SEhkZycGDB2nevLl2m48//hhFUcwcbeVj1ZadiIgIVCpVkUdsbCwAd+/eJTY2loCAAHx8fBg4cCBXrlzRO0ZCQgJ9+vTBy8uLwMBAJk6cSG5urjUuRwhhQ06ePEnLli2pUaMGAQEBTJ8+XT4bhE0JDg7G3d29xG38/Pzw9/evmIAcmFWTnX379pGUlKR9rF+/HoDHHnsMgPHjx7N69WpWrlzJ1q1bSUxMZMCAAdr98/Ly6NOnD9nZ2ezcuZOlS5eyZMkSpk2bZpXrEULYhvPnzxMTE6Ntys/Ozubtt9/mtddes25gwmSKopCZmWmVR3laVDp37szYsWOZNGkS1apVIzg4mOnTp+tto3sbKzIyEoAWLVqgUqno3LkzUPQ21tq1a+nQoQP+/v4EBATQt29fzp49a1JsSUlJ9OnTB09PTyIjI1m+fDkRERHMmzcPMHwrLC0tDZVKxZYtW7TLjh07Rq9evfDx8SEoKIhnnnmGa9euadf/8MMPREdH4+npSUBAAN26dSMzMxOALVu20LZtW7y9vfH39+e+++7jwoULJl2HKaya7NSoUYPg4GDtY82aNdSpU4dOnTqRnp7OokWL+PDDD+nSpQutWrVi8eLF7Ny5k927dwPw559/cvz4cf73v//RvHlzevXqxcyZM1mwYAHZ2dnFnjcrK4uMjAy9hxDCMajVaoYMGUJaWhqtWrUiKSmJRYsWAfDBBx+wdu1aK0coTHH79m18fHys8rh9+3a5Yl+6dCne3t7s2bOHuXPnMmPGDO2X+sL27t0LwIYNG0hKSmLVqlUGt8vMzGTChAns37+fjRs34uTkxCOPPIJarTY6rmeffZbExES2bNnCjz/+yMKFC7WjFBsrLS2NLl260KJFC/bv38/atWu5cuUKjz/+OJCfUD355JMMGzaMEydOsGXLFgYMGICiKOTm5vLwww/TqVMnjhw5wq5duxg5cqRlhxxQbERWVpYSEBCgvPPOO4qiKMrGjRsVQLlx44bedrVr11Y+/PBDRVEU5c0331SaNWumt/7cuXMKoPz999/Fnuutt95SgCKP9PR0s16TEKLifffddwqgeHt7K3FxcdrlY8aMUQClWbNmilqttmKEojh37txRjh8/rty5c0e77NatWwY/ryvicevWLaNjHzJkiNK/f3/t606dOikdOnTQ26ZNmzbK5MmTta8B5aefflIURVHi4+MVQDl48GCJxy3s6tWrCqAcPXq0xONonDhxQgGUffv2aZedOXNGAZSPPvqo2GPcuHFDAZTNmzcriqIoM2fOVLp376537IsXLyqAcurUKeXAgQMKoJw/f75IDNevX1cAZcuWLcVely5Dvxca6enpRv39tpneWD///DNpaWkMHToUyJ8fxc3Nrci9yqCgIJKTk7XbBAUFFVmvWVecKVOmkJ6ern1cvHjRfBcihLAaRVGYPXs2AK+++ip16tTRrps+fTo+Pj4cPnyY1atXWytEYSIvLy9u3bpllUd5R3Ju2rSp3uuQkBCTW1AKO3PmDE8++ST33HMPvr6+REREAPn1q8Y4deoULi4utGzZUrusbt262kJpYx0+fJjNmzfrtYRFRUUBcPbsWZo1a0bXrl2Jjo7mscce48svv+TGjRsAVKtWjaFDh9KjRw/69evHxx9/TFJSkknnN5XNJDuLFi2iV69ehIaGWvxc7u7u+Pr66j2EEPZvw4YNHDp0CG9vb8aOHau3LiAgQNv5QVObIGyfSqXC29vbKo/y3lZxdXUtci2m3G4ypF+/fqSmpvLll1+yZ88e9uzZA1Bi6YapnJzyUwNFp2ap8FQNt27dol+/fhw6dEjvcebMGTp27IizszPr16/njz/+oFGjRnzyySc0aNCA+Ph4ABYvXsyuXbu49957+e6776hfv762RMUSbCLZuXDhAhs2bOD555/XLgsODiY7O5u0tDS9ba9cuUJwcLB2m8K9szSvNdsIISqPxYsXA/lFndWqVSuy/oUXXgDyiyON/SYsREVwc3MD8jveFOf69eucOnWKqVOn0rVrVxo2bKhtLTFWgwYNyM3N5eDBg9plcXFxesepUaMGgF5rS+Fxe1q2bMk///xDREQEdevW1Xt4e3sD+cndfffdx9tvv83Bgwdxc3Pjp59+0h6jRYsWTJkyhZ07d9KkSROWL19u0rWYwiaSncWLFxMYGEifPn20y1q1aoWrqysbN27ULjt16hQJCQnExMQAEBMTw9GjR/WaBdevX4+vry+NGjWquAsQQlhdRkaGtmfLkCFDDG4TERFB586dURSFZcuWVWB0QpQsMDAQT09PbaFvenp6kW2qVq1KQEAACxcuJC4ujk2bNjFhwgSTzhMVFUW3bt0YOXIke/fu5eDBg4wcORJPT09tS5anpyft27dnzpw5nDhxgq1btzJ16lS948TGxpKamsqTTz7Jvn37OHv2LOvWreO5554jLy+PPXv28O6777J//34SEhJYtWoVV69epWHDhsTHxzNlyhR27drFhQsX+PPPPzlz5gwNGzYs+39gKaye7KjVahYvXsyQIUNwcSkY49DPz4/hw4czYcIENm/ezIEDB3juueeIiYmhffv2AHTv3p1GjRrxzDPPcPjwYdatW8fUqVOJjY0tdewCIYRjWbVqFXfu3CEqKorWrVsXu92zzz4LwLfffltRoQlRKhcXF+bPn88XX3xBaGgo/fv3L7KNk5MTK1as4MCBAzRp0oTx48fz/vvvm3yub775hqCgIDp27MgjjzzCiBEjqFKlCh4eHtptvv76a3Jzc2nVqhXjxo1j1qxZescIDQ1lx44d5OXl0b17d6Kjoxk3bhz+/v44OTnh6+vLtm3b6N27N/Xr12fq1Kl88MEH9OrVCy8vL06ePMnAgQOpX78+I0eOJDY2llGjRpn+H2cso0qhLWjdunXa6u3C7ty5o7z44otK1apVFS8vL+WRRx5RkpKS9LY5f/680qtXL8XT01OpXr268sorryg5OTkmxWBsNbcQwnY9/PDDCqBMnz69xO2uXbumODk5KYBy4cKFCopOGKOkXjfCcjS9qDZs2GDtUAwyR28slaLIONQZGRn4+fmRnp4uxcpC2KG7d+8SEBDA7du3+fvvv2nRokWJ23fo0IEdO3bw6aefMnr06AqKUpTm7t27xMfHExkZqdfKIMxr06ZN3Lp1i+joaJKSkpg0aRKXL1/m9OnTRYqqbUFJvxfG/v22+m0sIYQory1btnD79m1q1qypN69Qcfr27QvAb7/9ZuHIhLA9OTk5vP766zRu3JhHHnmEGjVqsGXLFptMdMxFkh0hhN3TJC19+/Y1qruwpjPEpk2bzNplVwh70KNHD44dO8bt27e5cuUKP/30E+Hh4dYOy6Ik2RFC2D1Nr83u3bsbtX2TJk2oXr06d+7cYf/+/ZYMTQhhAyTZEULYteTkZE6cOKE3eWJpVCoVnTp1AmDr1q0WjE4IYQsk2RFC2DXNLMzNmzc3OJBgcTTJju4szkIIxyTJjhDCrm3atAmABx54wKT9NMnOjh07yM3NNXtcQgjbIcmOEMKu7dixAyhIXozVpEkT/Pz8yMzM5NixY5YITVjR7excIl77jYjXfuN2tiSzlZ0kO0IIu5WRkcGJEycAaNeunUn7Ojk50aZNGwDtZIpCiJJ17tyZcePGmfWYQ4cO5eGHHzbrMQuTZEcIYbf279+PoiiEh4cTFBRk8v6aBEmSHVFeQ4cORaVSMWfOHL3lP//8s8mzp0dERDBv3jwzRick2RFC2C1NkmJqq46GJDvCnDw8PHjvvfdMnolcWJ4kO0IIu7V3714A2rZtW6b9NcnOiRMnyMjIMFtcwrYkp9+tkPN069aN4OBgZs+eXeJ2P/74I40bN8bd3Z2IiAg++OAD7brOnTtz4cIFxo8fj0qlKrFVSKVS8cUXX9C3b1+8vLxo2LAhu3btIi4ujs6dO+Pt7c29997L2bNntfucPXuW/v37ExQUhI+PD23atGHDhg16x/3000+pV68eHh4eBAUF8eijjxYbw2+//Yafnx/Lli0D4OLFizz++OP4+/tTrVo1+vfvz/nz57Xb5+XlMWHCBPz9/QkICGDSpElUxKxVkuwIIeySoijlbtkJDAwkPDwcRVE4ePCgOcMTVvbjgUva590+3Mp3+xIsfk5nZ2feffddPvnkEy5dumRwmwMHDvD4448zaNAgjh49yvTp03nzzTdZsmQJAKtWraJWrVrMmDGDpKQkkpKSSjznzJkzefbZZzl06BBRUVE89dRTjBo1iilTpmhv844ZM0a7/a1bt+jduzcbN27k4MGD9OzZk379+pGQkP//s3//fsaOHcuMGTM4deoUa9eupWPHjgbPvXz5cp588kmWLVvG4MGDycnJoUePHlSpUoW//vqLHTt24OPjQ8+ePbUjlX/wwQcsWbKEr7/+mu3bt5OamspPP/1k6n+16cw+PakdklnPhbA/mpmanZ2dlczMzDIfRzNb+kcffWS+4ESZmGvW88S020rka2uU8MkFj3te+01JTLttpkiLGjJkiNK/f39FURSlffv2yrBhwxRFUZSffvpJ0f1T+9RTTykPPvig3r4TJ05UGjVqpH0dHh5u1O8joEydOlX7eteuXQqgLFq0SLvs22+/VTw8PEo8TuPGjZVPPvlEURRF+fHHHxVfX18lIyPD4LadOnVSXn75ZeU///mP4ufnp2zZskW77r///a/SoEEDRa1Wa5dlZWUpnp6eyrp16xRFUZSQkBBl7ty52vU5OTlKrVq1tP93hphj1nNp2RFC2CVNq050dDReXl5lPo5mhnRp2XEc8dcyURe6M5KnKJy/drtCzv/ee++xdOlSbU9BXSdOnOC+++7TW3bfffdx5swZ8vLyTD5X06ZNtc81RfrR0dF6y+7evau9TXvr1i1effVVGjZsiL+/Pz4+Ppw4cULbsvPggw8SHh7OPffcwzPPPMOyZcu4fVv//+2HH35g/PjxrF+/Xm/Ih8OHDxMXF0eVKlXw8fHBx8eHatWqcffuXc6ePUt6ejpJSUl6LbEuLi60bt3a5Os2lSQ7Qgi7VN56HQ1JdhxPZHVvnAqVujirVERUL3tSbIqOHTvSo0cPpkyZYvFz6c5UrqnvMbRMrVYD8Oqrr/LTTz/x7rvv8tdff3Ho0CGio6O1t5mqVKnC33//zbfffktISAjTpk2jWbNmpKWlaY/ZokULatSowddff61Xb3Pr1i1atWrFoUOH9B6nT5/mqaeestj/gTEk2RFC2CVNy06Zkp3sTJjuB9P9aN6oPgDHjx/n7t2KKWQVlhXi58nbDzXWvnZSwbsDmhDi51lhMcyZM4fVq1eza9cuveUNGzbUDoSpsWPHDurXr4+zszMAbm5uZWrlMcaOHTsYOnQojzzyCNHR0QQHB+sVEEN+a0u3bt2YO3cuR44c4fz589qRygHq1KnD5s2b+eWXX3jppZe0y1u2bMmZM2cIDAykbt26eg8/Pz/8/PwICQnR6/2Ym5vLgQMHLHKtuiTZEULYnby8PO1s5eVt2alVqyYBAQHk5eXJSMoOZGCrWtrnGyZ04ok2tSv0/NHR0QwePJj58+frLX/llVfYuHEjM2fO5PTp0yxdupT//Oc/vPrqq9ptIiIi2LZtG5cvX+batWtmjatevXqsWrWKQ4cOcfjwYZ566iltqw/AmjVrmD9/PocOHeLChQt88803qNVqGjRooHec+vXrs3nzZn788UftIIODBw+mevXq9O/fn7/++ov4+Hi2bNnC2LFjtQXbL7/8MnPmzOHnn3/m5MmTvPjii3qtRpYiyY4Qwu6cO3eOzMxMPDw8aNiwYbmOpVKpaNasGYAkOw4q2M/DKuedMWOGXiIB+a0f33//PStWrKBJkyZMmzaNGTNmMHToUL39zp8/T506dahRo4ZZY/rwww+pWrUq9957L/369aNHjx60bNlSu97f359Vq1bRpUsXGjZsyOeff863335L48aNixyrQYMGbNq0iW+//ZZXXnkFLy8vtm3bRu3atRkwYAANGzZk+PDh3L17F19fXyA/2XvmmWcYMmQIMTExVKlShUceecSs12iISlEqoIO7jcvIyMDPz4/09HTtD0QIYbt+/PFHHn30UVq1aqVt4TFJdia8G5r//PVExr46hU8++YSJEycyd+5c8wYrjHb37l3i4+OJjIzEw6N8Ccrt7FwaTVsHwPEZPfByczFHiMIKSvq9MPbvt7TsCCHsztGjRwH9nijl0ahRIyC/bkcI4Xgk1RVC2J0jR44AkuyI4nm5uXB+Th9rhyFshLTsCCHsjqWSnfPnz5OZmWmWYwohbIckO0IIu3Lr1i3tXD+6g6eVR/Xq1alRowaKonDy5EmzHFMIYTsk2RFC2BVNj6mQkBDz9FTJSAR0bmUdOagdg4dsaeURwhFIsiOEsCtmuYV1aHnB8wVt4e9vCpKdE9KyI4SjkWRHCGFXyp3spF+GPyYVvFbUsHocbRrUBCTZEcIRSbIjhLArmmSnzPU6qWfzExxdSh7Na1cBJNkRwhFJsiOEsBuKopS/ZadaHVAV+uhTOVOraf7szefi47mTU+nHWrV/OvOfSe2VkGRHCGE3Ll26RHp6Oi4uLkRFRZXtIH41oZfOKMkqZ+g3j+r3NKVatWqo1WpOX1cXv78QVqZSqfj555/NesyIiAjmzZtn1mPaEkl2hBB2QzNycoMGDXB3dy/7gZo/VfA8dg+0fBaVSlVQpHxVJ9mRFgJhhKFDh6JSqXjhhReKrIuNjUWlUunNfyUqliQ7Qgi7ceLECaCgm7hZ+IZqn2qO+8/VPPMdX1QaYWFhrFixgjt37miX3b17l+XLl1O7dsXOui70SbIjhLAbmmSn1JnOy9ga06BBAwDOpMptLIfy71hKltayZUvCwsJYtWqVdtmqVauoXbs2LVq00C5bu3YtHTp0wN/fn4CAAPr27asdKBMgOzubMWPGEBISgoeHB+Hh4cyePbvY87711luEhIRo69m2b9/O/fffj6enJ2FhYYwdO1ZvZPCUlBT69euHp6cnkZGRLFu2zJz/DTZJkh0hhN0wOtkpo7p16wKQfvffAuUK+iMpLMDAWEoVYdiwYSxevFj7+uuvv+a5557T2yYzM5MJEyawf/9+Nm7ciJOTE4888ghqdX6SPX/+fH799Ve+//57Tp06xbJly4iIiChyLkVReOmll/jmm2/466+/aNq0KWfPnqVnz54MHDiQI0eO8N1337F9+3bGjBmj3W/o0KFcvHiRzZs388MPP/Dpp5+SkpJimf8QGyETgQoh7IKiKBZPdurVq8ewFq4s7OuRv2BBW/1iZmEfihlLiTpd8wvULejpp59mypQpXLhwAYAdO3awYsUKtmzZot1m4MCBevt8/fXX1KhRg+PHj9OkSRMSEhKoV68eHTp0QKVSER4eXuQ8ubm5PP300xw8eJDt27dTs2b+dc2ePZvBgwczbtw4IP93ev78+XTq1InPPvuMhIQE/vjjD/bu3UubNm0AWLRokcXeU7ZCkh0hhF1ISUnhxo0bqFQq6tevb5FzRAa4s7CvB85OqvwFihr+mGyRcwkLKmYsJVLPWTzZqVGjBn369GHJkiUoikKfPn2oXr263jZnzpxh2rRp7Nmzh2vXrmlbdBISEmjSpAlDhw7lwQcfpEGDBvTs2ZO+ffvSvXt3vWOMHz8ed3d3du/erXf8w4cPc+TIEb1bU4qioFariY+P5/Tp07i4uNCqVSvt+qioKPz9/S3wv2E75DaWEMIuaFp1IiMj8fT0tMg5PDIvFSQ6GooUK9udYsZSoto9FXL6YcOGsWTJEpYuXcqwYcOKrO/Xrx+pqal8+eWX7Nmzhz179gD5tTqQX/sTHx/PzJkzuXPnDo8//jiPPvqo3jEefPBBLl++zLp16/SW37p1i1GjRnHo0CHt4/Dhw5w5c4Y6depY6Iptn9WTncuXL/P0008TEBCAp6cn0dHR7N+/X7teURSmTZtGSEgInp6edOvWjTNnzugdIzU1lcGDB+Pr64u/vz/Dhw/n1q1bFX0pQggLKtctLGMLlqvVIa/weIIqZ9PPJ6yrmLGULN2qo9GzZ0+ys7PJycmhR48eeuuuX7/OqVOnmDp1Kl27dqVhw4bcuHGjyDF8fX154okn+PLLL/nuu+/48ccfSU1N1a5/6KGHWL58Oc8//zwrVqzQLm/ZsiXHjx+nbt26RR5ubm5ERUWRm5vLgQMHtPucOnWKtLQ08/9H2BCrJjs3btzgvvvuw9XVlT/++IPjx4/zwQcfULVqVe02c+fOZf78+Xz++efs2bMHb29vevTowd27d7XbDB48mH/++Yf169ezZs0atm3bxsiRI61xSUIIC7F0vQ4AfjVZnt6aXPW/GY/KGXq9Z7nzCcsxMJZSRXF2dubEiRMcP34cZ2f9ZLlq1aoEBASwcOFC4uLi2LRpExMmTNDb5sMPP+Tbb7/l5MmTnD59mpUrVxIcHFzkVtMjjzzCf//7X5577jl++OEHACZPnszOnTsZM2YMhw4d4syZM/zyyy/aAmXNrbFRo0axZ88eDhw4wPPPP2+x1lJbYdWanffee4+wsDC9yvXIyEjtc0VRmDdvHlOnTqV///4AfPPNNwQFBfHzzz8zaNAgTpw4wdq1a9m3bx+tW7cG4JNPPqF379783//9H6GhoQgh7J9Zkx03b5iebnBVSkg3It7ZzMhWrkxbeSx/HJ7fX81fmZEI1euV//yiYvlW/N8BX19fg8udnJxYsWIFY8eOpUmTJjRo0ID58+fTuXNn7TZVqlRh7ty5nDlzBmdnZ9q0acPvv/+Ok1PR9olHH30UtVrNM888g5OTEwMGDGDr1q288cYb3H///SiKQp06dXjiiSe0+yxevJjnn3+eTp06ERQUxKxZs3jzzTfN/n9gS1SKolhtEphGjRrRo0cPLl26xNatW6lZsyYvvvgiI0aMAODcuXPUqVOHgwcP0rx5c+1+nTp1onnz5nz88cd8/fXXvPLKK3rNgLm5uXh4eLBy5UoeeeSRIufNysoiKytL+zojI4OwsDDS09OL/QUVQlhXrVq1uHz5Mjt37iQmJqbkjbMz4d1//8CN2Z//x07z+vXE/GSnGL/88B0PPzaIliFOHDifkd+FWZPsqJyg38cV2kpQmdy9e5f4+HgiIyPx8PAo38F0fwdK+ZkL21bS70VGRgZ+fn6l/v226m2sc+fO8dlnn1GvXj3WrVvH6NGjGTt2LEuXLgUgOTkZgKCgIL39goKCtOuSk5MJDAzUW+/i4kK1atW02xQ2e/Zs/Pz8tI+wsDBzX5oQwoxu3rzJ5cuXAYqfE0u3LufAkoLlC9rqj7lSinr18os441LVKMV1YU6/bOIVCCGsyaq3sdRqNa1bt+bdd98FoEWLFhw7dozPP/+cIUOGWOy8U6ZM0btHqmnZEULYppMnTwL5X3R0a/qK9efUgucmdh+/JzISFZCRBWnxh6hqpS7MopxKuFUpKh+rtuyEhIQUmeOmYcOGJCQkABAcHAzAlStX9La5cuWKdl1wcHCRkR9zc3NJTU3VblOYu7s7vr6+eg8hhO0yuV7HUIJiJA8PD8L88rufn72hWLULsxDCPKya7Nx3332cOnVKb9np06e1o0VGRkYSHBzMxo0bteszMjLYs2eP9p59TEwMaWlpet3oNm3ahFqtpl27dhVwFUIIS9O07Bid7BhKUExQt1r+/v9cSrdqF2YhhHlYNdkZP348u3fv5t133yUuLo7ly5ezcOFCYmNjAVCpVIwbN45Zs2bx66+/cvToUZ599llCQ0N5+OGHgfwPv549ezJixAj27t3Ljh07GDNmDIMGDZKeWEI4iNOnTwMFE3WWqvusgueFu48bMd9V3ar5H41xZ89atQtzZWXFfjPCBpnj98GqyU6bNm346aef+Pbbb2nSpAkzZ85k3rx5DB48WLvNpEmTeOmllxg5ciRt2rTh1q1brF27Vq8ie9myZURFRdG1a1d69+5Nhw4dWLhwoTUuSQhhAZpkp149I7t9Rz9e8Dx2j/46IyaFrBegSXbO6a+wQhfmysTV1RWA27dvWzkSYUs0vw+a34+ysPrcWH379qVv377FrlepVMyYMYMZM2YUu021atVYvtz43hZCCPuhVquJi4sD0J8Tq3DX4pKYOCmk5jbWmbizZQ1blIGzszP+/v7aOkwvLy9UKlUpewlHpSgKt2/fJiUlBX9//yIDNJrC6smOEEKUJDExkTt37uDi4kJERITpB0iNN21SSDdv7nl9N3zXjPjzF8oUsyg7TceSwh1PROXl7+9fbIcjY0myI4SwaZpbWJGRkbi4GPmRdTOp4Hm1yPyCZd2Ep5QeVZqR3FNTU8nIyED6a1YclUpFSEgIgYGB5OTkWDscYWWurq7latHRkGRHCGHTNBP/6t3CMkR34MCFnQqe+4bm96jSjoJceo+qKlWqEBAQwPXr14k/f4FmZYxdlJ2zs7NZ/sgJATYw67kQQpTEqOLkjMSidTm6ytCjStO6Ex9/3thQhRA2SpIdIYRNM6plx1BdTnGM7FGlqQ86fyHBuOMKIWyW3MYSQtg0o1p2DNXllJO2ZefiZfhYph0Qwp5Jy44Qwmbl5uZy7lz+WDcltuxo6nI0Co+gXAYFt7Hiy30sIYR1ScuOEMJmXbhwgZycHDw8PKhVq1bxG2Yk5tflaIqQY/dCdZ2WoOzMkk9UeMweN29JdoRwINKyI4SwWZp6nbp16+LkVOjjSrf31YK2+q/NMNKxbrIj0xcIYd8k2RFC2Kxi63XSLxftffXHZLOeWzMhcWZmJteuXTPrsYUQFUuSHSGEzSq2J1bqWcOjIpuRh4cHISEhAJw/f75gRXYmTPfLf5R2e0wIYRMk2RFC2KxiW3aq1SlahKwy/wB0UrcjhGOQZEcIYbM0LTtFkh2/moV6XzlDr/eKP5CbN0xPz3+4eRt9fkl2hHAMkuwIIWxSVlYWFy7kT8RpsNt54VGRdV+biSQ7QjgGSXaEEDbp3LlzqNVqfHx8CAoKKnljM/S+MkQzirIkO0LYN0l2hBA2Sbc4WaVSVdyJMxK1TzUtO3oFykIIuyPJjhDCJhk1TYSuMtblAEXH7Pn7G0A/2VGrzTcVhRCiYkmyI4SwSUZNAGoOhsbsWT0O0i8TFhaGk5MT2dnZJCUlWTYOIYTFSLIjhLBJJrfslFVxY/aknsPFxYWaNWsCcPHixaL76tzyEkLYLkl2hBA2qcJadoobs6faPUDBSMoJCQn564q55SWEsF2S7AghbE5mZiaXL18GKqBlx9CYPf3m5S8HateuDeRPSlrSLS8hhO2SWc+FEDYnLi4OgICAAKpVq2Z4I01BsjnozZi+R2/GdE2yk5CQUOItL01yJISwPdKyI4SwORVWr2NIoTF79JKd4m55Le0rc2UJYcMk2RFC2Jxip4mwAr1kx9RpKoQQNkGSHSGEzdG07OgVJ1tptnG9ZAcqZJoKIYR5lalm58yZM2zevJmUlJQiA21NmzbNLIEJISovW2rZ0fTGSk1N5datW/i46YzmbKFpKoQQ5mVysvPll18yevRoqlevTnBwsN4w7iqVSpIdIUS5GWzZsRJfX1/8/PxIT08nISGBRnXDrR2SEMJEJic7s2bN4p133mHy5MmWiEcIUcnduHGDa9euAVC3bl0rR5Ovdu3aHD16VJIdIeyUyTU7N27c4LHHHrNELEIIob2FFRISQpUqVawcTb4idTtCCLticrLz2GOP8eeff1oiFiGEsE69TimTiBqd7Mj0EULYJJNvY9WtW5c333yT3bt3Ex0djaurq976sWPHmi04IUTlU2HTRJigyJQRugpPH9HvY2j5bAVFJoQwhsnJzsKFC/Hx8WHr1q1s3bpVb51KpZJkRwhRLlYdULAYxbbsZCQanj6iTlcZUVkIG2JyshMfH2+JOIQQAjDyNlZGot6UDpamNz+W7jQV8dtk+ggh7IAMKiiEsBmKohTf7dyKs41rkp1Lly6Rl5dXsKKUGdOFELbBqJadCRMmMHPmTLy9vZkwYUKJ23744YdmCUwIUflcvXqVjIwMVCoVderUKVhR3GzjFXS7KCQkBGdnZ3Jzc0lOTqZmzX/PqZk+QjOJaKEZ04UQtsGoZOfgwYPk5ORonxdHd4BBIYQwlaZVJywsDA8Pj4IVVp5t3MXFhZo1a5KQkEBCQkJBsgMlzpguhLANRiU7mzdvNvhcCCHMSZPsNGjQQH+F5naRbsJTwbeLwsPDtclOTEyM4Y1k+gghbFK5anYuXrzIxYsXy7z/9OnTUalUeo+oqCjt+rt37xIbG0tAQAA+Pj4MHDiQK1eu6B0jISGBPn364OXlRWBgIBMnTiQ3N7fMMQkhrKfYeh1Ds41X8O0iGVhQCPtlcrKTm5vLm2++iZ+fHxEREURERODn58fUqVO1t7pM0bhxY5KSkrSP7du3a9eNHz+e1atXs3LlSrZu3UpiYiIDBgzQrs/Ly6NPnz5kZ2ezc+dOli5dypIlS2R+LiHsVIlzYhWebbyCx7LR65ElhLArJnc9f+mll1i1ahVz587VNuXu2rWL6dOnc/36dT777DPTAnBxITg4uMjy9PR0Fi1axPLly+nSpQsAixcvpmHDhuzevZv27dvz559/cvz4cTZs2EBQUBDNmzdn5syZTJ48menTp+Pm5mbq5QkhrMjoCUCtcLtIWnaEsF8mt+wsX76cJUuWMGrUKJo2bUrTpk0ZNWqUNjEx1ZkzZwgNDeWee+5h8ODB2g+SAwcOkJOTQ7du3bTbRkVFUbt2bXbt2gXkJ1nR0dEEBQVpt+nRowcZGRn8888/xZ4zKyuLjIwMvYcQwrry8vKIi4sDbGv0ZA1JdoSwXyYnO+7u7kRERBRZHhkZaXJLSrt27ViyZAlr167ls88+Iz4+nvvvv5+bN2+SnJyMm5sb/v7+evsEBQWRnJwMQHJysl6io1mvWVec2bNn4+fnp32EhYWZFLcQwvwuXrxIVlYWrq6u2ukZbEmJU0YIIWyaycnOmDFjmDlzJllZWdplWVlZvPPOO4wZM8akY/Xq1YvHHnuMpk2b0qNHD37//XfS0tL4/vvvTQ3LJFOmTCE9PV37KE+RtRDCPDS3sOrWrYuzs7OVoylK86Xoxo0b3Lx508rRCCFMYVTNjm5RMMCGDRuoVasWzZo1A+Dw4cNkZ2fTtWvXcgXj7+9P/fr1iYuL48EHHyQ7O5u0tDS91p0rV65oa3yCg4PZu3ev3jE0vbUM1QFpuLu74+7uXq5YhRDmZXS9jpX4+vri7+9PWloaFy9epFGjRvkrdKePEELYJKOSHT8/P73XAwcO1HttrttAt27d4uzZszzzzDO0atUKV1dXNm7cqD3fqVOn9Ma4iImJ4Z133iElJYXAwEAA1q9fj6+vb8EHkRDCLth6sgP5dTtpaWlcuHBBPmOEsCNGJTuLFy+2yMlfffVV+vXrR3h4OImJibz11ls4Ozvz5JNP4ufnx/Dhw5kwYQLVqlXD19eXl156iZiYGNq3bw9A9+7dadSoEc888wxz584lOTmZqVOnEhsbKy03QtgZe0l2jhw5InU7QtgZk7uem9OlS5d48sknuX79OjVq1KBDhw7s3r2bGjVqAPDRRx/h5OTEwIEDycrKokePHnz66afa/Z2dnVmzZg2jR48mJiYGb29vhgwZwowZM6x1SUKIMiqS7GRnwrv/djF/PdEmbhdJjywh7JNVk50VK1aUuN7Dw4MFCxawYMGCYrcJDw/n999/N3doQogKlJWVxfnz5wGo/2sfaF98b0pr0tyyl04NQtiXck0XIYQQ5nD27FkURcHXHYK8bXdCYUl2hLBPkuwIIaxOewsrwAmVSpIdIYR5mZTs5OTk0LVrV86cOWOpeIQQlZBusmPLNDU7ly5dQq1Wl7K1EMJWmPTJ4urqypEjRywVixCiktImO9VsbzBBXTVr1kSlUpGVlcXVq1etHY4Qwkgmf416+umnWbRokSViEUJUUvbSsuPq6qodsFRuZQlhP0zujZWbm8vXX3/Nhg0baNWqFd7e3nrrP/zwQ7MFJ4SoHEpNdjISoXq9CoyoeGFhYSQlJXHx4kVat25t7XCEEEYwOdk5duwYLVu2BAo+oDRsubBQCGGb0tPTtdO8aJOdjEQ4t6VgowVtod/H0PLZig+wkLCwMPbu3SstO0LYEZOTnc2bN1siDiFEJaXp8DC+UwBV3HPyF/6njf5GihpWj4M6XcGvZsUGWIj0yBLC/pT5BnlcXBzr1q3jzp07ACiKYraghBCVx+nTp6lZRcX7nXJ0lir/PnQX5UHquYoMzSBJdoSwPyYnO9evX6dr167Ur1+f3r17k5SUBMDw4cN55ZVXzB6gEMKxnT59mnoBTjiXdhdc5QzV7qmQmEqi6X4uyY4Q9sPkZGf8+PG4urqSkJCAl5eXdvkTTzzB2rVrzRqcEMLxnTx5kjPX1agpnO3ovFY5Q795Vr+FBQUtOzI/lhD2w+Rk588//+S9996jVq1aesvr1avHhQsXzBaYEKISyM7kxJaVXL6pcCx0cMFylTP0fr/gdewemyhOhoJkJzExkdzcXP2V2Zkw3S//kZ1pheiEEIaYnOxkZmbqtehopKam4u7ubpaghBCVQ15eHqeu5Y9E7BMztGBF7B5o/lTBa9/Qig2sBEFBQbi4uKBWq7W38YUQts3kZOf+++/nm2++0b5WqVSo1Wrmzp3LAw88YNbghBCOLT7+PFl54OEC4bXDClbYUHJTmLOzMzVr5t9OK7VuR1p6hLAJJnc9nzt3Ll27dmX//v1kZ2czadIk/vnnH1JTU9mxY4clYhRCOKgTJ08B0CDACWdn254qQldYWBgXLlyQImUh7ITJLTtNmjTh9OnTdOjQgf79+5OZmcmAAQM4ePAgderUsUSMQggHpUl2Gtaw7WkiCpMeWULYF5NbdgD8/Px44403zB2LEKKSOXHq32Snuv206oCMtSOEvSlTsnPjxg0WLVrEiRMnAGjUqBHPPfcc1apVM2twQgjHpm3ZqW5fLTvS/VwI+2LyJ8y2bduIiIhg/vz53Lhxgxs3bjB//nwiIyPZtm2bJWIUQjggRVE4cfIUNauoaB3qBDftp2eTUS07GYkVFI0QojQmt+zExsbyxBNP8Nlnn2kLCvPy8njxxReJjY3l6NGjZg9SCOF4kpKSeLTOHRb29cHZSQULO8FDn+iPpzM93XoBlqDYZOfQ8oLnC9pCr7kVGJUQojgmt+zExcXxyiuv6PWccHZ2ZsKECcTFxZk1OCGE4zp78C8W9vXIT3SgYLLP9MtWjcsYmmQnJSWFrKys/IXpl+GPSQUbKWr4Y3LBa2npEcJqTE52WrZsqa3V0XXixAmaNWtmlqCEEI7v6qndBYmOho1M9lmagIAAPD09Abh06VL+wtSz+QmOLiWv4PmCtvD3NwghKp7Jt7HGjh3Lyy+/TFxcHO3btwdg9+7dLFiwgDlz5nDkyBHttk2bNjVfpEIIh7L/3A36V1P0Ex4bmeyzNCqVirCwME6fPs3Fixfzh92oVgdUTkUTHg1Ny1WdrjYxx5cQlYnJyc6TTz4JwKRJkwyuU6lUKIqCSqUiLy+vyDZCCAGw658LjEy/y5f9PHBSqWxqsk9jaJIdbY8sv5r5NTq/v/rvFk6AgZae1HN2c41COAqTk534+HhLxCGEqEQUReHYsWNsuZbD2LZuNAt2zp8Pq3o9a4dmNINFys2fKkh2hq6Gpf30W3rspOVKCEdjcrITHh5uiTiEEJXIlStXuHbtGk5OTtQP+Ld00IbnwzKk1O7noS30W3rsrOVKCEdiXyN5CSEcgqa2r17dOni6qkrZ2jYZNdaO7sztsXv0u9ULISqMJDtC2AsHmkFbk+xEN2ls5UjKzuQpI+ys5UoIR1Km6SKEEKJMsjPh3VCO/nwHgKbRTYBN1o2pjGQyUCHsh7TsCCEq3JEr+T01mzZpYuVIyk7TspOWlsbNmzetHI0QoiQmJzsXL14sGEQL2Lt3L+PGjWPhwoVmDUwI4Zhy8hSOX83voWTPt7GqVKmCn58fIK07Qtg6k5Odp556is2bNwOQnJzMgw8+yN69e3njjTeYMWOG2QMUQjiWM6lqsvPAx8eHiPqN8ue/mp4Obt7WDs1kRep23Lzt+nqEcFQmJzvHjh2jbdu2AHz//fc0adKEnTt3smzZMpYsWWLu+IQQDubIlYJWHScn+76TbnKRshDCKkwuUM7JycHd3R2ADRs28NBDDwEQFRVFUlKSeaMTQjgcTb1OdONGVo6k/EpNdjQtPUIIqzL5a1Xjxo35/PPP+euvv1i/fj09e/YEIDExkYCAALMHKIQwwIgZtK9evcq1a9dQFKUCAjLe0ZT8lp38nlj2TXpkCWEfTE523nvvPb744gs6d+7Mk08+qZ3p/Ndff9Xe3hJCWMCh5QXPi5lBW1EU/ve//9GoUSMCAwOpUaMGDRs25KuvvrKZpCclU03nCGda1w+xdijlZvJtLAcaK0kIe2LybazOnTtz7do1MjIyqFq1qnb5yJEj8faWgjwhLCL9MvyhM/mugRm08/LyeP7554vUzp06dYoRI0awevVqVqxYgaenZ8XFXcjtnYvYOcwbZycVyt4XISjHrkcVlpodIeyDyS07Xbp04ebNm3qJDkC1atV44oknyhzInDlzUKlUjBs3Trvs7t27xMbGEhAQgI+PDwMHDuTKlSt6+yUkJNCnTx+8vLwIDAxk4sSJ5ObmljkOIWxS6ln9CSWhYAbtf40ZM4YlS5bg4uLCzJkzSUtLIz09nblz5+Lh4cGvv/7KQw89RHZ2dgUH/6/0y3humYazU/70ECpNwpZ+2TrxmIEm2UlISLCZljMhRFEmJztbtmwx+GF59+5d/vrrrzIFsW/fPr744guaNm2qt3z8+PGsXr2alStXsnXrVhITExkwYIB2fV5eHn369CE7O5udO3eydOlSlixZwrRp08oUhxA2q1odUBV6u+rMoL1ixQo+//xznJycWL58OVOnTsXPzw9fX18mTpzI+vXr8fHxYcOGDXpfKCpU6llUFEoICiVs9qZWrVoA3Llzh9TUVCtHI4QojtHJzpEjR7Tz2Rw/flz7+siRIxw8eJBFixZRs6bps/neunWLwYMH8+WXX+q1FqWnp7No0SI+/PBDunTpQqtWrVi8eDE7d+5k9+7dAPz5558cP36c//3vfzRv3pxevXoxc+ZMFixYUOK316ysLDIyMvQeQtg0v5r5M2hr6MygffXqVUaPHg3A1KlTeeyxx4rs3qFDB1asWIFKpeKzzz7jhx9+qKDAdVSrg7pw44dOwmaPPDw8qFGjBiC3soSwZUYnO82bN6dFixaoVCq6dOlC8+bNtY9WrVoxa9asMrWoxMbG0qdPH7p166a3/MCBA+Tk5Ogtj4qKonbt2uzatQuAXbt2ER0dTVBQkHabHj16kJGRwT///FPsOWfPno2fn5/2oWmKFsKmFTOD9ltvvUVaWhotWrTgzTffLHb3Pn36MGXKFABGjx7N1atXLRpuEX41eW2HJ7majEcnYbNn0iNLCNtndLITHx/P2bNnURSFvXv3Eh8fr31cvnyZjIwMhg0bZtLJV6xYwd9//83s2bOLrEtOTsbNzQ1/f3+95UFBQSQnJ2u30U10NOs164ozZcoU0tPTtQ/5kBJ2xzcUsjM5/ZIPX3z+GQDz5s3DxaXkPgfTpk0jOjqaa9eu8dZbb1VEpFopKSm8v/EKkfNukZmt6CVs9qzMRcpGDB8ghDAPo3tjhYeHA6BWq0vZ0jgXL17k5ZdfZv369Xh4eJjlmMZyd3fXDowohD2buyMbtQJ9e/eiY8eOpW7v7u7OJ598QufOnVm4cCFjx44lKiqqAiKF/fv3A+DjrsLbTZWfsDkAk5KdwsMH9PvYIRI+IWydyV3PAc6cOcPmzZtJSUkpkvwYeyvrwIEDpKSk0LJlS+2yvLw8tm3bxn/+8x/WrVtHdnY2aWlpeq07V65cITg4GIDg4GD27t2rd1xNby3NNkI4qkuXLvPN4RwAXp/8qtH7derUiYceeohff/2VyZMn88svv1gqRD379u0DoE2oc4Wcr6IYnewYMXyAEMIyTE52vvzyS0aPHk316tUJDg5GpVJp16lUKqOTna5du3L06FG9Zc899xxRUVFMnjyZsLAwXF1d2bhxIwMHDgTyxwtJSEggJiYGgJiYGN555x1SUlIIDAwEYP369fj6+tKokf0PRS9ESRYu+pocNdxf25mY9u1M2ve9997jt99+49dff2XLli107tzZMkHqcPRkJyEhoeQNSxo+QJIdISzK5GRn1qxZvPPOO0yePLlcJ65SpQpNmugPF+/t7U1AQIB2+fDhw5kwYQLVqlXD19eXl156iZiYGNq3bw9A9+7dadSoEc888wxz584lOTmZqVOnEhsbK7ephEPLycnhq8VLARjT1q30HbIz4d1/bxu9nkhUVBQjR47ks88+Y9q0aWzbts0ygf57XkVR2Lcv/3Z161D7nvyzMKNbdjTDB+gmPHbeG00Ie2Hyp86NGzcMdm21hI8++oi+ffsycOBAOnbsSHBwMKtWrdKud3Z2Zs2aNTg7OxMTE8PTTz/Ns88+y4wZMyokPiEqlGZSyenprPlzM0lJyQR6q3g4ysB3FiOmJXjjjTdwc3Pjr7/+KvMYWca6lKGQknIVFxcXmgc7ZsvO5cuXS65pLGH4ACGEZZncsvPYY4/x559/8sILL5g9mC1btui99vDwYMGCBSxYsKDYfcLDw/n999/NHosQtuybb/LnxRrazBU3Z1UpWxtWs2ZNhg4dysKFC5k9ezb333+/OUPUs/dy/kznjRs3xvOdQxY7jzWEhobi5ORETk4OV65cISSkhDm/mj8Fv/9bXxW7B6rXq5gghajkTE526taty5tvvsnu3buJjo7G1dVVb/3YsWPNFpwQoqjU1FR+++03AJ5r8e/7LyOxTH84J02axFdffcUff/zBwYMHadGihTlD1dpxMT/Zuffeey1yfGtycXEhNDSUS5cucfHixZKTHV0O0htNCHtgcrKzcOFCfHx82Lp1K1u3btVbp1KpJNkRwsJ++OEHcnJyeKtvBFHV/52ioIzdmOvUqcOTTz7JsmXLePfdd1m5cqUFIoa/EvLnq+vQoYNFjm9tYWFh2mSnbdu21g5HCFGIyclOfHy8JeIQQhRWqKgYN28AVq1aRc0qKqa1ulGwbTm6Mb/22mssW7aMH3/8kbi4OOrWrWumC8h3K1vhYFJ+LYslb5VZU1hYGLt27ZIBSoWwUY7VLUIIB5eRkcGmTZuoF+CEk5km1WzSpAm9e/dGURQ++ugjM0VaYPelPPIUqF07zGGnZjG6+7kQwipMbtkpbUqIr7/+uszBCCFKtm7dOnJycsjzqwOq68Z1Y85I1K8PMVDfM3HiRH7//XcWL17M22+/TfXq1csWYOHWKOBgUi6dI5yJvt8y9UC2oMxTRgghKkSZup7rPlJSUti0aROrVq0iLS3NAiEKITR+/fVXANo9+EjJ3ZgLT0uw+mX9139/o3fcTp060bp1a+7cuVNi70eTHVrOhBh3Ng/xZt49W4uc11EYPRmozvABmtuSQgjLM7ll56effiqyTK1WM3r0aOrUqWOWoIQQReXm5mp7YT300EPQvKXhbsyGpiU4ulL/daH6HpVKxauvvsqgQYP4z3/+w8SJE/Hy8ipfwBmJKH9Mwtkpv2u8E4rDTo8gLTtC2Daz1Ow4OTkxYcIEi9zvF0Lk2759Ozdu3CAgIKBoF27d21SGpiUozEB9z8CBA4mIiODatWssXbq0/AGnxqMqbnoEB6NJdpKSksjJybFyNEKIwsxWoHz27Flyc3PNdTghhK6MRO0trL59++LsbGAUYs2oyUv75U9LUBID9T0uLi5MmDABgA8++IC8vLzyxVwtEnWhGmpHnR6hRo0auLm5oSgKiYmJ1g5HCFGIybexNB+GGoqikJSUxG+//caQIUPMFpgQlV6huhvPEz4A9OvXr/R9u8+Cda/nP1c5Q5MBBbeySpimYNiwYUyfPp2zZ8/yy1NVGPDfq2WuLVGqhPDaTk/ejbmNi5PKoadHcHJyolatWpw7d46EhATCw8OtHZIQQofJLTsHDx7Uexw5cgTI/yY4b948c8cnROVkoO7m7TbphPk507Vr19L3j3684HnsnvwBB3VfFzP4oLe3Ny+Oeh6A93dmoyiFm2aMd3L/Ft7fcIWo/9ziTo5S4nkdgdTtCGG7TG7Z2bx5syXiEELoMlB34+Kkok9MFP7+/qYdq/C0BKVMUzBm9CjenzuX3Zfy2LFzFx0eeND4c+m0RjVY/zTDWrhy5ZaCp6vK4adHMLpHlhCiwpW5Zufq1ats376d7du3c/XqVXPGJISoVqdI3U2uWiG8RZeCBRbqxhwUFMSzzfLn3Hr/w49L2VpHodYoJxS+6OvBoMYmf6eyS9KyI4TtMjnZyczMZNiwYYSEhNCxY0c6duxIaGgow4cP5/bt25aIUYjKx6+m3jg6uWoYteYurbs8VCGnfyXGDRXw65rfOHnypHE7FdMa1be+JDtCCOsyOdmZMGECW7duZfXq1aSlpZGWlsYvv/zC1q1beeWVVywRoxCVU/OnAEhIzyNi3k2WHXfivvvuM27fm0nlOnWD6s68fr8bNauomDVrlnE7GWiNylPA37NyzEojyY4QtsvkT6Eff/yRRYsW0atXL3x9ffH19aV37958+eWX/PDDD5aIUYhKbc3pPC7fVLj33nvx9PQsfkPd3lsLO5X9hP8eZ1YXDy6M88Hj+EoOHTpU+n7/tkZpippz1Qp7qz9eyk6OQ5IdIWyXye3Lt2/fJigoqMjywMBAuY0lhAVsjM8fv6rEXliGRk3WpanvKU2h4zg7qfi8rztD3hzHstVbSt+/+VNsWTCOt7dmkZLrzd6TH4HPl6Xv5wA0yc61a9e4fft2+UegFkKYjcktOzExMbz11lvcvXtXu+zOnTu8/fbbxMTEmDU4ISo7taKw2Zhkp7hRk4esMVy8rBmAcLpf/vMSjuPipOLy0e1s2LDBqJg/2JXN1gt59BjwDD4+Pkbt4wj8/f3x9s7/v7506ZKVoxFC6DK5Zefjjz+mR48e1KpVi2bNmgFw+PBhPDw8WLdundkDFKIyO5ai5sZd8PHxoXXr1sVvqKmXMWYW9JIYOI5aURGXqmbChAns378fN3L0ZzbXSaYOHjrMb2dyUQEvjhph2rntnEqlonbt2pw4cYKLFy9Sv359a4ckhPiXyS07TZo04cyZM8yePZvmzZvTvHlz5syZw5kzZ2jcuLElYhSi0tqRkD9lQ/u2bXBxKeG7SaHeW2UerdjAcTK7vkuWewBHjx5lzpw5Je7+xrS3AXgy2oV69eqadm4HIHU7QtimMvUJ9fLyYsSIyvWtTYgK5+bNdv8BwHI6dDSi4Lj5U4ZnQTdVoeNUqV6P+fOr8tRTTzFjxgw6xrShs4HdfvjhB/5Y9ycuTvB2Z4+yndvOSbIjhG0yuWVn9uzZfP3110WWf/3117z33ntmCUoIkW/Hjh0Axnc51zDXaMX/HmfQoEE8/fTT5OXl8dhTz3A4WX+S0Li4OEaNGgXAxHvdqFutcnQ3L0ySHSFsk8mfSF988QVRUVFFljdu3JjPP//cLEEJUSkVKhq+dOkSFy5cwMnJiXbt2lk1NJVKxRdffEHr1q25du06nZZk8uWBbJKTr7B69Wo6depEamoqrVq1YvrGm2Yf1dleSLIjhG0y+TZWcnIyISEhRZbXqFGDpKTyDWQmhCigadVp3rw5VapUsdyJMhKNuuXl5eXF+vXr6dO7Fzt37Wbkmruwpo52fZMmTfj9999xc3OzXKw2TpPsJCQkWDkSIYQuk1t2wsLCtB/Cunbs2EFoqGNP9CdERdq+fTtQhltYxtAdgHBBW/j7G6N28/f3Z+uGtXzex53B0a7UrKIiIKAaE+91Y3ufCwT6V77WHF0yGagQtsnklp0RI0Ywbtw4cnJy6NIlf1LCjRs3MmnSJJkuQggz0nyp6NChg3E7lHHgQBQ1rB4Hdboa1XvL5dj3jGrtzqjWoKicUPWaU1DQXMlpWnZu3rxJeno6fn5+Vo5ICAFlSHYmTpzI9evXefHFF8nOzgbAw8ODyZMnM2XKFLMHKERldPPmTQ4fPgxYoGXH0ACESh6knstPdkpKmgolSipFDX9MNm98dszLy4tq1aqRmprKxYsXJdkRwkaYfBtLpVLx3nvvcfXqVXbv3s3hw4dJTU1l2rRplohPiEpp9559qNVqIiIiqFnTxLFySmNgwk6jByAsLlESWlKkLITtKXP/UB8fH9q0aUOTJk1wd3c3Z0xCVHr/7N0IYJkpWMozAGFxiZLQkmRHCNtTOQfDEMIW6RQNj1UWM6yFq+W6nDd/quB57B5o+axx+xlKlHrJ+Fq6TEp2ipujTAhhVpLsCGELCtXCOKngi74e3N/MxLmtysLUAQgLJ0q6rzMSzROTHZPu50LYHkl2hLAFxcw23iTEy0oBGck3tMzd2B2VdD8XwvYYley0bNmSGzduADBjxgxu375t0aCEqHQM1MLkqcEtuOho5TYlI9FwN/b0y1YLydqkZkcI22NUsnPixAkyM/PvJ7/99tvcunXLokEJUekUqoXJVSusyGxv+qzlZVXW2pHU+OK7sVdSmmTn0qVLKIpi5WiEEGDkODvNmzfnueeeo0OHDiiKwv/93//h4+NjcFvpgi5EGf072/iY3+/w88lcZi942nLnKjyWTlmLY6tF5rdI6SY8xnZjd1A1a9ZEpVJx9+5drl27Ro0aNYzb0chpO4QQpjMq2VmyZAlvvfUWa9asQaVS8ccff+DiUnRXlUolyY4QpsjOhHf/LRB+NY6cPIVFB3O4mwtt27a1bmzG8A3Nb5HSjKBsSjd2B+Xm5kZQUBDJyclcvHix5GSncL1Tv4+N7xknhDCaUbexGjRowIoVK9i3bx+KorBx40YOHjxY5PH333+bdPLPPvuMpk2b4uvri6+vLzExMfzxxx/a9Xfv3iU2NpaAgAB8fHwYOHAgV65c0TtGQkICffr0wcvLi8DAQCZOnEhubq5JcQhhK46mqLmbmz8HVb16NvItv/AtLk2rkGZm87J2Y3dgRtXtFDdtRyWudxLCUkzujaVWqwkMDDTLyWvVqsWcOXM4cOAA+/fvp0uXLvTv359//vkHgPHjx7N69WpWrlzJ1q1bSUxMZMCAAdr98/Ly6NOnD9nZ2ezcuZOlS5eyZMkSaV0SdmvPpfzRiNu2boWTkx12ljS1G7uD0vTIKrH7eUnTdgghzMrkubEAzp49y7x58zhx4gQAjRo14uWXX6ZOnTomHadfv356r9955x0+++wzdu/eTa1atVi0aBHLly/XTji6ePFiGjZsyO7du2nfvj1//vknx48fZ8OGDQQFBdG8eXNmzpzJ5MmTmT59Om5ubmW5PCGsZl/iv8lOm1bWC0JqR8rNqJYdTQ88qXcSwuJM/uq4bt06GjVqxN69e2natClNmzZlz549NG7cmPXr15c5kLy8PFasWEFmZiYxMTEcOHCAnJwcunXrpt0mKiqK2rVrs2vXLgB27dpFdHQ0QUFB2m169OhBRkaGtnXIkKysLDIyMvQeQlSIkno9uXlxQN0QgNbt7q3YuGSsHLMyamDB4kaj/qiRjKgshJmZnOy89tprjB8/nj179vDhhx/y4YcfsmfPHsaNG8fkyabPfnz06FF8fHxwd3fnhRde4KeffqJRo0YkJyfj5uaGv7+/3vaawj+A5ORkvURHs16zrjizZ8/Gz89P+9B8MAlhTXdSzmmT9FatKrBlR2pHzC4iIgKA8+fPl7xhSaNRCyHMxuRk58SJEwwfPrzI8mHDhnH8+HGTA2jQoAGHDh1iz549jB49miFDhpTpOKaYMmUK6enp2ocM/iWsRqdFxeOr+xnS1IkaNWqYf6bzkphSO2JoOojCBcuCyMhIwIhkR5fUOwlhMSYnOzVq1ODQoUNFlh86dKhMhctubm7UrVuXVq1aMXv2bJo1a8bHH39McHAw2dnZpKWl6W1/5coVgoODAQgODi7SO0vzWrONIe7u7toeYJqHEBWu0OjDKhS+6OtBj5gmqFSqioujuJnMNbUjcovLZJqWnStXrpR9xPns2zJJqBBmYnKyM2LECEaOHMl7773HX3/9xV9//cWcOXMYNWoUI0aMKHdAarWarKwsWrVqhaurKxs3btSuO3XqFAkJCcTExAAQExPD0aNHSUlJ0W6zfv16fH19adSoUbljEcKiDIw+7OKkonPT2hUbh6HaEc1YOXKLq0yqVq2Kn58fABcuXLByNEIIk3tjvfnmm1SpUoUPPviAKVOmABAaGsr06dMZO3asSceaMmUKvXr1onbt2ty8eZPly5ezZcsW1q1bh5+fH8OHD2fChAlUq1YNX19fXnrpJWJiYmjfvj0A3bt3p1GjRjzzzDPMnTuX5ORkpk6dSmxsLO7u7qZemhAVy8Dow7lqhdDGHSo+ln9Hbwbya0c0vbFKusVViQcONEZERASHDx8mPj6ehg0bmn6Am0nmD0qISsrkZEelUjF+/HjGjx/PzZs3AahSpUqZTp6SksKzzz5LUlISfn5+NG3alHXr1vHggw8C8NFHH+Hk5MTAgQPJysqiR48efPrpp9r9nZ2dWbNmDaNHjyYmJgZvb2+GDBnCjBkzyhSPEBVOZ/ThXLXCqDV3mTb8QevGpFs7It2jyywyMpLDhw+XXLdTeNqOvV8WPF/YyWKxCVHZlGmcHY2yJjkaixYtKnG9h4cHCxYsYMGCBcVuEx4ezu+//16uOISoMIXrX/69fXTqWh5dv7nNXbdqfFW7gm9jlURzi0umgzCZpm4nPj7euB0M3TIUQpiFHQ7RKoSdMvTH7I/84Rq2Xsjj8k2Fli1bVmxxsjFkOogyMbr7uYahW4YahnrBCSGMJsmOEBWluPoX4MC/IydX6Pg6ZSHdo42m6X5udMuOoV5xGtILTohykWRHiIpSXBdv4ECSlZMdGSvH7Exu2SncK06X9IITolxMSnZycnLo2rUrZ86csVQ8QjiuYqYHyM5TOJqS3+LTsmVLKwUnzE2T7Fy/fl3bmaNUJY2gLJOEClFmJiU7rq6uHDlyxFKxCOH4Cte/tB3BPwO2kp2XPzaL5taHsH++vr5Uq1YNMHEkZY2SBnoUQpjE5NtYTz/9dKm9qIQQRvi3/uXAgQMAtlmcDHKLqxxMrtvR1X1WwXPpBSdEuZjc9Tw3N5evv/6aDRs20KpVK7y99T/8PvzwQ7MFJ0RloJvsCMcSERHBgQMHytayE/04rHs9/7nuQI9CCJOZnOwcO3ZM+6F8+vRpvXU2+a1UCBv3999/A3bQE0uYrFwtO7qkF5wQ5WJysrN582ZLxCFEpZSTk8Phw4cBSXYckck9snRHVJbJP4UwmzKPoBwXF8fZs2fp2LEjnp6eKIoiLTtCFJadCe/++6389cQi0wMcP3yYrKwsfH19ueceKT51NGZr2RFClIvJBcrXr1+na9eu1K9fn969e5OUlD9Z3fDhw3nllVfMHqAQjkxzC6tly5Y4OcmwV47G5JYdIYRFmPzpOn78eFxdXUlISMDLy0u7/IknnmDt2rVmDU4IR6cpTpZbWI4pPDwcgPT0dG7cuGHaztILTgizMfk21p9//sm6deuoVauW3vJ69epx4cIFswUmRGUgPbEcm7e3N4GBgaSkpHD+/HmqVq1q7ZCEqJRMbtnJzMzUa9HRSE1Nxd3d3SxBCVEZ5ObmSnFyJWDy7OdCCLMzOdm5//77+eabggnpVCoVarWauXPn8sADD5g1OCEcSqGZq0+ePMmdO3fw8fGhXj0ZQ8VRaYqUpW5HCOsx+TbW3Llz6dq1K/v37yc7O5tJkybxzz//kJqayo4dOywRoxD269DygucL2kK/j6Hls0DBLawWLVpIcbIDM1vLjqGefUIIo5j8CdukSRNOnz5Nhw4d6N+/P5mZmQwYMICDBw9Sp04dS8QohH1Kvwx/TCp4XWjmahlMsHKQlh0hrK9M4+z4+fnxxhtvmDsWIRxL6tn8BEeXZuZqv5rSE6uSkO7nQlhfmZKdGzdusGjRIk6cOAFAo0aNeO6557Qz/AohgGp18meu1k14/p25Oi8vj4MHDwLSE8vR6Q4sKIOvCmEdJt/G2rZtGxEREcyfP58bN25w48YN5s+fT2RkJNu2bbNEjELYJ7+a0GtuwWudmatPnz7N7du38fb2pkGDBlYLUVheeHg4KpWKzMxMrl69ap6DFip2F0KUzORkJzY2lieeeIL4+HhWrVrFqlWrOHfuHIMGDSI2NtYSMQphv5o/VfA8dk+R4uTmzZvj7OxsjchEBXF3d9eOS3b27NmyH6hwsfvf3xS/rRBCj8nJTlxcHK+88oreB7SzszMTJkwgLi7OrMEJYXeyM2G6X/6j8ESOOjNXy2CClUvdunUByv4ZWUqxuxCiZCYnOy1bttTW6ug6ceIEzZo1M0tQQjg66YlVuWh6qpY52Smp2F0IUSqjCpSPHDmifT527Fhefvll4uLiaN++PQC7d+9mwYIFzJkzxzJRCuFA1Gq1tjhZkp3KQdOyU+bbWCUUuwshSmdUstO8eXNUKhWKomiXTZo0qch2Tz31FE888YT5ohPC3mkmc9Rx5swZbt68iaenJ1FRUVYKTFSkct/G0hS7//5q/mudYnchROmMSnZkThchyiAjEaoXnQZCcwurWbNmuLiUafQHYWc0t7HKVaDc/KmCZCd2j8HfLSGEYUZ90oaHh1s6DiEcQwnTQ2jIYIKVjybZuXbtGmlpafj7+5fvgDrF7kKI0pXpa2ViYiLbt28nJSUFtVq/aG7s2LFmCUwIu1Ncj5k6XfVuN+zfvx+QZKcyqVKlCoGBgaSkpHD27Fn52QtRwUxOdpYsWcKoUaNwc3MjICBAbzRQlUolyY6ofHQnaCxMZ3oIyC9Olp5YlVPdunUl2RHCSkxOdt58802mTZvGlClTZKZmIQorpcdMXFwcN2/exMPDg0aNGlkhQGEtdevWZefOnWUvUjZQ7C6EMI7J2crt27cZNGiQJDpCGNJ9VsFzAz1mdEdOluLkysUsRcpCiDIxOWMZPnw4K1eutEQsQti/6McLnutMD6EhxcmVV7m7nwshyszkr5azZ8+mb9++rF27lujoaFxdXfXWf/jhh2YLTgi7czOp4LmBHjOS7FRe0rIjhPWUKdlZt26ddqbmwgXKQlQ6ut3NF3YqdjO1Wi3JTiWmadm5fPkyt2/fxsvLy8oRCVF5mJzsfPDBB3z99dcMHTrUAuEIYWcMdTcvhhQnV27VqlXD39+ftLQ0zp07R5MmTawdkhCVhsk1O+7u7tx3332WiEUI+2NogkaAIWvye8/o0LTqyMjJlZNKpdK27pw5c8bK0QhRuZic7Lz88st88sknlohFCPujmaBRVzETNGqSndatW1dEZMIG1a9fH4DTp09bORIhKheTk529e/eydOlS7rnnHvr168eAAQP0HqaYPXs2bdq00Y4u+vDDD3Pq1Cm9be7evUtsbCwBAQH4+PgwcOBArly5ordNQkICffr0wcvLi8DAQCZOnEhubq6plyaE6TQTNGqUMEGj1OsITa1j4c85IYRlmZzs+Pv7M2DAADp16kT16tXx8/PTe5hi69atxMbGsnv3btavX09OTg7du3cnMzNTu8348eNZvXo1K1euZOvWrSQmJuolVXl5efTp04fs7Gx27tzJ0qVLWbJkCdOmTTP10oQom+ZPFTw30N0cZORkkU+SHSGsQ6UoimLtIDSuXr1KYGAgW7dupWPHjqSnp1OjRg2WL1/Oo48+CsDJkydp2LAhu3bton379vzxxx/07duXxMREgoKCAPj888+ZPHkyV69exc3NrdTzZmRk4OfnR3p6Or6+vha9RuGAdKeLeD2xSK0O5N+2aNCgAR4eHty8eVNqdiqpQ4cO0aJFCwICArh27Zq1wxHC7hn799umhkFOT88fCr1atWpAfrN/Tk4O3bp1024TFRVF7dq12bVrFwC7du0iOjpam+gA9OjRg4yMDP755x+D58nKyiIjI0PvIYQlSXGyAKhXrx4A169f5/r16+U7WHYmTPfLf2Rnlr69EJWYyZ+6kZGRJY6nc+7cuTIFolarGTduHPfdd5+2S2ZycjJubm74+/vrbRsUFERycrJ2G91ER7Nes86Q2bNn8/bbb5cpTiHKQup1BIC3tzdhYWFcvHiRU6dOce+991o7JCEqBZOTnXHjxum9zsnJ4eDBg6xdu5aJEyeWOZDY2FiOHTvG9u3by3wMY02ZMoUJEyZoX2dkZBAWFmbx8woHZcQEjZLsCI0GDRpIsiNEBTM52Xn55ZcNLl+wYAH79+8vUxBjxoxhzZo1bNu2jVq1ammXBwcHk52dTVpaml7rzpUrVwgODtZus3fvXr3jaXprabYpzN3dHXd39zLFKoSpdIuTpdu5aNCgARs2bJAiZSEqkNlqdnr16sWPP/5o0j6KojBmzBh++uknNm3aRGRkpN76Vq1a4erqysaNG7XLTp06RUJCAjExMQDExMRw9OhRUlJStNusX78eX19fGaVW2ISzZ8+SkZEhIycLwEI9sjISzXcsIRyQ2Solf/jhB21hsbFiY2NZvnw5v/zyC1WqVNHW2Pj5+eHp6Ymfnx/Dhw9nwoQJVKtWDV9fX1566SViYmJo3749AN27d6dRo0Y888wzzJ07l+TkZKZOnUpsbKy03giboGnxlOJkAWZMdnTnZFvQFvp9bHDYAyFEGZKdFi1a6BUoK4pCcnIyV69e5dNPPzXpWJ999hkAnTt31lu+ePFi7dxbH330EU5OTgwcOJCsrCx69Oihdx5nZ2fWrFnD6NGjiYmJwdvbmyFDhjBjxgxTL00Ii5B6HaFLk+zExcWRm5tbtgTY0Jxsq8dBna4GB7QUorIz+V328MMP6712cnKiRo0adO7cmaioKJOOZcwQPx4eHixYsIAFCxYUu014eDi///67SecWoqJIsiN0hYWF4enpyZ07dzh//rx2viyTGJqTTcmD1HOS7AhhgMnJzltvvWWJOIRwSHl5eZLsCD1OTk7Uq1ePI0eOcOrUqbIlO5o52XQTnmLmZBNC2NiggkI4mpMnT3Lz5k28vb1p3LixtcMRNqLcdTsmzMkmhDAh2XFycsLZ2bnEhxRfCqFvz549QH6Xc3l/CA3NLf+TJ0+W/SBGzMkmhMhn9KfvTz/9VOy6Xbt2MX/+fNRqdbHbCFEZaZKddu3aWTkSYUs0QxAUN6WNyXxDzXMcIRyU0clO//79iyw7deoUr732GqtXr2bw4MHSA0qIQiTZEYZopsQ5duwYiqKUOAWPEKL8ylSzk5iYyIgRI4iOjiY3N5dDhw6xdOlSwsPDzR2fEHYrMzOTo0ePApLsCH3169fHxcWFjIwMLl++XLaDaKYpmZ6e/1wIUSyTkp309HQmT55M3bp1+eeff9i4cSOrV6/WfksRQhQ4cOAAarWamjVrUrOmFI6KAm5ubtoZ0M12K0sIUSyjk525c+dyzz33sGbNGr799lt27tzJ/fffb8nYhLBrcgtLlETTO89syU52Jkz3y3/culrwPDvTPMcXwo4ZXbPz2muv4enpSd26dVm6dClLly41uN2qVavMFpwQ9mz37t2AJDvCsMaNG/PDDz9w7Ngxa4cihMMzOtl59tlnpYhOCMj/pvzuv71fXk8stl5CWnZESTS3/+U2lhCWZ3Sys2TJEguGIYRjuXz5MpcvX8bJyYnWrVtbOxxhgzS3sY4fP27+Hlk3kwqeZyRC9XrmO7YQdkhGUBbCAjStOtHR0Xh7S08ZUVTdunVxdXXl1q1bJCQklP+AurOgf9Gx4PmCtvD3N+U/vhB2TJIdIcojI9HgYrmFJUrj6uqqnTai3HU7hWdBR2eSZc2M6Oll7OIuhAOQZEcIU+l+gy7mW7MkO8IYZuuRZWgWdF2aGdGFqKQk2RHCFIW/QRv41pyXl8f+/fsBSXZEycxWpKyZBb04MiO6qOQk2RHCFIa+QRf61vzPP/+QmZlJlSpVtBM+CmGIpmVHM9J2mRWeBR2dYmeZEV0ISXaEMImhb9CFvjXv3LkTgLZt2+Ls7FyR0Qk706xZMyA/Qc7JySnfwXRnQR+1reC5zIguhCQ7Qpik8DdoA9+at2/fDiAjjItSRURE4OvrS3Z2NidOnDDfgauEFDyXGdGFkGRHCJPpfoM28K1Zk+x06NChIqMSdsjJyYnmzZsDcOjQIavGIoQjk2RHiPIo9K354sWLXLhwAWdnZylOFkZp0aIFAAcPHizfgXRnQfepITOiC6FDkh0hzGjHjh0ANG/eHB8fHytHI+yBpmWn3MmOEKJYRk8XIUSlZWgurOnpBjeVW1jCVJqWnUOHDpl/2gghBCAtO0KYlSQ7wlQNGzbEzc2N9PR0zp8/b+1whHBIkuwIYYpipocASE9P58iRIwDcd999FRWRsHNubm7a8XakSFkIy5BkR4jSGDE9BMCuXbtQFIU6deoQEhJicBshDDFbkbIQwiBJdoQoiRHTQ2j89ddfgLTqCNNJsiOEZUmyI0RJjJgeQmPLli0AdOrUqQICE45ExtoRwrIk2RGiJEZMDwFw69Yt9u7dC8ADDzxQUdEJB9GsWTNUKhWXLl0iJSXF2uEI4XAk2RGiJEZMDwH54+vk5uYSHh5OZGRkxcYo7F6VKlVo2LAhgDZpFkKYjyQ7QpSmlOkhADZv3gxIq44oO82I27t377ZyJEI4Hkl2hDBFMZMqapKdLl26VGQ0woG0b98egD179lg5EiEcjyQ7QpRTeno6+/fvB6RlR5SdpmVn7969qNXqUrY2UXYmTPfLf2RnmvfYQtgBmS5CiNKUMD0E5Hc5V6vV1K1bl1q1alVgYMKRNG7cGC8vLzIyMjh58iSNGjWydkhCOAxp2RGinKReR5iDi4sLbdq0ASx8K6uEUcCFcFSS7AhRTps2bQIk2RHlZ7EiZSNHARfCUUmyI0Q5JCcnaweC69q1q3WDEXbPIkXKJowCLoSjkmRHiMJMKOb8888/AWjVqhWBgYEVEZ1wYJqWnaNHj3Lr1i3zHNSEUcCFcFRWTXa2bdtGv379CA0NRaVS8fPPP+utVxSFadOmERISgqenJ926dePMmTN626SmpjJ48GB8fX3x9/dn+PDh5vuQEKIUa9euBaBnz55WjkQ4gtDQUMLCwlCr1doefuVm5CjgQjgyqyY7mZmZNGvWjAULFhhcP3fuXObPn8/nn3/Onj178Pb2pkePHty9e1e7zeDBg/nnn39Yv349a9asYdu2bYwcObKiLkE4Cr3WnNsFy0so5szLy9O27EiyI8zl3nvvBQomli03I0cBF8KRWTXZ6dWrF7NmzeKRRx4psk5RFObNm8fUqVPp378/TZs25ZtvviExMVHbAnTixAnWrl3LV199Rbt27ejQoQOffPIJK1asIDGx+D9SWVlZZGRk6D2E0Dr6fcHzEoo5//77b65fv46vr6/29oMQ5dW5c2egYGJZsyg8CniTgTLujqhUbLZmJz4+nuTkZLp166Zd5ufnR7t27di1axcAu3btwt/fn9atW2u36datG05OTiUW+M2ePRs/Pz/tIywszHIXIuzPn1MLnpdQzKm5hdWtWzdcXV0rKDjh6DTJzs6dO8nKyjL/CYoZBVwIR2azyU5ycjIAQUFBesuDgoK065KTk4sUhbq4uFCtWjXtNoZMmTKF9PR07ePixYtmjl7YHd2uuUYWc0q9jrCEBg0aEBQUxN27d803KahmYMzp6fnPdcm4O6ISsNlkx5Lc3d3x9fXVe4hKrHDX3MIMFHOmpqZqx0Lp0aOHJaMTlYxKpbLMrSxdMu6OqGRsNtkJDg4G4MqVK3rLr1y5ol0XHBxMSkqK3vrc3FxSU1O12whRKkNdczWKKeZcs2YNarWapk2bUrt2bcvHKCoViyY7Mu6OqIRsNtmJjIwkODiYjRs3apdlZGSwZ88eYmJiAIiJiSEtLY0DBw5ot9m0aRNqtVoKRoXxDHXN1YjdAy2fLbJYUyT/8MMPWy4uUWlZtG5Hxt0RlZBVk51bt25x6NAh7Qi08fHxHDp0iISEBFQqFePGjWPWrFn8+uuvHD16lGeffZbQ0FDtH5iGDRvSs2dPRowYwd69e9mxYwdjxoxh0KBBhIZKEZ4wUpGuuTpvCwPFnLdv39bW60iyIyzBInU7GjLujqiErJrs7N+/nxYtWtCiRQsAJkyYQIsWLZg2bRoAkyZN4qWXXmLkyJG0adOGW7dusXbtWjw8PLTHWLZsGVFRUXTt2pXevXvToUMHFi5caJXrEXZMr2vu3uKLOYH169dz584dwsPDad68ecXFKCoN3bodzUSzZiPj7ohKSKUoimLtIKwtIyMDPz8/0tPTpVi5ssrOhHf/bcV5PdFgkqPx3HPPsWTJEl5++WXmzZtXMfGJSmfhwoWMGjWKmJgYdu7cad6D6/6+j9kP1euZ9/hCVBBj/35LsoMkO8J4ubm5BAcHc/36dTZv3qz99i2EuV28eJHatWujUqlISUmhevXqljuZCcm+ELbE2L/fNlugLIQt+uuvv7h+/ToBAQF06NDB2uEIBxYWFkbTpk1RFIV169ZV3Ill3B3hgCTZEZWTCTOb6/r2228B6N+/Py4uLpaKTggA+vTpA8Bvv/1m2RPJuDvCwUmyI4SR32SzsrJYuXIlkD8BrRCWpkl21q5dS25urmVOIuPuiEpAkh1ROZXhm+zatWtJS0sjNDSUTp06WTA4IfK1b9+eatWqcePGDe2I3WYn4+6ISkCSHVH5lPGb7LJlywB48skncXZ2tmCAQuRzdnbWTkdisVtZMu6OqAQk2RGVTxm+yWZkZLB69WpAbmGJiqW5laX5/TM7GXdHVAKS7IjKpwzfZFetWsXdu3eJioqSgQRFherduzeurq78888//PPPP5Y5id6gmoanSBHCnkmyIxyDKb2ryvBN9uuvvwbg6aefRqVSmSFgIYxTtWpVevbsCcCKFSsscxI374JRw2WAQeGAJNkRjicjUT/5uXam6DYmfJM9duwYf/31F87Ozjz33HMWCFiIkj355JNAfrIj48AKYTpJdiqp29m5RLz2GxGv/ca5q7esHU75Fe5dtfpl/deFe1uZ8E32iy++APLH1pEJZoU19OvXD09PT+Li4jhw4IC1wxHC7kiyU0n9eOCS9nm3D7fy3b4EK0ZTToZ6Vx1dqf+6jOOGZGZm8s03+YnS6NGjyxmoEGXj4+PDQw89BBQMbCmEMJ4kO5VQUvod3vq1oNBRrcDrq46RlH7HilGVg6HeVYUpefBRozKNmJyRkUHdunXp0qVLOQMVouwGDRoEwHfffYdaXcrvuxBCjyQ7FqZ7u+h2toVGQDVR/LVM1IVu++cpCuev3bZOQGWlqctZ2q9o76rCVDrj4hg5YrKiKCxYsACAUaNG4eQkbxdhPb169cLf35/Lly+zfv16a4dToLT6OCFsgHx6V6Dk9LvWDgGAyOreOBXqUOSsUhFR3cs6AZlDx4kFz1XOEP2Y/usmAwpeGzli8p9//smhQ4fw9vaWwmRhde7u7gwZMgSATz/91HInMnXeOJlXS9gBSXYsrHBtzH93nS9zYbC5iopD/Dx5+6HG2tdOKnh3QBNC/DzLfMximfKtr7RtC6/X/ZDd9j48OAOGrIFxR6HfxwXrhvwKx34seG1kDc/s2bMBGDlyJAEBAaVcqBCWp6kbW7NmDRcuXLD8CQ21guq+D89vl3m1hF2QZMeCDNXGTPul4LWphcHmLCoe2KqW9vmGCZ14ok3tYrctNckqKUkx5Vtfadvqrv9PG/hdpzVHUcOGt/MHBvSrqd/bSlGbPGLyzp072bp1K66urkyYMKH4mIWoQA0aNKBr166o1WoWLlxomZOY8j5c0lfm1RJ2QaXIoA1kZGTg5+dHeno6vr6+ZjvuzrPXeOrLPSVu46RCWz+z6ZVO3FPDR7vudnYujaatA+C7ke158svderU2Je1rTv/ddZ43/03SnFTw9kONta83vdKJe+K/hd9fzd9Y5ZTfqtLy2fxvd/Oa6H8YqpzzPwwBxuwH31B4N7Rg38Lbjjuan7wYOpYhQ9ZA5P36y4qLQ3NsA/r168eaNWsYNmwYixYtKvmcQlSgH3/8kUcffZTAwEASEhJwd3c338FLe68Y8z4s5b0lhDkZ+/dbWnYsyFBtTGG6yUvh1hrdlpxBC3cXKSouaV9TFdd6U1rr1NMfrkL5vVAz9q8v5bfyxG8z/K1Po/B4OCV9QzSmx1VxUz6YOGLy3r17WbNmDSqVikmTJhncRghreeihhwgNDSUlJcX8IyoXN2+cpiejofe0rsLvLSleFjZCkh0LKlwbo/r3URzdLuCFk4zSmt/K2328uFtkhnpu6b4MVyWjopgPv59HU+IVFx4PpzCVMyztm/9BqXIy0ONKpb9tSVM+tB0B448X1PQUM2Kyoii8+mp+K9UzzzxDgwYNio9PCCtwdXVl7NixAMyaNYvcXDP28jQ0b5zu+8zQe1rlDM9vMvzekuJlYSPkNhaWu42lkZR+h/PXbhNR3YsNx69obwGpKD6J+eCxpryy8kixxyxp302vdCLYz0N7C8zQa91bXknpd7hvzia9pMZZpWL7aw8AFFmnK5jr7HAfi7OquGh0I3WC4hKjIrv924NKkwypnKDJQJ3X/yY3dbrmt/5oanXK6aeffmLAgAF4eHhw5swZatWqVfpOQlSwW7duERERwfXr11m6dCnPPmvGiTv3fllwWxon8t+/uu9vnfe05n1o6MtDGW4fC2EqY/9+S7KD5ZOdwjTJj5ebE498utNgIqH57qS7ylmlYtWLMdzOVpe4r5MKHmoWys+HEot9PXtAtLYoubjaom9HtCemToBezY6huAY5b2a2y5cUOz/mo0vAuzq4esGibqXfjgIY+lv++DmFPyiHr4ec22ZLbnRlZ2fTuHFj4uLieOONN5g1a5ZZjy+EOb333nu89tpr1K1blxMnTuDi4mK+g6dfzv8SkXkVfihh2IUx+4tOt5KdWVCHZ4ihujohykhqdmxYiJ8nMXUCaBZWVe82l67COYyme3izsKql7qtW0CY2xb3WveVlqLbICbiemUVS+h2eiYlg15QufDuiPTundGFGf/1u6y0eHotqwvH8pKZwE7jKGcLa5n+41WpVtHam8Hg4D31Scg+qnNv5x7LAN8MPPviAuLg4AgMDmTx5stmPL4Q5xcbGUr16deLi4vjvf/9r3oP71cx/n4W1M/yeHn+8+HnldG9dFVZcXZ0QFiYtO1R8y05hSel3+O1IErN+O1Fk3X+ebEGAjzsR1b0MjoNT0r6l0bTcAEVab7Q3ngq1AumeV3NrTi8u3Sbw4pq4Nd8aNa0zhV9rtqnAJvDjx4/TokULsrOzzX9bQAgLef/995k0aRLBwcGcPHkSPz8/85/EmPe0Rkm9tQztq9sKZKiVSIhSyG0sE1g72YGS62ZKG+zP0L6lMXTspPQ7HDh/g7ErDpYpDi1DyUtZmPIhWw65ubncd9997N27l969e2t7Yglh67KysmjatCmnT5/mpZdeYv78+ZY5kbHv6fht+befC+vxLjR6WOfLzdn8YuhTvxsetkIII8ltLDtTnlGNDe37cPPQEl8bOnaInyfVfNzKP2+Wpgm8vC0wRvagKq+5c+eyd+9e/Pz8WLhwoSQ6wm64u7trp45YsGABBw4csMyJjH1PG+rNpXIuSHT2fpnfjX1pP/iocdGBQQuPvpx+OT+B+ndZUvoddp69Zr+TFgurkZYdbKNlR6PY20Nl2Le018Udo6wtTPZo3bp19OrVC0VRWLx4MUOHDrV2SEKYbPDgwSxfvpzmzZuza9cuPDw8rBdMcS2yxg4M+ugS8A6Ai3tg07+dBFRO7Gr0Jk8eyB8Korjb67qS0u8Qfy2TyOreZv/ssuSxrcVer0luY5nAlpIdW1B4xOTSPlTs1dmzZ2ndujVpaWk8//zz0qoj7FZycjJNmjTh+vXrjB492rIThRrD0G2v4m5x6Sl+UI1cxYkOWR+TTH6dYUlfwsryGWbsH3tLfz5aI+ko7ZpsORGSZMcEkuwUVZ4WJnuQkpJC586dOXHiBO3atWPr1q3mHXZfiAq2du1aevfujaIo/O9//2Pw4MHWDkmfwZYdFahU/y4zNKaPvkHZU9mtbqR9rdvJAvI/t/afT+XlFYdMap02NoEpS8u3KYmCqYmUOZKQ0q7J1r/8Gvv324wDMwhHEuLn6ZBJDsD169fp1q0bJ06coGbNmvz444+S6Ai717NnT6ZOncrMmTMZOXIk99xzDzExMdYOq4Bm2pbCt7g0A4OWMqZPruLEeXWQ9rWzSoWXmxM7z14jsrq33oCthWnqDgt3yIi/lom3m3ORKXFeX3WMjvVrFPkMNDSifJ6icOD8Dar5FCQdmmP/feEG//fnaaD0RMHQ1DxTfjyKt7sLrcKrFonFUBLSsX4NbfKjibe0RKika1JINfh/ExVchczsvCLXa4stPxrSsoO07FQmSUlJ9OnTh4MHDxISEsLWrVupV0+6uwrHkJeXR9++fVm7di1+fn5s2rSJli1bWjssfcX17Cql2/quRlP1anZ0B0o1NNipLs2ArJo/0MaMZF+41QgMt4IUHqpDN67S4tBNFFIzsxmz/KDB/QonSqXFYWj4EN1EqHDSV9KxSlLagLUVQW5jmUCSncrh77//5qGHHuLy5cvUqFGDrVu30rBhQ2uHJYRZZWZm0rNnT7Zv305AQADr1q2jVatW1g7LOH9/k98jS8nLb/np9haEttQmRsaMPl+YqYkR5N9Qm/9UC22Lim7LxbbTV3l91THyFMWIG2/mi0s3USopMTKktOSncPJXUhylqegOLZLsmECSHcemVqv54osveOWVV7hz5w5RUVGsXr2aunXrWjs0ISwiIyODbt26sW/fPjw9PVm8eDFPPPGEtcMyjhFj+hQ3xY0uJ+CTp1pQq6qn0YkR6P+xL67lomP9Gpy/dpvrmVkmJR3GnFulotRYy5uQ6J7HlGsytsVHt1XM0re4ZJwdIYAzZ87w4IMP8uKLL3Lnzh169uzJ7t27JdERDs3X15f169fTu3dv7ty5w6BBgxg7diy3bt2ydmilM2JMH0NT3KhAu8xZpWL2wGj6NA0lMzuv1OTBWaXil9h7+c+TLfLrpf9dXtxUOwAxdQJoFV61SBzFMeaPrQLMH9SC/zzZosTj6rbSaI5tSj9ShYKEyphrcgIWPNWCn2PvLfV6dWup/rPpDDGzN/HUl3u4b84mvtuXYEKU5iXJjnBICQkJjBw5koYNG7Jp0yY8PT35+OOP+e233ywzpL4QNsbPz49ff/2ViRPzB+775JNPaNKkCb/88gv23qAf4ufJ7AHROP87VISzSsWcgdHseC1/Dr/trz2grRsxJjHSzDtoaFDVwnQHWTUUx8CWNfVeT+kVxbcj2vOTkYlCq4iq9G0WqndcQ3+oNYnRtyPas2NKF+YMLNhe03Kj2be0RKi0a9Ikjs3CqpZ6vf2ahdB/wU6e+nKPtjgbis7JWNHkNhZyG8tRZGdns3HjRhYuXMivv/6KWp1f6NinTx/mzZsnrTmi0lq3bh2jRo3iwoULALRs2ZI33niDhx56yLyzpVcwY4fI+G5fgrbORpPcaG7b6O5rzNQ7xU21Y8wAroXjeLhFKD8fTNSLq/D4NsXVKJUWB6B9XlqdkTHXVNL/uym1VIYKv8uj0tXsLFiwgPfff5/k5GSaNWvGJ598Qtu2bY3aV5Id+6RWqzl58iQ7d+5ky5Yt/Pbbb6SlpWnXd+nShbfffpsOHTpYL0ghbERmZiazZs3ik08+ITMzE4CgoCAGDx5M//79iYmJwdXV1cpRWk5ZE6PSEpLyxlGehM2UOHTPo5v8mOOaNEqrpbJE8XKlSna+++47nn32WT7//HPatWvHvHnzWLlyJadOnSIwMLDU/SXZsU2KopCenk5KSgopKSlcuXKFc+fOcfr0aU6fPs2RI0f0khuAwMBAnnjiCV544QUaNWpk+MBCVGJXr17lo48+4quvvuLq1ava5b6+vrRv356WLVvSqlUroqOjCQ8Pt+7UE1ZS1oSkouOylWPpHrO4ljFzJlW6KlWy065dO9q0acN//vMfIP8bf1hYGC+99BKvvfZaqftbKtlp0qQJp06dwsnJCZVKZZf/mrKtoijah1qtNuq5Wq3m7t273L59mzt37uj9e+vWLXJyckr8P/by8qJt27bce++99OrVi5iYGJydnc32MxTCUeXk5PDHH3/w3XffsW7dOq5fv25wu+DgYGrXrk2NGjWoVq2a9lGlShU8PDz0Hu7u7nh4eODi4qL3GVL4s8TQZ4sxU7WUto05jmGv25SXuc7x24kbfLAtUdvTa2S7IBrU8KSmnxstGkSYvfWw0iQ72dnZeHl58cMPP/Dwww9rlw8ZMoS0tDR++eWXIvtkZWWRlZWlfZ2RkUFYWJjZk50GDRpw+vTp0jcUJfL19SUwMJAaNWoQHh5O/fr1qV+/Pg0bNiQ6Otqhm96FqAh5eXkcOnSI/fv38/fff3PgwAFOnTplH723hM1xrhKAi38ouWmJ5N0sSKJPnTpF/fr1zXquSjNdxLVr18jLyyMoKEhveVBQECdPnjS4z+zZs3n77bctHtu2bdvIycnRa9Ew17+WOGZ5/lWr1dpvZ7rf1Aq/LvzcyckJDw8PvLy88PT0xNPTU/vc29ubGjVq4Olpm8OPC+EonJ2dadWqld7gg4qikJqayoULF0hISCA1NZXr169r/83MzOTu3bvcvXuXrKws7fO7d++Sl5en/Vwo/DlR3HJjGPvd3FrbWfvcNnOM3NtwLQ43AJ3Pb2tOtGz3yU5ZTJkyhQkTJmhfa1p2zK1wAiaEEPZCpVIREBBAQECA7U05IYSJ7D7ZqV69Os7Ozly5ckVv+ZUrVwgODja4j7u7u0z8KIQQQlQSdj+ooJubG61atWLjxo3aZWq1mo0bN9rWjL9CCCGEsAq7b9kBmDBhAkOGDKF169a0bduWefPmkZmZyXPPPWft0IQQQghhZQ6R7DzxxBNcvXqVadOmkZycTPPmzVm7dq3UzAghhBDC/ruem4MMKiiEEELYH5n1XAghhBACSXaEEEII4eAk2RFCCCGEQ5NkRwghhBAOTZIdIYQQQjg0SXaEEEII4dAk2RFCCCGEQ5NkRwghhBAOTZIdIYQQQjg0h5guorw0g0hnZGRYORIhhBBCGEvzd7u0ySAk2QFu3rwJQFhYmJUjEUIIIYSpbt68iZ+fX7HrZW4sQK1Wk5iYSJUqVVCpVGY7bkZGBmFhYVy8eNFh59xy9Gt09OsDx79GR78+cPxrdPTrA8e/Rktdn6Io3Lx5k9DQUJyciq/MkZYdwMnJiVq1alns+L6+vg75y6vL0a/R0a8PHP8aHf36wPGv0dGvDxz/Gi1xfSW16GhIgbIQQgghHJokO0IIIYRwaJLsWJC7uztvvfUW7u7u1g7FYhz9Gh39+sDxr9HRrw8c/xod/frA8a/R2tcnBcpCCCGEcGjSsiOEEEIIhybJjhBCCCEcmiQ7QgghhHBokuwIIYQQwqFJsmNmc+bMQaVSMW7cOO2yu3fvEhsbS0BAAD4+PgwcOJArV65YL8hyMnSNnTt3RqVS6T1eeOEF6wVpounTpxeJPyoqSrve3n+GpV2fvf/8AC5fvszTTz9NQEAAnp6eREdHs3//fu16RVGYNm0aISEheHp60q1bN86cOWPFiE1X2jUOHTq0yM+xZ8+eVozYNBEREUXiV6lUxMbGAvb/Pizt+uz9fZiXl8ebb75JZGQknp6e1KlTh5kzZ+rNW2Wt96GMoGxG+/bt44svvqBp06Z6y8ePH89vv/3GypUr8fPzY8yYMQwYMIAdO3ZYKdKyK+4aAUaMGMGMGTO0r728vCoytHJr3LgxGzZs0L52cSl4ezjCz7Ck6wP7/vnduHGD++67jwceeIA//viDGjVqcObMGapWrardZu7cucyfP5+lS5cSGRnJm2++SY8ePTh+/DgeHh5WjN44xlwjQM+ePVm8eLH2tT11Zd63bx95eXna18eOHePBBx/kscceA+z/fVja9YF9vw/fe+89PvvsM5YuXUrjxo3Zv38/zz33HH5+fowdOxaw4vtQEWZx8+ZNpV69esr69euVTp06KS+//LKiKIqSlpamuLq6KitXrtRue+LECQVQdu3aZaVoy6a4a1QUpchre/PWW28pzZo1M7jOEX6GJV2fotj/z2/y5MlKhw4dil2vVquV4OBg5f3339cuS0tLU9zd3ZVvv/22IkIst9KuUVEUZciQIUr//v0rJqAK8PLLLyt16tRR1Gq1Q7wPC9O9PkWx//dhnz59lGHDhuktGzBggDJ48GBFUaz7PpTbWGYSGxtLnz596Natm97yAwcOkJOTo7c8KiqK2rVrs2vXrooOs1yKu0aNZcuWUb16dZo0acKUKVO4fft2BUdYPmfOnCE0NJR77rmHwYMHk5CQADjOz7C469Ow55/fr7/+SuvWrXnssccIDAykRYsWfPnll9r18fHxJCcn6/0M/fz8aNeund38DEu7Ro0tW7YQGBhIgwYNGD16NNevX7dCtOWXnZ3N//73P4YNG4ZKpXKY96FG4evTsOf34b333svGjRs5ffo0AIcPH2b79u306tULsO77UG5jmcGKFSv4+++/2bdvX5F1ycnJuLm54e/vr7c8KCiI5OTkCoqw/Eq6RoCnnnqK8PBwQkNDOXLkCJMnT+bUqVOsWrWqgiMtm3bt2rFkyRIaNGhAUlISb7/9Nvfffz/Hjh1ziJ9hSddXpUoVu//5nTt3js8++4wJEybw+uuvs2/fPsaOHYubmxtDhgzR/pyCgoL09rOnn2Fp1wj5t7AGDBhAZGQkZ8+e5fXXX6dXr17s2rULZ2dnK1+BaX7++WfS0tIYOnQo4DifpRqFrw/s/3P0tddeIyMjg6ioKJydncnLy+Odd95h8ODBAFZ9H0qyU04XL17k5ZdfZv369XZx378sjLnGkSNHap9HR0cTEhJC165dOXv2LHXq1KmoUMtM880DoGnTprRr147w8HC+//57PD09rRiZeZR0fcOHD7f7n59araZ169a8++67ALRo0YJjx47x+eefaxMBe2fMNQ4aNEi7fXR0NE2bNqVOnTps2bKFrl27WiXuslq0aBG9evUiNDTU2qFYhKHrs/f34ffff8+yZctYvnw5jRs35tChQ4wbN47Q0FCrvw/lNlY5HThwgJSUFFq2bImLiwsuLi5s3bqV+fPn4+LiQlBQENnZ2aSlpentd+XKFYKDg60TtIlKu0bdgjuNdu3aARAXF1fR4ZqFv78/9evXJy4ujuDgYLv/GRame32G2NvPLyQkhEaNGukta9iwofZWnebnVLjnjj39DEu7RkPuueceqlevbjc/R40LFy6wYcMGnn/+ee0yR3ofGro+Q+ztfThx4kRee+01Bg0aRHR0NM888wzjx49n9uzZgHXfh5LslFPXrl05evQohw4d0j5at27N4MGDtc9dXV3ZuHGjdp9Tp06RkJBATEyMFSM3XmnXaKh5/NChQ0D+B7Q9unXrFmfPniUkJIRWrVrZ/c+wMN3rM8Tefn733Xcfp06d0lt2+vRpwsPDAYiMjCQ4OFjvZ5iRkcGePXvs5mdY2jUacunSJa5fv243P0eNxYsXExgYSJ8+fbTLHOl9aOj6DLG39+Ht27dxctJPK5ydnVGr1YCV34cWLX+upApX1L/wwgtK7dq1lU2bNin79+9XYmJilJiYGOsFaAa61xgXF6fMmDFD2b9/vxIfH6/88ssvyj333KN07NjRukGa4JVXXlG2bNmixMfHKzt27FC6deumVK9eXUlJSVEUxf5/hiVdnyP8/Pbu3au4uLgo77zzjnLmzBll2bJlipeXl/K///1Pu82cOXMUf39/5ZdfflGOHDmi9O/fX4mMjFTu3LljxciNV9o13rx5U3n11VeVXbt2KfHx8cqGDRuUli1bKvXq1VPu3r1r5eiNl5eXp9SuXVuZPHlykXX2/j5UlOKvzxHeh0OGDFFq1qyprFmzRomPj1dWrVqlVK9eXZk0aZJ2G2u9DyXZsYDCyc6dO3eUF198Ualatari5eWlPPLII0pSUpL1AjQD3WtMSEhQOnbsqFSrVk1xd3dX6tatq0ycOFFJT0+3bpAmeOKJJ5SQkBDFzc1NqVmzpvLEE08ocXFx2vX2/jMs6foc4eenKIqyevVqpUmTJoq7u7sSFRWlLFy4UG+9Wq1W3nzzTSUoKEhxd3dXunbtqpw6dcpK0ZZNSdd4+/ZtpXv37kqNGjUUV1dXJTw8XBkxYoSSnJxsxYhNt27dOgUw+LOx9/ehohR/fY7wPszIyFBefvllpXbt2oqHh4dyzz33KG+88YaSlZWl3cZa70OVougMbSiEEEII4WCkZkcIIYQQDk2SHSGEEEI4NEl2hBBCCOHQJNkRQgghhEOTZEcIIYQQDk2SHSGEEEI4NEl2hBBCCOHQJNkRQgghhEOTZEcIIYDOnTujUqlQqVTaOYm2bNmCSqUqMvmkuU2fPl177nnz5ln0XEJURpLsCCFMNnToUO0fZ91Hz549rR1auYwYMYKkpCSaNGlS7mNduXIFV1dXVqxYYXD98OHDadmyJQCvvvoqSUlJ1KpVq9znFUIUJcmOEKJMevbsSVJSkt7j22+/teg5s7OzLXp8Ly8vgoODcXFxKfexgoKC6NOnD19//XWRdZmZmXz//fcMHz4cAB8fH4KDg3F2di73eYUQRUmyI4QoE3d3d4KDg/UeVatW1a5XqVR89dVXPPLII3h5eVGvXj1+/fVXvWMcO3aMXr164ePjQ1BQEM888wzXrl3Tru/cuTNjxoxh3LhxVK9enR49egDw66+/Uq9ePTw8PHjggQdYunSp9nZTZmYmvr6+/PDDD3rn+vnnn/H29ubmzZtlvubbt2/Tq1cv7rvvPu2tra+++oqGDRvi4eFBVFQUn376qXb74cOHs3HjRhISEvSOs3LlSnJzcxk8eHCZYxFCGE+SHSGExbz99ts8/vjjHDlyhN69ezN48GBSU1MBSEtLo0uXLrRo0YL9+/ezdu1arly5wuOPP653jKVLl+Lm5saOHTv4/PPPiY+P59FHH+Xhhx/m8OHDjBo1ijfeeEO7vbe3N4MGDWLx4sV6x1m8eDGPPvooVapUKdO1pKWl8eCDD6JWq1m/fj3+/v4sW7aMadOm8c4773DixAneffdd3nzzTZYuXQpA7969CQoKYsmSJUViGTBgAP7+/mWKRQhhIovPqy6EcDhDhgxRnJ2dFW9vb73HO++8o90GUKZOnap9fevWLQVQ/vjjD0VRFGXmzJlK9+7d9Y578eJFBVBOnTqlKIqidOrUSWnRooXeNpMnT1aaNGmit+yNN95QAOXGjRuKoijKnj17FGdnZyUxMVFRFEW5cuWK4uLiomzZsqXYa+rUqZPy8ssv6y3bvHmzAignTpxQmjZtqgwcOFDJysrSrq9Tp46yfPlyvX1mzpypxMTEaF+/9tprSmRkpKJWqxVFUZS4uDhFpVIpGzZsKBJDeHi48tFHHxUboxCibKRlRwhRJg888ACHDh3Se7zwwgt62zRt2lT73NvbG19fX1JSUgA4fPgwmzdvxsfHR/uIiooC4OzZs9r9WrVqpXfMU6dO0aZNG71lbdu2LfK6cePG2haW//3vf4SHh9OxY8cyXeuDDz5I3bp1+e6773BzcwPy627Onj3L8OHD9a5h1qxZevEPGzaM+Ph4Nm/eDOS36kRERNClS5cyxSKEMF35q/CEEJWSt7c3devWLXEbV1dXvdcqlQq1Wg3ArVu36NevH++9916R/UJCQvTOUxbPP/88CxYs4LXXXmPx4sU899xzqFSqMh2rT58+/Pjjjxw/fpzo6Ght/ABffvkl7dq109tet9C4Xr163H///SxevJjOnTvzzTffMGLEiDLHIoQwnSQ7QgiraNmyJT/++CMREREm9X5q0KABv//+u96yffv2Fdnu6aefZtKkScyfP5/jx48zZMiQMsc6Z84cfHx86Nq1K1u2bKFRo0YEBQURGhrKuXPnSi00Hj58OKNHj+ahhx7i8uXLDB06tMyxCCFMJ7exhBBlkpWVRXJyst5DtydVaWJjY0lNTeXJJ59k3759nD17lnXr1vHcc8+Rl5dX7H6jRo3i5MmTTJ48mdOnT/P9999rC4B1W0uqVq3KgAEDmDhxIt27dy/3GDb/93//x+DBg+nSpQsnT54E8guwZ8+ezfz58zl9+jRHjx5l8eLFfPjhh3r7PvbYY7i6ujJq1Ci6d+9OWFhYuWIRQphGkh0hRJmsXbuWkJAQvUeHDh2M3j80NJQdO3aQl5dH9+7diY6OZty4cfj7++PkVPxHU2RkJD/88AOrVq2iadOmfPbZZ9reWO7u7nrbDh8+nOzsbIYNG1a2iyzko48+4vHHH6dLly6cPn2a559/nq+++orFixcTHR1Np06dWLJkCZGRkXr7eXl5MWjQIG7cuGG2WIQQxlMpiqJYOwghhCiPd955h88//5yLFy/qLf/vf//L+PHjSUxM1BYWF6dz5840b97cqtM1REREMG7cOMaNG2e1GIRwRNKyI4SwO59++in79u3j3Llz/Pe//+X999/Xq8m5ffs2Z8+eZc6cOYwaNarUREf3uD4+Phw9etRSoRv07rvv4uPjU2TwQSGEeUjLjhDC7owfP57vvvuO1NRUateuzTPPPMOUKVO0hc7Tp0/nnXfeoWPHjvzyyy/4+PiUeszLly9z584dAGrXrm10gmQOqamp2sEWa9SogZ+fX4WdW4jKQJIdIYQQQjg0uY0lhBBCCIcmyY4QQgghHJokO0IIIYRwaJLsCCGEEMKhSbIjhBBCCIcmyY4QQgghHJokO0IIIYRwaJLsCCGEEMKh/T8447YWtW/KwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.errorbar(center[ls.mask], entries[ls.mask], np.sqrt(entries[ls.mask]), ls='', marker='.', label='Not masked')\n", + "plt.errorbar(center[~ls.mask], entries[~ls.mask], np.sqrt(entries[~ls.mask]), ls='', marker='.', label='Masked')\n", + "plt.xlabel('Energy [keV]')\n", + "plt.ylabel('Number of counts per bin')\n", + "\n", + "x = np.arange(40, 80, 0.1)\n", + "plt.plot(x, fit_model(x, *mi.values), color='k', label='Initial guess')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "ec675b22", + "metadata": {}, + "source": [ + "Außerdem müssen wir noch alle Fitparameter, welche nicht zum Untergrund beitragen, als konstant festhalten" + ] + }, + { + "cell_type": "code", + "execution_count": 510, + "id": "4a93a1c2-17df-46c2-b38e-9a509fe16fc7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "mi.fixed[:] = True\n", + "mi.fixed[['tau_bkg', 'A_bkg']] = False\n", + "print (mi.fixed)" + ] + }, + { + "cell_type": "markdown", + "id": "c5a8d247-5b71-42ae-9706-d16192374686", + "metadata": {}, + "source": [ + "bevor wir die Minmierung starten und das Resultat darstellen." + ] + }, + { + "cell_type": "code", + "execution_count": 511, + "id": "3e90c2ed-c282-47c2-b0fe-3063f9545639", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 32.8 (χ²/ndof = 0.8) Nfcn = 98
EDM = 4.43e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 400 4 yes
1 A_p2 700 7 yes
2 mu_p1 54.0 0.5 yes
3 mu_p2 60.0 0.6 yes
4 sigma_p1 2.00 0.02 yes
5 sigma_p2 2.00 0.02 yes
6 A_bkg 137 15
7 tau_bkg 34.9 2.3 0
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 0 0 0 0 0 0 0 0
A_p2 0 0 0 0 0 0 0 0
mu_p1 0 0 0 0 0 0 0 0
mu_p2 0 0 0 0 0 0 0 0
sigma_p1 0 0 0 0 0 0 0 0
sigma_p2 0 0 0 0 0 0 0 0
A_bkg 0 0 0 0 0 0 229 -33 (-0.962)
tau_bkg 0 0 0 0 0 0 -33 (-0.962) 5.18
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:49.875185\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 32.8 (χ²/ndof = 0.8) │ Nfcn = 98 │\n", + "│ EDM = 4.43e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 400 │ 4 │ │ │ │ │ yes │\n", + "│ 1 │ A_p2 │ 700 │ 7 │ │ │ │ │ yes │\n", + "│ 2 │ mu_p1 │ 54.0 │ 0.5 │ │ │ │ │ yes │\n", + "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", + "│ 4 │ sigma_p1 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", + "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", + "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", + "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 0 0 0 0 0 0 0 0 │\n", + "│ A_p2 │ 0 0 0 0 0 0 0 0 │\n", + "│ mu_p1 │ 0 0 0 0 0 0 0 0 │\n", + "│ mu_p2 │ 0 0 0 0 0 0 0 0 │\n", + "│ sigma_p1 │ 0 0 0 0 0 0 0 0 │\n", + "│ sigma_p2 │ 0 0 0 0 0 0 0 0 │\n", + "│ A_bkg │ 0 0 0 0 0 0 229 -33 │\n", + "│ tau_bkg │ 0 0 0 0 0 0 -33 5.18 │\n", + "└──────────┴─────────────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 511, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi.migrad()\n", + "mi.hesse()" + ] + }, + { + "cell_type": "code", + "execution_count": 512, + "id": "0b435af3-73ea-42de-9ab7-6a16ae9dbceb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 512, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7p0lEQVR4nO3dd3hTddsH8O9JujeUTuhilkJZBaEvyiwgS7Q8ioiAwAOOIksFUUBFkeHjQlEUBXHgQFGGyF4KBcrepZRCgTYtUJpCd5vz/lFzSNq0TdqkGf1+riuXzTkn59yHmvTOb92CKIoiiIiIiGyUzNwBEBEREZkSkx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIptmZOwBLoFKpkJaWBnd3dwiCYO5wiIiISA+iKOLu3bsIDAyETFZ5+w2THQBpaWkICgoydxhERERUA9euXUOTJk0q3c9kB4C7uzuAsn8sDw8PM0dDRERE+sjJyUFQUJD0d7wyTHYAqevKw8ODyQ4REZGVqW4ICgcoExERkU1jskNEREQ2jckOERER2TSO2SEiIotTWlqK4uJic4dBZmZvbw+5XF7r8zDZISIiiyGKIhQKBbKzs80dClkILy8v+Pv712odPCY7RERkMdSJjq+vL1xcXLjQaz0miiLy8vKQmZkJAAgICKjxuZjsEBGRRSgtLZUSHW9vb3OHQxbA2dkZAJCZmQlfX98ad2lxgDIREVkE9RgdFxcXM0dClkT9/0NtxnAx2SEiIovCrivSZIz/H5jsEBERkU1jskNEREQ2jckOERGRGQiCgD/++KPKY5555hk8+uijep/zypUrEAQBJ06cqFVstoazsYjIZqlUKmRkZMDd3R1ubm7mDods2DPPPIPs7OxqkxdN6enpaNCgAYCyJCUsLAzHjx9Hhw4dpGM+/vhjiKJo5GjrH7bsEJFNSkhIQEREBAIDA+Ht7Y358+ejtLTU3GERSfz9/eHo6FjlMZ6envDy8qqbgGwYkx0isjlnzpxBz549kZiYCEEQUFRUhDfeeAOzZ882d2hkIFEUkZuba5ZHbVpUevXqhSlTpmDmzJlo2LAh/P398eabb2odo9mNFRYWBgDo2LEjBEFAr169AFTsxtqyZQsefPBBeHl5wdvbG0OGDEFycrJBsaWnp2Pw4MFwdnZGWFgY1qxZg9DQUHz00UcAdHeFZWdnQxAE7NmzR9p25swZDBw4EG5ubvDz88Po0aNx69Ytaf+vv/6KyMhIODs7w9vbGzExMcjNzQUA7NmzBw888ABcXV3h5eWF7t274+rVqwbdhyGY7BCRTSkoKMCTTz6J/Px89OnTB7dv38aKFSsAAO+99x62bdtm5gjJEHl5eXBzczPLIy8vr1axr169Gq6urjh06BCWLFmC+fPnY/v27TqPPXz4MABgx44dSE9Px7p163Qel5ubixkzZuDIkSPYuXMnZDIZHnvsMahUKr3jGjNmDNLS0rBnzx789ttv+PLLL6VVivWVnZ2NPn36oGPHjjhy5Ai2bNmCjIwMPPHEEwDKEqqRI0di/PjxOH/+PPbs2YPY2FiIooiSkhI8+uij6NmzJ06dOoX4+HhMmjTJpEsOcMwOEdmUr776CmfPnoWfnx9+/PFHNGjQAP/9739x4sQJLFu2DLNmzUK/fv24lguZXLt27fDGG28AAFq0aIFPP/0UO3fuRL9+/Soc6+PjAwDw9vaGv79/peccPny41vOVK1fCx8cH586dQ9u2bauN6cKFC9ixYwcSEhLQuXNnAGXvmRYtWuh9XwDw6aefomPHjnj33Xe1YgkKCsLFixdx7949lJSUIDY2FiEhIQCAyMhIAEBWVhaUSiWGDBmCZs2aAQBat25t0PUNxWSHiGxGYWEhFi1aBAB444034OvrK+1766238O233+LEiRNYv369QTNcyHxcXFxw7949s127Ntq1a6f1PCAgwOAWlPKSkpIwb948HDp0CLdu3ZJadFJTU/VKdhITE2FnZ4dOnTpJ25o3by4NlNbXyZMnsXv3bp0D/5OTk9G/f3/07dsXkZGRGDBgAPr374///Oc/aNCgARo2bIhnnnkGAwYMQL9+/RATE4MnnniiVrWvqsNuLCKyGT/++CNu3LiBJk2aYPz48Vr7vL298eKLLwKANDaBLJ8gCHB1dTXLo7atf/b29hXuxZDuJl2GDh2KrKwsrFixAocOHcKhQ4cAAEVFRbU6ryaZrCw10ByzVL5Uw7179zB06FCcOHFC65GUlIQePXpALpdj+/bt+OuvvxAREYFPPvkErVq1QkpKCgBg1apViI+Px//93//h559/RsuWLXHw4EGj3UOFezLZmYmI6tjKlSsBAC+88ILOWS7PPfccBEHA3r17pQ9dIkvg4OAAAFXOGLx9+zYSExMxZ84c9O3bF61bt8adO3cMuk6rVq1QUlKC48ePS9suXbqkdR51l1p6erq0rfy6PZ06dcLZs2cRGhqK5s2baz1cXV0BlCV33bt3x1tvvYXjx4/DwcEBv//+u3SOjh07Yvbs2Thw4ADatm2LNWvWGHQvhmCyQ0Q24dKlS/j7778hk8kwZswYnccEBQWhb9++AIDvvvuuLsMjqpKvry+cnZ2lgb5KpbLCMQ0aNIC3tze+/PJLXLp0Cbt27cKMGTMMuk54eDhiYmIwadIkHD58GMePH8ekSZPg7OwstWQ5OzujW7duWLRoEc6fP4+9e/dizpw5WueJi4tDVlYWRo4ciYSEBCQnJ2Pr1q0YN24cSktLcejQIbz77rs4cuQIUlNTsW7dOty8eROtW7dGSkoKZs+ejfj4eFy9ehXbtm1DUlKSScftMNkhIpug/lbYr18/NG7cuNLjxo4dC6Csy4vIUtjZ2WHp0qX44osvEBgYiGHDhlU4RiaT4aeffsLRo0fRtm1bTJ8+He+9957B1/r222/h5+eHHj164LHHHsPEiRPh7u4OJycn6ZiVK1eipKQEUVFRmDZtGt555x2tcwQGBmL//v0oLS1F//79ERkZiWnTpsHLywsymQweHh7Yt28fBg0ahJYtW2LOnDl4//33MXDgQLi4uODChQsYPnw4WrZsiUmTJiEuLg7PPvus4f9wehJELs2InJwceHp6QqlUwsPDw9zhEFENdOrUCcePH8fKlSsxbty4So9TKpVo1KgRSkpKkJSUhObNm9dhlFSVgoICpKSkICwsTOsPL5nW9evXERQUhB07dkgtn5akqv8v9P37zZYdIrJ6qampOH78OGQyGYYMGVLlsZ6enujRowcAYOPGjXURHpFF2bVrFzZs2ICUlBQcOHAATz75JEJDQ6X3hS0ya7ITGhoKQRAqPOLi4gCUZXNxcXHw9vaGm5sbhg8fjoyMDK1zpKamYvDgwXBxcYGvry9eeeUVlJSUmON2iMhMNmzYAADo3r27NLiyKkOHDgXAZIfqp+LiYrz22mto06YNHnvsMfj4+GDPnj0VZo/ZErMmOwkJCUhPT5ce6pUlH3/8cQDA9OnTsXHjRqxduxZ79+5FWloaYmNjpdeXlpZi8ODBKCoqwoEDB7B69Wp88803mDdvnlnuh4jM46+//gIAPPLII3odP3jwYADAP//8U+tVcomszYABA3DmzBnk5eUhIyMDv//+u7Twn62yqDE706ZNw6ZNm5CUlIScnBz4+PhgzZo1+M9//gOgbOXH1q1bIz4+Ht26dcNff/2FIUOGIC0tDX5+fgCA5cuXY9asWbh586Y0la+8wsJCFBYWSs9zcnIQFBTEMTtEVqioqAgNGzZEbm4uTpw4gfbt21f7GlEUERwcjOvXr2P79u2IiYmpg0ipOuqxGaGhoXB2djZ3OGQh8vPzparwVj9mp6ioCN9//z3Gjx8PQRBw9OhRFBcXa30IhYeHIzg4GPHx8QCA+Ph4REZGSokOUJax5uTk4OzZs5Vea+HChfD09JQeQUFBprsxIjKpQ4cOITc3Fz4+PtJy9NURBAG9e/cGAK3ChmRe6m4UtraRJvX/D7XpZrOYchF//PEHsrOz8cwzzwAAFAoFHBwcKpS29/Pzg0KhkI7RTHTU+9X7KjN79myttQnULTtEZH127twJAOjTp4+08qs+evfuje+++w67d+82VWhkILlcDi8vL6mkgouLC2uY1WOiKCIvLw+ZmZnw8vKCXC6v8bksJtn5+uuvMXDgQAQGBpr8Wo6OjjpXVyUi66NOVgydMturVy8AZdWm8/Lyal0HiYxDXQSztjWkyHZ4eXlVWRxVHxaR7Fy9ehU7duzQKmnv7++PoqIiZGdna7XuZGRkSDft7++Pw4cPa51LPVurtv8wRGT5iouLkZCQAAB48MEHDXptaGgoAgMDkZaWhqNHj+Khhx4yRYhkIEEQEBAQAF9f3wr1mKj+sbe3r1WLjppFJDurVq2Cr6+vNEMCAKKiomBvb4+dO3dKJe0TExORmpqK6OhoAEB0dDQWLFiAzMxMqbrx9u3b4eHhgYiIiLq/ESKqU6dPn0Z+fj68vLzQqlUrg14rCAK6deuGdevW4eDBg0x2LIxcLjfKHzkiwAIGKKtUKqxatQpjx46Fnd393MvT0xMTJkzAjBkzsHv3bhw9ehTjxo1DdHQ0unXrBgDo378/IiIiMHr0aJw8eRJbt27FnDlzEBcXx24qonpAXSW5a9euBo3XUVN/lpiy2jIRmZ/ZW3Z27NiB1NRUjB8/vsK+Dz/8EDKZDMOHD0dhYSEGDBiAzz77TNovl8uxadMmPP/884iOjoarqyvGjh2L+fPn1+UtEJGZqJMUddJiKPXr4uPjIYoiB8MS2SiLWmfHXFgbi8g6tWzZEklJSfjrr7/w8MMPG/z6vLw8eHh4oLS0FKmpqZyVSWRlrG6dHSIiQ9y6dQtJSUkAyrqxasLFxQVt27YFABw9etRosRGRZWGyQ0RW6dChQwDKFhtt0KBBjc/TqVMnAMCxY8eMEhcRWR4mO0RklWo7XkdNnewcP3681jERkWViskNEVkmd7KiXoqgptuwQ2T4mO0RkdVQqlbSgaG1bdtq1awdBEJCWllZlmRkisl5MdojI6ly+fBk5OTlwcnKq9QKibm5u0oKEJ06cMEJ0RGRpmOwQkdU5efIkAKBt27Zai5HWlLpa+pkzZ2p9LiKyPEx2iMjqqFtg2rdvb5TztWnTBgBw9uxZo5yPiCwLkx0isjrqlp0OHToY5XxMdohsG5MdIrI66mTH2C07586dg0qlMso5ichyMNkhIquSlZWF1NRUAGUzqYyhefPmsLe3R25urnRuIrIdTHaIyKqcOnUKABAaGgpPT0+jnNPe3l6akcWuLCLbw2SHiKyKscfrqHHcDpHtYrJDRFbF2DOx1JjsENkuJjtEZFWMMTg5r6gEoa/+idBX/0ReUQkAJjtEtozJDhFZjeLiYikZMVU31vnz5zkji8jGMNkhIqtx4cIFFBUVwcPDA6GhoUY9d7NmzeDg4IC8vDxcuXLFqOcmIvNiskNEVkNdzqFt27YQBMGo57azs0N4eDgAdmUR2RomO0RkNc6dOwfgfpeTsXHcDpFtYrJDRFbD1MmOuoL6hQsXTHJ+IjIPJjtEZDXUyY46KTG2Fi1aAACSkpJMcn4iMg8mO0RkFYqKiqQkhMkOERmCyQ4RWYWLFy+itLQUHh4eCAwMNMk11MnOzZs3kZ2dbZJrEFHdY7JDRFZBswvLmDOxFMoC6Wd3d3f4+fsDAFpPXSUtOEhE1o3JDhFZBWMOTv7t6HXp55gP9uLnhPuVzps3bw4AKLmTVuvrEJFlYLJDRFbBWIOT05X5eGPD/anlKhF4bd0ZpCvzAQDN/k12irOY7BDZCiY7RGQV1Gvf1DbZSbmVC5Wova1UFHHlVh4AoFnzsnE7bNkhsh1MdojI4hUXF+PixYsAap/shDVyhazckB+5ICC0kQuA+4OUi+/cqNV1iMhyMNkhIot36dIllJSUwM3NDUFBQbU6V4CnM9565P64H5kAvBvbFgGezgDud2OVZKVBFEWdFdKJyLow2SEii2fsmVjDo5pIP++Y0RMjugRLz5s2bQYAUBXm4vbt27W+FhGZH5MdIrJ46mSndevWeh1vSGuMv6eT1nMXFxfI3RsBAC4lXaxBtERkaZjsEJHFU9eq0jfZqS3HxuFwDI7EsfOX6+R6RGRaduYOgIioOurByS1btjT5tX47eh2NHpkJQZDh0ysi/DTW5CEi68SWHSKyaKIoIjExEQDQqlUrk15LvQaPIKg/GgWtNXmIyDox2SEii5aRkYG7d+9CJpOhWbNmJr2WrjV4yj8nIutj9mTnxo0bePrpp+Ht7Q1nZ2dERkbiyJEj0n5RFDFv3jwEBATA2dkZMTExFSoSZ2VlYdSoUfDw8ICXlxcmTJiAe/fu1fWtEJEJqFt1QkND4ejoWKNz6DtgWdcaPOWfE5H1MWuyc+fOHXTv3h329vb466+/cO7cObz//vto0KCBdMySJUuwdOlSLF++HIcOHYKrqysGDBiAgoL7xftGjRqFs2fPYvv27di0aRP27duHSZMmmeOWiMjI6qoLC7i/Bo8oljXniKpSzOwbavLrEpFpmXWA8uLFixEUFIRVq1ZJ28LCwqSfRVHERx99hDlz5mDYsGEAgG+//RZ+fn74448/8OSTT+L8+fPYsmULEhIS0LlzZwDAJ598gkGDBuF///sfAgMD6/amiMioTDE42cXBDlcWDda5b3hUE8xdfxaZvy9AUfpFRMb+Ke1TKAvQ1MfNaHEQUd0wa8vOhg0b0LlzZzz++OPw9fVFx44dsWLFCml/SkoKFAoFYmJipG2enp7o2rUr4uPjAQDx8fHw8vKSEh0AiImJgUwmw6FDh3Ret7CwEDk5OVoPIrJMtW3ZUSgLqj9IB9W9Oyi9extrj1ReIZ2IrINZk53Lly/j888/R4sWLbB161Y8//zzmDJlClavXg0AUCgUAAA/Pz+t1/n5+Un7FAoFfH19tfbb2dmhYcOG0jHlLVy4EJ6entKjtsvPE5Hp6NuyozkuZ82h+wlJzAd78VsNpo/Lvfwgd/fG+uv3xwmVr5BORNbBrMmOSqVCp06d8O6776Jjx46YNGkSJk6ciOXLl5v0urNnz4ZSqZQe165dM+n1iKhmiouLcfly2cJ+hrTsvLv5vPSzSkSNpo/be/rDrkEgRGiPUNaskE5E1sGsyU5AQECFCsatW7dGamrZtzJ/f38AZVNPNWVkZEj7/P39kZmZqbW/pKQEWVlZ0jHlOTo6wsPDQ+tBRJbn8uXLKCkpgYuLCxo3bqz364wxfdzOyw8ld9IAUaW1XbNCOhFZB7MmO927d5f649UuXryIkJAQAGWDlf39/bFz505pf05ODg4dOoTo6GgAQHR0NLKzs3H06FHpmF27dkGlUqFr1651cBdEZCqaXViGFAA1xvRxOy9/lN69DdnRn7XOo1khnYisg1mTnenTp+PgwYN49913cenSJaxZswZffvkl4uLiAACCIGDatGl45513sGHDBpw+fRpjxoxBYGAgHn30UQBlLUEPP/wwJk6ciMOHD2P//v2YPHkynnzySc7EIrJyNR2c/Nqg+zW0ZALw1iNtpOf6Dli28yxrGb6+7xeIqlIAFSukE5F1MGuy06VLF/z+++/48ccf0bZtW7z99tv46KOPMGrUKOmYmTNn4sUXX8SkSZPQpUsX3Lt3D1u2bIGT0/1KxT/88APCw8PRt29fDBo0CA8++CC+/PJLc9wSERlRTaedP9rx/hedHTN6au3Td0aV3N0bdnZ2KC4uRum92wAqVkgnIutg9kKgQ4YMwZAhQyrdLwgC5s+fj/nz51d6TMOGDbFmzRpThEdEZlRVy05eUQki5m0FAJybP6DK82gOUFbPqOrR0qfK7ihBJkdwcAguX05GSXYG7Dx8Kz2WiCyb2ctFEBFVRt2yU5vVk6/erljvqqoZVeoFB68sGoxmzZoCAEqydS9jQUTWgckOEVmknJwcaa0sQ7uxMnLuj8sJ8a5Y70rfGVXqFd2Z7BBZNyY7RGSR1F1Y/v7+ei0Poblw4NBP9ks/+3s6aQ1QNmRGVdOm/7bsKDOqOZKILBmTHSKySIYMTlYoCyqMy9E0PKqJ9LMhM6rYskNkG5jsEJFFMmTaua5xOZUxZEYVW3aIbAOTHSKySIYMTtY1LscY1MlOae4dnJvXGy4OZp/ASkQ1wGSHiCySumVHn24sXeNyjKFBgwZwd3cHAFy9etU4JyWiOsdkh4gsjkqlMqhlR6EsqDAuRz19XJ/WGM2K6XlFJdJ2QRCk8jXqmn1EZH2Y7BCRxUlLS0NeXh7s7OykQcLlac6+ivlgr9ZzY650HBxcNpiZLTtE1ovJDhFZHHUXVtOmTWFvb19hf7oyv8LsK83nxqRu2VEnO5W1AhGR5WKyQ0QWp7pp5ym3Ks6+0nc2lqHKJztEZH2Y7BCRxalu2nlYo4qzr0wxGwtgskNkC5jsEJHFqW5wcoCnc4XZV5rPy9Osd2Xo9HEmO0TWj8kOEVkcfaadl599pfncmNTJzo0bN1BSwjE6RNaIyQ4RWZTCwkJcuXIFgP7Vzo05+0qhLNB67u/vDwcHB6hUKty4ccNo1yGiulOj5UCTkpKwe/duZGZmQqVSae2bN2+eUQIjovopOTkZKpUK7u7u8PPz0/t16q6qmig/jX1hbKRUP0smkyEoKAjJycm4evUqfAIa1+gaRGQ+Bic7K1aswPPPP49GjRrB398fgnB/VKAgCEx2iKhWNAcna36+mIquaeyvrTuDHi19pMrowcHBUrLTudv/mTwmIjIug5Odd955BwsWLMCsWbNMEQ8R1XOGrJxsDLqmsZeKIq7cypOSncoGKSuUBWjq41YncRJRzRk8ZufOnTt4/PHHTRELEZFBNbGMQdc0drkgILSRi/RcM9kp3+X1cwLLSBBZOoOTnccffxzbtm0zRSxERHXesqNrGvu7sW2lVh3gfrJzKe22zi6vdGV+ncRKRDVjcDdW8+bNMXfuXBw8eBCRkZEVlnKfMmWK0YIjovqnrlt2gLJp7HPXlyUxO2b0rNA1pU52risLq+3yIiLLI4iiaNAi65UV5QPKBihfvny51kHVtZycHHh6ekKpVMLDw8Pc4RDVW1lZWfD29gYA3Lt3D66urnVy3byiEkTM2woAODd/QIWFB5OTk9G8eXO4+jSG74QvtBIemXC/VIWu1xKR6ej799vgd2VKSkqtAiMiqoy6Vadx48Z1lujoo0mTJhAEAbk3b+Cl3sF4b1fZOB31ys3qViEiskxcVJCILIY62QkPD6+wz5zVxh0dHeHv7w8AaOd2T9puypWbich49GrZmTFjBt5++224urpixowZVR77wQcfGCUwIqp/qisAak4hISFIT09HamoqgLIxPcZcuZmITEevZOf48eMoLi6Wfq5MXSwARkS2y9KTnYMHDyL1aiqACHOHQ0QG0CvZ2b17t86fiYiMydKTHQC4lnoVcGeyQ2RNajVm59q1a7h27ZqxYiGieqykpARJSUkALDzZ4WcekdUxONkpKSnB3Llz4enpidDQUISGhsLT0xNz5syRurqIiAx15coVFBcXw8nJCcHBwXV6bXUR0SuLBlc6dVyd7KSmXtW5H6hYMZ2ILIPByc6LL76IL7/8EkuWLMHx48dx/PhxLFmyBF9//TUXFCSiGtNcTFAms7yJove7sbTLQ7B8BJHlM3idnTVr1uCnn37CwIEDpW3t2rVDUFAQRo4cic8//9yoARJR/WDJ43UASK1Nd+7cgVthHmSOLlAoC6qtmE5E5mfw1ydHR0eEhoZW2B4WFgYHBwdjxERE9ZAhyY45uos8PDzg5eUFANg8oTWuLBoMRU5BpeUjiMhyGJzsTJ48GW+//TYKCwulbYWFhViwYAEmT55s1OCIqP64cOECgMqTHUvoLtKsfg7oVzGdiMxPr26s2NhYrec7duxAkyZN0L59ewDAyZMnUVRUhL59+xo/QiKqF6paPTldmW8R3UUhISE4efKklOyoK6ary0XoqphOROanV7Lj6emp9Xz48OFaz4OCgowXERHVO0qlEhkZGQB0VztPuZVrEdXGdU0/r65iOhGZn17JzqpVq0wdBxHVY+pWnYCAAJ2Vi9XdRZoJjzm6i9SDlFNTdXehsXwEkWUy6/zON998E4IgaD00m7ALCgoQFxcHb29vuLm5Yfjw4dK3P7XU1FQMHjwYLi4u8PX1xSuvvIKSkrotEkhEtVPdeB11d5GaubqLqkt2iMgymX0xizZt2iA9PV16/PPPP9K+6dOnY+PGjVi7di327t2LtLQ0rfFDpaWlGDx4MIqKinDgwAGsXr0a33zzDebNm2eOWyGiGtJnJpZmdfEdM3piRJe6XXgQYLJDZK0MXmfH6AHY2cHf37/CdqVSia+//hpr1qxBnz59AJR1p7Vu3RoHDx5Et27dsG3bNpw7dw47duyAn58fOnTogLfffhuzZs3Cm2++WelU+MLCQq3ZZDk5Oaa5OSLSi6Fr7Jiru0g9PvHGjRsoKSmBnZ3ZP0KJSA9mb9lJSkpCYGAgmjZtilGjRknfmI4ePYri4mLExMRIx4aHhyM4OBjx8fEAgPj4eERGRsLPz086ZsCAAcjJycHZs2dRmYULF8LT01N6cIA1kXlVNRPLkvj7+8POzg6lpaVIT083dzhEpCeDkp3i4mL07dtXKtZXW127dsU333yDLVu24PPPP0dKSgoeeugh3L17FwqFAg4ODtIiXmp+fn5QKBQAAIVCoZXoqPer91Vm9uzZUCqV0oOF/YjMp7S01KILgGqSy+Vo0qSsO42fG0TWw6A2WHt7e5w6dcpoFy9fcqJr164ICQnBL7/8Amdn0w08dHR0hKOjo8nOT0T6u3r1KgoLC+Ho6ChN7bZkwcHBuHLlClJTU/F///d/5g6HiPRgcDfW008/ja+//toUscDLywstW7bEpUuX4O/vj6KiImRnZ2sdk5GRIY3x8ff3rzA7S/1c1zggIrI86i6s5s2bQy6Xmzma6pUfpKxPxXQiMi+D35klJSVYuXIlduzYgaioKLi6umrt/+CDD2oczL1795CcnIzRo0cjKioK9vb22Llzp7SIYWJiIlJTUxEdHQ0AiI6OxoIFC5CZmQlfX18AwPbt2+Hh4YGIiIgax0FEdcfSC4CWpx7jxxlZRNbD4GTnzJkz6NSpEwDg4sWLWvsEQdD1kkq9/PLLGDp0KEJCQpCWloY33ngDcrkcI0eOhKenJyZMmIAZM2agYcOG8PDwwIsvvojo6Gh069YNANC/f39ERERg9OjRWLJkCRQKBebMmYO4uDh2UxFZierW2FFTt6CYG6efE1kfg5Od3bt3G+3i169fx8iRI3H79m34+PjgwQcfxMGDB+Hj4wMA+PDDDyGTyTB8+HAUFhZiwIAB+Oyzz6TXy+VybNq0Cc8//zyio6Ph6uqKsWPHYv78+UaLkYhM69y5cwDK1tzSlFdUgoh5W8uOmT/AYrqI1MkOBygTWQ9BFEWx+sMqunTpEpKTk9GjRw84OztDFEWDW3YsRU5ODjw9PaFUKnUuVU9EpiGKIho1aoSsrCwcOJyAkb+Vjbk7N38AAFhksnPmzBlERkaiYcOGuH37trnDIarX9P37bfAA5du3b6Nv375o2bIlBg0aJK01MWHCBLz00ks1j5iI6p3MzExkZWVBEAS0bGkdY3bULTtZWVm4d++emaMhIn0YnOxMnz4d9vb2SE1NhYvL/SJ8I0aMwJYtW4waHBHZNvXin02bNjXpchPG5OHhAU9PTwDsyiKyFgYnO9u2bcPixYulhbXUWrRogatXrxotMCKyfZWN17F0nJFFZF0MTnZyc3O1WnTUsrKyOAOKiAyiTnasbakIzsgisi4GJzsPPfQQvv32W+m5IAhQqVRYsmQJevfubdTgiMi2qbuxrK1lhzOyiKyLwdMblixZgr59++LIkSMoKirCzJkzcfbsWWRlZWH//v2miJGIbJS+LTsKZQGa+rjVRUh6YcsOkXUxuGWnbdu2uHjxIh588EEMGzYMubm5iI2NxfHjx9GsWTNTxEhENigzMxO3bt2CIAgVqp0rlAX47eh16XnMB3vxc4LlJBZMdoisS40WrvD09MTrr79u7FiIqB5Rt+qEhYXBxcUF38Vfkfb1fX+v1rEqEXht3Rn0aOmDAE/zz9piskNkXWqU7Ny5cwdff/01zp8/D6CsCXrcuHFo2LChUYMjItulORMrXZmPNzaclfbpWum0VBRx5VaeRSQ76tlY165dg0qlgkxmcCM5EdUhg9+h+/btQ2hoKJYuXYo7d+7gzp07WLp0KcLCwrBv3z5TxEhENkg9ODkiIgIpt3KhqmYtd7kgILRRxZmg5tC4cWMIgoCioiLcvHnT3OEQUTUMTnbi4uIwYsQIpKSkYN26dVi3bh0uX76MJ598EnFxcaaIkYhskLpl56szxXhqxSHIylWb0XwqE4B3Y9taRKsOANjb2yMwMBCAdldWXlEJQl/9E6Gv/om8ohJzhUdE5Ric7Fy6dAkvvfQS5HK5tE0ul2PGjBm4dOmSUYMjItskiiJOnToFALBvVDb+5bVBraX9MgGYP+z+dPQdM3piRJfgug2yGhy3Q2Q9DE52OnXqJI3V0XT+/Hm0b9/eKEERkW27ceMGsrKyIJfL4fBvsvNox0Bp/44ZPTE86v4q7f6eTnUeY3X0SXbY0kNkGQweoDxlyhRMnToVly5dQrdu3QAABw8exLJly7Bo0SLp2xoAtGvXzniREpHNOHnyJACgZatw5Nk5VNhviclNeSwZQWQ9DE52Ro4cCQCYOXOmzn2CIEAURQiCgNLS0tpHSEQ2R53sRLaLxCEzx1JTXEWZyHoYnOykpKSYIg4iqkekZCeyPQ7lmDmYGuKYHSLrYXCyExISYoo4iKgeud+y0w74p5o55xaKyQ6R9eBKWERUp/Ly8pCUlATg32TnXxk5BeYKqUbUyU5GRgYKCirGrlBa1/0Q2bIaraBMRFRTZ86cgUqlgq+vL/bfuD9Daegn2oWEXRzscGXR4LoOT28NGzaEi4sL8vLycP36dTRv3rxCPa+3HrGuau5EtootO0RUp9RdWBGdu2uViFCJZaskx8/uAxcHy/8eJgiC1oys8iUvVCK0nrOlh8h8mOwQ2Zhbt27hgw8+wIgRIzB27FisXr0aeXl55g5Lok52giOiKpSIUNe/shaaM7J0lbzQfG5plduJ6hODk51r167h+vX7TbWHDx/GtGnT8OWXXxo1MCIy3Lp169CqVSu89NJL+OWXX/Dtt9/imWeeQdu2bXHgwAFzhwfgfrLzQERohRIRllT/Sh+ag5TDGrlWuB9N6srt6cr8OoqOiNQMTnaeeuop7N69GwCgUCjQr18/HD58GK+//jrmz59v9ACJSD/fffcd/vOf/yArKwuRkZFYtGgR5s6diyZNmiAlJQW9e/fG5s2bzRqjZpmIHp3baY1psbT6V/rQTHYCPJ217kdX3mNtLVdEtsLgZOfMmTN44IEHAAC//PKL9I3xhx9+wDfffGPs+IhID4cPH8aECRMgiiImTZqEo0ePYtasWZg/fz7Onj2LYcOGoaioCLGxsTh8+LDZ4kxOTkZOTg4cHR0RHh6uVRLCEutfVaf89HPN+/lpUjerb7kishUGJzvFxcVwdHQEAOzYsQOPPPIIACA8PBzp6enGjY6IqpWbm4sRI0aguLgY//nPf7B8+XLY29tL+z08PLB27VoMGTIEhYWFiI2Nxa1bt8wSqzrR6tixo1aMgHWUiCivqpIRkU08rb7lishWGJzstGnTBsuXL8fff/+N7du34+GHHwYApKWlwdvb2+gBElHVFi5ciCtXriA4OBhfffUVBKFiB4q9vT1++OEHhIeH48aNG5g8ebIZIr2f7Khbh62d5gBlUay4OKK1t1wR2QqDk53Fixfjiy++QK9evTBy5Eip0vmGDRts5gOMyBLpqqB99epVvPfeewCAjz/+GJ6enpW+3sPDA99//z3kcjl+/vlnbNy4sU7i1nToUFklLFv5rGjSpCyZyc3NxZ07d6o81hpbrohshcHJTq9evXDr1i3cunULK1eulLZPmjQJX3zxhVGDI6KqLVy4EEVFRejduzeGDRtW7fFRUVF4+eWXAQAvv/wyiouLTR2ipKioCMePHwcAzNyXJyVs1szZ2Rm+vr4AWDaCyJIZnOz06dMHd+/eRYMGDbS2N2zYECNGjDBaYERUtevXr0tfON566y2d3Ve6vPbaa/Dx8cHFixfr9AvKqVOnUFhYCJmTG+y8AursuqbGGllEls/gZGfPnj0oKiqqsL2goAB///23UYIioup99tlnKC4uRo8ePfDQQw/p/ToPDw+89dZbAIA333wT2dnZJopQm3q8jkNAS70TM2vAZIfI8um9Jrt6bQwAOHfuHBQKhfS8tLQUW7ZsQePGjY0bHRHpVFBQgBUrVgAApk2bZvDrJ06ciE8++QTnz5/H4sWLsXDhQiNHWJE62XEMaCVts/T6V/pQz8i6du1ahfuxha46Ilugd7LToUMHCIIAQRDQp0+fCvudnZ3xySefGDU4ItLt93W/4datWwgKCsLQoUMNfr2dnR0WLVqEYcOG4dNPP8Urr7yChg0bmiDS+9SDkx0CW5r0OnWtqpYdW0jmiGyB3slOSkoKRFFE06ZNcfjwYfj4+Ej7HBwc4OvrC7lcbpIgiUjbd6tXAwD++9//ws6uZkUzhw4divbt2+PkyZNYunQp3nzzTSNGqE2pVOLChQsAAMeA+pPsEJFl0HvMTkhICEJDQ6FSqdC5c2eEhIRIj4CAACY6RHWkNPcO9h89DQAYM2ZMjc8jCAJef/11AMDSpUtx9+5do8SnS0JCAgAgNDQMcpey6fG2UgXckGRH1/IBRGR6NfpKmJSUhN27dyMzMxMqlUpr37x584wSGBFp++1oWQFeuWsDBD63Ej5XtiE0NLRW54yNjUWrVq2QmJiIzz//HDNnzjRCpBWpJy+ExjyFlH+3xXywFwtjI61+oT11spOWlobi4uIKK0MTkfkZPBtrxYoVaN26NebNm4dff/0Vv//+u/T4448/ahzIokWLIAiC1mDLgoICxMXFwdvbG25ubhg+fDgyMjK0XpeamorBgwfDxcUFvr6+eOWVV1BSwm9MZFvSlfl4Y8NZ6bkgk+F20wG1rqAtl8vx2muvAQDef/99FBSYprVl3759kLt744p3N2mbrVQB9/X1hb29PVQqFdLS0swdDhHpYHCy884772DBggVQKBQ4ceIEjh8/Lj2OHTtWoyASEhLwxRdfoF27dlrbp0+fjo0bN2Lt2rXYu3cv0tLSEBsbK+0vLS3F4MGDUVRUhAMHDmD16tX45ptv2LpENiflVi5U5aoRiBCMUkF75MiRCA4ORmZmJr799ttan6+8wsJCHDx4EHYNAiGWqwVuC1XAZTKZ1owsIrI8Bic7d+7cweOPP260AO7du4dRo0ZhxYoVWgsVKpVKfP311/jggw/Qp08fREVFYdWqVThw4AAOHjwIANi2bRvOnTuH77//Hh06dMDAgQPx9ttvY9myZTrXAiKyVmGNXE1WQdve3h4zZswAAPzvf/9DaWlprc+p6fDhwygoKICXvNhmq4BzkDKRZTM42Xn88cexbds2owUQFxeHwYMHIyYmRmv70aNHUVxcrLU9PDwcwcHBiI+PBwDEx8cjMjISfn5+0jEDBgxATk4Ozp49i8oUFhYiJydH60FkyQI8nfHWI20g/jtGToBo1AraEyZMQIMGDZCUlIT169cb5Zxqe/bsAQD06Bxps1XAmewQWTaDByg3b94cc+fOxcGDBxEZGVlhMN6UKVP0PtdPP/2EY8eOSTM1NCkUCjg4OMDLy0tru5+fn7SgoUKh0Ep01PvV+yqzcOFCaQVZImvRI9gRN5ZPgJ2XP7at/xk9OhpvYK+bmxvi4uLwzjvvYPHixXjssceMtsqx+stRTEwMhkc1wdz1ZV9EdszoiaY+bka5hrkx2SGybAYnO19++SXc3Nywd+9e7N27V2ufIAh6JzvXrl3D1KlTsX37djg51W014NmzZ0vN9gCQk5Mj9bkTWarNmzai9O5NyF080LlNC+QVlSBi3lYAwLn5A+DiULP1dtRefPFFvPfeezh8+DD+/vtv9OjRo9Yx5+TkSC2x/fr109pnS1XAa5LsKJQFNpPsEVk6g7uxUlJSKn1cvnxZ7/McPXoUmZmZ6NSpE+zs7GBnZ4e9e/di6dKlsLOzg5+fH4qKiirU7cnIyIC/vz8AwN/fv8LsLPVz9TG6ODo6wsPDQ+tBZOk2btgAAHBuGW2S8/v6+mLcuHEAgCVLlhjlnLt370ZpaSlatGiBsLAwo5zTEuk7QFm9fABQNvX+5wS2BBHVBYOTHWPp27cvTp8+jRMnTkiPzp07Y9SoUdLP9vb22Llzp/SaxMREpKamIjq67MM+Ojoap0+fRmZmpnTM9u3b4eHhgYiIiDq/JyJTKSwsxJ7duwAALs0fMNl1XnrpJQiCgD///BNnzpyp9fm2bNkCoGKrjq3Rp2Wn/PIBtjL1nsgaGNzuPX78+Cr3r1y5Uq/zuLu7o23btlrbXF1d4e3tLW2fMGECZsyYgYYNG8LDwwMvvvgioqOj0a1b2Vod/fv3R0REBEaPHo0lS5ZAoVBgzpw5iIuLg6Ojo6G3RmSxDhw4gPz8fMhcvWDvY7oWkubNm2P48OH49ddf8d5772H1v2UpakKlUmHDv61RQ4YMMVaIFkndspOdnY2cnBydrcW6lg9QT723hUHaRJasRlPPNR+ZmZnYtWsX1q1bV6HLqbY+/PBDDBkyBMOHD0ePHj3g7++PdevWSfvlcjk2bdoEuVyO6OhoPP300xgzZgzmz59v1DiIzG379u0AAOeQDjUaOGxImQL1Kspr1qyp1boxR44cQVpaGgQHZzy3s9CmyyO4u7tLS2dU9m9myuUDiKhqBrfs/P777xW2qVQqPP/882jWrFmtglFPUVVzcnLCsmXLsGzZskpfExISgs2bN9fqukSWTp3sfDZrHMaMKauiXVXyUH7wsiG6dOmC3r17Y/fu3fjoo4/w/vvv1yhm9Yrqzk07Q7Cz/RIKwcHBuHPnDlJTU9GmTZsK+9XLB6hno9nS1HsiS2eUMTsymQwzZszAhx9+aIzTEZGG27dv4+jRowBQYT0qNWMX1VS37nz55Ze4c+eOwa8XRRG//PILAMClxf0SES4OdriyaDCuLBpc69ljlkY9bqeq1rDhUU2kn3fM6Gn1dcGIrIXRBignJyezJhWRCezatQuiKKJNmzYIDAyUtptyZs+AAQMQGRmJe/fu4ZNPPjH49fHx8UhOToarqyucm3c1WlyWTD1uR9/p57Y09Z7I0hn81UpzfRqg7Btceno6/vzzT4wdO9ZogRFRGfWifJozmiqb2dOjpY9RukUEQcBrr72GkSNH4n//+x+ee+45+Pr66v367777DgAw7LHHsN+hfvxR58KCRJbL4JYdzcKfx48fx6lTpwCUVUz+6KOPjB0fUb2VV1SCkFmbsOqXshlNmslOVTN7jOWJJ55AVFQU7t69i7ffflvv1929exdr1qwBAIx86mmjxWPpmOwQWS6DW3Z2795tijiISIcSZQZKczJhb2+Pnj17StvVM3s0Ex59Z/bou3KvTCbDe++9hz59+mD58uWYMmUKWrRoUeVr8opKEBL7CnJyctCyZSv06t0b2LvdoOtaKyY7RJarxmN2bt68iX/++Qf//PMPbt68acyYiOhfhdfKuqo6RUXB1dVV2q6e2aNW1cwehbKgxuN7evfujUGDBqGkpASvvPJKtccXFxfj7pGyQqJxL76I34+n1ei61kid7Fy/fh2qfwu2EpFlMDjZyc3Nxfjx4xEQEIAePXqgR48eCAwMxIQJE5CXZ7wmdCICCq+XJTvdH3yowr6qZvZoJjd939+LeetrvnLv4sWLYWdnh/Xr12Pt2rVVHrvq669Qkq2AzMUTfYY+Xq9WDA4ICIBMJkNxcXGFMjZqtjwbjciSGZzszJgxA3v37sXGjRuRnZ2N7OxsrF+/Hnv37sVLL71kihiJ6q2Ca2UlG7p3f7DK4zRn9pQfvCz++9BkyPietm3bYvbs2QCA5557DlevXtV53K1bt7DgnbKxPV7dR+JmvmjycUWWxM7ODo0bNwbAriwiS2NwsvPbb7/h66+/xsCBA6UimoMGDcKKFSvw66+/miJGonpJoVBALCmEY3A7NI2MqvZ49SrJ0Qt3VUgyyjN05d7XX38dUVFRyMrKwmOPPVZhtXSVSoXx48fj1s2bsPcOglv7hxHiXf9WDOa4HSLLZHCyk5eXBz8/vwrbfX192Y1FZERLNxxC4+dWwX/ku4j96oRB413KJxlCuX1Vrdyrq7SEo6MjfvvtNzRq1AjHjx9Hnz59cPHixbLj8/Iwfvx4bNy4EQ4ODmg09BUIcjv4ezrpPa7IVjDZIbJMBic70dHReOONN1BQcH/F1vz8fLz11ltSNXIiqp10ZT7+uOYIQVb2FjV0vMtrg1pLP8sEYP6w+0lHTVfuDQkJwc6dO+Hj44Pjx48jIiICnTt3RkhICFavXg25XI7lK76Cg19TAGUDo+vbisFMdogsk8HJzscff4z9+/ejSZMm6Nu3L/r27YugoCAcOHAAH3/8sSliJKp3Um7lAuUKfhoy3uXRjvdXWt4xo6dW0lGblXvbtWuHI0eOYODAgSgtLcXRo0dx69YthIaGYsOGDbBrcX8gdcwHe7UGSteHFYP1KRlBRHXP4OkAbdu2RVJSEn744QdcuHABADBy5EiMGjUKzs622zxNVJe87UshqlRSyw5QcbyLemaPWmWFQY2dZAQHB2Pz5s24fPkyjh8/Dh8fH0RHR+NWXgm6L9olHacSoTVQuj4wtGQEEdWNGs19dHFxwcSJE40dCxH9K/nMUWRt/QQNB0yGIJNb5HiXpk2bomnTptLzlFvKCgOjqxsobWvYjUVkmQzuxlq4cCFWrlxZYfvKlSuxePFiowRFVN8dOHAA905tx509qwAYPt4lI8c4VdANqaauXtVZU/nntk6d7Ny8eRP5+ba5nhCRNTI42fniiy8QHh5eYXubNm2wfPlyowRFVN8dPHgQAGDfsGysjT5dUZrjY4Z+sr/G167pasu6VnXWfF4feHl5wc2trCQGx+0QWQ6Du7EUCgUCAgIqbPfx8UF6erpRgiKqz0pLS3Ho0CEAgGPjil8sdNFVBV1T+fE9hpzHkGrqw6OaYO6/qzXvmNETTX3cMDo6VK97sAWCICA4OBjnzp1DamoqWrZsae6QiAg1aNkJCgrC/v0VvzXu378fgYGBOl5BRIY4e/Ys7t27B3d3d9h7B+n1Gl1V0AHgx4nddJYl0LWWTmXnqemqx/Vh9pUu6kHKbNkhshwGt+xMnDgR06ZNQ3FxMfr06QMA2LlzJ2bOnMlyEURGoO7CiurcBSkyuV6vqU0VdEPPk1dUgoh5WwEA5+YPYI2ncjhImcjyGPwp9corr+D27dt44YUXUFRUBABwcnLCrFmzpPo5RFRz8fHxAIAHunZFip6zmdTjZdRdSDWdvWWs89RnTHaILI/ByY4gCFi8eDHmzp2L8+fPw9nZGS1atICjo6Mp4iOqd9TJTo8Hu2Px4OrH2ajpGi9TE8Y6T33FZIfI8tS4/dnNzQ1dunQxZixE9V5WVhYSExMBAN26davxeYw1Xqa+jrupDSY7RJaHne1EFiKvqAStn/0EANC8eQt4e3vXyXUVygKjtd7oO+vLlmmWjBBFEYJQzxYbIrJABs/GIiLTKUwra9V5oFtXk16npmvpUPUaN24MoKxA8u3bt80cDREBTHaILEph+kUAQOfOpusirmwtHX0rqmtSKAsqncZeXzk6OsLf3x8Au7KILIVeyU6nTp1w584dAMD8+fORl2f4mhtEVDVRFFGkSAIARHXubPDr1V1IVxYNrnI6eG3X0infKqT5nMpw3A6RZdEr2Tl//jxyc3MBAG+99Rbu3btn0qCI6qPUq1ehys8BZHaIbNfeZNfRVcNKcy2dqpImXa1C9a2yuT6Y7BBZFr0GKHfo0AHjxo3Dgw8+CFEU8b///U+q/1LevHnzjBogUX1x7NhRyN294dy0M+4UiGjgbprr1GYtHV2tQvWtsrk+NAcpE5H56ZXsfPPNN3jjjTewadMmCIKAv/76C3Z2FV8qCAKTHaIa+u3YDTR+bhUEmQwxH+zFwthIgyqdG6Kma+noWmG5/HO6n+xcuXKlyuO4GjVR3dDrndWqVSv89NNPAACZTIadO3fC19fXpIER1SfpynwcE1pAEMp6lg0twFkbhqylo6tVSPO5MaexW7PQ0FAAQEpKinkDISIANZiNpVKpmOgQGdnlzHuAoP12rGkBTlMbHtVE+nnHjJ5a+ziNvUzTpk0BMNkhshQ1mnqenJyMF198ETExMYiJicGUKVOQnJxs7NiI6g0h9yZElUprW00KeZqDsaax25KwsDAAZSti5+TkmDkaIjI42dm6dSsiIiJw+PBhtGvXDu3atcOhQ4fQpk0bbN++3RQxEtm8K+dOIGvrJ1LCU9cFOGu6Vs7V27Wbxm6r3Nzc0KhRIwBs3SGyBAaPhnv11Vcxffp0LFq0qML2WbNmoV+/fkYLjqi+OHLkCO6d2g6Za0M06DHaagpwhnhXHLBsLS1SphYWFoZbt27h8uXLaN+++qUEON6JyHQMbtk5f/48JkyYUGH7+PHjce7cOaMERVRfqFtUPlu7DQBg3zAQgOkLcOq7AGF1/D2d8NYjbaTndd0iZcnUXVlVteywbAdR3TA42fHx8cGJEycqbD9x4gQHLhPVgKgqRVFG2Zg3B/8WZo6meuUTpfIDlk01Xd7aVDdI2ZhlO4ioagYnOxMnTsSkSZOwePFi/P333/j777+xaNEiPPvss5g4caJB5/r888/Rrl07eHh4wMPDA9HR0fjrr7+k/QUFBYiLi4O3tzfc3NwwfPhwZGRkaJ0jNTUVgwcPhouLC3x9ffHKK6+gpIT1ech6FN++DrG4AC6urrBv2Njc4VRgyHgeU7dIWZPqWnZqW7aDiPRncPv13Llz4e7ujvfffx+zZ88GAAQGBuLNN9/ElClTDDpXkyZNsGjRIrRo0QKiKGL16tUYNmwYjh8/jjZt2mD69On4888/sXbtWnh6emLy5MmIjY3F/v37AQClpaUYPHgw/P39ceDAAaSnp2PMmDGwt7fHu+++a+itEZlFkeISAKB9h45Ik8nNHA3HjhhLdcmOrgUaOd6JyDQMbtkRBAHTp0/H9evXoVQqoVQqcf36dUydOhWCIFR/Ag1Dhw7FoEGD0KJFC7Rs2RILFiyAm5sbDh48CKVSia+//hoffPAB+vTpg6ioKKxatQoHDhzAwYMHAQDbtm3DuXPn8P3336NDhw4YOHAg3n77bSxbtgxFRUWVXrewsBA5OTlaDyJzKVKUVTrv0LGT2WLg2BHj00x2RLHiEtPqBRrVZALw5iMRiF64ixXkiYysRuvsqLm7u8Pd3TgFfEpLS/HTTz8hNzcX0dHROHr0KIqLixETEyMdEx4ejuDgYMTHxwMA4uPjERkZCT8/P+mYAQMGICcnB2fPVl6ccOHChfD09JQeQUFBRrkHouro6hIqVt6EY3AkWnV8wCiDhg3FsSOmERwcDEEQkJ+fX6H7Xa38eCfN50RkPLVKdozh9OnTcHNzg6OjI5577jn8/vvviIiIgEKhgIODA7y8vLSO9/Pzg0KhAAAoFAqtREe9X72vMrNnz5ZapZRKJYv1kdn8fPgqfGPnwH/kQnyU5GWWFhVDxo4olAV1FJX1c3BwQJMmZcmLPmvtcLwTkemYPdlp1aoVTpw4gUOHDuH555/H2LFjTT6F3dHRURoUrX4Q1TWFsgDzN12AICt7G4pmalFRjx3RpDl2pLouLmNNY7dFLBtBZBnMnuw4ODigefPmiIqKwsKFC9G+fXt8/PHH8Pf3R1FREbKzs7WOz8jIgL+/PwDA39+/QvOw+rn6GCJLdfV2LsqP5DDHbBxdY0fUa+Wwi6t21ON2Ll++bPBra7qqNRFVZFCyU1xcjL59+yIpKclU8UClUqGwsBBRUVGwt7fHzp07pX2JiYlITU1FdHQ0ACA6OhqnT59GZmamdMz27dvh4eGBiIgIk8VIZAwh3q5lzTkazDUbp7K1cjg9unb0WViwMhk57DIkMhaD2pzt7e1x6tQpo1189uzZGDhwIIKDg3H37l2sWbMGe/bswdatW+Hp6YkJEyZgxowZaNiwITw8PPDiiy8iOjoa3bp1AwD0798fERERGD16NJYsWQKFQoE5c+YgLi4Ojo6ORouTyFScz/6BvIhHIMjkFrP6sObYEU6Prh1Dkx3NLsOhn+w3SUxE9ZHB3VhPP/00vv76a6NcPDMzE2PGjEGrVq3Qt29fJCQkYOvWrVJ9rQ8//BBDhgzB8OHD0aNHD/j7+2PdunXS6+VyOTZt2gS5XI7o6Gg8/fTTGDNmDObPn2+U+IiMrfz4l7QbN3Bj+XiU5t6xyNWHq+rioupVl+xojndS5hdX6DIkIuMweDRhSUkJVq5ciR07diAqKgqurq5a+z/44AO9z1Vd0uTk5IRly5Zh2bJllR4TEhKCzZs3631NInPRNf7Fq9/zyL+RCJmLl8XOxhke1QRz15fFbS0FSi2FeoDytWvXUFxcDHt7+0qP1dVlSETGYXCyc+bMGXTqVLb42cWLF7X2GbqoIFF9ouuPmSCTw6lpJ6t571hqQmap/P394ejoiMLCQly7dk1KfnTR1WWoxlWtiWrH4GRn9+7dpoiDyObp+mMmqkohd/Y0X1D/UnenkHHJZDKEhoYiMTERKSkpVSY76i5DdSuaAEiz9WI+2IuFsZEW181JZC1qPPX80qVL2Lp1K/Lzy6ag6loOnYjuKz/+BSoVsrZ+Cntvyyv+ScZjyCBlrRWUNRr7OOWfqHYMTnZu376Nvn37omXLlhg0aBDS09MBABMmTMBLL71k9ACJbIn6j5mquBBpX0zAvVPbcfKT57kgnw2r6fTz8t8fOeWfqOYMTnamT58Oe3t7pKamwsXl/vTTESNGYMuWLUYNjshWFWVcQnHOTTRu3BgBAQHmDqdKXCG5dmq6sGBVq1oTkWEMTna2bduGxYsXSzVf1Fq0aIGrV68aLTAiW1aUXrYwZ+fOnc0cCZlaTUtGvDaotfQzp/wT1Y7ByU5ubq5Wi45aVlYWF/Ij0lOhoizZ6dKli5kjIVOraTfWox0DpZ8tcQ0mImticLLz0EMP4dtvv5WeC4IAlUqFJUuWoHfv3kYNjshWFSkuAWDLTn2gTnYyMzNx7969Ko+trMuQU/6JasfgDvglS5agb9++OHLkCIqKijBz5kycPXsWWVlZ2L+fy5sTacorKkHEvK0AgHPzB8DFwQ4nXu2OBotvAACioqLMGR7VgQYNGqBhw4bIyspCcnIy2rdvb+6QiOodg1t22rZti4sXL+LBBx/EsGHDkJubi9jYWBw/fhzNmjUzRYxENuXYsWMAyr7xN2rUyMzRUF1o0aIFgLIlO4io7tVoaoWnpydef/11Y8dCVC8kJCQAYBdWfdK8eXMcOnTIoGSHCz0SGU+Nkp07d+7g66+/xvnz5wEAERERGDduHBo2bGjU4IhskTrZ4eDk+qN58+YAgKSkJDNHQlQ/GdyNtW/fPoSGhmLp0qW4c+cO7ty5g6VLlyIsLAz79u0zRYxENoXJTv3Dbiwi8zK4ZScuLg4jRozA559/DrlcDgAoLS3FCy+8gLi4OJw+fdroQRLZAoWyAG5iHlJTUyEIglRQl2yfMVp2dA12JyL9GPxuuXTpEn799Vcp0QEAuVyOGTNmaE1JJyLgt6PXpZ9jPtiLkWV/89CqVSt4eHiYKSqqa+pkJy0tDbm5uXB1dTVzRET1i8HdWJ06dZLG6mg6f/48p1QSaUhX5uONDWel5yoRWJMkQu7uzS6sesbb2xsNGjQAYHjZCCKqPb1adk6dOiX9PGXKFEydOhWXLl1Ct27dAAAHDx7EsmXLsGjRItNESWSFUm7lQlWumKMIAXZegUx26qHmzZsjISEBSUlJiIyMNHc4RPWKXslOhw4dIAgCRI0yvDNnzqxw3FNPPYURI0YYLzoiKxbWyBUyAVoJj6gqRUl2GpOdeqhFixZISEjgIGUiM9Ar2TG0pgsRAQGeznjrkTaYu76sK0smADe3fgohX8ku33pIPW7HGMmOQlmApj5utT4PUX2hV7ITEhJi6jiIbNLwqCZSsvNKRB5eWLQdHTp0gLMzq1fXN7WdkVV+sPvC2EgWByXSU43mLqalpeGff/5BZmYmVCqV1r4pU6YYJTAia1R+erCmS6e4vk59Vpu1dnQNdn9t3Rn0aOmDAE8mzkTVMTjZ+eabb/Dss8/CwcEB3t7eEARB2icIApMdokocO3oUAJOd+krdsnP9+nXk5eXBxcVF79fqGuxeKoq4ciuPyQ6RHgyeej537lzMmzcPSqUSV65cQUpKivTglEoi3URRhePHmOzUZ97e3vDy8gJg+PRz9WB3TXJBQGgj/RMmovrM4GQnLy8PTz75JGQyg19KVO+oizlun9AKSqUSTk5OaNOmjbnDIjMQBEFq3bl48aJBr1UPdleTCcC7sW3ZqkOkJ4MzlgkTJmDt2rWmiIXIpiiUBdLP6npYHTp0gL29vblCIjMLDw8HACQmJhr82uFRTaSfd8zoycHJRAYweMzOwoULMWTIEGzZsgWRkZEVPrg/+OADowVHZG0qmzHD4p8E3E92Lly4UKvz+Hs6GSMconqjRsnO1q1b0apVKwCoMECZqL6qasYMkx0CIH1u1jbZISLDGJzsvP/++1i5ciWeeeYZE4RDZH00p5uXVyqKSM64i+PHjwNgslPfaXZjiaLIL4hEdcTgZMfR0RHdu3c3RSxEVq98eQi5IKAo6zry8/Ph7u6Oli1bmi84MrvmzZtDJpNBqVQiIyMD/v7+er9WPdidiAxn8ADlqVOn4pNPPjFFLERW77VBraWf1TNmUs6WtepERUVxFmM95+TkhLCwMADsyiKqSwa37Bw+fBi7du3Cpk2b0KZNmwoDlNetW2e04IiszaMdA/HOn+cBlM2Yaerjhue+5ngdui88PBzJycm4cOECevXqZe5wiOoFg5MdLy8vxMbGmiIWIquXkXN/url6xgwHJ5Om8PBw/Pnnn2zZIapDBic7q1atMkUcRFZLc7r50E/2a+3Ly8vDqVOnAAAPPPBAncZFlqk2a+0QUc1wAAFRLeiabq7pyJEjKCkpQUBAAIKDuQgccfo5kTkY3LITFhZW5XRJ1sei+kRXgUYA+HFiN7g42CE+Ph4AEB0dzWnGBOB+y87Vq1cNLghKRDVjcMvOtGnTMHXqVOnxwgsvIDo6GkqlEpMmTTLoXAsXLkSXLl3g7u4OX19fPProoxWadgsKChAXFwdvb2+4ublh+PDhyMjI0DomNTUVgwcPhouLC3x9ffHKK6+gpKTE0FsjMlh1BRo1kx0iAGjUqBEaNmwIURSRlJRk7nCI6gWDW3amTp2qc/uyZctw5MgRg861d+9exMXFoUuXLigpKcFrr72G/v3749y5c3B1dQUATJ8+HX/++SfWrl0LT09PTJ48GbGxsdi/v2xsRGlpKQYPHgx/f38cOHAA6enpGDNmDOzt7fHuu+8aentEBlEXaJy7vqwrS7NAoyiKTHaoAkEQEB4ejgMHDuDChQto3769uUMisn2ikSQnJ4vu7u61OkdmZqYIQNy7d68oiqKYnZ0t2tvbi2vXrpWOOX/+vAhAjI+PF0VRFDdv3izKZDJRoVBIx3z++eeih4eHWFhYqNd1lUqlCEBUKpW1ip/qp9zCYjFk1iYxZNYmMTnzrrQ9OTlZBCDa29uL+fn5ZoyQLM348eNFAOKbb75p7lCIrJq+f7+NNkD5119/RcOGDWt1DqVSCQDSeY4ePYri4mLExMRIx4SHhyM4OFj6xhwfH4/IyEj4+flJxwwYMAA5OTk4e/YsdCksLEROTo7Wg8gYNAs0qv8f7dixI5ycWLiR7ouIiACASj+j9JFXVILQV/9E6Kt/Iq+I3fZEVTG4G6tjx45aAy1FUYRCocDNmzfx2Wef1TgQlUqFadOmoXv37mjbti0AQKFQwMHBAV5eXlrH+vn5QaFQSMdoJjrq/ep9uixcuBBvvfVWjWMl0ge7sKgy6s+4M2fOmDkSovrB4GTn0Ucf1Xouk8ng4+ODXr16SbMMaiIuLg5nzpzBP//8U+Nz6Gv27NmYMWOG9DwnJwdBQUEmvy7ZpspqFjHZocqok52LFy+isLAQjo6OZo6IyLYZnOy88cYbRg9i8uTJ2LRpE/bt24cmTZpI2/39/VFUVITs7Gyt1h3NAnr+/v44fPiw1vnUs7UqK7Ln6OjIDxcyqdzcXJw8eRIAkx2qKDAwEF5eXsjOzkZiYiLatWtn7pCIbJpZFxUURRGTJ0/G77//jl27dkkF8tSioqJgb2+PnTt3StsSExORmpoq/QGJjo7G6dOnkZmZKR2zfft2eHh4SP3iRHXtyJEjKC0tRWBgIFsNqQJBEIzalaVQFlR/EFE9pneyI5PJIJfLq3zY2RnWUBQXF4fvv/8ea9asgbu7OxQKBRQKBfLz8wEAnp6emDBhAmbMmIHdu3fj6NGjGDduHKKjo9GtWzcAQP/+/REREYHRo0fj5MmT2Lp1K+bMmYO4uDi23pDZcDFBqo462Tl9+nSNXq9ZpiTmg734OSHVKHER2SK9s5Pff/+90n3x8fFYunQpVCqVQRf//PPPAaBC5d9Vq1bhmWeeAQB8+OGHkMlkGD58OAoLCzFgwACtgdByuRybNm3C888/j+joaLi6umLs2LGYP3++QbEQGRPH61B1atOyo6tMyWvrzqBHSx8EeDobLUYiW6F3sjNs2LAK2xITE/Hqq69i48aNGDVqlMEJhijqWGe/HCcnJyxbtgzLli2r9JiQkBBs3rzZoGsTmYrIxQRJD7VJdnSVKSkVRVy5lcdkh0iHGo3ZSUtLw8SJExEZGYmSkhKcOHECq1evRkhIiLHjI7I6ly9fxs2bN2Fvb49OnTqZOxyyUOpk58qVK7h7965Br62uTAkRaTMo2VEqlZg1axaaN2+Os2fPYufOndi4caP0piUiSKVMOnXqxMUEqVLe3t4ICAgAAJw7d86g16rLlKhplikhoor0TnaWLFmCpk2bYtOmTfjxxx9x4MABPPTQQ6aMjcgq/f333wCAHj16mDkSsnS16coaHnV/mY4dM3piRJdgo8VFZGv0HrPz6quvwtnZGc2bN8fq1auxevVqncetW7fOaMERWaN9+/YBYLJD1Wvbti22b99e4xlZapplSoioIr2TnTFjxnAKLVE1FAoFLl68CEEQ0L17d3OHQxauttPPiUg/eic733zzjQnDILIN6i6sdu3aoUGDBmaOhiydeuXkkydPQhRFg75QVlamhIgqMusKykS2hl1YZIi2bdtCLpfj9u3buH79evUvqIJmFfRb9wpYEZ1IA5MdIiNiskOGcHJyQps2ZbOqjh07ZuZoiGwXkx0iI8nKypLGXnCmIulLvRYTkx0i02GyQ2Qgze4CzS6C/fv3QxRFtGrVCn5+fmaMkKxJx44dAQDHjx832jkzcu4XBmWRUCImO0RGs3fvXgBs1SHDGKtlR7Mw6JCl+6WfWSSUiMkOkdHs3LkTANCnTx8zR0LWpH379hAEATdu3EBmZmaNzlG+MKhm2Sx1kdB0ZX4tIyWyXkx2iGpB3UVw8+ZNnDhxAgCTHTKMu7s7WrRoAaDmXVm6CoNqUhcJJaqvmOwQGUizu0DdRbB7924AQGRkJMfrkMFq25WlqzCoJhYJpfqOyQ6RAcp3F6i7CP7cVTZGom/fvuYKjayYOtmpactO+cKgmnkPi4QSMdkhMoiu7oJSUcTfJy4AAGJiYswQFVk79Yys2gxS1iwMumnK/VIlLBJKxGSHyCC6ugtkApB67ijs7Oy4mCDViDrZSU5ORnZ2dq3P5+dxvzAoi4QSMdkhMkj57gKZAAzyUaL07m088MADcHd3N2N0ZK28vb3RrFkzAMDhw4fNHA2R7WGyQ2Qgze6CHTN64nbCRgDswqLa6datGwAgPj6+Rq9XFwa9smgwGrk5ST+7OOhd75nIZjHZIaoFHzd7bN++HQCTHaqd6OhoADVPdoiockz5iaqRV1SCiHlbAQDn5g+QvkEDZX+Ybt++DU9PT+mPFVFNqFt2Dh06BJVKBZmM30WJjIXvJqJa2Lx5MwBgwIABsLPjdwequXbt2sHZ2RnZ2dlITEw0dzhENoXJDlEt/PnnnwCAwYMHmzkSsnb29vbo0qULAODgwYNmjobItjDZITKAZgXptLQ0HD9+HIIg4OGHHzZjVGQrajtImYh0Y7JDVA1d5SEAYMuWLQCALl26wNfX1yyxkW1Rj/tiyw6RcTHZIapCZeUh0pX5UhfWoEGDzBUe2Rh1y86ZM2eQk5Nj5miIbAeTHaIqVFYe4pJCKU05Z7JDxuLv74/Q0FCIosjFBYmMiMkOURV0lYeQCwKunT+Gu3fvwt/fH1FRUeYJjmxS9+5lda327t1r5kiIbAeTHaIq6CoP8W5sW+zc+BsAIDY2luuhkFH17t0bALBr1y4zR0JkO/gpTVSN8uUhhncMxPr168v2DR9urrDIRvXp0wdAWY2se/fumTkaItvAZIfIAP6eTti7dy9u376NRo0asco5GV1YWBhCQkJQUlKC/fv3mzscIpvAZIeoGpoFFl0c7PDbb2VdWI8++ihXTSaTUHdl7d692yjnyysqQeirfyL01T+RV1RilHMSWRMmO0QGKC0txbp16wCwC4tMx9jJDlF9x2SHyAD79+9HRkYGvLy8pLEVRMamTnaOHDkCpVJp1HNrrgJOVF8w2SEywPfffw8AeOyxx+Dg4GDmaMhWBQUFoXnz5lCpVPj7779rfb7KVgEnqi+Y7BDpKT8/Hz///DMAYMyYMWaOhmydunVn586dtTpPVauAE9UXZk129u3bh6FDhyIwMBCCIOCPP/7Q2i+KIubNm4eAgAA4OzsjJiYGSUlJWsdkZWVh1KhR8PDwgJeXFyZMmMDpmlQrlQ3m3LBhA3JychASEsJZWGRy/fv3BwBs3ry5VuepbBXwK7fyanVeImti1mQnNzcX7du3x7Jly3TuX7JkCZYuXYrly5fj0KFDcHV1xYABA1BQcL/PedSoUTh79iy2b9+OTZs2Yd++fZg0aVJd3QLZOM3xDd9++y0AYPTo0VxIkEyuf//+sLe3x8WLF3Hx4sUan6eyVcBDG7nUMkIi6yGIoihWf5jpCYKA33//HY8++iiAsladwMBAvPTSS3j55ZcBAEqlEn5+fvjmm2/w5JNP4vz584iIiEBCQgI6d+4MoKwS9aBBg3D9+nUEBgbqvFZhYSEKCwul5zk5OQgKCoJSqYSHh4dpb5QsUl5RCSLmbQUAzBncGu/8eR5A2YrJC2Mj0TPIAU2aNEFpaSkSExPRsmVLc4ZL9US/fv2wY8cOvP/++5gxY0aNz/Nd/BXMXV/WlSUTgLceaSM9Pzd/AFwcuIQCWaecnBx4enpW+/fbYr+epqSkQKFQICYmRtrm6emJrl27Ij4+HgAQHx8PLy8vKdEBgJiYGMhkMhw6dKjScy9cuBCenp7SIygoyHQ3QlZnwebz0s/q8Q1ffPszSktL0a1bNyY6VGeGDBkCANi0aVOtzlNhFXCN55ydRfWBxSY7CoUCAODn56e13c/PT9qnUCjg6+urtd/Ozg4NGzaUjtFl9uzZUCqV0uPatWtGjp6sjeZslfJtnaWiiG9/3wIAeOaZZ+owKqrv1MnO33//jezs7BqfR3NhzKY+bpydRfWOxSY7puTo6AgPDw+tB9Vf5WerlCcDcPVsAjw9PTFq1Ki6C4zqvWbNmiE8PBwlJSXYtm2bUc7J2VlUH1lssuPv7w8AyMjI0NqekZEh7fP390dmZqbW/pKSEmRlZUnHEFVH12wVNZkA+F3bhdK7tzF+/Hi4ubnVbXBU76lbdzZu3GiU83F2FtVHFpvshIWFwd/fX2uNiZycHBw6dAjR0dEAgOjoaGRnZ+Po0aPSMbt27YJKpULXrl3rPGayTrpmq6h9HRuCg2s+gCAIeOGFF+o2MCIAQ4cOBVA2bkdzYkVNcXYW1UdmTXbu3buHEydO4MSJEwDKBiWfOHECqampEAQB06ZNwzvvvIMNGzbg9OnTGDNmDAIDA6UZW61bt8bDDz+MiRMn4vDhw9i/fz8mT56MJ598stKZWETlBXg6461H2kjPNf8Q/PbdCgDAwIED0bx587oOjQjdu3dHYGAgsrOzsWXLllqfT9f/7+/GtkWAp3Otz01ksUQz2r17twigwmPs2LGiKIqiSqUS586dK/r5+YmOjo5i3759xcTERK1z3L59Wxw5cqTo5uYmenh4iOPGjRPv3r1rUBxKpVIEICqVSmPdGlmZ3MJiMWTWJjFk1iYxObPs/59bt26Jbm5uIgBx8+bNZo6Q6rMZM2aIAMQnnnjCKOfT9f87kTXS9++3xayzY076ztMn26W5zo563ZE5c+ZgwYIF6NChA44dOwZBqKSvi8jEjh49is6dO8PJyQmZmZlwd3ev1fl0/f9OZI30/fvNZAdMdqiiO3fuICQkBHfv3sW6devw2GOPmTskqsdEUUR4eDguXryI7777Dk8//bRRz8/kh6yV1S8qSGRKldW/Uvv4449x9+5dREZGYtiwYWaIkOg+QRDw1FNPAQDWrFlj0mtxkUGyRUx2qN4r/+F++/ZtfPTRRwCAuXPnsg4WWQR1srNt27YqF02tCS4ySLaOn+JUL1X14T5v3jwolUq0a9cOw4cPN0d4RBW0aNEC//d//4fS0lKsWLHCaOflIoNUHzDZoXqnqg/3kydPYvny5QDKurLYqkOWZPLkyQCA5cuXo7i42Cjn5CKDVB/wk5zqnco/3HMxdepUqFQqPP744+jVq5dZ4iOqzPDhw+Hn54e0tDT88ccfRjknFxmk+oDJDtU7lX24H927BXv37oWTkxPee+898wRHVAUHBwdMmjQJALBs2TKjnJOLDFJ9wGSH6h1dH+4v9QzA69PjAJQNSg4JCTFXeERVevbZZyGXy7F3716cOnXKKOccHtVE+nnHjJ4Y0SXYKOclshRMdsgmaE4lv3zzXrVTyzU/3LdNewi/LJqOnJwcREdHY+bMmXUZOpFBGjdujNjYWADAggULjHJOFwc7XFk0GFcWDUZTHxa7JdvDZKeeqi4ZsDblZ1dpPte1bojmh/svX3+KvXv3wtXVFd999x3s7LigGlm2OXPmAAB++eUXnD592szREFk+Jjtk9YuI6ZpdNW/9/edVrRvy+++/S384Pv74YzRr1sy0wRIZQbt27fD4448DAN58803zBkNkBZjs1FO2tIiYrtlVmk8rWzfk2LFjePrppyGKIuLi4jBhwgTTB0tkJG+88QYEQcC6detw/Phxc4dDZNGY7NRDtraImK7ZVeWViiKiF+6SxvScPn0aAwcORF5eHvr37y+tmExkLdq0aYORI0cCAF5++WWYq8xh+fFyRJaIyY6JWeIHga0sIqb+t41euAuT+zSXtgv/PjRpPu/7/l70e3YeMjMz0bFjR/zyyy8cp0NW6e2334aTkxN27dqFH374wSwx2FIrMdkuJjsmVv6D4Lv4KzVOfoyVONXlImLGTPbKn0vz3/bTXZekn3e+1BPzh92fWl4+8REBOD44Dp17xGDnzp3w9PSsVVxE5tK0aVPMnTsXADBjxgxkZWXV+pyGvGdtrZWYbBeTHROqzcBZXYz1DcrQRcSq+/Crar8hMVd3Hc1z9X1/r9a/pUosS9jiZ/dBUx83jI4ORfzsPvhxYjd88lRHlG/gF2RyLF62Eg0aNKg0HiJr8PLLLyMiIgI3b97EK6+8UuvzVfee1XyfHrh0yyZaicn2MdkxoZoOnNVFV+I0e93pGreaaCYD+1/tU+UiYtV9+FW239BvfVVdp/y5RKBCAlP+QzbA0xnRzbxRnJYIiCqtY2UC0DqoUSV3TGQ9HBwcpHpuK1euxI8//ljjc+nzntV8n7689lSFllOWmiBLxGTHhP786RugmkGDpaKIB+b9geAZvyEpQ6m1r7pvUJrPa9LSo04GAjydK21VqS7JOnT5doX9s347XeW3Ps2BwprXnVfFh6yuxLG88h+yCQkJiI2NRezAPri95ROIqlIAZYnOwthILodPNuOhhx7C66+/DgCYOHEizp07V6PzVDaeT/2eLf9+L/+WZKkJslSCaK4h/BYkJycHnp6eUCqV8PDwMNp5W7ZsiXTnUDQcMBmCTF72x1YQIAj3c0xRVdbiIMhkEFUq3Nv9BexSE+Du7g67Vj2Q3/axsuNFFQABEDS/R4nQHJEiE4CvhgUgzK8B3Nzc4O7uDkdHRwhCNVOVAHwXfwVz/+0WUicDI7oE40DyLTy14lClrxNQ8QNPcx/K7dc8XiYAj7QPxB8n0qqN7+dJ3TByxUGtD+Ly51oYG4kBLTzw66+/4ttvv8Xff/9ddpwg4Nlnn8WUV+chu8QBoY1c+GFMNqe0tBT9+/fHrl27EB4ejgMHDhjcTZuuzEf3RbsqfZ9V9X4HgF0v9dRagTmvqAQR87bq3EdkDPr+/WayA9MlOx9++CHS0tJw814xbhXJoFJmIEPmjVuh/f5NbnQlP6W4tWEJSpQZ8B/9AQRZ+cRIlBInQSavcM2sHSuQd/EflN69Dbm7Nxy9g+BYnAMXoQi3hAaw926Cdr5yNHKSSQmRzM0bm+2ioZk4CRDxTlcBLs4umLEnr8oPuKqU/6AEqv6wrOy15RMjdXLTtpEcOw+dQlriSRzYuRnx8fEoKSlbEVoul+Ppp5/GrFmz0Lp16xreAZH1yMzMRKdOnXDjxg088MAD2L59u8GfaZpffPR5z8oFAf+82lvnF4jKvkQRGQuTHQOYKtmpTLoyH1du5eF2biEmrzFsMbAHhUSIBTkozLuHI149Ac1ESRQhCAJElQq5Z3fBtU0fqcWo/POsrZ/g3qntAADH4Ej4j1xY4VqKNbNReO003Nr102qd0pVkiSqVVmKm6f9wHl5OcqgcXLElp7Ged1o+RSpLwHoUHILidjYyL59F6oWTOmeftGnTBqNHj8aoUaPQpEmTCvuJbNmZM2fQq1cv3L59Gw899BA2b94MNzfDWlT0/YyqLIFJV+bjyJUsTP3phFYrUVWJEVFNMNkxQF0nO2q6moyrUv6DQvNbk6EEiBjXKAVCfjYy7hZik9BNu4tMVMHt9K8oSU9E3u005MMRhQ6eKMxV6mhxKoXiu5cg9/CDz7BZFfbdWD5eamlq/Nwq7f3/Jmiax9/asAQA4PPo7ApxqxMwTS1atEBUVBR69eqFfv36oWnTpjX6NyGyFceOHUOfPn2gVCrRrl07bNiwASEhIQafR9dnlFwQsO6FaOQVqXR2CVf3ufTjxG6IbuZtcCxEujDZMYC5kh1A/4Slqm9Qf55Kxzt/njf42pofOuWbrsuPhVFft7S0FCv3JeGdLZcgCAJkAvDf9q7o6lOK3Nxc7LhSgPU3XCAIAgSI6Cq7jID8FOTm5iI3Nxep9kFI9e1elvCIKrhknkGuT9uy5yoVnM/+DhfFScjcGuJmtylaLVcQVXhESECzAG+EhYVJD0O/tRLVBwkJCRg6dCgyMjLg4+ODH3/8EX379jX4PIZ0RVX3Ba78FzaO6aHaYrJjAHMmO0DZB8TRK3cw5afjBn2D0ny9IS1E6nOXb06uKg5dx165laczrqr26dpf2fHs7yeqnWvXrmHYsGFS7az//ve/eO+99+Dl5WXQeap7T6tVNaFBLgh4N7YterT0QcqtXIQ1csWOcxl8j1OtMNkxgLmTHbXa/HEv/9ryg3l1De7Vde7KPqzM1fSs74csEemWm5uLmTNn4rPPPgMAeHt7Y+bMmYiLi4Orq6tRr6Xri5cMwCdPdUSnkAZayY2uwc/lv1ilK/OlxIjvf9KFyY4BLCXZAWr3x726FhN9zl1ZHz0HFRJZt3379uHZZ5/FhQsXAJQlPaNHj8aECRPQtm1bo12nsi9t+rZAfzqyIxq6OeDY1Tv437aL0nneeqSNdF59urxMmSjZYhJmrffEZMcAlpTsWAJ2HxHZppKSEqxZswbz589HcnKytL1Vq1YYOnQoevXqha5du6JRo9qtLq7ri1V1a3YB1a/bVdlYwvJq8hmm7x97U38+miPpqO6eLDkRYrJjACY7FbH7iMh2lZaWYuvWrfjqq6+wceNGaW0qtWbNmqFTp05o0aIFWrRogWbNmiEwMBB+fn41nhBQ2YKFglC2YroMusvAVKaysYQ1mfKubwJTk5ZvQxIFQxMpYyQh1d2TpX/51ffvt10dxkRWJMDTmUkOkY2Sy+UYNGgQBg0aBKVSiW3btuGvv/5CfHw8Lly4gOTkZK2WH02urq7w8/ODt7c3PDw84O7uXuG/zs7OcHJygqOjo/RfR0dHjGwpx/cXSqSZnFO7+6J704bIzFMhp0jEqxuS9L6HUlHE0St30NCt4mBnXcdeuZVXITFKuZULVwe5znpgPVr6VPgMrKychmYc6iEDKbdyK3TFVTeTrUJpnt9Ow9XRDlEhDaqc4q8+t+bgb3W81SVCVd2TiCyd/zbh/u7ILSqtcL+W2PKjxpYdsGWHiEjtzp07SEhIwJkzZ5CUlIRLly7h8uXLSE9PR35+9UWLqyN394adVyBKstNQeve21vbK1uHStdo8RFVZwZxKy+ncJ4gq9CxKAOyd0MC+BOlogPiSsH/X+NIuu6P2YptStPFxgL29PRwcyv6bUyLHs5syK5TAUf0bp0wABrf1w4ZTCp1letQzbHUlClm5RZUu4Fg+UTKkrIeuRKh80lfVuapiyOQXU2E3lgGY7BARVU0URdy7dw8ZGRlQKBS4c+cO7t69i5ycnAr/zc/PR2FhIQoLC1FQUKD138q2AaiwWnv23m9QmH4JJdlpcA7rVGWdwUrjVpUi9+xurRXky/Ki6hc3LUy7IC2IatcgECV3qo+j/Lkq/juqpARNfu0YSpp0ktYdqyphg6hCl+y9EOydUGLnhGNOHau9d40XQxQhrX/2dCsZIn3skVUkQ2NPR5zILMZXJ3L/3a9+Rc3U9YQWJjsGYLJDRGQ+oiiitLQURUVFuH77Hi7fvAd/VxkaOAkoKipCcXExioqKoFAW4Fp2AbLyivH5yaLqzor+rtfgXJqH9QWtoKv1RvtwVdkipppJh6iC/PoxlDQuS0hEUYXi/atRePU4VC6NIDq6wmvQSwbdp1ZSVSHJul//UPfryxIlXQmbIcoXoM7a+gnyU47BzisQchcPnavXl71Od7mg8uz2fQpHZSrs7OwguDaE4O4Lx+Ic/LxqeY1W8q4Kx+wQEZFVEAQBdnZ2sLOzQ0sXF7QM8q3y+HRlPr44Vflg57IFDCMxossQHEi+hfXVzAKTCwLWxT2Ia1n52ouqCjKUBnWW0iRBkMH5ofE4+mdvqQtK3wVdBaBCq035FiBBJsPIkDyUlpRg7Q13iFoJmiglN2VdfSL+ba6pvlWofCwaXYWCTAbvAZNR/PtslORkoETMrVDrsMoC1Tpaxa6lXILg4AwH/2Zo8OA4Kalaf/omphg52dEXkx0iIrIqAZ7OWBgbidfWnUGpKGqtzlx+FmlYI1fI/k2C1ComRm3RPqgBcotKq01cNAc764rj0Y6B+ON4mvR85sOt0K6JF1wcZHjsswNVnl8uCJjy1BAEeDojKiFVOq8MgKpCy5SAT5/qCG83R4Q2csG+izel44V/b1LUd5abTI5ft+yTFo79WePacgF4OzYSj765DcXFxfj1WBoWbLtcNoNOAPo298DO5LvS8/8LdsLfYz7Umch9tD8Djz+Ub5ZBzOzGAruxiIiskb5LZGj/8a48MdKnpUaf8jmVxVU+jvKJ0buxbSusb3PlVp7ORKm6OABIP2smQrqSn9qWBKoqzvKMvRp/vRuzs2zZMrz33ntQKBRo3749PvnkEzzwwAN6vZbJDhGRbatpYlRdQlLbOGqTsBkSh+Z1NJMfY9yTWnULR5pi8HK9SnZ+/vlnjBkzBsuXL0fXrl3x0UcfYe3atUhMTISvb9V9vwCTHSIiuq+mCUldx2Up59I8Z2UtY8ZMqjTVq2Sna9eu6NKlCz799FMAgEqlQlBQEF588UW8+uqr1b6eyQ4REVHtlW+BUo9ZMlWiWG9mYxUVFeHo0aOYPfv+VDmZTIaYmBjEx8frfI3mug5A2T8WERER1c6ILsE6x0OZW80m6VuQW7duobS0FH5+flrb/fz8oFAodL5m4cKF8PT0lB5BQUF1ESoREZHNC/B0RnQzb4tJdAAbSHZqYvbs2VAqldLj2rVr5g6JiIiITMTqu7EaNWoEuVyOjIwMre0ZGRnw9/fX+Rp1UToiIiKyfVbfsuPg4ICoqCjs3LlT2qZSqbBz505ER0ebMTIiIiKyBFbfsgMAM2bMwNixY9G5c2c88MAD+Oijj5Cbm4tx48aZOzQiIiIyM5tIdkaMGIGbN29i3rx5UCgU6NChA7Zs2VJh0DIRERHVPzaxzk5tcZ0dIiIi66Pv32+rH7NDREREVBUmO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7REREZNNsYp2d2lLPvmf1cyIiIuuh/rtd3So6THYA3L17FwBY/ZyIiMgK3b17F56enpXu56KCKKullZaWBnd3dwiCYLTz5uTkICgoCNeuXbPZxQpt/R5t/f4A279HW78/wPbv0dbvD7D9ezTV/YmiiLt37yIwMBAyWeUjc9iyA0Amk6FJkyYmO7+Hh4dN/s+rydbv0dbvD7D9e7T1+wNs/x5t/f4A279HU9xfVS06ahygTERERDaNyQ4RERHZNCY7JuTo6Ig33ngDjo6O5g7FZGz9Hm39/gDbv0dbvz/A9u/R1u8PsP17NPf9cYAyERER2TS27BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsGNmiRYsgCAKmTZsmbSsoKEBcXBy8vb3h5uaG4cOHIyMjw3xB1pKue+zVqxcEQdB6PPfcc+YL0kBvvvlmhfjDw8Ol/db+O6zu/qz99wcAN27cwNNPPw1vb284OzsjMjISR44ckfaLooh58+YhICAAzs7OiImJQVJSkhkjNlx19/jMM89U+D0+/PDDZozYMKGhoRXiFwQBcXFxAKz/fVjd/Vn7+7C0tBRz585FWFgYnJ2d0axZM7z99ttadavM9T7kCspGlJCQgC+++ALt2rXT2j59+nT8+eefWLt2LTw9PTF58mTExsZi//79Zoq05iq7RwCYOHEi5s+fLz13cXGpy9BqrU2bNtixY4f03M7u/tvDFn6HVd0fYN2/vzt37qB79+7o3bs3/vrrL/j4+CApKQkNGjSQjlmyZAmWLl2K1atXIywsDHPnzsWAAQNw7tw5ODk5mTF6/ehzjwDw8MMPY9WqVdJza5rKnJCQgNLSUun5mTNn0K9fPzz++OMArP99WN39Adb9Ply8eDE+//xzrF69Gm3atMGRI0cwbtw4eHp6YsqUKQDM+D4UySju3r0rtmjRQty+fbvYs2dPcerUqaIoimJ2drZob28vrl27Vjr2/PnzIgAxPj7eTNHWTGX3KIpihefW5o033hDbt2+vc58t/A6ruj9RtP7f36xZs8QHH3yw0v0qlUr09/cX33vvPWlbdna26OjoKP744491EWKtVXePoiiKY8eOFYcNG1Y3AdWBqVOnis2aNRNVKpVNvA/L07w/UbT+9+HgwYPF8ePHa22LjY0VR40aJYqied+H7MYykri4OAwePBgxMTFa248ePYri4mKt7eHh4QgODkZ8fHxdh1krld2j2g8//IBGjRqhbdu2mD17NvLy8uo4wtpJSkpCYGAgmjZtilGjRiE1NRWA7fwOK7s/NWv+/W3YsAGdO3fG448/Dl9fX3Ts2BErVqyQ9qekpEChUGj9Dj09PdG1a1er+R1Wd49qe/bsga+vL1q1aoXnn38et2/fNkO0tVdUVITvv/8e48ePhyAINvM+VCt/f2rW/D78v//7P+zcuRMXL14EAJw8eRL//PMPBg4cCMC870N2YxnBTz/9hGPHjiEhIaHCPoVCAQcHB3h5eWlt9/Pzg0KhqKMIa6+qewSAp556CiEhIQgMDMSpU6cwa9YsJCYmYt26dXUcac107doV33zzDVq1aoX09HS89dZbeOihh3DmzBmb+B1WdX/u7u5W//u7fPkyPv/8c8yYMQOvvfYaEhISMGXKFDg4OGDs2LHS78nPz0/rddb0O6zuHoGyLqzY2FiEhYUhOTkZr732GgYOHIj4+HjI5XIz34Fh/vjjD2RnZ+OZZ54BYDufpWrl7w+w/s/RV199FTk5OQgPD4dcLkdpaSkWLFiAUaNGAYBZ34dMdmrp2rVrmDp1KrZv324V/f41oc89Tpo0Sfo5MjISAQEB6Nu3L5KTk9GsWbO6CrXG1N88AKBdu3bo2rUrQkJC8Msvv8DZ2dmMkRlHVfc3YcIEq//9qVQqdO7cGe+++y4AoGPHjjhz5gyWL18uJQLWTp97fPLJJ6XjIyMj0a5dOzRr1gx79uxB3759zRJ3TX399dcYOHAgAgMDzR2KSei6P2t/H/7yyy/44YcfsGbNGrRp0wYnTpzAtGnTEBgYaPb3Ibuxauno0aPIzMxEp06dYGdnBzs7O+zduxdLly6FnZ0d/Pz8UFRUhOzsbK3XZWRkwN/f3zxBG6i6e9QccKfWtWtXAMClS5fqOlyj8PLyQsuWLXHp0iX4+/tb/e+wPM3708Xafn8BAQGIiIjQ2ta6dWupq079eyo/c8eafofV3aMuTZs2RaNGjazm96h29epV7NixA//973+lbbb0PtR1f7pY2/vwlVdewauvvoonn3wSkZGRGD16NKZPn46FCxcCMO/7kMlOLfXt2xenT5/GiRMnpEfnzp0xatQo6Wd7e3vs3LlTek1iYiJSU1MRHR1txsj1V9096moeP3HiBICyD2hrdO/ePSQnJyMgIABRUVFW/zssT/P+dLG231/37t2RmJiote3ixYsICQkBAISFhcHf31/rd5iTk4NDhw5Zze+wunvU5fr167h9+7bV/B7VVq1aBV9fXwwePFjaZkvvQ133p4u1vQ/z8vIgk2mnFXK5HCqVCoCZ34cmHf5cT5UfUf/cc8+JwcHB4q5du8QjR46I0dHRYnR0tPkCNALNe7x06ZI4f/588ciRI2JKSoq4fv16sWnTpmKPHj3MG6QBXnrpJXHPnj1iSkqKuH//fjEmJkZs1KiRmJmZKYqi9f8Oq7o/W/j9HT58WLSzsxMXLFggJiUliT/88IPo4uIifv/999IxixYtEr28vMT169eLp06dEocNGyaGhYWJ+fn5Zoxcf9Xd4927d8WXX35ZjI+PF1NSUsQdO3aInTp1Elu0aCEWFBSYOXr9lZaWisHBweKsWbMq7LP296EoVn5/tvA+HDt2rNi4cWNx06ZNYkpKirhu3TqxUaNG4syZM6VjzPU+ZLJjAuWTnfz8fPGFF14QGzRoILq4uIiPPfaYmJ6ebr4AjUDzHlNTU8UePXqIDRs2FB0dHcXmzZuLr7zyiqhUKs0bpAFGjBghBgQEiA4ODmLjxo3FESNGiJcuXZL2W/vvsKr7s4XfnyiK4saNG8W2bduKjo6OYnh4uPjll19q7VepVOLcuXNFPz8/0dHRUezbt6+YmJhopmhrpqp7zMvLE/v37y/6+PiI9vb2YkhIiDhx4kRRoVCYMWLDbd26VQSg83dj7e9DUaz8/mzhfZiTkyNOnTpVDA4OFp2cnMSmTZuKr7/+ulhYWCgdY673oSCKGksbEhEREdkYjtkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIpjHZISIC0KtXLwiCAEEQpJpEe/bsgSAIFYpPGtubb74pXfujjz4y6bWI6iMmO0RksGeeeUb646z5ePjhh80dWq1MnDgR6enpaNu2ba3PlZGRAXt7e/z0008690+YMAGdOnUCALz88stIT09HkyZNan1dIqqIyQ4R1cjDDz+M9PR0rcePP/5o0msWFRWZ9PwuLi7w9/eHnZ1drc/l5+eHwYMHY+XKlRX25ebm4pdffsGECRMAAG5ubvD394dcLq/1dYmoIiY7RFQjjo6O8Pf313o0aNBA2i8IAr766is89thjcHFxQYsWLbBhwwatc5w5cwYDBw6Em5sb/Pz8MHr0aNy6dUva36tXL0yePBnTpk1Do0aNMGDAAADAhg0b0KJFCzg5OaF3795YvXq11N2Um5sLDw8P/Prrr1rX+uOPP+Dq6oq7d+/W+J7z8vIwcOBAdO/eXera+uqrr9C6dWs4OTkhPDwcn332mXT8hAkTsHPnTqSmpmqdZ+3atSgpKcGoUaNqHAsR6Y/JDhGZzFtvvYUnnngCp06dwqBBgzBq1ChkZWUBALKzs9GnTx907NgRR44cwZYtW5CRkYEnnnhC6xyrV6+Gg4MD9u/fj+XLlyMlJQX/+c9/8Oijj+LkyZN49tln8frrr0vHu7q64sknn8SqVau0zrNq1Sr85z//gbu7e43uJTs7G/369YNKpcL27dvh5eWFH374AfPmzcOCBQtw/vx5vPvuu5g7dy5Wr14NABg0aBD8/PzwzTffVIglNjYWXl5eNYqFiAxk8rrqRGRzxo4dK8rlctHV1VXrsWDBAukYAOKcOXOk5/fu3RMBiH/99ZcoiqL49ttvi/3799c677Vr10QAYmJioiiKotizZ0+xY8eOWsfMmjVLbNu2rda2119/XQQg3rlzRxRFUTx06JAol8vFtLQ0URRFMSMjQ7SzsxP37NlT6T317NlTnDp1qta23bt3iwDE8+fPi+3atROHDx8uFhYWSvubNWsmrlmzRus1b7/9thgdHS09f/XVV8WwsDBRpVKJoiiKly5dEgVBEHfs2FEhhpCQEPHDDz+sNEYiqhm27BBRjfTu3RsnTpzQejz33HNax7Rr10762dXVFR4eHsjMzAQAnDx5Ert374abm5v0CA8PBwAkJydLr4uKitI6Z2JiIrp06aK17YEHHqjwvE2bNlILy/fff4+QkBD06NGjRvfar18/NG/eHD///DMcHBwAlI27SU5OxoQJE7Tu4Z133tGKf/z48UhJScHu3bsBlLXqhIaGok+fPjWKhYgMV/tReERUL7m6uqJ58+ZVHmNvb6/1XBAEqFQqAMC9e/cwdOhQLF68uMLrAgICtK5TE//973+xbNkyvPrqq1i1ahXGjRsHQRBqdK7Bgwfjt99+w7lz5xAZGSnFDwArVqxA165dtY7XHGjcokULPPTQQ1i1ahV69eqFb7/9FhMnTqxxLERkOCY7RGQWnTp1wm+//YbQ0FCDZj+1atUKmzdv1tqWkJBQ4binn34aM2fOxNKlS3Hu3DmMHTu2xrEuWrQIbm5u6Nu3L/bs2YOIiAj4+fkhMDAQly9frnag8YQJE/D888/jkUcewY0bN/DMM8/UOBYiMhy7sYioRgoLC6FQKLQemjOpqhMXF4esrCyMHDkSCQkJSE5OxtatWzFu3DiUlpZW+rpnn30WFy5cwKxZs3Dx4kX88ssv0gBgzdaSBg0aIDY2Fq+88gr69+9f6zVs/ve//2HUqFHo06cPLly4AKBsAPbChQuxdOlSXLx4EadPn8aqVavwwQcfaL328ccfh729PZ599ln0798fQUFBtYqFiAzDZIeIamTLli0ICAjQejz44IN6vz4wMBD79+9HaWkp+vfvj8jISEybNg1eXl6QySr/aAoLC8Ovv/6KdevWoV27dvj888+l2ViOjo5ax06YMAFFRUUYP358zW6ynA8//BBPPPEE+vTpg4sXL+K///0vvvrqK6xatQqRkZHo2bMnvvnmG4SFhWm9zsXFBU8++STu3LljtFiISH+CKIqiuYMgIqqNBQsWYPny5bh27ZrW9u+++w7Tp09HWlqaNLC4Mr169UKHDh3MWq4hNDQU06ZNw7Rp08wWA5EtYssOEVmdzz77DAkJCbh8+TK+++47vPfee1pjcvLy8pCcnIxFixbh2WefrTbR0Tyvm5sbTp8+barQdXr33Xfh5uZWYfFBIjIOtuwQkdWZPn06fv75Z2RlZSE4OBijR4/G7NmzpYHOb775JhYsWIAePXpg/fr1cHNzq/acN27cQH5+PgAgODhY7wTJGLKysqTFFn18fODp6Vln1yaqD5jsEBERkU1jNxYRERHZNCY7REREZNOY7BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU1jskNEREQ27f8BnoX1+ZXL7RcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", + "plt.xlabel('Energy [keV]')\n", + "plt.ylabel('Number of counts per bin')\n", + "\n", + "x = np.arange(40, 80, 0.1)\n", + "plt.plot(x, fit_model(x, *mi.values), color='k', label='Initial guess')\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "id": "6def3e2b-5edf-48bb-99b8-2b7fdaae51c5", + "metadata": {}, + "source": [ + "Das Resultat sieht bereits sehr gut aus. Nun können wir uns den eigentlichen Peaks widmen und starten im Folgenden mit dem kleineren der beiden. Zunächst sollten wir den maskierten Bereich entweder neu definieren oder komplett entfernen." + ] + }, + { + "cell_type": "code", + "execution_count": 513, + "id": "ebd77c40-6fcd-4881-bc1d-e3ca8ae0bf3b", + "metadata": {}, + "outputs": [], + "source": [ + "ls.mask = None" + ] + }, + { + "cell_type": "markdown", + "id": "7850ae53-ae2d-49aa-ac7b-dcef60a2dab7", + "metadata": {}, + "source": [ + "Außerdem können wir dem Plot entnehmen, dass durch den höheren Untergrund unsere Anfangsstartwerte nicht mehr ganz so gut passen. Diese können wir wie folgt aktualisieren:" + ] + }, + { + "cell_type": "code", + "execution_count": 514, + "id": "823e05a0-516c-4d30-8dc7-5381e0e2e617", + "metadata": {}, + "outputs": [], + "source": [ + "mi.values['A_p1'] = 700\n", + "mi.values['sigma_p1'] = 3" + ] + }, + { + "cell_type": "markdown", + "id": "8648bf00-901e-40dc-ada2-9a6b684e8f31", + "metadata": {}, + "source": [ + "Nun sollten wir alle Parameter wieder festhalten und nur die Parameter des ersten Peaks freigeben." + ] + }, + { + "cell_type": "code", + "execution_count": 515, + "id": "3c83690c-103e-47ff-b18f-13ac763ee87d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 1296 (χ²/ndof = 11.1) Nfcn = 177
EDM = 2.92e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 348 7
1 A_p2 700 7 yes
2 mu_p1 53.51 0.04
3 mu_p2 60.0 0.6 yes
4 sigma_p1 2.085 0.034
5 sigma_p2 2.00 0.02 yes
6 A_bkg 137 15 yes
7 tau_bkg 34.9 2.3 0 yes
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 42.2 0 -0.0042 (-0.016) 0 -0.1247 (-0.558) 0 0 0
A_p2 0 0 0.0000 0 0.0000 0 0 0
mu_p1 -0.0042 (-0.016) 0.0000 0.00167 0.0000 0.0004 (0.252) 0.0000 0.0000 0.0000
mu_p2 0 0 0.0000 0 0.0000 0 0 0
sigma_p1 -0.1247 (-0.558) 0.0000 0.0004 (0.252) 0.0000 0.00118 0.0000 0.0000 0.0000
sigma_p2 0 0 0.0000 0 0.0000 0 0 0
A_bkg 0 0 0.0000 0 0.0000 0 0 0
tau_bkg 0 0 0.0000 0 0.0000 0 0 0
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:50.416590\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 1296 (χ²/ndof = 11.1) │ Nfcn = 177 │\n", + "│ EDM = 2.92e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 348 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 700 │ 7 │ │ │ │ │ yes │\n", + "│ 2 │ mu_p1 │ 53.51 │ 0.04 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", + "│ 4 │ sigma_p1 │ 2.085 │ 0.034 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", + "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ yes │\n", + "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ yes │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", + "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 42.2 0 -0.0042 0 -0.1247 0 0 0 │\n", + "│ A_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", + "│ mu_p1 │ -0.0042 0.0000 0.00167 0.0000 0.0004 0.0000 0.0000 0.0000 │\n", + "│ mu_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", + "│ sigma_p1 │ -0.1247 0.0000 0.0004 0.0000 0.00118 0.0000 0.0000 0.0000 │\n", + "│ sigma_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", + "│ A_bkg │ 0 0 0.0000 0 0.0000 0 0 0 │\n", + "│ tau_bkg │ 0 0 0.0000 0 0.0000 0 0 0 │\n", + "└──────────┴─────────────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 515, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi.fixed[:] = True\n", + "mi.fixed[['A_p1', 'mu_p1', 'sigma_p1']] = False\n", + "mi.migrad()" + ] + }, + { + "cell_type": "markdown", + "id": "34df75bf-3750-4186-ae12-4f6bb9e49931", + "metadata": {}, + "source": [ + "Jetzt wiederholen wir das ganze für den zweiten Peak…" + ] + }, + { + "cell_type": "code", + "execution_count": 516, + "id": "264a9891-423c-479a-8906-c048aac2fd2e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 137 (χ²/ndof = 1.2) Nfcn = 226
EDM = 1.24e-06 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 348 7 yes
1 A_p2 584 7
2 mu_p1 53.51 0.04 yes
3 mu_p2 60.605 0.031
4 sigma_p1 2.085 0.034 yes
5 sigma_p2 2.666 0.026
6 A_bkg 137 15 yes
7 tau_bkg 34.9 2.3 0 yes
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 0 0 0 0e-3 0 0 0 0
A_p2 0 55.2 0 0.7e-3 (0.003) 0 -110.5e-3 (-0.563) 0 0
mu_p1 0 0 0 0e-3 0 0 0 0
mu_p2 0e-3 0.7e-3 (0.003) 0e-3 0.000983 0e-3 -0.2e-3 (-0.210) 0e-3 0e-3
sigma_p1 0 0 0 0e-3 0 0 0 0
sigma_p2 0 -110.5e-3 (-0.563) 0 -0.2e-3 (-0.210) 0 0.000697 0 0
A_bkg 0 0 0 0e-3 0 0 0 0
tau_bkg 0 0 0 0e-3 0 0 0 0
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:50.691377\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 137 (χ²/ndof = 1.2) │ Nfcn = 226 │\n", + "│ EDM = 1.24e-06 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 348 │ 7 │ │ │ │ │ yes │\n", + "│ 1 │ A_p2 │ 584 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.51 │ 0.04 │ │ │ │ │ yes │\n", + "│ 3 │ mu_p2 │ 60.605 │ 0.031 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 2.085 │ 0.034 │ │ │ │ │ yes │\n", + "│ 5 │ sigma_p2 │ 2.666 │ 0.026 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ yes │\n", + "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ yes │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬─────────────────────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", + "├──────────┼─────────────────────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ A_p2 │ 0 55.2 0 0.7e-3 0 -110.5e-3 0 0 │\n", + "│ mu_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ mu_p2 │ 0e-3 0.7e-3 0e-3 0.000983 0e-3 -0.2e-3 0e-3 0e-3 │\n", + "│ sigma_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ sigma_p2 │ 0 -110.5e-3 0 -0.2e-3 0 0.000697 0 0 │\n", + "│ A_bkg │ 0 0 0 0e-3 0 0 0 0 │\n", + "│ tau_bkg │ 0 0 0 0e-3 0 0 0 0 │\n", + "└──────────┴─────────────────────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 516, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi.fixed[:] = True\n", + "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", + "mi.migrad()" + ] + }, + { + "cell_type": "markdown", + "id": "32d67543-870f-4bd9-bba4-2d01086c671a", + "metadata": {}, + "source": [ + "Zum Schluss geben wir wieder alle Parameter frei und führen einen letzten Fit durch. " + ] + }, + { + "cell_type": "code", + "execution_count": 517, + "id": "72d43004-cd80-418a-996a-f1e7a7133ce9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 500
EDM = 4.26e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 317 7
1 A_p2 580 7
2 mu_p1 53.24 0.07
3 mu_p2 60.43 0.05
4 sigma_p1 1.99 0.05
5 sigma_p2 2.80 0.04
6 A_bkg 147 14
7 tau_bkg 34.1 2.0 0
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.624) -0.0015 (-0.680) -0.0515 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.624) 0.00297 -0.0012 (-0.518) -0.1413 (-0.179) 0.0156 (0.142)
sigma_p2 -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0818 (0.137) -0.0143 (-0.172)
A_bkg -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0515 (-0.068) -0.1413 (-0.179) 0.0818 (0.137) 209 -28 (-0.965)
tau_bkg 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0156 (0.142) -0.0143 (-0.172) -28 (-0.965) 4.03
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:51.042163\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 500 │\n", + "│ EDM = 4.26e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", + "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", + "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", + "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", + "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0515 0.0062 │\n", + "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1413 0.0156 │\n", + "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0818 -0.0143 │\n", + "│ A_bkg │ -0 -0 -0.057 -0.0515 -0.1413 0.0818 209 -28 │\n", + "│ tau_bkg │ 0 0 0.010 0.0062 0.0156 -0.0143 -28 4.03 │\n", + "└──────────┴─────────────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 517, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi.fixed[:] = False\n", + "mi.migrad()" + ] + }, + { + "cell_type": "code", + "execution_count": 518, + "id": "067fbf6f-14c4-4a46-afb3-71753d06af23", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 518, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuwElEQVR4nOzdeVxU9frA8c+ZgWFnkH0TcFfccBe1cis1LUtvq+3+slsuldpVb7Zoi91uWta1um1aN223Mi3XFMs9FcUdVAQVBBTZYWDm/P4YZ2QElVFgWJ7368XrNnPOnPOMV4dnvt/n+3wVVVVVhBBCCCEaKI2jAxBCCCGEqEmS7AghhBCiQZNkRwghhBANmiQ7QgghhGjQJNkRQgghRIMmyY4QQgghGjRJdoQQQgjRoDk5OoC6wGQycfr0aby8vFAUxdHhCCGEEKIKVFUlLy+P0NBQNJrLj99IsgOcPn2apk2bOjoMIYQQQlyD1NRUwsPDL3tckh3Ay8sLMP9heXt7OzgaIYQQQlRFbm4uTZs2tf4evxxJdsA6deXt7S3JjhBCCFHPXK0ERQqUhRBCCNGgSbIjhBBCiAZNkh0hhBBCNGhSsyOEEKLOMRqNlJaWOjoM4WDOzs5otdrrvo4kO0IIIeoMVVVJT0/n/Pnzjg5F1BE+Pj4EBwdfVx88SXaEEELUGZZEJzAwEHd3d2n02oipqkphYSEZGRkAhISEXPO1JNkRQghRJxiNRmui4+fn5+hwRB3g5uYGQEZGBoGBgdc8pSUFykIIIeoES42Ou7u7gyMRdYnl78P11HBJsiOEEKJOkakrUV51/H2QZEcIIYQQDZokO0IIIYRo0CTZEUIIIRqYl19+maCgIBRF4aeffuKRRx7hjjvucHRYDiPJjhBCCHGdHnnkERRFsf74+fkxdOhQ9u7dW233ePnll4mJibnqeQcPHmTWrFn897//JS0tjWHDhjF//nwWLVpkPad///4888wz1RZbXSfJjhBCCFENhg4dSlpaGmlpaaxbtw4nJydGjBhR63EcPXoUgJEjRxIcHIyLiwt6vR4fH59aj6WukGRHCNHoFBrKiJq+gqjpKyg0lDk6HHEFqqpSUFDgkB9VVe2K1cXFheDgYIKDg4mJiWH69OmkpqaSmZlpPSc1NZW7774bHx8ffH19GTlyJMnJydbjGzZsoGfPnnh4eODj40Pfvn05ceIEixYtYtasWezZs8c6elR+pMbi5Zdf5rbbbgNAo9FYVzKVn8Z65JFHiIuLY/78+dZrlY+hIZKmgkIIIeqswsJCPD09HXLv/Px8PDw8rvm1X375JS1btrQ2SCwtLWXIkCHExsbyxx9/4OTkxKuvvmqd7tJoNNxxxx08/vjjfPXVVxgMBrZv346iKNxzzz3s27ePlStXsnbtWgD0en2F+06dOpWoqCgeffRR0tLSKo1t/vz5HDlyhA4dOjB79mwAAgICrul91heS7AghhBDVYPny5dbErKCggJCQEJYvX45GY55E+eabbzCZTHzyySfWEZeFCxfi4+PDhg0b6N69Ozk5OYwYMYIWLVoA0K5dO+v1PT09cXJyIjg4+LIxeHp6WqerLneeXq9Hp9Ph7u5+xWs1JJLsCCGEqLPc3d3Jz8932L3tMWDAAD744AMAsrOzef/99xk2bBjbt28nMjKSPXv2kJSUhJeXl83riouLOXr0KLfccguPPPIIQ4YM4eabb2bw4MHcfffd17UnlDCTZEcIIUSdpSjKNU8l1TYPDw9atmxpffzJJ5+g1+v5+OOPefXVV8nPz6dbt24sXry4wmst00gLFy5k0qRJrFy5km+++YaZM2eyZs0aevfuXWvvoyGSZEcIIYSoAYqioNFoKCoqAqBr16588803BAYG4u3tfdnXdenShS5dujBjxgxiY2NZsmQJvXv3RqfTYTQaqyW26rxWfSCrsYQQQohqUFJSQnp6Ounp6Rw8eJCJEyeSn59vXR01ZswY/P39GTlyJH/88QfHjx9nw4YNTJo0iZMnT3L8+HFmzJjBli1bOHHiBKtXryYxMdFatxMVFcXx48eJj48nKyuLkpKSa441KiqKbdu2kZycTFZWFiaTqVr+DOoqSXaEEEKIarBy5UpCQkIICQmhV69e7Nixg++++47+/fsD5hqgjRs3EhERwahRo2jXrh1jx46luLgYb29v3N3dOXToEKNHj6Z169aMGzeO8ePH88QTTwAwevRohg4dyoABAwgICOCrr7665linTp2KVqslOjqagIAAUlJSquOPoM5SVHsbCTRAubm56PV6cnJyrji0KIRoGAoNZUS/uAqAA7OH4K6TGf26oLi4mOPHj9OsWTNcXV0dHY6oI67096Kqv79lZEcIIcqRhoNCNDyS7AghGrX0nGJHhyCEqGGS7AghGp0fdp60/vfgeXF8s6Nh1ysI0dhJsiOEaFTScop4adl+62OTCv9cuo+0nCIHRiWEqEmS7AghGpXjWQWYLlmWYVRVkrMKHROQEKLGSbIjhGhUmvl7oFFsn9MqClH+9m0NIISoPyTZEUI0KiF6N2bd3t76WKPA66M6EKJ3c2BUQoiaJMmOEKLRGd0t3PrfayffxD09Ii57rixFF6L+k2RHCNHg2JOgBOuleZ2oH/r3788zzzzj6DDqJUl2hBBCiOv0yCOPoCgKiqKg0+lo2bIls2fPpqzMsaOBkyZNolu3bri4uBATE+PQWBxJkh0hhLgMaTgo7DF06FDS0tJITExkypQpvPzyy/z73/92dFg89thj3HPPPY4Ow6Ek2RFCiHIubThY/rEQV+Li4kJwcDCRkZE8+eSTDB48mGXLlgHmHdGnTp1KWFgYHh4e9OrViw0bNlhfe/bsWe677z7CwsJwd3enY8eOV93oc8WKFej1ehYvXnzZc959913Gjx9P8+bNq+U91ley+50QQlxQWcPB8o+F4xgMhsse02g0ODk5VelcRVFwdna+6rk6ne4aorTl5ubG2bNnAZgwYQIHDhzg66+/JjQ0lB9//JGhQ4eSkJBAq1atKC4uplu3bkybNg1vb29WrFjBgw8+SIsWLejZs2eFay9ZsoS///3vLFmyhBEjRlx3rA2dJDtCCHFBZQ0HL30sHGPOnDmXPdaqVSvuv/9+6+O33nqL0tLSSs+NjIzkkUcesT6eP38+hYUVG0q+9NJL1xyrqqqsW7eOVatWMXHiRFJSUli4cCEpKSmEhoYCMHXqVFauXMnChQt5/fXXCQsLY+rUqdZrTJw4kVWrVvHtt99WSHYWLFjA888/zy+//MJNN910zXE2JpLsCCEavEJDGdEvrkJVTXw4yI29e+LJ25OCa0RHm/MsDQfLJziXPhbicpYvX46npyelpaWYTCbuv/9+Xn75ZTZs2IDRaKR169Y255eUlODn5weA0Wjk9ddf59tvv+XUqVMYDAZKSkpwd7dtdvn999+TkZHBpk2b6NGjR629t/rO4cnOqVOnmDZtGr/99huFhYW0bNmShQsX0r17d8CcIb/00kt8/PHHnD9/nr59+/LBBx/QqlUr6zXOnTvHxIkT+eWXX9BoNIwePZr58+fj6enpqLclhKhjSk4f5uzK97j1zeRyzyqMzd/ARx9+iJeXl7Xh4As/m6euNAo2j4XjzJgx47LHNBrb8tPyIySXUhTb9tlPP/309QVWzoABA/jggw/Q6XSEhoZap9by8/PRarXs3LkTrVZr8xrL76l///vfzJ8/n3feeYeOHTvi4eHBM888U2GarUuXLuzatYvPPvuM7t27V3g/onIOLVDOzs6mb9++ODs789tvv3HgwAHmzp1LkyZNrOe8+eabvPvuu3z44Yds27YNDw8PhgwZQnHxxVUSY8aMYf/+/axZs4bly5ezceNGxo0b54i3JISog5YvW0b6kumUZibj7e3NyDvuxKVpB0Dl6yVL6N27NxkZGUDFhoPlH8vqLMfR6XSX/Slfr3O1c8vX61zp3Gvh4eFBy5YtiYiIsImpS5cuGI1GMjIyaNmypc1PcHAwAJs2bWLkyJE88MADdO7cmebNm3PkyJEK92jRogXr16/n559/ZuLEidcUZ2Pk0JGdf/3rXzRt2pSFCxdan2vWrJn1v1VV5Z133mHmzJmMHDkSgC+++IKgoCB++ukn7r33Xg4ePMjKlSvZsWOHdTTovffe49Zbb+Wtt96yzo+WV1JSQklJifVxbm5uTb1FIYSDbdu6hYceuB+Mpbi17Mn+P34hPDgQgC1btvC3v/2NAwcOMGLECPPqGKeLv+iC9a4VVmfNGdXxih2XhbhU69atGTNmDA899BBz586lS5cuZGZmsm7dOjp16sTw4cNp1aoV33//PZs3b6ZJkybMmzePM2fOEB0dXen11q9fT//+/XFycuKdd9657L2TkpLIz88nPT2doqIi4uPjAYiOjq6WIuz6wqEjO8uWLaN79+7cddddBAYG0qVLFz7++GPr8ePHj5Oens7gwYOtz+n1enr16sWWLVsA84eVj4+PNdEBGDx4MBqNhm3btlV63zlz5qDX660/TZs2raF3KISoLZV1TTYainjg/56kpKQEt5Y9CbjzeXx9fa2viY2N5ffff8fPz48dO3Ywffp0m2um5xRXWJ31z6X7SMspqp03JRqMhQsX8tBDDzFlyhTatGnDHXfcwY4dO4iIMCfOM2fOpGvXrgwZMoT+/fsTHBzMHXfccdnrtWnTht9//52vvvqKKVOmXPa8//u//6NLly7897//5ciRI3Tp0oUuXbpw+vTp6n6LdZpDR3aOHTvGBx98wOTJk/nnP//Jjh07mDRpEjqdjocffpj09HQAgoKCbF4XFBRkPZaenk5gYKDNcScnJ3x9fa3nXGrGjBlMnjzZ+jg3N1cSHiEakJ92mz/ItTo3NHfMofnubyntOBJFo61wbps2bVi8eDFDhw41jwrfNtJ67MTZiquzjKpKclahbBwqbCxatOiKx52dnZk1axazZs2q9Livry8//fTTFa9Rvi8PQLt27Thz5oxdr2msHDqyYzKZ6Nq1K6+//jpdunRh3LhxPP7443z44Yc1el8XFxe8vb1tfoQQDcfrvx60/rei0aB2uxeN7vLJyZAhQ6x1fs9NeRbVZAQg0s+8Oqs8raIQ5e9+6SWEEHWYQ5OdkJCQCvOR7dq1IyUlBcBauHVp5nrmzBnrseDgYGthoUVZWRnnzp2zniOEaFwq9Mqpwmtef/11fHx82JeQQMG+dYC5ZmfW7e2t52gUeH1UBxnVEaKecWiy07dvXw4fPmzz3JEjR4iMjATMxcrBwcGsW7fOejw3N5dt27YRGxsLmOfcz58/z86dO63n/P7775hMJnr16lUL70IIUdco2GY7l47OVMbPz4/nn38egJwt31pHdy5dnSXFyULUPw5Ndp599lm2bt3K66+/TlJSEkuWLOGjjz5i/PjxgLkfwjPPPMOrr77KsmXLSEhI4KGHHiI0NNRauNWuXTuGDh3K448/zvbt29m0aRMTJkzg3nvvrXQllhCiYVNVFc9DK6zJiqVXjsWVlo8/+eST+Pv7U3Y+nYKDGyscD9a7Vn/AQoga59Bkp0ePHvz444989dVXdOjQgVdeeYV33nmHMWPGWM/5xz/+wcSJExk3bhw9evQgPz+flStX4up68UNn8eLFtG3blkGDBnHrrbfSr18/PvroI0e8JSGEg5WcOsS+nz/k1EdPYCzKZe1k23b6g+fF8c2OlEpf6+HhwfiJkwDI2/ETqiqtk4VoCBzeQXnEiBFX3MRMURRmz57N7NmzL3uOr68vS5YsqYnwhBB1lGULCIADs4dYn8/fsxIA14gOaN3Miw8qWz5+Y+uASmtvxj4+jlmzX8Fw5ig7tm+jZ6/eNfk2hBC1wKEjO0IIUZ2MxfkUHvoDAK+YYcCVl49XpmlIEA8/YN5U8tOP/ltzwQohao0kO0KIBqNg/3rUMgPtO3REF2LedLGy5eMaBTzUypMdgKeeegowb7qYk5NTY/EKIWqHJDtCiAZBVVUKj2zFJaIjdz40zrpB4sXl4+bhHQWVWKdkSnMyLnutHj160K5dO4qLi/nxh+9rI3whRA2SZEcI0SC89f1Ggu55heD75rD4XDObY0Na6xmiO8xQ3WHuct3LwChX/P39rcfPnTtHZmam9bGiKDzyyCMALP7yf7USvxBX079/f5555hlHh1EvSbIjhKj30nOKWbi3CEVj/kgrX6NTWlrKD999Q6g2H29NMeMeHsPYsWOt/bwyMzP57LPP+N///kdeXp71dWPGjEFRFDZv2kRZXlatvh9R/zzyyCMoioKiKOh0Olq2bMns2bMpKytzWEx79uzhvvvuo2nTpri5udGuXTvmz5/vsHgcSZIdIUS9dzwzD5TKOweuW72KjDNnKFKd+LWkLaFhYTbHPTw8cHd3x93dHYPBYH0+LCyMPn36AFCUuLXmghcNxtChQ0lLSyMxMZEpU6bw8ssv8+9//9th8ezcuZPAwEC+/PJL9u/fz/PPP8+MGTP4z3/+47CYHEWSHSFEvZdxdD+qqeKmEIFKHgl79wCwwdCcfNWlwjnu7u48+OCD/N///R9+fn42x0aNGgVAjPEIyW8Mx13n8G4dog5zcXEhODiYyMhInnzySQYPHsyyZcsAKCkpYerUqYSFheHh4UGvXr1sNuk8e/Ys9913H2FhYbi7u9OxY0e++uqrK95vxYoV6PV6Fi9eXOnxxx57jPnz53PTTTfRvHlzHnjgAR599FGWLl1abe+5vpBkRwhR78X9upRzq96zJjwaBebc2YEHQ811OF27dSfddPkNf7UubrScuYqo6SsoNFycdrjzzjvN14+LIytLprIcyWAw2P1jKpcAm0wmDAYDpaWlVbpudXBzc7Nea8KECWzZsoWvv/6avXv3ctdddzF06FASExMBKC4uplu3bqxYsYJ9+/Yxbtw4HnzwQbZv317ptZcsWcJ9993H4sWLbRrxXk1OTg6+vr7X/+bqGfmaIoSo11STkZ9WbyD/2EHc2/XHLaozayffRHbKYY6cO4eHhwf9buoPf2646rW0GNn0x0a0CgwcOJBmzZoRExNDfHw8v/zyC48++miNvx9RuTlz5tj9mr/97W+0b2/eKuTgwYN8//33REZGWovPAebPn09hYcU2BC+99NI1x6qqKuvWrWPVqlVMnDiRlJQUFi5cSEpKinUbo6lTp7Jy5UoWLlzI66+/TlhYGFOnTrVeY+LEiaxatYpvv/2Wnj172lx/wYIFPP/88/zyyy/cdJNth/Ar2bx5M9988w0rVqy45vdWX0myI4Sol37YeRIARaPFZfS/CNj4Ka5NowHw93Dip7g4AG644QZcXCpOX1UmSJPP5j934+TkRK9evfDw8GDUqFHEx8ezdOlSSXbEFS1fvhxPT09KS0sxmUzcf//9vPzyy2zYsAGj0Ujr1q1tzi8pKbFOnRqNRl5//XW+/fZbTp06hcFgoKSkBHd3d5vXfP/992RkZLBp0yZ69OhR5dj27dvHyJEjeemll7jllluu/83WM5LsCCHqnbScIpstIBSNBvebxoJinpk/uH8feXl5eHl50a1bNwwVy3kqddrkTXBwCOnpaWzZsoXBgwczatQoXnzxRVavXk1ubi7e3pefDhM1Z8aMGXa/xsnp4q+4du3aMWPGDGv/JYunn376umOzGDBgAB988AE6nY7Q0FDr/fPz89FqtezcuROtVmvzGk9PTwD+/e9/M3/+fN555x06duyIh4cHzzzzTIUptS5durBr1y4+++wzunfvXuH9VObAgQMMGjSIcePGMXPmzGp6t/WL1OwIIeqd41kVt4CwJDoARw4fAqBXr142v/CuTqF3376AeSVLaWkp0dHRtGrVCoPBwLp16yg0lBE1fUWF+h5Rs3Q6nd0/Gs3FvxMajQadToezs3OVrnstPDw8aNmyJRERETZ/77p06YLRaCQjI4OWLVva/AQHBwOwadMmRo4cyQMPPEDnzp1p3rw5R44cqXCPFi1asH79en7++WcmTpx41Zj279/PgAEDePjhh3nttdeu6X01BJLsCCHqnWb+lW8BYXHn3+7mrrvuolu3bnZfu0XLVvj4+FBcXExCQgKKojB06FAAVq9efT1hi0aqdevWjBkzhoceeoilS5dy/Phxtm/fzpw5c6z1M61atWLNmjVs3ryZgwcP8sQTT3DmzJnLXm/9+vX88MMPV2wyuG/fPgYMGMAtt9zC5MmTSU9PJz093aaBZmMhyY4Qot4J0bsx6/b2qOqF+SnVdGFLCDONRkN0dDSurq4AuOucSH5jeJWWj2s0GmstxI4dOwCsNQ6S7IhrtXDhQh566CGmTJlCmzZtuOOOO9ixYwcREREAzJw5k65duzJkyBD69+9PcHAwd9xxx2Wv16ZNG37//Xe++uorpkyZUuk533//PZmZmXz55ZeEhIRYf+yp9WkoFFVVLx0MbnRyc3PR6/Xk5OTIfLwQ9UShoYyAzgMxFpxn2oT/Y9ozT9Hxxd8wobB/9lC7euIUGsqIfnEVAAdmD0ExljJ37lyMRiNPPPEEnp6e+Pr6UlpaSsKBQ4z4PMl6rvTeqT7FxcUcP36cZs2aWRNVIa7096Kqv79lZEcIUS/l5+dTeGQLJakJjB5+MwCttVnc5bqXPfG7r+vabm5utGnTBoD4+Hg8PT2t3ZTXrV1zfYELIWqdJDtCiHppw++/g6kMJ58QWrZqBUBT7Xk8lFJKr6MpXHpOMQAxMTEAJCQkYDKZrFNZ69auvb7AhRC1TpIdIUS9tHrVSgDcmpuLkN11Trz/4kTuueceunTuZNe1LD17AAbPi+ObHSm0aNECNzc3CgsLOXHihDXZiduwHtUoq7CEqE8k2RFC1DuqqrJ6tbnGxq15d+vzTk5OtG3bFi8vrypf69KePSYV/rl0H2fySqxTWQcOHKBLly74+fmRm5tLSVrFJcFCiLpLkh0hRL2TlJREakoKaJ1wiehwXdeqrGePUVVJziokOtrckfnQoUNoNBoGDx4MQHFy/HXdUwhRuyTZEULUO7///jsALmHt0Di7kpuby3/+8x/Wr1+PvQtMK+vZo1UUovzdadasGS4uLmi1WnJycujfvz8ApWdTgIv1PUKIuk2SHSFEvWNJdlwjzLU5Rw4d5OzZs5w4caJK7fPLs/TssdAo8PqoDoTo3XBycuLvf/87Tz/9ND4+Ptx44414droZ/9v+AVys7xFC1G2S7Agh6hWTycT69esBcI3sDEBSYiJg3v/oWozuFm7977WTb+KeHhHWxz4+PtYEyic0Ct8hE1EubENgqe9Jyym6pvsKIWqHJDtCiHpl//79ZGZm4uHhQcpnT3N41mBOnUwFzC33r1ewvvJmdiaTiaNn8qyJjoVRVYmd87vslSVEHSbJjhCiXrFMYd1www3odDqOHTuGyWTC19cXX1/fGrnn5s2beeuttzh34hAKtjVBl9b7CFFToqKieOeddxwdRrVatGgRPj4+NX4fSXaEEPWKJdkZOHAgYF6ZBdCyZcsau6eTkxNFRUXkZ57k/7p4oZqMgDnRKV/vIxqvRx55BEVRrD9+fn4MHTqUvXv3Ojo0AcimLkKIeqHQUEa7mb+SutLcwXjgwIGoqloryU50dDTBwcGEh4dTUFLKy0+1QOvhy/f/+5iB3cJ54ef9V7+IaPCGDh3KwoULAUhPT2fmzJmMGDGClJS6W8RuMBjQ6XSODqPGyciOEKLeMJw5imooxMfHh5iYGDIzM8nNzcXJyYmoqKgau6+npycRERFoNBq0Wi1OPsGUpCZwaOfmGrunqH9cXFwIDg4mODiYmJgYpk+fTmpqKpmZmQBMmzaN1q1b4+7uTvPmzXnhhRcoLS21ucYvv/xCjx49cHV1xd/fnzvvvPOy9/vkk0/w8fFh3bp1AOTl5TFmzBg8PDwICQnh7bffpn///jzzzDPW10RFRfHKK6/w0EMP4e3tzbhx4wD44YcfaN++PS4uLkRFRTF37lybeymKwk8//WTznI+PD4sWLQIgOTkZRVFYunQpAwYMwN3dnc6dO7Nlyxab1yxatIiIiAjc3d258847OXv2bJX/fK+HJDtCiHqjJHUfAH369kOr1VpHdaKionB2dq61OFzDzVNXm/78s9bu2VipqorBYHDIj709m8rLz8/nyy+/pGXLlvj5+QHg5eXFokWLOHDgAPPnz+fjjz/m7bfftr5mxYoV3Hnnndx6663s3r2bdevW0bNnz0qv/+abbzJ9+nRWr17NoEGDAJg8eTKbNm1i2bJlrFmzhj/++INdu3ZVeO1bb71F586d2b17Ny+88AI7d+7k7rvv5t577yUhIYGXX36ZF154wZrI2OP5559n6tSpxMfH07p1a+677z7KysyF+9u2bWPs2LFMmDCB+Ph4BgwYwKuvvmr3Pa6FTGMJIeqN4pMHAHOyA7VTr2ORn5/Phg0byDp7Dpdwc2fl7du31fh9G7vS0lLmzJnjkHvPmDHDrime5cuX4+npCUBBQQEhISEsX74czYUVfDNnzrSeGxUVxdSpU/n666/5xz/MfZtee+017r33XmbNmmU9r3PnzhXuM23aNP73v/8RFxdH+/bmxDsvL4/PP/+cJUuWWJOfhQsXEhoaWuH1AwcOZMqUKdbHY8aMYdCgQbzwwgsAtG7dmgMHDvDvf/+bRx55pMrvH2Dq1KkMHz4cgFmzZtG+fXuSkpJo27Yt8+fPZ+jQodb327p1azZv3szKlSvtuse1kJEdIUS9YDKZKLmQ7PTt15eysjJrLUSLFi1q/P7Ozs7s3r2bE8nH8QuJAEXD6VOnOJmaWuP3FvXDgAEDiI+PJz4+nu3btzNkyBCGDRvGiRMnAPjmm2/o27cvwcHBeHp6MnPmTJt6nvj4eGuicjlz587l448/5s8//7QmOgDHjh2jtLTUZiRIr9db93crr3v37jaPDx48SN++fW2e69u3L4mJiRiNxqr/AQCdOl3chDckJASAjIwM63169eplc35sbKxd179WMrIjhKgXDh8+hKkoF8XJhZguXTl58iRGoxFPT0/rNEFNcnFxoWnTppw4cYJwl2KSApthOHP0wuhO1TceFfZxdnZmxowZDru3PTw8PGxGGT/55BP0ej0ff/wxw4cPZ8yYMcyaNYshQ4ag1+v5+uuvbWpj3NzcrnqPG264gRUrVvDtt98yffp0u+IrH6e9FEWpMK13ab0R2P6ZWZpxmkwmu+9X3STZEULUC5sv1MfoQtug0+ms34ijoqLs3iLiUu46J5LfGH7V85o1a8aJEycI1uSjC21rTna2bQNX8wah6TnFNA/wvK5YhC1FUertaiFFUdBoNBQVFbF582YiIyN5/vnnrcctIz4WnTp1Yt26dTz66KOXvWbPnj2ZMGECQ4cOxcnJialTpwLQvHlznJ2d2bFjBxER5g7gOTk5HDlyhBtvvPGKcbZr145NmzbZPLdp0yZat26NVqsFICAggLS0NOvxxMRECgsLq/CnYHufbdtsp363bt1q1zWulSQ7Qoh6YdMmc7JjKQ6+4YYbaN269XUnOvaIjIwEIFibh0toG/J3ryAupRham48PnhfHnFEdbbabEI1HSUkJ6enpAGRnZ/Of//yH/Px8brvtNnJzc0lJSeHrr7+mR48erFixgh9//NHm9S+99BKDBg2iRYsW3HvvvZSVlfHrr78ybdo0m/P69OnDr7/+yrBhw3BycuKZZ57By8uLhx9+mOeeew5fX18CAwN56aWX0Gg0V/03MmXKFHr06MErr7zCPffcw5YtW/jPf/7D+++/bz1n4MCB/Oc//yE2Nhaj0ci0adPsHvmaNGkSffv25a233mLkyJGsWrWqVup1QGp2hBD1xOZNm9B6+eHWqhfpOcUoikJwcDBBQUG1FkNYWBharRZ3pZSAiJZovfw43/JW63HZK6txW7lyJSEhIYSEhNCrVy927NjBd999R//+/bn99tt59tlnmTBhAjExMWzevNlaEGzRv39/vvvuO5YtW0ZMTAwDBw5k+/btld6rX79+rFixgpkzZ/Lee+8BMG/ePGJjYxkxYgSDBw+mb9++tGvXDlfXyrdAsejatSvffvstX3/9NR06dODFF19k9uzZNsXJc+fOpWnTptxwww3cf//9TJ06FXd3d7v+fHr37s3HH3/M/Pnz6dy5M6tXr7Yp2q5Jino9a+saiNzcXPR6PTk5OXh7ezs6HCHEJVJSUmh/2/9ZN+HUKDhsBGXhwoWkpKRw2223MezhSbgNr1hP8tXjvYltUfN1RA1NcXExx48fp1mzZlf9BS2urqCggLCwMObOncvYsWMdHc41u9Lfi6r+/paRHSFEnbf89z8r7DY+/Ye9bN+XWOuxWKayUlJSiGkRhnpJ8aVWUYjyt+8brxDVYffu3Xz11VccPXqUXbt2MWbMGABGjhzp4MgcT5IdIUSdF7fzYIXdxlUUDqZm1noslmTnxIkT3NC9I+dWvWdNeDQKvD6qAyH6q6+qEaImWBoGDh48mIKCAv744w/8/f0dHZbDSYGyEKLOO7RjI+qNPW0SHg3QK7p5rcfStGlTFEXh/PnzdO/enfwXXsCQlUrIg2+xdvJNshpLOEyXLl3YuXOno8Ook2RkRwhRp+Xn57Nvx5/mEZQLJYYaBeaM7kjbyOBaj0en01m70lr6+xhOH8JYmEOwXupMhKiLHJrsvPzyyyiKYvPTtm1b6/Hi4mLGjx+Pn58fnp6ejB49mjNnzthcIyUlheHDh+Pu7k5gYCDPPfecdR8OIUT9t2PHDkwmE/pzB61LaNdOvsmhy7stU1kZGRm0bNkKAEN6ksPiaWhk3Yworzr+Pjh8ZKd9+/akpaVZf/4st7Hes88+yy+//MJ3331HXFwcp0+fZtSoUdbjRqOR4cOHYzAY2Lx5M59//jmLFi3ixRdfdMRbEULUAMuuyb169QaghfYs+RkplJSUOCwmS9O21NRUunTrBph3ZBfXx9K3xd5mdaJhs/x9uJ7Nfh1es+Pk5ERwcMWh6JycHD799FOWLFnCwIEDAfOSz3bt2rF161Z69+7N6tWrOXDgAGvXriUoKIiYmBheeeUVpk2bxssvv1xvu24KIS6yJDs9e/Vi51mV7s6p/Pj9cR599FFr0lHbIiIiuO2222jatCm5+YV8983XMrJTDbRaLT4+Pta9lNzd3Wu1aaSoW1RVpbCwkIyMDHx8fKzdnK+Fw5OdxMREQkNDcXV1JTY2ljlz5hAREcHOnTspLS1l8ODB1nPbtm1LREQEW7ZsoXfv3mzZsoWOHTvaNBUbMmQITz75JPv376dLly6V3rOkpMTmW2Fubm7NvUEhxDVTVdXaTr5X797879cM3JUyNBpNpbs51xY3Nze6du0KQJcL/1uSXvvL4Bsiy5dfS8IjhI+PT6WDIvZwaLLTq1cvFi1aRJs2bUhLS2PWrFnccMMN7Nu3j/T0dHQ6HT4+PjavCQoKsrbjTk9Pr9A91fLYck5l5syZw6xZs6r3zQghqt3Ro0fJyspCp9PROaYLgSt/ACAoOBgnJ4d/VwOgc0wMAMbcTLKysogIrf2i6YZEURRCQkIIDAysdKNJ0bg4Oztf14iOhUM/LYYNG2b9706dOtGrVy8iIyP59ttvq7T767WaMWMGkydPtj7Ozc2ladOmNXY/IcS1sUxhdevWDRcXFwI1+QCEhoU7MizAvErswIEDFBQV49QklLLs0+zetYuI0Fuv/mJxVVqttlp+yQkBdaBAuTwfHx9at25NUlISwcHBGAwGzp8/b3POmTNnrMNZwcHBFVZnWR5facjLxcUFb29vmx8hRN1jSXZiY2MBrMlOWB1IdvLy8vjtt9/YtmUzumDziqz43bscHJUQojLXNLKTmJjI+vXrycjIwHRJq/TrWQmVn5/P0aNHefDBB+nWrRvOzs6sW7eO0aNHA3D48GFSUlKsH3yxsbG89tprZGRkEBgYCMCaNWvw9vYmOjr6muMQQtQN5ZMdg8FAE8W8wWZoWJgjwwIgMDCQ1q1bExoayiwnJ557Lo698bsdHZYQohJ2Jzsff/wxTz75JP7+/gQHB9tUyiuKYleyM3XqVG677TYiIyM5ffo0L730Elqtlvvuuw+9Xs/YsWOZPHkyvr6+eHt7M3HiRGJjY+nd27wE9ZZbbiE6OpoHH3yQN998k/T0dGbOnMn48eNxcXGx960JIeqQ/Px89u7dC5h3S047fRqNAvkmHV51YDTW8lkFF/uA/PXXX44MSQhxGXYnO6+++iqvvfYa06ZNu+6bnzx5kvvuu4+zZ88SEBBAv3792Lp1KwEBAQC8/fbbaDQaRo8eTUlJCUOGDOH999+3vl6r1bJ8+XKefPJJYmNj8fDw4OGHH2b27NnXHZsQwrEszQTDw8MJDw/njz/+AKBXx1a46+pGcbKFZeVnSkoKWVlZsheREHWM3Z8Y2dnZ3HXXXdVy86+//vqKx11dXVmwYAELFiy47DmRkZH8+uuv1RKPEKLu2LhpMwDnPKIoNJRx+vRpAIcuOa9MXl4eWVlZtGrVisTERHbu3MmQIUMcHZYQohy7C5TvuusuVq9eXROxCCEasUJDGVHTVxA1fQWFhjK2X+iv4xJm3kLm1KlTAITVgXodi4KCAubNm8eXX35Jjx49AGQjRiHqILtHdlq2bMkLL7zA1q1b6dixY4X2zZMmTaq24IQQjZOqqmzfdiHZCW1Lfn4eeXl51h4sdYWHhwdeXl7k5eXRuXNnlixZInU7QtRBdic7H330EZ6ensTFxREXF2dzTFEUSXaEENft2IVmgmid0AW1ID0tDQB/f/86tw1MaGgohw8ftk6vyciOEHWP3cnO8ePHayIOIYSw2mYZ1QlqieLkjIuLC23atMHX19fBkVVkSXYso9xSpCxE3VO3ljQIIQRY63V0F+p1mkZE0qZlC0eGdFmWabXMzEwpUhaijqpSsjN58mReeeUVPDw8bLZZqMy8efOqJTAhROO1rVy9Tl1nmb46e/YsPXr0IDExkd27d0uyI0QdUqVkZ/fu3dYN2XbvvnyH0PINBoUQ4lqYDMXs37cPMCc7ThjJzc3Fza9JnfyM8fDwwNvbm9zcXNq3bw9AfHy8Y4MSQtioUrKzfv36Sv9bCCGqmyE9EaPRSFh4OE7e/vhrcpn3nw/p1DKCBx54wNHhVSo0NJTc3FzrlNaePXscHJEQorzr2gg0NTWV1NTU6opFCCEoyz+H1suP5oPNiU26yZvvijtxsKSJgyO7PMtUlqVI+ciRIxQWFjoyJCFEOXYnO2VlZbzwwgvo9XqioqKIiopCr9czc+ZM61SXEELY64edJwHwjL6JsL8vJCWor/WYisJXSZCWU+So8K7IMqKTnZ1NYGAgJpOJfRem4oQQjmd3sjNx4kQ++ugj3nzzTXbv3s3u3bt58803+fTTT6XHjhDimqTlFPHSsv3Wx4pGA9jW55hUSM6qm6MllpGdc+fO0bVrV0CmsoSoS+xeer5kyRK+/vprhg0bZn2uU6dONG3alPvuu48PPvigWgMUQjR8x7MKMKlXPkerKET5u9dOQHZyd3dHr9eTk5ND586dWblypRQpC1GH2J3suLi4EBUVVeH5Zs2a1bnOpkKI+qGZvwcaBZuERwFUVEBBA7w+qgMhejcHRXh1oaGhmEwmgoODARnZEaIusXsaa8KECbzyyiuUlJRYnyspKeG1115jwoQJ1RqcEKJhs2z+GTvnd/55aztU1WQ+oJqYPbI9HbTpDNUdZmaXUu7pEeHYYK9i1KhR/H3CJGZtNwKwd+9eTCaTg6MSQkAVR3ZGjRpl83jt2rWEh4fTuXNnwPwNxmAwMGjQoOqPUAjRKNzRJZRJY8dgKi7g9ZlTGd0tnLjf8gnR5tE6ItjR4V2Vk5MTBkMZzn7hoHUmLy+PA4cTGfF5EgAHZg/BXSdN64VwhCr9y9Pr9TaPR48ebfO4adOm1ReREKJRMhgMFB3bCcZSBvftAYCfxlyQHBRU95MdC0WjQRcQiSE9iYSEvUDdrDMSojGpUrKzcOHCmo5DCNHI7U/YC8ZSNK5etGjZkvz8fNyVUlQVAgIDHR1elaz67VfucU3gl+gYDqYnsXfPHiDW0WEJ0ehdV1NBIYSoLjv/2gGALrQ1iqKQcSYdgBzVtd4sfiguLsJdKSO0qbm+KGHvXgdHJIQASXaEEHXEzh3bgYubf2acOQPAWVP9mQbqHduH5cVtOVQWAMDevbIiS4i6QJIdIUSd8Jc12WkDwJl088jOObX+JDtBwSFkqp5oApoDkJqSgrE438FRCSEk2RFCOJyxMIfkY8cAcAlpDcCZC9NY9Wlkx0Lj4kFkZBQApRnHHRuMEMK+ZKe0tJRBgwaRmJhYU/EIIRqh0uw0tF5+OPmGo3H1pKS4mJzz5wH4/YU76tWS7aaabNpp0+kc2x8AQ8YxxwYkhLCvg7KzszN7peBOCFFNLJt/uoa1JezvC2mbt4tVbwwnOTkZMLe9cHOru12TL/XDzpOkmnwABSJH49npFGW5mQCk5xTTPMDTofEJ0VjZPY31wAMP8Omnn9ZELEKIRqSyzT+P6LuRllNEWloacHE38frg4vuxbGCq4DtkIk0GPAbA4HlxfLMjxWHxCdGY2T02XFZWxmeffcbatWvp1q0bHh4eNsfnzZtXbcEJIRquyjb/VFFIziok/UJxsmWfqfqgsvdj3r3dzKTCP5fu48bWAXV6jy8hGiK7k519+/bRtWtXAI4cOWJzTFGUyl4ihBAVVLb5p0aBKH93mvfpQ3h4eL3qzl7Z+7mUUVVJziqUZEeIWmZ3srN+/fqaiEMI0ciE6N2YdXt7Zv60z/xFSTUxZ3RncyKgdyMoKMjRIdrF8n5e+Hkflj3bzZu2X/wSqFUUovzr3+oyIeq7a156npSUxKpVqygqKgJAVa/wdUYIISoxuls45zcsJH3JDIaZttX5nc2vZnS3cEChj3Myd7vupWNJAqrJvAu6RoHXR3WQUR0hHMDuZOfs2bMMGjSI1q1bc+utt1oLCceOHcuUKVOqPUAhRMNWdHwXJakJ9O/ZBYBTp06xa9cuMjMzHRzZtVNQ8VBK6R0Ipz58jOw//sfayTfV+2ROiPrK7mTn2WefxdnZmZSUFNzdLw7H3nPPPaxcubJagxNCNGx5eXmUZplXKHXv2RMw1wX+8ssv/PXXX44M7bqcu9AI0dPTA2PeWQoPbiRY7+rgqIRovOyu2Vm9ejWrVq0iPDzc5vlWrVpx4sSJagtMCGGr0FBG9IurADgwe0i9arR3Obt27gTVhNY7wLrM3N/fn+bNm9er4uRLWba4KC0tBaAsO52CggLcdXpHhiVEo2X3p2VBQYHNiI7FuXPncHFxqZaghBAN06UJ2/bt24CLm38CdOvWjW7dujkkvuqSbTLX5RTk5+PuG0ThuTMcPLCfgL59HByZEI2T3dNYN9xwA1988YX1saIomEwm3nzzTQYMGFCtwQkhGrYd2y4kOxf2w2ooDDih15tHccJbdQRg/759jgxJiEbN7pGdN998k0GDBvHXX39hMBj4xz/+wf79+zl37hybNm2qiRiFEA2Qqqps3bIZAJfwaACKi4sBcHWt//UtAUFB5OTkEBwRxZFt5lokIYRj2J3sdOjQgSNHjvCf//wHLy8v8vPzGTVqFOPHj69Xrd2FEI515PBhzp49i6urKyc+mYBO58TWrX+xatUqunTpwu233+7oEO3mrnMi+Y3hAOzatQs3Vzd+OpgHyMiOEI50TRWOer2e559/vrpjEUI0IpZRnV69eqHT6QA4c+YMAF5eXg6Lq7p07dqVth06Mf6nZAD275dkRwhHuaZkJzs7m08//ZSDBw8CEB0dzaOPPoqvr2+1BieEaLg2bzZPe/ft29f6XEZGBkC96558Oe46J45+MA7P/00mKzOTM2fONJj3JkR9YneB8saNG4mKiuLdd98lOzub7Oxs3n33XZo1a8bGjRtrIkYhRAO0dfMWAPr16weAyWRqcMmO0WgkLy+P6GhzTVJCQoKDIxKicbJ7ZGf8+PHcc889fPDBB2i1WsD8D/qpp55i/Pjx8o9ZiFqQnlNM8wBPR4dxzYwF2ZxISkRRFGJjYwHziHFZWRlOTk40adLEwRFWj88//5zU1FR69uzJ/v372bk7nv9bWwI0nF5JQtQHdo/sJCUlMWXKFGuiA6DVapk8eTJJSUnVGpwQ4qIfdp60/vfgeXF8syPFgdFcn9Jzp9B6+dGhQwd8fHyAi/U6gYGBaDTXvG1fneLv74+LiwsREeZtIqRuRwjHsPsTpWvXrtZanfIOHjxI586drzmQN954A0VReOaZZ6zPFRcXM378ePz8/PD09GT06NHWD0SLlJQUhg8fjru7O4GBgTz33HOUlZVdcxxC1EVpOUW8tGy/9bFJhX8u3UdaTpEDo7KfJWFzbdqBsL8vJKL/vdZjlimswMBAh8RWE4YNG8a0adPo2FF67QjhSHaPoU6aNImnn36apKQkevfuDcDWrVtZsGABb7zxBnv37rWe26lTpypdc8eOHfz3v/+tcP6zzz7LihUr+O6779Dr9UyYMIFRo0ZZ+/kYjUaGDx9OcHAwmzdvJi0tjYceeghnZ2def/11e9+aEHXW8awCTKrtc0ZVJTmrsN7son1pwqZoNOx370RaThEhercGmew4OzsDWJOdgwcOEDDQiKLRXullQohqZneyc9999wHwj3/8o9JjiqKgqiqKomA0Gq96vfz8fMaMGcPHH3/Mq6++an0+JyeHTz/9lCVLljBw4EAAFi5cSLt27di6dSu9e/dm9erVHDhwgLVr1xIUFERMTAyvvPIK06ZN4+WXX7YuZxWivmvm74FGwSbh0SoKUf4Vt26pqypL2FQUa8JmGbVtKMXJ5bVo0QI3NzeKioooO5+Os2+Yo0MSolGxexrr+PHjV/w5duyY9X+rYvz48QwfPpzBgwfbPL9z505KS0ttnm/bti0RERFs2WJexbFlyxY6duxo8+E4ZMgQcnNz2b9/P5dTUlJCbm6uzY8QdVmI3o1Zt7e3PtYo8PqoDvVmVAcuJmzlaRWI8nfHYDBw7tw5oOElO7/88gsLFiygTx/zvlilmbJhshC1ze6RncjIyGq7+ddff82uXbvYsWNHhWPp6enodDpr8aJFUFAQ6enp1nMu/WC0PLacU5k5c+Ywa9as64xeiNo1uls4L/xsTuLXTr6p3q3GsiRsM39KQFE0oJp4fXRnQvRunDp1CgAPDw88PDwcHGn1ysnJITs7m3bt2rFu3ToMmcm4t5ENQYWoTQ5b8pCamsrTTz/N4sWLa30fnBkzZpCTk2P9SU1NrdX7C3G9gvWuFBrKiJq+gqjpKyg01I+i/NHdwsla8TbpS2bwiH8y9/Qwr1JqyFNYlhoky3Y6xryzgLl9gBCidjgs2dm5cycZGRl07doVJycnnJyciIuL491338XJyYmgoCAMBgPnz5+3ed2ZM2cIDg4GIDg4uMLqLMtjyzmVcXFxwdvb2+ZHCFHzTCYTRUnbKUlN4OYbe1mfz8rKAhpWcbKFJYFzc3PDs9PN+A4ZD9T/9gFC1CcOS3YGDRpEQkIC8fHx1p/u3bszZswY6387Ozuzbt0662sOHz5MSkqKtQlZbGwsCQkJ1lUcAGvWrMHb29vasVQIUXckJOxFLSlA0bnRsePF1Zc333wzTz/9tHWFZ0NiSXbOFhnxHTIR5UIPofraPkCI+shh7Tu9vLzo0KGDzXMeHh74+flZnx87diyTJ0/G19cXb29vJk6cSGxsrPUD8ZZbbiE6OpoHH3yQN998k/T0dGbOnMn48eNxcXGp9fckhLiyjRs2AOASHo2T08WPH0VRKtTnNRT+/v4oikJWscaa6FjUt/YBQtRXdic7qampKIpCeHg4ANu3b2fJkiVER0czbty4ag3u7bffRqPRMHr0aEpKShgyZAjvv/++9bhWq2X58uU8+eSTxMbG4uHhwcMPP8zs2bOrNQ4hRPXYGBcHgGtE1XpwNQROTk74+fmRn5kDqgmUiwlPfWsfIER9ZXeyc//99zNu3DgefPBB0tPTufnmm2nfvj2LFy8mPT2dF1988ZqD2XDhW5+Fq6srCxYsYMGCBZd9TWRkJL/++us131OIxqDQUEb0i6uA2t2Tqfx9E14azKY//wBsk53U1FS2bt1Ks2bN6N69e63EVduCgoLIysqim5rIX2pLFI22XrYPEKK+srtmZ9++ffTs2ROAb7/9lg4dOrB582YWL17MokWLqjs+IcQF7jonkt8YTvIbw6+arNTFlVp74neTk5OD4uKBLqi59fnU1FQOHDjA8ePHHRhdzbIUXvfwK+XUh49x7vdPWTv5JutqNCFEzbL7611paam1Hmbt2rXcfvvtgLnhX1paWvVGJ4SokvqwC/rGuI0AjLhlIMvevN36fIsWLQDw9fV1SFy1wVKk7OTkhDHvLAUH1hOsr92WG0I0ZnaP7LRv354PP/yQP/74gzVr1jB06FAATp8+jZ+fX7UHKISoXH3bBX1j3AYABgwYYPN8UFAQffr0oW3btg6IqnZYRnaKCgvRaDSYCs6TmZnp4KiEaDzsTnb+9a9/8d///pf+/ftz3333WXc6X7ZsmXV6SwhRs+rbLuiqycjmTX8C0L9/f8cG4wA+Pj7odDpMJhOBUW0A2QFdiNpk9zRW//79ycrKIjc3lyZNmlifHzduXINr8y6EI12pqLi+7YJuSE8iLy+PJk2aWL8ggXkj4OPHjxMcHExAQIADI6xZiqIQGBjIyZMnCW3ehvRjB9m/L4Fbh9zs6NCEaBTsHtkZOHCg9UOrPF9fX+65555qC0wIcXmVb6pZd5cxFyXvBsxfljTles2cOHGCpUuX8vPPPzsqtFrTr18/br9zFGll5i+F+/fLyI4QtcXuZGfDhg0YDIYKzxcXF/PHH39US1BCiCsL0bvxwvC2qKp5eMeeZcw1uSfT5VaBmQpy0Hr5WWv8LBrynliXatOmDW3atqNU3xSQaSwhalOVp7H27t1r/e8DBw7Y7CpuNBpZuXIlYWFh1RudEKKC/Px85syZw3vvvUchOpx8QjHlpPPZri60eO21Cr1q0nOK2ZSUZX08eF4cc0Z1rJVlzz/sPImqqvje/ARNBj1OWUS4zXHLVi8NcU+syrjrnPjjjYdp9/MbHDxwAJPJZDPSJYSoGVVOdmJiYlAUBUVRGDhwYIXjbm5uvPfee9UanBDC1vHjx7ntttvYv99cnKxx8aDsfBrGvCxWr17NmjVreOWVV2g64H7rawbNjbO5hqWY+cbWATVa35OeU8xLy/ajKOb5NkWjYW5cGnfGtrXetzGN7KiqSlJSEpmZmXh5eZGXl8fx48etS++FEDWnysnO8ePHUVWV5s2bs337dptiQp1OR2BgIFqttkaCFEKY2zsMGDCAEydOEBISwtvz3+Mff+lQFA0rHmnFa7Nf5quvvuKlf71NeG5nuJBkqJVcqzaKmU+cvXIRdUlJCefPnwcaR7KjKArLly8nNzeXnj17sm7dOhISEiTZEaIWVDnZiYyMBMBkMtVYMEKIypWWlnLHHXdw4sQJWrZsyYYNG2gSEMS0nebVWs2aN+eTRV+w6pwvBQf/sCY6l1MbxcyRfuYi6vIJT/n7WqawvLy8cHOreyvIakLr1q0pKiri5Elzj6SEhATuuOMOxwYlRCNwTRvkJCYmsn79ejIyMiokP9ezN5YQonLPv/IGO3bsoEmTJqxatYqwsLBKt4HwihmGxtUL1WSy2WFb4eIIz9WKmatrH61gvStPdG/C+9uyKt0LqjFNYVkMHz4cgOTkZMCc7Aghap7dn2Iff/wxTz75JP7+/gQHB1vn48E8TCvJjhDVo3yH5F9M3fHsdDMfvTCO5s2bX+FV4NG2Hz00x9heFmlNMmbd3p4XfjbX+aydfFOtbS1hStrEqQ//hXu7m4hf/rnNfRtbcXJ5HTt2BCTZEaK22J3svPrqq7z22mtMmzatJuIRQlCxQ7Ki0eA3dCJ9bx5cpdcvmD6WZr2GYSzIplWIDyP++RsvXGhlU1t7MqXnFPPbr8sx5p3Fycuvwn0tIzuNLdlRVZWICPNKuMTERIqLi3F1lX2yhKhJdic72dnZ3HXXXTURixDigso6JKNobIqKLbugW5Sf1tJoNDQZOJa0hRPZl5rArJdeBF3FVZTV7dL9urJyLsTaKtbmPFVVrSM7jWkay2Qy8eabb1JSUkJERAQpKSkcPHiQLl26ODo0IRo0uxs83HXXXaxevbomYhFCXFAdHZKdvPzwG/Y0AO/Nf4eS9KTqDLGCyvbranLLU7g274aT3nb0Ji8vj+LiYhRFwd/fv0bjqks0Gg3e3t4A1n5IMpUlRM2ze2SnZcuWvPDCC2zdupWOHTvi7Oxsc3zSpEnVFpwQjVWI3o372zjxvwMllRb3Xs2ZXHOXZPdWvfjb3ffw/bffcG7VAoIffKvGYq5sNErRaPGI7l8xvgtTWP7+/jg5XVsBdH0VFBREZmamdcm5JDtC1Dy7P2U++ugjPD09iYuLIy7OtlmZoiiS7AhRTeJ/WMCpuM149biTnV+/fdWi4vJTSLe9t8n63//691usWbWSnPRE8nb/Ctxa5RjSc4qrXMxsGY0qn/CoJiMuoW0qnGs0GvHz8yM4OLjKsTQUlholPz8/QJIdIWqD3cnO8ePHayIOIUQ5R48e5dcVy1FVFffm3a9aVFzZFJJFcHAwc+bM4amnnqJs2xJyzr6Ee0jIZa91ad1NVbeWCNG72az6Uk1GXPb+wImVn1c4t23btrRte3Fvr8bEUqNkGdEqvxWPEKJmyKYsQtRBn332Gaqq4tqsK85+4Vc9v9KCZuCrx3vjrnPiiSeeoGfPnuTl5TFjxozLXqeypOmfS/eRllNUpbhHdzPHev7PxZz68DHu7t70iucrV2l+2BBZRnYKCwvRarWkpaVx9uxZB0clRMNm98jOY489dsXjn3322TUHI4QwT/F88cUXAHh2uqVKr6lsCql8QbNGo+G9996jV69efP755zz82Fge/TUXsG0cWFnSZO/WEqbifHK3/YBaZmDUqFEVjltGcxpjogOg1+txcXGhpKSEjh07Eh8fT0JCAv3793d0aEI0WHaP7GRnZ9v8ZGRk8Pvvv7N06VLrPjdCiGu3fv16Tp48iY+PD+4te1bpNZYpJIvKCpp79uxp/bIy5dlnUE3GCtepyiqwQkMZUdNXEDV9RaVdnAsObkQtM9C+Q4dKl1RnZGTwxhtvsHjx4iq9t4ZGURTr6E6nTp0AqdsRoqbZPbLz448/VnjOZDLx5JNPyoZ2QlSDzz8317j87a67WeOkq/LrRncLv2qX5Ndff53vv/+e3bt24Ru4Fq/OQ2yOX1p3Y+8qMID8hDUAPPjQw5WO3pw5cwaDwUBJSUmVr9nQBAYGkpqaat1zUJIdIWpWtdTsaDQaJk+ezNtvv10dlxOi0crLy2Pp0qUA/N/Yx0h+YzjJbwy3e3+qyxU0BwUFMWvWLADOx32OsTi/wjmWuhswJ01VKU622L9/H4a0RNBouff+MZWe0759e5566imGDh1a5es2NJYiZUvPHUl2hKhZ1VagfPToUcrKKg5pCyGq7vvvv6ewsJA2bdrQs2fVprDsNX78eNq1i8ZUlEvOn1eeSrJ3a4n/XRiVcmvZk4CAgErP0Wq1BAQEEBoaate1GxJLsmPZSHnfvn0VNlUWQlQfu6exJk+ebPNYVVXS0tJYsWIFDz/8cLUFJkRj9O233wLw0EMP1VgBr7OzM/+e9zYjhg0hb9cK9u1LoGfX69+uwGAw8PUSc/L07dx/XvNu6Y2BpWanqKgIT09P8vPzOXHiBM2aNXNwZEI0THZ/Gu3evdvmsUajISAggLlz5151pZYQ4vLSMs+ycvVaAG69bWSN3mvAwIF4dhpC6fnTPDv9Bf5c9ct1J1fffPMNmZmZhISEXHaKqqioiFWrVhEUFETv3r0b7YosV1dXvL29yc3NpVu3bsTFxZGQkCDJjhA1xO5kZ/369TURhxCN3upVK8FUhpNvOK3bVOw6XJ1+2HkS36ETUBSFkyYTz33wI289VXGZeFWpqsrcuXMBmDhx4mW3gMjIyGDPnj3o9XpiY2MrPaexeOCBB/D29iYxMREw1+3cfvvtDo5KiIbpmmt2MjMz+fPPP/nzzz/JzMyszpiEaJR++flnANxb12wSYGkcaBlVUTQavkt24kDyabuvlZ5TTKGhjOB7XmHPnj24u7vzxBNPXPZ8y55YjWmn88sJCAjAxcWFjh07AlKkLERNsjvZKSgo4LHHHiMkJIQbb7yRG2+8kdDQUMaOHUthYWFNxChEg1dSUsKqlb8B4N6q9zVdw13nVKXVW5fbsPMfs/9dpftcup3E93+lcv6PLwF47P8ex9fX97KvtSQ7lpoVIb12hKgNdic7kydPJi4ujl9++YXz589z/vx5fv75Z+Li4pgyZUpNxChEg7du3Try8/PRevqiC2lVo/eqrHGgajKy8vv/sXTp0ismTZVtJ/HSsv0YC86hOLsy5bl/XPHeGRkZgIzsABQXF/Pbb79x+rR5RO3w4cONuveQEDXJ7mTnhx9+4NNPP2XYsGF4e3vj7e3Nrbfeyscff8z3339fEzEK0eD99NNPALi1ikVRanbLusq6LffWHseYd5YnnniCkydPXva1lY0KqSg4+YTi3eOOK47YqKpqTXZkZMe8Ku6vv/7i5MmTNG3aFKPRyKFDhxwdlhANkt2fqoWFhZV+KwsMDJRpLCGugaqq/PLLLwC4t+0HmGthatKljQO/ePnvxMTEkJWVxV133UVxceX3v9yokFpmwLv33654z/Pnz2MwGNBqtfj5+V33e6jvtFot/W7qzx+GKHKczX8eMpUlRM2wO9mJjY3lpZdesvkwLCoqYtasWY1+dYUQ1yIhIYH09HR8uw/HtWkHwFwL882OlFq5f7DeFRcXF77//nt8fHzYunUrDz30EEZjxb2zLh0VUk1Gzq36Dz5970XjfOUGhJZRHX9/f7RabfW+iXqqV+9Ykoz+mPRhgCQ7QtQUu5Od+fPns2nTJsLDwxk0aBCDBg2iadOmbN68mfnz59dEjEI0aKtWrULr5YfXwCesK6RMKvxz6T7ScopqLY4WLVrwww8/4OzszHfffceYMWMqrSEZ3S2ckrREznz7Iqc+fIwHb2iDW4sewJVHpGQl1uXpAmSPLCFqkt3JTocOHUhMTGTOnDnExMQQExPDG2+8QWJiIu3bt7/6BYQQNlatWoVTk1C4pFbHqKokZ5mnhk0mE1u3bsVgMFiPnz17llOnTlVrLAMHDuSrr77C2dmZb775hj59+rBz586LMRmNLPz0E84smUbx8V3079WVHvc8bT1+pREpSXYqKisrI0iTR3Rz87SiJDtC1Ixr6ufu7u7O448/Xt2xCNHoFBYW8scff2B08UIBytf+ahWFKH93SktL+frrrzl27Bje3t5ER0cDsHXrVnbt2sWIESPo0uX6t3uwGD16NCtWrOC+++5j165ddO/enc6dOxMWFsbevXutBcyuzbvx9if/Y+SHf1lfaxmRurF1QIWd0iXZqaiwsJBbXQ5jCoItWi0nT54kOzubJk2aODo0IRoUu0d25syZw2effVbh+c8++4x//etf1RKUEI1FXFwcBoOBsCYezLo92vq8RoHXR3UgyMuFb7/9lmPHjuHs7GxT61JaWorJZGLZsmUcPHjwuuIoNJQRNX0FUdNXUGgo4+abb2bPnj08+OCDaDQa9uzZw6+//srJkydp0qQJPv0fI3D0i2QVUWF1VvkRqfKxnjt3DpCVWOV5eXlRomrRKNC+g7lea9++fQ6OSoiGx+5k57///S9t27at8Hz79u358MMPqyUoIRqLVatWAXDLLbfwt+5Nrc+vnXwT9/SI4I8//iApKQlnZ2ceeOAB2pTbRmLkyJF069YNgB9//NGaTFRFVRoQhoWF8cUXX5CWlsZ3333HJ598wqpVqzhyLBl9r1EoGi2RfhVXZ1lGpMrLzMxEVVXc3d3x9PSscpwNnaIonDZ6kWb0ok3nXgDs3bvXwVEJ0fDYPY2Vnp5OSEhIhecDAgJIS0urlqCEaCxWrVoNwE+Z/swxlFmfD9a7kp6eTlxcHAAjRowgIiLC5rWKonDrrbeSlZXFiRMn+Pnnn3nkkUeqfXPNwMBA/va3i8vKCy+Jc9bt7XnhZ3OjQcuI1KVTWC4uLvTq1QtFURrt5p+V+WHnSTaUtgAUCGmNZ6fjUrcjRA2we2SnadOmbNq0qcLzmzZtIjQ0tFqCEqIxOHnyJIcOHQRFg2tUjM0xVVX57bffUFWV6Oho65YCl9JoNIwcORJnZ2dSUlLYv39/peddj0unuC4dFbq0Z889PSIqXMPPz4+hQ4cyZMiQao+vvrrYjdqS/Cn4DplA/OFkB0YlRMNkd7Lz+OOP88wzz7Bw4UJOnDjBiRMn+Oyzz3j22WftLlr+4IMP6NSpk7UTc2xsLL/99pv1eHFxMePHj8fPzw9PT09Gjx5tLXK0SElJYfjw4bi7uxMYGMhzzz1HWVnZpbcSos6xjNroglqgdbWd2jl1MpWUlBScnJy45ZZbrnidJk2a0K+fuRnhunXrKu2PU1uC9VfutSMuutweZYnp51FVtfIXCSGuid3TWM899xxnz57lqaeesi6DdXV1Zdq0acyYMcOua4WHh/PGG2/QqlUrVFXl888/Z+TIkezevZv27dvz7LPPsmLFCr777jv0ej0TJkxg1KhR1pElo9HI8OHDCQ4OZvPmzaSlpfHQQw/h7OzM66+/bu9bE6JWbdiwAcDaSLC88KYRjB07lnPnzqHX6696rdjYWM6fP0/37t3rXMM+VVU5efIkgYGBuLi4ODqcOsPSjbp8wqOajOScSiIlJYXIyEjHBSdEA2P3yI6iKPzrX/8iMzOTrVu3smfPHs6dO8eLL75o981vu+02br31Vlq1akXr1q157bXX8PT0ZOvWreTk5PDpp58yb948Bg4cSLdu3Vi4cCGbN29m69atAKxevZoDBw7w5ZdfEhMTw7Bhw3jllVdYsGCBTT8SIeoiy8iOS0THSo+Hh4dfdvrqUs7Oztx+++3VMpVc3VtVFBQUWFdrlpaWVuu167NLu1ErqPgnr8GYd5YeUz61qY0SQlyfa95x0NPTkx49etChQ4dq+bZmNBr5+uuvKSgoIDY2lp07d1JaWsrgwYOt57Rt25aIiAi2bNkCwJYtW+jYsaNN344hQ4aQm5t7xdqFkpIScnNzbX6EqA2W+pfw8V+QmJiIoii4hpuXnFtqYY7MvvmyK6Sqyt5pkB92Xtz8s7q3qsjLy8Pb2xtfX1+cnZ2r7boNgaXeqavTSe5y3UuvABMAhjPHHBmWEA3O9X2iVoOEhARiY2MpLi7G09OTH3/8kejoaOLj49HpdPj4+NicHxQURHp6OmBeGXZpgzLLY8s5lZkzZw6zZs2q3jcihB1KUs29VDrHxJB9oV4nPacYb6WYjz76iM6dO3PrrbfavXIpJyeHP/74g/z8fO69994qveZioazZlRoDXouQkBCeffZZGdW5Cg+lFK8Q88hcacZxB0cjRMPi8GSnTZs2xMfHk5OTw/fff8/DDz9sHd6vKTNmzGDy5MnWx7m5uTRt2vQKrxCiehWnmpcXR/S/l+wLzw2eF8eY1gpOpaXk5eVd8xLtXbt2oaoqWVlZ+Pv7X/X8ygplLY0BL0120nOKaR5gW0xtGZG6GhnVubxs1dyXyM3N/OdtkGRHiGp1zdNY1UWn09GyZUu6devGnDlz6Ny5M/Pnzyc4OBiDwcD58+dtzj9z5gzBwcEABAcHV1idZXlsOacyLi4u1hVglh8halNxyj60Xn7s1V3smmxS4cvDJgpUZ2uzQHvp9XpatWoFwO7du6v0GkuhbHnlGwPW5BSXMMs2mZOckpJiFEWh7HwaZ7LO2Sz5F0JcuyolO127diU72/z9c/bs2RQWFl7lFdfOZDJRUlJCt27dcHZ2Zt26ddZjhw8fJiUlhdjYWMC8AiUhIYGMjAzrOWvWrLHZP0iIusaYn03ZuZM4+4ahYptlqCiUuTahRYsW13z9zp07A7B///4q1e5cWihbvjHg5aa4qrobu9Fo5J133uF///sfxcXVW/jckOSoLhfaZwTh7meeytq/T5oLClFdqpTsHDx4kIKCAgBmzZpFfn5+tdx8xowZbNy4keTkZBISEpgxYwYbNmxgzJgx6PV6xo4dy+TJk1m/fj07d+7k0UcfJTY2lt69ewPmFvvR0dE8+OCD7Nmzh1WrVjFz5kzGjx8vS1xFnVV8oV6nRZB3hREVBZXeHVqi0Vz7oGurVq3Q6XTk5OSQmppapddcrjHglaa4quLs2bPk5ORw8uRJ+Td5BSoanpr0DGMeehiC2+AS0ZGt8QccHZYQDUaVanZiYmJ49NFH6devH6qq8tZbb112fxt7lqBnZGTw0EMPkZaWhl6vp1OnTqxatYqbb74ZgLfffhuNRsPo0aMpKSlhyJAhvP/++9bXa7Vali9fzpNPPklsbCweHh48/PDDzJ49u8oxCFHbDBnHcInoSM9evRlQbqsFBZU+zie4qcffrnKFK3N2dqZdu3bs2bOHhISECttMXE35xoCV9YKpbO+ryym/07lsE1HRpfVO/9uSjN+tz6AoGr48q4L8kQlRLaqU7CxatIiXXnqJ5cuXoygKv/32G05OFV+qKIpdyc6nn356xeOurq4sWLCABQsWXPacyMhIfv311yrfUwhH+mHnSXxueBBFo2E9KgMuPB+syeFGXTIR/t7Vsit4hw4d2LNnDwcOHGDo0KHX3GjQMsV1tb2vLseS7MhO51dnmTJUlAujepIcClFtqpTstGnThq+//how78Wzbt06+fASwk7WX2YXpqhUFGs9TL7qyi03xqL38qyWEZDmzZsTFhZGs2bNKCsru66uyqO7hVuTnbWTb6qwGutKLPV0l7aIEBXtPJxaYcpQCFE97F56bjKZaiIOIRq8yupfLI/zVRf69LvhupsJWmg0Gv7v//6vWq5Vnr17X5WfxhJX1jq0CQqqTdG6qqooilLpkn8hRNVdUxXk0aNHmThxIoMHD2bw4MFMmjSJo0ePVndsQjQozfw94JLVUZcWKDvKpTuZV4eioiJrd3IZCb66VmH+TOobDJj/jqjlvljKkn8hro/dyc6qVauIjo5m+/btdOrUiU6dOrFt2zbat2/PmjVraiJGIRqEEL0bHgeXoZrMu5JrFJh1e3vaac8QpTlXI/u5lZaWcuTIEbKysqr92ldjmcLS6/W4uspu6FejKApPDIkBFPL2rLI+B/Yv+RdC2LL7K9z06dN59tlneeONNyo8P23aNOtKKiGErYKCAg7/+hlsWErIw+/w+4t3ENHElZMbzmAwGCjIycbHs2qrnKpqxYoV7Nmzhz59+tT6v02Zwrp2Wo8m1toui8t1tRZCXJ3dIzsHDx5k7NixFZ5/7LHHOHBA+kIIcTk7duzAaDSCChp3H4L1rqSkpGAwGPD09KyWHcsv1bJlSwASExOr/dpXIyux7Jdz/jxdnU7SvamXzTQW2LfkXwhhy+5kJyAggPj4+ArPx8fHy4eaEFewefNmAFzC2lmnJ5KSkgBzUlITfWhatGiBoihkZmZau6Db61rreWRkx34lhhI6O6cToy8ie/UCmylPe5b8CyFs2T2N9fjjjzNu3DiOHTtGnz59ANi0aRP/+te/bDbXFELYsiY74e2sz5VPdmqCm5sbkZGRJCcnc+TIEXr16lUj97mUyWSq0j51wpafnz9GVcFFMdHK6Sx7PnyMgJH/ZNO8cbIaS4jrYHey88ILL+Dl5cXcuXOZMWMGAKGhobz88stMmjSp2gMUoiEwmUxs2bIFMI/sAOTm5JCZmYmiKDRv3rzG7t2qVataT3bOnTtHWVkZzs7O+Pr61so9GwIvNxfCQoJIT08npksMu3b+RXHKHruX/AshbNmd7CiKwrPPPsuzzz5LXl4eAF5eXtUemBANyeHDhzl37hxubm6kfDIBZ2dn/vrrLwDCw8Nxc6u56YnWrVuzZs0akpOTMRgM6HS6GruXhbe3N2PGjCE/P/+69vlqjIKDg0lPTycyIhIAQ8ZxB0ckRP13XQ01JMkR4soKDWVEv7iKvD2rAejRowfOzs4AZGZmAjU3hWXh5+eHXq+3bgx6PTuqV5VOp6vx99VQWab9vL3Nn6+S7Ahx/aqne5gQ4opKTh0EsNa5AQwbNow+ffpc11YOVaEoCrfffjteXl74+/vX6L3E9bMkO2WlZeb/PXeKgoIC3HV6R4YlRL0m48tC1AJLstO3b1+b5/V6PZ6eNV942rx5cwICAmpl53FVVYmLi2P//v2UlZXV+P0aGsvqtYKCfKKiogCVo4cPOjQmIeo7SXaEqGHGolzKzp0EoHfv3oA5IWio8vPz2bBhAz/88EODfp81xdXVFR8fHwB69uwJUGm7DyFE1dmV7JSWljJo0CCHNCgTor4qOXUIgNat21inkRYvXszixYuty7Nrw6FDh/j+++85dOhQjd7HZDLRtWtXoqOjrfVJwj6WqaxWrVoBsGfPHkeGI0S9Z1fNjrOzM3v37q2pWIRokAyZJ3CJ6EjMhSksg8HA8ePHMZlM3HrrrbUWR0pKCvv378fZ2Zm2bdvW2H30ej233XZbjV2/MQgODubQoUP4+fkBsGvXLgdHJET9Zvc01gMPPMCnn35aE7EI0eD8sPMk+t6jCb5vDtsDh/PNjhRSUlIwmUzo9XrrdEVtsPTyOXbsmEwv1XGWkR3Lsv09e/aQU1BE1PQVRE1fQaFBaqGEsIfdq7HKysr47LPPWLt2Ld26dcPDw8Pm+Lx586otOCHqs7ScIl5ath9FMf/CUlH459J9vN7H/M+uWbNmtVIwbBEZGYlWqyU3N5dz585ZRw2qW0ZGBr6+vjg5yWLPa2VJdnJzc/H19eXcuXMcOLDfwVEJUX/Z/Wm0b98+unbtCsCRI0dsjtXmB7cQdd3xrAJMlwygGFWVhONpOGNOdmqTs7Mz4eHhnDhxguTk5BpJdgwGAx988AEajYapU6fWaLPEhszb25tOnTrh5+fHH3/8wZo1a4jftQsIc3RoQtRLdic769evr4k4hGhwmvl7oKCicvFLgEaB0nOncVa4sKy4dkVGRnLixAlSUlLo1q1btV/fUnDt4eEhic51UBSFO++8E4CYmBjWrFnDrp07wVeSHSGuxTUvPU9KSmLVqlUUFRUBDXsprRDXIkTvRkTGZpudqyfFBuCuGPDz88Pb27vWY4qMNG9BcOLEiRq5fnp6OiCbf1an7t27A7B7txQpC3Gt7E52zp49y6BBg2jdujW33noraWlpAIwdO5YpU6ZUe4BC1GdH1/yPUx8+hiH9KGsn38SIaF+aN29O69atHRJPeHg4Wq0WDw8PSkpKqv36lmTH0hhPXDtVVcnOziY8PByAfQkJqMZSANJzih0ZmhD1jt3TWM8++yzOzs6kpKTQrl076/P33HMPkydPZu7cudUaoBD1VWpqKqdOngRFg5NvGMF6V9wDWjp0zyidTse0adNqrP+NjOxUn4yMDD788ENcXFzw8fGhLKIHaMwf2YPnxTFnVEfu6RHh4CiFqB/sTnZWr17NqlWrrN82LFq1alVjQ+NC1BeWjT8BZnfMAUAX2AyNztWRYdmoqUTHZDKRkZEBSLJTHfz9/dHpdDRp0oSu/QaS1O4R6yIQkwr/XLqPG1sHEKKX2ighrsbuZKegoAB3d/cKz587dw4XF5dqCUqIhmDrli0AuISZR0ALCwtQS50qtGtwlNLS0mpNfLKysigrK0On0+Hr61tt122stFot06ZNQ6PRsOXYWY4qtlUHRlUlOatQkh0hqsDump0bbriBL774wvpYURRMJhNvvvkmAwYMqNbghKjPtm/bCoBLmLlb8Z7du3nrrbdYuXKlI8PCZDLx2Wef8cYbb5CXl1dt17XU7wUHB0sbimpiaSrYp2MrVJPJ5phWUYjyr/jFUwhRkd3JzptvvslHH33EsGHDMBgM/OMf/6BDhw5s3LiRf/3rXzURoxD1jqm0hD0XNm/c8e54kt8YTtop82agjh710Gg0lJaWYjKZqnXq+fTp0wCEhIRU2zWF2cDeXTi36j2blX2vj+ogozpCVJHdyU6HDh04cuQI/fr1Y+TIkRQUFDBq1Ch2795NixYtaiJGIeodQ3oiZWVlBAcHExkZiclk4uRJc7LTtGlTB0cHERHmwtbqTHYsIzuhoaHVds3GLjs7m48++ogVK1bgnPqXeWXfuVOsnXyTFCcLYYdr6ueu1+t5/vnnqzsWIRqMsryzaL386NOnD4qicObMGUpKStDpdHViWXZkZCTbt28nJSWlWq5nMpmsK7FkZKf6eHh4kJ6ejqqq9OjZi9WrVlKSkkCwvu4UvAtRH1xTspOdnc2nn37KwYMHAYiOjubRRx91+PC8EI72w07z6I1n9E14tL0Bvbc5AUhNTQXMfW4sdRiOZGkumJGRQWFhYaWLDuyRlZVlLXiuqT23GiOdToe/vz+ZmZnExMSwetVKDOlJjg5LiHrH7k/djRs3EhUVxbvvvkt2djbZ2dm8++67NGvWjI0bN9ZEjELUC5aNPy0UjYYNBaGk5RRZR1As00eO5uHhgb+/P0C1jO5kZ2ej1WoJCQmpE8lcQ2KZFgwLM28VYUhPdGQ4QtRLdo/sjB8/nnvuuYcPPvgArVYLgNFo5KmnnmL8+PEkJCRUe5BC1GXle+tcyqRCclahNaGoC/U6FpGRkWRlZXHixAnatm17Xddq06YNM2bMoLCwsJqiExYhISHs2bMHV1dzaw9D5glKSkpw18mu8kJUld1fwZKSkpgyZYo10QFzP4jJkyeTlCTDq6Jx01yy4lqrKET6uTFgwAC6du1aoRmnI7Vs2ZJ27dpZRwyul1arxcvLq1quJS6yjOzk5eaaSwVMZSQe3H+VVwkhyrM72enatau1Vqe8gwcP0rlz52oJSoj66p+3tkNVzf1QFFXl9VEdCPVxJyYmhttuuw2dTufgCC9q27Ytd999Nx06dHB0KOIKLH2L8vPz6devHwDbtm1zcFRC1C9VGgfdu3ev9b8nTZrE008/TVJSEr179wZg69atLFiwgDfeeKNmohSinrijSygTHvobGMuY9+rMRrE8ODMzk6VLlxIZGcnQoUMdHU6D4+zsTEBAABkZGXTt2pVly5axdetWJk6c6OjQhKg3qpTsxMTEoCgKqqpan/vHP/5R4bz777+fe+65p/qiE6KeOXb6LCUn9oBqYsiN5i8D8fHxBAQE1MniXcvO2gaD4Zr3szp9+jTp6el1atSqoQkNDSUjI8M65bh161YHRyRE/VKlZOf48eM1HYcQ9ZZluTnAPZ/F49lxEEXJ8YSEhlJSUsKyZctQVZXJkyfXuZqWXbt2sXz5clq0aMEDDzxwTddo2bIld999t00dn6heoaGhxMfH4+Rk/sg+duwYmZmZBAQEODgyIeqHKiU7lp4cQghbly43VwHfIRM4t/a/AJw8eRJVVfHx8alziQ5cXM6cmpqKyWS6ppEnDw8P2rVrV92hiXIsjRozMzNp27Ythw4dYtu2bYwYMcLBkQlRP1zT2sXTp0/z559/kpGRgemSzekmTZpULYEJUR8czyrApNo+p2i0/P2+kbjrnOpcf51LBQYGotPpMBgMZGRkXPNUlqhZQUFBaDQaCgsL6du3L4cOHWLr1q2S7AhRRXYnO4sWLeKJJ55Ap9Ph5+dns7uxoiiS7IhGpZm/BxoFm4RHNRkZ3Mu8MtHSObku9dcpT6PR0LRpU44ePUpKSordyc758+fZu3cv4eHhNG/evIaiFM7OzgQGBpKenk7Hjh0BqdsRwh52j1m/8MILvPjii+Tk5JCcnMzx48etP8eOHbPrWnPmzKFHjx54eXkRGBjIHXfcweHDh23OKS4uZvz48fj5+eHp6cno0aM5c+aMzTkpKSkMHz4cd3d3AgMDee655ygrK7P3rQlhtxC9G7Nub299rJqM5P3+EQNju2I0Gq2bf9bVkR24GNu1dFI+ceIE69evJy4urrrDEpcYMmQI48aN48YbbwRg+/btGI1GB0clRP1gd7JTWFjIvffeWy2rSuLi4hg/fjxbt25lzZo1lJaWcsstt1BQUGA959lnn+WXX37hu+++Iy4ujtOnTzNq1CjrcaPRyPDhwzEYDGzevJnPP/+cRYsW8eKLL153fEJUxehu5kaBhUk7OPXhY3T0yMPZ2ZkzZ85QWlqKq6trnS4ktYw6paSk2Ky4rIpTp04BsvlnbYiKiiIkJISOHTvi4eFBXl4ehw4dcnRYQtQLdmcsY8eO5bvvvquWm69cuZJHHnmE9u3b07lzZxYtWkRKSgo7d+4EICcnh08//ZR58+YxcOBAunXrxsKFC9m8ebN1CHf16tUcOHCAL7/8kpiYGIYNG8Yrr7zCggULMBgM1RKnEFVRlLgFY95Z+vTpA2CzRUT56d66JiwsDI1GQ15eHjk5OXa91pLs1KXO0A2dk5MT3bt3B2QqS4iqsrtmZ86cOYwYMYKVK1fSsWNHnJ2dbY7PmzfvmoOxfNBadk/fuXMnpaWlDB482HpO27ZtiYiIYMuWLfTu3ZstW7bQsWNHgoKCrOcMGTKEJ598kv3799OlS5cK9ykpKaGkpMT6ODc395pjFsKi5JS5s3hsbCwA3bp1q5O9dS6l0+m4+eab8fHxsWv387KyMtLTzbu6S7JTO3bv3k1qaiqxsbHExcWxdetWxo4d6+iwhKjzrinZWbVqFW3atAGoUKB8rUwmE8888wx9+/a1tq+3NCrz8fGxOTcoKMj6IZuenm6T6FiOW45d7j3MmjXrmmMV4lLG4nxKz5qLkS3JjrOzc71p22Dphm6PtLQ0TCYTHh4e6PX6GohKXGrnzp2cOnWK1q1bA/D5z2tZ47eCA7OHyMagQlyB3f865s6dy2effcYjjzxSrYGMHz+effv28eeff1brdSszY8YMJk+ebH2cm5tbZ1fLiPrBcMpcO9GiRcs6XZ9TnSzF1+Hh4XV6mq4h6dy5M82aNbOumivNPIGpRHaaF+Jq7E52XFxc6Nu3b7UGMWHCBJYvX87GjRtthsODg4MxGAycP3/eZnTnzJkz1n/swcHBbN++3eZ6ltVal1tG6+LigouLS7W+B9F4ueuceKKdkVeAvn3N9TqJiYkkJSXRpk2berMk+9ixY5w4cYLevXvj5uZ21fMt9TrVtWu6uLoePXpY/zsiMpKUEycoSU90YERC1A92FxM8/fTTvPfee9Vyc1VVmTBhAj/++CO///47zZo1sznerVs3nJ2dWbdunfW5w4cPk5KSYp0qiI2NJSEhgYyMDOs5a9aswdvbm+jo6GqJU4irsYxIWv5eHj58mO3bt5OUlOTIsOyyYsUKNm7caO0NdDWWkR1JdhyjR4+ewMVRRSHE5dk9srN9+3Z+//13li9fTvv27SsUKC9durTK1xo/fjxLlizh559/xsvLy1pjo9frcXNzQ6/XM3bsWCZPnoyvry/e3t5MnDiR2NhYa43BLbfcQnR0NA8++CBvvvkm6enpzJw5k/Hjx8vojagVBoPBuirmhhtuAGxXYtUXERERnDt3jtTUVGtNyOXk5+dbFxRIslO7ioqKOHnyJD179eKnVb9jNBSSnlNM8wBPR4cmRJ1ld7Lj4+Nj0+fmenzwwQcA9O/f3+b5hQsXWmuC3n77bTQaDaNHj6akpIQhQ4bw/vvvW8/VarUsX76cJ598ktjYWDw8PHj44YeZPXt2tcQoxNXs2rWLoqIi/Pz8aNeuHUVFRWRmZgJ1u5ngpSIiIoiPj69Sc0HLFFZAQIB8qahlP//8M4cPHybHvwNhf1+IotEweF4cc0Z15J4e9efvmxC1ye5kZ+HChdV286o0MHN1dWXBggUsWLDgsudERkby66+/VltcQtjjjz/+AKBfv35oNBrr9I6vry8eHh6ODM0ulsTs1KlTlJWVWXfYrkz54mRRu8LDw9l16Bg/prqgaMyF4SYV/rl0Hze2DiBEf/V6KyEam7rdAESIemDjxo1AxSms+jSqA+bkzN3dHaPRSFpa2hXPleJkxwkPDyfX5IqK7Qo4o6qSnCUrs4SojN0jO82aNbviMlN798cSoj4zmUxs2rQJuJjs1PXNPy9HURQiIiI4dOgQKSkpV4y/RYsWaDSaepfQNQShoaHoNSUoqDYJj1ZRiPKvelNIIRoTu5OdZ555xuZxaWkpu3fvZuXKlTz33HPVFZcQ9cL+/fvJzs7Gw8ODLl26oKoq+fn5QP0b2QFzgnbo0CFOnz59xfP69u1b7S0oRNXodDqaBTehz6kTbDJEgqKgmoy89rcYmcIS4jLsTnaefvrpSp9fsGABf/3113UHJER9YqnXiY2Nta5MnDBhAjk5OXh7ezsytGvSsWNHWrRo0WgaI9ZX4eHhtD6zk9wyLWu++i9l51Lp9eQOR4clRJ1VbTU7w4YN44cffqiuywlRL1xar2Oh1+vrZVdhLy8vgoKCrrifV3p6unX0SjiGpTA83LkAtbQIY95Za+IthKio2pKd77//3rqBpxCNgaqq1l8wlyY7DdmPP/7I3LlzSUyUzr2OYkl2/DWFuDdtD1ArW+0IUV/ZPY3VpUsXm2+sqqqSnp5OZmamTf8bIRq648ePc/r0aZydnenVqxeqqvL+++/j6+vLiBEj8PLycnSI1+TUqVNs374dLy8vBg8ebHPMaDRa//2HhIQ4IjwB+Pn54erqSnFxMaEt23N+21Li4uIcHZYQdZbdyc4dd9xh81ij0RAQEED//v1p27ZtdcUlRJ1nGdXp3r077u7unD17lqysLLKzs6u0t1RdVVRUxN69e2nSpEmFZEer1fL3v/+d4uJiXF1dHRShUBSF8PBwkpKSeP/xQQz86jWOHDnC6dOnCQ0NdXR4QtQ5dic7L730Uk3EIUS9c7n+OmFhYVdsyFfXWaZIsrOzycvLq3SEShIdx7MkO1lZWXTp0oWdO3fS6Yl5eLYfwF8zB9H9VfOeggdmD8FdV3//PgpRHaSpoBDX6NJ6nfq4H1ZlXF1dCQoKAqiwKajJZHJESKISltYGJ06cYMCAAQCUpCQ4MiQh6qwqJzsajQatVnvFn/r8bVYIe6SlpZGYmIiiKNZ+M5ZkJzIy0pGhVQvLL9Ly+2SVlZXx73//m4ULF1JUVOSo0MQF4eHheHh4EBISwo033ghAccpeB0clRN1U5ezkxx9/vOyxLVu28O6778q3PtEoFBrK6PTEPAA6x8TQpEkT8vPzOXfuHFD/R3bA/B527NhhM7KTlpZGcXExWVlZMo1VBzg7OzNlyhQURSEvLw+tVkvZ+XTKcjMcHZoQdU6Vk52RI0dWeO7w4cNMnz6dX375hTFjxshO46LRKD5h/gZ9U3/z9IFlBCQoKKhBJAKWkZ20tDQMBgM6nc5mz6/62EOoIbL8/+Dl5UXXbt3YdfAopVknOZNbbD0nPaeY5gGejgpRiDrhmmp2Tp8+zeOPP07Hjh0pKysjPj6ezz//vEEM3wtRFcUn9gAXkx1nZ2ciIyNp3ry5I8OqNnq9Hh8fHwIDA8nLywPq7wanjUFeXh5Nb7qXsL8vxK15V0a8u8l6bPC8OL7ZkXKFVwvR8NlVZJOTk8Prr7/Oe++9R0xMDOvWrWtUzdSEADiRnIxqKsMlsjMtOnUHoFWrVrRq1crBkVWv8ePHW+vwVFW1TmlJslN3lJWVsWDBAk5lF7BL0wnlwsagarlzTCr8c+k+bmwdIHtniUaryiM7b775Js2bN2f58uV89dVXbN68WRId0Si9+8s2wv6+kOB7X+OO/+5ssN+ayy84yMzMpKioCGdnZ4KDgx0YlSjPyckJnU5HnupqswP6pYyqSnJWYS1GJkTdUuWRnenTp+Pm5kbLli35/PPP+fzzzys9b+nSpdUWnBB1TVpOEb9l6FE05l8sJhVmLE2gZ4QXzYKaODi6mlFWVsbx48cBc+GyVqt1cESivLvuuovhqo5V8/7ApFZ+jlZRiPJ3r93AhKhDqpzsPPTQQ1KUKBq945kFcMm/A5MK/1qwkL/d2KlCx+H67quvvuLo0aPWqauoqCjHBiQq8Pf3B2DW7e2Z+VMCiqIB1QSKeeBeo8DrozrIFJZo1Kqc7CxatKgGwxCifjDlnkE1mVDK7QquoOKtKaZJk4Y3smMymTAajZw8eRKQZKcuG90tnGmfrODcmv+iM+TQ5MH5KFpn1k6+SVZjiUZPOigLYYc9WzZwbtV7qBd6SmkU6OeSiodS2iALdy3vqbS0FGdnZ9l3qY7aunUr/1v4Gc2DvCk9m0LemRRKTh0CIFhf/1shCHG9JNkRwg4rV64kf+8a8uJ/A2Dx/W1oqcnAzc3NOp3QkJRP4KRep+46e/Ys6elphGnzcYvqAkBR8m4HRyVE3SHJjhBVZDAYWL9+PQCuYe0AKMlOAxpuo73yIzmyCqvuskwv9g+F96c9CkArw1GS3xgum4AKgSQ7QlTZpk2bKCgoIDAoCOfAKABOnWzYvWecnJysozmy913dZUl2MjIy6NevHwC7du0iMzPTgVEJUXdIsiNEFa1atQqAQYMHm1e8oHIy1Vy421CTHUVR6N7d3DjR0klZ1D0eHh4EBgYCUFRURKdOnVBV1fp3VojGTr6qCXEVhYYyol9cxemF3wEwfNgwlowZjtFoZO/eMFJSUggJCXFwlDWnVatWnD9/vsEmdA1Fs2bNyMjIIDk5meHDh7N3716WL1/OAw884OjQhHA4RVXVy7Shajxyc3PR6/Xk5OTg7e3t6HBEHVNoKKPNlK85+Z8HAThz5oz1W7QQdcWhQ4f45ptv8PPzo1u3bvTp0we9Xk9mZibOzs6ODk+IGlHV398yjSVEFRQdN69sienSpdEkOmVlZXz00Uf89ttvlJaWOjoccRVRUVEoisLZs2dp06YNAQEB5OTk8Oeffzo6NCEcTpIdIaqg5PRhXCI60ufmEYC52d62bdtIT0+noQ6OpqamkpaWxoEDB9BqtZw/f5709HRHhyUuw9XVlbCwMACSk5O59dZbAfjll18cGZYQdYIkO0JcxTfbT+A7+AmC75vDr0ovvtmRQnp6OitXrmTRokUNNtkJDQ3lrrvuYuDAgezfv5/58+fz66+/OjoscQUtWrQA4OjRo9x2220ALF++3JEhCVEnSLIjxBWk5RQxe/kh6/YQKvDPpfv468BRACIjI9FoGuY/IxcXF6Kjo+nSpYt1xODUqVMYDAYHRyYux5LsHDt2jMGDB+Ps7ExiYiKHDx92cGRCOFbD/JQWopoczyrg0nEbo6qy5+hpoPHsFdWkSRP0ej0mk4mUlBRHhyMuIywsDFdXV4qLi8nLy6N///4ALFu2zLGBCeFgkuwIcQVRfu7mHaTL0ShQlGn+hd+sWTNHhFXjjh07xoYNG6w1OoqiWN/rsWPHHBmauAKNRkPz5s0B8/9PI0eOBGDp0qWODEsIh5NkR4grOHfyGGdXvodqMgLmROe5/uG4GAtxc3MjKCjIwRHWjISEBOLi4ti7d6/1Ocsv0ePHjzsqLFEF/fr14//+7//o168fd955J4qisHXrVlJTUx0dmhAOI8mOEFewbNky8veu4exv8wFYO/kmOrjnAheX+jY0qqqSmJgIQMuWLa3PW0Z20tPTKSgocEhs4upCQkIICwtDo9EQGhpK3759ARndEY2bJDtCXMHPP/8MgEtYNADBeldOnDgBNNx6ndOnT1NQUIBOpyMyMtL6vKenp3UkS0Z36o+//e1vAHz//fcOjkQIx5EOykgHZVG55ORkmjVrhqIonDp1yrolRGlpKampqQQEBODl5eXgKKvf+vXr2bhxI9HR0dx11102xw4cOACYp7RcXV0dEZ6ogoyMDLZs2YKLiwsdOnSgadOmgELYU4s48vb9shO6aDCkg7IQ18nyTfimm26y2fvK2dmZ5s2bN8hEB+DIkSOAeU+sS0VHRxMdHS2JTh1XVFREfHw8e/bsITQ0lF69ewMqRYlbHB2aEA4hyY4Ql/Htt98CcPfddzs4ktqTm5trXYFVWbIj6oemTZsSGxtrHZm7485RaL38KD13mvScYgdHJ0Ttk7FMISpx7NgxduzYgUajYfTo0dbnly5dioeHB7GxsQ1yytNSmBweHo6Hh0el55w5c4ZDhw4RHBxMmzZtajM8UUUajYZbbrnF+tit/SDC/t4WRaNh0Lw43hjVkXt6yC72ovGQkR0hKvHdd98BMGDAAOvGn4WFhSQkJLB169YGuQoLLk5htW7d+rLnHDp0iA0bNtgsSxd1V1pOEfP/TLvYBVw1dwFPyylycGRC1B5JdoS4RKGhjBff/hiAO0ZdHNU5etS8RURgYGCDrNcxGAzWhoFXmsIq329H1jfUbSdOnODbXzdguuT/JqOqkpxV6JighHAAhyY7Gzdu5LbbbiM0NBRFUfjpp59sjquqyosvvkhISAhubm4MHjzYOsxuce7cOcaMGYO3tzc+Pj6MHTuW/Pz8WnwXoqE5fOgQhjNHQdFw+x13Wp+3JDvle880JElJSZSVldGkSZMrNksMDQ1Fp9NRVFREWlpaLUYo7LVx40ZOHd7NpeOQGgWi/N0dEpMQjuDQZKegoIDOnTuzYMGCSo+/+eabvPvuu3z44Yds27YNDw8PhgwZQnHxxQK7MWPGsH//ftasWcPy5cvZuHEj48aNq623IBqg/33xOQBuLbrj7+8PmBNvS7Jj2WyxoTl48CAA7dq1u+I0nVartTYYTEpKqpXYxLVp27YtHkopwwLOW59TTUY6Fu8jRO/muMCEqGUOLVAeNmwYw4YNq/SYqqq88847zJw507q/yxdffEFQUBA//fQT9957LwcPHmTlypXs2LGD7t27A/Dee+9x66238tZbbxEaGlrptUtKSigpKbE+zs3NreZ3JuqbQkMZ0S+uQjUZKf7yS7Refnj3HEV6TjHNAzzJyMggPz8fZ2dnIiIaXmFnWVmZtV6nXbt2Vz2/VatWHD58mMTERG688caaDk9co3bt2vHrr78SlJ+EGx05f+o4mT/PodBFIdKpDYrWmQOzh0jfHdHg1dmanePHj5Oens7gwYOtz+n1enr16sWWLeZeEVu2bMHHx8ea6AAMHjwYjUbDtm3bLnvtOXPmoNfrrT/mhltCQNHxXRQGdSTs7wtxbdqBwfPi+GZHinUEIyoqCienhveLQavV8tBDD3HTTTcRFhZ21fMtNT0nT56ksFBqP+oqT09Paxfs5k7Z6EJa4e/hTFZWFoWJl/+MFKKhqbPJjqXXx6W1A0FBQdZj6enp1pUyFk5OTvj6+lrPqcyMGTPIycmx/sgGecKiNCsV3yETrStXTBdWrmSXmH9xNNQpLEVRCAsLo3///lVaaebt7U1QUBAuLi5kZmbWQoTiWkVHm7c6idJmo2i0PPTwIwAUHt4MIH13RKPQ8L6iVoGLiwsuLi6ODkPUIT/sPImqquh7japwzKiq+EW2ZfKAPhiNRgdEVzfde++9eHl5odVqHR2KuIJ27drx22+/EagpYM+MfmRnt+eD33bhO2QCAIPnxTFH+u6IBq7OjuwEBwcD5gZm5Z05c8Z6LDg4mIyMDJvjZWVlnDt3znqOEFeTllPES8v2X3ZEQ6soRPm7oyhKg5zCOnr0KD///DMpKSl2vc7Hx0cSnXrAy8vLWmd24MABXJoE4Td0QoXRS+m7IxqyOpvsNGvWjODgYNatW2d9Ljc3l23bthEbGwtAbGws58+fZ+fOndZzfv/9d0wmE7169ar1mEX9dDyroEIfEguNAs8PaUawd8PdCyo+Pp74+HjrJp/2UlWVsrKyao5KVCfLVNb+/fs5nlUAiu1Hv/TdEQ2dQ5Od/Px86wctmIuS4+PjSUlJQVEUnnnmGV599VWWLVtGQkICDz30EKGhodxxxx2AeXh26NChPP7442zfvp1NmzYxYcIE7r333suuxBLiUs38PVCoPNtZ9Uw/zmz5iblz53L+/PnaDayW9OzZk27dutG5c2e7X7tnzx7effdd1q9fXwORierSvn17FEXh1KlT+GgNaC4ZxLSMXgrRUDk02fnrr7/o0qULXbp0AWDy5Ml06dKFF198EYB//OMfTJw4kXHjxtGjRw/y8/NZuXKlzY7Lixcvpm3btgwaNIhbb72Vfv368dFHHznk/Yj6KUTvhk/ib6gmcz1O+V8EpefPYDAYUBQFvV7voAhrVtOmTRkxYoTNzu5V5eTkxPnz5zl48KB0U67DyhfXnzl+mFm3t0dVTeaDqonX7uwgfXdEg+bQAoT+/ftf8QNSURRmz57N7NmzL3uOr68vS5YsqYnwRCOxe/du4pe+j9b7e0IefpvfX7id5gGeAPz666+Aea+ohrof1vVo1aoVWq2W7OxsMjIyrth5WThW586dSUpKYu/evfzf3/vxz6+3kvXLvynNOkHALd8AUqAsGq46W7MjRG156623AHAJa4fWXU+w3jxyqKoqhw8fBq68MWZ9lZuby4oVK66r9YJOp7Nun3GtNT+idrRp0wYXFxfOnz/PmfR0tG5eODcJxZh3lrlz5zo6PCFqlCQ7olE7dOgQX3/9NQB/fDmP5DeGW7vJnjx5ktzcXHQ6XYPsr5OQkMBff/3FmjVrrus6lo7Lhw4dqo6wRA1xdnZm5MiRTJgwgeaRTUl+Yzi7v30HRVH47bffCB27gKjpKyg0SLG5aHgk2RGN2iuvvILJZGLkyJF07drV5tj+/fsB8/5CDW3Juaqq7Nq1C4CYmJjrulbr1q3RaDRkZGRw9uzZaohO1JR27drh5+dnfdyiRQtGjTL3lsrfswqQJoOiYZJkRzRKhYYywh7/kCVLvgLgpZdesjmuqqp1WsaybLchSU5O5ty5c+h0Ojp06HBd13Jzc7NuDGrZTFTUfSaTuUB5+vTpeHa6mSYDHwewbpEiREPSsL6uCmGH3J2/4BLRgf7dO1pXBJZ39913c/DgwQY5hWXpTdWxY0d0Ot11Xy8mJoYmTZpYkx5Rd2VnZ7N27Vpyc3MZO3YsYa3a4zd0orX3jqXJ4I2tA2SFlmgwJNkRjdK/v4vDd/DfUTQaDgPf7EixaZevKArh4eGEh4c7LsgaUlBQYB2B6datW7Vcs0OHDtc9QiRqh06n4/DhwxiNRjIzMzmeq1y2yaAkO6KhkGRHNDonzxWwcG+htV2+SuP6Jrtnzx5MJhOhoaHX1FtH1G8eHh7WvkoBAQGU6YrQKNh0EZcmg6KhkZod0eh8+OUPV2yXn5yczM8//3xdS7LrKpPJxI4dO4DqG9WxUFWVlJQU1q5dKw0G67iYmBhrT6QQvduFJoPm/89Uk5FHO7o2isRfNB6S7IhGJSsri4/mvop6oTjTovw32V27dhEfH8+ePXscEWKNOnToEOfPn8fNzY2OHTtW67XLyspYvHgxmzZtapCJYkNlNBoZ3S0cRVHI2b6UUx8+xk/z/mEtYBaiIZBkRzQaqqoybtw4MlMScdm71PpNVqPA66PM7fKLi4ut9SyVFS3Xd1u3bgWge/fuODs7V+u1nZ2drSvX9u7dW63XFtWvsLCQn376iQULFmA0mrdK8Ww/EA+llJ07d/L55587OEIhqo8kO6JBKDSUETV9hbUp2qWPARYtWsSPP/6Is7Mzn78y3rr9w9rJN1mLk/fv309ZWRn+/v4NbjPZkydPkpqailarpWfPnjVyD8tokeXPUdRdOp2OpKQksrOzOZ54mOQ3hpP63hheeOEFAGbMmNFgN78VjY8kO41UZclAQ3FpU7T0nGKSkpKYNGkSYG4kGNujO8lvDCf5jeHWfbAA69RVTExMg9sLa8uWLYA5IfH09LzK2dcmKioKb29vmxEyUTc5OTnRq1cvADZv3mwd6Zw0aRKtW7fmzJkzPPfcc44MUYhqI8mOaBAdU3/YedL634PnxfHPpQk2j4eNf4X8/HxuuOEGpk6dWuk1zp49S2pqKoqi0KlTpxqPuTaZTCZKS0sB6N27d43dR6PRWDtR//XXXzV2H1E9LNOZZ86c4dixY4B5xOeTTz4B4JNPPmHt2rWODFGIaiHJTiN1aXJQnzumpuUU8dKy/dbHJhV+ij9t89jQeTRhrdrzzTffoNVqK72OZZVSy5Yt8fLyqtmga5lGo+H+++9n/PjxNb4zedeuXVEUhZSUFDIyMmr0XuL6uLm5WZPTjRs3Wkd3brjhBsaPHw/A448/Tn5+vsNiFKI6SLLTCFWWHPxz6T7ScoocGNW1O55VYNMjpDKKRovafxKx83dddtrOz88PvV5fY/UsdYG/v3+N38PLy4u2bdui1+vJzc2t8fuJ69O3b1+cnJxISUnh6NGj1ufnzJlDREQEycnJTJw40YERCnH9JNmpYXWxNqay5KB8n5n6wvJne//H29BcpbxGQcXZNwy4/LRdjx49mDRpUoPbHmLPnj21/s18xIgRTJo0iZYtW9bqfYX9vLy86N69OwDr16+3ju54eXnxxRdfoNFoWLRoEYsWLar09eU/445lygiQqJsk2alFdaU2ppm/R4XkoL53TJ0w8OIvVY0CTc4fQTWZl9MqqIyMCbMev9K0nUajaVCFyRkZGfz000/Mnz+/VhMed3d3NBr5eKkv+vXrh7OzM6dPn2bv/gPW5KVHbF9mzZoFwFNPPcX+/fsrvLYhTYmLhks+jWrYpR8E/9uSfM3fgqrrG5SlY6pF+T4z1c2emK82Cnbptcr/2f7n9yQAynIy0a18lfj/TubUf8dRfPIAX4+LZdke2xqe8tN2J0+eZN++fdZeIw2JqqqEhYXRqlWrGluBdSVGo5F9+/ZJg7o6zsPDw7oy68+4OMybqJi/oM2YMYObb76ZoqIibr/9dk6cSrP5d9iQpsRFwyXJTg2qrDbmxZ8vPrb3W1B1foMa3e3iBpfl+8xU5moJy5WOX2vMlY2Clb/WoLlxNn+WJtU8gpP340scjt9KSEgIG39bSvqXz2FU1StO261fv54ffviB9evXVym2+iQoKIixY8cycuTIWr+3qqp8+umn/PDDDxw4cKDW7y/s06dPH9zc3NicfvEfy+B5cXy/6xSLFy+mWbNmHDt2jHvvGo1aZgBgd0p2g5gSFw2fJDs1aN7HX1b4ICj/0J5vQZUlTjOWJlzzSI+7zqnSPjOVuVrCcrnj9hZCX+k+l15LxfbP0vycQolOz0033cSuXbvo06cPcOVpu9TUVI4dO4ZGo7HWLTQ0iqLg4uLikPu2adMGgE2bNsl+WXWcm5sbnXrdyObSSMD8D8byb7ZM58mKFSvw8fFhX4EnaM17SE/9bi+XTvrW9ylx0TApqnwCkZubi16vJycnB29v72q77pNT/slK5z6oFT4ObPU27UdTVoyXqQA3StBoNGi1WjRaLTvTyyh08qJT8zBW5layQ7WqgqKgUWDOqI5XHKG5kkJDGdEvrgLg9yk3WROgtJwi+r7xu03SVn6H5G/G9ea+j7dWuhpq7l2dmPLd5bcN+H3KTQTrXa33VRTz27HQKgp/Th9AiN6NzUezuP/jbVd8D6rJyITIDKY8+ViFepH/bUnmhQsjQeX/rBYvXkxSUhIxMTEOGf2oKTt27CA3N5d+/fo5JNGxKCws5J133qG0tJQxY8ZIwXIdtykxkzGfbr/s8enddczZXoxS7t+XwsUvHtf7OSSEvar6+9upFmNqdHxdFWKKD7Lbqa15l23Lb3KbAliVrZpo0CkoqPRxPkFrpywAjpT5czQ4EhWF07mWsQzb11quZVJh+vd7Wb/kfVzVYhRFQaPR4OTkhE6nw9XVFTc3Nzw8PPD09ESv1+Pt7Y1er6dJkyasOlaEqqooisLgeXHWD6zKVm6Vf3zvR1srjLBYWL71lT9e/vHgeXHc3vnilgyXpt1GVSV2zu+AOakqn2QBFzbzVFE0WlBVnr+lOeMG315pLA/GRjE4OojkrEKi/N0J0btx6tQpkpKSUBSFG2644TLvov7Jzs5mzZo1lJaW4uvr69A9vtzd3enatSvbtm0jLi6OFi1aNKgC8IameaBnhX9n5f/N/usvg02iA7b/vtdOvslmpPhyX6KEqG0yskPNjexYpOUUWX/Jrj1wxjrCYPnIt/k/QFXxz95P7xAty0vaYpPc2CRLlyY+Zj2cUmjmlI2HUlrhWIHqTK7JFW9Nsc3xAtWZ74o72YxAKarKzcUbAVjtemOFBK1C0nWZ0avyH5SVvt8rUi8MXCmgmsjf9zse7QeYe+aYjKjbFzO6b3sG33EfXVuH211gvWTJEhITE+ncuTN33HGHXa+tq1RV5csvv+TYsWNERkby8MMPOzy5yM/P591336W0tJS77rrLulmoqJvKj4JW6d+samLV+J60iajYrPJyI6pCVJeq/v6Wmp1aEKJ3I7aFHyF6N5vC4Lfu6lTxQ0RRyPLtwIqSdlRIIBTFmnR8My62Ym8ZVWVHWQTfFXfihFM4vx8vZF2qiaxCI3vyPPi2qBMrDW34tqgTe/I8KCwspLS0lFyTa4WpNlVR0OiDCfP1oK/uBIo10soSm0vHb8pdB+hStIuuOX8SnbOtyomOajJaR5rMt9Dg0X4AmT+/Se7O5bzWx4Xj65bw9msvMrxHK7sTnaNHj5KYmNjgRnXi4+M5duwYTk5O3HbbbQ5PdAA8PT2JjY0FYN26dQ1y1VtD8mBsFFtmDOSrx3vz7zvbXfHfrGoycnble9w5dACJiYk2xxpa81JRv8k0Vi2zFAaD+cPg0iFji8o+YMrXsADMur299VsTYE2EVBTW5wWjBgcDkAq2/08rCnuco1lw4VopWXmsnrvxkqFrlfaRgTgZ3HDLL+D0gT9QnV1p5evMGjXGZqRHUVVuMu2i1MmDTWobyidDCir/396Zx0dVnf//c2fNvpCQyUZCCGEREiQskS2EsBikSkEDVLABAgWLhWBVUIs7iNqvWloVlRqogAhIgYKAEA19ASkGNCw/QkJCIJANsodsM5k5vz/iXOfOlsnGMJfn/XpduPfcc859njk5dz5z1ghvKVw5J9QzOS41MSNhZdpKFCdvXcU1XSMc38FJpPhj8u8R7q5Fc8VNbN++HQqFwuSQy+Vmww0PJycnBAcHIygoCD4+PmY+bcejoqIChw8fBgDExcXdU36NHj0aZ86cgbe3NxobG+0yDZ6wnQBPZ7hLtTi0ay849BPUWSnHYc8fR6FBrUN92TXM334J2UVFiI6OxsaNGzEjcTbfdWWMfqZWdyxzQRDWILFjR/Tr3QgEiwXMrYXz+LBgi2mZhXM9hi+dEF93gR2tAozD/13xxvd//i369HTDCwZpTZqmH4/C7BG/AQD861RB65TwXwZNPxPjg7GBk9DQ0IDGxkZorzXim2sKgGsdoxTl0YxztUoArddTvCswQKFDRaMWnEYojDgwSBrKcavRtIuuI0gkEpSXlyM7O7vDosk4rlwut8tiei0tLdi9ezfUajVCQ0P5lpR7BaVSiaVLl4puzzEx4+bmhqH9w3DrSiUOV/YAwPHvoSG9vFsjhfvgxx9/xJNPPonjx49j3rx5GP99NpjvQ2ZbFc3N1CqpaURBeT3CfF1JBBHdBo3ZQfeP2WmLkppGnL1WheU7fha0rhj+gtIPqrWU3njGVFsYtxIZDiRcPrEvNqS1LtJnqZ/dcBySoV22DEg0Tmspr3+dKsAr+/8f9C/ZFyf1xtT+nlCr1e06NBqN4LqlpXu37ZBKpQLxY3xuLsyWc/21OTH17bffIjMzEy4uLliyZIld/o4J8aFWq9Go0WLIm60TBSzVaa1Wi7feegtr3/8IAUv+aTKIGTD/LqExPURnsfX7m8QO7C929HSm4rc1qNDW6aHmhJOxMLpbdPVMDsYYdu/eDQ8PD4wZMwY6na7DgsnccbfQiym9+NFoNPyGm8HBwfD29m6XiJLJZAJBJZPJunWsT2NjI7777jsMHjxYdPuQiZ1bt27Bz8/P4v3Nh07hteNVJuEvP9IfvxkSBE9nOV+nzS1bYa93DeG40NRzB8Tc9OiOpjWc9aUXN7H9eraZt7VNQu/2C8hwfFNXcOHCBVy6dAkSiQQPPvggVCrT2SMdhTGGlpYWaDQaXhjpz42vLZ1buzYUU1qtFlqtFk1NpqtM37x5Ezdv3jQJby+GgspYELX33Pj69OnTyMrKQkFBAZYsWQJnZ/picwQyMjLw3Xff4Te/+Q2GDRtmNs7Do4fijf9+b7REhBbrnp6FxiXzoXhgIh9ubtkKw3cNTVsnuhISO/cYAZ7OHRYVhmktCae28tavNmz8a8vRV0Stra3FoUOHAADjx4/vUqEDtE6P13+ZdweMMWi1WoEYKi4uxoEDB6DRaBAaGoqhQ4faJKjMhbW0tAhmSVkTVF1FTU0N3n33XV5Y2SKWjOMYhps7LN27F2apORrNzc0AgIMHD8Ld3R39+vUziWM8DpEDQ9OJzSi79DOe/UshgpaG8V1cliZhuCgkOJVfjp+u/9pCNOn944J87S1+aJyR40HdWLh3urHuFcTWj67RaLB582YUFxcjMDAQycnJDr8jN2MMn376KcrKyhAaGop58+ZBJuvcbxedTidonbJ0bu3a1vT2nn4ulUrbFET6cEMx1h5BZS5cKpU6rNBijGH//v3IysqCVCrF7NmzERERYTau4Tg8TznDli1b8I+d36E+ZpHZfLlfJjQ8NiQQe7OKzeTYvpWau7NVqLvfj/YQUo7cikZjdtoBiR1TLA0adjQYY9i7dy/Onz8PZ2dnLF68GN7e3vY2q0uorKxEWloaHnvsMbtuCdERGGM4ceIEvv/+e0gkEsyYMQO+vr4WBZWxWNILppaWFoHQMj4Mw++VV505UWQovozPzd2zFt/W+x0R/FqtFrt378bly5chlUqRmJjI73/WFiU1jRj99vfCmaI6LUq//DM4uTNclDJ4zHy9dbV5GzA3vkcvFH66XoW/fpcLwDZBYuuXfXePabTXD01rz73XhRCN2SE6RWe60+4lTp06hfPnz4PjOCQmJjq80KmtreUrdI8ePZCYmGhnizoGx3EYO3YsSkpKkJ2djYMHD2LBggXo1atXtz3TUBxZEkTtudceoWWIuTB7oN+Drz1CSSqVwtXVFT169EBlZSV27NiB/v37IzQ01Kqw0h/Px4fg3e+vQz/DMtatFMWRYTh16hQafcPhYaPQAVrH9xzIuITgnl4YFOqH41cqzC7FoV/MMLZfT4vvNONNiC2JDFvHNOpFl7+HE+L/7ziAtoWC2c2ev7kAV6UMw0K9TWw3J0I60ipkafHHAf7uqFdrTboTLc3Ovde79ahlB9SyI2auXr2Kr776CpMmTUJMTIy9zekUGRkZSEtLw5w5c0SzoaZarcaXX36JmpoazJs3z+pMH0eFMQadTmdVFBkKsbbOLf3fVvx7QWAB7du2Rr/RMZgOACdYzFQQZu6+EWOQDVc54Ktk8HGWQC11QYPUDS4KCT4r8BQ8V8IBG6f5IcjbBc7OzvxRo+Yw4YMTZpcIqVdrEebrarIlkK1db9Y2O7Zl2r5hF6CEA1YlDEBksCcvQCwJEls2WTbEmr/2GPZA3VjtgMSOuKmuroaXl5e9zeg0Bw8exJkzZxATE4OEhAR7m9NlNDY2orm5WRRldC+jF10dEVaWzm/evImioiIAgLOzM1QqFSQSiSCepcNc12Juiy9OaVo3P+bAMEx2E76SBnhImlCk9eTvme6416b3fHwODOHSCuRrfQzyMs0nQZGDAGkdAKFAu6Fxx/+0Ya02MoYQVorrnP8vosvcZs+/wjGGOO1Z6DgZPCRNcJO0oIlzQr3EFQopw8HmgSZb9/BpwbCodzWYVAEXuQR/v2y6zY/QZcYv7jptsAr/uVAKfYuaoSDpyDptv9r0y6MMwu728gEkdtoBiR3xoNVqcfToUQwZMgQBAQH2NqdTMMagVqv58TgajQaXLl1CVFSUww5ytYXs7Gy4uLggNDTU3qYQNpCdnY19+/ahubkZCoUCkydPRnR0tE1jgnQ6nUCAabVaFFc14FpFAwI95PB1kQruldY242Z1EyobNHj3REUbuetFjBlhpG8xsnQNhrGSXPjLGlDCvAUCbLT8OoKkNajVOUHGaa0KFGt2GYsuUxHWlk/tf6YeDgyTkAWNTgIXXT1K4Y2fpQPA9ILN2vulrfsAHnW9ihCnJkilUjRyStTqnODrxJCU+FiXt96S2GkHJHbEQW1tLfbu3YuCggJ4enpi2bJl3TYVvLu5ffs2jh49iqamJixYsEDU4saQoqIipKamgjGGCRMmYMyYMfeN745MTU0N9uzZg8LCQkilUixbtqxbx8eZa43g0PodrGOtrQsvJPRHVLAXKuqb8cz2n9vMU7/khjl5xIzipc4Ihpu0BWdv1mFdRn07LDfdC1AgQn5p+alnCvwoi7QuyMwItI4IINsEnO0iiwPDNGU2WpgU5ToXnG0J5sXckmgPrJ4V2w4b24YGKBP3DYwxnDt3DocPH0ZzczPkcjkSEhIcUuiUl5fjxIkTOH/+PBhjkEgkKCkpQWBgoL1Nuyv4+flh4MCBuHjxItLS0pCfn49p06bB19fX3qYRVvD09ERSUhIyMzOh0WgEQqe8vLzLyy/A0xlvz4zES3suQssYpByHdTMHm1041dqGy3r041BuVDZi+Y6f+d4oc0l0DFD4BGNYuA8C+zZi/f8siy7ulwDGAAkAnYlQEF4zjsMfnn4Go8J98HVmIe+fBIDOWPT/0kWlF3e/HRqEvT8XQ2tz+8WvG0ef0oTi5YGt3WpqtRpcRS0OlHnwImWUyy30lDZAomvB3vq+JkKI++VffbfegaaBv3brGWxQ/dnPdUh6uNEug5ipZQfUsuPIXLt2DWlpafyqwUFBQZg+fTp69uxpZ8tsR6fTIT8/H5mZmbhy5QofPnDgQMTHx993X/SMMWRlZeHQoUPQaDSQSCQYOXIkxo4dC1dXV3ubR7SDGzdu4IsvvkCfPn0wb968Lm+ls3WJDEPh0CoMAnlhoBdKs0eE2DRY13hMinHexqILAK6VN8BFIcGMj0+1KboM89b7Zy6tub0T9fHPF1Xj3UM5Zv1tFV2mfLX4IYwK92nzs7Xmry0+Gj+ns1A3VjsgseOYVFRU4B//+AcAQC6XIzY2FqNHj3aIBQNbWlpw7do15Obm4tKlS6iv/7UpvF+/foiNjUVQUJAdLbQ/lZWVOHLkCHJzW9dLcXd3R0pKikOUL9FKRkYGjh07hqioKEyfPh1Aq5jNy8tD796972rrqy0bENvSPaYXRtbytoStosuWtNbiWvPXknBqz6BiS/62JRa7Y/DyfSd2PvroI7z33nsoLS3FkCFD8Pe//x0jR460KS2JnXsftVqN69evo7KyUjCFfMuWLfD19cX48ePh5nZvLXZljsuXL+Onn37CtWvXoNH8Ou3WxcUFkZGRGDFiBHx8uu5Xjxi4cuUK0tPT0adPH0yc2Lq3kk6nw+nTpxEWFgaVSkXjeu5h6urqoNPp4OnpCQAoLi7G559/DqlUiqCgIPTu3RuhoaHw9/eHi4v9t6Vpq6Wms1/UtoguW9N2lPYKJ1uxNrOrK59jyH0ldr7++mv8/ve/x8aNGxETE4MPP/wQu3btQk5Ojk0jv0ns3Fs0NTXh9u3bKCsrQ1lZGUpKSlBcXAzGGKRSKZ577jk4OTkBaP3Suxd+6TPGoNFooFAo+LD09HQUFxdjypQpfFfUiRMnkJaWBqC1pSIiIgL9+/dHeHg4pFKpXWx3BPTTpvWfUX5+PrZu3QqgVSgGBgYiICAAgYGB8PHxgbe3d6e3zyC6h5ycHBw6dAg1NTUm9zw8PKBSqdCjRw94e3vDy8sL3t7e8PT0vKurhItlBXlrdJePxkJKP1C8uz7L+0rsxMTEYMSIEXyXhk6nQ69evfCnP/0Jq1evbjN9d4qdkpISaDQafj0Jw4+b4zjB8+rq6qDVaiGXy/mdoLVaLerq6iCRSBAWFsbHLSoqQkNDg+BZjDE+f8PWgdraWqjVaigUCri6uvJfHPqXTf/+/XnBcOPGDdTW1lpcWt/Hx4ePW1tbi8bGRsjlcri7u/M2VFZWgjGGgQMH8i+ovLw8lJSU8NNI9ZtRNjc3o6mpCePGjePj/ve//0VOTo7Js93d3REUFITJkyejR48e/Gdm7qVp/LkYIpPJBNPSS0pK0NTUBJVKxf+yrKioQGFhoWBNkObmZjQ3Nwvsbm5uRkNDA+7cuQNXV1ekpKTw+W7atAlFRUVITEzEAw88AAC4desW8vLyEB4eDj8/P2qR6CAFBQX43//+h4KCAkELmZ4ZM2YgKioKAFBYWIizZ8/yC8MpFArB3lUhISF8Payvr0dlZSUkEgk4jjM5PDw8eKGtVqsF3Y/GuLi4CJYNuHPnjsW4zs7OfL4tLS2oq6uzOa61fJVKpcm7xJa4Op0OtbW1FuMqFAq+rrQnLmMMNTU1/P83b97EzZs3UVpaarUeu7q6YtGiX/fVOn78OBoaGhAfH89v6puXl4fCwkK+XCUSCX/I5XK4urry142NjQBa3wWGY+Jqamqg1WoRGBjIf8a3b98WfG6GdVYqlfItyhzHob6+Hjpd64gYw3d7Q0MDdDodevbsyf9NVFVVWSwPjuP4d6o+vX5RSDc3N/4d3NjYCI1GAz8/P97e2tpaVFdXW/ws3d3deR8M83V1deV/TOjfdT4+Pvw4uTt37qCystJivoZ2Fd6uRUH5HQR5KtHbzxMymQweHh7d8sP0vpmNpVarcfbsWbz44ot8mEQiwaRJk5CRkWE2jb4g9VirqJ3liy++6LKVS1999VX+fNu2bXyF7SyrVq3iK8qePXusVpT24Ovri+DgYABAWloaSktLLcYtKCgwCVMqlRg2bBhUKhVCQkKQmpqKy5cvIzb216mL586d41tKbMXb2xvLly/nr/fv34/S0lLMmzcP4eHhAFoHPh84cKBd+d65c4ff1BBoFeHNzc0CYeXn5yfKVYLvNmFhYQgLC0NLSwtKS0v51r/S0lJUVVUJZgPdunUL58+ft5jXrFmz+Jdkfn4+/v3vf1uMO3PmTERGRvJxd+7caTHuo48+iujoaADA9evXsW3bNotxExIS+O7ZoqIibN682WLc+Ph4jBs3DkDrF/Fnn31mMe64ceMQHx8PoPXL9aOPPrIY96GHHsLDDz8MoPVHxN/+9jeLcaOjo/Hoo48CaH2fWosbFRWFGTNmAGgVXNbihoSEYPDgwaiqqkJ1dTWys7MBtIpQc+keeugh/nzHjh1dtsHsE088gUGDBgFo7Sq3Jmrbw9SpU/nhFdu3b0d5eXmX5Dt+/HjExcUBaH2HX79+vUvyNSznI0eO4OLFi+1Kn2VwvnLlSrv2nDi82CkvL4dWq+XVvR6VSoXLly+bTfP222/j9ddfvxvmtalkDQfo6VcU1e8pA/y6sJxxC0BbTfR68QKAX45eJpPx4YwxsxVYoVBYbW1wdnbm76vVarS0tEAmk/Hqn+M4/peboe/u7u64ffs2n9b4F7NcLjd5bkBAACZPnsxfe3h4tO6ObJCvUqk0WXm3rdYS/dgBPV5eXtDpdILP1MvLCxEREYJ9fZRKpdnD2dkZ7u7ucHNzEzxb/6VIdB8ymQzBwcG8qAZMW/KCg4MxefJkNDQ08L9kDfeuMvwFLZfL4e3tzbd+6ltL9deGfyMSiUTQbWmM4d+pvnXBlrj6+mAJ4+5Oa+8Cw7gcx1mNa2yDrfm2ZYPxO9BaXHd3d4wYMYK/XrduHf/5G9YtnU4HHx8fQQu2TCbjW1X06P8WFAoFevToAa1WC51Oh6qqKj6uoT1ardbEd2vvcMOyYowJVoU2ztf4ndhWt7W59Pp0+s+iu/LVL/Zo/DdsDXN2GYfbE4fvxiouLkZQUBBOnTqFUaNG8eEvvPACjh8/jtOnTUeGm2vZ6dWrF43ZIQiCIAgH4r7pxvL19YVUKkVZWZkgvKysDP7+/mbT6H+REwRBEAQhfuw/jaWTKBQKDBs2TDBuQ6fTIS0tTdDSQxAEQRDE/YnDt+wAwLPPPoukpCQMHz4cI0eOxIcffoj6+nosWLDA3qYRBEEQBGFnRCF2Zs+ejdu3b+OVV15BaWkpHnzwQRw+fNhk0DJBEARBEPcfDj9AuSugRQUJgiAIwvGw9fvb4cfsEARBEARBWIPEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQokYU20V0Fv0i0rW1tXa2hCAIgiAIW9F/b7e1GQSJHQB1dXUAgF69etnZEoIgCIIg2ktdXR08PT0t3qe9sQDodDoUFxfD3d0dHMd1Wb61tbXo1asXbty4Ido9t8Tuo9j9A8Tvo9j9A8Tvo9j9A8TvY3f5xxhDXV0dAgMDIZFYHplDLTsAJBIJgoODuy1/Dw8PUf7xGiJ2H8XuHyB+H8XuHyB+H8XuHyB+H7vDP2stOnpogDJBEARBEKKGxA5BEARBEKKGxE43olQq8eqrr0KpVNrblG5D7D6K3T9A/D6K3T9A/D6K3T9A/D7a2z8aoEwQBEEQhKihlh2CIAiCIEQNiR2CIAiCIEQNiR2CIAiCIEQNiR2CIAiCIEQNiZ0uZv369eA4DikpKXxYU1MTli1bBh8fH7i5ueHxxx9HWVmZ/YzsJOZ8jIuLA8dxgmPp0qX2M7KdvPbaayb2DxgwgL/v6GXYln+OXn4AUFRUhHnz5sHHxwfOzs6IjIzEmTNn+PuMMbzyyisICAiAs7MzJk2ahCtXrtjR4vbTlo/z5883KceEhAQ7Wtw+evfubWI/x3FYtmwZAMevh2355+j1UKvVYs2aNQgLC4OzszPCw8Px5ptvCvatslc9pBWUu5DMzEx8+umniIqKEoSvXLkSBw8exK5du+Dp6YlnnnkGM2fOxMmTJ+1kacex5CMALF68GG+88QZ/7eLicjdN6zSDBg3CsWPH+GuZ7NfqIYYytOYf4NjlV1VVhTFjxmDChAk4dOgQevbsiStXrsDb25uP8+6772LDhg3YsmULwsLCsGbNGjz88MO4dOkSnJyc7Gi9bdjiIwAkJCQgNTWVv3akqcyZmZnQarX89cWLFzF58mQkJiYCcPx62JZ/gGPXw3feeQeffPIJtmzZgkGDBuHMmTNYsGABPD09sXz5cgB2rIeM6BLq6upYREQEO3r0KBs/fjxbsWIFY4yx6upqJpfL2a5du/i42dnZDADLyMiwk7Udw5KPjDGTa0fj1VdfZUOGDDF7TwxlaM0/xhy//FatWsXGjh1r8b5Op2P+/v7svffe48Oqq6uZUqlkX3311d0wsdO05SNjjCUlJbHp06ffHYPuAitWrGDh4eFMp9OJoh4aY+gfY45fD6dNm8YWLlwoCJs5cyabO3cuY8y+9ZC6sbqIZcuWYdq0aZg0aZIg/OzZs9BoNILwAQMGICQkBBkZGXfbzE5hyUc927Ztg6+vLwYPHowXX3wRDQ0Nd9nCznHlyhUEBgaiT58+mDt3LgoLCwGIpwwt+afHkctv//79GD58OBITE+Hn54ehQ4fi888/5+8XFBSgtLRUUIaenp6IiYlxmDJsy0c96enp8PPzQ//+/fH000+joqLCDtZ2HrVaja1bt2LhwoXgOE409VCPsX96HLkejh49GmlpacjNzQUAnDt3DidOnMDUqVMB2LceUjdWF7Bjxw789NNPyMzMNLlXWloKhUIBLy8vQbhKpUJpaeldsrDzWPMRAJ588kmEhoYiMDAQ58+fx6pVq5CTk4M9e/bcZUs7RkxMDDZv3oz+/fujpKQEr7/+OsaNG4eLFy+Kogyt+efu7u7w5Xf16lV88sknePbZZ/HSSy8hMzMTy5cvh0KhQFJSEl9OKpVKkM6RyrAtH4HWLqyZM2ciLCwM+fn5eOmllzB16lRkZGRAKpXa2YP2sXfvXlRXV2P+/PkAxPMu1WPsH+D479HVq1ejtrYWAwYMgFQqhVarxdq1azF37lwAsGs9JLHTSW7cuIEVK1bg6NGjDtHv3xFs8fEPf/gDfx4ZGYmAgABMnDgR+fn5CA8Pv1umdhj9Lw8AiIqKQkxMDEJDQ7Fz5044Ozvb0bKuwZp/ycnJDl9+Op0Ow4cPx7p16wAAQ4cOxcWLF7Fx40ZeCDg6tvg4Z84cPn5kZCSioqIQHh6O9PR0TJw40S52d5R//vOfmDp1KgIDA+1tSrdgzj9Hr4c7d+7Etm3bsH37dgwaNAhZWVlISUlBYGCg3eshdWN1krNnz+LWrVuIjo6GTCaDTCbD8ePHsWHDBshkMqhUKqjValRXVwvSlZWVwd/f3z5Gt5O2fDQccKcnJiYGAJCXl3e3ze0SvLy80K9fP+Tl5cHf39/hy9AYQ//M4WjlFxAQgAceeEAQNnDgQL6rTl9OxjN3HKkM2/LRHH369IGvr6/DlKOe69ev49ixY1i0aBEfJqZ6aM4/czhaPXz++eexevVqzJkzB5GRkXjqqaewcuVKvP322wDsWw9J7HSSiRMn4sKFC8jKyuKP4cOHY+7cufy5XC5HWloanyYnJweFhYUYNWqUHS23nbZ8NNc8npWVBaD1Be2I3LlzB/n5+QgICMCwYcMcvgyNMfTPHI5WfmPGjEFOTo4gLDc3F6GhoQCAsLAw+Pv7C8qwtrYWp0+fdpgybMtHc9y8eRMVFRUOU456UlNT4efnh2nTpvFhYqqH5vwzh6PVw4aGBkgkQlkhlUqh0+kA2Lkeduvw5/sU4xH1S5cuZSEhIez7779nZ86cYaNGjWKjRo2yn4FdgKGPeXl57I033mBnzpxhBQUFbN++faxPnz4sNjbWvka2gz//+c8sPT2dFRQUsJMnT7JJkyYxX19fduvWLcaY45ehNf/EUH4//vgjk8lkbO3atezKlSts27ZtzMXFhW3dupWPs379eubl5cX27dvHzp8/z6ZPn87CwsJYY2OjHS23nbZ8rKurY8899xzLyMhgBQUF7NixYyw6OppFRESwpqYmO1tvO1qtloWEhLBVq1aZ3HP0esiYZf/EUA+TkpJYUFAQO3DgACsoKGB79uxhvr6+7IUXXuDj2KsektjpBozFTmNjI/vjH//IvL29mYuLC5sxYwYrKSmxn4FdgKGPhYWFLDY2lvXo0YMplUrWt29f9vzzz7Oamhr7GtkOZs+ezQICAphCoWBBQUFs9uzZLC8vj7/v6GVozT8xlB9jjP3nP/9hgwcPZkqlkg0YMIB99tlngvs6nY6tWbOGqVQqplQq2cSJE1lOTo6drO0Y1nxsaGhgU6ZMYT179mRyuZyFhoayxYsXs9LSUjta3H6OHDnCAJgtG0evh4xZ9k8M9bC2tpatWLGChYSEMCcnJ9anTx/28ssvs+bmZj6Oveohx5jB0oYEQRAEQRAig8bsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBAIiLiwPHceA4jt+TKD09HRzHmWw+2dW89tpr/LM//PDDbn0WQdyPkNghCKLdzJ8/n/9yNjwSEhLsbVqnWLx4MUpKSjB48OBO51VWVga5XI4dO3aYvZ+cnIzo6GgAwHPPPYeSkhIEBwd3+rkEQZhCYocgiA6RkJCAkpISwfHVV1916zPVanW35u/i4gJ/f3/IZLJO56VSqTBt2jR88cUXJvfq6+uxc+dOJCcnAwDc3Nzg7+8PqVTa6ecSBGEKiR2CIDqEUqmEv7+/4PD29ubvcxyHTZs2YcaMGXBxcUFERAT2798vyOPixYuYOnUq3NzcoFKp8NRTT6G8vJy/HxcXh2eeeQYpKSnw9fXFww8/DADYv38/IiIi4OTkhAkTJmDLli18d1N9fT08PDywe/duwbP27t0LV1dX1NXVddjnhoYGTJ06FWPGjOG7tjZt2oSBAwfCyckJAwYMwMcff8zHT05ORlpaGgoLCwX57Nq1Cy0tLZg7d26HbSEIwnZI7BAE0W28/vrrmDVrFs6fP49HHnkEc+fORWVlJQCguroa8fHxGDp0KM6cOYPDhw+jrKwMs2bNEuSxZcsWKBQKnDx5Ehs3bkRBQQGeeOIJ/Pa3v8W5c+ewZMkSvPzyy3x8V1dXzJkzB6mpqYJ8UlNT8cQTT8Dd3b1DvlRXV2Py5MnQ6XQ4evQovLy8sG3bNrzyyitYu3YtsrOzsW7dOqxZswZbtmwBADzyyCNQqVTYvHmziS0zZ86El5dXh2whCKKddPu+6gRBiI6kpCQmlUqZq6ur4Fi7di0fBwD7y1/+wl/fuXOHAWCHDh1ijDH25ptvsilTpgjyvXHjBgPAcnJyGGOMjR8/ng0dOlQQZ9WqVWzw4MGCsJdffpkBYFVVVYwxxk6fPs2kUikrLi5mjDFWVlbGZDIZS09Pt+jT+PHj2YoVKwRhP/zwAwPAsrOzWVRUFHv88cdZc3Mzfz88PJxt375dkObNN99ko0aN4q9Xr17NwsLCmE6nY4wxlpeXxziOY8eOHTOxITQ0lH3wwQcWbSQIomNQyw5BEB1iwoQJyMrKEhxLly4VxImKiuLPXV1d4eHhgVu3bgEAzp07hx9++AFubm78MWDAAABAfn4+n27YsGGCPHNycjBixAhB2MiRI02uBw0axLewbN26FaGhoYiNje2Qr5MnT0bfvn3x9ddfQ6FQAGgdd5Ofn4/k5GSBD2+99ZbA/oULF6KgoAA//PADgNZWnd69eyM+Pr5DthAE0X46PwqPIIj7EldXV/Tt29dqHLlcLrjmOA46nQ4AcOfOHTz66KN45513TNIFBAQIntMRFi1ahI8++girV69GamoqFixYAI7jOpTXtGnT8M033+DSpUuIjIzk7QeAzz//HDExMYL4hgONIyIiMG7cOKSmpiIuLg7/+te/sHjx4g7bQhBE+yGxQxCEXYiOjsY333yD3r17t2v2U//+/fHtt98KwjIzM03izZs3Dy+88AI2bNiAS5cuISkpqcO2rl+/Hm5ubpg4cSLS09PxwAMPQKVSITAwEFevXm1zoHFycjKefvppPPbYYygqKsL8+fM7bAtBEO2HurEIgugQzc3NKC0tFRyGM6naYtmyZaisrMTvfvc7ZGZmIj8/H0eOHMGCBQug1WotpluyZAkuX76MVatWITc3Fzt37uQHABu2lnh7e2PmzJl4/vnnMWXKlE6vYfPXv/4Vc+fORXx8PC5fvgygdQD222+/jQ0bNiA3NxcXLlxAamoq3n//fUHaxMREyOVyLFmyBFOmTEGvXr06ZQtBEO2DxA5BEB3i8OHDCAgIEBxjx461OX1gYCBOnjwJrVaLKVOmIDIyEikpKfDy8oJEYvnVFBYWht27d2PPnj2IiorCJ598ws/GUiqVgrjJyclQq9VYuHBhx5w04oMPPsCsWbMQHx+P3NxcLFq0CJs2bUJqaioiIyMxfvx4bN68GWFhYYJ0Li4umDNnDqqqqrrMFoIgbIdjjDF7G0EQBNEZ1q5di40bN+LGjRuC8C+//BIrV65EcXExP7DYEnFxcXjwwQftul1D7969kZKSgpSUFLvZQBBihFp2CIJwOD7++GNkZmbi6tWr+PLLL/Hee+8JxuQ0NDQgPz8f69evx5IlS9oUOob5urm54cKFC91lulnWrVsHNzc3k8UHCYLoGqhlhyAIh2PlypX4+uuvUVlZiZCQEDz11FN48cUX+YHOr732GtauXYvY2Fjs27cPbm5ubeZZVFSExsZGAEBISIjNAqkrqKys5Bdb7NmzJzw9Pe/aswnifoDEDkEQBEEQooa6sQiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDX/Hzi9oo2CGWatAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", + "plt.xlabel('Energy [keV]')\n", + "plt.ylabel('Number of counts per bin')\n", + "\n", + "x = np.arange(40, 80, 0.1)\n", + "plt.plot(x, fit_model(x, *mi.values), color='k', label='Best fit')\n", + "plt.plot(x, peak(x, *mi.values['A_p1', 'mu_p1', 'sigma_p1']), color='gray', ls='--', label='Peak 1')\n", + "plt.plot(x, peak(x, *mi.values['A_p2', 'mu_p2', 'sigma_p2']), color='gray', ls='-.', label='Peak 2')\n", + "plt.plot(x, bkg(x, *mi.values['A_bkg', 'tau_bkg']), color='gray', label='Background')\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "id": "7ef19633-0947-4568-b537-a1c69e42b7c2", + "metadata": {}, + "source": [ + "Das Ergebnis sieht sehr gut aus. Alle Kacheln sind grün und die Daten scheinen durch die Funktion gut beschrieben zu werden. Natürlich können wir das gesamte Fitverfahren auch etwas kompakter in einer Zelle darstellen:" + ] + }, + { + "cell_type": "code", + "execution_count": 519, + "id": "2311f135-8410-4f35-8d58-b9bcef0fed53", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 530
EDM = 1.61e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 317 7
1 A_p2 580 7
2 mu_p1 53.24 0.07
3 mu_p2 60.43 0.05
4 sigma_p1 1.99 0.05
5 sigma_p2 2.80 0.04
6 A_bkg 147 14
7 tau_bkg 34.1 2.0 0
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.623) -0.0015 (-0.680) -0.0513 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.623) 0.00297 -0.0012 (-0.518) -0.1409 (-0.179) 0.0155 (0.142)
sigma_p2 -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0816 (0.137) -0.0142 (-0.172)
A_bkg -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0513 (-0.068) -0.1409 (-0.179) 0.0816 (0.137) 209 -28 (-0.965)
tau_bkg 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0155 (0.142) -0.0142 (-0.172) -28 (-0.965) 4.01
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:51.617180\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 530 │\n", + "│ EDM = 1.61e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", + "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", + "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", + "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", + "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0513 0.0062 │\n", + "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1409 0.0155 │\n", + "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0816 -0.0142 │\n", + "│ A_bkg │ -0 -0 -0.057 -0.0513 -0.1409 0.0816 209 -28 │\n", + "│ tau_bkg │ 0 0 0.010 0.0062 0.0155 -0.0142 -28 4.01 │\n", + "└──────────┴─────────────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 519, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ls = cost.LeastSquares(center, entries, np.sqrt(entries), fit_model)\n", + "\n", + "mi = Minuit(ls, \n", + " A_p1 = 800, \n", + " A_p2 = 1400,\n", + " mu_p1 = 54,\n", + " mu_p2 = 60,\n", + " sigma_p1 = 2,\n", + " sigma_p2 = 2,\n", + " A_bkg = 100,\n", + " tau_bkg = 10, \n", + " )\n", + "mi.limits['tau_bkg'] = (0, None)\n", + "mi.fixed[:] = True\n", + "ls.mask = (center < 45) | (center >= 70)\n", + "mi.fixed[['tau_bkg', 'A_bkg']] = False\n", + "mi.migrad()\n", + "ls.mask = None\n", + "mi.values['A_p1'] = 700\n", + "mi.values['sigma_p1'] = 3\n", + "mi.fixed[:] = True\n", + "mi.fixed[['A_p1', 'mu_p1', 'sigma_p1']] = False\n", + "mi.migrad()\n", + "mi.fixed[:] = True\n", + "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", + "mi.migrad()\n", + "mi.fixed[:] = False\n", + "mi.migrad()" + ] + }, + { + "cell_type": "markdown", + "id": "b2d4c8e9-da2c-489e-9b2f-de24f042c341", + "metadata": {}, + "source": [ + " # Wann fittet ein Fit?\n", + "Nach dem wir nun unser Model an unsere Daten angepasst haben, stellt sich die Frage: „Spiegelt unser Model unsere Daten gut wider?“. Um diese Frage beantworten zu können, gibt es verschiedene Möglichkeiten, welche wir im Folgenden etwas näher betrachten wollen. \n", + "## Fit Residual: \n", + "Schauen wir uns zunächst noch einmal an, wie das Chi-Quadrat definiert ist:\n", + "$$ \\chi^2 = \\sum_i \\frac{(y_i - \\lambda_i)^2}{\\Delta y_i^2} $$\n", + "Wir minimieren den Abstand zwischen einem Messwert und unserem Model und gewichten diesen mit den Unsicherheiten unserer Messwerte. Fitresiduen spiegeln genau dies wider. Sie sind definiert als \n", + "$$ \\frac{(y_i - \\lambda_i)}{\\Delta y_i} $$\n", + "Für unseren Fit sehen sie wie folgt aus.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 520, + "id": "30cafddc-ea17-4158-82cc-f132dee2c8de", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Residuals [$\\\\sigma$]')" + ] + }, + "execution_count": 520, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6bUlEQVR4nO3df3gV1Z3H8c9NgBgCCUgCCRoggEoVsIiIKYogSqVuVVIprugCUlYttojFCrpSrUKwKu3DtlVruwF/tfgDrdtttSrQLmppUFGoCoKRUAhoVG4wSYMmZ/9gc5tLft3fM3Pm/XqePA+5mdx8h7kz851zvuecgDHGCAAAwCJpTgcAAACQaCQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOl2cDsAJTU1N2rdvn3r27KlAIOB0OAAAIALGGB06dEj9+/dXWlrHbTS+THD27dunwsJCp8MAAAAx2LNnj44//vgOt/FlgtOzZ09JR/6DsrOzHY4GAABEoqamRoWFhaH7eEd8meA0d0tlZ2eT4AAA4DGRlJdQZAwAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDguMDVcF6vbKrWlXBeqdDAQAgJTyZ4JSWlmrMmDHq2bOn+vbtq0suuUTbt293OixXWlNeqXHL1+nyBzdp3PJ1WlNe6XRIAAAknScTnD/96U+aN2+e/vKXv+iFF17Q559/rsmTJ6u2ttbp0FylKlivxWu3qskc+b7JSDev3UZLDgDAel2cDiAWzz33XNj3q1atUt++ffXaa69p/PjxrbZvaGhQQ0ND6Puampqkx+gGFdW1oeSmWaMx+qC6TgU5mc4EBQBACniyBedowWBQknTssce2+fPS0lLl5OSEvgoLC1MZnmOKcrOUFgh/LT0Q0KDc7s4EhKhQOwUAsQsYY0znm7lXU1OTLrroIh08eFAbN25sc5u2WnAKCwsVDAaVnZ2dqlAdsaa8Ujev3aZGY5QeCGhZyXBNHzPA6bDQiTXllaHuxbSAVFoyguOGTlUF61VRXaui3CxaaWGlmpoa5eTkRHT/9mQXVUvz5s3Ttm3b2k1uJCkjI0MZGRkpjMo9po8ZoPEn5umD6joNyu3ORc8D2qudGn9iHscP7SIpBsJ5uovquuuu0+9+9zutX79exx9/vNPhuFZBTqaKh/Th5ugRHdVOAW1hQAHQmicTHGOMrrvuOj399NNat26dioqKnA4JSBhqpxAtkmKgNU8mOPPmzdMjjzyixx57TD179tT+/fu1f/9+1dfztALvK8jJVGnJCKUHjmQ5zbVTtMChPSTFQGueLDIOBAJtvl5WVqZZs2Z1+vvRFCkBTqkK1lM7hYgxoAB+YH2RsQdzMiBqBTmZJDaIGAMKgHCeTHAAAK2RFAP/5MkaHAAAgI6Q4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAolIVrNcru6pZ6wquxjw4AICIsWo5vIIWHABARFi1HF5CggMAiAirlsNLSHAAABFh1XJ4CQkOACAiBTmZKi0ZofTAkSynedVy1r+CG1FkDACIGKuWwytIcAAAUWHVcngBXVQAAMA6JDgAgIRiIkC4AV1UAICEYSJAuAUtOECUeDoF2sZEgHATWnCAKPB0CrSvo4kAKUpGqtGCA0SIp1OgY0wECDchwQEiZPM09XS7IRGYCBBuQhcVEKHmp9OWSY4NT6d0uyGRmAgQbkELDhAhG59O6XZDMhTkZKp4SB9PnxvwPlpwgCjY9nRKUSgAW5HgAFGyaZp6W7vdAIAuKsDHbOx2AwCJFhzA92zrdgMAiQQHgOzqdgMQmapgvSqqa1WUm2Xl+U+CAwCAz/hheghqcAAA8BG/TA9BggMAgI/YPCt7SyQ4AAD4iF/WDCPBAQDAR/wyPQRFxvAs20cAwDl8tmA7P0wPQYIDT/LDCAA4g88W/ML26SHoooLn+GUEAFKPzxZgDxIceI5fRgAg9fhsAfYgwYHn+GUEAFKPzxZgDxIceI5fRgAg9fhsAfYIGGNM55vZpaamRjk5OQoGg8rOznY6HMSoKlhv9QgAOIfPFuBO0dy/GUUFz7J9BACcw2cL8D66qAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAA6ERVsF6v7KpmZXkPYSZjAAA6sKa8UovXblWTkdICUmnJCE0fM8DpsNAJWnAAAGhHVbA+lNxIUpORbl67zfqWHBtarGjBAQCgHRXVtaHkplmjMfqgus7a9cpsabGiBQcAgHYU5WYpLRD+WnogoEG53Z0JKMlsarEiwQEApIzXuj4KcjJVWjJC6YEjWU56IKBlJcOtbb3pqMXKa+iiAgCkhFe7PqaPGaDxJ+bpg+o6Dcrtbm1yI/2zxaplkuPVFitacAAASef1ro+CnEwVD+ljdXIj2dViRQsOACDp/Fis61W2tFiR4CChqoL1qqiuVVFulmdPCsApNp8/NnV9+EFBTqbnP4MkOEgYr/avA25g+/nT3PVx89ptajTG010f8IaAMcZ0vpldampqlJOTo2AwqOzsbKfDsUJVsF7jlq9r9XS2cdFELmBAJ/x0/lQF6z3f9QHnRHP/pgUHCUH/OhA7P50/NnR9wBsYRYWE8NtkWEAicf74l9fmBfISEhwkhE1DC23BhdM7OH/8aU15pcYtX6fLH9ykccvXaU15pdMhWYUaHGpwEor+dXewvWA10dwyeuno88ctcSHx/FR3lUjU4MAx9K87r70J1cafmMexaYObksGW54+b4kLi+anuyime7KL685//rK9//evq37+/AoGAnnnmGadDAlzDprVkks2ts+u6NS4kDnVXyefJBKe2tlannnqqfvaznzkdCuA6XDgj59Zk0K1xIXGou0o+T3ZRTZkyRVOmTIl4+4aGBjU0NIS+r6mpSUZYgCswoVrk3Dq7rlvjQmLZsiSCW3kywYlWaWmpbr/9dqfDAFKGC2dk3JoMujUuJB51i8nj+VFUgUBATz/9tC655JJ2t2mrBaewsJBRVAAkuXf0n1vjApzCKKqjZGRkKCMjw+kwALiUW5+i3RoX4AWeLDIGgGgx8SHgL75owYE7MYkZUoU5ZQD/8WSC89lnn2nnzp2h7ysqKrRlyxYde+yxGjCAi5YXcMNBqjDxIeBPnuyi2rx5s0aNGqVRo0ZJkm644QaNGjVKS5YscTgyRIJJzJBKzCkD+JMnW3AmTJggjw/+8jWmKEcqMacM4E+ebMGBtzHTLlKJGWMBf/JkCw68jUnMkGpMfAj4DwkOHMENB6nGnDKAv5DgwDHccAAcjekjkCgkOAAAV2hr+ojxJ+aR8CAmJDgAAMe1NX3Eoqe2KvD/I+CYLwvRYhQVAMBxbU0fYSTmy0LMSHAAAI5ra/qIozFBI6JBggMAcNzR8xWlSTo632G+LESDGhxEhREOAJLl6Okj/rzjo6jmy+L6hJZIcBAxFsgEkGwtp4+IZr4srk84Gl1UiIgbFsisCtbrlV3VFBkCPlKQk6niIX06bblx+voE96EFBxFxeoFMns4AtMfp6xPciRYcRMTJBTJ5OgPQERbwRVtIcBARJ1Zkbu6Sem33p+0+ncF50XQd0s2IZGDFeLSFLipELJULZLbskgroyFfLHIenM3eIpuvQpm5GRuu4Dwv44mgkOIhKKhbIPLpLyuhIgpP2/1O283TmDu11HY4/Ma/VsYlmW7ezKVGzDQv4oiUSHLTi9NNpe1O2/+dlo9SnRwZPZy4RTWGnLUWgNiVqQDycvk9EggQHYdzwdNpcMNjyhpgeCGj0oN6uPZH8qL3j1FbXYTTbulkkiZoXLvxAPNxwn4gERcYIcctoJQoGvSGa42TLMe1stM6a8kqNW75Olz+4SeOWr9Oa8koHogSSxy33iUjQgoMQN3UjUDDoDdEcJxuOaXOi1tbyAXRfwQ/cdJ/oDAkOQtzWjUDBoDdEc5xsOKbtJWpeuvADsXLbfaIjdFEhxJZuBCDZ2lo+gMnm4Adeuk8EjDGm883sUlNTo5ycHAWDQWVnZzsdjutUBes93Y2AxKJoNnJryitbdV+5sfgSiJdT94lo7t8kOAlOcLgZwCZeGS3hJjwgAMkTzf2bGpwE4mYAmySqaNZvSb8NdUZwr2SeT7adqyQ4CcIICmdFe2LadiInQyKKZkn6gcRJ5vlk47lKgpMgjKBwTrQnpo0ncjLEO1qCpB9u5rWHnGSeT7aeq4yiShBGUDgj2kmnvDRJldPiHS3RUdLvJ6yg7j5enJAxmeeTrecqLTgJ0tEEYEieaFvOaGmLTjyT83lpvoxkobXQfbzaWpHM88nWc5UWnASaPmaANi6aqF/PPVMbF03kQpYC0bac0dIWvbbmfIn097wyX0Yy0FroTl5trUjm+WTruUoLToIxgiK1om05o6UttWxYniFWtBa6k5dbK5J5Ptl4rpLguJjXiuCcEu2JaeOJ7GaJTPq9dE54+UZqM68/5CTzIdq2B3Qm+nPpTMb03XuHl266XubFc4KZjd2LCRm9iZmMO+H2BKcqWK9xy9e1evLbuGgiJ6LLePGm60VePie4kQKJE839myJjF/JqEZzfUESaOl4+J2It0gYQHxIcF7JppI/Nc4B4+abrNTadEwBSI+Ii42effTbqNz///POVmclTS7S8XgTXrK3um/En5llTr0IRaerYck4ASJ2Ia3DS0qJr7AkEAnrvvfc0ePDgmAJLJrfX4DTzct99WzUTAUmB/08IbKlXoYg0tbx8TgBe5pbBFElbTXz//v3q27dvRNv27NkzmrdGG7w8ZK+t7hsjyXhs9tDOMOQ8tbx8TgDJkIrEw6uDKSJOcGbOnBlVd9MVV1zh6tYRJFdb3TdHs2XSM7fcdN3yhAUgNVKReHh1aQspiiLjsrKyUKvMZ5991un29913n3Jzc2OPDJ529NTfaTrSRdUS9SrR6ahg24uLBwKIXapGcXp5MEVMMxnn5OTo8ccf1ze+8Y1ExwOLHN198+cdH1EkGqOOntS8/IQF2CgVrampWgrEy4MpYkpwjDF64IEHtGLFCgUCAZ1++umaMWOGxowZk+j44HEtu2+oV4lNZwkMax4B7pGqepVUJR5eHsEY8zw4b7zxhk477TSdddZZ+tvf/qazzz5bCxcuTGRssBCTnkWvsyZi5ogB3CGVk3+mcgXw6WMGaOOiifr13DO1cdFETxQYS3EstvnYY4/p/PPPD33/1ltv6eKLL9Zxxx2nBQsWJCQ4AJ0/qXn5CQuwSapbU1PZKu6WwRTRiCnBOfbYY1VYWBj22siRI/XTn/5UCxYsIMEBEiiSBMar3X+M/IJNnKhX8WLikSoxJThf/vKXVVZWprvuuivs9aFDh6qyktEbtuEm5LxIEhivXei8NLcG5wAiQWuqu8SU4Nx5552aOHGi9u3bp29/+9saOXKkamtrtWzZMhUVFSU6RjjISzch23ktgemIl0Z+cQ4gGvG2ppJMJ05MCc6ZZ56pv/zlL5o/f77OPvtsNa/2cMwxx+iJJ55IaIBwjpduQvAWr4z84hyInx9v2LE+jJBMJ1bMRcannnqqNmzYoA8//FCvvfaampqaNHbsWCb3s4hXbkI28cvNwCtza3AOxIcbduRIphMv5gSnWd++fTVlypRExAKX8cpNyBa23AwiSdK8UqvAORA7btjRIZlOvIjnwXnrrbfU1NQU8Rv/7W9/0xdffBFTULboaGp9L4hkngWv76NbpHL+jGSKZskIL8ytkcq5RmwT6RT/XEOOYD6rxIu4BWfUqFHav3+/8vLyItq+uLhYW7Zs0eDBg2MOzstseRrvqGDOln10Axue3mJ5YvdC4bRXh+A7LZLWL64h/+SVVk0viTjBMcbo1ltvVffukWWThw8fjjkor7Otabatm5Bt++g0G7pCbEjS2uOFRMxtOrthcw1pjWQ6sSJOcMaPH6/t27dH/MbFxcXKzPTnwbH5Qt/MD/uYSjY8vdmQpKFtsRa/d3TD5hrStniSab8MUohUxAnOhg0bkhiGXfxwoffDPqaa15/ebEjSbBbrzS/ebqT2bthcQxKL7r7WAqZ5EhsfqampUU5OjoLBoLKzs5PyN9aUV7a60Nv2YfPDPiJ6VcF6zyZptor15lcVrNe45etaJSEbF01MyLHlGpIYyT5ObhLN/TvuYeJom9efxiPhh31E9KhXcZd4al2S3Y3ENSQx6O5rGwlOEvnhQu+HfQS8LJ6bXyq6kbiGxI/uvrZFPA8OAMB74plfJdJ5gJjLxlnM19S2mGpw6uvrZYwJDRnfvXu3nn76aZ188smaPHlywoNMtFTU4ACAW8Rb69JRXRXFre7hh/q3aO7fMSU4kydPVklJia655hodPHhQw4YNU9euXVVdXa0VK1bo2muvjTn4VCDBAezDENmOJePm56fiVrhDNPfvmLqoXn/9dZ199tmSpCeffFL9+vXT7t279dBDD2nlypWxvCUAxCyaJSL8qiAnU8VD+iQ08Yh0OQbb0UXnTjEVGdfV1alnz56SpD/+8Y8qKSlRWlqazjzzTO3evTuhAQJAR5gR1zkUt9JF52YxteAMHTpUzzzzjPbs2aPnn38+VHfz4Ycf0uUDIKVoRXCO34tbbVkk11YxteAsWbJEl19+uRYsWKBJkyapuLhY0pHWnFGjRiU0QADoCK0IznJyLhun666Yf8bdYmrBufTSS1VZWanNmzfrueeeC70+adIk/fjHP05YcB352c9+pkGDBumYY47R2LFj9de//jUlfxeAu/i9FcENklHf0xk31F3FMwQfyefJpRrWrFmjf/u3f9P999+vsWPH6ic/+YmeeOIJbd++XX379u309xlFhVRx+gnTT/wwRBZHuGn0FstNpFZShonfcMMNEQewYsWKiLeNxdixYzVmzBj99Kc/lSQ1NTWpsLBQ3/nOd7Ro0aJW2zc0NKihoSH0fU1NjQoLC0lwkFQUHyYXyaN/vbKrWpc/uKnV67+ee6aKh/RJeTwk16mTlLWo3njjjYi2CwQCnW8Uh8OHD+u1117T4sWLQ6+lpaXpvPPO06uvvtrm75SWlur2229PalxAS4zsSS6SR39zW90Vy024U8QJzvr165MZR8Sqq6vV2Niofv36hb3er18/vfvuu23+zuLFi8NaoJpbcIBkofgweUge0Vx3dXTXEMcfLflisc2MjAxlZGQ4HQZ8xG1PmDYheYTESuSR8Hs3blwJzttvv63KykodPnw47PWLLroorqA6kpubq/T0dB04cCDs9QMHDig/Pz9pf9cmfv/QpwJPmMlD8ohmdA21j27cGBOc999/X1OnTtXWrVsVCATUXKfcXH/T2NiYuAiP0q1bN40ePVovvfSSLrnkEklHioxfeuklXXfddUn7u05LVFLChz51eMJMDpLHxOBBx1504x4RU4Izf/58FRUV6aWXXlJRUZH++te/6uOPP9b3vvc93XPPPYmOsZUbbrhBM2fO1Omnn64zzjhDP/nJT1RbW6vZs2cn/W87IVFJCR/61OMJMzlIHuPDg47d6MY9IqYE59VXX9W6deuUm5urtLQ0paWl6ayzzlJpaam++93vRjziKlbTp0/XRx99pCVLlmj//v368pe/rOeee65V4bENEpmU8KGHTUgeY8ODjv3oxj0ippmMGxsbQ4tt5ubmat++fZKkgQMHavv27YmLrgPXXXeddu/erYaGBm3atEljx45Nyd9NtUSus8OsmwBYu8t+zO59REwtOMOHD9ebb76poqIijR07Vj/60Y/UrVs3/eIXv9DgwYMTHaOvJTITp3YBsEssdTQ83fsD3bgxLtXw/PPPq7a2ViUlJdq5c6f+5V/+RTt27FCfPn30m9/8RpMmTUpGrAnjtaUaEj0VOLNudiye4ksKN5Eq8dTRsLwAvCopSzV05pNPPlHv3r2TPpNxIngtwZFISlIl3psGhZtIhUSsxcQ1BV6UlKUaWvrhD3/Y4c+XLFkSy9uiAxRUJl88xZcUbiKVEjFggGsKbBdTgvP000+Hff/555+roqJCXbp00ZAhQ0hw4Enx3DQYoYZUaO4CzeqWTh0N0ImYEpy2hoHX1NRo1qxZmjp1atxBAU6Ip/iSwk0k29FdoFNHHadn3tjHgAGgHQmrwZGkrVu36utf/7o++OCDRL1lUnixBgepEU/xJYWbSJb2am7WfrtYdYebqKOBbyS9Bqc9wWBQwWAwkW8JJESko5viGVrJsEwkS3tdoHWHm1Q8pI8zQQEuF1OCs3LlyrDvjTGqqqrSww8/rClTpiQkMCBRoh3dFE/xJYWbSAa6QN2HKSHcL6YuqqKiorDv09LSlJeXp3PPPVeLFy8OzXLsVnRR+UcihtMCbkAXqHswJYRzkt5FVVFREVNgQKoxugm2iLYLlBaG5GBKCO9IaA0OEI9kXJBp2odNIu0CpYUheXho8o6IE5wbbrgh4jddsWJFTMHAv5J1QWb9LfgNLQzJxUOTd0Sc4Bw9983rr7+uL774QieddJIkaceOHUpPT9fo0aMTGyGsl+wLMqOb4Ce0MCQXD03eEXGCs379+tC/V6xYoZ49e2r16tXq3bu3JOnTTz/V7NmzdfbZZyc+SlgtFRdkRjfBL2hhSD4emrwhLZZfuvfee1VaWhpKbiSpd+/euvPOO3XvvfcmLDj4Q/MFuSUuyEBsmlsY0v9/4WNaGJKjICdTxUP68P/qYjEVGdfU1Oijjz5q9fpHH32kQ4cOxR0U/IUmXyCxaGEAYkxwpk6dqtmzZ+vee+/VGWecIUnatGmTbrzxRpWUlCQ0QPiDmy/IDLeFF9EtC7+LKcG5//77tXDhQl1++eX6/PPPj7xRly6aM2eO7r777oQG6Cd+v5G68YLMcFsA8Ka4Ftusra3Vrl27JElDhgxRVlZWwgJLJjfOZMyN1H2YBRkA3CVli21mZWVp5MiR8bwFxLwVbsVwWwDwrqgm+rvjjjuUlZXV6aR/TPQXHW6k7mTTcFu/d38C8J+oJvprrrc5etK/lgKBQLs/Q9tsupHaxJbRXXR/AvCjuGpwvMqtNTisFOxOVcF6V47uigR1RABskvQanPr6ehlj1L37kRaG3bt36+mnn9bJJ5+syZMnx/KWvufmYdJ+58bRXZGi+xOAX8U0k/HFF1+shx56SJJ08OBBnXHGGbr33nt18cUX67777ktogH7CzJhINGaJBuBXMSU4r7/+emjNqSeffFL5+fnavXu3HnroIa1cuTKhAQKIHdP2A/CrmLqo6urq1LNnT0nSH//4R5WUlCgtLU1nnnmmdu/endAAAcSH7k/gCEYT+ktMCc7QoUP1zDPPaOrUqXr++ee1YMECSdKHH37omqJdAP/k5ToiIBEYTeg/MXVRLVmyRAsXLtSgQYM0duxYFRcXSzrSmjNq1KiEBmiTqmC9XtlVrapgvdOhAIBvtDeZKtdiu8XUgnPppZfqrLPOUlVVlU499dTQ65MmTdLUqVMTFpxNeHoAAGcwmtCfYl6qIT8/X/n5+WGvNa8sjnAsxQAAzmEyVX+KqYtKkv73f/9XV1xxhYqLi7V3715J0sMPP6yNGzcmLDhbdPT0AABILkYT+lNMLThPPfWUrrzySs2YMUNvvPGGGhoaJEnBYFDLli3T73//+4QG6XU8PQCxYdQLEoXRhP4TUwvOnXfeqfvvv18PPvigunbtGnp93Lhxev311xMWnC14egCit6a8UuOWr9PlD27SuOXrtKa80umQ4HFMpuovMbXgbN++XePHj2/1ek5Ojg4ePBhvTFbi6QGIHHVraAsteohGTAlOfn6+du7cqUGDBoW9vnHjRg0ePDgRcVmJuUiAyDDqBUdjJCqiFVMX1dy5czV//nxt2rRJgUBA+/bt06OPPqqFCxfq2muvTXSMAHyGNbTQkm3z2DAnWmrE1IKzaNEiNTU1adKkSaqrq9P48eOVkZGhhQsX6jvf+U6iYwTgM811azev3aZGY6hb8zmbWvRoiUqdgDHGdL5Z2w4fPqydO3fqs88+08knn6wePXqovr5emZnu/sDV1NQoJydHwWCQpSUAF6sK1lO3BlUF6zVu+bpWI1E3Lproqc+FLfvhpGju3zHPgyNJ3bp108knn6wzzjhDXbt21YoVK1RUVBTPWwJwuVQ2rzPqBZI9I1GZEy21ouqiamho0G233aYXXnhB3bp10/e//31dcsklKisr0y233KL09PTQwpsA7EPzOpzi5ZGozaO/srqlMydaCkWV4CxZskQPPPCAzjvvPL3yyiuaNm2aZs+erb/85S9asWKFpk2bpvT09GTFCsBBDN2G07w4EvXoh4Kpo47TM2/so7YsBaJKcJ544gk99NBDuuiii7Rt2zaNHDlSX3zxhd58800FAoHO3wCAZ9lU6AmkQlsPBc+8sU9rv12susNNnmuJ8pqoEpy///3vGj16tCRp+PDhysjI0IIFC0huAB9gyREgOu09FNQdblLxkD7OBOUjURUZNzY2qlu3bqHvu3Tpoh49eiQ8KADuY0uhJ5AqzOfkrKhacIwxmjVrljIyMiRJ//jHP3TNNdcoKysrbLu1a9cmLkIAruHlQk8g1ZjPyVlRJTgzZ84M+/6KK65IaDAA3M+LhZ6AU3gocE5cE/15FRP9AQDgPSmb6A8AEB/WJQKSI6a1qAAA8WPiRHSmeZLAotwsureiRIIDwEpuvzEwcSI6QwIcHxIcANbxwo2BiRPRERLg+FGDA8Aq7d0Y3Fbjwhwp6AgLc8aPBAeAVbxyY2DixOTzcgE3CXD86KICYBUvLSnBHCnJ44Vuyo4wSWD8mAeHeXAA66wpr2x1Y/DSzQ3xqQrWa9zyda2S3I2LJnouQagK1pMAtxDN/ZsWHADWoWXE32wq4Gbm8NiR4FjK7UNkgWTjxuBfXuqmTCW/3RdIcCzk9b5nAIgH9Sut+fG+QA2OZTU4NvU9A0A8qF85wqb7AjU4PmZT3zMAxINuyiP8el9gHhzLMHcCAKAlJ+4LbpiDiATHMkweBgBoKdX3hTXllRq3fJ0uf3CTxi1fpzXllUn5O52hBseyGpxm9D0DAFpKxX0h2fU+1OCAvmcAQJhU3BfcVO9DFxV8zw19xQBgAzfVgXouwVm6dKm+8pWvqHv37urVq5fT4cDj3NJXDAA2cFMdqOe6qA4fPqxp06apuLhYv/rVr5wOBx5WFawPTXwlHZn19Oa12zT+xDy69wAgRm5ZKsVzCc7tt98uSVq1alXEv9PQ0KCGhobQ9zU1NYkOK+X8NuV2MriprxgAbOKGOlDPJTixKC0tDSVGNvDjlNvJ4Ib1akhUASA5PFeDE4vFixcrGAyGvvbs2eN0SDFrr1uFAtnoOd1XTP0PACSPK1pwFi1apLvuuqvDbd555x0NGzYspvfPyMhQRkZGTL/rNnSrJJZTfcXU/wBAcrkiwfne976nWbNmdbjN4MGDUxOMy7mhW8U2TvQVJyJRpXsLANrnigQnLy9PeXl5TofhCc3dKjev3aZGY1iKwaPiTVSpwwKAjrkiwYlGZWWlPvnkE1VWVqqxsVFbtmyRJA0dOlQ9evRwNrgUccsQPMQunkSV7i0A6JznEpwlS5Zo9erVoe9HjRolSVq/fr0mTJjgUFSp54YheIhey26lWBNV6rAAoHOeS3BWrVoV1Rw4gFu0160UbVJCHRYAdM4Xw8T9gPWU3C2Rw/udHt4OAF7guRYctEbBqfsluluJOiz3YDQb4E4kOB5Hwak3JKNbiTos5/FwAbgXXVQe11HLANyDbiX7MKs44G604HgcBafeQbeSXRjNBrgbLTgeR8uAtxTkZKp4SB+OTzu8VCzf/HDREg8X9vDSZxFtowXHArQMwAZeq2dhVnF7ee2ziLYFjDGm883sUlNTo5ycHAWDQWVnZzsdDuB7VcF6jVu+rlVX68ZFE12fMFQF63m4sIiXP4t+EM39mxYcAI7zcj0Lo9ns4uXPIsJRgwPAcdSzwC34LNqDBAeA4yiWh1vwWbQHNTjU4ACuQT0L3ILPojtRgwPAk6hngVvwWfQ+uqgcxDwLAAAkBy04DmGeBQAAkocWHAewhg0AAMlFguMAFsiE29F9CsDr6KJyAAtkws3oPgVgA1pwHMA8C3Aruk8B2IIWHIewQCbciGnqAdiCBMdBzLMAt6H7FIAt6KICEEL3KQBb0IIDIAzdpwBsQIIDoBW6TwF4HV1UAADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADfqwrW65Vd1aoK1jsdChKExTZhpapgvSqqa1WUm8WikW3g/wf4pzXllVq8dquajJQWkEpLRmj6mAFOh4U4keDAOlysOsb/D/BPVcH60PkgSU1GunntNo0/MY/k3+PoooJV2rtY0ex8BP8/QLiK6trQ+dCs0Rh9UF3nTEBIGBIcWNX3zMWqY/z/AOGKcrOUFgh/LT0Q0KDc7s4EhIQhwfG5NeWVGrd8nS5/cJPGLV+nNeWVTocUFy5WHeP/BwhXkJOp0pIRSg8cOTHSAwEtKxlO95QFAsYY0/lmdqmpqVFOTo6CwaCys7OdDscxVcF6jVu+LuyJPj0Q0MZFEz19cq8pr9TNa7ep0ZjQxYoak3/i/wdorSpYrw+q6zQot7unr3+2i+b+TZGxj3XUXeHlE3z6mAEaf2IeF6t28P8DtFaQk8m5YBkSHB9r7q44ugXHhu4KLlYd4/8HgO2owfEx+p4BALaiBcfn6K4AANiIBAd0VwAArEMXFQAAiIsb51OjBQcAAMTMrcu/0IIDAABi4ublX0hwAABATNy8/AsJDgAAiImbl38hwQEAADFx83xqFBkDAICYuXU+NRIcAAAQFzfOp0YXFQAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgCglapgvV7ZVe2KRROBWDDRHwCkUFWwXhXVtSrKzXLdxGjN1pRXhlaITgtIpSUjNH3MAKfDAqJCggMAKeKFxKEqWB+KUZKajHTz2m0af2KeaxMyoC10UQFACrSXOLitC6iiujYUY7NGY/RBdZ0zAQExIsEBgBTwSuJQlJultED4a+mBgAbldncmICBGnkpwPvjgA82ZM0dFRUXKzMzUkCFD9IMf/ECHDx92OjQA6JBXEoeCnEyVloxQeuBIsOmBgJaVDKd7Cp7jqRqcd999V01NTXrggQc0dOhQbdu2TXPnzlVtba3uuecep8MDgHY1Jw43r92mRmNcnThMHzNA40/M0wfVdRqU292VMQKdCRhjTOebudfdd9+t++67T++//3672zQ0NKihoSH0fU1NjQoLCxUMBpWdnZ2KMAFA0pFaHBIHIDY1NTXKycmJ6P7tqS6qtgSDQR177LEdblNaWqqcnJzQV2FhYYqiA4BwBTmZKh7Sh+QGSDJPJzg7d+7Uf/7nf+rqq6/ucLvFixcrGAyGvvbs2ZOiCAEAgBNckeAsWrRIgUCgw69333037Hf27t2rCy64QNOmTdPcuXM7fP+MjAxlZ2eHfQEAAHu5ogbno48+0scff9zhNoMHD1a3bt0kSfv27dOECRN05plnatWqVUpLiy5Pi6YPDwAAuEM0929XjKLKy8tTXl5eRNvu3btXEydO1OjRo1VWVhZ1cgMAAOznigQnUnv37tWECRM0cOBA3XPPPfroo49CP8vPz3cwMgAA4CaeSnBeeOEF7dy5Uzt37tTxxx8f9jMX9LQBAACX8FT/zqxZs2SMafMLAACgmacSHAAAgEiQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4ADwpapgvV7ZVa2qYL3ToQBIAk/NgwMAibCmvFKL125Vk5HSAlJpyQhNHzPA6bAAJBAtOAB8pSpYH0puJKnJSDev3UZLDmAZEhwAvlJRXRtKbpo1GqMPquucCQhAUpDgAPCVotwspQXCX0sPBDQot7szAQFIChIcAL5SkJOp0pIRSg8cyXLSAwEtKxmugpxMhyMDkEgUGQPwneljBmj8iXn6oLpOg3K7k9wAFiLBAeBLBTmZJDYtVAXrVVFdq6LcLP5fYAUSHADwOYbNw0bU4ACAjzFsHrYiwQEAH2PYPGxFggMAPsawediKBAcAfIxh87AVRcYA4HMMm4eNSHAAAAybh3XoogIAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANbx5VpUxhhJUk1NjcORAACASDXft5vv4x3xZYJz6NAhSVJhYaHDkQAAgGgdOnRIOTk5HW4TMJGkQZZpamrSvn371LNnTwUCgYS8Z01NjQoLC7Vnzx5lZ2cn5D3dxvZ9tH3/JPbRFuyjHWzfx2TsnzFGhw4dUv/+/ZWW1nGVjS9bcNLS0nT88ccn5b2zs7Ot/KC2ZPs+2r5/EvtoC/bRDrbvY6L3r7OWm2YUGQMAAOuQ4AAAAOuQ4CRIRkaGfvCDHygjI8PpUJLG9n20ff8k9tEW7KMdbN9Hp/fPl0XGAADAbrTgAAAA65DgAAAA65DgAAAA65DgAAAA65DgxGH58uUKBAK6/vrrQ6/94x//0Lx589SnTx/16NFD3/jGN3TgwAHngoxDW/s3YcIEBQKBsK9rrrnGuSBjcNttt7Xah2HDhoV+bsMx7GwfbTiOe/fu1RVXXKE+ffooMzNTI0aM0ObNm0M/N8ZoyZIlKigoUGZmps477zy99957DkYcvc72cdasWa2O4wUXXOBgxNEZNGhQq/gDgYDmzZsnyY5zsbN9tOFcbGxs1K233qqioiJlZmZqyJAhuuOOO8LWi3LifPTlTMaJUF5ergceeEAjR44Me33BggX6n//5Hz3xxBPKycnRddddp5KSEr388ssORRqb9vZPkubOnasf/vCHoe+7d++eytAS4pRTTtGLL74Y+r5Ll3+eCrYcw472UfL2cfz00081btw4TZw4UX/4wx+Ul5en9957T7179w5t86Mf/UgrV67U6tWrVVRUpFtvvVVf/epX9fbbb+uYY45xMPrIRLKPknTBBReorKws9L2XhhyXl5ersbEx9P22bdt0/vnna9q0aZLsOBc720fJ2+eiJN1111267777tHr1ap1yyinavHmzZs+erZycHH33u9+V5ND5aBC1Q4cOmRNOOMG88MIL5pxzzjHz5883xhhz8OBB07VrV/PEE0+Etn3nnXeMJPPqq686FG302ts/Y0yr773oBz/4gTn11FPb/Jktx7CjfTTG+8fxpptuMmeddVa7P29qajL5+fnm7rvvDr128OBBk5GRYX7961+nIsS4dbaPxhgzc+ZMc/HFF6cmoBSYP3++GTJkiGlqarLmXDxay300xvvnojHGXHjhheaqq64Ke62kpMTMmDHDGOPc+UgXVQzmzZunCy+8UOedd17Y66+99po+//zzsNeHDRumAQMG6NVXX011mDFrb/+aPfroo8rNzdXw4cO1ePFi1dXVpTjC+L333nvq37+/Bg8erBkzZqiyslKSPcdQan8fm3n5OD777LM6/fTTNW3aNPXt21ejRo3Sgw8+GPp5RUWF9u/fH3Ycc3JyNHbsWM8cx872sdmGDRvUt29fnXTSSbr22mv18ccfOxBt/A4fPqxHHnlEV111lQKBgFXnYrOj97GZl89FSfrKV76il156STt27JAkvfnmm9q4caOmTJkiybnzkS6qKP3mN7/R66+/rvLy8lY/279/v7p166ZevXqFvd6vXz/t378/RRHGp6P9k6TLL79cAwcOVP/+/fXWW2/ppptu0vbt27V27doURxq7sWPHatWqVTrppJNUVVWl22+/XWeffba2bdtmxTGUOt7Hnj17ev44vv/++7rvvvt0ww036Oabb1Z5ebm++93vqlu3bpo5c2boWPXr1y/s97x0HDvbR+lI91RJSYmKioq0a9cu3XzzzZoyZYpeffVVpaenO7wH0XnmmWd08OBBzZo1S5Id19OjHb2Pkh3X1EWLFqmmpkbDhg1Tenq6GhsbtXTpUs2YMUOSHDsfSXCisGfPHs2fP18vvPCCJ/rwoxXJ/v37v/976N8jRoxQQUGBJk2apF27dmnIkCGpCjUuzU8VkjRy5EiNHTtWAwcO1OOPP67MzEwHI0ucjvZxzpw5nj+OTU1NOv3007Vs2TJJ0qhRo7Rt2zbdf//9oZu/10Wyj5dddllo+xEjRmjkyJEaMmSINmzYoEmTJjkSd6x+9atfacqUKerfv7/ToSRNW/vo9XNRkh5//HE9+uijeuyxx3TKKadoy5Ytuv7669W/f39Hz0e6qKLw2muv6cMPP9Rpp52mLl26qEuXLvrTn/6klStXqkuXLurXr58OHz6sgwcPhv3egQMHlJ+f70zQUehs/1oWyjUbO3asJGnnzp2pDjdhevXqpRNPPFE7d+5Ufn6+p49he1ruY1u8dhwLCgp08sknh732pS99KdQN13ysjh5x46Xj2Nk+tmXw4MHKzc31zHFstnv3br344ov61re+FXrNtnOxrX1si9fORUm68cYbtWjRIl122WUaMWKErrzySi1YsEClpaWSnDsfSXCiMGnSJG3dulVbtmwJfZ1++umaMWNG6N9du3bVSy+9FPqd7du3q7KyUsXFxQ5GHpnO9q+tJu8tW7ZIOnIx9qrPPvtMu3btUkFBgUaPHu3pY9ielvvYFq8dx3Hjxmn79u1hr+3YsUMDBw6UJBUVFSk/Pz/sONbU1GjTpk2eOY6d7WNb/v73v+vjjz/2zHFsVlZWpr59++rCCy8MvWbbudjWPrbFa+eiJNXV1SktLTydSE9PV1NTkyQHz8eklS/7xNEV8Ndcc40ZMGCAWbdundm8ebMpLi42xcXFzgUYp5b7t3PnTvPDH/7QbN682VRUVJjf/va3ZvDgwWb8+PHOBhml733ve2bDhg2moqLCvPzyy+a8884zubm55sMPPzTG2HEMO9pHG47jX//6V9OlSxezdOlS895775lHH33UdO/e3TzyyCOhbZYvX2569eplfvvb35q33nrLXHzxxaaoqMjU19c7GHnkOtvHQ4cOmYULF5pXX33VVFRUmBdffNGcdtpp5oQTTjD/+Mc/HI4+co2NjWbAgAHmpptuavUzG85FY9rfRxvORWOOjOY77rjjzO9+9ztTUVFh1q5da3Jzc833v//90DZOnI8kOHE6OsGpr6833/72t03v3r1N9+7dzdSpU01VVZVzAcap5f5VVlaa8ePHm2OPPdZkZGSYoUOHmhtvvNEEg0Fng4zS9OnTTUFBgenWrZs57rjjzPTp083OnTtDP7fhGHa0j7Ycx//+7/82w4cPNxkZGWbYsGHmF7/4RdjPm5qazK233mr69etnMjIyzKRJk8z27dsdijY2He1jXV2dmTx5ssnLyzNdu3Y1AwcONHPnzjX79+93MOLoPf/880ZSm8fGhnPRmPb30ZZzsaamxsyfP98MGDDAHHPMMWbw4MHmlltuMQ0NDaFtnDgfA8a0mGoQAADAAtTgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAPClCRMmKBAIKBAIhNb/2bBhgwKBQKsFHhPttttuC/3tn/zkJ0n9W4BfkeAA6NSsWbNCN+SWXxdccIHTocVl7ty5qqqq0vDhw+N+rwMHDqhr1676zW9+0+bP58yZo9NOO02StHDhQlVVVen444+P++8CaBsJDoCIXHDBBaqqqgr7+vWvf53Uv3n48OGkvn/37t2Vn5+vLl26xP1e/fr104UXXqj/+q//avWz2tpaPf7445ozZ44kqUePHsrPz1d6enrcfxdA20hwAEQkIyND+fn5YV+9e/cO/TwQCOiXv/ylpk6dqu7du+uEE07Qs88+G/Ye27Zt05QpU9SjRw/169dPV155paqrq0M/nzBhgq677jpdf/31ys3N1Ve/+lVJ0rPPPqsTTjhBxxxzjCZOnKjVq1eHupJqa2uVnZ2tJ598MuxvPfPMM8rKytKhQ4di3ue6ujpNmTJF48aNC3Vb/fKXv9SXvvQlHXPMMRo2bJh+/vOfh7afM2eOXnrpJVVWVoa9zxNPPKEvvvhCM2bMiDkWANEhwQGQMLfffru++c1v6q233tLXvvY1zZgxQ5988okk6eDBgzr33HM1atQobd68Wc8995wOHDigb37zm2HvsXr1anXr1k0vv/yy7r//flVUVOjSSy/VJZdcojfffFNXX321brnlltD2WVlZuuyyy1RWVhb2PmVlZbr00kvVs2fPmPbl4MGDOv/889XU1KQXXnhBvXr10qOPPqolS5Zo6dKleuedd7Rs2TLdeuutWr16tSTpa1/7mvr166dVq1a1iqWkpES9evWKKRYAMUjqWuUArDBz5kyTnp5usrKywr6WLl0a2kaS+Y//+I/Q95999pmRZP7whz8YY4y54447zOTJk8Ped8+ePUaS2b59uzHGmHPOOceMGjUqbJubbrrJDB8+POy1W265xUgyn376qTHGmE2bNpn09HSzb98+Y4wxBw4cMF26dDEbNmxod5/OOeccM3/+/LDX1q9fbySZd955x4wcOdJ84xvfMA0NDaGfDxkyxDz22GNhv3PHHXeY4uLi0PeLFi0yRUVFpqmpyRhjzM6dO00gEDAvvvhiqxgGDhxofvzjH7cbI4DY0YIDICITJ07Uli1bwr6uueaasG1GjhwZ+ndWVpays7P14YcfSpLefPNNrV+/Xj169Ah9DRs2TJK0a9eu0O+NHj067D23b9+uMWPGhL12xhlntPr+lFNOCbWkPPLIIxo4cKDGjx8f076ef/75Gjp0qNasWaNu3bpJOlJHs2vXLs2ZMydsH+68886w+K+66ipVVFRo/fr1ko603gwaNEjnnntuTLEAiE38lXUAfCErK0tDhw7tcJuuXbuGfR8IBNTU1CRJ+uyzz/T1r39dd911V6vfKygoCPs7sfjWt76ln/3sZ1q0aJHKyso0e/ZsBQKBmN7rwgsv1FNPPaW3335bI0aMCMUvSQ8++KDGjh0btn3LYuETTjhBZ599tsrKyjRhwgQ99NBDmjt3bsyxAIgNCQ6AlDjttNP01FNPadCgQVGNWjrppJP0+9//Puy18vLyVttdccUV+v73v6+VK1fq7bff1syZM2OOdfny5erRo4cmTZqkDRs26OSTT1a/fv3Uv39/vf/++50WC8+ZM0fXXnutLrroIu3du1ezZs2KORYAsaGLCkBEGhoatH///rCvliOgOjNv3jx98skn+td//VeVl5dr165dev755zV79mw1Nja2+3tXX3213n33Xd10003asWOHHn/88VARb8tWkd69e6ukpEQ33nijJk+eHPccM/fcc49mzJihc889V++++66kI0XUpaWlWrlypXbs2KGtW7eqrKxMK1asCPvdadOmqWvXrrr66qs1efJkFRYWxhULgOiR4ACIyHPPPaeCgoKwr7POOivi3+/fv79efvllNTY2avLkyRoxYoSuv/569erVS2lp7V+KioqK9OSTT2rt2rUaOXKk7rvvvtAoqoyMjLBt58yZo8OHD+uqq66KbSeP8uMf/1jf/OY3de6552rHjh361re+pV/+8pcqKyvTiBEjdM4552jVqlUqKioK+73u3bvrsssu06effpqwWABEJ2CMMU4HAQDRWLp0qe6//37t2bMn7PWHH35YCxYs0L59+0LFwe2ZMGGCvvzlLzu6VMKgQYN0/fXX6/rrr3csBsBWtOAAcL2f//znKi8v1/vvv6+HH35Yd999d1iNTV1dnXbt2qXly5fr6quv7jS5afm+PXr00NatW5MVepuWLVumHj16tJoQEEDi0IIDwPUWLFigNWvW6JNPPtGAAQN05ZVXavHixaFi5dtuu01Lly7V+PHj9dvf/lY9evTo9D337t2r+vp6SdKAAQMiTooS4ZNPPglNgJiXl6ecnJyU/W3AL0hwAACAdeiiAgAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1vk/wb4ggVHhO2UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "residuals = (entries - fit_model(center, *mi.values))/np.sqrt(entries)\n", + "\n", + "plt.plot(center, residuals, ls='', marker='.')\n", + "plt.xlabel('Energy [keV]')\n", + "plt.ylabel('Residuals [$\\sigma$]')" + ] + }, + { + "cell_type": "markdown", + "id": "d0ef61ca-afc5-472d-8e8e-b4726ef2a3dd", + "metadata": {}, + "source": [ + "Als einzelner Plot sind sie noch nicht sehr informativ. Hilfreicher ist es bereits, wenn wir die Residuen zusammen mit unseren Daten und Fitmodel darstellen. " + ] + }, + { + "cell_type": "code", + "execution_count": 521, + "id": "d9fbe83b-3146-4d72-89a4-084c29752e24", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Matthias\\AppData\\Local\\Temp\\ipykernel_67644\\53208542.py:7: UserWarning: The figure layout has changed to tight\n", + " fig_fit.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBAUlEQVR4nOzdd3hUZfrw8e/MpPcCSQiBkJAAoUNAiICLgCBNUdaKCygKq4hgl9/r2tjVVVdFWHRBUbBjwxVUqiC9t0BCGukVSE9ImznvH7NzSIUMJJkkc3+45iJzzplz7hPI5J6n3I9GURQFIYQQQgjR5mktHYAQQgghhGgaktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTNpYOoDUwGAxkZGTg6uqKRqOxdDhCCCGEsBKKolBUVIS/vz9a7fW3t0liB2RkZNClSxdLhyGEEEIIK5WamkpAQMB1n0cSO8DV1RUwflPd3NwsHI0QQgghrEVhYSFdunRRc5HrJYkdqN2vbm5uktgJIYQQosU11VAwmTwhhBBCCNFOSGInhBBCCNFOSGInhBBCCNFOyBg7IYQQop3T6/VUVlZaOgyrZGtri06na7HrSWInhBBCtFOKopCVlUV+fr6lQ7FqHh4e+Pn5tUitXEnshBBCiHbKlNT5+Pjg5OQkRfhbmKIolJaWkpOTA0CnTp2a/ZqS2AkhhBDtkF6vV5M6b29vS4djtRwdHQHIycnBx8en2btlZfKEEEII0Q6ZxtQ5OTlZOBJh+jdoiXGOktgJIYQQ7Zh0v1peS/4bSGInhBBCCNFOSGInhBBCCNGAV155BV9fXzQaDT/99BOzZ89m2rRplg6rQZLYCSGEEKLVmD17NhqNRn14e3tz6623curUqSa7xiuvvMLAgQOvelx0dDSvvvoqK1euJDMzk4kTJ/L++++zZs0a9ZjRo0ezaNGiJovtekliJ4QQzaCkpET9xVRSUmLpcIRoU2699VYyMzPJzMxk+/bt2NjYMGXKlBaPIyEhAYDbb78dPz8/7O3tcXd3x8PDo8VjaSxJ7IQQQgjRqtjb2+Pn54efnx8DBw7khRdeIDU1lfPnz6vHpKamcvfdd+Ph4YGXlxe33347SUlJ6v6dO3dyww034OzsjIeHByNGjCA5OZk1a9bw6quvcvLkSfXDV/UWOJNXXnmFqVOnAqDVatUJENW7YmfPns0ff/zB+++/r56regyWIHXshBBCCCugKAqVpZZZVszWyfaaZ4YWFxfzxRdfEBISotbjq6ysZMKECURERLB7925sbGz4+9//rnbZarVapk2bxiOPPMLXX39NRUUFhw4dQqPRcM8993D69Gk2bdrEtm3bAHB3d69z3WeeeYZu3brx4IMPkpmZWW9s77//PrGxsfTt25fXXnsNgI4dO17TfTYVSeyEEEIIK1BZWskbLm9Y5NqLixdj52zX6OM3btyIi4sLYBzW0KlTJzZu3IhWa+xoXLduHQaDgY8//lhNGD/99FM8PDzYuXMnQ4YMoaCggClTptC9e3cAwsLC1PO7uLhgY2ODn59fgzG4uLioXa4NHefu7o6dnR1OTk5XPFdLkq5YIYQQQrQqN998MydOnODEiRMcOnSICRMmMHHiRJKTkwE4efIk8fHxuLq64uLigouLC15eXpSVlZGQkICXlxezZ89mwoQJTJ06lffff7/BVrf2RlrshBBCCCtg62TL4uLFFru2OZydnQkJCVGff/zxx7i7u/PRRx/x97//neLiYsLDw/nyyy/rvNbUFfrpp5/yxBNPsGnTJtatW8eLL77I1q1bGT58+PXdTCsniZ0QQghhBTQajVndoa2JRqNBq9Vy6dIlAAYPHsy6devw8fHBzc2twdcNGjSIQYMGsXjxYiIiIvjqq68YPnw4dnZ26PX6JomtKc/VFKQrVgghhBCtSnl5OVlZWWRlZREdHc2CBQsoLi5WZ6nOmDGDDh06cPvtt7N7924SExPZuXMnTzzxBGlpaSQmJrJ48WL2799PcnIyW7ZsIS4uTh1n161bNxITEzlx4gQXLlygvLz8mmPt1q0bBw8eJCkpiQsXLmAwGJrke3CtJLETQohmlp6eXu92qXUnRP02bdpEp06d6NSpE8OGDePw4cN89913jB49GgAnJyd27dpF165dufPOOwkLC2POnDmUlZXh5uaGk5MTZ8+eZfr06fTo0YO5c+cyf/585s2bB8D06dO59dZbufnmm+nYsSNff/31Ncf6zDPPoNPp6N27Nx07diQlJaUpvgXXTKMoimLRCFqBwsJC3N3dKSgouGKTrhBCNNYHH3zA/PnzAWMNrFWrVjFnzpwax5SUlKgz/4qLi3F2dm7xOEX7VVZWRmJiIkFBQTg4OFg6HKt2pX+Lps5BpMVOCCGaWFpaGgsWLFCfGwwG5s2bR1pamgWjEkJYA0nshBCiicXFxdUZZ6PX64mPj7dQREIIayGJnRBCNLHQ0FC1kKqJTqerUb5BCCGagyR2QgjRxAICAli+fLn6XKfTsXLlSgICAiwYlRDCGkhiJ4QQzWDWrFnq11FRUXUmTjREZsqKpiZzJC2vJf8NJLETQggzmZt8de7cuQWiEqImW1vjag+lpaUWjkSY/g1M/ybNSVaeEEKIViA9PZ0ePXpYOgzRjuh0Ojw8PMjJyQGMtd80Go2Fo7IuiqJQWlpKTk4OHh4e6HS6Zr+mJHZCCGEha9euVb8OCwtj1apV3HvvvRaMSLQ3fn5+AGpyJyzDw8ND/bdobpLYCSGEBTRU627UqFEWjEq0NxqNhk6dOuHj40NlZaWlw7FKtra2LdJSZ2LxxC49PZ3nn3+e3377jdLSUkJCQvj0008ZMmQIYGzGfPnll/noo4/Iz89nxIgRfPjhh4SGhqrnyM3NZcGCBWzYsAGtVsv06dN5//331YruQgjR2jRU6y4hIcFCEYn2TKfTtWhyISzHopMn8vLyGDFiBLa2tvz2229ERUXxzjvv4OnpqR7z1ltvsWzZMv7zn/9w8OBBnJ2dmTBhAmVlZeoxM2bM4MyZM2zdupWNGzeya9cu5s6da4lbEkJYKdOECheNCwdXHmT3K7u5mZsZwAAuXbxU5/iGat117969pUIWQrRDFl0r9oUXXmDv3r3s3r273v2KouDv78/TTz/NM888A0BBQQG+vr6sWbOGe++9l+joaHr37s3hw4fVVr5NmzYxadIk0tLS8Pf3v2ocslasEMIc9a3xmnMuh3nd59GPfuio2TKitdEy8KGBjPn7GJw7Xl4Ptvp6sqZad/fee6+sHyuEFWlXa8X+/PPPDBkyhLvuugsfHx8GDRrERx99pO5PTEwkKyuLcePGqdvc3d0ZNmwY+/fvB2D//v14eHioSR3AuHHj0Gq1HDx4sOVuRghhtRK2JPBJ+CcMZCA6dPgO9mXIY0MY8ugQ/Ab6YagycGzVMT7s+yEpe1PU112t1l16enqL3YMQon2w6Bi7c+fO8eGHH/LUU0/xf//3fxw+fJgnnngCOzs7Zs2aRVZWFgC+vr41Xufr66vuy8rKwsfHp8Z+GxsbvLy81GNqKy8vp7y8XH1eWFjYlLclhLAiv6/4neP/dxxFr5BJJhvZSMyumBotbcm7k/nl0V84f+Y8a29ey93f303P23rWOI+p1l19M2UbW9xYCCEs2mJnMBgYPHgwr7/+OoMGDWLu3Lk88sgj/Oc//2nW677xxhu4u7urjy5dujTr9YQQbVvtgsTVk6/bn7+do/qj9L6vNx/zMenUbWULHBXIwwcfptcdvTBUGvju7u9I3JFY57iGZsqmpaU1z40JIdodiyZ2nTp1onfv3jW2hYWFkZJi7Kow1XzJzs6ucUx2dra6z8/Pr059nqqqKnJzcxusGbN48WIKCgrUR2pqapPcjxCi/UtPT6+RfCkobNRspP/L/dGjb/B1ds523PXtXfSa1gt9uZ7v/vwdBSkFNY5paKZsfHx8096EEKLdsmhiN2LECGJiYmpsi42NJTAwEICgoCD8/PzYvn27ur+wsJCDBw8SEREBQEREBPn5+Rw9elQ95vfff8dgMDBs2LB6r2tvb4+bm1uNhxBCNEZ8fHyd5MugGDh37txVX6u10TL96+n4D/XnUu4lNvxlA9pqb8MNzZQNCQlpmuCFEO2eRRO7J598kgMHDvD6668THx/PV199xapVq9RZYhqNhkWLFvH3v/+dn3/+mcjISGbOnIm/vz/Tpk0DjC18t956K4888giHDh1i7969PP7449x7772NmhErhBDmCAkJqbMskzllSmwcbLjru7tw9HIk62gWIxmp7gsICGD58uU1zrty5UoCAgKaJnghRLtn0cRu6NChrF+/nq+//pq+ffuyZMkSli5dyowZM9RjnnvuORYsWMDcuXMZOnQoxcXFbNq0CQcHB/WYL7/8kl69ejF27FgmTZrEyJEjWbVqlSVuSQjRzlXGVDJVmYoGY3JnSr5Mkx/g6rNZPQI9mLh8IgB/4k90pKO672ozZYUQ4kosWseutZA6dkIIk/pq1Jm26dDxTvd3yE/IZ+f//sTExNCjR48aNem0Wu1VZ7MqisKXU74k4dcEznGOFUUrcHFxqff6Qoj2q13VsRNCiLZkGMPIT8jH2deZfewDjGVKrmU2q0ajYfK/J6Oz1xFMMGnbZearEOL6SWInhBCN4IQTf+JPAIx6bRQVVKj7GprNevbsWa7UKeIZ5EnEU8aJYNue24ahytDgsUII0RiS2AkhRCMMYQgZZGDX244+9/Wpsa++2axarZZff/2Vd955B72+4TIoIxePxNHbkYuxF4n8KrJZYhdCWA9J7IQQ4ipWLVvFbnazlrW8GP0in33+WY39AQEBvPTSS+pznU7HO++8g7u7O35+fuh0l9eOrd2CZ+9qz4jnRgDwx6t/oK9sOAkUQoirseiSYkII0dqlpaXx9P97GgVjQmZQDDzxxBM1jtm3zzje7sEHH+Szzz4jKiqK0NBQKioqarTW5ebm8v333zN9+nS8vb3V7UPnD2Xfv/aRdy6PmB9r1vYUQghzSIudEEJcwZnjZ+q0slVP1g4cOMDWrVsB46o4Go2Gzp07o9FosLe3x8nJST12y5YtZGZm8tlnn5GXl6dut3O2Y/ii4QAcXnq4OW9HCNHOSWInhBBXUHqgVK1ZZ2LqWu3Xrx979uwBYNSoUfz6669UVVU1eK6pU6fSoUMHCgsL+fLLLykvL1f3DXl0CLbOtpyPPE/cpjgURZFSJ0IIs0liJ4QQDUhJTCFxbSJTmapuMxUkzs7O5p577gGMSxs2tIRhbS+88AIFBQVcvHiR9evXq62Bjp6ODH5kMACHlh9q4jsRQlgLSeyEEKKatWvXql/37d+XP9L/YJTfKHVN16ioKGbNmsUPP/xAVVUVISEh3HLLLY0+f3FxMevWrUOn0xETE8Px48fVfUMfGwpA/G/xFKQUNNEdCSGsiSR2QgjxP3UKDSsGNrCBLvd3wYCxxlznzp3ZtWsXOTk5ODs7c/vtt9dZO/ZqMjIyGDVqFACbN28mPz8fAO9Qb4LGBKEYFI59fKxpbkoIYVUksRNCiP+pr9CwgoLD8MtrU1+8eJG9e/cCMGnSJHX5L3MNHjyYLl26UFFRwebNm9Xt4X8NB+DYx8fQV+opKSlBo9Gg0WgoKSm5pmsJIayHJHZCCPE/9RYa1mgJGxCmPt+xYwcGg4HQ0FDCwsJqn6LRtFotU6ZMQaPRcPbsWc6dOwdAr9t74ezjTHFmMbEbY6/5/EII6ySJnRBC/E9AQADLly9Xn2vQ8Ob/vUnnzp0BCA4OJikpCa1Wy6233lqjC9bZ2RlFUcyazerj48PQocZxdZs3b0ZRFHR2OgY+NBCAoyuPNtGdCSGshSR2QghRzaxZsxjIQGYxiyW9lvD0kqcB0Gg0jBs3DoAhQ4bg5eXVJNcbPXo09vb25OTkcObMGQDCHzF2xyZsTiA/Mb9JriOEsA6S2AkhRDWKohBBBEEE8adH/qS2ytnY2JCZmYmjoyM33XRTk13P0dGRiIgIAHbu3InBYMAz2JPgW4IBiP42usmuJYRo/ySxE0KIarKOZOGLL5VUEnb35TF0lZWVbNiwgUceeaRJCgenp6erXw8fPhxPT0969uypFjjuN6MfANHrJLETQjSeJHZCCFHNqTWnAIgiCgdP42zY6uPnPD09r/nc1WvkhYWFsXr1agDs7e15/PHHueWWW7CzszPuvyMMnb2O3Nhc/PC75msKIayLJHZCCPE/laWVnP3hLADHuFxHbu/evWRmZl7XuevUyDMYmDdvHmlpaQB1ZuPau9nTc2pPAPrR77quLYSwHpLYCSHE/8RujKWyuJI88kgmGYCcnBy2bdvGRx99RFFR0TWfu74aeXq9nvj4ePW5oigkJCSwa9cuAPre3xeAQAKBmt23QghRH0nshBDifyK/jDT+TaS6TafT0bdvX/r06YOrq+s1n7u+Gnk6nY6QkBD1eX5+Pl988QU7duwgLy+P0ImhnHI8xWqMXbbVu2+FEKI+ktgJIQRwKfcScb/FATUTO29vb6ZPn86dd955XeevXSNPp9OxcuVKAgIC1G2enp707t2boUOHotVqybqQxfqy9SgoQN3uWyGEqE0SOyGEAKK+j8JQacB3gC85Sk6dQsPmrgdbn1mzZl2+XlQUc+bMqXPMXXfdxaRJk3B3dycuLg5FUWrs1+v1REZGyjJjQoh6SWInhBBA5FfGVrp+91+eqLBv3z5ycnKa5Xqm1SyupKHu2+7duzdLTEKItk8SOyGEVSspKcFd407yH8bJEn3vM05YyMrKYuvWraxcuZJLly61aEyKopCSkkJCQgLLly9Hg7G1UKvRsnLlykYlhUII62Rj6QCEEMLS+mJM5gJGBODexR2A48ePA9CrVy8cHR1bNJ7i4mLWrFmDoijMnj2bt+e/zZ/4E118uvDQQw9RWlraovEIIdoOabETQli9PvQBoNddvQDjKhOnThkLFQ8aNKjF43F1daVHjx4AREdHk0Ya/vhjk21DxpGMFo9HCNF2SGInhLBqBSkFdKYzBgyE3hYKwNmzZykrK8Pd3Z3g4GCLxNWv3/+WFIuORq/RE4+x3t3Z9WctEo8Qom2QxE4IYdXi/msscZJMMs4+xlmwpta6AQMG1Jm80FJ69OiBnZ0dhYWFBAQEcBZjQnf2J0nshBANk8ROCGHVYn+KBSCaaABKS0s5d+4ccLnVrKlUX3O2eimV+tja2hIWFgZA//79iSUWra2WC9EXyI3NVY+T1SiEENVdU2JnMBiIjY1lz5497Nq1q8ZDCCHaisL0QjIOGsesmRK76OhoDAYDvr6+dOjQwZLhqYllnz59qNRW0vVPXQF4/5X31WNkNQohRHVmz4o9cOAA999/P8nJyXUKZ2o0GvR6fZMFJ4QQzSn6R2Myl0IKRRjXgT1z5gwAffv2tVhcJkFBQTg5OQEQEhJCyJQQTm47ydKfl6rHmFajmDBhQo1VLIQQ1snsFru//vWvDBkyhNOnT5Obm0teXp76yM3NvfoJhBCilYj+3pjYHcdY2iQuLo6kpCTA2EpmaVqtVm21e/311+l7Z19yyVWXGDPR6/XEx8dbIkQhRCtjdmIXFxfH66+/TlhYGB4eHri7u9d4CCFEW1CcXUzy7mSOcUxN7MLDwzl69CidO3fG09PTwhEamRK7s2fP4uTnRI9ePdSCxSY6nY6QkBBLhCeEaGXMTuyGDRsmnwyFEG1ezH9jKFAK2MAGdZvBYGDDhg107NjRgpHV5O/vj4eHB1VVVcTHx3PD7TcwlalqcqfT6Vi5cqV0wwohgGsYY7dgwQKefvppsrKy6NevH7a2tjX29+/fv8mCE0KI5hK7Ibbebk1FUbCxaT2L8mg0Gnr16sWBAwc4e/YsgycNZvCbg+lMZz7kQ6KiotRixkIIYXaL3fTp04mOjuahhx5i6NChDBw4kEGDBql/m+OVV15Bo9HUePTq1UvdX1ZWxvz58/H29sbFxYXp06eTnZ1d4xwpKSlMnjwZJycnfHx8ePbZZ6mqqjL3toQQVqSytJJz287hhVedOnVarZYBAwZYKLL6md4XY2Nj8R/mj727Pb74EkCArBsrhKjB7I+liYmJTRpAnz592LZt2+WAqn1SfvLJJ/nll1/47rvvcHd35/HHH+fOO+9k7969gHHA8OTJk/Hz82Pfvn1kZmYyc+ZMbG1tef3115s0TiFE+3Fu+zmqyqro2rUry55bxuOPPw603m7NLl26MGHCBHr06IGtvS2BYwKJXR9LKKGWDk0I0cqYndgFBgY2bQA2Nvj5+dXZXlBQwOrVq/nqq68YM2YMAJ9++ilhYWEcOHCA4cOHs2XLFqKioti2bRu+vr4MHDiQJUuW8Pzzz/PKK69gZ2fXpLEKIdqH2A3GosQ9pvbgT7P/pCZ2rbVbU6vVMnz4cPV58IRgSeyEEPVqVGL3888/M3HiRGxtbfn555+veOxtt91mVgBxcXH4+/vj4OBAREQEb7zxBl27duXo0aNUVlYybtw49dhevXrRtWtX9u/fz/Dhw9m/fz/9+vXD19dXPWbChAk8+uijnDlzpsGu4fLycsrLy9XnhYWFZsUshGi7FINC7MbLiR1Az5496dmzZ5upwxl0SxAA/vhTkl2Cc/CVV7EQQliPRiV206ZNIysrCx8fH6ZNm9bgceYWKB42bBhr1qyhZ8+eZGZm8uqrrzJq1ChOnz5NVlYWdnZ2eHh41HiNr68vWVlZAGRlZdVI6kz7Tfsa8sYbb/Dqq682Ok4hRPuReSyT4sxi7Fzs6Da6G+VV5fTr14++ffuSlJSkLuPVGkVFRREZGUl4eDgZZOCPP4lbE/GZ52Pp0IQQrUSjEjuDwVDv19dr4sSJ6tf9+/dn2LBhBAYG8u233+Lo6Nhk16lt8eLFPPXUU+rzwsJCunTp0mzXE0K0HjEbYgDoPr47NvY2lFeVc+jQIYqLi/nLX/5i4eiuLDo6mrNnz+Lq6ko88fjjT9L2JIbNG2bp0IQQrUTrmdMPeHh40KNHD+Lj47nllluoqKggPz+/Rqtddna2OibPz8+PQ4cO1TiHadZsfeP2TOzt7bG3t2/6GxBCtHrVx9eZpKSkkJKSUqcHoLUZNGgQ3t7eBAYGkkACN3ETyTuSUQwKGq3m6icQQrR7Zpc7Adi+fTtTpkyhe/fudO/enSlTptSY2XqtiouLSUhIoFOnToSHh2Nra8v27dvV/TExMaSkpBAREQFAREQEkZGR5OTkqMds3boVNzc3evfufd3xCCHal8K0QrKOZ4EGQie1vYkHwcHBjB49mqCgIBLKE7B1tuXShUtkn8q++ouFEFbB7MTugw8+4NZbb8XV1ZWFCxeycOFC3NzcmDRpEitWrDDrXM888wx//PEHSUlJ7Nu3jzvuuAOdTsd9992Hu7s7c+bM4amnnmLHjh0cPXqUBx98kIiICHV22Pjx4+nduzd/+ctfOHnyJJs3b+bFF19k/vz50iInhKjDNGkiYHgAzj7OKIrCnj176NatGxpN22rx0tnp6PanbgAkbE2wbDBCiFbD7MTu9ddf57333uPrr7/miSee4IknnuCrr77ivffeM7t2XFpaGvfddx89e/bk7rvvxtvbmwMHDqjL+bz33ntMmTKF6dOnc9NNN+Hn58ePP/6ovl6n07Fx40Z0Oh0RERE88MADzJw5k9dee83c2xJCWIGon6IAWLN/DSUlJeTk5HDgwAEefvhhysvLcXZu/bNLKyoqiI6O5sCBAwTfEgzAua3nLByVEKK1MHuMXX5+Prfeemud7ePHj+f5558361zffPPNFfc7ODiwYsWKK7YEBgYG8uuvv5p1XSFE+1dSUoKLiwtgHOZhiy0pO1MAiMXYchcXFwdAUFBQneURW6v8/Hy+/fZbbGxseHDygwCk7E6hqqwKG4dWNWxaCGEBZrfY3Xbbbaxfv77O9v/+979MmTKlSYISQoimdm7bOfTlevLIIwfjuNz4+HgAQkJCLBmaWTp27Ii7uztVVVUUORbh6u9KVVkVKXtSLB2aEKIVaNTHu2XLlqlf9+7dm3/84x/s3LlTncRw4MAB9u7dy9NPP908UQohxHUyzYY1tdaVl5eTmpoKtK3ETqPREBoaypEjR4iPjyf4lmBOrj1JwtYEgscFWzo8IYSFNSqxe++992o89/T0JCoqiqioKHWbh4cHn3zyCS+++GLTRiiEENep+moTMRjr2CUnJ2MwGPDy8sLLy8uS4ZnNlNjFxcUxZtwYTq49aRxn96alIxNCWFqjErvExMTmjkMIIZpN1rEsSrJLsHO1I7koGbj8vtaWWutMgoKC0Ol0FBQU4H6LOwBZx7MoOV+Cc8fWPwFECNF8rqmOnRBCtCUJvxrLgXQb2w09xmUPk5KSgLaZ2Nna2hIUZFwvNr0gHZ9+xiXFknYmWTAqIURrIImdEKLdS/jNmNh1n9QdMA4dSUtLw8bGhm7dulkwsmvXvbvxXhISEuh2czcAknYkWS4gIUSrIImdEKJdc8aZ+Mh4NFoN+/L2AcaSIUuXLiUpKanNlDmpzZTYpaSk0GWUca1rSeyEEJLYCSHapbVr1wJQQglLWcrprqd5evHlmfuKovDJJ5+QlpZmqRCvS4cOHXB1daWqqgptsBY0cOHsBYoyiiwdmhDCgsxK7Kqqqnjttdfa7BuhEMI6pKWlsWDBAvW5gsL3Sd9jMBhqHGcwGNRadm2NRqNRW+3SL6bjN9APkHF2Qlg7sxI7Gxsb3n77baqqqporHiGEuG5xcXF1kjgFpc56sDqdrk1OnjAJDjbWrUtISCBojHEyReIOqWIghDUzuyt2zJgx/PHHH80RixBCNInQ0FC02ppvbzqdjiVLlqjPtVotK1euJCAgoKXDazKmxC47Oxu/4f9rsZNxdkJYNbMXFpw4cSIvvPACkZGRhIeH11k0+7bbbmuy4IQQorFqrw27fPlyHp//OAoKWo0xibv33nvVIurR0dH06NHDkiFfN2dnZ4YPH463tzcdO3TEgIG8hDwyYzLp1LOTpcMTQliARlEUxZwX1P4UXONkGg16vf66g2pphYWFuLu7U1BQgJubm6XDEUJcg9qJnWJQeMbtGcooY+anMxkze0ydY2p/MG3LSkpKWOSyiAACmLhqIn3u79Nu71WI9qSpcxCzu2INBkODj7aY1Akh2qeso1l0+t+fIbcPMW7LyqJfv35qwtPeJJEEQMquFMsGIoSwGLO7YqsrKyvDwcGhqWIRQogmY1ptIoEEdHY6AE6fPs306dM5ePCgJUNrcrm5uURFRXHe+TyUQOquVEuHJISwELNb7PR6PUuWLKFz5864uLhw7tw5AP72t7+xevXqJg9QCCGuhWm1iRhi1G2enp5kZGSo71vtxS+//ML27dtx6uWEHj2FKYXkJ+VbOiwhhAWYndj94x//YM2aNbz11lvY2dmp2/v27cvHH3/cpMEJIcS1KEgp4Pzp8xgwEEecuj08PJxVq1YRExNzhVe3PSEhIXTp0oWCSwWkkw5Iq50Q1srsxO6zzz5j1apVzJgxA51Op24fMGAAZ8+ebdLghBDiWhz4+gAAqaRyiUsWjqb5RUREcM899xAVFcVxjlNAgSR2Qlgps8fYpaen11vQ02AwUFlZ2SRBCSGEuUxLiAH8ecmfmcpULnJR3ZadnY2npydmFgJoM0z3f5zjnOAEab/JCkFCWCOzW+x69+7N7t2762z//vvvGTRoUJMEJYQQ5qhvCbENbGDF7ytQFAUnJye++OIL3nzzTTIzMy0YafOodwm1gu9xw1g6IT093VKhCSFamNktdi+99BKzZs0iPT0dg8HAjz/+SExMDJ999hkbN25sjhiFEOKKGlpCLJdcAC5cuEBxcTE2NjZ07NjREiE2q4buv5BCAMLCwli1ahVz5syxRHhCiBZkdovd7bffzoYNG9i2bRvOzs689NJLREdHs2HDBm655ZbmiFEIIa6oviXEtBotoaGhAOos2K5du2Jjc11Vnlql+u6/OoPBwLx580hLk+5ZIdo7sxM7gFGjRrF161ZycnIoLS1lz549jB8/vqljE0KIRgkICGD58uXqcw0a/vHUP9R1YBMTEwEICgqySHzNLSAggGXLlqHRaADUv6vT6/XEx8e3dGhCiBZ2zR9djxw5QnR0NGAcdxceHt5kQQkhhLlmzZrFkvlLmMAEOrl24tk3ngWMrVVJSUlA+03sAGbPns3mzZvx8vIifEA4C59aiMLliSI6na7eiW9CiPbF7MQuLS2N++67j7179+Lh4QFAfn4+N954I9988436CVkIIVpaX/oSRBC9JvRCZ2ssx5STk0N5eTl2dnZ06tTJwhE2r+zsbMLDw3H1dOWBwAf4IvkLFBR0Oh0rV66U92chrIDZXbEPP/wwlZWVREdHk5ubS25uLtHR0RgMBh5++OHmiFEIIRqlF70ACJlyuWUqOTkZgC5dulxxHFp7YOpyTk9P5+7b7mYRixjOcKKiomTihBBWwuwWuz/++IN9+/bRs2dPdVvPnj1Zvnw5o0aNatLghBCNV1JSoi5uX1xcjLOzs4UjalkXYy7SgQ7o0RM0/nKXqymxCwwMtFRoLeb8+fMUFxfj4uKCU5gT7rgTTjidO3e2dGhCiBZi9sfXLl261FuIWK/X4+/v3yRBCSHElZSUlKDRaNBoNJSUlAAQ/4txYkAiidi72QOgKIpVJXaAOp6w3LccBYWOdKQkp8SyQQkhWozZid3bb7/NggULOHLkiLrtyJEjLFy4kH/9619NGpwQQjRW/EZjYneWy0sbXrx4kdLSUmxsbKzmg6epOzYjL4NssgFI3ycFioWwFmZ3xc6ePZvS0lKGDRum1oOqqqrCxsaGhx56iIceekg9Njc3t+kiFUKIBhRlFpF52LiiRAwx6nZTa11AQEC7rF9XH1OLXWZmJqmaVPwUP9L2pjFohqwMJIQ1MPudbunSpc0QhhBCXLvYDbGgQOcbOlN4sFDdbkrsunbtaqnQWoyzszOKoqAoCu+99x5FRUWUdCyBHEjbK4WJhbAWZid2s2bNao44hBDimsX819hK1/P2njW2a7VabG1t6datmwWisgyNRkO3bt2IjIxk8YeL2T99PzmROZTll+Hg4WDp8IQQzax9z/0XwkpZ06LvFUUVnNtmXDKs17ReNfZNmzaN559/3momTpgEBgbi6OiIract3j28QYGUvSmWDksI0QIksROinVi7dq36dVhYGKtXr7ZgNC3nwLcH0Ffo8QrxokNYhzr7dTpdu69fV9vAgQN59tlnufnmm+l6k7EbOnlXcr2ziYUQ7Uurebf75z//iUajYdGiReq2srIy5s+fj7e3Ny4uLkyfPp3s7Owar0tJSWHy5Mk4OTnh4+PDs88+S1VVVQtHL4RlpaWlsWDBAvV5e1/0vXoSO3nhZI5xjJ7TetZYI7W+skzWQqfTqd+LwJuMrZUpu6TFTghr0CoSu8OHD7Ny5Ur69+9fY/uTTz7Jhg0b+O677/jjjz/IyMjgzjvvVPfr9XomT55MRUUF+/btY+3ataxZs4aXXnqppW9BCIuKi4vDYDDU2NZeF32vncQqKGxgA+4R7jWO+/DDD/n3v/9NTk5OS4fYaiiKgt8NfgBkHMmgoqTCwhEJIZrbdSd2hYWF/PTTT0RHR1/T64uLi5kxYwYfffQRnp6e6vaCggJWr17Nu+++y5gxYwgPD+fTTz9l3759HDhwAIAtW7YQFRXFF198wcCBA5k4cSJLlixhxYoVVFTIG5iwHqGhoXW6G9vrou/1JbEKCiXul7sWS0pKyMvL4+LFi7i5ubV0iK1CfHw87733HlsObcGtixuGKgOZhzItHZYQopmZndjdfffd/Pvf/wbg0qVLDBkyhLvvvpv+/fvzww8/mB3A/PnzmTx5MuPGjaux/ejRo1RWVtbY3qtXL7p27cr+/fsB2L9/P/369cPX11c9ZsKECRQWFnLmzJkGr1leXk5hYWGNhxBtWUBAAMuXL1eft+dF3+tLYrUaLT169lCfOzs789xzzzFz5kwcHKxzJqiLiwtFRUVkZmaq3bFS9kSI9s/sxG7Xrl3qmrDr169HURTy8/NZtmwZf//738061zfffMOxY8d444036uzLysrCzs4ODw+PGtt9fX3JyspSj6me1Jn2m/Y15I033sDd3V19dOnSxay4hWiNqpcias+LvtdOYjVo+Puiv9dJYh0dHQkKCqr9cqvh6+vLrFmzePLJJyWxE8KKmJ3YFRQU4OXlBcCmTZuYPn06Tk5OTJ48mbi4uEafJzU1lYULF/Lll1+2+CfqxYsXU1BQoD5SU1Nb9PpCNLf2vuj7rFmz6EIXZjGLFzxe4Lk3n7N0SK2OqZ6dra2tmthlHs5E+7+3fWsqiSOENTE7sevSpQv79++npKSETZs2MX78eADy8vLMStCOHj1KTk4OgwcPxsbGBhsbG/744w+WLVuGjY0Nvr6+VFRUkJ+fX+N12dnZ+PkZBwP7+fnVmSVrem46pj729va4ubnVeAjRHrXn8hYDGEAQQQyZNgSdrU7dXlpaypo1a9ixYweKolgwwtbDu6c3Th2dOFR2CAPG8YnWVBJHCGtidmK3aNEiZsyYQUBAAJ06dWL06NGAsYu2X79+jT7P2LFjiYyM5MSJE+pjyJAhzJgxQ/3a1taW7du3q6+JiYkhJSWFiIgIACIiIoiMjKwx623r1q24ubnRu3dvc29NCNFGGKoMhBEGQM87aq42kZycTHJyMtHR0TXKn1ijsrIyNm3axNq1a3EZ4sIGNqj72ntJHCGsldlLij322GPccMMNpKamcsstt6iDmIODg80aY+fq6krfvn1rbHN2dsbb21vdPmfOHJ566im8vLxwc3NjwYIFREREMHz4cADGjx9P7969+ctf/sJbb71FVlYWL774IvPnz8fe3t7cWxNCtBGpu1NxxplSSulyU80xsqb1Ya1ttYn62NracuzYMSorK3Hu5IxCzRZMU0mc9jjJRghrZXZiBzBkyBD69+9PYmIi3bt3x8bGhsmTJzd1bLz33ntotVqmT59OeXk5EyZM4IMPPlD363Q6Nm7cyKOPPkpERATOzs7MmjWL1157rcljEcJalJSU4OLiAhjLETk7O1s4oroxxa6PBSCa6BrdsGAsWg6S2IHxPbJLly6cO3eOzgM6o0FTI7lrryVxhLBmZid2paWlLFiwQK38HhsbS3BwMAsWLKBz58688MIL1xzMzp07azx3cHBgxYoVrFixosHXBAYG8uuvv17zNYVoL5ydna9pTFntpKm1M1QZiP3ZmNhFEVVjX1lZmTojXhI7o8DAQM6dO4fOV8cdDnewvmw9Ckq7LokjhDUze4zd4sWLOXnyJDt37qwxWWLcuHGsW7euSYMTQjSd9jILMnlHMpcuXMKpgxMxFTE1WhRTU1NRFAUvLy9cXV0tGGXrYUpwU1JTuP2m21nEIsIIa9clcYSwZmYndj/99BP//ve/GTlyZI2ByX369CEhIaFJgxNCXJ/qa6q2l1mQZ74yFh/vc2+fOt2wpvF1Xbt2bfG4WqvOnTuj0+koKSnBa5AX7rjTj37tviSOENbK7MTu/Pnz+Pj41NluKqsghGgdaq+p2h5mQdphR/xG4/q3A/4yoM5+mThRl42Njdrdqgs2JsKBBEopGCHaKbMTuyFDhvDLL7+oz03J3Mcff6yWIRFCNL+r1airb01V0yzItqo3vam6VIV3D2/8h/rX2FdZWUlGRgYgiV1tpu9HkWsRlVTijDO5sbkWjkoI0RzMnjzx+uuvM3HiRKKioqiqquL9998nKiqKffv28ccffzRHjEKIa2BaU7V6cmfuLMj09HR69Ohx9QNbiA8+FFDAzTNvrtNDkJaWhsFgwM3Nrc5ShNbOlNilZaaRRhpBBJG2N42ug6XLWoj2xuwWu5EjR3LixAmqqqro168fW7ZswcfHh/379xMeHt4cMQohzKQoCtosLQtvXYgGYwKk1Wj5vxn/h5eDV4OvS09Pt/i4vPpaIk0xbWELS1nKSZuTdV5XvRtWhoXUFBAQgFarpaioiGx74+o8sm6sEO2TRpGBFhQWFuLu7k5BQYEsLybajIbqzaUdTGPTwk2kHzTOgi2ggFxy8cI4cF5np6PfA/0Ys2QMrv6ufPDBB8yfPx+4PLSi+tuCTqcjKSmpxcpi1L6vvLw8AgMD67Q81o5p7dq1JCUlMWXKFPmQWY/Vq1eTlpbGiE4j2DtvL+5d3VmUvMjSYQlh9Zo6B2lUi11hYWGNr6/0EEJYhmJQ2PnqTlYPX036wXR09jp63NGDAxzgNKcZ/8x4Og3uhL5Cz4lPTrC8x3J+e+u3GhMsFEWpM6je0uPyGjNWsKqqSp0UIuPr6meaKVzoXojWRktBSgH5yfmWDUoI0eQaNcbO09OTzMxMfHx88PDwqLebQ1EUNBoNer2+yYMUQlyZQW9g/cz1RH4ZCcCAmQMY99Y4NC4a7ne5H4BRr4yCV6CXSy8mMIEuJV1Y9/w6dVH4hlh6dYLQ0FC0Gi0GpeGxglqtlgceeIDU1FS8vb0tEWarFxgYyL59+0jPSadTeCfSD6aTsjsFj0APS4cmhGhCjUrsfv/9d7y8jONyduzY0awBCSHM99Xsr8han4XWRsuUlVMY9NAggHpny6aRxid8wvYl2yl8uRCNoeYyUxqNRm21M2d1guZaiiwgIICHBz3MR8c+anDFBK1WS2BgoLTWXUHXrl2ZMGECgYGBRKZEkn4wneRdyfR/oL+lQxNCNKFGJXZ/+tOfAGN3xx9//MFDDz0ky9AIYWHVJzk8uv5Rpmqm8sY3b9B7eu+rvlZB4YYnb6DrsK4k3ZZUY5mpZcuWqWPuoqKiLDorNj09HX93fwJOBbCIRaxhDQeiDrSqmbpthYODA8OHDweg8KZC9v9rP8m7ki0clRCiqZk1K9bGxoa3336bqqqq5opHCNEItYsPKyhs1GzEbZh5A2+739KdNze9yaM8yixm8ebQN7n/7vvV/ZZYnaD2rNwljy7BUGWgkELyyKsTk8FgYNOmTURFRclQkEbqOrIraOBizEVKcuq26goh2i6zy52MGTNG6tUJYWH1TSgwGAx1Jjk4OzurEyIa6hrtNKQTP/Mz/vhTfKCYDTM3qCVSWlp9q2W8vf5tCijgCEfqfU1mZiYHDx5kw4YNUubkKsrLyzl+/Dj7ju3Dp69xBaHk3dJqJ0R7YnaB4okTJ/LCCy8QGRlJeHh4nV8Wt912W5MFJ4SoX2hoKBpqjo27nkkOaaTxJV8y12Eu5347x3jGs5nNTRVuo9WXsCooFLsUc6b4TL2vsbe354YbbkCj0aDVmv1Z1apUVVXx888/AzDoxkHkROaQvCu5Ud33Qoi2wezE7rHHHgPg3XffrbNPZsUK0TIqYyuZylQ2sKHBCQVXU3tViRRSmLhqIhtmbiCCCC5y8Zrju9YVK+pbLUODhhvvupGPPv2o3td06NCBiRMnXnOs1sTZ2Zl+/frh7u6OR7oHx1ceJ2V3iqXDEkI0IbM/3hoMhgYfktQJ0fz0lXp+ffxXBjOY0YwGjJMc5syZc9XXXm1ViZ539mTkyyMBmMQkkn5PanRcTbFiRUBAAMuXL1efa9Bwm/Y2Jjw/wexzifrdeeedjB07lh63GBPvrBNZlBWUWTgqIURTMTux++yzzygvL6+zvaKigs8++6xJghJCNOzYR8e4EH0Bxw6O7Gc/0LhJDvWNX5s3bx7p6ek1jhvz8hgGzBqAFi0bZ20kN+Hqi8U3dG5T0WBzzJo1yxgHY1jEIh6c/SCdenaqd6xgUVERycnJMqHrGrh2csUrxAsUSN2baulwhBBNxOzE7sEHH6SgoKDO9qKiIh588MEmCUoIUb+K4gr+eM04eenGxTdSRuNbWhpawSEjI6NG0qTRaJiycgqdh3WmLK+MddPWkZedV2f91sac+1pXrPDBh5u4CXeNOyOfH9ngcdHR0axZs4Z169Zd03WsVVlZGbGxsQSMMHbdywQKIdoPsxM70woTtaWlpeHu7t4kQQkh6ndw2UFKskvwDPak/4PmFZY1jV+rrqEJFzb2Ntzz4z24+LmQczqH3+b+dsWZso09d0lJyRUTRJORGJO5nnf0xLtHwytJpKQYx4d16dKlwWNEXatWreLrr7/Gubex9TNll4yzE6K9aHRiN2jQIAYPHoxGo2Hs2LEMHjxYfQwYMIBRo0Yxbty45oxVCKtWUVzB/neNXa+jXxuNzk5n1utrj1+72oQLV39X7v7xbnR2OuJ+jmMUo5rs3FeSF59HX/oCMOyZYQ0epygKSUlJgKwPay7TurGV/pUApB9Op/JSpSVDEkI0kUbPip02bRoAJ06cYMKECerSQQB2dnZ069aN6dOnN3mAQgijwx8e5tLFS3iFetH33r5odVp16a/GmjVrllmrSnSJ6MKkFZPY8MgGxjCGLLKa7NwN2f3KbrRoiSUWn/4+DR6Xm5tLSUkJOp3OIoWU27KuXbty8uRJsiuycfV3pSijiPSD6XQb3c3SoQkhrlOjE7uXX34ZgG7dunHPPffg4ODQbEEJIWqqKq/iwLsHABi5eCRa3fXXa2tsMjT44cGkHkrlxEcnmM50LsZcxHnwldeBvdZEK3V/KrE/xWLAwDa2XfHY5GTjuLCAgABsbMyu3GTVTC2cGRkZ9BzVk6h1USTvSpbEToh2wOzfDrNmzcLBwYGKigrS0tJISUmp8RBCNL3jXxynOKuYQgrpfkf3Fr/+zW/dzBnOkEEGa6avoSy/6ctjGPQGNj2xCYDBDw0mW8lucLUMuJzYmboVReN5eXnh4uKCXq/Hra9xGTqpZydE+2D2x9y4uDgeeugh9u3bV2O7aVKF1LITomkpisLRD44CcJjD6GzNG1vXFL746gu+4zsANEka0m5K4z/H/3NdLYe1ixgf+c8RMo5kYO9mz5i/j7nq602JXbdu3a45Bmul0WgIDAzkzJkz6AOM79mp+1LRV+ot8v9LCNF0zH5Xnj17Nlqtlo0bN3L06FGOHTvGsWPHOH78OMeOHWuOGIWwaukH08k+lk0VVRzlaItfv3aNOgWFjyM/5rNZn5k9xq++IsYlJSV4ajxZ//h6AMa+MRbXTq5XPE9+fj4FBQVotdprmqAhLrd0XtRexNHLkcrSSjKPZVo4KiHE9TK7xe7EiRMcPXqUXr16NUc8QohaDi47CEAkkZRSel3ncnZ2NjsZa2j91p1f7qRrUFfGLLl66xo0XMR4xI0juIM7cMAB/+H+hM8Lv+q5TK11nTp1ws7Ozoy7ESamcXapaakEjQgidkMsKbtTCBgmibIQbZnZLXa9e/fmwoULzRGLEKKWoowior6LAuAQhywSQ3016rRaLV54sfvvu9n/nrEEiylprL06hElDRYz/+8p/CSSQcsqZ9NGkRnXvmhI7KXNy7Xx8fHBwcKCyshKPgR4AJO+SQsVCtHVmJ3Zvvvkmzz33HDt37uTixYsUFhbWeAghms6RlUcwVBnoHNGZTIzdZLWXAGtu9dWoW7VqFXf84w4Atjy1hT1v7rnqeRpKELO/zQZgAxvwCPJoVEymiVqS2F070zg7AP73V8qeFBSDeS26QojWxezEbty4cRw4cICxY8fi4+ODp6cnnp6eeHh44Onp2RwxCmGVDHoDJz45AUByr8stKaaxaS3JtH4rGGvUzZkzh5GLRzLqRWPR4u0vbOeXx35BX9nw5KnaCaJWq2WKMgV33NnNbk5zulGxFBcXc/HiRUBmxF4vPz8/AD7b8hm2zraU5ZWRcybHwlEJIa6H2WPsduzY0RxxCCFqSdyeSGFaIeXu5by59k11u2ls2oQJEywyccBUo06j0TBmyRgcPBzY+uxWjnx4hMxjmUxbO40OPTvU+1pTEeN+9GOcYRzuuNN3Zl9e+ewVoO5M2fqUlpYSGBiIXq+XeprXyfT/JzAoEP9h/iT/nkzyrmR8+/laODIhxLUyO7H705/+1BxxCCFqOfHpCQBcR7ti+G/dsWnx8fHqL2ZFUYiOjiYyMpKMjAwMBgPu7u6EhoYycuRIdLrmK2Fx49M34t3Dm/V/WU/6wXT+0/8/hP81nGELhuEV4qUepxgUknck8zAPE4Ax7iGPDSGpdxJ8ZjwmLCyMVatWMWfOnAav5+Pjw+zZs82eBCLq8vX1paCggKysLEbfMJrk35NJ2ZXCDfNvsHRoQohrpFGu4d1x9+7drFy5knPnzvHdd9/RuXNnPv/8c4KCghg5cmRzxNmsCgsLcXd3p6CgADc3N0uHIwSX8i7xTqd30JfrmfzLZIZNHVZj4oFOpyMpKYmAgAAuXLjADz/8QFZW3eW+QkNDuf/++687npKSEnUZweLi4nonRxSkFrDhkQ0kbE5Qt3n38MYrxAtDlYHsU9kUZxUDUE45U/89lS63dyEwMLDBexPNq/q/a/Rv0aybuA6XTi48lf4UGo3GwtEJYR2aOgcxe4zdDz/8wIQJE3B0dOTYsWOUl5cDUFBQwOuvv37dAQkh4PQ3p9GX6/Hp50P4xPA6kxdWrlxJQEAAlZWVfP7552RlZWFvb8+oUaN48MEHmTdvHrfddhvjx49XX2easdpUSkpK0Gg0aDQaSkpKcO/izgObHuCBLQ/QfUJ3NFoNF2MvEvdrHAlbEijOKsbOzY7DHGY5y+k/u3+DM2Xj4+PrvWZlZSWXLl1qsnsQl/kN8UNnp6M4s5i8hDxLhyOEuEZmt9gNGjSIJ598kpkzZ+Lq6srJkycJDg7m+PHjTJw4sd5Wg9ZOWuxEa/PRDR+RcTiD8e+OJ+LJiBotKzExMTXGoWVkZLB7924mT56sHlOboihs2rSJyspKpk6d2iStMVdrxSu9UErGkQwK0wrRaDV49/TGracbnh091dfk5eWZ1WJ39uxZ1q1bR69evbjnnnuu+x6sXfV/w6NHj3LiiROk7k3lttW3MeihQRaOTgjrYPEWu5iYGG666aY6293d3cnPzzfrXB9++CH9+/fHzc0NNzc3IiIi+O2339T9ZWVlzJ8/H29vb1xcXJg+fTrZ2dk1zpGSksLkyZNxcnLCx8eHZ599lqqqKnNvS4hWI+dMDhmHM9CjZ9xT4ygpKamx3zR5wcTf35977rmnwaQOjMnf4cOHOX78OLt27WqWuGtz6uBEyK0hDH54MIMeGkTXEV2xdbStcUx9pVRMrZH1OX/+vPHcTk7NF7gVqb4SyJAhQzjheAKQdWOFaMvMTuz8/Pzq7SbZs2cPwcHBZp0rICCAf/7znxw9epQjR44wZswYbr/9ds6cOQPAk08+yYYNG/juu+/4448/yMjI4M4771Rfr9frmTx5MhUVFezbt4+1a9eyZs0aXnrpJXNvS4hWI/LLSADiiKt3pYmKigrWrl2r1nJrjM6dOzN58mQAdu7cyblz55om2Kuo3V1bXxHj+kqpNGTUqFE8/fTT9X64FOaps1ScorDi9xUUUCCFioVow8xO7B555BEWLlzIwYMH0Wg0ZGRk8OWXX/LMM8/w6KOPmnWuqVOnMmnSJEJDQ+nRowf/+Mc/cHFx4cCBAxQUFLB69WreffddxowZQ3h4OJ9++in79u3jwIEDAGzZsoWoqCi++OILBg4cyMSJE1myZAkrVqygoqLC3FsTwuIUReH0N8Z6bpFE1nvMrl27SEpKYv369ej1DdeNqy08PJxBg4zda+vXr2+VY9Vqt0bWx8XFBXd39xaIpn2rb3yjwWAgT5NH3rk8CtOl4LwQbZHZid0LL7zA/fffz9ixYykuLuamm27i4YcfZt68eTU+/ZlLr9fzzTffUFJSQkREBEePHqWyspJx48apx/Tq1YuuXbuyf79xCaP9+/fTr18/fH0v11yaMGEChYWFaqufEG1J+qF08hPzsXW2JZbYOvu7devGiRMnAOMHI3PLmEycOJEOHTpQXFzMli1bmiJkoOVXwxDXr76VQHQ6HT3CjOM3RwaMrDMMQAjR+pmd2Gk0Gv7f//t/5Obmcvr0aQ4cOMD58+dZsmTJNQUQGRmJi4sL9vb2/PWvf2X9+vX07t2brKws7Ozs8PDwqHG8r6+vOkEjKyurRlJn2m/a15Dy8nJZCk20GtW7K098fgKAkMkhVFIJGJMmZ2dnqqqqePbZZwFj65u5Qx8AbG1tmTp1KgAnTpxQ11y9FtXHZ7XEahg7duzg888/Jy4urlmvYy0aGt/Yb2w/ALrRzUKRCSGuh9mJnYmdnR29e/fmhhtuuOKg7avp2bMnJ06c4ODBgzz66KPMmjWLqKioaz5fY7zxxhu4u7urjy5dujTr9YRoDA0azv5wFoAor8s/A6ak6ciRI5w/fx5HR0fGjh17zdfp2rUrgwcPxt7e/po/1NQen2VaDSMtLe2a47qauLg4zp071yq7kNuq6uMbv/32WxRFQRts/LUgiZ0QbdM1J3ZNxc7OjpCQEMLDw3njjTcYMGAA77//Pn5+flRUVNSZaZudna2ub+jn51dnlqzpuemY+ixevJiCggL1kZqa2rQ3JcQ1CCSQkqwSyt3KWbLqcgu4KWn673//C8CYMWNwdHS8rmuNGzeOJ554gn79+l3T682tPwcNd9fWN6GitrKyMrUVvlu3btcUs7gye3t70tPTKe1QigED3nhTlF5k6bCEEGayeGJXm8FgoLy8nPDwcGxtbdm+fbu6LyYmhpSUFCIiIgCIiIggMjKSnJzLi1Zv3boVNzc3evfu3eA17O3t1RIrpocQltaXvgA4jXCqN2nKyMigQ4cODB48+Lqv5ejoeF0lQxoanxUSElJjW1N116akpKAoCp6envLz2kxMJWYy8zLJJBOAlF0pdWY2CyFaN4smdosXL1Zn+EVGRrJ48WJ27tzJjBkzcHd3Z86cOTz11FPs2LGDo0eP8uCDDxIREcHw4cMBGD9+PL179+Yvf/kLJ0+eZPPmzbz44ovMnz8fe3t7S96aEGbRoqU3xg8jN8+8ud6kadasWdx666119l0PRVGIi4sjJibGrNc1pv5cU3bXmsYCSmtd8zHNSM7NzSXOJo5EEjnx2wnLBiWEMFujfkMMHjyYvDzjEjOvvfYapaV1a2tdi5ycHGbOnEnPnj0ZO3Yshw8fZvPmzdxyyy0AvPfee0yZMoXp06dz00034efnx48//qi+XqfTsXHjRnQ6HRERETzwwAPMnDmT1157rUniE6KldKYz2WRT7llOxJ8j6k2abr75Zrp3796k142MjOSrr75i06ZNdVoJr+Zq9eeupbu2IUlJSQAEBgaa/VrROI6Ojvj4+HDs2DF2Vu1kLWv5649/rdHqKoRo/Rq1pJijoyNxcXEEBASg0+nIzMzEx8enJeJrEbKkmLCkDz74gPnz5wPGWecfffQR9957Ly4uLmi1Wk6dOkWfPn2a5dqVlZUsXbqU0tJS/vznP5t1nastKZaWlmbWcmENKS8v580330RRFBYtWiQ17JrRZ599xuzZs2usKazT6tAbjPUS6/t3FkJcn6bOQWwac9DAgQN58MEHGTlyJIqi8K9//avBmbCy6oMQjVdf9f958+YxatQoAIYOHcovv/xCWVkZ4eHhTX59W1tbhgwZwq5duzhw4ECTJpCm7lpT0nq15cIaYhpf5+HhIUldM9Pr9dT+rG9K6oQQbUOjErs1a9bw8ssvs3HjRjQaDb/99hs2NnVfqtFoJLETwgwNdVcmJCSg0WgYNmwYly5dqvPLtikNHTqUvXv3kpaWRlpamtmJ15XMmjVLTeyioqLo0aOH2eeQ8XUtJyIiAo1GU+P/m1ajxaAY/4+mp6df07+hEKLlNCqx69mzJ9988w0AWq2W7du3t6uuWCEsJTQ0tM4vUp1OR/fu3enevTteXl7Y29vTv3//ZovBxcWFvn37cvLkSQ4ePNjoxM5UpqSxGrNcWH1kfF3L6dWrF/fccw/r1q1DURQ0aBjsOJgjpUcA48zmVatWXXE9XyGEZZk9vc5gMEhSJ0QTCQgI4P5O96NBA1zuruzcuTNDhw4FoE+fPtjZ2TVrHKaZ5mfOnKGgoKBZr2WOiooKMjIyAGmxayl33303ixYtYujgoTyie4SjpUfVfS1RiFoIcX2uqW5CQkICCxYsYNy4cWqh04SEhKaOTYh2L+9cHqEZoSxkIXbYqbNLKysr6dmzJ4Bat7E5+fn50a1bNzp27EhxcXGzX6+xTOPr3N3d6ywvKJpHly5dcHd3Z/DQwbj2dEWh1pi7a5zZLIRoGY3qiq1u8+bN3HbbbQwcOJARI0YAsHfvXvr06cOGDRvUUiVCiKs7+1/jEmJ55FFBhdpdeeSIsesrODiYDh06tEgsd999Nw4ODmg0mha5XmPI+LqWZ1pi0c/Pj6CRQWiiNDWSu/oKUQshWg+zE7sXXniBJ598kn/+8591tj///POS2Alhhpj/GgsDn+Wsuk2v13P8+HEAtTu2JVzvMmX1MXccXm033XQTQUFBzRKbqJ+Liwvnz5+nY8eO+A/xZ+qqqWxgAwrKNc9sFkK0nEbVsavOwcGByMhIQkNDa2yPjY2lf//+lJWVNWmALUHq2AlLKL1Qyr98/4ViUHiP9yigQK0Tlp2dzalTpxg7dmyTrjTRGBUVFaSmpjZ5MWTRNpSUlDBgwADKysqIPB7Jii4ryC3PZTWrORxzWGbFCtHEmjoHMfs3RseOHTlx4kSd7SdOnJBJFUKYIXZjLIpBwae/DwXUnLDg6+vLLbfc0uJJXWlpKe+88w5ffvklRUWyALw1cnZ2Jj4+nrS0NDw7euJ/gz/uuNODHtc8s1kI0XLM7op95JFHmDt3LufOnePGG28EjGPs3nzzTZ566qkmD1CI9qT6ag1fTPkCgLA7w1BONl+dOnM4OTnh6+tLamoqJ0+eZOTIkRaL5ciRI1y8eJF+/frh7+9vsTisXdfRXUndnUowwZYORQjRCGYndn/7299wdXXlnXfeYfHixQD4+/vzyiuv8MQTTzR5gEK0R7bYkrQ9CYBe03qp2w8ePEhGRgY33HCDxVpHBg0aRGpqKsePH2fEiBEWm0wRGRlJSkqKcayXJHYtLj4+nqioKDx6eQAQRBAGvXnrCQshWp7Z/TwajYYnn3yStLQ0CgoKKCgoIC0tjYULF7aq2XRCtGbBBFN1qQr3QHd8+/sCxuXEjhw5wqlTp8jOzrZYbKa6ebm5uaSkpFgsjuHDhzN48GCCgoIsFoM1i4+P5/jx4xQ4F+Dg4YAjjhREt54ah0KI+l3XAB5XV1dcXV2bKhYhrEYvjK10vab1Uj8QZWZmcuHCBWxsbOjdu7fFYrOzs1Ovf+rUKYvFERYWxtSpU/H09LRYDNYsLCyMiIgI+g/sT9AYY3J9bus5C0clhLialh2ZLYRAgwYHHCigoEY3rGlSUq9evXBwcLBQdEamJcyioqLQ62UReGsUGBjI+PHjCQwMJPgW4/g6SeyEaP0ksROiBa1duxYFhXWsYylL2Rq7FTDWrjt9+jQAAwYMsGSIgPGXuouLC2VlZRZZPuro0aOkpaVhMMiYrtYgeJwxsUvdn0pFcQUlJSVoNBo0Gg0lJSUWjk4IUZ3ZkyeEENcmLS2NBQsWqM8VFB597FEmTprIpUuXuHTpEs7OzgQHW372oVar5Y477sDLy6vFl/IqLS1l48aNADz99NPqLGLR8iorK0lJSaG8ohyPbh7kJ+WT9EcSnUdL2RMhWiuzWuwqKysZO3YscXFxzRWPEO1WXFxcnRYo07qbpta63r17t3jtuoYEBwdbZH3WxMREAHx8fCSps7CkpCS++OILtm3bdrk7dpt0xwrRmpn1G8TW1taig6mFaMtCQ0PrJG2mdTd9fX3p0KEDffv2tVB0V3Y9y4KZy5TYyWxYy+vatSsajYa8vDz8bvQDZJydEK2d2U0DDzzwAKtXr26OWIRo1wICAlg0cREajLNgq6+7eeONN/LYY4+pC7C3FllZWXz11Vd8++23LXZNSexaD3t7e7WeoiHQABo4f+Y8xZnF6jHp6emWCk8IUQ+zx9hVVVXxySefsG3bNsLDw3F2dq6x/913322y4IRob0IzQlnEIjawgV+ifqmx7mZrrAOp0+mIi4tDq9VSWlqKk5NTs14vPz+f3NxcNBoN3bp1a9ZricYJCgoiLS2NtNw0/MP9yTiSwfIly9X9YWFhrFq1ijlz5lgwSiGEidktdqdPn2bw4MG4uroSGxvL8ePH1Ud9a8gKYc2qzx7MjMkk+3g2briRSSadO3emsrKSqKgoKisrLR1qvTp27Iivry8Gg4GYmJhmv56pta5z587Y29s3+/XE1XXv3h2Ac+fOETQuiAIKeP2z19X9BoOBefPmWWT2tBCiLrNb7Hbs2NEccQjR7sVvjAcghRRKMJaIiI2N5fvvv8fHx4dHH33UkuE1KCwsjOzsbKKjoxk0aFCzXku6YVufgIAAbG1tKS0txTPck1xyUag55tI0CSggIMBCUQohTK55+l18fDybN2/m0qVLQMsOrhaiLUr4JQGAs5xVt505cwYwTqxorUyrUCQkJFBWVtZs11EUhXPnjAPzW0PJF2Gk0+nUbvFS71J8HHzUcaLVjwkJCbFAdEKI2sxO7C5evMjYsWPp0aMHkyZNIjMzE4A5c+bw9NNPN3mAQrQHDjiQujsVgBiMXZqVlZVq6aA+ffpYLLar6dixIx06dMBgMBAbG9ts1zl//jwlJSXY2NhIy08rY0q0k9KS6P+n/kxlqrqv+iQgIYTlmZ3YPfnkk9ja2pKSklJjIPU999zDpk2bmjQ4IdqLTnQiryqPjn06clG5iKIoZGVlUVVVhbu7O35+fpYO8YrCwsIAiI6ObrZrmFrrunbtio2N1E5vTUzj7JKTkwm6JYjBDGY60wHjsnMycUKI1sPsxG7Lli28+eabdT6dhYaGkpyc3GSBCdEerF27FoBEElnKUs51u1wD7OxZY5dsr169WuWM2Op69+5NYGBgs3a3mcbXSTds69OhQwdcXV3R6/U4DTB+oO9Nb+ywU8uhCCFaB7MTu5KSknpLHuTm5sosNiGqqW8JsaW/LSUtLQ29Xq/OMjW1hrVmfn5+zJ49m/Dw8GY5v16vVz8YysSJ1kej0aitdjn6HDyCPdChIxhJwoVobcxO7EaNGsVnn32mPtdoNBgMBt566y1uvvnmJg1OiLak9sLo9S4hZjDOHkxPT6esrAwnJ6dWV5TYEqqqqrjhhhsICgpq9d3S1srUkpqYmEjwBOPXobTeST9CWCuzB7K89dZbjB07liNHjlBRUcFzzz3HmTNnyM3NZe/evc0RoxBtkmkJserJnWn2YEBAAAsWLCA3N7fVrA3bGCUlJcTExNC/f/8mHQdnb2/PmDFjmux8oukFBwcTFBRE9+7d8enmw7EPjzHaf3SzF60WQpjH7N8offv2JTY2lpEjR3L77bdTUlLCnXfeyfHjx9WmeiGEsf7XsmXL1NIQWq22xuxBLy+vNlUiQlEUPv74YzZs2EBCQoKlwxEtzNnZmZkzZzJixAiCRgdh42hDUUYR2aeyLR2aEKKaa/rI7e7uzv/7f/+vqWMRot0ZHzaeRSwiiyz+dvJvhPVt/ePpGqLRaOjRoweHDh0iOjqanj17Nsl5S0tLSU1NJSgoCDs7uyY5p2heNg42BI8NJnZjLHG/xuE3QLrPhWgtrqkPKC8vj3/961/MmTOHOXPm8M4775Cbm9vUsQnRZpkWRo//JR533Kmggq5BXQH4448/WLduXZucRW4qVhwTE4Ner2+Sc8bHx/PNN9+oM4hF61ZcXMzp06cJmWRsbY77Jc7CEQkhqjM7sdu1axfdunVj2bJl5OXlkZeXx7JlywgKCmLXrl3NEaMQbUL1xCQsLIzVq1cTv8G4jJhptQlFUTh16hRnz56luLjYInFejy5duuDs7ExZWZlanuR6GQwGPD09pcxJG1BVVcX777/PDz/8gPcwbwDS9qdxKfeShSMTQpiYndjNnz+fe+65h8TERH788Ud+/PFHzp07x7333sv8+fObI0YhWr3apU0MBgPz5s4jMS4RPXriMSZ458+fJzc3t80uwaTVatUuWFMdvus1cOBAnnjiCUaPHt0k5xPNx8bGhsDAQDp16oRtR1s69umIYlBI2CJjLoVoLcxO7OLj43n66afR6XTqNp1Ox1NPPUV8fLxZ53rjjTcYOnQorq6u+Pj4MG3aNLW2l0lZWRnz58/H29sbFxcXpk+fTnZ2zcG6KSkpTJ48GScnJ3x8fHj22Wepqqoy99aEuGYNlTbJJZceE3pQppTh7OysJkPBwcFttu6jqe5eTExMk64RXf09RbRe9913H3PnzqVLly6ETjaWO5HuWCFaD7MTu8GDB9e7rFB0dDQDBgww61x//PEH8+fP58CBA2zdupXKykrGjx9PSUmJesyTTz7Jhg0b+O677/jjjz/IyMjgzjvvVPfr9XomT55MRUUF+/btY+3ataxZs4aXXnrJ3FsT4pqZSptUp0WLF170mtZL3VZ9tYm2KigoCHt7e0pKSsjJybmucxUWFjbZWD3RMqon4KGTjIld/KZ4DHpDQy8RQrSgRs2KPXXqlPr1E088wcKFC4mPj2f48OEAHDhwgBUrVvDPf/7TrIvXXlt2zZo1+Pj4cPToUW666SYKCgpYvXo1X331lVrj6tNPPyUsLIwDBw4wfPhwtmzZQlRUFNu2bcPX15eBAweyZMkSnn/+eV555RWZZSdaREBAAMuXL1eHI+i0OiYbJuOOOz1vM3Zd5ufnk5mZiUajabIZpZag0+m499576dixI87Oztd1ru+//57s7GzuuuuuNtk1bc0qKirw7O+JvZs9pRdKyTiSQcCwgKu/UAjRrBqV2A0cOBCNRlOj2+W5556rc9z999/PPffcc83BFBQUAMb6XgBHjx6lsrKScePGqcf06tWLrl27sn//foYPH87+/fvp168fvr6+6jETJkzg0Ucf5cyZMwwaNOia4xHCHLNmzVITu+9f/p6TL5+k8w2dcfV3BS631nXt2vW6EyJL69at23Wf49KlS6SlpaEoCh06dLj+oESLOXToEFu2bKF///50H9+dqO+jiN0YK4mdEK1AoxK7ppr9diUGg4FFixYxYsQI+vbtC0BWVhZ2dnZ4eHjUONbX15esrCz1mOpJnWm/aV99ysvLKS8vV58XFhY21W0IAUDBLuOHlF53Xu5ydXV1pUuXLm1ibVhzKIqCRqMx+3WJiYlqUlf7Z1y0bl5eXuj1xuXxxkwZY0zsfo5lzBJZPUQIS2tUYhcYGNjccTB//nxOnz7Nnj17mv1ab7zxBq+++mqzX0dYJwccSPkjBYCwOy4ncX369KFPnz5NOuHAkmJiYti3bx/du3fnpptuMvv1pslW0gXb9nTr1g1bW1uKiorwuNUDjU5D9qlsvDRepBantvkWaSHasmtaeSIjI4M9e/aQk5NTZybgE088Yfb5Hn/8cTZu3MiuXbvU5ZYA/Pz8qKioID8/v8Yn+uzsbHWhcD8/Pw4dOlTjfKZZsw0tJr548WKeeuop9XlhYaEsxC6aTA96YKgy4NPXB+8e3nX2X0vrVmtUWlpKSkoKFRUVZid2iqJIYteG2djYEBQURGxsLKkXUwkYEUDqrlR60nbHjgrRXpid2K1Zs4Z58+ZhZ2eHt7d3jV9SGo3GrMROURQWLFjA+vXr2blzJ0FBQTX2h4eHY2try/bt25k+fTpgbCVISUkhIiICgIiICP7xj3+Qk5ODj48PAFu3bsXNzU2tkl+bvb19my01IVovZ2dnFEVh3R3rOPvT2RrdsOfOnaNTp044OjpaMMKm1aNHDzQaDVlZWXU+fF1NdnY2RUVF2NjY0LVr1+YLUjSb0NBQYmNjiYuLI3RKKKm7UulF253tLUR7YXa5k7/97W+89NJLFBQUkJSURGJiovo4d+6cWeeaP38+X3zxBV999RWurq5kZWWRlZXFpUvGKubu7u7MmTOHp556ih07dnD06FEefPBBIiIi1Bm548ePp3fv3vzlL3/h5MmTbN68mRdffJH58+dL8iZaXEVJBfGbjC1RYXcau2HLy8v56quvePvtt8nPz7dgdE3L2dlZTcrMLVYcGxsLGOv52draNnlsovmFhhpLnaSlpRFwSwAFFBiLcZ8yr56pEKJpmZ3YlZaWcu+999ap2XUtPvzwQwoKChg9ejSdOnVSH+vWrVOPee+995gyZQrTp0/npptuws/Pjx9//FHdr9Pp2LhxIzqdjoiICB544AFmzpzJa6+9dt3xCWGu+E3xVJVV4RnsiW9/4ySe+Ph49Ho9np6euLu7WzjCpmWqx3etiV2PHj2aPCbRMtzd3fHx8UFRFD754ROWspTP+ZzBIwazevVqS4cnhNUyOzubM2cO3333XZNcXFGUeh+zZ89Wj3FwcGDFihXk5uZSUlLCjz/+WGfsXGBgIL/++iulpaWcP3+ef/3rX9jYXNPwQSGuy9kf/1eA+M5e6jCF6kWJ28v4OhNTYpeSklKjsPiVFBcXk56eDkhi19aFhoZSUFDAP/7xDxSMk4IMioF58+aRlpZm4eiEsE5mZz9vvPEGU6ZMYdOmTfTr169ON8q7777bZMEJ0ZZUlVcRu9HYEmXqhq2qqlJbp9pbmRMADw8POnXqRGZmJjExMQwePPiqrzF9P/z9/XF1dW3uEEUz6tGjB1988UWdmd6mUijVJ8MJIVrGNSV2mzdvVivn1548IYS1StyeSHlhOa7+rmqh1sTERCoqKnB1daVz584WjrB59O3bF1dX10ZPnpBu2PYjICAAf3//OgXstVqtzHYWwkLMTuzeeecdPvnkkxrdpUIIiP7RuIZyrzt6odEaP+SY1lXu2bNnu/3gc+ONN3LjjTc26tiqqip1klVbXlZNGGm1WsLDw5k6dSo///wzABo0zB08V1rrhLAQsxM7e3t7RowY0RyxCNFmGaoMxPw3BrjcDasoSrvuhr0WRUVFdOrUicLCwjorxoi2qUePHgwePBhPT082rN3ALGbRIaoDFSUV2DnLWt1CtDSzJ08sXLiQ5cuXN0csQrRZKXtSKL1QiqOXI4E3GVdq0Wg0/PWvf2XKlCktsnqLpeXl5amJbEM8PT158MEHmT9/frttwbQ2oaGh2NnZUVFRQZFNEV2DulJZWkncr3GWDk0Iq2R2i92hQ4f4/fff2bhxI3369KkzeaJ6KRIhrMWZ784A0PP2nmhtLn9ecnFxITw83FJhtZjMzExWrVqFnZ0dzz777FVnpcus9fbDwcGBxx57TB1j2fPOnhx65xBR30bR564+lg1OCCtk9rurh4cHd955Z3PEIkSbZKgyEP29cSxdn7ut8xeZn58fLi4uFBcXk5iYqBavra64uBitVouTk5MFIhTNyd3dXZ08kXk8k0PvHCL2l1gqiiuwc5HuWCFaktmJ3aefftoccQjRZiXtTKIkpwRHb0eCxhqXxcvKymLLli307du3USVA2jqNRkPPnj05evQoZ8+erTex27dvHwcOHGD06NFmry0r2oa8vDzce7rj2d2TvIQ8BrsO5gxnKC4uBowt2GBM8p2dnS0ZqhDt1vUvHyGElTu97jQAYdPD0NnqAONs2MTERHWhe2tgmiASExODwWCosz8vLw9FUejQoUNLhyZawE8//cSyZcs4c+aM2nLdB+tswRbCksxusQsKCrrioGdz14sVoi3TV+jV1Sb63ttX3W4qc2JamcEadOvWDXt7e0pKSkhLS1PXkTW55557yMvLU1ttRPvSsWNHNBoN+fn59Lu7H3ve2EMoodgja3YL0ZLMTuwWLVpU43llZSXHjx9n06ZNPPvss00VlxCtXklJCYNcBjGDGTj7OquzYS9evMj58+fRarX1dkm2Vzqdjh49ehAZGcnZs2frJHZgnBUr2qfBgwczaNAgnJycUBQFrx5eJMYmEkAA6enpNQp0p6enS4FqIZqJ2YndwoUL692+YsUKjhw5ct0BCdGWmLqaetzRA63OOLLBtDZst27dcHR0tFhsltCrVy8iIyOJj49n/Pjx6vaKigrs7GQQfXtW/f+6RqMhuWcyS2OXoqAQFhbGfffdp+4PCwtj1apVzJkzxxKhCtGuNdkYu4kTJ/LDDz801emEaPWqyqrwx59EEvG4yUPdbuqGtcaixCEhIdx11108/PDD6rYLFy7w1ltv8e2339ZZU1S0T3Fxcbz3y3soGP+9DQYDX375pbrfYDAwb9480tLSLBWiEO1WkxWT+v777/Hy8mqq0wnR6r37wrt8yIcoKHz+wOesKl3FXXfdRXp6OmCdS2bZ2dnRu3fvGtuio6PR6/VUVFRIUeJ2rqKigi+//JLdu3fXO4GmOr1eT3x8vCw9JkQTMzuxGzRoUI03Z0VRyMrK4vz583zwwQdNGpwQrVVaWhpLPl5So0Vi3rx5DBkyhJCQECorK3F1dbVwlK3DmTPG4s21Ez7R/tjZ2VFWVoaHhwdarfaKyZ1OpyMkJKQFoxPCOpid2E2bNq3Gc61WS8eOHRk9erRVzQAU1i3ySKSa1Jno9Xry8vKYMWOGVXc5KorC7t27iYqKYty4cWRnZ6PVaq2ya9oa9enTh5ycHGbNmqXWPdWg4Y6Jd/Djb8aViXQ6HStXrpTWOiGagdmJ3csvv9wccQjRplRFVqFBUyO5q94CYc1djhqNhsTERLKzs9m/fz9gHHtnbRNJrFWfPn3YsWMH3bp1w8HBgWFlwxjMYMZ0H8OPGBO7qKgomRUrRDORAsVCXIOsDVlMZar6XKfT8fbbb0v36/+YWu9TUlIA6Nu375UOF+2It7c3fn5+KIpC7969ySQTd9yJ+iYKHcYC3tVLnwghmlajEzutVotOp7viQxb2FtbgwtkLZBzOYIjNEBwxtkJFRUXRoUMHli5dyvHjxy0coeWZul2rqqqwsbGxyokk1qxPnz7q3/HE4+znzKULl+iJ/D8Qork1OhNbv359g/v279/PsmXLrjoLSoj24OTnJwHodks3Lv12CTAW3k1MTAQgMDDQYrG1Fm5ubri6ulJUVIS3t7fUsLMyffr0Yfv27YSEhJBfmM+hfx5iz+t7WDxhMQ9sesDS4QnRrjU6sbv99tvrbIuJieGFF15gw4YNzJgxg9dee61JgxOitTHoDZz6/BQAfe7rA78Zt8fGxqIoCp06dZKyPxgnUFRWVgKofwvr4enpSUBAAGlpaZw+fZpBDw1iz+t7SNiSQH5SPh7dPCwdohDt1jWNscvIyOCRRx6hX79+VFVVceLECdauXSstFaLdKikpQaPR0NOmJ4WphTh4OtD/rv4oioKiKMTHxwOXu6CsXUpKCmVlZQDk5uaSl5dn4YhES+vfvz8Ap06dwqu7F0Fjg0CB45/IUAUhmpNZiV1BQQHPP/88ISEhnDlzhu3bt7NhwwYZGC2sRjjhAAyYNQAbB2ODd1FREUlJSYAkdiYnTpwAwN3dnX79+skwDSvUp08ftFotWVlZZGdnM/iRwYAxsTPo5f+DEM2l0YndW2+9RXBwMBs3buTrr79m3759jBo1qjljE6JVccYZO+wooIDwR8LV7aYlxAICAvDw8LBQdK1HRUUFUVFRgLHu5Z133om3t7eFoxItzcnJSS1pcurUKXpN64WjtyNF6UXEb4q3cHRCtF+NHmP3wgsv4OjoSEhICGvXrmXt2rX1Hvfjjz82WXBCtBZr166lhBI+53M0aOizvw9zehsXMDcldrKygtGlS5cICgriwoULMjzDyvXv35+zZ88SGRnJ2LFjGTBrAAfePcDhFYfpMVnq2AnRHDRKI0vkz549u1FFV02VxtuSwsJC3N3dKSgowM3NzdLhiFYmLS2NwMDAGt2JOp2OpKQkAgICKC8vJyYmhqCgIKljV41er0en06EoCjk5OZSWlhIUFGTpsEQLqqqq4t///jdBQUGMHz+eSxmXWB66HBSYf3Y+HXp2sHSIQlhcU+cgjW6xW7NmzXVfTIi2KC4urs4YseoLmNvb26sDxcVlOp2xGG10dDTfffcdHTt25LHHHrNwVKIl2djY8MQTT6DVGkf9OHZ3pMeUHsRuiOXQvw8xafkkC0coRPsjK08IcRWhoaFoqNlaLQuY1y85ObnODNjg4GB0Oh3nz58nJyfHQpEJSzEldSbDnhgGwMk1JykrKLNESEK0a5LYCXEVTuVOTGWqmtyZFjB3cXFh1apV7N27l0aOaGjXFEXh559/ZtmyZcTGxqrbHRwc1CT49OnTlgpPWFhGRgaJiYkEjQ2iY++OVBRXcGLNCUuHJUS7I4mdEFdxaPkhBjOYaUwDjMuHzZkzh1OnTpGZmUlCQkKjxp+2d2VlZXh6emJvb19n0oSpDMzp06clCbZCp06d4qOPPmLTpk0A3PDEDYDxZ0sxyP8HIZqSJHZCXEF5YblaUPUUxhUnOnfujKIonDxpXFpswIABFouvNXF0dOSBBx5g4cKF2Nvb19jXs2dPbG1tycvLIy0tzUIRCksJDQ3FwcEBHx8fKisr6f9Afxw8HMhLyOPsf89aOjwh2hVJ7IS4guOfHKeiqIIOYR2IM8ShKArOzs6kp6eTm5uLra2tuuC9MHJ0dKyzzc7OTi0HYypeLKyHo6MjTz31FNOnT8fOzg47ZzuGPDYEgPfufA+NRkNJSYmFoxSifZDETogGGPQGDi47CMDwRcNrdLeaWuvCwsJkgXuMkyYKCwuveIypZTM5OVm6Y62Qra1tjefDFw7HxsGGznQmCCmDI0RTkcROiAac/eks+Yn5OHo50v+By+VMqqqq1EkA0g0LBoOBn376iaVLl3Lu3LkGj+vWrRv3338/jz76qIxJtGI5OTkkJSXh7ONMv1n9KKCAUEJJT0+3dGhCtAuS2AlRD0VR2P333QAMeWwItk6XWxvi4uIoKyvD1dWVbt26WSjC1iMhIYH8/Hzs7e3p0qVLg8dpNBpCQ0PV+nbC+kRFRfHhhx/yyy+/oCgKcQFxLGUpW9hCWFgYq1evtnSIQrR5Fk3sdu3axdSpU/H390ej0fDTTz/V2K8oCi+99BKdOnXC0dGRcePGERcXV+OY3NxcZsyYgZubGx4eHsyZM4fi4uIWvAvRHsVujCXrRBZ2LnYMXzS8xj43Nzf69OnDoEGD6tToskaHDx8GYODAgXW62xqiKApVVVXNGZZohbp3746dnR0XLlxgz549PPfycygYu+UNBgPz5s2TyTVCXCeL/lYqKSlhwIABrFixot79b731FsuWLeM///kPBw8exNnZmQkTJlBWdrmo5YwZMzhz5gxbt25l48aN7Nq1i7lz57bULYh2SFEUdr66E4Dfi39Hcag5Hqxz5878+c9/5uabb7ZAdK3LhQsX1A9bQ4YMadRrjh07xtKlSzl06FBzhiZaIXt7ewYNGgTApk2bGlzRRQhx7Sya2E2cOJG///3v3HHHHXX2KYrC0qVLefHFF7n99tvp378/n332GRkZGWrLXnR0NJs2beLjjz9m2LBhjBw5kuXLl/PNN9+QkZHRwncj2ouEzQlkHc3iIhfZwx4Z+3MFBw4cAIzlTLy9vRv1GoPBQGFhIcePH5dJFFbohhuMNewuXbpUp8Vbi1ZWdBHiOrXafqTExESysrIYN26cus3d3Z1hw4axf/9+APbv34+Hh0eNloJx48ah1Wo5ePBgg+cuLy+nsLCwxkNYr5KSEjQaDRqNhuLiYnYt2cUxjrGc5ZRRpo79URSFXbt2cfHiRUuH3CqUlpaqs4MjIiIa/bp+/fpha2vLhQsXSElJaa7wRCvl5eVFjx49cHd359FHH1W3a9AwhSkUnylWfx6lBIoQ5mu1iV1WVhYAvr6+Nbb7+vqq+7KysvDx8amx38bGBi8vL/WY+rzxxhu4u7urjysN+BbWZf+X+zm97zQb2KBuM4392bdvHzt27OCjjz6S8WHAkSNHqKqqolOnTnTt2rXRr7O3t6dv374AHD16tLnCE63YsGHG9WL9/f3VYtar7l3FYAaz59U96nHSWi6E+VptYtecFi9eTEFBgfpITU21dEjCgtauXat+PeGvEzjIQXVAt4ler2fbtm2AscXJxsamRWNsbaqqqtQxchEREWaXLzG1skdFRVFaWtrk8YnWLSgoSF2FYuvWrSiKwt3/uhsbBxs27L/8oUpmygphvlab2Pn5+QGQnZ1dY3t2dra6z8/Pj5ycnBr7q6qqyM3NVY+pj729PW5ubjUewjqlpaWxYMEC9bmCwj721Rn7o9PpKCoqAiA8PLxFY2yNTp06RUlJCW5ubuqKEubw9/enU6dO6PV6tTtXWA+NRsPIkSMB4zjNiooK3Dq70W1Wt3pby2WmrBCN12oTu6CgIPz8/Ni+fbu6rbCwkIMHD6rjeSIiIsjPz6/RnfP7779jMBjUpn4hriQuLq7OzDygRrKn0+l49tlncXV1xd/f/4ofGqyBwWBgzx5jd9mwYcOuuS6dKUE+evSoTKKwQn369MHT05PS0lKOHTsGgPck73pby2WmrBCNZ9HErri4mBMnTqhrRyYmJnLixAlSUlLQaDQsWrSIv//97/z8889ERkYyc+ZM/P39mTZtGmBspr/11lt55JFHOHToEHv37uXxxx/n3nvvxd/f33I3JtqM0NDQelvnHnvsMfX56dOn1WROWusgMjKSvLw8nJycGl3ipD59+/YlPDy83lnxov3TarWMGDECgH379lFVVUXfwX3Raur+PMpMWSEaz6KJ3ZEjRxg0aJBa1+ipp55i0KBBvPTSSwA899xzLFiwgLlz5zJ06FCKi4vZtGkTDg4O6jm+/PJLevXqxdixY5k0aRIjR45k1apVFrkf0fYEBATwxv+9gQbjGDGtVsvKlSvp3LmzekxZWRn5+fk4OjrSr18/S4Xaapjq1kVERFzXOrn29vZMmTKFzp07yxJjVmrAgAG4urpSVFTEqVOnCAgIYNmyZZd/HjXGn8eAgAALRypE26FRpA+EwsJC3N3dKSgokPF2VkYxKHw84mOiD0RzilOsOLuCnj171jjm2LFjbN26lSFDhjB27FgLRdp6KIpCXFwcgYGB6oxGIa7V/v372bJlC+Hh4UyZMoWSkhJ6uPTgFm7BCy+eOfwM/kOkB0a0X02dg1j31D5h9Y6sPELGgQw6unTkhzM/4N7Vvc4xgwcPpm/fvvWOxbNGGo2GHj16NNn5Ll68yN69e3FwcGD8+PFNdl7RNoSHh+Pv709gYKC6LYMMiigiiCB+nvMzjxx+BJ2drDEsRGO02skTQjS3wvRCtj1vLGEy5vUx9SZ1JnZ2djWGAFijjIyMGsv5NZWCggKOHz/OkSNHmuX8onWzs7OrkdQ5OzujKAqf5XyGo7cj2aeyGWM/RgoWC9FIktgJq1NSUoJWo+XxgMepKKqg87DODH1saL3HJSQkyIxNoLKyknXr1rFs2bImX66vek0zKVhs3YqLi0lISADAuaMzE5dPBGAQg/DAQwoWC9EIktgJqzSUoWjRUuJQwu2f3o5WV/dHYf/+/XzxxRfq2sTWrLCwEDs7O2xtbenYsWOTnluj0TB8+HAADh06hF6vb9Lzi7YhKyuLZcuW8f3333Pp0iUA+t7bl9R+qSxjGfnkS8FiIRpBEjthdd578T0Oc5i1rOWd8nf4ed/PdY65dOkShw8fBrimArztjbe3N48++igzZ87E1ta2yc/fr18/nJ2dKSws5NSpU01+ftH6+fj44OnpSYcOHdTVSNLT0/n0zKdqbTspWCzE1UliJ6xKzPEYXlr60uVfFEr9vygOHjxIRUUFvr6+TTpRoC3TarV4e3s3y7ltbGy48cYbAdi9e7dMVLFCWq2WmTNn8tBDD6n/z+orIC4Fi4W4MknshNWoKKlg1b2rrlrZvry8nIMHDwIwatQoq66xlpOTw549e1qke3TIkCE4OTmRl5cnrXZWytnZucbPW30FxDVo8HO17tVfhLgSSeyEVTBUGfjh3h9QYhW1+KlJ7cr2hw4doqysjA4dOlh1N6yiKPz6669s376dzZs3N/v17OzsGD16NH/605/q1BIU1qW8vJytW7dSWlrK8uXL1e1atExlKgeePoC+QsZiClEfSexEm1VSUoJGo7lqGQRFUfh1wa/EbozF28GbJU8vUffpdLoale3Ly8s5cOAAIK11p06dIjk5GVtbW7WbtLkNHTqU0aNH4+jo2CLXE63TgQMH2LdvH5s2bWLGjBnq9n2/7mO4y3CS/0jm18d/lRnrQtRDEjvRLpjKIFRP9mJjYzHoDWyct5Gj/zkKGrjzyztZ9Ooi9XVRUVHMmTNHfV5cXIyrqyteXl707du3pW+j1bh06RJbtmwB4KabbsLDw6PFY1AURcbaWamIiAhcXV3Jy8vjyJEjKIqCoigMmziM6d9MR6PVcOyjYxxYesDSoQrR6khi14bVTmKszdq1a9WvTWUQam97fMTjHPvoGBqthttW30bYnWFqAVRFUepMjPD29mbu3LnMnDmzztgea2LqBuvYsSMREREtfv3U1FQ+/vhjDh061OLXFpZnZ2fHxInGGnZ79+6tUTuxx+Qe3PKvWwDY8vQWzv73rEViFKK1st7fXO1AfYmNtUhLS2PBggXqc4PBwNy5c+ts+8/B/1CkK+LOr+5k0IODGnVurVaLu3vDq1C0d7GxsRw/fhyAyZMno9O1/FJOOTk5ZGRksGvXLrWmmbAuYWFh9O3bF0VR+O9//0tVVZW6b/ii4QyeOxgU+P7u70nYmmDBSIVoXSSxa6PqS2ysqb5TfWUQDAZDnW0KCl/qv6Tfvf2u2KqZk5PDrl27qKysbJZ424rS0lJ+/tlY1y8iIqLGUk8tadCgQXTs2JFLly6xa9cui8QgLG/ixIk4OTmpP58mGo2GySsmE3ZnGPoKPd/c/g3Ju5MtGKkQrYckdtW4u7u3mW5Na6vvVLvbub4yCFqtts5kB41GQxZZQMOtmoqisGXLFnbs2MGmTZua7yZaOUVR2LhxIyUlJXTs2JExY8ZYLBatVssttxi72w4dOkRubq7FYhGW4+TkxOTJkwHYs2cPKSkp6j6tjZbpX08nZGIIVZeq+GryVyTvaji5s/ahK8J6SGJXj7bQrVlfYlO7bEd7UrvbefPmzTXKIOi0Oh4IfICpylS1nEnt709DrZpnzpwhISEBnU7XYrM/W6Pjx48THR2NVqvljjvuwMbGxqLxhISEEBwcjMFgYNOmTTID0kr17t2bfv36oSgKP/zwA6WlpWqSZmNvw8B/DqTbzd2oKKrg8/Gfc/an+sfcWfPQFWFdJLGrhykBaKpPd83xSTEgIKBmYlOrbEdLuNb7aszrqh+za9euerudb7vtNiL3RrLk1iUsZCHBicEMdxtOP/oB8Omnn9ZJBmq3al66dEltpRs5cmSzrazQ2mVkZPDrr78CMHr0aDp16mThiIytrbfeeis6nY64uDjOnDlj6ZCEhUyePBlvb28KCwv56aefWLNmjbqv/6D+lN9VTs/beqIv1/Pt9G85uupoo95DrGXoirAuktg1oHql/ev9dNdcnxRnzZqlfl27bMeVmJtYNXTMtd5XY15X/ZjRo0fX2+285pE1rP/TevSb9LgZ3Ai7M4z5UfM5qZxEURTGjBlz1VbNbdu2UVJSQocOHRg5cmSj4m9vSktL+fbbb9Hr9fTo0aNVfR86duzIqFGjAOP/cWGd7O3tueuuu7CxseHIkSM88cQT6j6DwcBjCx7jxvdvZNCcQSgGhY3zNvL8xOfVYxp6D2mvQ1eEddMo0r9BYWHhVWdBatDw2pjXOBNzhtyqXCaNn0RA5wDsXOxwcHHA3tUeB1cHNHYa7p55N0UVRfy25Tc8fTzp2btnjTcVnU6nJo4xMTFNvhZpWloacXFxhIaG1tuC98EHHzB//nzA2F25atUq7r33XlxcXNSYtm3bVueYOXPmqOd2cXFh+PDhde4rKipKXTUgJiaGzp071zivk5MTgYGBdV6XlJSkxpqWllbnmNo0aFjEItxxp/v47ox+dTQBw698r6ZWTVMCnJycrH7ynz17tsUmClhafn4+X3/9NZWVlcydOxcHBwdLh1SDXq/nzJkz9OvXz6oLRgs4duwYy5Ytq/HBz+Tbb7/F29ubi79eZP87+1nK0jrLB1ZX+31HCEsx5SAFBQW4ubld9/ksO4imDVFQ+O3339jPfhQUtn6+lalMZTCDaxx3jGMkk4yCwrCbhhFBBAbqflI06dWzF3eH3M3IbiOxcbLB1skWW2dbbJ1ssXexx87Fzpg0ujjg4OaAo5sjDq4OOLo74uzhjJOHE7YOtuovvPqStuoteQ3Nps3KyrocU69eNeKtfsyLL74IGLvJ6uvm/OCDD9TnYWFh3HfffTWeP/XUU/V+ct6/fz8dOnQgNDS03okhYEzmFIxLgt1uczuj7hvFkEeH0CWiS51jTWbNmqV+P6KiotQkWlEUtQt20KBBVpvUAXh4eDBnzhyKi4tbXVIHxl/A/fv3t3QYohUYNGgQo0eP5rPPPqvx/qPRaLj77rsB4/ve7Dtmo6y/clJX39CVkpKSGh9Em/pDtxAtQVrsuJwtB7sHo0PHk48/yfzX59d84/jfgPzqnwA1aHih1wsYygycLzmPTaUNH+V/VOdToikhaYip9Qkgl1y88MKd+lsQCyioe4wWsIVCm0LeK3mvToz/r///w9vNGxt7G+JL4nn/wPt1Y6gnUTP3GFO355Va2uo7pvp5NWiY3nU6P6T8UOc+HuRBUknlr3/7K7cuvBUnb6crxns1BQUFbN++ncmTJ2Nvb39d52qLzp8/T8eOHS0dhlkqKirYtm0bI0aMsOpag9bMYDDw73//m4ULFwLG9xRTwXGT+t5ntBotv//yO4qjQkhISKN7Mxo7xEWIa9XULXaS2FH/N7V2F96TTz7Jv/71rzqvXbhwIe+/b0yUGkp8Hpn5CB999tEVj7m1761sPr1ZbZG6K+QuPIo9KKgoINA1EDe9G4fzD/Nz8c/qMbVbDBNJZC11uyhmMYsgggBjYni1LgpzVG9Fu9HhRvaW7b3qa27kRrXls6FzjmMc29iGgoJWo+WVv77CM/94BkdPWUO0KRw/fpyff/6ZW265pU3NBP7xxx+JjIykS5cuzJo1yyLFk0XrkJaWRnx8PIcPH+a5556rs7/Ge/P/3i+Huw7npr/dxPCFw9HZ6eqc72rDRIRoDpLYNYOGvqmmNw7TYPvaP/SNaaEyvTEAxMfH4+zsXGds2tVasbRaLf/85z954YUX6rzpnDx0Ek8nT0oLSklOTGb8/eMxKDU/pX742Ie42bhRWVpJ5aVKfj/zO18d/0pNyCZ1nsSv6b822NJYO9Gqvn8Oc6ikEi+8AK6aNNZondTlUmJbwvdl39c5bva02fiE+FBQVICfnx8dOnTAxsYGW1tbbGxs1Eft57W31d5fWFhIeXk5wcHB9Z7LWsZwbd++nT179jBixAjGjRtn6XAaLS8vj5UrV1JeXt7mYhdN7/jx43z++ecsXbq0xgfm2u+7rpdcOfbyMTIOG5cm8wrx4qaXbiL4tmDcPIzv+WvXrq0xIc1kx44djB49utnvRVgvSeyaQWO/qY1txTOpPVjfZPXq1cybNw+9Xt+o84Axuasvgaz9plM7xmXLlqnPq48ZqZ60BgQE1DvJYMKECcTHxxMcHEzHDh1ZsWwFzy5+Vo3n5WdfZsq4KVSWVVJZbnz8tOknln2+zHiMRsuI8BHsObJHbXmbeddMboy4Eb2tniqligsXLvDaa6/VGS+zaNEii3S16XS6RieJV0s0G5OE2tjYoNPp6i2u3JwUReHs2bP06tWrzSWzZ86c4fvvjR8Gpk2bxoABAywckbCUvLw8Pv30U5KTk1m2zPi+09D7rmJQOPnZSba9sI2S7BIAzvqc5ZucbwDUn4P6EsTaLXZXm6AmhDkksWsG5nxTr9aKp9Pp2L9/PyUlJQ2O42jMeepTuxv3Sm86pnP//PPPjR4zUjvZa6pjrvaa2knl8uXLmTFjBlVVVVRWVlJVVaU+qj+/0r7a2yoqKsjJyaGqqgqtVouDg4N6zNW+7y1Bo9GoSV59iV9D2xp7vFarJSUlheDgYBwdHes9zpRgtgVbt25l3759aLVaZsyYQXBwsKVDEhZSWlqKo6Mj6enpV31vAigvKufwisP8+uav/DP/nzV7Iaq9x1ZPEKsncua8pwrRGJLYNYPr+aZeqZzGtZ6nvsHAOp2OV199VZ2V2phrtaUxI41JGK+VXq/n22+/JTY2FicnJx5++GE8PT3V/QaDwezE0ZyksqH9rSGhrE2r1TYqoWxoW33JYu0ktPa2hr6+UiumaRWCM2fOYG9vz4MPPoivr28Lf7dEa1NVVcUPP/zAiBEjrvo+suXXLUyYPKHO9rlBcxkwaQA33XcTfUf0rfHebE6rHkjLnmgcSeyawfV+U5sqKal+ns2bN9forq3+ybGx19qxY0e9631a05iRqqoqvvvuO2JjY9HpdMyePbvVvMEaDAb0er2a6FX/+nq2Vf/a1FJZXl4OgIODAzY2NjWOa81vAVdL/HJzc6msrCQgIAAnJyd1vylBbWwSae7Xba372lqYxo7qdDomTZrEoEGDGvy3qu+Db/X6mADaYC0vJ7581Z+RHTt2EBISUiOJq/1hffny5fUOi2ltJBlteZLYNYOm/qY2letNGNtSi11zMBgMfPPNN8TFxWFjY8M999zTbtfSrU9KSgo//PADhYWF2Nracuedd9apUagoSp0EsykTzep/N+brtvJ2pNVqG50MmpLQ6s8b2tbQo7HH1j6upcduWlpFRQU//PCDulrOwIEDmTRpEra2tvUeX3u887K3lzHEdgjRP0STsieFhKqEeisNVFe7N6WhyW61J8Q1tgu3JWvrtXS5l9aWRFqqjqEkds2gtSZ2TaH2G9e1dhW3VTt27GDfvn3cd999VjMOS6/Xs3v3bnbt2oWiKHh5efHnP/+5Vaz/ejWmJNPchND0d3Z2NgaDAXd393qPNXW7m3uN1tht3ljXmhReb1JZ377G/m1azvBaKIrCnj172LFjB4qi4O3tze23306XLvUXMm/oA3R5YTn71u1j7LyxdT5wVK8YcJv3bfx88ecaY/W0Gm2N6gT1aezEjGtNtsxNmq63IcDc611PEtlcCWFjY2rq60ti1wzac2IHzTt+rTVSFKXGWJj8/PwaY+ras5SUFDZu3Mj58+cB6N+/P5MmTbKKAswZGRl8+umn6PV6xo0bR0RERJO1VimKck3JoOn51R71HdvY19c+rr0wNxms/felS5dIT0+nqqoKAF9fX7p06YKtrS1arbbR5/n222957bXXjDFptMwdOZeuRV1JjEvEpcSFXHLrbdW7WmF6gE9f+ZSQkBDS89LpGdaT7fu388zfnlHvv6EyV1dLCK9lgseVhu7U7maundisXr2auXPnYjAYGnW9KyWRwBWTpvquNWHChDqvaarEdv/+/RQXF18x0b7e60ti1wzae2JnLRRF4fjx45w4cYIHHngAOzs7S4fUYgoKCti5cycnTpwAwMnJiVtvvZV+/fpZNrAWVFVVxS+//KJ+D/r06cPkyZNxdLSeotamrvXrTSqbK/ls6O/WrqCggNzcXLy8vC6XYVKAYihILGDpj0vr1Pisr/ZndY05piEPBDyAq4MrPi4+eLt5c+D8Ab6O/lo9T+2kUqvR8u85/8bHywetrRadrQ4bOxt0djp0tjp0djouFl/knufuqVkHVavlqXlP8e7Kd9VEatrkafy44Ud1/5JXlvC3V/521YQILic758+f55577qlzX9WLSje0JGadcZH1dHED9SaaV0q2Gkpsq38vGupi12g0Na5VXl5uVmItiV0zkMSu7SssLGTDhg3Ex8cDMGbMGEaNGmXhqFrG9u3b2b9/v/oLcuDAgYwfP96qEhoTRVE4fPgwmzdvxmAw4OLiwuTJk+uMLRStS/VktDn+zsnJITY2lrKyMsD4wadTp064u7s3ybUPHTrE+vXr1d6CqVOnMrj3YAqyCsjNysXL1ouE5AQ2nNpwuei79zi2Xbx6Uldfy9/VisfXZxaz8MKrxpKUtZeoPMYxNrDB7HNfKW4NGqY6TAUtbCjdcNUC9rUT5IX9FlJJJT7OPlwov8Dy48uvel2gTmI74+YZfP7758ZjNBoW3bOIG/reQGZuJl39u6Kz1TF90fQrdqE3pou9vgUHrtalLYldM5DEru2qrKzkwIED7Nmzh4qKCnQ6HWPGjGH48OFtpibb9frpp584efIkgYGBjBs3ziq6268mNTWV//73v1y8eBEwdknfcccdFo5KWFJVVRWHDx/mjz/+UGeJ33fffU02QN405KV79+506tSp3iQwNTWVhIQEAgMDiY+P5+67777iObVaLXPvm8uqr1dhMBgaXLO8McnhlMApbEzeqCZbg9wHcbzguPr8ds/bCXcIp6CigIuVF/HEk9zKXNZcWnPVe29sDFdKUCOIYB/7GnxdUyWaDZ17KlMB1MTWnPM0xiyHWQTbBYMWNDoNaKFQKeSi4SJeHbx4J/YdSeyakiR2bdOxY8fYuXMnRUVFAHTu3Jlp06bRoUMHC0fWfE6dOsXRo0eZMGEC/v7+AJw/f578/HxCQkKsagbk1VRVVbFz50727dvHqFGjuPnmmy0dkmgFSktLOXjwIImJiTz44IPqz8zZs2dxcXGhc+fOLfJz1FC3olarrTPZzZQ05uTk1NuFWbt4fe3zvPHGG3W6EGurr1Wpvhjre93L//cyr77+Knq9vlGtWiYvz3sZN0c3Onl2Qq/XM3PJzCvOjNdqtPw5/M98f/R7DIqhwSTrWpIvDRqe7vA0ikEhtzIXG8WGj4s/NruLvb7r115+s3brqEmT5SCKUAoKChRAKSgosHQowgzr169XXnnlFWXp0qXKqVOnFIPBYOmQmlxhYWGN+/rhhx+UV155RdmwYYMFo2pbsrOzlUuXLqnPY2JilC+//FKJi4tT9Hq9BSMTllT956qqqkp56623lFdeeUU5d+5ci8Xw8ccfKzqdTgEUnU6nfPzxx0pqaqqyY8cOJTU1tc7xqampilarVTCO8FNf9/bbb1/xPL///nuN1zT02LFjx1VjnDVrVp1rmWLbsWOHcujQoToxarXaeuOufY/Vr1X7+OoxVr+3+r6Htbe99dZbDZ7vSvdf37kVRVFSUlKUbdu2KefizikfLP+gxjHvvvGu8q8l/1J02sv3MfWWqZe/FxqtsnD2QkWrqRtPU+Ug7abFbsWKFbz99ttkZWUxYMAAli9fzg033NCo10qLXeulKArnz58nPj6eM2fOcOutt6plC7Kzs0lKSiI8PBwbGxsLR9o0CgoKSElJITU1lZSUFLKzs5k7d65aqiQ1NZWkpCQGDhyIq6urhaNtmz7//HPOnTsHgLOzM2FhYYSFhdG1a9d28/9ImKe4uJjNmzeTlpbGggUL1GEcmzdv5vz58wQHBxMQEICfn1+TT8oyt2pBQyWsrnSexra8XWkFDXOWiawvRqBRpbdM53Z2dmb48OGNnhFcO57a26rH1NDqTo0999W+P1e7j4bWfpeu2GrWrVvHzJkz+c9//sOwYcNYunQp3333HTExMfj4+Fz19ZLYtR56vZ7MzEzS09NJT08nKSlJ7WoFGDp0KJMmTbJghNdPURSKi4spKCjg/Pnz5OTkqI/i4uI6x0+ePJkhQ4ZYINL26eLFixw6dIjIyEguXbqkbtfpdISEhHDvvfdaMDphSaaZjSbLli0jLy9Pfa7RaOjQoQP+/v506NABb29vOnTogKenZ4t+KLiWEla1k60HHniAL774otlqnDYm2TI35uuNsTGrOzW1hmbb1pfcSWJXzbBhwxg6dCj//ve/AeMPZ5cuXViwYAEvvPDCVV8viV3L0Ov1lJeXU1JSQnFxMUVFRRQVFdGxY0d1AHNBQQFLly6t8TobGxsCAwPp2bMnvXv3xtnZ2QLRN0xRFCorK9VlrMBYwTwhIQGNRlOj5Minn35Kenp6gyUeNBoNnTp1okuXLnTt2pWuXbuqldBF09Lr9SQmJnLmzBkSEhIoKioiICCgxpv7J598gqIoeHp64u7ujqenJ66urjg5OeHq6irvF+2YqbcgISGB5ORkMjIyanzIrE6j0eDs7IybmxsjRoygd+/egLElMCUlBVdX1xoFkpVqtTZbkrktb61Bc8bYEvffUH08U+kUUwuiwWBoshykzfc7VFRUcPToURYvXqxu02q1jBs3jv3795t1rnXr1uHk5FRne4cOHdRkorS0lJycHAACAwOBy28ApaWlDBw4UP1FnpSUxK5du2qcq3oeXb0mUllZGRkZGQAEBASg0+lQFIXc3FyKi4sJCwtj2LBhAGRlZfHbb781eF4PDw+1IG9lZSWpqakAdOrUCVtbW7Vob2FhIcHBweqnicLCQr799tsGz+vq6krHjh0BY/KcmJiIwWDAy8sLnU6HXq+nqKiI4uJi/P39ueuuuwC4dOkSb7/9doODYr29vUlOTlavZ29vj5OTE927d1e7yM6fP09kZCTR0dE1Wq9+//13Kisr6z1v7fhN+vTpo77JXrhwgcOHD+Pq6srIkSPVY3777TcKCwvrndlWWVlJRUWF+jBd/5ZbbuHGG28EIC8vj/Xr1+Ph4VEjsTOdR6PR4OrqipeXFz4+Pvj6+uLj44OPj49V1d+zJFMLXUhICIqicPHiRUpKStT9lZWVpKWloSgKaWlpdV4fGBjI7Nmz1ecrV67EYDBga2tb42FjY0PHjh1r/P/avn27+mHAtOyX6W83NzcGDx6sHnvw4EF1Fmdtzs7OhIeHq8+PHj1aoxWyOgcHhxo/OydPnqxxv9XZ2toydOhQ9fnp06cpLCys91itVsvw4cPV51FRUeTn59d7LKD+jIBx2SbTzOX6DBs2DJ1OB6DWP2vI0KFD1aXDEhISyM7ObvDYwYMH4+DgABjfp03vvfUZOHAgERERgHGCRUxMDEVFRZSUlFBaWkpJSQl6vZ7i4mKKi4vV94P09HSOHDnCiRMncHV1rfE92rNnD1VVVer/D41Go7Ycmf5PmP4/aDQaPDw8GDJkCCEhIeTk5HDq1ClSUlKws7OrsaJOSkoKLi4u6u+xS5cuqd/f6omk6XeCt7c3vXv3JiAggNzcXE6dOkV6ejparVb9/QbG3zmmDzNg/H11pe+vp6cnPXr0oHv37hQVFXHi/7d353FR1XsfwD8z7AgMIMuwb3IlExTUyDJUNNy6LabZk3VR0bSwq/jYzW5XTEutW4/aYmqpaIu3krzZ7ZapqPVUalguWYqCKAoMgsgiKiDze/7gmXM5s8AsZ+acmfm+ffF6OTNn+Z3fdr7nd7Zjx7h1xsTEcGmpra2Fm5sbtx9sb283WBZVVVXw8/NDnz59kJSUhJs3b+KXX37hHmocFRXF1RXNNgcGBgLoPIjT14Y1GhsbcfXqVSQnJ6OjowOHDx/GxYsX0dHRgfDwcK5PbmhoQHt7O7cfZIxx+y59vLy8EBsbi3fffZd3GnjGjBlITU1FYWEh6urqeAcDQrD7wK6urg4dHR0IDQ3lfR8aGorTp0/rnae1tZXXUWo6rHPnznGNvSvNs9G0lZWV6Xzn7e3N7cgrKytRXl5uMO2aCqlNX0WRy+VcYHflyhVUVFQYXK6mAWnTV7Fv3brFBXYtLS2orKw0uFygsyPWpq+Bdz060QSThly5cgU//si/zb21tRXx8fFcp1VXV4eDBw8iLi6Ot3MqLi7mnk1lrKCgIC6wa2pqwk8//YSQkBDejresrKzbHY4+bW1t3P99fX0RHx+vc/R1//33w9XVFX5+flwnRMSnOcXW9Y5qFxcXPPnkk6ivr8fVq1fR0NCAhoYGXLt2DdevX9cp29raWoMjsbGxsbz61V0AFhERwQvsfvzxR4NBVXBwMC+wO3ToEOrq6vROqwkONA4fPozq6mq90/bq1YsX2B05csTgDszNzY0XtBw9etRgnwnwA7vjx4/j1KlTBqcdMmQI105+++03HD9+3OC0AwcO5AK7U6dO4eeffzY4bb9+/bi+/syZM90OAiQmJnKBUnV1NfcAbH2ysrIQFxcHACgvL+embW5uxp49e3Sm7+6gtKuamhrExcV1vqWishI//PAD95u+/ZCxNPu82NhY1NXV4dtvv+V+07xv11wdHR1ISEhAY2Mj9u3bx31/9uxZi5bb0tKCpKQk3Lhxg5enli63vr6eC+yEXG5lZSXmzp2LMWPGYMmSJVAoFFAoFPj+++8BACEhIYiIiLBoHdrsPrAzx8qVK7F06VKd7wMCAniBneaoonfv3tyI3Y0bN1BbWwuZTIbo6Ghu2traWty4cYNXQNo7Cm3+/v7czqGtrY0LkLSPPJqbm3lHT/7+/nqvHdSk18/PjzsCunXrFtd5R0ZGckcemh1V16M9zUM7DfHx8UFAQAD3lO3KykouHzSBSmNjI1QqFfcoDqBzB5mamsq9HF07vYZojraAzh3YXXfdxfsO6Dyi17wyyBDt9XTdRn9/fwwbNkzndGdGRgba2tr0vmbIzc0N7u7uvD/N6IyGQqHAE088oZMWzZEekT65XA6lUgmlUmnU9NnZ2Whvb9f5u3Xrlk4QeOedd6KtrY33pgi1Wg3GGPz9/XnTJicn6wSBmgMl7RtobrvtNoOnC7UfWJ2YmGjwGmTtUeOEhASddGloH6DExcUZfblETExMtyPUXa93M/SuV33piIyM7LZf6LrOsLAwDBgwwOC0XfcJSqWy22mTkpK4sg4JCTE4bXt7O9LS0uDr64tbt27hwoULKC0t5dWDrn8xMTHcPiAwMBC33XYb6uvr4eLiwutTLl++jMDAQC7/r1271u3IWlBQELfP8vPzQ79+/aBSqSCXy3n7ssuXL3Mjdowx3Lx5kztzpY+/vz93atPb2xv9+/fnBg2ioqK4Prmurk5nxM7QwYYmjbGxsQA6y3DAgAHcIEdERARXB65evcq9JxvoDDK7G7To1asXEhISAHTWuQEDBnCXzHS9YaaxsRHt7e3cfp0xZnAgBeisO5p9bGRkJB544AFUVlaivb0dISEh8PT0tMpNcHZ/jV1bWxu8vb1RWFiIBx98kPs+OzsbDQ0N2Llzp848+kbsoqKi6Bo7QgghhNiU0Nf52/2j+d3d3TFo0CAUFRVx36nVahQVFXHXRWjz8PCAn58f748QQgghxN45xKnYBQsWIDs7G4MHD8Ydd9yBNWvWoKWlBdOnTxc7aYQQQgghNuMQgd2UKVNQW1uL/Px8qFQqDBw4ELt27dK5oYIQQgghxJHZ/TV2QqDn2BFCCCFEDHSNHSGEEEII0YsCO0IIIYQQB0GBHSGEEEKIg6DAjhBCCCHEQVBgRwghhBDiICiwI4QQQghxEBTYAdzrxbq+ZsyZtba24sUXX6T8+H+UH3yUH3yUH7ooT/goP/goP/iEjkHoOXYALly4gNjYWBw+fJj38npn1dzcjH79+uH333+3yguK7Q3lBx/lBx/lhy7KEz7KDz7KD76qqiqkp6fj/PnziImJsXh5FNgB2L9/PzIzM8VOBiGEEEKc1L59+zBy5EiLl+MQrxSzVHx8PADg4sWL9OYJQgghhNhMU1MToqKiuFjEUhTYAfD29gYA+Pn5UWBHCCGEEJvTxCKWopsnAHh4eIidBEIIIYQ4MaFiEQrsCCGEEEIcBAV2hBBCCCEOggI7QgghhBAHQYEdIYQQQoiDoMCOEEIIIcRB2H1gt3LlSgwZMgS+vr4ICQnBgw8+iJKSErGTRQghhBBic3Yf2H377bfIzc3FoUOHsGfPHrS3tyMrKwstLS1iJ40QQgghxKYc7pVitbW1CAkJwbfffouMjAyj5mlqaoJCoUBjY6PdPaD40qVLOHv2LBITExEZGSl2cojIqD4QQoh9EToGsfsRO22NjY0AgMDAQJFTYn2bNm1CTEwMMjMzERMTg02bNomdJCIiqg9E6i5duoT9+/fj0qVLYieFEIflUCN2arUa999/PxoaGvD9998bnK61tRWtra3cZ8172moqauxmxO5S5SX0Te4LtVrNfefi4oLTJ04jMoJGapwN1QcidVve34Lc+blQq9WQy+VYu2Ytpv1pmtjJIkR0TU1NCI0OFWzEzqHeFZubm4uTJ092G9QBnTdcLF26VOf737b/Bh8vH2slT1BHSo7wduIA0NHRgb3v7cWgPwwSKVVELFQfiJTVXK1B7t9yoWaddVStViN3fi4imyMRGhBq03RcvHwRUSFRNl0vId25duOaoMtzmMBu7ty5+PLLL/Hdd9/1eG3R888/jwULFnCfNSN2rl6u8AzwtHZSBdEnsQ/kMjnXUQKAXC5HQp8Eu9kGIhyqD0TKaqpqeHUT6AzuLt+8jJiAGJukYcf+HVj23jKomRpymRz5s/IxceREm6ybkO7cxE1Bl2f3gR1jDM888wz++c9/4sCBA4iLi+txHg8PD70v23X1cIV7L3drJFNw0b2isSx3GfLfyedObSx7ehmio6PFTppTU9WpcL7qPGLDY6EMUtpsvVKpD2JtP5G2PvEGDjziEmzS56rqVFxQBwBqpsayjcsw4s4ROvWU6jCxNdfrwoZiZi/tiy++MHmee++9F15eXuauUq/c3Fxs27YNO3fuhK+vL1QqFQBAoVAIvi6pmZQ1CcPShuFC9QXEhMVQJySywt2FyF+bz40ILMtdhklZk2y2frHrg9jbT6RLGaTUe+Bhqzp6vuq83hHDC9UXeGmgOkwcgdk3T8jlpt1QK5PJcPbsWcTHx5uzum6Xq09BQQGmTZtm1DI0txr/uOlHBAY7/t20RHiqOhUyczJ1RiT2bdznFAG3s28/MY6qTiXKgYcx9ZPqMAHEGbGtr63HXTl3SeNxJyqVCmq12qg/b29vixOrD2NM75+xQR2xb6o6FQ6dOARVnUrUdHQ3IuAMnH37hSaVei00ZZAS6cnpNg+UNCOGmgEJfSOGVIdJ4e5CZOZkYtrfpiEzJxOFuwvFTpJZzD4Vm52dbdKpzscff9xuHiVC7IOUTpvEhsfqvYYoJsw2F4aLzdm3X0hSqteOpKdLFagOOzdVnYprd0DndZj57+RjWNowuxuxNXvErqCgAL6+vgCAa9d6vlV33bp1CAoKMnd1hPAYaoRijXAYMyLgyJx9+4UitXrtaLobMaQ63MlRR4t74kgjtoLciqFQKPDpp5/i4YcfFmJxhPTI2IuhbUnsmxfE5uzbLwQp1mtnYmwddtQ7Z515tNiUEVupl78grxRjjGHDhg24++67MWzYMMyfPx/FxcVCLJpInFhHd5pG2JUUTpuIdQ2RVDj79ltKqvXamUZxeqrDjnIdljZnHy02dsTWHspfsHfFHj16FGlpaRg2bBh+++033HPPPVi4cKFQiycSJGYFp9Mm1uVMO3Kxdc1rKdZrQ+3cGeuIIwc/YpyKlFodmpQ1Cfs27sPW5Vuxb+M+ndFKeyl/wZ6Kt23bNtx7773c5xMnTuCBBx5AREQE8vLyhFoNkQgpXGhKp/6sw5lPx9iaobyWSr021M4brzXif7b+j9PVEUc+VW7rm0ek2s8og5QGy9Jeyl+QwC4wMBBRUVG871JSUvD2228jLy/PbgK7Wzduob2lXexk2IWyc2V6K/i58nPo7dW7x/lVV1SoUFUgWhkNZW/zG0Rvr97oHd+5Pio7y6mu6N+RpyelW1ROzqq7et5TXkuhXhtq569vfR2aR6A6Ux2J8I/QG/yEK8Ltvv/p7dUbS2YtwdKNS7mHSC+ZuQS9vXoLvm322s9Yq/xv3bglRPI4ggR2AwcOREFBAV599VXe93369EFFRYUQq7CJSwcvodG3Uexk2AX5NTlkMhm6Pt9aLpNDVi7D+drz3c67+9RuvP3d22CMQSaTYW7GXGTdlmXlFBNjnKg8oXdHXvxNMZIjkkVKlX3qqZ7bQ17ra+cy8D8D0ku3NeVm5GLtd2u5kabce3Jx8+RNnMd5nWnrrtWhqrEK4YpwBPkE6XyWmjR5GjY9tgnVjdUIU4QhSB6E89+eF3w99lD3DTGl/I3V3NwsXAIhUGD38ssvY+TIkaiqqsLTTz+NlJQUtLS0YMWKFUa9u1Uq5B5yuPvYx7tibaG2uRaVVysRERCBYN9g3m/hPuGYnzUfb+x+g6vg87LmIVwZ3uMy1363ltsxMMaw9ru1SE9K11mHKekhwogJj9E9IpXJER0eTW3DBMbUc3vIa33tfEbGDGz+brOk021N9w25D+lJ6ai6WoXwgHCDfdGuX3fx8m1Uv1Eo+r2I11+OTR5r1Dpt2feF+4T32I9byh7qviHGlr8p5G2C3e4AQKDA7s4778ShQ4cwb9483HPPPVxn5unpie3btwuxCptwcXOBq6ewL+OVqtqmWlyqv4TIwEgE++lWzK+OfoXVX63mOqG88XkYnzqeN819Q+5Det90VNZXIiIwQu9ytKlUKt0jNaZGTUsNwoLDDKaxuKy4x/QQy4V5hiFvfJ5OXmuXjbX1VD+Fnk9oxtRzS/PaVtuqr50rfBSi1xExhXmGdbu9tU21XFAHdJb9nt/2cL+rmRpv7H4D6X3Teyw7Y/pieyOVfsZcPZU/YFr7dHFzETJ5wt08MWDAABw4cACXL1/Gzz//DLVajfT0dHoosQT11FHUNtVyvwOdndDqr1ZjSMIQnQoa7Bds0k4lMjBS75FaRGCEwTTK0Pk+YIb/XNNjKD3EcuNTx2NIwhCTAnZTCHFQoY+UdoDG1nNz89rYbRUq+NNu59auI/buUv0lncBem5qpUVlf2W3emdIX2xtHrkNi90XCjv8BCAkJwbhx4zBhwgS7C+quXLuCo+ePorapVuykWI2hjqLrNuvrlDSdkKWC/YKRNz6Pe1aXptJ3bdTaaWT//8/Y9NQ21ZpcjubM48iC/YIxMHag4J3tV0e/wmNvPYaFHy7EY289hq+OfsX73Zj62XVaTZmZMp8tGFPPu05rSl4bu62G8lqoum6tOuIINIF9d/QF+tos6YvtoU8ztw7ZcttMXZcU+iKzR+xOnDiB/v37c89b6slvv/2Gvn37wtVVuqc653w0BwCsEmFL5RRRdx2FJl3GjjaYq6cjNWOOdg2lx5wjJWsfXUml7MVmzOiDMfUT0C2zh+942Kj5TEmrpWVmrREJY/LIUF4332zGxn0bJTGq6cg0gX3XOjq6/2jsPbmXl/c91Qlz+2KxR4ysyZbbZs66jO3DrMnsKCs1NRUqlQrBwcYldOjQoTh27Bji4+PNXaXNCD3cLaVGZkxHoa9TMqYT0tDeKerbSXZ3CldfGmWQQSaTdZsec05bWPtUhxTK3pggxRbBp1AHFfrKrPBwod67tM05GBGyzEy9VMEYxuSRobx+r+g9uqTBRvQF9jNGzjAp0DenL3bk07eGti0+JB432m8I2n+Zko9d+09rD4wYw+zAjjGGxYsXw9vb26jp29razF2VKISKsKXWyIztKIS69kffUWpPO0lDaewpPeYcKVnz6EoKZW9MkGKr4FOogwp9ZcbA8Ej6Iyg8XMibDwCOnj9qdIcvhTLriTF5ZOjgyNAlDVLZNkejHdibE+ib2heLNWIk5sHh3IK5YGCC9l/mnj3IG59n0cCIEMwO7DIyMlBSUmL09EOHDoWXl5e5q7M5uUwOTzdPk3YK+khhWFaboY5Cu2Hq64S6a7z6doq7f93N/W7KTtJQGrubz5wjJWseXdmi7E0tD+38t2UgY+lBhWZbvdy89JbZxDsmYuIdE7n5isuK8dhbj9ndaRR9tMu5p529vryeOXImNu7fKOpIgr0Se9TblIBQjBEjIQ8Ou8tHfdsGWOfGOnPPHqz+ajW2PbMN257ZJtqNIWYHdgcOHBAwGdKgOaLVjDQ9s+UZiyuqFIZl9dHuKIQY2RHqTjBDaTRmelOPlCw97dwda5e9OeWhnf+2DmSMHX3oqX52d72S5vS/OQGrFNuroXLuqX3oy2tfL19RRxKMJVSQJMRypDTqbQxr9mn6CHlw2FM+am9bd6PQACwqe3PPHmjWL+aNRdK9k8FEa9euxWuvvQaVSoUBAwbgrbfewh133GHSMtZNXYcWWQs83Ty5oA6wrKLaupGZQ6iRHUNHU11Zeydpzilka13kbs2yN7c8tPNfjEDG1IBd37buPbkXb017Czfbbxp9A44xAaspZWaLU0+W7jS189oeHjEhVJAkxCNhpDbqbSxbPrJIqINDY/Ox67Zp76uBzv6rpLoEz370rMV1qKd8lOKBIOAggd0nn3yCBQsWYP369UhPT8eaNWswZswYlJSUICQkxOjl9PbpjcTgRBw9f1TQUQypd6ZCjezo2ymacyeYpcy5jsWceYxhbNmbGiSYWx7a+W8PBx6GtvVm+00MjB2odx5LOlxjLlWw1QOzrTGiaq26LgShgiRjlyPFUW9rPXtQKNp5NnPkTEGCG1Pyseu26b3kYN9Gi+uQvnXp+02K/adDBHarVq3CrFmzMH36dADA+vXr8e9//xubN2/GokWLjF5OR3sHOto6EOYbpreiKn2V6GjrMCuNgZ6BCAwP7FxPW0fnK2I0Ow6BXxFj6rKN2V5j82TM7WOQFp3Ge91K9rBs3mdz89BeaZe9tq9PfI03vunyarYx8zAuZVy3y7SkPLTTYMw0YjKnPQZ6BmLemHk6+RroGWjUtmmXWdcyMvTA7LToNMHbsjX6IimrqKnQu3P/9fyvUHgpjO7TDC3n4uWLCPTsLNfaZv3BX9dyFLJvNIY5fYEt6cuzjfs3Imd4DjZ9u8mstqZhbj5q91+V9ZUGy76jvUPw/a4Q/WdHu7BtWca03+ZsZ9ra2uDt7Y3CwkI8+OCD3PfZ2dloaGjAzp07deZpbW1Fa2sr97mpqQlRUVFYhEXwhCcA4Bf8gn/hX2BgkEGGP+KPSEOaIGmW4rKNmc+a6bYHjWhEPeoRiEAooBBkOQCwBmt414nIIMN8zO9xHc5UHuZuqxBl1ohGnTLSJxvZiIPw78a253I2Nf8N5bXmWipjt1/fcrTbVTnKsRVbdebVLkdb9Y3GpFls3eVZIAItbmvWzMfRGI292CvJdnQTN/EKXkFjYyP8/PwsXp4gI3Y3btwAY4x79MmFCxfwz3/+E/369UNWVpYQqzCorq4OHR0dCA0N5X0fGhqK06dP651n5cqVWLp0abfLTUMaEpAgyI68q0Y0chUX6Dzq/xf+hQQkWLwOS5ZtzPZaK0/EYOoOR6idq/ZyhmKozk6MgaEe9YKUmaMwd1sV///PEvWo7zGok0HGBepCs5dy1m5T5rQZBRT4I/7I68cAmNynaS9Hs/6u8wQiUOfie33laKu+UV89M7YvsDZN2brBzWCeCdHWhMhHfWXfNagDhN3vSpEggd0DDzyAiRMnYs6cOWhoaEB6ejrc3NxQV1eHVatW4amnnhJiNYJ5/vnnsWDBAu6zZsRu4IyBCAyyTuescezCMbBPdBtv+KPhGBA9QLLLtjZrnprWZurpjtrmWixbv4x7+C0Dw5eyLzFlzhST0qpvOQdxUO+DdbPmZFk9H4hxEpsT8cH6D3ind7QfmC21U2a2pt2mZgyfgS+//dKoNqPd9u/CXZjSPAVVV6tw9fpVrPhiBW96Y/u0rsvRnCLTcQKSOfWpr55JoS/QLtvRt49G0W9FksgzQ7TLvrK+Ens+2cObRkr7xvq6emCzcMsTJLD75ZdfsHr1agBAYWEhQkNDcfToUXz22WfIz8+3amAXFBQEFxcX1NTU8L6vqamBUqnUO4+Hhwc8PDx0vndxc4GLu4vFaeru4tfo0Gi91xFEhURZvG5rLtuabPmogNqmWq6TAjqvvXjjmzeQ/od0gxe8VjdX671mQ9Wsgoubi9EXOutbjqEH6yp766+7YnLWV6MpeyvNemC2s9DXpjYd2KT3MRSqZhWvbhtq+8reSih7K1HbVGtRn6ZZjiH3Db4P6X9Il0Q5GqpnYvYF+sq26Leibu9Il4quZe/i5iLpfaOLm7BpECSwu379Onx9fQEAu3fvxsSJEyGXy3HnnXfiwoULQqzCIHd3dwwaNAhFRUXcNXZqtRpFRUWYO3euVdetj6nP4RHyLhqp3qHTHVs/KsCcO9gM3WFp6i31hpaj/WBdKZaXlJ7TJQZzHpjtLAy9CUT7lJ2xD3ft2vZt0adJ6S5hqT1BwZw70qXIHveNlhAksOvTpw8+//xzPPTQQ/jmm2+Ql9f5Kp/Lly8LciFgTxYsWIDs7GwMHjwYd9xxB9asWYOWlhbuLlkhWfrMI8C6jVdqHUNPbP2AXHMeg6GvUzDnlvqeOheplpUUn9MlBikFAFJiqE3NzPxPGzH14a729uw9IZlbz6wxoi7V57SZw5nqkSCBXX5+Ph577DHk5eVh1KhRGDp0KIDO0bvU1FQhVtGtKVOmoLa2Fvn5+VCpVBg4cCB27dqlc0OFpYR45pGGNXcS9rQDsnXHYe6Rm3anYG5Aao+di1RfsyUkZz3NLARDbWp86nhk3p4pyMNd7alPM5Wt3o5hDqFHusRuZ45cj7oS7HEnKpUK1dXVGDBgAORyOQDgp59+gp+fH5KSkoRYhdU0NTVBoVBg++ztCAzWf/NEbVMt995JDblMjm3PbOM9wLSnaYguMU7z1TbVWhRcOVNZ22Jbxezwnf00s1DMaVPOnvdCbL+t2qepZavdpp29rLtTX1uPyRsmS+txJwCgVCp1blYw9ZVeUibUk/6JLjFGsSw9cnOmsrb2torZ4dNpZv3MCbTNaVP2OIItFKHqni1G1E0tW31vp9i4X7i3QZDuCRbY/e///i82bNiAsrIyFBYWIiIiAh988AHi4uIwbNgwoVYjGmNPGzhzR2UJexwid6aytta2ih1YSfV1UGKydaBtj21fCJbUva71TGrXwelr0+/te0/vXdKmbqsz1hNzCBLYffbZZ3jiiScwdepUHD16lHurQ2NjI1asWIGvvvpKiNWIypRRC2t2VFTJpcWZdkrW2Faxr98TcqfoCKeaxA60nYm5dU9fPZPS2QNz75LWx9ptylH3p4IEdi+//DLWr1+PP/3pT/j444+57++++268/PLLQqxCEsQeoXGEHYc9cdRGLyVijzYIdZrZUQIisQNtZ2JO3TNUz7Y9sw3bntkmibMH5t4lrc3abUoK+1PNPsaH+Qi6XEECu5KSEmRkZOh8r1Ao0NDQIMQqJEOs0ThH2XHYCyk0em2OGGhK4VpFIQ7YHCUgEjvQdjam1r3u6tnA2IGSqGvm3iWtzZptSgr70677GKEJEtgplUqUlpYiNjaW9/3333+P+Ph4IVbh8PQFEkMShnA7ckfZcdgDKTR6TTo05V9cVixYoCm1AFHskXDA8gM2RwmIpBBoOxtT6p691LPuHugthW0Ve3+qvY8RmiCB3axZszBv3jxs3rwZMpkMVVVVOHjwIBYuXIjFixcLsQqb6GjvwK2bt2y+3tpm3UBi1b9XATKAMdb57sWMGXoreWivUFHS7MguqC7obfQVqgoEuAfYJA27ft2FN3Z3vspHBhmA/7wIXRNopkammvwOya7LlcvkmJc1D2OTxwqeflMFuAcgQNmZt9auz7XNtai8WomIAOHeSxzgHoB5WfN08jbAPcCm7VOIbcu6LQupkam8d6xSHyMNQtcza7SFrmm1pE1bs00peylF3Z/q28cISZDAbtGiRVCr1Rg1ahSuX7+OjIwMeHh4YOHChXjmmWeEWIVNqFvVaLvWZvP1XqjSLWQGBs11pmqmxubvNiM7PRtbD2/lKnluRi4UMoUoaXZkIe4hkMlk6PqIR7lMjmD3YJvkdd21OqzZvYb3AnVtaqZGRVUFFBEKs5erZmq8sfsNpASnIMgnSJjES9zuU7vx9ndvgzEGmUyGuRlzkXVbliDLzozLRMrUFFQ3ViNMEYYgnyCbtk0ht00hU0AR2Fm3qH+RFqHqmTXbglCs1aYUMgVyM3Kx9ru1ouxP9e1jhCTYA4oBoK2tDaWlpbh27Rr69esHHx8f3LhxA15eXkKtwio0Dyj+7u3vENDb9BEZ1RUVKlQViFZGm/XCZtUVFcY8M6bHCH7z4s2ICo3CxZqLiAqNkuSL4h3Fjv07sHTjUqjVasjlciyZuQQTR060ybp/+u0n5Lyc0+00crkc37z5jUl1wNByNy/ejCH9hpicTmNZ2j6ETId2OzMnH6XIkbeNCI/qSyfVFZVo+9Ou+xhNkCe5BxQDgLu7O/r16wcAaG1txapVq/D3v/8dKpVKyNVYjauXK9x6uZk0T+HuQuSvzeei/mW5yzApa5JJy4jqFYVlucuQ/04+V8gA+CNGcjni4+KhDFIiKjrKpOUT0025bwqG3zkcF6ovICYsBsog2zX6hPgEndMEMpkMMpmMCzSXPb3M5Hqgb7maemVqvTeWEO1DKJVllbqn2NVqVDVW2X2bcuRtI8Kj+tIpqleUaNvbdR/j5+6Hh559SLBlyy2ZubW1Fc8//zwGDx6Mu+66C59//jkAoKCgAHFxcVi9ejXy8vKESKckqepU3E4L6Dy1lf9OPlR1pgeyk7ImYd/Gfdi6fCv2b9qPl3Jf4l7NptmR2zK4IIAySIn05HSb57sySIlluct45f9S7ktc/di3cZ9ZwZG+5VqzXgnZPoQQGx4LuYzf5cnlcsSExYiSHiE58rYR4VF9kQbNPiY0UNj32ls0Ypefn48NGzZg9OjR+PHHHzF58mRMnz4dhw4dwqpVqzB58mS4uLgIlVbJOV91Xu9Rz4XqC2btLJVBSm6+SVmTMCxtmCgjRkR8hsrf0npgy3oldPuwlCaw1YyMO9IBkyNvGxEe1RfHZlFgt337drz//vu4//77cfLkSaSkpODWrVs4fvw4dzrRkWmOerRPbQl11NM10LOEqk6F81XnERse65QN1163X6jyt+Zyu8tba7cPczjyAZMjbxsRRtf2SvXFcVkU2F26dAmDBg0CAPTv3x8eHh7Iy8tziqAOsI+jHild4yQGZ99+a+opb6XaPqwVMEuBI28bsYyh9kr1xfFYdFesi4sLVCoVgoM7n3/j6+uLEydOIC4uTrAE2oLmrtgfN/2IwOBAk+dX1akkedSjqlMhMydTZ8Rk38Z9kkqntTj79luTKXkr1fZBiLOgvlB83Z3dqK+tx105d0njrljGGKZNmwYPDw8AwM2bNzFnzhz06tWLN92OHTssWY3kSfUoWWrXONmas2+/NZmSt1JtH4Q4C+oLxWXrM0cW3RWbnZ2NkJAQKBQKKBQKPP744wgPD+c+a/6s5fz588jJyUFcXBy8vLyQkJCAJUuWoK2NHqgJ0J1Pzr791kR56zhUdSocOnFItLuVheIo22EN1F7FI8bTASwasSsoKBAqHWY5ffo01Go1NmzYgD59+uDkyZOYNWsWWlpa8Prrr4uaNimQ6jVOtuLs229NlLeOwVGuQXWU7bAWaq/iEWO0VNA3T0jBa6+9hnXr1uHcuXNGz2PpNXZS5+zXODn79lsT5a39cpTrrhxlO2yB2qvtGVM/JXWNnRQ1NjYiMLD74Ky1tRWtra3c56amJgDArdZbaGtxvNO4gV6BCIzvzBNH3L6eOPv2WxPlrf0qPVeqdyShrLwMgV72c4DrKNthC9RebS/QKxD5s/KxbOMybrQ0f2Y+Ar0CuTK41XpL0HU6VGBXWlqKt956q8fTsCtXrsTSpUt1vr914xZu4qa1kkcIIai5WoOLly8iKiQKoQHCPnHeFKFeoXqfMxjiGYKbV+2nH3SU7SCOa/zA8Rj00iBcqr2EyOBIhAaE8urmrRvCBnaSPBW7aNEivPrqq91Oc+rUKSQlJXGfKysrMXz4cIwYMQIbN27sdl59I3ZRUVGoqagRZBiUEEL02fL+FuTOz+WO3NeuWYtpf5omanrm5s1FR0cHXFxc8Pbqt0VNjykuVV5CWVkZEhISsLdor91uByFNTU0IjQ4V7FSsJAO72tpaXLlypdtp4uPj4e7uDgCoqqrCiBEjcOedd2LLli3cuzCNpbnGTqhMJYQQbZcuXUJMTAzU6v+MLLm4uOD8+fOIjIwUNV2lpaXo06ePqOkwxaZNm/Dkk09yAfK7776LMWPG2N12EAIIH4NIMrAzRWVlJUaOHIlBgwbhww8/NOvdtBTYEUKsbf/+/cjMzNT7/YgRI2yfIDsl1QCZEHMJHYNY9Bw7sVVWVmLEiBGIjo7G66+/jtraWqhUKqhU9BwjQoi0JCYm6pxNcHFxQZ8+fURKkX06e/YsL6gDgI6ODpSWloqUIkKkxa4Duz179qC0tBRFRUWIjIxEWFgY90cIIVISGRmJd999lzur4OLigg0bNtAok4koQCake3Z/KlYIdCqWEGIr9nhNm9Rs2rQJs2fP5m6W2LBhA3JycsROFiFmoWvsrIACO0IIsS8UIBNHIXQM4lDPsSOEEOIcIiMjKaAjRA+7vsaOEEIIIYT8BwV2hBBCCCEOggI7QgghhBAHQYEdIYQQQoiDoJsnAGhuDG5qahI5JYQQQghxJprYQ6iHlFBgB3DvpY2KihI5JYQQQghxRleuXIFCobB4ORTYAQgMDAQAVFRUCJKp9q6pqQlRUVG4ePEiPdcPlB/aKD/4KD90UZ7wUX7wUX7wNTY2Ijo6motFLEWBHcC9nkahUFAl68LPz4/yowvKDz7KDz7KD12UJ3yUH3yUH3zar8ozezmCLIUQQgghhIiOAjtCCCGEEAdBgR0ADw8PLFmyBB4eHmInRRIoP/goP/goP/goP3RRnvBRfvBRfvAJnR8yJtT9tYQQQgghRFQ0YkcIIYQQ4iAosCOEEEIIcRAU2BFCCCGEOAinDexeeeUVyGQyzJ8/n/vu5s2byM3NRe/eveHj44OHH34YNTU14iXShvTlx4gRIyCTyXh/c+bMES+RVvTiiy/qbGtSUhL3uzPWjZ7yxJnqh0ZlZSUef/xx9O7dG15eXkhOTsaRI0e43xljyM/PR1hYGLy8vDB69GicPXtWxBRbV0/5MW3aNJ06MnbsWBFTbD2xsbE62yqTyZCbmwvA+fqQnvLD2fqPjo4OLF68GHFxcfDy8kJCQgJeeukl3mvEhOo/nPIBxcXFxdiwYQNSUlJ43+fl5eHf//43tm/fDoVCgblz52LixIn44YcfREqpbRjKDwCYNWsWli1bxn329va2ZdJs6vbbb8fevXu5z66u/2kezlo3ussTwLnqx9WrV3H33Xdj5MiR+PrrrxEcHIyzZ88iICCAm+bvf/873nzzTWzduhVxcXFYvHgxxowZg99//x2enp4ipl54xuQHAIwdOxYFBQXcZ0e9E7K4uBgdHR3c55MnT+Lee+/F5MmTAThfH9JTfgDO1X+8+uqrWLduHbZu3Yrbb78dR44cwfTp06FQKPDnP/8ZgID9B3Myzc3NLDExke3Zs4cNHz6czZs3jzHGWENDA3Nzc2Pbt2/npj116hQDwA4ePChSaq3PUH4wxnQ+O7IlS5awAQMG6P3NWetGd3nCmHPVD8YYe+6559iwYcMM/q5Wq5lSqWSvvfYa911DQwPz8PBg//jHP2yRRJvqKT8YYyw7O5s98MADtkmQxMybN48lJCQwtVrttH1IV13zgzHn6z8mTJjAZsyYwftu4sSJbOrUqYwxYfsPpzsVm5ubiwkTJmD06NG873/++We0t7fzvk9KSkJ0dDQOHjxo62TajKH80Pjoo48QFBSE/v374/nnn8f169dtnELbOXv2LMLDwxEfH4+pU6eioqICgPPWDcBwnmg4U/344osvMHjwYEyePBkhISFITU3Fe++9x/1eXl4OlUrFqycKhQLp6ekOWU96yg+NAwcOICQkBH379sVTTz2FK1euiJBa22pra8OHH36IGTNmQCaTOXUfAujmh4Yz9R933XUXioqKcObMGQDA8ePH8f3332PcuHEAhO0/nOpU7Mcff4xffvkFxcXFOr+pVCq4u7vD39+f931oaChUKpWNUmhb3eUHADz22GOIiYlBeHg4Tpw4geeeew4lJSXYsWOHjVNqfenp6diyZQv69u2L6upqLF26FPfccw9OnjzplHUD6D5PfH19nap+AMC5c+ewbt06LFiwAH/9619RXFyMP//5z3B3d0d2djZXF0JDQ3nzOWo96Sk/gM7TsBMnTkRcXBzKysrw17/+FePGjcPBgwfh4uIi8hZYz+eff46GhgZMmzYNgHPuX7rSzg/AufYvALBo0SI0NTUhKSkJLi4u6OjowPLlyzF16lQAELT/cJrA7uLFi5g3bx727NnjcNe6mMOY/HjyySe5/ycnJyMsLAyjRo1CWVkZEhISbJVUm9AcNQFASkoK0tPTERMTg08//RReXl4ipkw83eVJTk6OU9UPAFCr1Rg8eDBWrFgBAEhNTcXJkyexfv16LpBxJsbkx6OPPspNn5ycjJSUFCQkJODAgQMYNWqUKOm2hU2bNmHcuHEIDw8XOymSoC8/nK3/+PTTT/HRRx9h27ZtuP3223Hs2DHMnz8f4eHhgvcfTnMq9ueff8bly5eRlpYGV1dXuLq64ttvv8Wbb74JV1dXhIaGoq2tDQ0NDbz5ampqoFQqxUm0FfWUH10vetVIT08HAJSWlto6uTbn7++PP/zhDygtLYVSqXSqumFI1zzRx9HrR1hYGPr168f77rbbbuNOT2vqgvadjo5aT3rKD33i4+MRFBTksHUEAC5cuIC9e/di5syZ3HfO3Ifoyw99HL3/ePbZZ7Fo0SI8+uijSE5OxhNPPIG8vDysXLkSgLD9h9MEdqNGjcKvv/6KY8eOcX+DBw/G1KlTuf+7ubmhqKiIm6ekpAQVFRUYOnSoiCm3jp7yQ99pkmPHjgHo7NAd3bVr11BWVoawsDAMGjTIqeqGIV3zRB9Hrx933303SkpKeN+dOXMGMTExAIC4uDgolUpePWlqasLhw4cdsp70lB/6XLp0CVeuXHHYOgIABQUFCAkJwYQJE7jvnLkP0Zcf+jh6/3H9+nXI5fyQy8XFBWq1GoDA/Yfl93rYL+27cubMmcOio6PZvn372JEjR9jQoUPZ0KFDxUugjXXNj9LSUrZs2TJ25MgRVl5eznbu3Mni4+NZRkaGuIm0kv/+7/9mBw4cYOXl5eyHH35go0ePZkFBQezy5cuMMeesG93libPVD8YY++mnn5irqytbvnw5O3v2LPvoo4+Yt7c3+/DDD7lpXnnlFebv78927tzJTpw4wR544AEWFxfHbty4IWLKraOn/GhubmYLFy5kBw8eZOXl5Wzv3r0sLS2NJSYmsps3b4qceuvo6Ohg0dHR7LnnntP5zRn7EEP54Yz9R3Z2NouIiGBffvklKy8vZzt27GBBQUHsL3/5CzeNUP0HBXZdArsbN26wp59+mgUEBDBvb2/20EMPserqavESaGNd86OiooJlZGSwwMBA5uHhwfr06cOeffZZ1tjYKG4irWTKlCksLCyMubu7s4iICDZlyhRWWlrK/e6MdaO7PHG2+qHxr3/9i/Xv3595eHiwpKQk9u677/J+V6vVbPHixSw0NJR5eHiwUaNGsZKSEpFSa33d5cf169dZVlYWCw4OZm5ubiwmJobNmjWLqVQqEVNsXd988w0DoLfMnbEPMZQfzth/NDU1sXnz5rHo6Gjm6enJ4uPj2QsvvMBaW1u5aYTqP2SMdXnsMSGEEEIIsVtOc40dIYQQQoijo8COEEIIIcRBUGBHCCGEEOIgKLAjhBBCCHEQFNgRQgghhDgICuwIIYQQQhwEBXaEEEIIIQ6CAjtCCCGEEAdBgR0hhNjIiBEjIJPJIJPJuHdjHjhwADKZTOcF8UJ78cUXuXWvWbPGqusihIiHAjtCiCRNmzaNC0S6/o0dO1bspFlk1qxZqK6uRv/+/S1eVk1NDdzc3PDxxx/r/T0nJwdpaWkAgIULF6K6uhqRkZEWr5cQIl0U2BFCJGvs2LGorq7m/f3jH/+w6jrb2tqsunxvb28olUq4urpavKzQ0FBMmDABmzdv1vmtpaUFn376KXJycgAAPj4+UCqVcHFxsXi9hBDposCOECJZHh4eUCqVvL+AgADud5lMho0bN+Khhx6Ct7c3EhMT8cUXX/CWcfLkSYwbNw4+Pj4IDQ3FE088gbq6Ou73ESNGYO7cuZg/fz6CgoIwZswYAMAXX3yBxMREeHp6YuTIkdi6dSt3yrSlpQV+fn4oLCzkrevzzz9Hr1690NzcbPY2X79+HePGjcPdd9/NnZ7duHEjbrvtNnh6eiIpKQnvvPMON31OTg6KiopQUVHBW8727dtx69YtTJ061ey0EELsDwV2hBC7tnTpUjzyyCM4ceIExo8fj6lTp6K+vh4A0NDQgMzMTKSmpuLIkSPYtWsXampq8Mgjj/CWsXXrVri7u+OHH37A+vXrUV5ejkmTJuHBBx/E8ePHMXv2bLzwwgvc9L169cKjjz6KgoIC3nIKCgowadIk+Pr6mrUtDQ0NuPfee6FWq7Fnzx74+/vjo48+Qn5+PpYvX45Tp05hxYoVWLx4MbZu3QoAGD9+PEJDQ7FlyxadtEycOBH+/v5mpYUQYqcYIYRIUHZ2NnNxcWG9evXi/S1fvpybBgD729/+xn2+du0aA8C+/vprxhhjL730EsvKyuIt9+LFiwwAKykpYYwxNnz4cJaamsqb5rnnnmP9+/fnfffCCy8wAOzq1auMMcYOHz7MXFxcWFVVFWOMsZqaGubq6soOHDhgcJuGDx/O5s2bx/tu//79DAA7deoUS0lJYQ8//DBrbW3lfk9ISGDbtm3jzfPSSy+xoUOHcp8XLVrE4uLimFqtZowxVlpaymQyGdu7d69OGmJiYtjq1asNppEQYt9oxI4QIlkjR47EsWPHeH9z5szhTZOSksL9v1evXvDz88Ply5cBAMePH8f+/fvh4+PD/SUlJQEAysrKuPkGDRrEW2ZJSQmGDBnC++6OO+7Q+Xz77bdzI2cffvghYmJikJGRYda23nvvvejTpw8++eQTuLu7A+i8Tq6srAw5OTm8bXj55Zd56Z8xYwbKy8uxf/9+AJ2jdbGxscjMzDQrLYQQ+2X51buEEGIlvXr1Qp8+fbqdxs3NjfdZJpNBrVYDAK5du4Y//vGPePXVV3XmCwsL463HHDNnzsTatWuxaNEiFBQUYPr06ZDJZGYta8KECfjss8/w+++/Izk5mUs/ALz33ntIT0/nTd/1JojExETcc889KCgowIgRI/D+++9j1qxZZqeFEGK/KLAjhDistLQ0fPbZZ4iNjTXpLtS+ffviq6++4n1XXFysM93jjz+Ov/zlL3jzzTfx+++/Izs72+y0vvLKK/Dx8cGoUaNw4MAB9OvXD6GhoQgPD8e5c+d6vAkiJycHTz31FO6//35UVlZi2rRpZqeFEGK/6FQsIUSyWltboVKpeH9d72jtSW5uLurr6/Ff//VfKC4uRllZGb755htMnz4dHR0dBuebPXs2Tp8+jeeeew5nzpzBp59+yt2c0HUULCAgABMnTsSzzz6LrKwsi58R9/rrr2Pq1KnIzMzE6dOnAXTeHLJy5Uq8+eabOHPmDH799VcUFBRg1apVvHknT54MNzc3zJ49G1lZWYiKirIoLYQQ+0SBHSFEsnbt2oWwsDDe37Bhw4yePzw8HD/88AM6OjqQlZWF5ORkzJ8/H/7+/pDLDXd/cXFxKCwsxI4dO5CSkoJ169Zxd8V6eHjwps3JyUFbWxtmzJhh3kZqWb16NR555BFkZmbizJkzmDlzJjZu3IiCggIkJydj+PDh2LJlC+Li4njzeXt749FHH8XVq1cFSwshxP7IGGNM7EQQQojULV++HOvXr8fFixd533/wwQfIy8tDVVUVd9ODISNGjMDAgQNFfaVXbGws5s+fj/nz54uWBkKI9dCIHSGE6PHOO++guLgY586dwwcffIDXXnuNdw3d9evXUVZWhldeeQWzZ8/uMajrulwfHx/8+uuv1kq6XitWrICPj4/Og4wJIY6FRuwIIUSPvLw8fPLJJ6ivr0d0dDSeeOIJPP/889xNGC+++CKWL1+OjIwM7Ny5Ez4+Pj0us7KyEjdu3AAAREdHGx0MCqG+vp57cHNwcDAUCoXN1k0IsR0K7AghhBBCHASdiiWEEEIIcRAU2BFCCCGEOAgK7AghhBBCHAQFdoQQQgghDoICO0IIIYQQB0GBHSGEEEKIg6DAjhBCCCHEQVBgRwghhBDiICiwI4QQQghxEP8HRlSRp1IzOxQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig_fit = plt.figure(constrained_layout=True)\n", + "gs = fig_fit.add_gridspec(5, 5, hspace=0)\n", + "\n", + "\n", + "main_axis = fig_fit.add_subplot(gs[:4, :])\n", + "res_axis = fig_fit.add_subplot(gs[4:, :], sharex=main_axis)\n", + "fig_fit.tight_layout()\n", + "\n", + "\n", + "main_axis.errorbar(center, entries, np.sqrt(entries), ls='', marker='.', color='k')\n", + "\n", + "main_axis.plot(x, peak(x, *mi.values['A_p1', 'mu_p1', 'sigma_p1']), color='gray', ls='--')\n", + "main_axis.plot(x, peak(x, *mi.values['A_p2', 'mu_p2', 'sigma_p2']), color='gray', ls='-.')\n", + "main_axis.plot(x, bkg(x, *mi.values['A_bkg', 'tau_bkg']), color='gray')\n", + "\n", + "x = np.arange(40, 80, 0.1)\n", + "main_axis.plot(x, fit_model(x, *mi.values), color='purple', label='Best fit')\n", + "main_axis.legend()\n", + "main_axis.set_ylabel('Number of entries per bin')\n", + "main_axis.xaxis.set_tick_params(direction='inout')\n", + "main_axis.tick_params(axis='x', labelcolor=(0, 0, 0, 0))\n", + "main_axis.set_xlim(40, 80)\n", + "\n", + "res_axis.set_xlabel('Energy [keV]')\n", + "res_axis.set_ylabel('Res [$\\sigma$]')\n", + "res_axis.set_ylim(-3, 3)\n", + "res_axis.set_yticks([-2, 0, 2])\n", + "res_axis.fill_between((40, 80), -1, 1, alpha=0.3, color='purple')\n", + "res_axis.fill_between((40, 80), -2, 2, alpha=0.3, color='purple')\n", + "res_axis.axhline(0, color='purple')\n", + "res_axis.set_xlim(40, 80)\n", + "res_axis.plot(center, \n", + " residuals,\n", + " color='k', marker='.', ls=''\n", + " )\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "dbe65a21-572e-4618-bcd8-78f13e945e8a", + "metadata": {}, + "source": [ + "Sofern unser Fitmodel unsere Daten gut beschreibt, erwarten wir, dass die Residuen sich Gaußförmig zufällig um den Wert 0 herum verteilen. Dies folgt direkt aus der Annahme, dass sich die Unsicherheiten unserer Messwerte durch eine Gaußverteilung darstellen lassen. Dies können wir direkt überprüfen, sofern wir unsere Residuen in ein Histogramm eintragen. " + ] + }, + { + "cell_type": "code", + "execution_count": 522, + "id": "05e24224-66f7-45ed-99c6-f6d257e2c779", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAukUlEQVR4nO3dfVRVdaLG8ecgcETeQRFQQJIZy3zrYhqjJQqpNGmMTDk194bp1LXQUuyNxmrsRcpetLpmTRnq3Fxa3tDJVppaYI3iKMWoWd5g7Pr+UgrIEQE55/7R9dxhRDxHD+yz8ftZa6/Ffjn7POzlkmft/dt7WxwOh0MAAAAm5GN0AAAAgItFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKbla3SA1ma323Xw4EEFBwfLYrEYHQcAALjA4XDo5MmTio2NlY/P+c+7tPsic/DgQcXFxRkdAwAAXIR9+/ape/fu513f7otMcHCwpJ8OREhIiMFpAACAK6qrqxUXF+f8O34+7b7InL2cFBISQpEBAMBkLjQshMG+AADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtNr9268BtG8HKmt1wlZvdAy3hAf6q1tYgNExgHaBIgPAtA5U1ir9pWLVNjQaHcUtAX4dtH7GMMoM4AEUGQCmdcJWr9qGRs0bP0BJUUFGx3FJ+dEaTVtephO2eooM4AEUGQCmlxQVpD7dQo2OAcAADPYFAACmRZEBAACmRZEBAACmZWiRWbBggfr166eQkBCFhIQoJSVFH3/8sXN9amqqLBZLk2ny5MkGJgYAAN7E0MG+3bt313PPPaef/exncjgcWrx4sW655RZ99dVXuvrqqyVJd999t5566innZzp16mRUXAAA4GUMLTJjxoxpMv/ss89qwYIFKikpcRaZTp06KTo62oh4AADAy3nNGJnGxkYtW7ZMNptNKSkpzuXvvvuuOnfurD59+igvL0+nTp1qcT91dXWqrq5uMgEAgPbJ8OfI7NixQykpKTp9+rSCgoJUWFio3r17S5LuuOMOJSQkKDY2Vtu3b9cjjzyi3bt364MPPjjv/vLz8zVr1qy2ig8AAAxkeJHp1auXysrKVFVVpRUrVig7O1vFxcXq3bu37rnnHud2ffv2VUxMjNLS0lRRUaGePXs2u7+8vDzl5uY656urqxUXF9fqvwcAAGh7hhcZf39/JSUlSZKSk5O1detWvfLKK3rzzTfP2Xbw4MGSpPLy8vMWGavVKqvV2nqBAQCA1/CaMTJn2e121dXVNbuurKxMkhQTE9OGiQAAgLcy9IxMXl6eMjIyFB8fr5MnT2rp0qUqKirS2rVrVVFRoaVLl+qmm25SZGSktm/frunTp+uGG25Qv379jIwNAAC8hKFF5ujRo7rzzjt16NAhhYaGql+/flq7dq1uvPFG7du3T+vXr9e8efNks9kUFxenrKwszZw508jIAADAixhaZBYuXHjedXFxcSouLm7DNAAAwGy8bowMAACAqygyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtAwtMgsWLFC/fv0UEhKikJAQpaSk6OOPP3auP336tHJychQZGamgoCBlZWXpyJEjBiYGAADexNAi0717dz333HMqLS3Vtm3bNGLECN1yyy36+uuvJUnTp0/Xhx9+qPfff1/FxcU6ePCgxo0bZ2RkAADgRXyN/PIxY8Y0mX/22We1YMEClZSUqHv37lq4cKGWLl2qESNGSJIKCgp01VVXqaSkRNddd50RkQEAgBfxmjEyjY2NWrZsmWw2m1JSUlRaWqqGhgalp6c7t7nyyisVHx+vzZs3n3c/dXV1qq6ubjIBAID2yfAis2PHDgUFBclqtWry5MkqLCxU7969dfjwYfn7+yssLKzJ9l27dtXhw4fPu7/8/HyFhoY6p7i4uFb+DQAAgFEMLzK9evVSWVmZtmzZonvvvVfZ2dnatWvXRe8vLy9PVVVVzmnfvn0eTAsAALyJoWNkJMnf319JSUmSpOTkZG3dulWvvPKKxo8fr/r6elVWVjY5K3PkyBFFR0efd39Wq1VWq7W1YwMAAC9g+BmZf2a321VXV6fk5GT5+flpw4YNznW7d+/W3r17lZKSYmBCAADgLQw9I5OXl6eMjAzFx8fr5MmTWrp0qYqKirR27VqFhoZq0qRJys3NVUREhEJCQjR16lSlpKRwxxIAAJBkcJE5evSo7rzzTh06dEihoaHq16+f1q5dqxtvvFGSNHfuXPn4+CgrK0t1dXUaNWqUXn/9dSMjAwAAL2JokVm4cGGL6zt27Kj58+dr/vz5bZQIAACYideNkQEAAHAVRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJiWoUUmPz9f1157rYKDgxUVFaXMzEzt3r27yTapqamyWCxNpsmTJxuUGAAAeBNDi0xxcbFycnJUUlKidevWqaGhQSNHjpTNZmuy3d13361Dhw45pzlz5hiUGAAAeBNfI798zZo1TeYXLVqkqKgolZaW6oYbbnAu79Spk6Kjo9s6HgAA8HJeNUamqqpKkhQREdFk+bvvvqvOnTurT58+ysvL06lTp867j7q6OlVXVzeZAABA+2ToGZl/ZLfbNW3aNA0ZMkR9+vRxLr/jjjuUkJCg2NhYbd++XY888oh2796tDz74oNn95Ofna9asWW0VGwAAGMhrikxOTo527typL774osnye+65x/lz3759FRMTo7S0NFVUVKhnz57n7CcvL0+5ubnO+erqasXFxbVecAAAYBivKDJTpkzR6tWrtXHjRnXv3r3FbQcPHixJKi8vb7bIWK1WWa3WVskJAAC8i6FFxuFwaOrUqSosLFRRUZESExMv+JmysjJJUkxMTCunAwAA3u6iiozdbld5ebmOHj0qu93eZN0/3m10ITk5OVq6dKlWrVql4OBgHT58WJIUGhqqgIAAVVRUaOnSpbrpppsUGRmp7du3a/r06brhhhvUr1+/i4kOAADaEbeLTElJie644w79z//8jxwOR5N1FotFjY2NLu9rwYIFkn566N0/Kigo0IQJE+Tv76/169dr3rx5stlsiouLU1ZWlmbOnOlubAAA0A65XWQmT56sgQMH6qOPPlJMTIwsFstFf/k/F6F/FhcXp+Li4ovePwAAaN/cLjLfffedVqxYoaSkpNbIAwAA4DK3H4g3ePBglZeXt0YWAAAAt7h9Rmbq1KmaMWOGDh8+rL59+8rPz6/JegbhAgCAtuJ2kcnKypIkTZw40bnMYrHI4XC4PdgXAADgUrhdZPbs2dMaOQAAANzmdpFJSEhojRwAAABuc6nI/PnPf1ZGRob8/Pz05z//ucVtx44d65FgAAAAF+JSkcnMzNThw4cVFRWlzMzM827HGBkAANCWXCoy//gagn9+JQEAAIBR3H6ODAAAgLe4qCKzYcMG3XzzzerZs6d69uypm2++WevXr/d0NgAAgBa5XWRef/11jR49WsHBwXrggQf0wAMPKCQkRDfddJPmz5/fGhkBAACa5fbt17Nnz9bcuXM1ZcoU57L7779fQ4YM0ezZs5WTk+PRgAAAAOfj9hmZyspKjR49+pzlI0eOVFVVlUdCAQAAuMLtIjN27FgVFhaes3zVqlW6+eabPRIKAADAFS5dWnr11VedP/fu3VvPPvusioqKlJKSIkkqKSnRX/7yF82YMaN1UgIAADTDpSIzd+7cJvPh4eHatWuXdu3a5VwWFhamd955RzNnzvRsQgAAgPNwqcjwokgAAOCNeCAeAAAwLYoMAAAwLYoMAAAwLbcfiAcAuHTlR2uMjuCW8EB/dQsLMDoGcA63isyZM2c0e/ZsTZw4Ud27d2+tTADQboUH+ivAr4OmLS8zOopbAvw6aP2MYZQZeB23ioyvr69eeOEF3Xnnna2VBwDatW5hAVo/Y5hO2OqNjuKy8qM1mra8TCds9RQZeB23Ly2NGDFCxcXF6tGjRyvEAYD2r1tYAIUA8BC3i0xGRoYeffRR7dixQ8nJyQoMDGyyfuzYsR4LBwAA0BK3i8x9990nSXr55ZfPWWexWNTY2HjpqQAAAFzgdpGx2+2tkQMAAMBtl/QcmdOnT3sqBwAAgNvcLjKNjY16+umn1a1bNwUFBenvf/+7JOnxxx/XwoULPR4QAADgfNwuMs8++6wWLVqkOXPmyN/f37m8T58+evvttz0aDgAAoCVuj5FZsmSJ/vjHPyotLU2TJ092Lu/fv7++/fZbj4YD0LYOVNaa7vkmAC5vbheZAwcOKCkp6ZzldrtdDQ0NHgkFoO0dqKxV+kvFqm0w152HAX4dFB7of+ENAbRLbheZ3r176/PPP1dCQkKT5StWrNA111zjsWAA2tYJW71qGxo1b/wAJUUFGR3HZbwDCLi8uV1knnjiCWVnZ+vAgQOy2+364IMPtHv3bi1ZskSrV69ujYwA2lBSVJD6dAs1OgYAuMTtwb633HKLPvzwQ61fv16BgYF64okn9M033+jDDz/UjTfe2BoZAQAAmuX2GRlJuv7667Vu3TpPZwEAAHDLRRUZSdq2bZu++eYbST+Nm0lOTvZYKAAAAFe4fWlp//79uv766zVo0CA98MADeuCBB3Tttddq6NCh2r9/v1v7ys/P17XXXqvg4GBFRUUpMzNTu3fvbrLN6dOnlZOTo8jISAUFBSkrK0tHjhxxNzYAAGiH3C4yv/vd79TQ0KBvvvlGx48f1/Hjx/XNN9/Ibrfrd7/7nVv7Ki4uVk5OjkpKSrRu3To1NDRo5MiRstlszm2mT5+uDz/8UO+//76Ki4t18OBBjRs3zt3YAACgHXL70lJxcbE2bdqkXr16OZf16tVLr732mq6//nq39rVmzZom84sWLVJUVJRKS0t1ww03qKqqSgsXLtTSpUs1YsQISVJBQYGuuuoqlZSU6LrrrnM3PgAAaEfcPiMTFxfX7IPvGhsbFRsbe0lhqqqqJEkRERGSpNLSUjU0NCg9Pd25zZVXXqn4+Hht3ry52X3U1dWpurq6yQQAANont4vMCy+8oKlTp2rbtm3OZdu2bdMDDzygF1988aKD2O12TZs2TUOGDFGfPn0kSYcPH5a/v7/CwsKabNu1a1cdPny42f3k5+crNDTUOcXFxV10JgAA4N3cvrQ0YcIEnTp1SoMHD5av708fP3PmjHx9fTVx4kRNnDjRue3x48dd3m9OTo527typL774wt1ITeTl5Sk3N9c5X11dTZkBAKCdcrvIzJs3z+MhpkyZotWrV2vjxo3q3r27c3l0dLTq6+tVWVnZ5KzMkSNHFB0d3ey+rFarrFarxzMCAADv43aRyc7O9tiXOxwOTZ06VYWFhSoqKlJiYmKT9cnJyfLz89OGDRuUlZUlSdq9e7f27t2rlJQUj+UAAADmdNEPxPOEnJwcLV26VKtWrVJwcLBz3EtoaKgCAgIUGhqqSZMmKTc3VxEREQoJCdHUqVOVkpLCHUsAAMDYIrNgwQJJUmpqapPlBQUFmjBhgiRp7ty58vHxUVZWlurq6jRq1Ci9/vrrbZwUAAB4I0OLjMPhuOA2HTt21Pz58zV//vw2SAQAAMzE7duvAQAAvMUlF5nq6mqtXLnS+QJJAACAtuL2paXbbrtNN9xwg6ZMmaLa2loNHDhQ33//vRwOh5YtW+a8uwi43B2orNUJW73RMVxWfrTG6AgA4Da3i8zGjRv1+9//XpJUWFgoh8OhyspKLV68WM888wxFBtBPJSb9pWLVNjQaHcUtAX4dFB7ob3QMAHCZ20WmqqrK+S6kNWvWKCsrS506ddIvf/lLPfTQQx4PCJjRCVu9ahsaNW/8ACVFBRkdx2Xhgf7qFhZgdAwAcJnbRSYuLk6bN29WRESE1qxZo2XLlkmSTpw4oY4dO3o8IGBmSVFB6tMt1OgYANBuuV1kpk2bpt/+9rcKCgpSfHy88xkwGzduVN++fT2dDwAA4LzcLjL33XefBg0apH379unGG2+Uj89PNz5dccUVeuaZZzweEAAA4Hwu6oF4AwcOVL9+/bRnzx717NlTvr6++uUvf+npbAAAAC1y+zkyp06d0qRJk9SpUyddffXV2rt3ryRp6tSpeu655zweEAAA4HzcLjJ5eXn629/+pqKioiaDe9PT07V8+XKPhgMAAGiJ25eWVq5cqeXLl+u6666TxWJxLr/66qtVUVHh0XAAAAAtcfuMzLFjxxQVFXXOcpvN1qTYAAAAtDa3i8zAgQP10UcfOefPlpe3335bKSkpnksGAABwAW5fWpo9e7YyMjK0a9cunTlzRq+88op27dqlTZs2qbi4uDUyAgAANMvtMzJDhw5VWVmZzpw5o759++qTTz5RVFSUNm/erOTk5NbICAAA0KyLeo5Mz5499dZbb3k6CwAAgFtcKjLV1dUKCQlx/tySs9sBAAC0NpeKTHh4uA4dOqSoqCiFhYU1e3eSw+GQxWJRY2Ojx0MCAAA0x6Ui8+mnnyoiIkKS9Nlnn7VqIAAAAFe5VGSGDRsmSTpz5oyKi4s1ceJEde/evVWDAQAAXIhbdy35+vrqhRde0JkzZ1orDwAAgMvcvv16xIgRPC8GAAB4Bbdvv87IyNCjjz6qHTt2KDk5WYGBgU3Wjx071mPhAAAAWuJ2kbnvvvskSS+//PI567hrCQAAtCW3i4zdbm+NHAAAAG5ze4zMkiVLVFdXd87y+vp6LVmyxCOhAAAAXOF2kbnrrrtUVVV1zvKTJ0/qrrvu8kgoAAAAV7hdZM4+wfef7d+/X6GhoR4JBQAA4AqXx8hcc801slgsslgsSktLk6/v/3+0sbFRe/bs0ejRo1slJAAAQHNcLjKZmZmSpLKyMo0aNUpBQUHOdf7+/urRo4eysrI8HhAAAOB8XC4yTz75pCSpR48eGj9+vDp27NhqoQAAAFzh9u3X2dnZkn66S+no0aPn3I4dHx/vmWQAAAAX4HaR+e677zRx4kRt2rSpyfKzg4B5IB4AAGgrbheZCRMmyNfXV6tXr1ZMTEyzdzABAAC0BbeLTFlZmUpLS3XllVe2Rh4AAACXuf0cmd69e+uHH35ojSwAAABucbvIPP/883r44YdVVFSkH3/8UdXV1U0md2zcuFFjxoxRbGysLBaLVq5c2WT9hAkTnM+uOTvxrBoAAHCW25eW0tPTJUlpaWlNll/MYF+bzab+/ftr4sSJGjduXLPbjB49WgUFBc55q9XqbmQAANBOuV1kPvvsM499eUZGhjIyMlrcxmq1Kjo62mPfCQAA2g+3i8ywYcNaI8d5FRUVKSoqSuHh4RoxYoSeeeYZRUZGtmkGAADgnVweIzNnzhzV1tY65//yl7+orq7OOX/y5Endd999Hg03evRoLVmyRBs2bNDzzz+v4uJiZWRktHj5qq6u7pLG7QAAAPNwucjk5eXp5MmTzvmMjAwdOHDAOX/q1Cm9+eabHg33m9/8RmPHjlXfvn2VmZmp1atXa+vWrSoqKjrvZ/Lz8xUaGuqc4uLiPJoJAAB4D5eLjMPhaHG+LVxxxRXq3LmzysvLz7tNXl6eqqqqnNO+ffvaMCEAAGhLbo+RMdL+/fv1448/KiYm5rzbWK1W7mwCAOAyYWiRqampaXJ2Zc+ePSorK1NERIQiIiI0a9YsZWVlKTo6WhUVFXr44YeVlJSkUaNGGZgaAAB4C7eKzNtvv62goCBJ0pkzZ7Ro0SJ17txZkpqMn3HVtm3bNHz4cOd8bm6upJ/esL1gwQJt375dixcvVmVlpWJjYzVy5Eg9/fTTnHEBAACS3Cgy8fHxeuutt5zz0dHR+tOf/nTONu5ITU1tcazN2rVr3dofAAC4vLhcZL7//vtWjAEAAOA+t9+1BAAA4C0uqshMmTJFx48f93QWAAAAt7hcZPbv3+/8eenSpaqpqZEk9e3bl2e1AAAAQ7g8RubKK69UZGSkhgwZotOnT2vfvn2Kj4/X999/r4aGhtbMCAAA0CyXz8hUVlbq/fffV3Jysux2u2666Sb9/Oc/V11dndauXasjR460Zk4AAIBzuFxkGhoaNGjQIM2YMUMBAQH66quvVFBQoA4dOuidd95RYmKievXq1ZpZAQAAmnD50lJYWJgGDBigIUOGqL6+XrW1tRoyZIh8fX21fPlydevWTVu3bm3NrAAAAE24fEbmwIEDmjlzpqxWq86cOaPk5GRdf/31qq+v15dffimLxaKhQ4e2ZlYAAIAmXC4ynTt31pgxY5Sfn69OnTpp69atmjp1qiwWix588EGFhoZq2LBhrZkVAACgiYt+IF5oaKhuu+02+fn56dNPP9WePXt03333eTIbAABAiy7q7dfbt29Xt27dJEkJCQny8/NTdHS0xo8f79FwAAAALbmoIhMXF+f8eefOnR4LAwAA4A7etQQAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEzL0CKzceNGjRkzRrGxsbJYLFq5cmWT9Q6HQ0888YRiYmIUEBCg9PR0fffdd8aEBQAAXsfQImOz2dS/f3/Nnz+/2fVz5szRq6++qjfeeENbtmxRYGCgRo0apdOnT7dxUgAA4I18jfzyjIwMZWRkNLvO4XBo3rx5mjlzpm655RZJ0pIlS9S1a1etXLlSv/nNb9oyKgAA8EJeO0Zmz549Onz4sNLT053LQkNDNXjwYG3evNnAZAAAwFsYekamJYcPH5Ykde3atcnyrl27Otc1p66uTnV1dc756urq1gkIAAAM57VnZC5Wfn6+QkNDnVNcXJzRkQAAQCvx2iITHR0tSTpy5EiT5UeOHHGua05eXp6qqqqc0759+1o1JwAAMI7XFpnExERFR0drw4YNzmXV1dXasmWLUlJSzvs5q9WqkJCQJhMAAGifDB0jU1NTo/Lycuf8nj17VFZWpoiICMXHx2vatGl65pln9LOf/UyJiYl6/PHHFRsbq8zMTONCAwAAr2Fokdm2bZuGDx/unM/NzZUkZWdna9GiRXr44Ydls9l0zz33qLKyUkOHDtWaNWvUsWNHoyIDAAAvYmiRSU1NlcPhOO96i8Wip556Sk899VQbpgIAAGbhtWNkAAAALoQiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATMvQl0YCAMyj/GiN0RHcEh7or25hAUbHQCujyAAAWhQe6K8Avw6atrzM6ChuCfDroPUzhlFm2jmKDACgRd3CArR+xjCdsNUbHcVl5UdrNG15mU7Y6iky7RxFBgBwQd3CAigE8EoM9gUAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKbF7dcwhQOVtaZ7hgUAoPVRZOD1DlTWKv2lYtU2NBodxS0Bfh0UHuhvdAwAaNcoMvB6J2z1qm1o1LzxA5QUFWR0HJfxnhcAaH0UGZhGUlSQ+nQLNToGAMCLMNgXAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYllcXmT/84Q+yWCxNpiuvvNLoWAAAwEt4/duvr776aq1fv9457+vr9ZEBAEAb8fpW4Ovrq+joaKNjAAAAL+TVl5Yk6bvvvlNsbKyuuOIK/fa3v9XevXuNjgQAALyEV5+RGTx4sBYtWqRevXrp0KFDmjVrlq6//nrt3LlTwcHBzX6mrq5OdXV1zvnq6uq2igsAANqYVxeZjIwM58/9+vXT4MGDlZCQoPfee0+TJk1q9jP5+fmaNWtWW0UEAAAG8vpLS/8oLCxMP//5z1VeXn7ebfLy8lRVVeWc9u3b14YJAQBAWzJVkampqVFFRYViYmLOu43ValVISEiTCQAAtE9eXWQefPBBFRcX6/vvv9emTZv0q1/9Sh06dNDtt99udDQAAOAFvHqMzP79+3X77bfrxx9/VJcuXTR06FCVlJSoS5cuRkcDAABewKuLzLJly4yOAAAAvJhXX1oCAABoCUUGAACYlldfWkLrOFBZqxO2eqNjuKz8aI3REQAAXooic5k5UFmr9JeKVdvQaHQUtwT4dVB4oL/RMQAAXoYic5k5YatXbUOj5o0foKSoIKPjuCw80F/dwgKMjgEA8DIUmctUUlSQ+nQLNToGAACXhMG+AADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtLj9GgDQbpntyeA8M8t9FBkAQLsTHuivAL8Omra8zOgobgnw66D1M4ZRZtxAkQEAtDvdwgK0fsYw071XbtryMp2w1VNk3ECRAQC0S93CAigElwEG+wIAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANMyRZGZP3++evTooY4dO2rw4MH661//anQkAADgBby+yCxfvly5ubl68skn9eWXX6p///4aNWqUjh49anQ0AABgMK8vMi+//LLuvvtu3XXXXerdu7feeOMNderUSe+8847R0QAAgMF8jQ7Qkvr6epWWliovL8+5zMfHR+np6dq8eXOzn6mrq1NdXZ1zvqqqSpJUXV3t8XzHqk/rWE3dhTf0In8/ZpO97pRqTlarutpidBwAwP+pOVkte90pbf/7IdWc9PzfrNbSJciqLiEdPb7fs3+3HQ5Hi9t5dZH54Ycf1NjYqK5duzZZ3rVrV3377bfNfiY/P1+zZs06Z3lcXFyrZDSrlHlGJwAANOe384xO4F1Onjyp0NDQ86736iJzMfLy8pSbm+uct9vtOn78uCIjI2WxeO4MRHV1teLi4rRv3z6FhIR4bL/tFcfLdRwr13GsXMexch3HynWteawcDodOnjyp2NjYFrfz6iLTuXNndejQQUeOHGmy/MiRI4qOjm72M1arVVartcmysLCw1oqokJAQ/qG7gePlOo6V6zhWruNYuY5j5brWOlYtnYk5y6sH+/r7+ys5OVkbNmxwLrPb7dqwYYNSUlIMTAYAALyBV5+RkaTc3FxlZ2dr4MCBGjRokObNmyebzaa77rrL6GgAAMBgXl9kxo8fr2PHjumJJ57Q4cOHNWDAAK1Zs+acAcBtzWq16sknnzznMhaax/FyHcfKdRwr13GsXMexcp03HCuL40L3NQEAAHgprx4jAwAA0BKKDAAAMC2KDAAAMC2KDAAAMC2KjIeMHTtW8fHx6tixo2JiYvRv//ZvOnjwoNGxvM7333+vSZMmKTExUQEBAerZs6eefPJJ1dfXGx3NKz377LP6xS9+oU6dOrXqgx3NaP78+erRo4c6duyowYMH669//avRkbzSxo0bNWbMGMXGxspisWjlypVGR/Ja+fn5uvbaaxUcHKyoqChlZmZq9+7dRsfySgsWLFC/fv2cD8JLSUnRxx9/bEgWioyHDB8+XO+99552796t//qv/1JFRYV+/etfGx3L63z77bey2+1688039fXXX2vu3Ll644039NhjjxkdzSvV19fr1ltv1b333mt0FK+yfPly5ebm6sknn9SXX36p/v37a9SoUTp69KjR0byOzWZT//79NX/+fKOjeL3i4mLl5OSopKRE69atU0NDg0aOHCmbzWZ0NK/TvXt3PffccyotLdW2bds0YsQI3XLLLfr666/bPowDrWLVqlUOi8XiqK+vNzqK15szZ44jMTHR6BheraCgwBEaGmp0DK8xaNAgR05OjnO+sbHRERsb68jPzzcwlfeT5CgsLDQ6hmkcPXrUIclRXFxsdBRTCA8Pd7z99ttt/r2ckWkFx48f17vvvqtf/OIX8vPzMzqO16uqqlJERITRMWAS9fX1Ki0tVXp6unOZj4+P0tPTtXnzZgOTob2pqqqSJP5/uoDGxkYtW7ZMNpvNkNcHUWQ86JFHHlFgYKAiIyO1d+9erVq1yuhIXq+8vFyvvfaa/v3f/93oKDCJH374QY2Njec83btr1646fPiwQanQ3tjtdk2bNk1DhgxRnz59jI7jlXbs2KGgoCBZrVZNnjxZhYWF6t27d5vnoMi04NFHH5XFYmlx+vbbb53bP/TQQ/rqq6/0ySefqEOHDrrzzjvluEwenOzusZKkAwcOaPTo0br11lt19913G5S87V3MsQLQtnJycrRz504tW7bM6Cheq1evXiorK9OWLVt07733Kjs7W7t27WrzHLyioAXHjh3Tjz/+2OI2V1xxhfz9/c9Zvn//fsXFxWnTpk2XxZu63T1WBw8eVGpqqq677jotWrRIPj6XT6e+mH9XixYt0rRp01RZWdnK6bxffX29OnXqpBUrVigzM9O5PDs7W5WVlZwJbYHFYlFhYWGT44ZzTZkyRatWrdLGjRuVmJhodBzTSE9PV8+ePfXmm2+26fd6/UsjjdSlSxd16dLloj5rt9slSXV1dZ6M5LXcOVYHDhzQ8OHDlZycrIKCgsuqxEiX9u8Kkr+/v5KTk7VhwwbnH2S73a4NGzZoypQpxoaDqTkcDk2dOlWFhYUqKiqixLjJbrcb8jePIuMBW7Zs0datWzV06FCFh4eroqJCjz/+uHr27HlZnI1xx4EDB5SamqqEhAS9+OKLOnbsmHNddHS0gcm80969e3X8+HHt3btXjY2NKisrkyQlJSUpKCjI2HAGys3NVXZ2tgYOHKhBgwZp3rx5stlsuuuuu4yO5nVqampUXl7unN+zZ4/KysoUERGh+Ph4A5N5n5ycHC1dulSrVq1ScHCwc8xVaGioAgICDE7nXfLy8pSRkaH4+HidPHlSS5cuVVFRkdauXdv2Ydr8Pql2aPv27Y7hw4c7IiIiHFar1dGjRw/H5MmTHfv37zc6mtcpKChwSGp2wrmys7ObPVafffaZ0dEM99prrzni4+Md/v7+jkGDBjlKSkqMjuSVPvvss2b/DWVnZxsdzeuc7/+mgoICo6N5nYkTJzoSEhIc/v7+ji5dujjS0tIcn3zyiSFZGCMDAABM6/IanAAAANoVigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAw6WmpmratGmXvI2nvzc1NVUWi0UWi8X5nitXTJgwwfm5lStXXnJOAOdHkQHQon/8o+zn56fExEQ9/PDDOn36tMe+44MPPtDTTz/tsf150t13361Dhw6pT58+Ln/mlVde0aFDh1oxFYCzePs1gAsaPXq0CgoK1NDQoNLSUmVnZ8tisej555/3yP4jIiI8sp/W0KlTJ7ffzB4aGqrQ0NBWSgTgH3FGBsAFWa1WRUdHKy4uTpmZmUpPT9e6deuc6+12u/Lz85WYmKiAgAD1799fK1asaLKPFStWqG/fvgoICFBkZKTS09Nls9kknXuJx2az6c4771RQUJBiYmL00ksvnZOpR48emjdvXpNlAwYM0B/+8AdJ0po1azR06FCFhYUpMjJSN998syoqKjxzQCSVlJQoLS1NkZGRzjNWZ6fq6mqPfQ+AllFkALhl586d2rRpk/z9/Z3L8vPztWTJEr3xxhv6+uuvNX36dP3rv/6riouLJUmHDh3S7bffrokTJ+qbb75RUVGRxo0bJ4fD0ex3PPTQQyouLtaqVav0ySefqKioSF9++aVbOW02m3Jzc7Vt2zZt2LBBPj4++tWvfiW73X7xv/z/+dvf/qbU1FRdc801+vzzz7VmzRpFREQoLS1Ny5cvV0hIyCV/BwDXcGkJwAWtXr1aQUFBOnPmjOrq6uTj46P/+I//kCTV1dVp9uzZWr9+vVJSUiRJV1xxhb744gu9+eabGjZsmA4dOqQzZ85o3LhxSkhIkCT17du32e+qqanRwoUL9Z//+Z9KS0uTJC1evFjdu3d3K3NWVlaT+XfeeUddunTRrl273Brv0pz7779f48aN04svvihJ6t27t26//XaVlpbqtttuu6R9A3APRQbABQ0fPlwLFiyQzWbT3Llz5evr6ywK5eXlOnXqlG688cYmn6mvr9c111wjSerfv7/S0tLUt29fjRo1SiNHjtSvf/1rhYeHn/NdFRUVqq+v1+DBg53LIiIi1KtXL7cyf/fdd3riiSe0ZcsW/fDDD84zMXv37r2kInPkyBF98cUXzrNNZwUGBspisVz0fgFcHIoMgAsKDAxUUlKSpJ/ObPTv318LFy7UpEmTVFNTI0n66KOP1K1btyafs1qtkqQOHTpo3bp12rRpkz755BO99tpr+v3vf68tW7YoMTHxojL5+Picc2mqoaHB+fOYMWOUkJCgt956S7GxsbLb7erTp4/q6+sv6vvOKi0tld1uV//+/c9ZPnDgwEvaNwD3MUYGgFt8fHz02GOPaebMmaqtrVXv3r1ltVq1d+9eJSUlNZni4uKcn7NYLBoyZIhmzZqlr776Sv7+/iosLDxn/z179pSfn5+2bNniXHbixAn993//d5PtunTp0uQW5+rqau3Zs0eS9OOPP2r37t2aOXOm0tLSdNVVV+nEiRMe+f3Pntk5O1BZkrZv366NGzfqjjvu8Mh3AHAdRQaA22699VZ16NBB8+fPV3BwsB588EFNnz5dixcvVkVFhb788ku99tprWrx4sSRpy5Ytmj17trZt26a9e/fqgw8+0LFjx3TVVVeds++goCBNmjRJDz30kD799FPt3LlTEyZMkI9P0/+uRowYoT/96U/6/PPPtWPHDmVnZ6tDhw6SpPDwcEVGRuqPf/yjysvL9emnnyo3N9cjv/vgwYMVEBCghx56SN9++60++ugjjR07Vjk5Obruuus88h0AXMelJQBu8/X11ZQpUzRnzhzde++9evrpp9WlSxfl5+fr73//u8LCwvQv//IveuyxxyRJISEh2rhxo+bNm6fq6molJCTopZdeUkZGRrP7f+GFF1RTU6MxY8YoODhYM2bMUFVVVZNt8vLytGfPHt18880KDQ3V008/7Twj4+Pjo2XLlun+++9Xnz591KtXL7366qtKTU295N+9S5cueu+99zRjxgz169dP8fHxmjJliseKEgD3WBznu/8RAC5zqampGjBgwDnPq3GVxWJRYWGhMjMzPZoLwP/j0hIAtOD1119XUFCQduzY4fJnJk+erKCgoFZMBeAszsgAwHkcOHBAtbW1kqT4+PgmDwFsydGjR51P942JiVFgYGCrZQQudxQZAABgWlxaAgAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApvW/nnljBU1CFakAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(residuals, bins=10, range=(-3, 3), histtype='step')\n", + "plt.xlabel('Residual [$\\sigma$]')\n", + "plt.ylabel('#Entries per bin')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "24ce04cc-5234-4326-9a28-7624b9c7d23e", + "metadata": {}, + "source": [ + "Bzw. den Anteil an Residuen berechnen, welcher innerhalb der 1 $\\sigma$ Umgebung liegt." + ] + }, + { + "cell_type": "code", + "execution_count": 523, + "id": "39009321-41f4-49f4-820a-717be277b1b0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6833333333333333" + ] + }, + "execution_count": 523, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(np.abs(residuals) < 1)/len(residuals)" + ] + }, + { + "cell_type": "markdown", + "id": "08579cdf-3b28-4ea2-9c61-6ae62974af51", + "metadata": {}, + "source": [ + "Zeigen unsere Residuen eine Struktur oder ein systematisches Verhalten, deutet dies auf einen ungenauen Fit oder ein falsches Fitmodel hin. Dies ist im Folgenden gezeigt. " + ] + }, + { + "cell_type": "code", + "execution_count": 524, + "id": "850870af-e546-4d95-b9de-8a4e7b61c241", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Matthias\\AppData\\Local\\Temp\\ipykernel_67644\\2321973434.py:8: UserWarning: The figure layout has changed to tight\n", + " fig_fit.tight_layout()\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEsElEQVR4nOzdd1iV9f/H8edhCwiKiGgKzhT3Vly5cWuaaUmOzMrUTJs2LFu2vtm3UhuaWmaWK/feMydOnKmIynKAioJwzu8Pf53iqykHDt4ceD2u61yX5z73eB3Aw5vP/Rkmi8ViQUREREQcnpPRAURERETEPlTYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikke4GB0gNzCbzZw7d46CBQtiMpmMjiMiIiJiZbFYuHLlCiVKlMDJ6e5tcirsgHPnzlGqVCmjY4iIiIj8qzNnzlCyZMm77qPCDihYsCBw6wvm4+NjcBoRERGRvyUlJVGqVClrvXI3KuzAevvVx8dHhZ2IiIjkSpnpLqbBEyIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqG1YkVEMikqKoqEhAS7n9ff35+goCC7n1dE8h8VdiIimRAVFUVISAjJycl2P7enpyeRkZEq7kQk21TYiYhkQkJCAsnJyUyfPp2QkBC7nTcyMpLw8HASEhJU2IlItqmwExGxQUhICLVr1zY6hojIHWnwhIiIiEgeocJOREREJI9QYSciIiKSR+Sawu6jjz7CZDLxwgsvWLfduHGDIUOGUKRIEby9venRowexsbEZjouKiqJjx454enoSEBDAyy+/TFpa2n1OLyIiImK8XFHY7dixg2+//Zbq1atn2D5ixAgWLlzIrFmzWL9+PefOnaN79+7W19PT0+nYsSOpqals2bKFadOmMXXqVEaPHn2/34KIiIiI4Qwv7K5evUqfPn34/vvvKVy4sHV7YmIikydP5vPPP6dly5bUqVOHKVOmsGXLFrZt2wbAihUrOHToENOnT6dmzZq0b9+e9957j/Hjx5OammrUWxIRERExhOHTnQwZMoSOHTvSunVr3n//fev2Xbt2cfPmTVq3bm3dVqlSJYKCgti6dSsNGzZk69atVKtWjWLFiln3CQsLY/DgwRw8eJBatWrd8ZopKSmkpKRYnyclJeXAOxMRueX6peuc33We+Mh4rl+4zvVL17lx6QbXL14nITqBAQxg+8jtnClzBo/CHngU9sDT35Ni1YsRWDMQNy83o9+CiDgIQwu7mTNnsnv3bnbs2HHbazExMbi5uVGoUKEM24sVK0ZMTIx1n38WdX+9/tdr/2bs2LGMGTMmm+lFRG5nTjcTvTWaM1vPcH7nec7tPMelPy/d9ZhggoldH0vs+tjbXjM5mfAP8adE3RKUqFuCoKZBFKteDJPJlFNvQUQcmGGF3ZkzZxg+fDgrV67Ew8Pjvl571KhRjBw50vo8KSmJUqVK3dcMIpJ3WMwWojZHcfC3g0TOjuRqzNXb9ilcrjCBNQLxDPCkQOECFPArgEdhD85fOs8rL7/C+2+8T9GCRbl+8VZr3pVzV4jZE8OVc1eIPxhP/MF49k7bC4BfBT+qPFqFKo9WIaBagIo8EbEyrLDbtWsXcXFxGWZwT09PZ8OGDXz99dcsX76c1NRULl++nKHVLjY2lsDAQAACAwPZvn17hvP+NWr2r33uxN3dHXd3dzu+GxHJj2L2xrBn8h4OzT7E1fN/F3MehTwo07IMJerdamUrXrs4BfwK3PEcu3fv5hCHCO4efMcVLa6cu8K5Xec4t/Mc57af49S6U1w8dpGNH2xk4wcbKVKxCJV7Vqb2U7UpFFwop96qiDgIwwq7Vq1asX///gzbBgwYQKVKlXj11VcpVaoUrq6urF69mh49egBw5MgRoqKiCA0NBSA0NJQPPviAuLg4AgICAFi5ciU+Pj5Urlz5/r4hEckXLBYLp9adYtNHmzix/IR1u7uvO5W6VaLKo1Uo27oszm7OdrlewRIFqViiIhU7VwQg5UoKRxcd5dBvhzi29BgXjlxg4/sb2TR2E9Ueq0ajVxpRrFqxe5xVRPIqwwq7ggULUrVq1QzbvLy8KFKkiHX7wIEDGTlyJH5+fvj4+DBs2DBCQ0Np2LAhAG3btqVy5co88cQTfPLJJ8TExPDmm28yZMgQtciJiF1ZzBYqUYlN/TZx+eBl4Fb/t5AeIdToV4Oyrcvi4p7zH6nuBd2p9lg1qj1WjZSkW0Xensl7OLnmJPum72Pf9H1U6FiBJq81IahJUI7nEZHcxfBRsXczbtw4nJyc6NGjBykpKYSFhTFhwgTr687OzixatIjBgwcTGhqKl5cX/fr149133zUwtYjkNceWHGPd0HX0pjeXD17GxcOFmgNqEvpiKH7l/AzL5e7jTrXHq1Ht8Wqc23mOzR9v5tCcQxxbfIxji48R3CyYsC/CKF6ruGEZReT+MlksFovRIYyWlJSEr68viYmJ+Pj4GB1HRHKJS39eYtkLyzi68CgA17lOtSer0fXDrngX87bLNXbv3k2dOnXYtWvXHfvY2erC0Qts+WwLe6ftJT01HUxQ99m6tHy/5b/28xOR3M2WOsXwCYpFRHKbm8k3WTt6LeMrj+fowqM4uThR7olyfMEXhAwJsVtRlxOKPFiEzt915vkTz1Pt8WpggZ0Td/LVg1+x89udmNPNRkcUkRykwk5E5B+OLjrK+JDxbHhvA+kp6ZRtXZZn9z1L5Rcqk0LKvU+QS/iU9KH7z93pt64fAVUDuH7hOoufXcyk+pM4t+uc0fFEJIeosBMR4VYr3aLBi/il8y8kRiXiU8qHnrN7Er4inKIhRY2Ol2WlHyrNM3ueod1/2+Hu48753eeZHDqZzZ9sxmLO9z1xRPIcFXYiku/F7I3hu7rfseubXQA0HNmQoYeHUrlH5Twx+a+TixMNnm/A0KNDCekRgvmmmVWvruKnNj+RdFZLKorkJSrsRCTfspgtbB23lUn1J5EQmYB3cW/CV4QT9p8wXD1djY5nd97FvOk5qyedJ3XG1dOVk2tO8k31bzj8+2Gjo4mInaiwE5F8KTkhmZ87/MyKkStIT02nYpeKDN43mHJtyhkdLUeZTCZqD6zN07ufpnjt4ly/eJ1fH/6VRc8uIi0lzeh4IpJNKuxEJN+JOxjH9/W/58TyE7h4uNBxYkd6/d4LT39Po6PdN/4V/Rm4dSCNXmkEwK5vd/Fjyx+5FnfN4GQikh0q7EQkXzm25BiTQydz+eRlCpctzKAdg6j7bN080ZfOVs5uzrT5uA3hy8PxKOTBmS1n+L7e98TuizU6mohkkQo7EckXLJZb/el+6fwLqVdSCX4omKe2P0VA1QCjoxmuXNtyDNw2EL8KfiRGJTK50WSOLDhidCwRyQIVdiKS56WnprPw6YWsGLkCi9lCradq8cSKJ/Askn9uvd6Lf0V/ntr2FGValeHmtZvM7Dbz1pQoWpxIxKGosBORPC3lSgrT201nz6Q9mJxMhI0Lo/N3nXF2czY6Wq5TwK8AfZb2oe7gumCBVa+uYuHTC7VahYgDUWEnInnW9YvX+an1T5xaewq3gm48tvAxGr7QMF/2p8ssZ1dnOk7oSPuv22NyMrFn0h7mPj731rqzIpLruRgdQEQkJ1yNucpPbX4i7kAcBYoUIHx5OCXqlDA6lsOoP6Q+3oHezHlsDgd/O0jqtVR6zuqJa4G8N7+fSF6iFjsRyXMSoxKZ0mwKcQfi8C7uTf/1/VXUZUHlHpV5bMFjuHi4cGzxMWZ0nEHKFcdZL1ckP1JhJyJ5yoWjF/ihyQ9cPHYR32BfBmwcQEAVjXzNqvLtyhO+PBy3gm6cWnuKn9r8xPWL142OJSL/QrdiRSTPiDsYx4+tfuRa7DWKVCxC31V98SnpY3SsTImMjLT7Of39/QkKCsr2eYKbBdN3dV9+bvczZ/84y7QW03hi1RN4FfWyQ0oRsScVdiKSJ1w4doGfWv/EtdhrBNYMJHx5OF4Bub/w8Pf3x9PTk/DwcLuf29PTk7lz51K0aNHsn8wZ6k+sz7bnthG7L5bpYdPpt6YfHoU8sn9uEbEbFXYi4vASoxL5sdWPXI25SrHqxei7ui8F/AoYHStTgoKCiIyMJCEhwa7njY+Pp3v37rRr186u5y1CEZ7kSWL2xPBzh595YsUTuHm72fUaIpJ1KuxExKFdOX+FH1v9SNKZJIo8WITwFeEOU9T9JSgoyC63TP9XThSMkZGRvBj+Is/7PE/01mhmdp3J44sfx8VDv05EcgP9TxQRh5V8IZmf2vzExeMXKVS6EH1X98W7mDdRUVE5UtA4mpwqGGOJpcFXDdg+ZDsn15zkt0d+o9fcXpr0WSQXUGEnIg7pRuINpodNJ/5gPAVLFOSJVU/gU9KHqKgoQkJCSE5Otvs1PT098ff3t/t5HVHhqoV5bNFj/NzuZ44tPsa8J+bRfUZ3nJw12YKIkVTYiYghstOqlp6SzrYh27i45yJuhdyo82UdTiWe4tTuU0RGRpKcnMz06dMJCQmxa2Z7jTLNK0o/VJpe83rxS5dfOPjbQdwKutH5+85a2UPEQCrsROS+y06rmgkTj/AIVajCDW7wzeVveP2R1zPs4+npSdOmTVWE3Qfl25XnkV8fYdYjs9gzeQ++wb489NZDRscSybdU2InIfZeQkJDlVrVD/z3EiR9PYHIx0eLrFvSs1/O2fdSydn+FPBxChwkdWPzsYtaNXkeh0oWo8UQNo2OJ5Esq7ETEMCEhIdSuXTvT+++YuIMTP54AoNuUblQPr55T0cRGdZ+py+WTl9n88WYWDFyAzwM+lGlZxuhYIvmOermKiEM4uugoS4cuBaDFey1U1OVCrT5sRdXeVTHfNPNr91+JOxhndCSRfMfQwm7ixIlUr14dHx8ffHx8CA0NZenSpdbXmzdvjslkyvB49tlnM5wjKiqKjh074unpSUBAAC+//DJpaWn3+62ISA46t+scs3vNxmK2UGtgLZq+0dToSHIHJicTXad0JahJECmJKczoMIMr568YHUskXzG0sCtZsiQfffQRu3btYufOnbRs2ZKuXbty8OBB6z6DBg3i/Pnz1scnn3xifS09PZ2OHTuSmprKli1bmDZtGlOnTmX06NFGvB0RyQGXT1/ml06/cDP5JuXalqPjxI4adZmLuXi40Ov3XhR5sAiJUYn80ukXUq+mGh1LJN8wtLDr3LkzHTp0oEKFCjz44IN88MEHeHt7s23bNus+np6eBAYGWh8+Pn8v6L1ixQoOHTrE9OnTqVmzJu3bt+e9995j/PjxpKbqg0TE0aVeS2Vml5nWpcJ6zuqJs6smwc3tPIt40mdpHzyLenJ+93l+7/87FovF6Fgi+UKu6WOXnp7OzJkzuXbtGqGhodbtP//8M/7+/lStWpVRo0ZlmB5h69atVKtWjWLFilm3hYWFkZSUlKHVT0Qcj8ViYcGTC4jdF4tXgBePLXoMdx93o2NJJhUuW5je83vj5OpE5JxINn640ehIIvmC4aNi9+/fT2hoKDdu3MDb25t58+ZRuXJlAB5//HGCg4MpUaIE+/bt49VXX+XIkSPMnTsXgJiYmAxFHWB9HhMT86/XTElJISUlxfo8KSnJ3m9LRLJp88ebOfjbQZxcnOg5uye+pXyNjiQ2KhVaio4TOrJw0ELWvrWWwBqBPNjpQaNjieRphhd2FStWJCIigsTERGbPnk2/fv1Yv349lStX5umnn7buV61aNYoXL06rVq04ceIE5cqVy/I1x44dy5gxY+wRX0RywLElx1j9+moA2n/VnuCmwQYnkqyq/VRtzu85z84JO5nz+BwGbR+EfyUtyyaSUwy/Fevm5kb58uWpU6cOY8eOpUaNGvz3v/+9474NGjQA4Pjx4wAEBgYSGxubYZ+/ngcGBv7rNUeNGkViYqL1cebMGXu8FRGxgwtHLzDn8TlggdpP16bus3WNjiTZ1O6LdgQ3Cyb1Siozu87kxuUbRkcSybMML+z+l9lsznCb9J8iIiIAKF68OAChoaHs37+fuLi/50pauXIlPj4+1tu5d+Lu7m6dYuWvh4gYLyUphZldZ5KSmEKpxqXo8FUHoyOJHTi7OtNzVk98Svlw4egF5vaZizndbHQskTzJ0MJu1KhRbNiwgVOnTrF//35GjRrFunXr6NOnDydOnOC9995j165dnDp1igULFtC3b1+aNWtG9eq3JiZt27YtlStX5oknnmDv3r0sX76cN998kyFDhuDurk7WIo7EYrYwN3wuCYcTKPhAQR6d/SjObhoBm1d4BXjRa14vXDxcOLbkGGtHrzU6kkieZGhhFxcXR9++falYsSKtWrVix44dLF++nDZt2uDm5saqVato27YtlSpV4sUXX6RHjx4sXLjQeryzszOLFi3C2dmZ0NBQwsPD6du3L++++66B70pEsmLzJ5s5uvAozu7O9JrXC+9Ab6MjiZ2VqFOCzpM6A7Dpw00cXXTU4EQieY+hgycmT578r6+VKlWK9evX3/McwcHBLFmyxJ6xROQ+O7X+FGveWANAh6878EC9BwxOJDmlep/qnN1+lu1fbmde33k8s+cZCgUXMjqWSJ6R6/rYiUj+cjX2KnMem4PFbKFG3xrUGljL6EiSw9p+2pYH6j/AjUs3mP3obNJT042OJJJnqLATEcNY0i3M7TOXq+evUrRyUTpM6KDlwvIBZzdnHvn1ETwKe3B2+1lWvLzC6EgieYbh89iJSP51dNJRTq4+iaunKz1n98TNy83oSJJJkZGR2T5H9dHV2T5iO9u/3E76A+lU712doKAgO6QTyb9U2ImIIcpSlqPf3+o83+nbThQNKWpwIskMf39/PD09CQ8Pt8v5WtOaJjRhy6tbeObtZ9h6ZKuKO5FsUGEnIvfd9bjr9KCHdRLi6uHVjY4kmRQUFERkZCQJCQl2OZ/5ppmtz27lYsRFOt/oTGx0rAo7kWzIUmFnNps5fvw4cXFxmM0ZJ5ls1qyZXYKJSN5kTjez5809eOGFT0Uf2v+3vdGRxEZBQUF2Lb4eXPQg46uNp/il4hz64hD1GtWz27lF8hubC7tt27bx+OOPc/r0aSwWS4bXTCYT6eka3SRihKioKLu1ovyTv7+/XX+Jb/54Mxd2XSCVVOp8VAcXD904yO98HvCh1nu1+GPoH5yadYojC45QsUtFo2OJOCSbP1GfffZZ6taty+LFiylevLhGsInkAlFRUYSEhJCcnGz3c3t6ejJ37lyKFs1+H7hL+y+xefRmABazmB5BPbJ9TskbAkID2MIWGtGI+U/OZ/C+wRQsUdDoWCIOx+bC7tixY8yePZvy5cvnRB4RyYKEhASSk5OZPn06ISEhdjtvfHw83bt3p127dtk+lzvuPMMz+OHHfvZzrMAx/P397ZBS8orVrKZdxXYkHUliXt95PLHiCUxOajwQsYXNhV2DBg04fvy4CjuRXCgkJITatWvb9Zz26ii/Z/QeohdHU6B4AV7+5WU+L/O5OslLBumkU+fDOmx6YhMnV59ky3+20PjlxkbHEnEoNhd2w4YN48UXXyQmJoZq1arh6uqa4fXq1TW6TSQvsUdH+X0/7yN6cTQmJxO9Z/UmqLEKOrkz79LetPtvOxYOWsia19dQpkUZStQtYXQsEYdhc2HXo8etPjFPPvmkdZvJZMJisWjwhIjc5tKfl1g8eDEAzUY3U1En91RrYC2OLztO5JxI5jw+h2d2P4ObtyavFskMmwu7kydP5kQOEcmDzGlm5vaZS+qVVEo1LkWzNzQdktybyWSi83edOfvHWS4eu8jS55fS9YeuRscScQg2F3bBwcE5kUNE8qCNYzcSvS0ad193uv/cHScXLU8tmVPArwAPT3+YaS2mETElgopdKlKpWyWjY4nkepkq7BYsWED79u1xdXVlwYIFd923S5cudgkmIo7t/O7zbHh3AwAdxnegUHAhYwOJwyn9UGkav9KYzR9vZuHTCynVqBReAV5GxxLJ1TJV2HXr1o2YmBgCAgLo1q3bv+6nPnYiApB2I415T8zDnGam8iOVqfZ4NaMjiYNqPqY5x5YcI25/HAufXkiveb00f6rIXWTqvojZbCYgIMD67397qKgTEYA1b64h/lA8XsW86Dixo34RS5a5uLvw8E8P4+TqxJH5R9j7416jI4nkaurwIiJ2dWr9KbZ+vhWALpO64OnvaXAicXSBNQJp8W4LAJY9v4zLpy8bG0gkF8tSYbd69Wo6depEuXLlKFeuHJ06dWLVqlX2ziYiDiYlKYX5/eeDBWo9VYsHOz1odCTJIxq93IhSjUrd+hkbMB+L2XLvg0TyIZsLuwkTJtCuXTsKFizI8OHDGT58OD4+PnTo0IHx48fnREYRcRDLRy7n8qnLFCpdiLDPw4yOI3mIk7MT3aZ1w9XTlVNrT/HHV38YHUkkV7K5sPvwww8ZN24cv/zyC88//zzPP/88M2bMYNy4cXz44Yc5kVFEHMCRhUfYM3kPmKDbtG64F3Q3OpLkMX7l/Wj7n7YArH5tNfGR8QYnEsl9bC7sLl++fMcFwdu2bUtiYqJdQomIY7l+8TqLnl4EQOiLoQQ303yXkjPqPFOHcmHlSLuRxvz+8zGnmY2OJJKr2FzYdenShXnz5t22ff78+XTq1MkuoUTEsSx7YRlXY67iX8mflu+1NDqO5GEmk4kuk7vg7uvO2e1n2Tpuq9GRRHKVTM1j9+WXX1r/XblyZT744APWrVtHaGgoANu2bWPz5s28+OKLOZNSRHKto4uOsu+nfZicTHSd0hUXD5sXtBGxic8DPoSNC2PBkwtY+9ZaKnauiH8lf6NjieQKmfoEHjduXIbnhQsX5tChQxw6dMi6rVChQvzwww+8+eab9k0oIrnW9UvXWfTM37dgSzYsaXAiyS9q9q/JwV8PcmL5CeY/OZ8BGwfg5KwZvEQyVdidPHkyp3OIiANaMXIFV85dociDRWg+prnRcSQfMZlMdP6+MxOqTCB6azR//PcPQkeGGh1LxHD680ZEsuTY0mNETI0AE3Sd0hXXAq5GR5J8xreUr3WU7Jo31nDh6AWDE4kYz9DCbuLEiVSvXh0fHx98fHwIDQ1l6dKl1tdv3LjBkCFDKFKkCN7e3vTo0YPY2NgM54iKiqJjx454enoSEBDAyy+/TFpa2v1+KyL5yo3EGywctBCAhiMaUqpRKYMTSX5V+6nalG1d9tYo2SfnY07XKFnJ3wwt7EqWLMlHH33Erl272LlzJy1btqRr164cPHgQgBEjRrBw4UJmzZrF+vXrOXfuHN27d7cen56eTseOHUlNTWXLli1MmzaNqVOnMnr0aKPekki+sOLFFVw5ewW/8n4aBSuGMplMdJ7UGTdvN85sPsP2r7cbHUnEUIYWdp07d6ZDhw5UqFCBBx98kA8++ABvb2+2bdtGYmIikydP5vPPP6dly5bUqVOHKVOmsGXLFrZt2wbAihUrOHToENOnT6dmzZq0b9+e9957j/Hjx5OammrkWxPJs06sPGGdiLjLD11w9dQtWDFWoeBCtPm0DQCrR63m4omLBicSMY5NhV1aWhrvvvsu0dHRdg+Snp7OzJkzuXbtGqGhoezatYubN2/SunVr6z6VKlUiKCiIrVtvzVu0detWqlWrRrFixaz7hIWFkZSUZG31u5OUlBSSkpIyPETk3lKvplonIq4/tD7BTTURseQOdZ6uQ+kWpUm7nsaipxdhsWgtWcmfbCrsXFxc+PTTT+3ah23//v14e3vj7u7Os88+y7x586hcuTIxMTG4ublRqFChDPsXK1aMmJgYAGJiYjIUdX+9/tdr/2bs2LH4+vpaH6VKqX+QSGasHb2Wy6cu4xvkS6sPWxkdR8TK5GSi83edcfFw4eSak7cG9ojkQzbfim3ZsiXr16+3W4CKFSsSERHBH3/8weDBg+nXr1+G+fFywqhRo0hMTLQ+zpw5k6PXE8kLzm4/yx//vbXweqdvO+Hm7WZwIpGM/Mr70fzd5sCtqXiuxlw1NpCIAWyeIr59+/a89tpr7N+/nzp16uDl5ZXh9S5duth0Pjc3N8qXLw9AnTp12LFjB//973/p1asXqampXL58OUOrXWxsLIGBgQAEBgayfXvGjrJ/jZr9a587cXd3x91dC5SLZFZ6ajoLBi7AYrZQPbw65duVNzqSyB2Fjgjl4MyDnN99nqXDltJzVk+jI4ncVzYXds899xwAn3/++W2vmUwm0tPTsxXIbDaTkpJCnTp1cHV1ZfXq1fTo0QOAI0eOEBUVZV3KLDQ0lA8++IC4uDgCAgIAWLlyJT4+PlSuXDlbOUTkb5s+3kTcgTg8/T0JGxdmdByRf+Xk4kSXyV34ru53HJp9iMO/H6ZSt0pGxxK5b2wu7Mxm+80RNGrUKNq3b09QUBBXrlxhxowZrFu3juXLl+Pr68vAgQMZOXIkfn5++Pj4MGzYMEJDQ2nYsCEAbdu2pXLlyjzxxBN88sknxMTE8OabbzJkyBC1yInYSXxkPBvf3whAuy/b4envaXAikbsLrBlIo5cbsfmjzSx+bjGlm5fGo5CH0bFE7otsTXdy48aNbF08Li6Ovn37UrFiRVq1asWOHTtYvnw5bdrcGrY+btw4OnXqRI8ePWjWrBmBgYHMnTvXeryzszOLFi3C2dmZ0NBQwsPD6du3L++++262conILRazhYVPLSQ9NZ0KHSpQtXdVoyOJZMpDox/Cr4IfV89fZeUrK42OI3Lf2Nxil56ezocffsg333xDbGwsR48epWzZsrz11luULl2agQMHZvpckydPvuvrHh4ejB8/nvHjx//rPsHBwSxZsiTT1xSRzNsxcQdntpzBzduNjhM7YjKZjI4kkimuBVzpMqkLUx+ayu7vd1Pt8WqUbl7a6FgiOc7mFrsPPviAqVOn8sknn+Dm9veouKpVqzJp0iS7hhMR4yRFJ7H6tdUAtPqoFb5BvgYnErFNcLNg6jxTB4CFTy8k7YaWm5S8z+bC7scff+S7776jT58+ODs7W7fXqFGDw4cP2zWciBhn6bClpF5NpWRoSeoNrmd0HJEsaf1xa7yLe3Px2EU2frjR6DgiOc7mwu7s2bPW6Un+yWw2c/PmTbuEEhFjRc6L5PDvh3FycaLzd50xOekWrDgmD18P2n/ZHoBNH20i/lC8wYlEcpbNhV3lypXZuPH2v3pmz55NrVq17BJKRIyTkpTC0mFLAWj0ciMCqgYYnEgke0J6hPBgpwcx3zSz6JlFWMxabkzyLpsHT4wePZp+/fpx9uxZzGYzc+fO5ciRI/z4448sWrQoJzKKyH20+o3VXDl7hcLlCtPsrWZGxxHJNpPJRIfxHTi59iRRm6LYPXk3dQbVMTqWSI6wucWua9euLFy4kFWrVuHl5cXo0aOJjIxk4cKF1mlKRMQxRf8RzY7xOwDo9E0nXAu4GpxIxD58g3xp8V4LAFa9skrLjUmeZXOLHUDTpk1ZuVLzAonkJek301n09CKwQPUnqlO2dVmjI4nYVYNhDdj/837O7zrP8hHL6fFLD6Mjidhdlico3rlzJz/99BM//fQTu3btsmcmETHAtnHbiN0XS4EiBWj7n7ZGxxGxu38OBjow8wDHlh4zOpKI3dlc2EVHR9O0aVPq16/P8OHDGT58OPXq1aNJkyZER0fnREYRyWGXTl5i3TvrAGj7WVu8inoZG0gkhxSvXZwGLzQAYPHgxaReSzU4kYh92VzYPfXUU9y8eZPIyEguXrzIxYsXiYyMxGw289RTT+VERhHJQRaLhSXPLSHtehqlW5SmRr8aRkcSyVEtxrTAN9iXxNOJbHhvg9FxROzK5sJu/fr1TJw4kYoVK1q3VaxYka+++ooNG/QfRMTRHJp9iOPLjuPs5qxlwyRfcPN2o8PXHQDY+p+txB2IMziRiP3YXNiVKlXqjhMRp6enU6JECbuEEpH7IyUphWXDlwHQ+LXG+Ff0NziRyP3xYKcHqfRwJcxpZhY9q7ntJO+wubD79NNPGTZsGDt37rRu27lzJ8OHD+ezzz6zazgRyVlr3lzD1fNX8SvvR9NRTY2OI3Jftf+yPW7ebpzZfIY9P+wxOo6IXdhc2PXv35+IiAgaNGiAu7s77u7uNGjQgN27d/Pkk0/i5+dnfYhI7nVu5znrnHUdJnTAxSNLsx+JOCyfkj40f7c5ACtfWcm1+GvGBhKxA5s/yb/44osciCEi95M5/e/bT1Ufq0q5NuWMjiRiiAbDGrDvx33ERMSw8qWVdJvWzehIItlic2HXr1+/nMghIvfRjvE7OL/rPO6+7oR9HmZ0HBHDOLk40fGbjkwOnczeH/dSo38NyrQoY3QskSzL8gTFIuKYks4msebNNQC0GtsK70BvgxOJGKtkg5LUfbYucGtuu7SUNIMTiWSdCjuRfGb5iOWkXknlgQYPUPeZukbHEckVWn3YCq9iXlw4coHNn2w2Oo5IlqmwE8lHji87zqFZhzA5mej0TSdMTpqzTgTAo5AHYeNudUvY+MFGLp64aHAikaxRYSeST9y8fpMlQ5YAUP/5+gTWDDQ4kUjuUrV3Vcq0KkN6SjpLhy7FYtHcduJ4sl3YJSUl8fvvvxMZGWmPPCKSQzZ9tIlLf16iYImCtHi3hdFxRHIdk8lExwkdcXZz5viy40TO0e81cTw2F3aPPvooX3/9NQDXr1+nbt26PProo1SvXp05c+bYPaCIZN+FoxfY/NGtfkNhX4ThXtDd4EQiuVORB4vQ+NXGACx7YRkpV1IMTiRiG5sLuw0bNtC06a0Z6ufNm4fFYuHy5ct8+eWXvP/++3YPKCLZY7FYWDJkCemp6ZQLK0flRyobHUkkV2syqgmFyxbmytkrrHt7ndFxRGxic2GXmJhoXVVi2bJl9OjRA09PTzp27MixY8fsHlBEsufgrwf5c9WfOLs70+HrDphMGjAhcjeuBVzpML4DAH98+Qcxe2MMTiSSeTYXdqVKlWLr1q1cu3aNZcuW0bZtWwAuXbqEh4eH3QOKSNbdSLzB8hHLAWj6elP8ymupP5HMKN+uPJUfqYwl3cLiwYuxmDWQQhyDzStPvPDCC/Tp0wdvb2+CgoJo3rw5cOsWbbVq1eydT0SyYe3otVyNuYpfBT9rvyGR3CynBuL5+/sTFBRk0zFhX4RxfNlxordGs+eHPdR+qnaOZBOxJ5sLu+eee4769etz5swZ2rRpg5PTrUa/smXL2tzHbuzYscydO5fDhw9ToEABGjVqxMcff0zFihWt+zRv3pz169dnOO6ZZ57hm2++sT6Piopi8ODBrF27Fm9vb/r168fYsWNxcdGi5pJ/nd9znh1f7wCg44SOuLjr/4PkXv7+/nh6ehIeHp4j5/f09CQyMtKm4s7nAR+av9ucFSNXsOrVVVTsWhGvol45kk/EXrL0SV+3bl2qV6/OyZMnKVeuHC4uLnTs2NHm86xfv54hQ4ZQr1490tLSeP3112nbti2HDh3Cy+vv/zyDBg3i3XfftT739PS0/js9PZ2OHTsSGBjIli1bOH/+PH379sXV1ZUPP/wwK29PxOFZzBYWP3vr9lGVXlUo27qs0ZFE7iooKIjIyEgSEhLsfu7IyEjCw8NJSEiwudWuwbAG7J22l9i9sax6bRVdJ3e1ez4Re7K5sEtOTmbYsGFMmzYNgKNHj1K2bFmGDRvGAw88wGuvvZbpcy1btizD86lTpxIQEMCuXbto1qyZdbunpyeBgXeeTHXFihUcOnSIVatWUaxYMWrWrMl7773Hq6++yjvvvIObm5utb1HE4e2etJuz28/iVtCNsM/DjI4jkilBQUE2F145zcnFiY4TOvJD4x+I+CGCWk/WIqhx7soo8k82D54YNWoUe/fuZd26dRkGS7Ru3Zpff/01W2ESExMBrKNu//Lzzz/j7+9P1apVGTVqFMnJydbXtm7dSrVq1ShWrJh1W1hYGElJSRw8eDBbeUQc0bX4a6x6bRUALd5rQcESBQ1OJOLYSjUqRa2BtQBYPHgx5jSzwYlE/p3NLXa///47v/76Kw0bNswwbUKVKlU4ceJEloOYzWZeeOEFGjduTNWqVa3bH3/8cYKDgylRogT79u3j1Vdf5ciRI8ydOxeAmJiYDEUdYH0eE3PnIeopKSmkpPw96WRSUlKWc4vkNqteXcWNSzcIrBlI/SH1jY4jkie0/qg1h+cdJm5/HH989QehI0KNjiRyRzYXdvHx8QQEBNy2/dq1a9maH2vIkCEcOHCATZs2Zdj+9NNPW/9drVo1ihcvTqtWrThx4gTlypXL0rXGjh3LmDFjspxVJLe6sOcCEVMiAOg4sSNOLloOWsQePP09af1JaxY+tZB1o9dR5dEq+DzgY3QskdvY/Klft25dFi9ebH3+VzE3adIkQkOz9hfM0KFDWbRoEWvXrqVkyZJ33bdBgwYAHD9+HIDAwEBiY2Mz7PPX83/rlzdq1CgSExOtjzNnzmQpt0hu4oQT+8fuB6D2oNqUbHj3/0siYptaA2pRMrQkqVdTWTFyhdFxRO7I5ha7Dz/8kPbt23Po0CHS0tL473//y6FDh9iyZctt05Lci8ViYdiwYcybN49169ZRpkyZex4TEREBQPHixQEIDQ3lgw8+IC4uztqSuHLlSnx8fKhc+c5LJ7m7u+PurrUyJW9pQAOunLhCgSIFaDW2ldFxRPIck5OJjhM78l3t7zj420FqDaxFubZZu3MkklNsbrFr0qQJERERpKWlUa1aNVasWEFAQABbt26lTp06Np1ryJAhTJ8+nRkzZlCwYEFiYmKIiYnh+vXrAJw4cYL33nuPXbt2cerUKRYsWEDfvn1p1qwZ1atXB6Bt27ZUrlyZJ554gr1797J8+XLefPNNhgwZouJN8o3rsddpTnMA2nzSBs8innc/QESyJLBGIPWfv9V3dcmQJaTdSDM4kUhGWZrHrly5cnz//ffZvvjEiRMBrKtX/GXKlCn0798fNzc3Vq1axRdffMG1a9coVaoUPXr04M0337Tu6+zszKJFixg8eDChoaF4eXnRr1+/DPPeieR1Bz8/iDvuFK5RmJr9axodRyRXsteqFoUfLoz7dHcuHr/IkjeW0OU/XexyXhF7MFkslnsugJeUlISPj4/133fz136OJCkpCV9fXxITEx0yvziWqKgou07CGrcljj+G/YEZM81/aU6L3i3sdm6RvCAqKoqQkJAMU2VlVxWq0JOepJFGrw29qNq06r0PEskiW+qUTLXYFS5cmPPnzxMQEEChQoXuOPrVYrFgMplIT0/PWmqRfMDev2BccGEwgylCEXa57GJgo4F2Oa9IXpITq1pYLBZW91/N9QPX2ThqI1U2VsnWzBAi9pKpwm7NmjXWSYPXrl2bo4FE8rKEhASSk5OZPn06ISEh2T7f0e+OcuTbI3gU9eCLtV/kuln7RXKLnFjV4tq711jZfSVxm+M4/PthQh7O/v9pkezKVGH30EMPAZCWlsb69et58skn7zktiYj8u5CQEGrXrp2tc1w8cZElU5cA0OnrTpSvUt4e0UQkk7yDvdnMZh7iIZYNX0a5NuVw89YylmIsm0bFuri48Omnn5KWplFAIkayWCwsHbqU9JR0yrYpS+Wed57aR0Ry1kY24vmAJ0lnklj/nm1TfonkBJunO2nZsqXN89WJiH0dnneY48uO4+zmTIevO6hvj4hB0kij6ku3Bk5s+3wbcQfjDE4k+Z3N0520b9+e1157jf3791OnTh28vLwyvN6li4Z9i+Sk1KupLBu+DIDGrzamyINFDE4kkr8Va1aMSt0qcfj3wyx5bgn91vXTH1tiGJsLu+eeew6Azz///LbXNCpWJOetG7OOpOgkCpUpRJNRTYyOIyJA2BdhnFhxgtMbTrPvp33U6FvD6EiST9l8K9ZsNv/rQ0WdSM6KOxDHtnHbAOjwdQdcC7ganEhEAAoFF6LZ6GYArHhpBdcvXTc4keRXNhd2P/74IykpKbdtT01N5ccff7RLKBG5ncVsYfHgxVjSLVTqVokKHSoYHUlE/iF0RCj+If4kxyez+vXVRseRfMrmwm7AgAEkJibetv3KlSsMGDDALqFE5HZ7f9xL1KYoXD1dafffdkbHEZH/4ezmTMcJHQHY9e0uzm4/a3AiyY9sLuz+WmHif0VHR+Pr62uXUCKSUfKFZFa+vBKAh955CN8g/V8TyY1KNy9N9SeqgwUWD16MOd1sdCTJZzI9eKJWrVqYTCZMJhOtWrXCxeXvQ9PT0zl58iTt2qkVQSQnrB61muSEZAKqBtDwhYZGxxGRu2j7WVuOLjzK+d3n2TFhBw2GNTA6kuQjmS7sunXrBkBERARhYWF4e3tbX3Nzc6N06dL06NHD7gFF8rszW8+w+/vdAHSc2BFnV2eDE4nI3XgFeNFqbCsWD17M2jfXUvmRyhQsXtDoWJJPZLqwe/vttwEoXbo0vXr1wsPDI8dCicgt5jQziwcvBqBm/5oENdFasCKOoPag2uz5YQ/ndpxjxcgV9PhFDR9yf9jcx65fv354eHiQmppKdHQ0UVFRGR4iYj9/fPUHsXtj8SjsQetPWhsdR0QyycnZiU7fdMLkZOLAzAOcWHnC6EiST9hc2B07doymTZtSoEABgoODKVOmDGXKlKF06dKUKVMmJzKK5EtJZ5NYN3odAK0/bo1XUa+7HyAiuUrx2sWpN6QeAEuGLCEtReusS86zeeWJ/v374+LiwqJFiyhevLiWTRHJIctHLCf1aiolQ0tSe2Bto+OISBa0eK8Fh2Yd4uKxi2z+ZDMPvfWQ0ZEkj7O5sIuIiGDXrl1UqlQpJ/KICHB82XEOzTqEydlEx4kdMTnpDygRR+Th60HYuDDmPDaHjR9spNpj1fAr72d0LMnDbL4VW7lyZRISEnIii4gAN6/fZPFztwZMNHi+AYE1Ag1OJCLZUaVXFcq2KUt6SjpLhizBYrEYHUnyMJsLu48//phXXnmFdevWceHCBZKSkjI8RCR7Nn6wkcsnL+NT0ofmY5obHUdEsslkMtFhfAec3Z05seIEB387aHQkycNsvhXbuvWtkXmtWrXKsP2vFSnS09Ptk0wkH4qPjGfzJ5sBaPdlO9wLuhucSETsoUiFIjR9vSnr3l7H8heWU75deTx8NW2Y2J/Nhd3atWtzIodIvmexWFj87GLMN8082PlBKnVTP1aRvKTxq43Z//N+Lhy9wJo31tDh6w5GR5I8yObC7qGHNKJHJCfsnbaX0xtO4+rpSvuv2mvEuUge4+LuQseJHfmx1Y/smLCDGv1q8EC9B4yOJXmMzX3sADZu3Eh4eDiNGjXi7NmzAPz0009s2rTJruFE8ovkC8mseGkFAA+9/RCFggsZG0hEckSZlmWoHl4dLLDomUWY08xGR5I8xubCbs6cOYSFhVGgQAF2795NSkoKAImJiXz44Yd2DyiSH6x6dRXXL1wnoGoADUc0NDqOiOSgNp+1waOQBzF7YtgxYYfRcSSPsbmwe//99/nmm2/4/vvvcXV1tW5v3Lgxu3fvtms4kfwgalMUeybvAaDjNx1xdnU2OJGI5CTvYt60+ujWAMQ1b64h6axmlBD7sbmwO3LkCM2aNbttu6+vL5cvX7ZHJpF8Iz01nUXPLAKg1lO1CGocZHAiEbkf6gyqQ8mGJUm9ksqy4cuMjiN5iM2DJwIDAzl+/DilS5fOsH3Tpk2ULVvWpnONHTuWuXPncvjwYQoUKECjRo34+OOPqVixonWfGzdu8OKLLzJz5kxSUlIICwtjwoQJFCtWzLpPVFQUgwcPZu3atXh7e9OvXz/Gjh2Li4vNb0/kvtr86WbiD8XjWdSTNh+3MTqOiGRBZGRklo4r90I5zvY5S+ScSJZ8sYTAZn9PRu7v709QkP7QE9vZXPkMGjSI4cOH88MPP2AymTh37hxbt27lpZde4q233rLpXOvXr2fIkCHUq1ePtLQ0Xn/9ddq2bcuhQ4fw8rq14PmIESNYvHgxs2bNwtfXl6FDh9K9e3c2b74111d6ejodO3YkMDCQLVu2cP78efr27Yurq6v6/EmudvH4RTa8twGAsHFhFPArYHAiEbGFv78/np6ehIeHZ/kcrWlNE5qwasQqxjOeVFIB8PT0JDIyUsWd2MxksXFtE4vFwocffsjYsWNJTk4GwN3dnZdeeon33nsvW2Hi4+MJCAhg/fr1NGvWjMTERIoWLcqMGTN45JFHADh8+DAhISFs3bqVhg0bsnTpUjp16sS5c+esrXjffPMNr776KvHx8bi5ud3zuklJSfj6+pKYmIiPj0+23oPkHVFRUXZfPi8yMpLw8HB27tzJwVcPcnL1Scq2KUv48nBNbyLigLL7OZF2PY11j67j+rnrlO1Tliojq1g/J3bt2kXt2rXtmFYclS11is0tdiaTiTfeeIOXX36Z48ePc/XqVSpXroy3t3eWA/8lMTERAD+/Wwsk79q1i5s3b1pXuwCoVKkSQUFB1sJu69atVKtWLcOt2bCwMAYPHszBgwepVavWbddJSUmxjuYFtBSa3CYqKoqQkBDrHy/25OnpSeLGRE6uPomLx615rVTUiTimoKCgbLeq+U324+f2P3Pyl5O0GtEKQuwUTvKlLHdCc3Nzo3LlynYLYjabeeGFF2jcuDFVq1YFICYmBjc3NwoVKpRh32LFihETE2Pd559F3V+v//XanYwdO5YxY8bYLbvkPQkJCSQnJzN9+nRCQuz7Kevt7M381vMBaPZWM/zK+dn1/CLiWMq3K0/V3lU5MPMAi55eRO2JaqWTrMs1owuGDBnCgQMH7sskx6NGjWLkyJHW50lJSZQqVSrHryuOJyQkxO63QuY/OZ/khGSKVilKo5ca2fXcIuKYwsaFcXzZcc7vPs+p304ZHUccWJZWnrC3oUOHsmjRItauXUvJkiWt2wMDA0lNTb1tGpXY2FgCAwOt+8TGxt72+l+v3Ym7uzs+Pj4ZHiL3w6l1p4iYEgFAp2874eymOetEBLwDvWn98a1uR4cnHMYH/V6SrDG0sLNYLAwdOpR58+axZs0aypQpk+H1OnXq4OrqyurVq63bjhw5QlRUFKGhoQCEhoayf/9+4uLirPusXLkSHx8fu94qFsmutJQ0Fj17a866Os/U0Zx1IpJB7adqU6pxKdKvp9OBDtg4tlEEyGRhV7t2bS5dugTAu+++a7cO5UOGDGH69OnMmDGDggULEhMTQ0xMDNevXwduTXo8cOBARo4cydq1a9m1axcDBgwgNDSUhg1vLbvUtm1bKleuzBNPPMHevXtZvnw5b775JkOGDMHd3d0uOUXsYeMHG7lw5AJexbxoNbaV0XFEJJcxOZno9G0nTC4mKlGJ86vPGx1JHFCmCrvIyEiuXbsGwJgxY7h69apdLj5x4kQSExNp3rw5xYsXtz5+/fVX6z7jxo2jU6dO9OjRg2bNmhEYGMjcuXOtrzs7O7No0SKcnZ0JDQ0lPDycvn378u6779olo4g9xB2MY9NHt/qPtv+qPQUKa846EbldQJUAyvcvD8CBTw5w/dJ1gxOJo8nU4ImaNWsyYMAAmjRpgsVi4bPPPvvX6U1Gjx6d6YtnppnZw8OD8ePHM378+H/dJzg4mCVLlmT6uiL3kzndzMKnFmK+aebBzg9S+RF1ERCRf1fhyQpsnbQV/wv+rHxlJV2+72J0JHEgmSrspk6dyttvv82iRYswmUwsXbr0jst1mUwmmwo7kfxg58SdRG+Lxq2gGx0naM46Ebk7Z3dnFrCAJ3mSPZP2UL1PdUo3L210LHEQmSrsKlasyMyZMwFwcnJi9erVBAQE5Ggwkbwg8Uwiq0fdGvzTamwrfEpqpJuI3FsUUQT3COb0nNMsfHohz+59FtcCrkbHEgdg86hYs9msok4kEywWC0ueW0Lq1VRKhpak3uB6RkcSEQcSMiwE7+LeXDx2kQ3vbzA6jjiILE13cuLECYYNG0br1q1p3bo1zz//PCdOnLB3NhGHdmjWIY4uOoqTqxNdJnXB5KRbsCKSea4FXekwvgMAWz7ZQuy+2HscIZKFwm758uVUrlyZ7du3U716dapXr84ff/xBlSpVWLlyZU5kFHE41y9eZ+mwpQA0fb0pRSsXNTiRiDiikIdDCOkegjnNzIKnFmBONxsdSXI5m5cUe+211xgxYgQfffTRbdtfffVV2rRpY7dwIo5qxcsruBZ3Df8Qf5qMamJ0HBFxYO2/as+fq//k3I5z/PHlH4SOCDU6kuRiNrfYRUZGMnDgwNu2P/nkkxw6dMguoUQc2YmVJ4j4IQJM0Pm7zri455olmUXEARUsUZA2n9xqNFnzxhounrhocCLJzWz+jVO0aFEiIiKoUKFChu0REREaVCH5XurVVBYOWghAvSH1CGqiZcNEJGsiIyP/flIbitQtwoWdF5jRewah34Rmaeokf39/goL0uZSX2VzYDRo0iKeffpo///yTRo0aAbB582Y+/vhjRo4cafeAIo5k1ahVJJ5OxDfYl9ZjWxsdR0QckL+/P56enoSHh2fYXpjCPMdzXNh5gWfqPsMudtl8bk9PTyIjI1Xc5WE2F3ZvvfUWBQsW5D//+Q+jRo0CoESJErzzzjs8//zzdg8o4ihObzzNjq93AND5+864ebsZnEhEHFFQUBCRkZEkJCTc9tqJn09w6PNDPOz1MP/97b8UCMz88oSRkZGEh4eTkJCgwi4Ps7mwM5lMjBgxghEjRnDlyhUAChYsaPdgIo7k5vWbLBi4AICaT9akXJtyBicSEUcWFBR0x+KrZo2aJG1JInpbNKfHn+axRY9pNRvJIEvz2P2lYMGCKupEgHXvrOPisYt4F/cm7D9hRscRkTzKydmJLpO74OzmzLElx9j/836jI0kuk63CTkTg3M5zbP1sKwCdvumERyEPgxOJSF5WtHJRmo1uBsCy4cu4GnvV4ESSm6iwE8mG9NR05j85H4vZQtXeVanYpaLRkUQkH2j8SmMCawbemgx96FKj40guosJOJBs2fLCBuP1xePp70u7LdkbHEZF8wtnVmS4/dMHkbOLQ7EMcnHXQ6EiSS9hU2N28eZNWrVpx7NixnMoj4jDO7z7Pxg82AtD+6/Z4FfUyOJGI5CfFaxW3rmyz5LklXIu7ZnAiyQ1sKuxcXV3Zt29fTmURcRhpKWn83u93LOkWKvesTNVeVY2OJCL50ENvPUSx6sVITkhm8XOLsVgsRkcSg9l8KzY8PJzJkyfnRBYRh7HhvQ3EHYjDs6gnHcZ3MDqOiORTzm7OdJ3aFScXJyLnRHLwN92Sze9snscuLS2NH374gVWrVlGnTh28vDLefvr888/tFk4kNzq74yybPtoEQMeJHXULVkQMVbxWcZq+0ZT1Y9az5LkllH6oNN6B3kbHEoPYXNgdOHCA2rVrA3D06NEMr2mSRMnr0m6kMb//fCzpt0bBVu5R2ehIIiI0fb0pR+YfISYihsWDF/Po3Ef1OzmfsrmwW7t2bU7kEHEI68asI/5QPF7FvGj/dXuj44iIAH/fkv2+3vcc/v0wB345QLXHqxkdSwyQ5elOjh8/zvLly7l+/TqAOmxKnhf9RzRbPtkC3JqI2LOIp8GJRET+FlgjkGZv3Zq4eMnQJVw5f8XgRGIEmwu7Cxcu0KpVKx588EE6dOjA+fPnARg4cCAvvvii3QOK5AY3k2/eGgVrtlCtTzUqdatkdCQRkds0ea0JxWsX58alGywctFCNLvmQzYXdiBEjcHV1JSoqCk/Pv1ssevXqxbJly+waTiS3WPXaKi4cuYB3cW/af6lbsCKSOzm7OtNtWrdba8kuPsbuSbuNjiT3mc2F3YoVK/j4448pWbJkhu0VKlTg9OnTdgsmklucWHmC7V9tB6DrlK4U8CtgcCIRkX8XUDWAlh+2BGD5iOVcPHHR4ERyP9lc2F27di1DS91fLl68iLu7u11CieQWqUmpzB8wH4C6z9WlfFh5gxOJiNxbwxcaEtwsmJvXbnUjMaebjY4k94nNhV3Tpk358ccfrc9NJhNms5lPPvmEFi1a2HSuDRs20LlzZ0qUKIHJZOL333/P8Hr//v0xmUwZHu3aZVyP8+LFi/Tp0wcfHx8KFSrEwIEDuXr1qq1vS+SODnx8gCtnr+BXwY82n7QxOo6ISKY4OTvRbVo33Aq6cWbzGbZ8usXoSHKf2FzYffLJJ3z33Xe0b9+e1NRUXnnlFapWrcqGDRv4+OOPbTrXtWvXqFGjBuPHj//Xfdq1a8f58+etj19++SXD63369OHgwYOsXLmSRYsWsWHDBp5++mlb35bIbapQhbPLzmJyNvHwTw/j5uVmdCQRkUwrVLoQ7f57qzFk7ei1JB5JNDiR3A82z2NXtWpVjh49ytdff03BggW5evUq3bt3Z8iQIRQvXtymc7Vv35727e/eEd3d3Z3AwMA7vhYZGcmyZcvYsWMHdevWBeCrr76iQ4cOfPbZZ5QoUcKmPCJ/uRF/g050Am5N/FmyQcl7HCEikvvU7F+TI/OPcGT+Efa8tQcX23/ti4PJ0nfY19eXN954w95Z7mjdunUEBARQuHBhWrZsyfvvv0+RIkUA2Lp1K4UKFbIWdQCtW7fGycmJP/74g4cffvi+ZJS8xWKxEDEmggIUwDfE1zovlIiIozGZTHT+rjPRW6O5cuIKLbCty5Q4niwVdpcuXWLy5MlERkYCULlyZQYMGICfn59dw7Vr147u3btTpkwZTpw4weuvv0779u3ZunUrzs7OxMTEEBAQkOEYFxcX/Pz8iImJ+dfzpqSkkJKSYn2elJRk19zi2HZM2EH81nhucpNa79XC2dXZ6EgiIlnmFeBF5+87M7PrTBrRiIQdCVDb6FSSU2zuY7dhwwZKly7Nl19+yaVLl7h06RJffvklZcqUYcOGDXYN17t3b7p06UK1atXo1q0bixYtYseOHaxbty5b5x07diy+vr7WR6lSpewTWBxe3IE4Vry4AoBVrKJgmYIGJxIRyb6KXSoS1C0IEyb2jN5D8oVkoyNJDrG5sBsyZAi9evXi5MmTzJ07l7lz5/Lnn3/Su3dvhgwZkhMZrcqWLYu/vz/Hjx8HIDAwkLi4uAz7pKWlcfHixX/tlwcwatQoEhMTrY8zZ87kaG5xDGk30pjz2BzSU9IJaBzAH/xhdCQREbup8mIVLnCBG3E3WPT0Iq1KkUfZXNgdP36cF198EWfnv29POTs7M3LkSGvBlVOio6O5cOGCdZBGaGgoly9fZteuXdZ91qxZg9lspkGDBv96Hnd3d3x8fDI8RFa+upK4A3F4BXhR8+2aRscREbErF08XZjMbk4uJyLmR7Jm8x+hIkgNsLuxq165t7Vv3T5GRkdSoUcOmc129epWIiAgiIiIAOHnyJBEREURFRXH16lVefvlltm3bxqlTp1i9ejVdu3alfPnyhIWFARASEkK7du0YNGgQ27dvZ/PmzQwdOpTevXtrRKzY5NjSY2z/8u/VJdyLaLJtEcl7znOeSs/dWut62fBlJBxJMDiR2FumBk/s27fP+u/nn3+e4cOHc/z4cRo2bAjAtm3bGD9+PB999JFNF9+5c2eGSY1HjhwJQL9+/Zg4cSL79u1j2rRpXL58mRIlStC2bVvee++9DCtc/PzzzwwdOpRWrVrh5OREjx49+PLLL23KIfnb1dirzO9/a3WJ+sPqU6FDBXbv1vqKIpI3lXuiHDcO3ODkmpPM7TOXgVsG4uymQWJ5hcmSiZvsTk5OmEyme96PN5lMpKen2y3c/ZKUlISvry+JiYm6LZvPWCwWZnScwfGlxwmoGsCgHYNw8XBh9+7d1KlTh127dlG7toaPiYjj++fnWvli5fmm+jdcv3idRq80os3HWlknN7OlTslUi93JkyftEkwkJ0RFRZGQkLXbCX/+8ifHlx7Hyc2JkLdC2HfoVuv0nbobiIjkFT4P+NB5Umd+6/4bWz7ZQrm25SjbqqzRscQOMlXYBQcH53QOkSyJiooiJCSE5GTbh+4HEshTPIULLixKXcToXqMzvO7p6Ym/v7+9ooqI5CohD4dQ++na7P5uN/PC5/Hs3mfxCvAyOpZkU5YmKD537hybNm0iLi4Os9mc4bXnn3/eLsFEMiMhIYHk5GSmT59OSEhIpo9Lu5bGhj4buHbmGsWaFWPC5xMwmUwZ9vH39ycoKMjekUVEco1249pxZtMZ4g/FM++JefRZ2geTk+neB0quZXNhN3XqVJ555hnc3NwoUqRIhl+GJpNJhZ0YIiQkJNN94SwWC3P7zOXamWv4lPKh37x+FPArkMMJRURyH1dPVx757RG+r/c9J1acYNPHm2g6qqnRsSQbbJ7u5K233mL06NEkJiZy6tQpTp48aX38+eefOZFRxK72TN7DgV8OYHI28cjMR1TUiUi+FlAlgA5fdwBg7VtridoUZXAiyQ6bC7vk5GR69+6Nk5PNh4oYLu5AHEuHLQWg5QctKdVIy8mJiNQcUJNqfaphSbcw57E5WnLMgdlcnQ0cOJBZs2blRBaRHJV6LZVZj84i7UYa5duVp/HLjY2OJCKSK5hMJjpO7IhfBT+SopOY33++lhxzUDb3sRs7diydOnVi2bJlVKtWDVdX1wyvf/7553YLJ2JPS4cuJSEygYIlCtLtx27qICwi8g/uBd3p+VtPJjWcxNFFR9k2bhuhI0ONjiU2ylJht3z5cipWrAhw2+AJkdwoYloEEVMjMDmZ6D6jO15FNaRfROR/BdYMJGxcGEueW8KqV1dRMrQkpULVZcWR2FzY/ec//+GHH36gf//+ORBHxP5i9saw+NnFADz0zkOUfqi0sYFERHKxus/W5dTaUxyadYhZPWfxzJ5n9MewA7G5j527uzuNG6tvkjiGG5dv8FuP3271q2tfnmZvNDM6kohIrmYymegyqQtFKhbhytkrzHlsDuZ0870PlFzB5sJu+PDhfPXVVzmRRcSuLGYL8/rO49KJS/gG+9J9enf1qxMRyQR3H3cenfMorp6unFx9krWj1xodSTLJ5lux27dvZ82aNSxatIgqVarcNnhi7ty5dgsnkh2bP9nM0YVHcXZ35tE5j2q+OhERGwRUCaDzpM7MfXwumz7cRMmGJanYuaLRseQebC7sChUqRPfu3XMii4jd/Ln6T9a8sQaADl93oESdEgYnEhFxPNUeq0b01mi2f7WdeU/M4+ldT+NXzs/oWHIXNhd2U6ZMyYkcksdFRUWRkJBg9/NGRkbeti0pOok5j83BYrZQc0BNag2sZffriojkF20/a8u5neeI3hrNbz1+Y+DWgbgWcL33gWIImws7EVtFRUUREhJCcnLOzGTu6emJv78/AGkpaczqOYvk+GSK1ShGh/EdNA2PiEg2OLs50/O3nnxb+1ti98ay+NnFdJ3aVZ+tuZTNhV2ZMmXu+s3UerHyvxISEkhOTmb69OmEhITY/fz+/v4EBQVhsVhYMmQJ0duicff9/46/+qtSRCTbfEr68MjMR/ipzU/s/XEvgbUDaTi8odGx5A5sLuxeeOGFDM9v3rzJnj17WLZsGS+//LK9ckkeFBISQu3atXPs/Dsm7GDP5D2YnEw88usj6gciImJHZVqWoc1nbVgxcgUrXlxBQNUAyrYqa3Qs+R82F3bDhw+/4/bx48ezc+fObAcSyYpT606xbPgyAFp91IryYeUNTiQikvc0fKEhMXti2PfTPmY/OptBOwZRuGxho2PJP9g8j92/ad++PXPmzLHX6UQy7fLpy8zqOQtLuoVqj1ej0UuNjI4kIpInmUwmOn3biRL1SnD94nVmdptJ6tVUo2PJP9itsJs9ezZ+frr1JfdX6rVUfu32K8kJyRSvXZzOkzqrQ6+ISA5yLeBKr7m98CrmRdz+OH7v/zsWi8XoWPL/bL4VW6tWrQy/OC0WCzExMcTHxzNhwgS7hhO5G4vFwoKBC4iJiMErwIte83ppsISIyH3gU9KHXnN7MbX5VCLnRLLxg400e1NLNuYGNhd23bp1y/DcycmJokWL0rx5cypVqmSvXCL3tPHDjRz89SBOLk70nN0T3yBfoyOJiOQbpRqVouOEjiwctJC1b62laJWihDxs/5kPxDY2F3Zvv/12TuQQscmBXw+w9s1baxe2/7o9wU2DDU4kIpL/1H6qNjF7Y9jx9Q7m9pnLgI0DtNKPwezWx07kfoneFs3v/X4HoOGIhtR9pq6xgURE8rF249pRvl150q6n8UvnX0iKTjI6Ur6W6cLOyckJZ2fnuz5cXLSQheSsy6cuM7PrTNJT0nmw84O0+bSN0ZFERPI1JxcnHvn1EQKqBnD1/FVmdJqhkbIGynQlNm/evH99bevWrXz55ZeYzWa7hBK5kxuJN5jRaQbX4q4RWDOQHjN64OSsRmcREaO5+7jz2KLHmFR/ErF7Y5nz2Bx6/d5Ln9EGyPRXvGvXrrc9KlWqxNSpU/nss8/o2bMnR44cseniGzZsoHPnzpQoUQKTycTvv/+e4XWLxcLo0aMpXrw4BQoUoHXr1hw7dizDPhcvXqRPnz74+PhQqFAhBg4cyNWrV23KIbmfOc3M7EdnE38wnoIlCvLYwsdw83YzOpaIiPy/QsGF6L2gNy4eLhxddJQVL60wOlK+lKV7p+fOnePtt99m2rRphIWFERERQdWqVW0+z7Vr16hRowZPPvkk3bt3v+31Tz75hC+//JJp06ZRpkwZ3nrrLcLCwjh06BAeHh4A9OnTh/Pnz7Ny5Upu3rzJgAEDePrpp5kxY0ZW3prkQhaLhSXDlnBixQlcPV15bOFj+JT0MTqWiIhDioyMtPs5/1qzu2SDknT7sRuzH53NH1/8gV95P+oPqW/368ldWGxw+fJlyyuvvGIpUKCAJTQ01LJhwwZbDr8rwDJv3jzrc7PZbAkMDLR8+umnGa7v7u5u+eWXXywWi8Vy6NAhC2DZsWOHdZ+lS5daTCaT5ezZs5m+dmJiogWwJCYmZv+NyG127dplASy7du3K0vEbPtxgeYd3LO+Y3rFE/h5p53QiIvnD6dOnLZ6enhbA7g9PT0/L6dOnrdfa8MGtz+0xTmMskfP0uZ1dttQpmW6x++STT/j4448JDAzkl19+oWvXrtmvKu/i5MmTxMTE0Lp1a+s2X19fGjRowNatW+nduzdbt26lUKFC1K3796jI1q1b4+TkxB9//MHDDz98x3OnpKSQkpJifZ6UpBE8uVXE1AjWvL4GgHZftKNSV82VKCKSFUFBQURGRpKQkGDX80ZGRhIeHk5CQgJBQUEANBnVhEsnL7Fn0h7mPDaHJ1Y9QVDjILteV+4s04Xda6+9RoECBShfvjzTpk1j2rRpd9xv7ty5dgkWExMDQLFixTJsL1asmPW1mJgYAgICMrzu4uKCn5+fdZ87GTt2LGPGjLFLTsk5x5YcY8FTCwBo/GpjGjzfwOBEIiKOLSgoyFp85SSTyUSniZ24FnuNowuP8kvnX3hy05MUrVw0x6+d32V68ETfvn159NFH8fPzw9fX918fjmDUqFEkJiZaH2fOnDE6kvyPs9vPMqvnLCzpFmr0rUGrsa2MjiQiIjZwcnHikZmPULJhSW5cusH0dtM1x919kOkWu6lTp+ZgjNsFBgYCEBsbS/Hixa3bY2NjqVmzpnWfuLi4DMelpaVx8eJF6/F34u7ujru7u/1Di11cOHqBGR1ncDP5JuXCytF5UucM6xOLiIhjcPV05bFFj/FD4x+4cOQCP7f/mQEbB+BRyMPoaHlWrp1gpkyZMgQGBrJ69WrrtqSkJP744w9CQ0MBCA0N5fLly+zatcu6z5o1azCbzTRooNt2juhqzFWmh00nOSGZEnVL8OjsR3F2dTY6loiIZJFnEU/Cl4fjXdybuANxzOw6k7QbaUbHyrMMLeyuXr1KREQEERERwK0BExEREURFRWEymXjhhRd4//33WbBgAfv376dv376UKFGCbt26ARASEkK7du0YNGgQ27dvZ/PmzQwdOpTevXtTooTWqnM01y9e56e2P3H51GUKlyvM44sf11x1IiJ5QKHgQvRZ2gd3H3dObzjN7F6zSb+ZbnSsPMnQwm7nzp3UqlWLWrVqATBy5Ehq1arF6NGjAXjllVcYNmwYTz/9NPXq1ePq1assW7bMOocdwM8//0ylSpVo1aoVHTp0oEmTJnz33XeGvB/JupQrKfzc/mfi9sfhXdyb8OXheAV4GR1LRETsJLBGoHUC4yMLjvB7v98xp2vFKnszdHHX5s2bY7FY/vV1k8nEu+++y7vvvvuv+/j5+WkyYgd3M/kmv3T+hbPbz1KgSAGeWPkEfuX8jI4lIiJ2Vvqh0jw651Fmdp3JgV8O4OrlSufv1I/annJtHzvJH9JT0/ntkd84vf407j7uhC8PJ6BKwL0PFBERh1ShQwW6z+iOycnEnkl7WPHiirs28ohtVNiJYcxpZuY8PofjS4/jUsCFxxc/Tok66hspIpLXVelZhS6TuwCwbdw21o9Zb3CivEOFnRjCYraw4KkFRM6JxNnNmd6/9yaoiWYlFxHJL2r2r0m7L9sBsH7MerZ8tsXgRHmDCju57yxmCwsGLWDvtL2YnE30mNmDcm3LGR1LRETuswbDGtDyg5YArHx5JVs/32pwIsenwk7uq79a6iJ+iMDkZOLhnx4m5OEQo2OJiIhBmr7elGZvNQNgxYsr2PIftdxlhwo7uW8s6RYWDFxAxJRbRV33n7tT7bFqRscSERGDtXi3BQ+9/RAAK19ayeZPNxucyHEZOt2J5B8mTESMiSB6cTQm51tFXdVeVY2OJSIiuUTzd5oDt/rbrXplFVig8SuNjQ3lgNRiJznOkm6hG92sRV2PX3qoqBMRkds0f6c5D71zq+Vu1aur2PTRJoMTOR4VdpKj0m+ms2f0HmpQw1rUVelZxehYIiKSSzV/uznNxzQHYPWo1ax/d73mubOBCjvJMTev3+S37r9xdtlZ0kmn9oe1VdSJiMg9PTT6IVq83wKAdW+v0yTGNlBhJzkiJenW2q9HFx3Fyd2JmcykRGtNPiwiIpnT7I1mhH0RBtyaxHjBwAWY07S27L2osBO7S05IZlrLadZlwhqOb8gxjhkdS0REHEzD4Q3pOrUrJicTEVMimN1rNmkpaUbHytU0KlYyiIqKIiEhIcvHX4+9zrYh27h68ipuhd2o/1V9znPejglFRCQ/qdmvJu4+7szpPYfIuZH80vkXes3rhZuXm9HRciUVdmIVFRVFSEgIycnJWTreH3/CCacQhUgkkR8v/ciF8AsAeHp64u/vb8+4IiKST4Q8HMLjix9nZreZ/LnyT35q/ROPLXwMT39Po6PlOirsxCohIYHk5GSmT59OSIhtq0Fc2HOBHSN3cDPpJl5BXrSa0Irw4uHW1/39/QkK0lqwIiKSNWVbl6Xv6r783P5nordFM7nRZPos7YNfOT+jo+UqKuzkNiEhIdSuXTvT+x/49QB/PPcH6anplGxYkt4LeuNV1CsHE4qISH5UskFJntz8JD+3/5mLxy4yueFkHlv0GCUblDQ6Wq6hwROSZRaLhc2fbmZO7zmkp6ZT6eFK9F3TV0WdiIjkmKIhRXlq21MUr1P81mC9FtM4/Ptho2PlGirsJEvMaWaWDF1ya9kXoMHwBvSc1RPXAq4GJxMRkbzOO9Cb/uv6U6FjBdKup/Fr91/546s/jI6VK6iwE5vdSLzBzG4z2TlhJ5ggbFwY7b5oh5OzfpxEROT+cPN2o/fvvanzTB2wwLLnl7H0+aX5fq47/SYWm1w4doHJDSdzbPExXDxc6DmrJw1faGh0LBERyYecXJzoOLEjrca2AmD7V9uZ3m46yReyNrtDXqDBE5JpJ1acYHav2dy4fAOfkj70+r0XJepoNQkREYHIyEi7nzMzMyqYTCaavNaEIhWLMO+JeZxcfZJJ9SfRe0FvAqoE2D1TbqfCTu7JYrGwbdw2Vr68EovZQqlGpXh0zqN4B3obHU1ERAzm7++Pp6cn4eHh997ZRp6enkRGRmZquqyQh0Pw2+rHzK4zufTnJSY3nMzD0x+mUtdKds+Vm6mwk7u6ef0miwcvZu+0vQDUfLImHSd0xMVdPzoiIgJBQUFERkZma9WiO4mMjCQ8PJyEhIRMz4NarFoxBm0fxKxHZ3Fq7Sl+7fYrLd5rQdPXm2JyMtk1X26l387yry4ev8isnrOIiYjB5Gwi7PMw6g+rj8mUP/5ziIhI5gQFBeWaSeg9/T0JXx7O8pHL2fH1Dta+tZbobdE8/OPDFPArYHS8HKfBE3JHh+Yc4rs63xETEYNnUU/Cl4XT4PkGKupERCTXc3Z1psNXHeg8qTPO7s4cW3yMb2t9y9ntZ42OluPUYicZOOPMgc8OcPKXkwAENQmix8we+DzgY3AyERHJj7I1KKMWNJ7SmJ2v7CQxKpHJjSdTZUQVSvcqTdGiRXNNK6M9mSwWi8XoEP/mnXfeYcyYMRm2VaxYkcOHb80wfePGDV588UVmzpxJSkoKYWFhTJgwgWLFitl0naSkJHx9fUlMTMTHJ/8WMJsWb2Jqp6mUohQAjV5uRMsPWuLs6mxwMhERyW+ioqIICQkhOTn7U5e4405XulKZygAc5CArC6xk7+G9DlHc2VKn5PoWuypVqrBq1SrrcxeXvyOPGDGCxYsXM2vWLHx9fRk6dCjdu3dn8+bNRkR1aAd+PcCGQRsoRSlcC7rSY3oPKnapaHQsERHJp+w9KMNisXDyl5Mc+uIQVdKrUOJ6CY6uOkrQk7m/sLNFri/sXFxcCAwMvG17YmIikydPZsaMGbRs2RKAKVOmEBISwrZt22jYMG9PmhsVFWWXH/abV25y4NMDRC+OBuAsZ+n7c18qdlZRJyIixrL3oIw6deoQ/Ug0M7rPgPOwedBmnE468dDoh/LM3alcX9gdO3aMEiVK4OHhQWhoKGPHjiUoKIhdu3Zx8+ZNWrdubd23UqVKBAUFsXXr1jxd2NmreTqIILrTnUIUwoyZjWxkR4EdvFnjTTslFRERyV1KNizJQ788xMfNP6aGuQYb39/Inyv+5OHpD1OkQhGj42Vbri7sGjRowNSpU6lYsSLnz59nzJgxNG3alAMHDhATE4ObmxuFChXKcEyxYsWIiYm563lTUlJISUmxPk9KSsqJ+DkmISGB5ORkpk+fTkhIiM3Hm2+aOfr9UY5NOQZm8HzAk1rv1qJrza6ZmuVbRETEkbkWdGUe8xjw4QAOfXKIs9vP8m2tbwkbF0btp2o79AwQubqwa9++vfXf1atXp0GDBgQHB/Pbb79RoEDW56IZO3bsbYMyHFFISAi1a9e26ZhzO88xf9B84vbHAVCzf03a/bcd7j7uORFRREQk13og7AGahTfj936/c2rtKRY9vYjI2ZF0+q4ThYILGR0vSxxqHrtChQrx4IMPcvz4cQIDA0lNTeXy5csZ9omNjb1jn7x/GjVqFImJidbHmTNncjB17nDz+k1WvrqSSQ0mEbc/Dk9/T3rO6knXKV1V1ImISL7lW8qXvqv60ubTNji7O3NixQkmVJnA9vHbsZhz7cQh/8qhCrurV69y4sQJihcvTp06dXB1dWX16tXW148cOUJUVBShoaF3PY+7uzs+Pj4ZHnlZ1KYovq35LVs+2YLFbKHqY1V57tBzVH6kstHRREREDGdyMtHopUYM3jeYoCZB3Lx2k6VDlzK1+VQuHL1gdDyb5OrC7qWXXmL9+vWcOnWKLVu28PDDD+Ps7Mxjjz2Gr68vAwcOZOTIkaxdu5Zdu3YxYMAAQkND8/TACVvcuHyDxUMWM6XZFC4cvYB3cW96z+9Njxk98CrqZXQ8ERGRXKXIg0Xov74/7b9uj6uXK1Ebo/imxjdsHLuR9NR0o+NlSq7uYxcdHc1jjz3GhQsXKFq0KE2aNGHbtm0ULVoUgHHjxuHk5ESPHj0yTFCc31nMFvb+uJeVr6wkOf7WyNlaA2vR9rO2eBTyMDidiIhI7mVyMlF/SH0e7PQgi55exIkVJ1jz+hr2TttL+6/aU65NOaMj3lWuLuxmzpx519c9PDwYP34848ePv0+Jcr+YvTEsGbKEM5tv9Rv0D/Gnw9cdKNOyjMHJREREHEeh4EL0WdaH/T/vZ8VLK7hw5ALT206ncs/KhH0ehk/J3NmNK1cXdpJ51y9dZ90769jx9Q4sZguuXq489PZDNBzeEGe3vDHpooiIyP1kMpmoHl6dBzs/yLq317H9q+0cmnWIY0uO0eytZjR8oSEu7rmrlMpdacRm6anp7Jiwg/XvrufGpRsAVHm0Cm3/0zbX/jUhIiLiSDx8PWj3RTtqDqhpvSu2+rXV7Pp2F60+bEWVXlVyzdx3KuxymL2W/vqnyMhIAM6tPMemnpu49OclAIpWKUrYuLBcf/9fREQkN/jr96ktanxRgyKLixD5dSSXT15mzmNzWP3+aiqPqEyRWkUMn+jfZLFYHG+SFjtLSkrC19eXxMREu059Yq+lv/5XEEGEOYXxgPkBALwDvWnxXgtq9q+Jk0uuHugsIiJiOHv8fnbFlVBCaUIT3HADIJJINntsZvORzXYt7mypU9Ril4Oyu/TX/7q0/xJHvjlC/LZ4MIOrlyuNXm5Eoxcb4ebtZofEIiIieV9QUBCRkZF2uaN2I+EGR787yul5pwkxh1DxRkVWPreSh794GL/yfnZIaxu12JFzLXa7d++mTp067Nq1y+alv/7p3M5zrHt7HceWHAPAycWJmk/WpPk7zSlYvKC94oqIiEgWxR+KZ85zc4hdHwuAydlEjb41aPZmMwqXLZytc6vFLo84u+MsG9/fyJEFR4D//yHp9/8/JGWy90MiIiIi9lO0clHqf16fznU682aTN4nbFEfElAj2/bSPGv1r0OTVJvelBU+FXS5jsVg4vuw4Wz7Zwql1p4BbkyVWD69Os7eaGdKsKyIiIplzjnM0+G8DAm4GsO7tdZxYfoI9k/YQ8UMEIT1CaPxKY0rULZFj11dhl0uk30zn4G8H2fLJFmL33WrGdXJxotrj1WjyehP8K/obnFBEREQyq2SDkoQvCydqcxSbPtzEsSXHODTrEIdmHaJMyzI0eqUR5dqWs/s0KSrs/iEiIgJvb2+7nS8zw6ivxV9j96Td7Jy4k6QzSQC4ebtR++naNHyhIb6lfO2WR0RERO6voMZBPL74cWL3x7Ll0y0c+OUAJ9ec5OSakwRUC6D+0PpU61MNNy/7DILU4An+7pSYEzw9PYmMjLxt2PPZHWfZ8fUODsw8YF1Y2CvAiwbDG1B3cF0KFC6QI3lEREQkZ2Rm0GRiVCJbx21l9/e7uXntJgAehTyo+WRN6j1XD79yt3e5smXwhAo7/v6Cfffdd9SpU8eu5/7nRIWpV1M5OOsgu77ZxdntZ637lKhbgnpD61G1V1VcPNSIKiIi4ohsmQ3j+qXrREyNYMf4HVw6cWuhAUxQoX0FGo5sSNlWZa37alRsFlWsWDFb05LcicViIWpzFHt+2MPBXw9aq3NnN2eq9KpC/aH1eaD+A3a9poiIiORuBQoXIHREKA2HN+T4suNs/3o7x5ce59iSY/iH+Gco7Gyhwi6HXD59mQO/HCBiSgQXjl6wbver4EetJ2tR68laeAV4GZhQREREjGZyMlGhQwUqdKjAxeMX2TFxB3UH183y+VTY2dHV2KscmnWIA78c4MyWM9btrl6uVHm0CrWerEWpxqVyzULBIiIiknv4lfcj7D9h2TqHCrtsuhp7lSMLjnBo1iFOrj6Jxfz/XRZNULp5aar1qUaVR6vgXtDd2KAiIiKS56mwy4ILxy5w+PfDHPn9CGe2noF/DD95oP4DVH2sKlUerULBElruS0REJL/JzHRntrh69Wqm91VhlwlpKWlEbYri+NLjHF96nPhD8RleL1GvBJUerkSVR6vccZiyiIiI5H3+/v54enoSHh5uWAYVdndgsVi4ePwif678k+NLj3NyzUluJt+0vu7k4kTp5qWp2K0ilbpWwqfk3Ycei4iISN4XFBREZGQkCQkJdj3vrl27ePrppzO1rwq7f4heHM3c7+Zyat0prpy9kuE170BvyrcrT7l25SjXtpwmEBYREZHbBAUF3bYoQXbpVmwW7f9kPx54ALfmmSsZWpLy7cpTvl15itUoptGsIiIikqupsPuHwlULU7dbXcq0KEPJ0JK4FnA1OpKIiIhIpqmw+4eG4xvSrFkzo2OIiIiIZImT0QFERERExD5U2ImIiIjkESrsRERERPIIFXYiIiIieUSeKezGjx9P6dKl8fDwoEGDBmzfvt3oSCIiIiL3VZ4o7H799VdGjhzJ22+/ze7du6lRowZhYWHExcUZHU1ERETkvskThd3nn3/OoEGDGDBgAJUrV+abb77B09OTH374wehohktJSeGdd94hJSXF6ChiI33vHJe+d45L3zvHpe/dLSaLxWIxOkR2pKam4unpyezZs+nWrZt1e79+/bh8+TLz58+/7ZiUlJQM3/hLly5RunRpZs2aRcOGDe9H7PvmypUrVK5cmUOHDlGwYEGj44gN9L1zXPreOS597xxXXv7ebdu2jZ49e3Lx4kUKFy58950tDu7s2bMWwLJly5YM219++WVL/fr173jM22+/bQH00EMPPfTQQw89HOaxffv2e9ZF+XLliVGjRjFy5Ejr879a7M6cOYOPj4+ByUREREQySkpKolSpUpQvX/6e+zp8Yefv74+zszOxsbEZtsfGxhIYGHjHY9zd3XF3d79tu4+Pjwo7ERERyZWcnZ3vuY/DD55wc3OjTp06rF692rrNbDazevVqQkNDDUwmIiIicn85fIsdwMiRI+nXrx9169alfv36fPHFF1y7do0BAwYYHU1sFB0dzbFjx6hQoQIlS5Y0Oo6IiIhDyROFXa9evYiPj2f06NHExMRQs2ZNli1bRrFixYyOJjaYPHkyTz/9NGazGScnJ7777jsGDhxodCwRERGH4fDTndhDUlISvr6+JCYmqo+dQaKjowkODsZsNlu3OTs7c+rUKbXciYhIvmZLneLwfewkbzh27FiGog4gPT2d48ePG5RIRETE8aiwk1yhQoUKODll/HF0dnbO1NBuERERucXhC7uxY8dSr149ChYsSEBAAN26dePIkSNGxxIblSxZku+++846lNvZ2Zlvv/3WIW7DRkdHs3btWqKjo42OIiIi+ZzDF3br169nyJAhbNu2jZUrV3Lz5k3atm3LtWvXjI4mNho4cCCnTp1i7dq1nDp1yiEGTkyePJng4GBatmxJcHAwkydPNjqSiIjkY3lu8ER8fDwBAQGsX7+eZs2aZeoYWzolajoO+YsGfIiIyP2QrwdPJCYmAuDn52f3c6t1Rv5JAz5ERCS3yVMtdmazmS5dunD58mU2bdr0r/ulpKSQkpJiff7XGmyxUbH/WglHn42mYrWKt7XOHN53mJIPqHUmP9LPhIiI3A9JSUkUCyqWqRa7PDFB8V+GDBnCgQMH7lrUwa0BF2PGjLlt+8FZB/Eu4H3HY3Ye2XnH1plV36+izoN1sh5aHNqox0Yx9pex1kmVX+v9GpfWX+ISl4yOJiIiecTV61czvW+eabEbOnQo8+fPZ8OGDZQpU+au+/5bi92GCRsoVLjQHY+JuRBDu2HtMFv+Lu6cnJxY9uUyAosE2uU9iGOKuRDDmdgzlCpWSj8LIiJid5cvXabZc83yR4udxWJh2LBhzJs3j3Xr1t2zqANwd3fH3d39tu0u7i64ebnd8ZggryDeHfIuoyeMtrbOvPvcuwQFBWX7PYhjC/IK0s+BiIjkGJfkzJdrWS7sFixYYPMxbdq0oUCBAlm95B0NGTKEGTNmMH/+fAoWLEhMTAwAvr6+dr/WI20foUntJpw+f5rg4sEE+tuvdSYmIYZT505RukRpu55XRERE8o8s34r931UC7nkhk4ljx45RtmzZrFzurue9kylTptC/f/9MneOvYcRbJm/Br6j9R9Pey+wVsxk9fjRmixknkxPvDnmXR9o+ct9zSO6iYl9ERAAuxl+k0cBGOX8rNiYmhoCAgEztW7Bgwexc6l85ehfBmIQYa1EHYLaYGT1hNE1qN9Ev83xMxb6IiGRFluex69evn023OsPDw+9ZZeZHp86dyjAgA25N23L6/GmDEonR/q3Yj0mIMTiZiIjkdlku7KZMmWJthbt69d7DcCdOnIi/v39WL5dnlS5RGidTxm+Dk5MTwcWD7XL+mIQYtu3bpqLAgajYFxGRrLLLyhO+vr7MmTPHHqfKdwL9A3l3yLvWPot/jba1x23Y2Stm03JgS/q/2Z+WA1sye8XsbJ9Tcl5OF/siIpJ32WUeOycnJ1q3bs21a9cwmUzUrVuXPn36UK9ePXtkzHFGD56AWy1r9hxtG5MQQ8uBLW+bd2/NpDXqu+cAZq+YfdvUOupjJyKSP923wRP/tGfPHnr37o2Xlxe7du2iadOmDB06lM8++8xel8jTAv0D7Vpw3e12ngq73C8np9YREZG8y26F3YwZM2jTpo31+b59++jatSsPPPAAI0aMsNdlJJP+up33vy129uy752hTcThaZnsX+znN0b6+IiJ5kV0KOz8/P0qVKpVhW/Xq1fn6668ZMWKEwxR2adfTuHntptEx7KJIgSK8PehtxkwaY72d9/ZTb1OkQJFsv8e5a+cy5vsx1qk43h70Nt1bdLdT8pzhiJkdib6+IiI5J+16Wqb3tUsfu9atW1OnTh0+/vjjDNuPHDlCjRo1uHHjRnYvkaP+6mM3o8+MHJtvzygJVxM4n3ie4r7F8ffO/qjkhKsJPPnzkxnmD3QyOTG5z2S7nD8nOGJmR6Kvr4hIzrpy5QqP//z4/etj9/7779OiRQvOnTvHc889R/Xq1bl27RoffvhhptZuzS2c3J1w877zWrGOqoR3CUoElrDb+eIuxt02KbTZYiY+NZ4S3va7jj05YmZHoq/v7eKvxHP20lkeKPwARQsWNTqOiDg4p9TMT2Jil8KuYcOGbNu2jeHDh9O0aVPrh7yHhwezZs2yxyXuC2dXZ1w87NbtME8KDgy+ve+eyYmgwKBc+7VzxMyORF/fjJbsWcK4JeOst6VHdBhBh1odjI4lIg7M2dU50/vaZR47gBo1arBu3TrOnTvHokWLWLBgAadPn6ZDB32g5SVFfYoyosMI6zxrf/3iKuqTe1slHDGzI9HX92/xSfHWog5utVyOWzKO+KR4g5NJXhWfFM+eU3v0MyZWdv9zOiAggPbt29v7tJKLdKjVgXrl6nH24lke8HvAIX6BO2JmR6Kv7y3RF6Nvn2bIYubsxbP59msiOUetw3InWW6x27dvH2az+d47/r+DBw+Slpb5UR2SuxX1KUrN0jUd6peVI2Z2JDn19XWkFomSfiVvXzXE5MQDfg8YlEjyKrUOy7/JcmFXq1YtLly4kOn9Q0NDiYqKyurlRCQfWrJnCY9/9TgvTX+Jx796nCV7lhgd6a50W1rul7u1Dkv+luVbsRaLhbfeegtPT89M7Z+amprVS4lIPvRvLRL1ytXL1YWSbkvL/fBX6/D/DlpS67BkubBr1qwZR44cyfT+oaGhFChQIKuXE5F8xpH7qxX1KZrrM4pj+6t1+H/72OnnTrJc2K1bt86OMUREMlKLhMjdqXVY7sRu050Ybfz48ZQuXRoPDw8aNGjA9u3bjY4kItmg/moi96ZBYfK/8sTsob/++isjR47km2++oUGDBnzxxReEhYVx5MgRAgICjI4nIlmkFgkREdvYZa1YozVo0IB69erx9ddfA2A2mylVqhTDhg3jtddeu+fxf60VO/PJmfj5++V0XBEREZFMu5hwkd4/9L5/a8UaKTU1lV27djFq1CjrNicnJ1q3bs3WrVvveExKSgopKSnW50lJSQBE/BCBBx45G1hERETEBje4kel97dLH7vr16yQnJ1ufnz59mi+++IIVK1bY4/R3lZCQQHp6OsWKFcuwvVixYsTExNzxmLFjx+Lr62t9lCpVKsdzioiIiOQ0u7TYde3ale7du/Pss89y+fJlGjRogKurKwkJCXz++ecMHjzYHpexm1GjRjFy5Ejr86SkJEqVKkXNJ2vqVqyIiIjkKhcTLsIPmdvXLoXd7t27GTduHACzZ8+mWLFi7Nmzhzlz5jB69OgcLez8/f1xdnYmNjY2w/bY2FgCAwPveIy7uzvu7u63bXd2dcbZzTlHcoqIiIhkhbNr5msTu9yKTU5OpmDBggCsWLGC7t274+TkRMOGDTl9+rQ9LvGv3NzcqFOnDqtXr7ZuM5vNrF69mtDQ0By9toiIiEhuYpfCrnz58vz++++cOXOG5cuX07ZtWwDi4uLuOXrDHkaOHMn333/PtGnTiIyMZPDgwVy7do0BAwbk+LVFREREcgu73IodPXo0jz/+OCNGjKBVq1bWlrIVK1ZQq1Yte1zirnr16kV8fDyjR48mJiaGmjVrsmzZstsGVIiIiIjkZXabxy4mJobz589To0YNnJxuNQRu374dHx8fKlWqZI9L5Ji/5rGb9cws/Ipq8ISIiIjkHhfjL9Lz2573dx67wMDA2wYr1K9f316nFxGRHBKfFE/0xWhK+pXU6h4iDs5ua8Vu3LiR8PBwQkNDOXv2LAA//fQTmzZtstclRETEzpbsWcLjXz3OS9Nf4vGvHmfJniV2O3d8Ujx7Tu0hPinebucUkbuzS2E3Z84cwsLCKFCgAHv27LGu6pCYmMiHH35oj0uIiIidxSfFM27JOMwWMwBmi5lxS8bZpRDLyYJRRP6dXQq7999/n2+++Ybvv/8eV1dX6/bGjRuze/due1xCRMTu8nuLUvTFaGtR9xezxczZi2ezdd6cLBhF7jdH+5ywSx+7I0eO0KxZs9u2+/r6cvnyZXtcQkTErpbsWWItPpxMTozoMIIOtToYHeu+KulXEieTU4bizsnkxAN+D2TrvHcrGPNrHz71Y3RMjvg5YZcWu8DAQI4fP37b9k2bNlG2bFl7XEJExG7UonRLUZ+ijOgwAifTrV8Ff/3iym7h8VfB+E/2KBgdlW5LOyZH/ZywS4vdoEGDGD58OD/88AMmk4lz586xdetWXnrpJd566y17XOK+SL+ZTtqNNKNjiEgOOx1z+o4tSlExURR2K2xQKmO0DWlLrZK1OHfpHCUKl6BowaLZ/hws7FaY4W2H898V/7W2dAxvO5zCboXz3Wds/JU7Fwe1StaiaEG13OVmuelzIv1meqb3tUth99prr2E2m2nVqhXJyck0a9YMd3d3XnrpJYYNG2aPS9wX5hQzqVdTjY4hIjkswC0Ak8nEP6fxdDI5UdStaL78DPA1+eLr5wtgt/ffskxLqvepzvnE8xT3LY6/t3++/NqePvcvxcG5KHwf8DUolWRGbvqcMKeY773T/7PbBMUAqampHD9+nKtXr1K5cmW8vb25fv06BQoUsNclcsRfExRv+HoDhYvkr7/WRfKruWvnMmbSGMxmM05OTrz91Nt0b9Hd6FiSx8RciCFsWFjGfoxOTiz/cjmBRQLvcqTYKuZCDFExUQQFBtnta5tbPicuXbhEs6HNMjVBsV0Lu39KSUlh/PjxfPLJJ8TExOTEJezmr8Juy+QtWnlCJB+JSYjh9PnTBBcPJtBfv2QlZ8xeMZvRE0Zbi4N3n3uXR9o+YnSsPGX2itmMHj/aeuv/3SH2+xrnhs+Ji/EXaTSwUc6vPJGSksI777zDypUrcXNz45VXXqFbt25MmTKFN954A2dnZ0aMGJGdS4iI5JhA/0CHKuhiEmI4de4UpUuUdqjc+d0jbR+hSe0mhhcHeVVMQoy1qINbt7pHTxhNk9pN7PK1drTPiWwVdqNHj+bbb7+ldevWbNmyhZ49ezJgwAC2bdvG559/Ts+ePXF2drZXVhGRfCsnWyTkbzlVPDtaceBITp07dXs/RrOZ0+dP58uvebYKu1mzZvHjjz/SpUsXDhw4QPXq1UlLS2Pv3r2YTCZ7ZRQRyddyukVCblHx7JhKlyh9+3yMTk4EFw82MJVxsjWPXXR0NHXq1AGgatWquLu7M2LECBV1IiJ2dLcWCbGPfyueYxJydx9xudUa+u6Qd3Fy+v/5GP+/H2N+/aMnWy126enpuLm5/X0yFxe8vb2zHUpERP6mFomcp9t5jk39GP+WrcLOYrHQv39/3N3dAbhx4wbPPvssXl5eGfabO3dudi4jIpKv/dUi8b8jK/PzLy97U/Hs+NSP8ZZsFXb9+vXL8Dw8PDxbYWx16tQp3nvvPdasWUNMTAwlSpQgPDycN954I0NLooiIo1OLRM5S8Sx5RbYKuylTptgrR5YcPnwYs9nMt99+S/ny5Tlw4ACDBg3i2rVrfPbZZ4ZmExGxN7VI5CwVz5IX2GVJMaO0a9eOdu3aWZ+XLVuWI0eOMHHiRBV2IiJiMxXP4ugcurC7k8TERPz87r56REpKCikpKdbnSUlJAKSlpJF6Lf+tZSgiIiL3ly1LoKWlpGX6vHmqsDt+/DhfffXVPVvrxo4dy5gxY27bnnY9jRvcyKl4IiIiIszfPJ+xM8Za50wc9fgoujbu+q/7p13PfGGXY2vFZsdrr73Gxx9/fNd9IiMjqVSpkvX52bNneeihh2jevDmTJk2667F3arErVaoUsVGx91yDTURERCSros9GU7FaRczmv0dgOzs7c3jfYUo+UPKOxyQlJVEsqFjOrxWbU1588UX69+9/133Kli1r/fe5c+do0aIFjRo14rvvvrvn+d3d3a1TtPyTh68HHj4eNucVERERyYwzu89kKOrg1rzA0XHRlK9c/o7HpJoy300sVxZ2RYsWpWjRopna9+zZs7Ro0YI6deowZcoU68zTIiIiIrlNhQoVcHJyuq3Frnz5Oxd1tnLoKujs2bM0b96coKAgPvvsM+Lj44mJiSEmRkvAiIiISO5TsmRJvvvuO5ydnYFbRd23335LyZJ3vg1rq1zZxy6zpk6dyoABA+74mi1vKykpCV9f30zduxYRERHJrujoaI4fP0758uXvWdTZUqc4dGFnLyrsRERE/hYdHc2xY8eoUKGC3VqSJOtsqVMc+lasiIiI2NfkyZMJDg6mZcuWBAcHM3nyZKMjiQ3UYoda7EREROBWS11wcPBtHftPnTqlljsDqcVOREREbHbs2LE7TsVx/PhxgxKJrVTYiYiICPD3VBz/ZM+pOCTnqbATERERIOen4pCcpz52qI+diIjIP9kyFYfkPFvqlFy58sT99ldtm5SUZHASERER4/n4+FC7dm1Avxtzg7++B5lpi1NhB1y5cgWAUqVKGZxERERE5M6uXLmCr6/vXffRrVjAbDZz7tw5ChYsiMlkMjqOXSUlJVGqVCnOnDmj28wORt87x6XvnePS985x5eXvncVi4cqVK5QoUeK2wS3/Sy12gJOTU57vQ+Dj45PnftDzC33vHJe+d45L3zvHlVe/d/dqqfuLRsWKiIiI5BEq7ERERETyCBV2eZy7uztvv/027u7uRkcRG+l757j0vXNc+t45Ln3vbtHgCREREZE8Qi12IiIiInmECjsRERGRPEKFnYiIiEgeocIuH0pJSaFmzZqYTCYiIiKMjiP3cOrUKQYOHEiZMmUoUKAA5cqV4+233yY1NdXoaHIH48ePp3Tp0nh4eNCgQQO2b99udCS5h7Fjx1KvXj0KFixIQEAA3bp148iRI0bHkiz46KOPMJlMvPDCC0ZHMYwKu3zolVdeoUSJEkbHkEw6fPgwZrOZb7/9loMHDzJu3Di++eYbXn/9daOjyf/49ddfGTlyJG+//Ta7d++mRo0ahIWFERcXZ3Q0uYv169czZMgQtm3bxsqVK7l58yZt27bl2rVrRkcTG+zYsYNvv/2W6tWrGx3FUBoVm88sXbqUkSNHMmfOHKpUqcKePXuoWbOm0bHERp9++ikTJ07kzz//NDqK/EODBg2oV68eX3/9NXBrucJSpUoxbNgwXnvtNYPTSWbFx8cTEBDA+vXradasmdFxJBOuXr1K7dq1mTBhAu+//z41a9bkiy++MDqWIdRil4/ExsYyaNAgfvrpJzw9PY2OI9mQmJiIn5+f0THkH1JTU9m1axetW7e2bnNycqJ169Zs3brVwGRiq8TERAD9H3MgQ4YMoWPHjhn+/+VXWis2n7BYLPTv359nn32WunXrcurUKaMjSRYdP36cr776is8++8zoKPIPCQkJpKenU6xYsQzbixUrxuHDhw1KJbYym8288MILNG7cmKpVqxodRzJh5syZ7N69mx07dhgdJVdQi52De+211zCZTHd9HD58mK+++oorV64watQooyPL/8vs9+6fzp49S7t27ejZsyeDBg0yKLlI3jVkyBAOHDjAzJkzjY4imXDmzBmGDx/Ozz//jIeHh9FxcgX1sXNw8fHxXLhw4a77lC1blkcffZSFCxdiMpms29PT03F2dqZPnz5MmzYtp6PK/8js987NzQ2Ac+fO0bx5cxo2bMjUqVNxctLfZblJamoqnp6ezJ49m27dulm39+vXj8uXLzN//nzjwkmmDB06lPnz57NhwwbKlCljdBzJhN9//52HH34YZ2dn67b09HRMJhNOTk6kpKRkeC0/UGGXT0RFRZGUlGR9fu7cOcLCwpg9ezYNGjSgZMmSBqaTezl79iwtWrSgTp06TJ8+Pd99UDmKBg0aUL9+fb766ivg1m29oKAghg4dqsETuZjFYmHYsGHMmzePdevWUaFCBaMjSSZduXKF06dPZ9g2YMAAKlWqxKuvvpovb6erj10+ERQUlOG5t7c3AOXKlVNRl8udPXuW5s2bExwczGeffUZ8fLz1tcDAQAOTyf8aOXIk/fr1o27dutSvX58vvviCa9euMWDAAKOjyV0MGTKEGTNmMH/+fAoWLEhMTAwAvr6+FChQwOB0cjcFCxa8rXjz8vKiSJEi+bKoAxV2IrneypUrOX78OMePH7+tCFeDe+7Sq1cv4uPjGT16NDExMdSsWZNly5bdNqBCcpeJEycC0Lx58wzbp0yZQv/+/e9/IJFs0K1YERERkTxCva9FRERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERAzSvHlzTCYTJpOJiIgIANatW4fJZOLy5cs5eu133nnHeu0vvvgiR68lIvePCjsRcQj9+/e3FiL/fLRr187oaNkyaNAgzp8/b5d1LWNjY3F1dWXmzJl3fH3gwIHUrl0bgJdeeonz589rrWiRPEaFnYg4jHbt2nH+/PkMj19++SVHr5mampqj5/f09CQwMBAXl+wv3V2sWDE6duzIDz/8cNtr165d47fffmPgwIEAeHt7ExgYiLOzc7avKyK5hwo7EXEY7u7uBAYGZngULlzY+rrJZGLSpEk8/PDDeHp6UqFCBRYsWJDhHAcOHKB9+/Z4e3tTrFgxnnjiCRISEqyvN2/enKFDh/LCCy/g7+9PWFgYAAsWLKBChQp4eHjQokULpk2bZr1leu3aNXx8fJg9e3aGa/3+++94eXlx5cqVLL/n5ORk2rdvT+PGja23ZydNmkRISAgeHh5UqlSJCRMmWPcfOHAgq1evJioqKsN5Zs2aRVpaGn369MlyFhHJ/VTYiUieMmbMGB599FH27dtHhw4d6NOnDxcvXgTg8uXLtGzZklq1arFz506WLVtGbGwsjz76aIZzTJs2DTc3NzZv3sw333zDyZMneeSRR+jWrRt79+7lmWee4Y033rDu7+XlRe/evZkyZUqG80yZMoVHHnmEggULZum9XL58mTZt2mA2m1m5ciWFChXi559/ZvTo0XzwwQdERkby4Ycf8tZbbzFt2jQAOnToQLFixZg6deptWbp3706hQoWylEVEHIRFRMQB9OvXz+Ls7Gzx8vLK8Pjggw+s+wCWN9980/r86tWrFsCydOlSi8Visbz33nuWtm3bZjjvmTNnLIDlyJEjFovFYnnooYcstWrVyrDPq6++aqlatWqGbW+88YYFsFy6dMlisVgsf/zxh8XZ2dly7tw5i8ViscTGxlpcXFws69at+9f39NBDD1mGDx+eYdvatWstgCUyMtJSvXp1S48ePSwpKSnW18uVK2eZMWNGhmPee+89S2hoqPX5a6+9ZilTpozFbDZbLBaL5fjx4xaTyWRZtWrVbRmCg4Mt48aN+9eMIuJY1GInIg6jRYsWREREZHg8++yzGfapXr269d9eXl74+PgQFxcHwN69e1m7di3e3t7WR6VKlQA4ceKE9bg6depkOOeRI0eoV69ehm3169e/7XmVKlWsLWfTp08nODiYZs2aZem9tmnThvLly/Prr7/i5uYG3Oond+LECQYOHJjhPbz//vsZ8j/55JOcPHmStWvXArda60qXLk3Lli2zlEVEHEf2e+uKiNwnXl5elC9f/q77uLq6ZnhuMpkwm80AXL16lc6dO/Pxxx/fdlzx4sUzXCcrnnrqKcaPH89rr73GlClTGDBgACaTKUvn6tixI3PmzOHQoUNUq1bNmh/g+++/p0GDBhn2/+cgiAoVKtC0aVOmTJlC8+bN+fHHHxk0aFCWs4iI41BhJyL5Ru3atZkzZw6lS5e2aRRqxYoVWbJkSYZtO3bsuG2/8PBwXnnlFb788ksOHTpEv379spz1o48+wtvbm1atWrFu3ToqV65MsWLFKFGiBH/++ec9B0EMHDiQwYMH06VLF86ePUv//v2znEVEHIduxYqIw0hJSSEmJibD458jWu9lyJAhXLx4kccee4wdO3Zw4sQJli9fzoABA0hPT//X45555hkOHz7Mq6++ytGjR/ntt9+sgxP+2QpWuHBhunfvzssvv0zbtm2zPUfcZ599Rp8+fWjZsiWHDx8Gbg0OGTt2LF9++SVHjx5l//79TJkyhc8//zzDsT179sTV1ZVnnnmGtm3bUqpUqWxlERHHoMJORBzGsmXLKF68eIZHkyZNMn18iRIl2Lx5M+np6bRt25Zq1arxwgsvUKhQIZyc/v3jsEyZMsyePZu5c+dSvXp1Jk6caB0V6+7unmHfgQMHkpqaypNPPpm1N/k/xo0bx6OPPkrLli05evQoTz31FJMmTWLKlClUq1aNhx56iKlTp1KmTJkMx3l6etK7d28uXbpktywikvuZLBaLxegQIiKO5oMPPuCbb77hzJkzGbb/9NNPjBgxgnPnzlkHPfyb5s2bU7NmTUOX9CpdujQvvPACL7zwgmEZRMR+1GInIpIJEyZMYMeOHfz555/89NNPfPrppxn60CUnJ3PixAk++ugjnnnmmXsWdf88r7e3N/v378+p6Hf04Ycf4u3tfdtExiLi2NRiJyKSCSNGjODXX3/l4sWLBAUF8cQTTzBq1CjrIIx33nmHDz74gGbN/q+dO7RhAIahKOgBIgWFZpTunKFCQ0PLSlvQFnzdDWDTJ1nyo9Za1Vp7O3PvXffeqqqac34cg99wznk9bh5jVO/9b7uB3xF2AAAhnGIBAEIIOwCAEMIOACCEsAMACCHsAABCCDsAgBDCDgAghLADAAgh7AAAQjwBQ9rRyfLvLZwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pseudo_data = np.random.normal(0, 2, 5000)\n", + "\n", + "fig_fit = plt.figure(constrained_layout=True)\n", + "gs = fig_fit.add_gridspec(5, 5, hspace=0)\n", + "\n", + "main_axis = fig_fit.add_subplot(gs[:4, :])\n", + "res_axis = fig_fit.add_subplot(gs[4:, :], sharex=main_axis)\n", + "fig_fit.tight_layout()\n", + "\n", + "entries1, edges1, _ = main_axis.hist(pseudo_data, bins=25, range=(-5,5), histtype='step', color='k')\n", + "center1 = edges1[:-1] + np.diff(edges1)/2\n", + "\n", + "residuals1 = (entries1 - peak(center1, 400, 0.2, 2))/np.sqrt(entries1)\n", + "\n", + "x = np.arange(-5, 5, 0.1)\n", + "\n", + "main_axis.plot(x, peak(x, 400, 0.2, 2), color='purple')\n", + "main_axis.set_ylabel('Number of entries per bin')\n", + "main_axis.xaxis.set_tick_params(direction='inout')\n", + "main_axis.tick_params(axis='x', labelcolor=(0, 0, 0, 0))\n", + "main_axis.set_xlim(-5, 5)\n", + "\n", + "res_axis.set_xlabel('Energy [keV]')\n", + "res_axis.set_ylabel('Res [$\\sigma$]')\n", + "res_axis.set_ylim(-3, 3)\n", + "res_axis.set_yticks([-2, 0, 2])\n", + "res_axis.fill_between((-5, 5), -1, 1, alpha=0.3, color='purple')\n", + "res_axis.fill_between((-5, 5), -2, 2, alpha=0.3, color='purple')\n", + "res_axis.axhline(0, color='purple')\n", + "res_axis.set_xlim(-5, 5)\n", + "res_axis.plot(center1, \n", + " residuals1,\n", + " color='k', marker='.', ls=''\n", + " )\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "48e95a88-0742-4221-a716-17dacfc02823", + "metadata": {}, + "source": [ + "Zusätzlich zu den Fit-Residuen bietet das $\\chi^2$ selbst einen Weg, um die „goodness-of-fit“ unseres Model bestimmen zu können ...\n", + "\n", + "### $\\chi^2$:" + ] + }, + { + "cell_type": "markdown", + "id": "fe1789cf-7ed3-4db3-a0ae-9e563a9dc85e", + "metadata": {}, + "source": [ + "Wie gut fittet unsere obige Funktion unsere Messdaten? Sehr gut? Gut? Befriedigend? Oder doch eher schlecht? Wäre es nicht gut, ein Maß für die Güte des Fits zu haben? Wie könnte ein solches Maß aussehen?\n", + "\n", + "Sie haben das entscheidende Kriterium bereits kennengelernt: bei der Methode der kleinsten Quadrate geht es darum, das $\\chi^2$ zu minimieren. Gucken wir uns hierzu erst noch einmal an, wie sich das $\\chi^2$ berechnet:\n", + "\n", + "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", + "\n", + "Bei der Minimierung werden dabei Werte mit geringerer Unsicherheit bevorzugt, d.h. stärker gewichtet (s. Bild unten).\n", + "\n", + "
\n", + "\"{{\n", + "
\n", + "\n", + "Damit man für einen gegebenen Datensatz nicht hunderte von verschiedenen Funktionen durchprobieren muss, gibt es für das $\\chi^2$ eine allgemeine Faustregel, welche den berechneten $\\chi^2$-Wert mit der Anzahl unserer Freiheitsgrade vergleicht. Die Anzahl an Freiheitsgrade ist gemeinhin gegeben als *Anzahl der Messwerte - Anzahl der Funktionsparameter* ($m - n$).\n", + "\n", + "1. Sofern $\\chi^2/\\text{ndof} >> 1$: sollte die Hypothese bzw. die Fitfunktion angezweifelt werden. Sie beschreibt in diesem Fall die Messdaten nur unzureichend. (Bzw. sollte $\\chi^2/\\text{ndof} > 1$ kann dies auch bedeuten, dass die Unsicherheiten unterschätzt sind)\n", + "2. Sofern $\\chi^2/\\text{ndof} \\approx 1$: beschreibt die Hypothese bzw. die Fitfunktion die Daten wie erwartet und wird nicht abgelehnt. \n", + "3. Falls $\\chi^2/\\text{ndof} << 1$ beschreibt die Hypothese bzw. die Fitfunktion die Daten wesentlich besser als erwartet. In diesem Fall heißt das nicht automatisch, dass unsere Hypothese falsch ist, aber man sollte überprüfen, ob die gemessenen Fehler nicht überschätzt worden sind (oder eine Korrelation zwischen den Messfehlern vorliegt). \n", + "\n", + "Sofern Sie eine Arbeit schreiben und Ihre **Goodness-of-the-Fit** ($\\chi^2/\\text{ndof}$) angeben wollen, so geben Sie immer beides an, das $\\chi^2$ und die Anzahl an Freiheitsgraden *ndof*. Beide Werte getrennt haben einen größeren Informationsgehalt als der resultierende Quotient (Genaueres lernen Sie z.B. in der Vorlesung *Statistik, Datenanalyse und Simulationen* im Master).\n", + "\n", + "Sehen wir uns hierzu nochmal unseren Doppelpeakfit etwas genauer an. `iminuit` berechnet hier für uns bereits das reduzierete $\\chi^2$." + ] + }, + { + "cell_type": "code", + "execution_count": 525, + "id": "fa85a19a-f066-4567-abb0-6283ae1bc90b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 530
EDM = 1.61e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 317 7
1 A_p2 580 7
2 mu_p1 53.24 0.07
3 mu_p2 60.43 0.05
4 sigma_p1 1.99 0.05
5 sigma_p2 2.80 0.04
6 A_bkg 147 14
7 tau_bkg 34.1 2.0 0
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.623) -0.0015 (-0.680) -0.0513 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.623) 0.00297 -0.0012 (-0.518) -0.1409 (-0.179) 0.0155 (0.142)
sigma_p2 -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0816 (0.137) -0.0142 (-0.172)
A_bkg -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0513 (-0.068) -0.1409 (-0.179) 0.0816 (0.137) 209 -28 (-0.965)
tau_bkg 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0155 (0.142) -0.0142 (-0.172) -28 (-0.965) 4.01
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:40:53.558660\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 530 │\n", + "│ EDM = 1.61e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", + "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", + "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", + "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", + "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", + "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0513 0.0062 │\n", + "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1409 0.0155 │\n", + "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0816 -0.0142 │\n", + "│ A_bkg │ -0 -0 -0.057 -0.0513 -0.1409 0.0816 209 -28 │\n", + "│ tau_bkg │ 0 0 0.010 0.0062 0.0155 -0.0142 -28 4.01 │\n", + "└──────────┴─────────────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 525, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mi" + ] + }, + { + "cell_type": "markdown", + "id": "9f464246-d333-4143-baf0-aa2a632c5be4", + "metadata": {}, + "source": [ + "Eine eigene Abschätzung für das $\\chi^2$ ergibt:" + ] + }, + { + "cell_type": "code", + "execution_count": 526, + "id": "b0ad46ce-f541-40bb-898c-154ad5f94787", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "106.36771764289108 112 0.9497117646686704\n" + ] + } + ], + "source": [ + "def chi_square_ndof(x_values, y_values, dy_values, fit_model, minuit):\n", + " ndof = len(x_values) - len(minuit.values)\n", + " chi2 = np.sum((y_values - fit_model(x_values, *minuit.values))**2/dy_values**2)\n", + " return chi2, ndof\n", + "\n", + "\n", + "chi_square, ndof = chi_square_ndof(center, entries, np.sqrt(entries), fit_model, mi)\n", + "print(chi_square, ndof, chi_square/ndof)" + ] + }, + { + "cell_type": "markdown", + "id": "295031f4-6d18-411c-b5dd-a62ed97da7f1", + "metadata": {}, + "source": [ + "### Hypothesen-Test mittels $\\chi^2$\n", + "Wie schon im vorherigen Abschnitt erwähnt, kann man das $\\chi^2$ auch dazu verwenden, die Gültigkeit des gewählten Models zu prüfen.\n", + "Hierzu schauen wir uns die $\\chi^2$-Verteilung an. Der einzige freie Parameter ist die Anzahl der Freiheitsgrade. Die Anzahl der Freiheitsgrade ist auch gleichzeitig der Erwartungswert der $\\chi^2$-Verteilung. In unserem Beispiel oben ist die Anzahl der Freiheitsgrade 112 und die entsprechende Verteilung sieht wie folgt aus..." + ] + }, + { + "cell_type": "code", + "execution_count": 527, + "id": "8c11bc85-4e25-4d40-8397-257414d48a1f", + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.stats import chi2\n", + "# chi_distribution = lambda x, ndof: chi2.pdf(x, ndof)" + ] + }, + { + "cell_type": "code", + "execution_count": 528, + "id": "76836863-109c-4e7c-989e-04b62ec4ca9d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXg0lEQVR4nO3deXhU5d0+8PvMTGYm+0oyJGQDAmEJBAiE4ILWaKi44PKKFIVS6tIKoumriBWwtRWXQlHhlVf7av1ZEIulFJFSMSCgiRCysIYQ1gSyb5M9meX8/pjMwEiADJnMmeX+XNdc6syZM98TdXLzPN/zPIIoiiKIiIiIqNdkUhdARERE5GoYoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERERENlJIXYA7MhqNKC8vh7+/PwRBkLocIiIi6gVRFNHc3IzIyEjIZNceY2KA6gfl5eWIjo6WugwiIiK6AWVlZRg0aNA1j2GA6gf+/v4ATP8CAgICJK6GiIiIeqOpqQnR0dGW3+PXwgDVD8zTdgEBAQxQRERELqY37TdsIiciIiKyEQMUERERkY0YoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERERENmKAIiIiIrIRAxQRERGRjRigiIiIiGzEAEVERERkIwYoIiIiIhsxQBER2eBCQxv2nqxBTXOn1KUQkYQUUhdAROTscs/V4/PcMvxwpg4XGtotzw8e4IvU+FDMnRKLRE2AhBUSkaMxQBERXYXBKOK9XSV4J6sEomh6TiYAob4q1LZ04kxNK87UtOKLvDL89u4RmDslDoIgSFs0ETkEAxQRUQ+qmzvw3MZCZJ+uAwBMHhyCtMGhGDLAD2ovOVo69SipasbeklocuajFq18ex3en6vD2w2MQ7KuUuHoi6m+CKJr/XEX20tTUhMDAQGi1WgQEcFifyNVUN3Xg/rXfo0LbAaVChscnxyJtcGiPx4qiiKwT1fgi7wL0RhGDw3yx+ddTEOTDEEXkamz5/c0mciKiy3TpjfjV+nxUaDsQ4a/CK3ePuGp4AgBBEJA+IgIv3z0CIT5KnKltxa/X50NnMDqwaiJyNAYoIqLL/O7LY8g73wBvLzmevSMBkUHevXpfTIgPFt4xFCqFDNmn67B86zFwgJ/IfTFAERF123igFOv3l0IA8MQt8YgIUNv0/uhgHzxxy2AIADbsL8Vfs8/1R5lE5AQYoIiIABRXNmPpv44CAO5PjsSYQUE3dJ7k6CA8PGEQAOC1bcdx9KLWXiUSkRNhgCIijyeKIn6/7Rh0BhFjBgVietLAPp3vrpERSIkNhlEEfrvlKIxGTuURuRsGKCLyeDuPV+H7U3VQyAT8bFJMn9dyEgQBj06MhtpLhkNljdiYW2anSonIWTBAEZFH69Qb8MevigAAd42KQJifyi7nDfJRYkZyFADgzR0nUNfCrV+I3AkDFBF5tL9+fw7n69sQ6O2Fu0f3berux24fHo7oYG9o23V4498n7HpuIpIWAxQReaya5k68t+sUAODBcVFQe8nten65TMBjk2MBAJvyLiDvfINdz09E0mGAIiKPtW7PabR06jFyYADShlx9scy+GDLADzd1n/udrJJ++QwicjwGKCLySNp2HTYeKAUA/Oq2wZD14ybA94yJhEwA9p6sQWFZY799DhE5DgMUEXmkjQdK0dplwPAI/2tu1WIPA/xVmNz9GWt2cRSKyB0wQBGRx9EZjJZVwuffEt/nZQt64+7RAyEA+KaoGsfKubgmkatjgCIij/PV4QpUaDswwF+F+5MjHfKZmkA1JsaFAADW7j7lkM8kov7DAEVEHkUURXyw9wwAYG5aLFQK+955dy3mFc7/fbQSJVXNDvtcIrI/Bigi8ig5p+twvKIJ3l5yzE6NdehnRwV7Y1xMEEQRlhBHRK6JAYqIPMpH358DAPxXyiAE+yod/vkZIzUAgK2HyqFt0zn884nIPpw+QK1duxZxcXFQq9VITU3FgQMHrnn8pk2bkJiYCLVajaSkJGzfvt3ymk6nw+LFi5GUlARfX19ERkZizpw5KC8vtzpHXFwcBEGwerzxxhv9cn1E5Dg1zZ3YXVwNAJiTFidJDUMG+GJQsDc69UZsyuMeeUSuyqkD1Oeff47MzEwsX74c+fn5GDt2LDIyMlBdXd3j8dnZ2Zg1axbmz5+PgoICzJgxAzNmzMDRo0cBAG1tbcjPz8fSpUuRn5+PzZs3o7i4GPfdd98V5/r973+PiooKy2PhwoX9eq1E1P/+VXgRBqOI5OggDA33k6QGQRBw27ABAIAN+0shiqIkdRBR3wiiE//fm5qaiokTJ2LNmjUAAKPRiOjoaCxcuBAvvfTSFcfPnDkTra2t2LZtm+W5yZMnIzk5GevWrevxM3JzczFp0iScP38eMTExAEwjUM899xyee+65G6q7qakJgYGB0Gq1CAgIuKFzEJF9iaKIn76zDycqm/GHGaMtW6wAQF1LJwpKGx1WS4fOgP/+4hA6dEas/2Uqbhoa5rDPJqKrs+X3t9OOQHV1dSEvLw/p6emW52QyGdLT05GTk9Pje3JycqyOB4CMjIyrHg8AWq0WgiAgKCjI6vk33ngDoaGhGDduHN5++23o9fqrnqOzsxNNTU1WDyJyLsfKm3CishlKhQz3jnHM0gVXo/aSWxbv/NsP5yWthYhujNMGqNraWhgMBkRERFg9HxERgcrKyh7fU1lZadPxHR0dWLx4MWbNmmWVNJ999lls3LgRu3fvxlNPPYXXX38dL7744lVrXbFiBQIDAy2P6Ojo3l4mETnIP/IvAADuHBmBQB8viasBbhsWDgD4+ngVqpo6JK6GiGzltAGqv+l0OjzyyCMQRRHvv/++1WuZmZm47bbbMGbMGDz99NNYuXIl3nvvPXR2dvZ4riVLlkCr1VoeZWVsDCVyJl16I/5VaLpZ5OHxgySuxiQq2BsJ4X4wGEV81r0nHxG5DqcNUGFhYZDL5aiqqrJ6vqqqChqNpsf3aDSaXh1vDk/nz5/Hzp07rzvPmZqaCr1ej3PnzvX4ukqlQkBAgNWDiJzH7uJq1Ld2YYC/CrckOE+/kbmZfNPBCzAanbYdlYh64LQBSqlUYsKECcjKyrI8ZzQakZWVhbS0tB7fk5aWZnU8AOzcudPqeHN4KikpwTfffIPQ0OtvIlpYWAiZTIbw8PAbvBoiktI/8kzTdw+Mi4JC7jxfe+NiguHtJcfFxnbknquXuhwisoFC6gKuJTMzE3PnzkVKSgomTZqE1atXo7W1FfPmzQMAzJkzB1FRUVixYgUAYNGiRZg6dSpWrlyJ6dOnY+PGjTh48CA++OADAKbw9PDDDyM/Px/btm2DwWCw9EeFhIRAqVQiJycH+/fvx+233w5/f3/k5OTg+eefx2OPPYbg4GBpfhBEdMO07TrL2k8POcn0nZlSIcOE2GB8d6oWWwovInXw9f9AR0TOwakD1MyZM1FTU4Nly5ahsrISycnJ2LFjh6VRvLS0FDLZpT9NTpkyBRs2bMArr7yCl19+GQkJCdiyZQtGjx4NALh48SK2bt0KAEhOTrb6rN27d+O2226DSqXCxo0b8eqrr6KzsxPx8fF4/vnnkZmZ6ZiLJiK72n2iGjqDiKHhfhiu8Ze6nCtMHhyC707VYtvhCiy/dxTUXo7bm4+IbpxTrwPlqrgOFJHzeOrTg/jPsSos/MlQ/Oau4T0e4+h1oC5nFEUs/sdhNLTpsO6x8Zg2eqAkdRCRm6wDRUTUV21deuw5WQMAmDa655tPpCYTBKTGm6buNudflLgaIuotBigiclt7imvQoTMiOsQbIwc672iweVHN3cXVaGzrkrgaIuoNBigicls7jpluEvnp6IEQBEHiaq4uKtgb0cHe0BlEfHWkQupyiKgXGKCIyC116g3YVWS6+y5jlHNO311ucvco1JYCTuMRuQIGKCJyS9mn6tDcqUdEgArjooOkLue6UuNDIADIPdeA8sZ2qcshoutggCIit/Tvo6apsIxRGshkzjt9Zxbko8TQcD8AwI6jPe/fSUTOgwGKiNyO3mDEzuOmbZ2c9e67nkyINS3WywBF5PwYoIjI7eSdb0BDmw7BPl6YFBcidTm9Nj7GFKByz9ejurlD4mqI6FoYoIjI7XzbvfbT1GEDnGrvu+sJ8VUiPswXogh8fazq+m8gIsm4zjcLEVEv7T5huvvutuGutwH4+JggAJzGI3J2DFBE5FYqtR04UdkMQQBuHTZA6nJsZu6DyjlTh4ZWLqpJ5KwYoIjIrew5aRp9GjsoCCG+SomrsV24vxrRwd4wGEXsLOI0HpGzYoAiIrfybbGp/+m24a43+mRmbibnNB6R82KAIiK3oTMY8V1JLQDX7H8yG989jfddSS2aO3QSV0NEPWGAIiK3kXe+Ac2deoT4KjEmKlDqcm5YZKAamgA1ugxGy4gaETkXBigichvmsHFrQphLrD5+NYIgYGy0KQDu6r6jkIicCwMUEbmNb4tNYeP2RNedvjMbOygIALC7uBoGoyhtMUR0BQYoInILFdp2y/IFtyS4bgO52ZABfvBRytHYpkN+aYPU5RDRjzBAEZFb2Nu9+rirLl/wY3KZgKTuPq6sIk7jETkbBigicgvfn6oDANySECZxJfZjnsbL4npQRE6HAYqIXJ4oisg+bQpQU4a4T4AaFRkAmQCUVLegtK5N6nKI6DIMUETk8kqqW1Db0gmVQobxsUFSl2M3vioFhob7AQCyTnAUisiZMEARkcvLPmVaPHNiXAhUCrnE1diXeRqPyxkQORcGKCJyed+bp++Ghkpcif2ZA9QPZ+q4KjmRE2GAIiKXZjCK+OGMKUDd5Eb9T2YRASqE+6ugM4jY171NDRFJjwGKiFza0YtaNHfo4a9WYLQLb99yNYIgYMwg03Xt4bYuRE6DAYqIXNr3p02jMpMHh0Luwtu3XMvoyO4AdbIGoshVyYmcAQMUEbm0nNPm6Tv3638yGxbhDy+5gMqmDpRUt0hdDhGBAYqIXFin3oDcc/UAgClD3a//yUypkGFYhD8ATuMROQsGKCJyWQWljejQGRHmp0JC93pJ7so8jbe3hAGKyBkwQBGRyzKv/zRlSCgEwT37n8xGRwUAAPafqUdbl17iaoiIAYqIXNYPZ03Td2lu3P9kpglQI8RXiS6DEfvP1EtdDpHHY4AiIpfUqTegsKwRAJAaHyJtMQ4gCAJGR5pGofac5DQekdQYoIjIJR2+oEWX3ogwPyXiw3ylLschRpn7oBigiCTHAEVELulA9/TdpPgQt+9/Mhsx0B8yAThT24qy+japyyHyaAxQROSSzAFqYpz7T9+Z+SgVGDLAdLchp/GIpMUARUQuR28wIu98AwDTCJQnGdXdB8VpPCJpMUARkcspqmhGS6dp/7tETYDU5TiUuQ8q50wd9AajxNUQeS4GKCJyOfvPmrZvSYkNdtv9764mNsQHPko5mjv0OHJRK3U5RB6LAYqIXI55+5ZJ8e6//tOPyWQCEjWmbV2+715IlIgcjwGKiFyKKIqX3YEXLHE10hgx0DRt+R0DFJFkGKCIyKWcqm5BQ5sOKoUMSVFBUpcjiZHdASr/fCO3dSGSCAMUEbmUA93Td+NjgqFUeOZXWLi/CqHd27rknmuQuhwij+SZ3z5E5LIs6z952PIFlxMEwTKNxz4oImkwQBGRSznYPeIyyYMW0OyJeRpvXwkDFJEUGKCIyGVUaNtxsbEdMgEYFxMkdTmSMt+JV1TRhNqWTomrIfI8DFBE5DLyzzcCMN2F5qtSSFuMxAK8vRAd7A0AyD5dJ3E1RJ6HAYqIXIZ5+5YJsZ65fMGPWfqgOI1H5HAMUETkMvJKGaAuN5LrQRFJhgGKiFxCh86AY91bl4yPYYACgIRwP8gFARcb21FW3yZ1OUQehQGKiFzC4Qta6I0iwv1VGNTd++PpVF5yxIX5AABy2AdF5FAMUETkEi7vfxIEz9pA+FoSNaZpvJwzDFBEjsQARUQugQ3kPTMvZ/DDmTqIoihxNUSegwGKiJyeKIrI724gH88AZWXwAF8oZAIqtB04X8c+KCJHYYAiIqd3rq4N9a1dUCpkGBUZIHU5TkWlkCM+zBcAp/GIHMnpA9TatWsRFxcHtVqN1NRUHDhw4JrHb9q0CYmJiVCr1UhKSsL27dstr+l0OixevBhJSUnw9fVFZGQk5syZg/Lycqtz1NfXY/bs2QgICEBQUBDmz5+PlpaWfrk+Iro+8/TdmKhAqBRyiatxPuZpPDaSEzmOUweozz//HJmZmVi+fDny8/MxduxYZGRkoLq6usfjs7OzMWvWLMyfPx8FBQWYMWMGZsyYgaNHjwIA2trakJ+fj6VLlyI/Px+bN29GcXEx7rvvPqvzzJ49G8eOHcPOnTuxbds27N27F08++WS/Xy8R9Yz9T9c2nH1QRA4niE78f1tqaiomTpyINWvWAACMRiOio6OxcOFCvPTSS1ccP3PmTLS2tmLbtm2W5yZPnozk5GSsW7eux8/Izc3FpEmTcP78ecTExKCoqAgjR45Ebm4uUlJSAAA7duzA3XffjQsXLiAyMvK6dTc1NSEwMBBarRYBAZxuIOqrjD/vRXFVMz54fALuGqWx+/nrWjpRUNpo9/M6is5gxMLPCqA3isj6zVQMGeAndUlELsmW399OOwLV1dWFvLw8pKenW56TyWRIT09HTk5Oj+/JycmxOh4AMjIyrno8AGi1WgiCgKCgIMs5goKCLOEJANLT0yGTybB///4ez9HZ2YmmpiarBxHZR1OHDiermwGwgfxqvOQyS2jiNB6RYzhtgKqtrYXBYEBERITV8xEREaisrOzxPZWVlTYd39HRgcWLF2PWrFmWpFlZWYnw8HCr4xQKBUJCQq56nhUrViAwMNDyiI6O7tU1EtH1Hb2ghSgCg4K9Eeankrocp2Xpg2IjOZFDOG2A6m86nQ6PPPIIRFHE+++/36dzLVmyBFqt1vIoKyuzU5VEdOiCafuWsYOCpC3EyZn7oPazD4rIIRRSF3A1YWFhkMvlqKqqsnq+qqoKGk3PPRAajaZXx5vD0/nz57Fr1y6reU6NRnNFk7per0d9ff1VP1elUkGl4p+MifrDobJGAMCYQYHSFuLk4sN8oZTLUNvShVPVLUiI8Je6JCK35rQjUEqlEhMmTEBWVpblOaPRiKysLKSlpfX4nrS0NKvjAWDnzp1Wx5vDU0lJCb755huEhoZecY7Gxkbk5eVZntu1axeMRiNSU1PtcWlEZIPDFxoBAGOjgyStw9mZ+qC4HhSRozhtgAKAzMxMfPjhh/jkk09QVFSEX/3qV2htbcW8efMAAHPmzMGSJUssxy9atAg7duzAypUrceLECbz66qs4ePAgFixYAMAUnh5++GEcPHgQ69evh8FgQGVlJSorK9HV1QUAGDFiBKZNm4YnnngCBw4cwPfff48FCxbg0Ucf7dUdeERkPzXNnSjXdkAQgNFRHIG6nuFcD4rIYZx2Cg8wLUtQU1ODZcuWobKyEsnJydixY4elUby0tBQy2aUMOGXKFGzYsAGvvPIKXn75ZSQkJGDLli0YPXo0AODixYvYunUrACA5Odnqs3bv3o3bbrsNALB+/XosWLAAd9xxB2QyGR566CG8++67/X/BRGTFPPo0dIAf/FRO/XXlFEwbC5dj/9l6GI0iZDJuukzUX5x6HShXxXWgiOxj1c6TeDerBA+NH4SVj4ztt89x9XWgzPRGIxZtLESn3ogdz93SHaiIqLfcYh0oIiJzA/nYaE7f9YZCJsPQcK4HReQIDFBE5JREUbRM4Y3hEga9NjyCfVBEjsAARURO6UJDOxradPCSCxgxkLfk95Z5QU1zHxQR9Q8GKCJySoe6R59GDAyASiGXthgXEhvqC7WXDNp2HYoqua0UUX9hgCIip3S4ewVyLqBpG7lMQEI4p/GI+hsDFBE5pUsrkAdJWocrMvdB/cAFNYn6DQMUETkdg1HEkYvcA+9GXd4HZWAfFFG/YIAiIqdzuqYFbV0G+CjlltvyqfdiQnzg7SVHc4cex8q1UpdD5JYYoIjI6Zin70ZHBULO1bRtJpMJSIgwBc/9Z+olrobIPTFAEZHTMTeQj2UD+Q0z90HtP8s+KKL+wABFRE6HC2j2nTlAHWAfFFG/YIAiIqfSqTegqKIZABvI+yI6xAdqLxmaOvQ4wfWgiOyOAYqInMqJimZ0GYwI9vFCdIi31OW4LLlMsDTgsw+KyP4YoIjIqZin75IGBUEQ2EDeF+yDIuo/DFBE5FQOdTeQJ7OBvM+GXdYHxX3xiOyLAYqInAobyO0nNtQHKoUMDW06lFS3SF0OkVthgCIip9Haqcep7l/0Y6I5AtVXCpkMQwZ090FxGo/IrhigiMhpHL2ohVEEBgaqEe6vlroctzCMC2oS9QsGKCJyGocs03ccfbKXyxvJRZF9UET2wgBFRE7D3EDO/if7iQvzhZdcQG1LF07XtEpdDpHbYIAiIqdhbiBPjg6StA534iVnHxRRf2CAIiKnUN/ahbL6dgCmTYTJfszLGbAPish+GKCIyCmYR58Gh/ki0NtL2mLcjKWRnH1QRHbDAEVETuGwpf+Jo0/2NjjMDwqZgKqmTpyva5O6HCK3wABFRE7hUFkjADaQ9welQob4MF8AwA9n2AdFZA8MUEQkOVEULXfgjeUCmv3i0nIG7IMisgcGKCKSXIW2A7UtnZDLBIyKZIDqD5caydkHRWQPDFBEJDlzA/nwCH+oveTSFuOmhgzwhVwQUK7twIWGdqnLIXJ5DFBEJDlO3/U/lZcccWE+ANgHRWQPDFBEJLnDli1cgiStw90NYx8Ukd0wQBGRpIxGEYfLuISBI1y+Lx4R9Q0DFBFJ6mxdK5o79VApZJYREuofQ8P9IBOAsvp2lDeyD4qoLxigiEhS5um7UZEB8JLzK6k/qb3kiAkx9UFxFIqob/htRUSSOlRmbiAPkrYQDzGc++IR2QUDFBFJyjwCNZYN5A4xTMNGciJ7YIAiIsnoDEYcK28CwAZyR0kI94MA4GxtK6qbOqQuh8hlMUARkWSKK5vRqTfCX61AXKiv1OV4BB+lAtHdfVA/cBSK6IYxQBGRZA5fuLR8gUwmSFyN5xgW4QfAtK0LEd0YBigikgwX0JQGNxYm6jsGKCKSjGULFwYoh0oINwWoU9UtqG3plLgaItfEAEVEkmjvMuBkVTMA7oHnaH5qBaKCvAEABzgKRXRDGKCISBLHK7QwGEUM8FdBE6CWuhyPc2k9KPZBEd0IBigikkSheQHNQYEQBDaQO9owTXcjOUegiG4IAxQRSYIN5NIa1t0HdaKyGQ2tXRJXQ+R6GKCISBKXL2FAjhfg7YWBgaap0wPnOApFZCsGKCJyOG27DmdrWwHwDjwpDeO+eEQ3jAGKiBzuSPfoU0yID4J9lRJX47kurQfFRnIiWzFAEZHDHbL0P3H6TkrmFcmPVzRB266TuBoi18IARUQOd6isEQCn76QW5KNEhL8KoggcZB8UkU0YoIjI4dhA7jyGcVsXohvCAEVEDlXd1IHKpg7IBGB0FAOU1IZpuKAm0Y1ggCIihzLvf5cQ7g9flULiasjcSH60vAktnXqJqyFyHQxQRORQh9lA7lRCfJUI81PCYBTZB0VkAwYoInKowu4G8jHRQZLWQZewD4rIdk4foNauXYu4uDio1WqkpqbiwIED1zx+06ZNSExMhFqtRlJSErZv3271+ubNm3HXXXchNDQUgiCgsLDwinPcdtttEATB6vH000/b87KIPJIoijhy8dIeeOQcuLEwke3sEqB0Oh3KyspQXFyM+nr7/Qnm888/R2ZmJpYvX478/HyMHTsWGRkZqK6u7vH47OxszJo1C/Pnz0dBQQFmzJiBGTNm4OjRo5ZjWltbcfPNN+PNN9+85mc/8cQTqKiosDzeeustu10XkacqrW9DY5sOSrkMiZoAqcuhbuYRqMMXtGjrYh8UUW/ccIBqbm7G+++/j6lTpyIgIABxcXEYMWIEBgwYgNjYWDzxxBPIzc3tU3GrVq3CE088gXnz5mHkyJFYt24dfHx88NFHH/V4/DvvvINp06bhhRdewIgRI/Daa69h/PjxWLNmjeWYxx9/HMuWLUN6evo1P9vHxwcajcbyCAjglz1RX5kbyEcM9IdS4fQD4B4jzE+JEB8l9EYR+ecbpS6HyCXc0DfYqlWrEBcXh48//hjp6enYsmULCgsLcfLkSeTk5GD58uXQ6/W46667MG3aNJSUlNj8GV1dXcjLy7MKOjKZDOnp6cjJyenxPTk5OVcEo4yMjKsefy3r169HWFgYRo8ejSVLlqCtre2qx3Z2dqKpqcnqQURXOmxeQJP9T05FEAQM05hWJee2LkS9c0P3EOfm5mLv3r0YNWpUj69PmjQJv/jFL7Bu3Tp8/PHH2LdvHxISEmz6jNraWhgMBkRERFg9HxERgRMnTvT4nsrKyh6Pr6ystOmzf/aznyE2NhaRkZE4fPgwFi9ejOLiYmzevLnH41esWIHf/e53Nn0GkSe6tIBmkLSF0BWGRfjjhzP13FiYqJduKEB99tlnlr9vbm6Gv79/j8epVCqXbL5+8sknLX+flJSEgQMH4o477sDp06cxZMiQK45fsmQJMjMzLf/c1NSE6Ohoh9RK5Cr0BiMbyJ2YuZG8sKwRHToD1F5yiSsicm59bkK45ZZbbB7h6Y2wsDDI5XJUVVVZPV9VVQWNRtPjezQajU3H91ZqaioA4NSpUz2+rlKpEBAQYPUgImunalrQrjPAVynH4AF+UpdDPxLur0Kgtxe6DEYUlDZKXQ6R0+tzgBo3bhxSU1OvmFYrLCzE3XfffcPnVSqVmDBhArKysizPGY1GZGVlIS0trcf3pKWlWR0PADt37rzq8b1lXupg4MCBfToPkSc7XGYafRodFQi5TJC4GvoxQRAuLWfAPiii6+pzgPr444/x85//HDfffDO+++47nDx5Eo888ggmTJgAubxvQ8CZmZn48MMP8cknn6CoqAi/+tWv0Nrainnz5gEA5syZgyVLlliOX7RoEXbs2IGVK1fixIkTePXVV3Hw4EEsWLDAckx9fT0KCwtx/PhxAEBxcTEKCwsto2inT5/Ga6+9hry8PJw7dw5bt27FnDlzcOutt2LMmDF9uh4iT3aoewVyNpA7r2ER3Y3k7IMiui67bET1u9/9DiqVCnfeeScMBgPuuOMO5OTkYNKkSX0678yZM1FTU4Nly5ahsrISycnJ2LFjh6VRvLS0FDLZpQw4ZcoUbNiwAa+88gpefvllJCQkYMuWLRg9erTlmK1bt1oCGAA8+uijAIDly5fj1VdfhVKpxDfffIPVq1ejtbUV0dHReOihh/DKK6/06VqIPJ25gXwsG8idlnk9qPzSBnTqDVAp2AdFdDWCKIpiX05QVVWF119/HR9++CFGjBiBEydO4KOPPsLMmTPtVaPLaWpqQmBgILRaLfuhiAB06AxIevU/0BlE7HvxdkSH+EhdkpW6lk72/cC0UnzmpkNo7tBj09NpmBgXInVJRA5ly+/vPk/hxcfHY+/evdi0aRPy8vLwj3/8A08++STefvvtvp6aiNxEUUUTdAYRIb5KDAr2lrocugpBEC7ti8dtXYiuqc8B6qOPPkJBQQGmT58OAJg2bRp2796NP//5z3jmmWf6XCARub5L6z8FQhDYQO7MhnNjYaJe6XOAMvcQXW78+PHIzs7Grl27+np6InID5gZyLqDp/MyN5HnnG6AzGCWuhsh53VCAKi0tve4xcXFxyM7OBgBcvHjxRj6GiNzEpQZyLqDp7CKDvOGrlKOty2BZ+JSIrnRDAWrixIl46qmnrrlZsFarxRdffIHRo0fjH//4xw0XSESuraVTj9M1LQA4AuUKZFZ9UJzGI7qaG1rG4Pjx4/jjH/+IO++8E2q1GhMmTEBkZCTUajUaGhpw/PhxHDt2DOPHj8dbb73VpwU1ici1HbmghSgCUUHeGOCvkroc6oVhEf4oKGvE/rN1+NVtV25fRUQ3OAIVGhqKVatWoaKiAmvWrEFCQgJqa2tRUlICAJg9ezby8vKQk5PD8ETk4S71P3H6zlWYG8kPnmuAnn1QRD3q00Ka3t7eePjhh/Hwww/bqx4icjOH2UDucgYFe8PbS46WTj2OVzTx3x1RD/p8Fx4R0bUcKmMDuauRyQQkdN+N9wPXgyLqkc0Bqr29vce76o4dO2aXgojIfdS1dOJiYzsAYDQDlEtJ1Jim8bJPM0AR9cSmAPXFF18gISEB06dPx5gxY7B//37La48//rjdiyMi12ZevmDIAF8EqL0kroZsMUJj2sbiwNl6dOnZB0X0YzYFqD/84Q/Iy8tDYWEhPv74Y8yfPx8bNmwAYNpDiYjocuYGcm4g7Hqigr3hp1Kgrctg6WMjoktsaiLX6XSIiIgAAEyYMAF79+7FAw88gFOnTnF7BiK6wqGyRgC8A88VyQQBiRp/HDzfgO9P1SGFGwsTWbFpBCo8PByHDx+2/HNISAh27tyJoqIiq+eJiERRvLQHXnSQtMXQDRkx0DSNl326VuJKiJyPTQHq008/RXh4uNVzSqUSn332Gfbs2WPXwojItV1sbEddaxcUMgEju38Rk2sxN5IXlDaivcsgcTVEzsWmADVo0CBoNBqr57755hsAwE033WS/qojI5ZlHn4Zr/KH2kktcDd2IcH8VQnyU6DIYcfA8t3Uhulyf14GaPn06MjMz0dXVZY96iMhNWBrIOX3nsgRBQOJA0yjU96e4nAHR5focoPbu3Ytt27YhJSUFR48e7fGYiooKPPTQQ339KCJyIYe5gKZbMC9nkMM+KCIrfQ5QqampyM/PR0pKCiZOnIhVq1ZZXjMajTh+/DiWLVuGffv29fWjiMhFGI0ijlzsbiDnEgYuzTwCdeSiFtp2ncTVEDmPPu2FZ+bn54eVK1fCx8cHL7zwAj777DNLeOrs7ERsbCxWrFhhj48iIhdwprYFLZ16qL1kSAj3k7oc6oNgHyU0AWpUNnVg/5k63DVKc/03EXmAPo9A/eUvf0FMTAzCwsLw17/+FZMmTYJCoUBBQQF++ctfor6+HmfPnsX8+fPtUS8RuQDz/nejIwOhkHPLTVc3YiC3dSH6sT5/s7388suYPn06jh8/jubmZuTk5CAnJwcrV67EX/7yF2RmZqKtrc0etRKRiyjsXkAzmQ3kbiGxuw/q+1PsgyIy63OAuu222/Dqq69i+PDhVquRP//88zhw4AAOHjx4xb55ROTezAGKd+C5h+ER/hAAlFS3oLq5Q+pyiJxCnwPU3//+d8v2Lj+WlJSE3Nxc3HPPPbj11lv7+lFE5AI6dAYUVTQB4AiUu/BTKxAd4gMAyOE0HhEAOwSo61GpVFi9ejW2bdvW3x9FRE7gWLkWeqOIMD8lBgV7S10O2cmI7lXJs7keFBEABwQoszvvvNNRH0VEEioobQRgGn3iJuPuI7F7O57vuR4UEQAHBigi8gxsIHdPCeF+kAsCLjS0o6yeNwYRMUARkV2Zt3BJjg6WthCyK7WXHPFhvgB4Nx4RwABFRHZU19KJsvp2CAIwJppbuLgbrgdFdAkDFBHZjXn6bsgAPwSovaQthuzOvB5U9uk6iKIocTVE0mKAIiK7Yf+Texs8wBdKuQy1LZ0oqW6RuhwiSTFAEZHdMEC5Ny/5pb0N2QdFno4BiojswmgUGaA8QGJ3H9T3XA+KPBwDFBHZxZnaVjR36KFSyDC8e9FFcj8juvug9p+pg95glLgaIukwQBGRXZhHn5KiAuEl51eLu4oJ8YGvUo7mTr1lyQoiT8RvOSKyi8KyBgCcvnN3MpmAEd2rku89yT4o8lwMUERkF5b+p5ggSeug/jcq0hSg9pXUSFwJkXQYoIiozzp0BpyoaAbAEShPMLJ7BOrQBS207TqJqyGSBgMUEfXZsXIt9EYRYX4qRAV5S10O9bNQPxU0AWoYjCJyuCo5eSgGKCLqs4LSRgCm0SdBEKQthhxiJKfxyMMxQBFRn5n7n8ax/8ljXOqDYiM5eSYGKCLqMy6g6XmGR/hDLhNQWt+G83WtUpdD5HAMUETUJ7UtnbjQ0A5BAJIGBUpdDjmI2kuOIQN8AQB7OQpFHogBioj6pLC7/2nIAD8EqL2kLYYcalSkKTDvO8k+KPI8DFBE1CecvvNc5uUMck7XQcdtXcjDMEARUZ8wQHmu2BAf+KkUaO7UW/47IPIUDFBEdMOMRhGHGKA8lkwmWEahvi2ulrgaIsdigCKiG3amthXNnXqovWRI1PhLXQ5JYHSUOUCxD4o8CwMUEd0w87RNUlQgFHJ+nXgicyP5sfImVDd3SFwNkePwG4+IblhhWQMATt95skBvL8SG+gAA9p7kcgbkORigiOiGXWogD5a2EJJUUvcoFPugyJMwQBHRDWnt1KOoohkAMD42SNpiSFKjoi5t66LncgbkIRigiOiGHLrQCINRRGSgGgMDvaUuhyQ0OMwPPko5tO06HLqglbocIodggCKiG5J/3tT/ND6W03eeTn7ZcgZ7OI1HHoIBiohuSF53gJrAAEUw3YkJAN9yWxfyEE4foNauXYu4uDio1WqkpqbiwIED1zx+06ZNSExMhFqtRlJSErZv3271+ubNm3HXXXchNDQUgiCgsLDwinN0dHTgmWeeQWhoKPz8/PDQQw+hqqrKnpdF5NKMRhH53XvgMUARAIyKNI1AHb6gRW1Lp8TVEPU/pw5Qn3/+OTIzM7F8+XLk5+dj7NixyMjIQHV1z0PE2dnZmDVrFubPn4+CggLMmDEDM2bMwNGjRy3HtLa24uabb8abb7551c99/vnn8eWXX2LTpk3Ys2cPysvL8eCDD9r9+ohc1ZnaFmjbdVB7yTCie+qGPFuQjxLRwaZeuD1cVJM8gCCKoih1EVeTmpqKiRMnYs2aNQAAo9GI6OhoLFy4EC+99NIVx8+cOROtra3Ytm2b5bnJkycjOTkZ69atszr23LlziI+PR0FBAZKTky3Pa7VaDBgwABs2bMDDDz8MADhx4gRGjBiBnJwcTJ48+bp1NzU1ITAwEFqtFgEB/OVC7ufz3FIs/scRpMaH4POn0qQup8/qWjpR0D2iRjfunwUX8dWRCkwfMxBrfzZe6nKIbGbL72+nHYHq6upCXl4e0tPTLc/JZDKkp6cjJyenx/fk5ORYHQ8AGRkZVz2+J3l5edDpdFbnSUxMRExMzFXP09nZiaamJqsHkTtj/xP1ZMwgUx/U3uIa6LicAbk5pw1QtbW1MBgMiIiIsHo+IiIClZWVPb6nsrLSpuOvdg6lUomgoKBen2fFihUIDAy0PKKjo3v9eUSuiAGKehIf6gt/tQLNnXrknquXuhyifuW0AcqVLFmyBFqt1vIoKyuTuiSiftPQ2oXTNa0AgHExDFB0iUwmWO7G21XE5QzIvTltgAoLC4NcLr/i7reqqipoNJoe36PRaGw6/mrn6OrqQmNjY6/Po1KpEBAQYPUgclf5pabRp8EDfBHiq5S4GnI2YwcFAQB2nWCAIvfmtAFKqVRiwoQJyMrKsjxnNBqRlZWFtLSem1bT0tKsjgeAnTt3XvX4nkyYMAFeXl5W5ykuLkZpaalN5yFyV5bpO44+UQ9GDgyAXCbgTG0rztS0SF0OUb9RSF3AtWRmZmLu3LlISUnBpEmTsHr1arS2tmLevHkAgDlz5iAqKgorVqwAACxatAhTp07FypUrMX36dGzcuBEHDx7EBx98YDlnfX09SktLUV5eDsAUjgDTyJNGo0FgYCDmz5+PzMxMhISEICAgAAsXLkRaWlqv7sAjcnfsf6Jr8VbKMSzCD0UVzdh1ohqDB/hJXRJRv3DaESjAtCzBn/70JyxbtgzJyckoLCzEjh07LI3ipaWlqKiosBw/ZcoUbNiwAR988AHGjh2LL774Alu2bMHo0aMtx2zduhXjxo3D9OnTAQCPPvooxo0bZ7XMwZ///Gfcc889eOihh3DrrbdCo9Fg8+bNDrpqIuelMxhx6EIjAAYoujpO45EncOp1oFwV14Eid1VQ2oAH/icbgd5eKFh6J2QyQeqS7ILrQNlXdXMHXv7nUShkAvKX3YkAtZfUJRH1ilusA0VEzsd8a/rEuGC3CU9kf+H+amgC1dAbRew7WSt1OUT9ggGKiHrtwFlT/9PEuBCJKyFnN7Z7OYNviriPKLknBigi6hWjUcTB890jUPEMUHRtydFBAICsoiquSk5uiQGKiHrlVE0LGtt08PaSY3RkoNTlkJMbMsAP/moFmjr0OHCWq5KT+2GAIqJeMf8SHBcTBKWCXx10bTKZYLkb7+tjvd9Oi8hV8FuQiHrlUgM5p++od8bFBAEAvj5eBd7wTe6GAYqIeiW3ewRqEvufqJdGaAKgUshQoe3A0YtNUpdDZFcMUER0XRca2lCu7YBCJlhGFYiuR6mQWfrlvj7OaTxyLwxQRHRd5um7UVGB8FE69Q5Q5GSSzdN4x7icAbkXBigiui5zA/mkOG7fQrYZExUImQAUVzXjXG2r1OUQ2Q0DFBFdlzlAsYGcbOWrUmB4hD8AYOdxjkKR+2CAIqJrqmvpxOka08gBAxTdiHExppHLHVzOgNwIAxQRXZO5/ykh3A/BvkqJqyFXZL7xIO98Ayq1HdIWQ2QnDFBEdE05p+sAAGlDQiWuhFxVsI8SQwb4AgB2HK2QuBoi+2CAIqJryjnTHaAGM0DRjZsQa5rG236E03jkHhigiOiqals6cbKqBQCQygBFfZASa+qfyz1fj+omTuOR62OAIqKr2n/G1P+UqPFHCPufqA9CfJUYHOYLUWQzObkHBigiuqqcM7UAgMkcfSI7ME/jfXWYfVDk+higiOiq2EBO9pTSHaAOnKtHTXOnxNUQ9Q0DFBH1qLqpA6drWiEIQCo3ECY7CPVTIS7Uh9N45BYYoIioRz90rz4+QhOAIB/2P5F9mJvJ/32E03jk2higiKhHnL6j/mDug/rhTB2qm3k3HrkuBigi6tEPXP+J+sEAfxUGh/nCKALb2UxOLowBioiuUKntwNnaVsgEYNJg9j+RfU3q7qn716FyiSshunEMUER0BfPyBaOjAhGg9pK4GnI3E+NCIAhAQWkjSuvapC6H6IYwQBHRFb4/xek76j+B3l5I1PgDALYeuihxNUQ3hgGKiKyIoojvSkwjUDcnhElcDbmr1HhTOP9XYTlEUZS4GiLbMUARkZVT1S2obOqASiHDxDj2P1H/GB8TBIVMQEl1C05UNktdDpHNGKCIyMq+7tGnSfEhUHvJJa6G3JWPUoExgwIBmEahiFwNAxQRWfnuVPf03VBO31H/Mk/jfXmoHEYjp/HItTBAEZFFl95oWf/ploQBEldD7i4pKhDeXnJcbGxH7rl6qcshsgkDFBFZ5Jc2oK3LgDA/peUuKaL+olTILCuT/yP/gsTVENmGAYqILMx33900NAwymSBxNeQJpnRvFfTV4Qq0deklroao9xigiMhiX0kNAPY/keMkhPthgJ8KrV0G/OdYpdTlEPUaAxQRAQAa27pw+KIWAPufyHEEQcCUoaZRqC/yOI1HroMBiogAANmn6yCKphEBTaBa6nLIg0zpXvE++3QdLjRwaxdyDQxQRATg0vpPXH2cHC3UT4VEjT9EEfhnPrd2IdfAAEVEEEUR3xZXAwBuHcbpO3K8m4aYgvsX+Re4tQu5BAYoIsKJymZUaDug9pJxA2GSxPiYIKgUMpyva0PuuQapyyG6LgYoIsKuE6bRpylDwrh9C0lC5SVHSveaUJ/nlklcDdH1MUAREXZ3B6jbE8MlroQ8mXn6eNvhcmjbdBJXQ3RtDFBEHq6htQv5paYpk58wQJGEBof5IirIG516I/5ZwCUNyLkxQBF5uL0lNTCKwPAIf0QFeUtdDnkwQRAwtXsUasOBUjaTk1NjgCLycJy+I2cyeXAIlHIZTla1WEZGiZwRAxSRBzMYRew5adq+hdN35Ax8lApMjDM1k6/fXypxNURXxwBF5MEKyxrQ0KZDoLcXxscESV0OEQBYpvG+OlzBZnJyWgxQRB7MvHzBrcMGQCHn1wE5h/gwXwwKNjWTb2YzOTkpfmMSebBdJ0zTd7cP5+rj5DwEQcDU7g2tP/3hPIxGNpOT82GAIvJQZfVtKKpogkwAbhvO/idyLmlDQuHtJceZmlbsO1UrdTlEV2CAIvJQ/zlWCQCYFB+CEF+lxNUQWVN7yXHTUNO2Qh9/f1biaoiuxABF5KHMAWraKI3ElRD17CeJ4RAAfFtcgzM1LVKXQ2SFAYrIA9U0d+LgedMaO3cxQJGTCvdXY8ygQADAJ9nnpC2G6EcYoIg80M7jVRBFYOygQERy9XFyYnckRgAAvsi7gKYOLmlAzoMBisgD7eievssYzdEncm4jBvpjYKAarV0GbDrIJQ3IeTBAEXkYbbsO2d13NbH/iZydIAi4o3uV/L9mn4XeYJS4IiITpw9Qa9euRVxcHNRqNVJTU3HgwIFrHr9p0yYkJiZCrVYjKSkJ27dvt3pdFEUsW7YMAwcOhLe3N9LT01FSUmJ1TFxcHARBsHq88cYbdr82IinsPlENvVFEQrgfBg/wk7ocoutKGxwKP5UCZfXt+PfRSqnLIQLg5AHq888/R2ZmJpYvX478/HyMHTsWGRkZqK6u7vH47OxszJo1C/Pnz0dBQQFmzJiBGTNm4OjRo5Zj3nrrLbz77rtYt24d9u/fD19fX2RkZKCjo8PqXL///e9RUVFheSxcuLBfr5XIUXZ0/wKaxuk7chEqL7llsdd1e05DFLmwJknPqQPUqlWr8MQTT2DevHkYOXIk1q1bBx8fH3z00Uc9Hv/OO+9g2rRpeOGFFzBixAi89tprGD9+PNasWQPANPq0evVqvPLKK7j//vsxZswY/L//9/9QXl6OLVu2WJ3L398fGo3G8vD19b1qnZ2dnWhqarJ6EDmj9i4Dvj1p+gNIBqfvyIX8JDEcSrkMx8qb8B0X1iQn4LQBqqurC3l5eUhPT7c8J5PJkJ6ejpycnB7fk5OTY3U8AGRkZFiOP3v2LCorK62OCQwMRGpq6hXnfOONNxAaGopx48bh7bffhl6vv2qtK1asQGBgoOURHR1t8/USOULWiSp06IwYFOyNUZEBUpdD1Gv+ai/ckhAGwDQKRSQ1pw1QtbW1MBgMiIiIsHo+IiIClZU9z4FXVlZe83jzX693zmeffRYbN27E7t278dRTT+H111/Hiy++eNValyxZAq1Wa3mUlZX1/kKJHOhfheUAgPvGRkIQBImrIbLNXSMjIBOA70/V4cgFrdTlkIdTSF2AM8rMzLT8/ZgxY6BUKvHUU09hxYoVUKlUVxyvUql6fJ7ImWjbdPi22DR9d39ylMTVENku1E+FSfEh+OFMPdbtOY21s8dLXRJ5MKcdgQoLC4NcLkdVVZXV81VVVdBoeu7d0Gg01zze/FdbzgkAqamp0Ov1OHfunK2XQeQ0dhyrgM4gIlHjj+Eaf6nLIboh5qU3th+twKlqbu9C0nHaAKVUKjFhwgRkZWVZnjMajcjKykJaWlqP70lLS7M6HgB27txpOT4+Ph4ajcbqmKamJuzfv/+q5wSAwsJCyGQyhIdzx3pyXebpu3vHRkpcCdGNGxTsg+RBQRBF4N2skuu/gaifOPUUXmZmJubOnYuUlBRMmjQJq1evRmtrK+bNmwcAmDNnDqKiorBixQoAwKJFizB16lSsXLkS06dPx8aNG3Hw4EF88MEHAEwLsj333HP4wx/+gISEBMTHx2Pp0qWIjIzEjBkzAJga0ffv34/bb78d/v7+yMnJwfPPP4/HHnsMwcHBkvwciPqqqqkDOWfqAJj6n4hc2X1jI1F4oRFfHi7Hwp8MRUIER1TJ8Zw6QM2cORM1NTVYtmwZKisrkZycjB07dliawEtLSyGTXRpEmzJlCjZs2IBXXnkFL7/8MhISErBlyxaMHj3acsyLL76I1tZWPPnkk2hsbMTNN9+MHTt2QK1WAzD1M23cuBGvvvoqOjs7ER8fj+eff96qL4rI1Xx5qByiCEyIDUZ0iI/U5RD1SUyoD8bFBKGgtBHvZJVgzc/YC0WOJ4hckczumpqaEBgYCK1Wi4AA3ipO0rtvzXc4fEGL398/CnPS4qQux+nUtXSioLRR6jLIBmUNbfjdl8chCMCORbeyr4/swpbf307bA0VE9nG2thWHL2ghlwm4O2mg1OUQ2UV0sA8mxARDFIF3sk5KXQ55IAYoIje3Od+0g/1NQ8MQ5sflNsh93Dc2EgKA7UcqcbycO0CQYzFAEbkxvcGITQdNAeqRlEESV0NkX1HB3kiJM93c88aOExJXQ56GAYrIje0tqUFlUweCfbxw58iI67+ByMU8MC4KcpmAvSdrsK+kRupyyIMwQBG5sc9zTdsKPTBuEFQKucTVENlfuL8atw8fAAB4ffsJGI28L4ocgwGKyE1VN3cgq8i0dcvMidzgmtzX9KSB8PaSo6iiCf8suCh1OeQhGKCI3NTm/IvQG0WMiwniLd7k1vzVXrg7ybTFy8qvi9GhM0hcEXkCBigiNySKIv7ePX33KEefyAPckRiBEB8lyrUd+L/vzkpdDnkABigiN5R7rgFnalvhq5TjnjHcuoXcn1IhwwPjowAAa3adwsXGdokrInfHAEXkhtbvPw8AuGdMJHxVTr1jE5HdTI4PQUK4H9p1Bvxh23GpyyE3xwBF5Gaqmjrw1eEKAMBjk2MlrobIcQRBwM9SYyATgH8frcTek1zWgPoPAxSRm/nbD+ehN4qYGBeMpEGBUpdD5FDRwT74SWI4AODVrcfQqWdDOfUPBigiN9KhM2D9/lIAwC9uipe4GiJp3Dc2EgFqBc7UtuIv+9hQTv2DAYrIjfyr8CLqW7sQFeTNlcfJY/koFfivFNPdp+9kleB0TYvEFZE7YoAichOiKOLj788BAOZOiYVCzv+9yXNNjg/BqMgAdOmNWPzFYRi4QjnZGb9hidxEzuk6nKhsho9SjpkpMVKXQyQpQRAwZ3IsVAoZDp5vwCfZ56QuidwMAxSRmzAvHvjwhEEI9PGSuBoi6YX6qfBfEwYBAN76zwmcr2uVuCJyJwxQRG7g6EUtsk5UQyYAP58SJ3U5RE7j1mEDkKjxR4fOiBc5lUd2xABF5AbW7DoFALh3bCQGD/CTuBoi5yETBMxNi4NSIcP+s/X4372npS6J3AQDFJGLK6powo5jlRAEYMHtQ6Uuh8jpDPBX4WcTTX2Bq74+icKyRmkLIrfAAEXk4syjT3cnDURChL/E1RA5p5uGhiIlNhh6o4hnPytAc4dO6pLIxTFAEbmwk1XN2H7UtG3Lwp9w9InoagRBwJy0WIT6KlFa34alW45KXRK5OAYoIhf23q5TEEXgp6M1SNQESF0OkVPzUSrwxC2DIROALYXllk23iW4EAxSRizpWrsW2w+UAgAUcfSLqlaHhfnhgXBQA0155B8/VS1wRuSoGKCIXJIoi/vhVEUQRuGfMQIyK5KbBRL01bZQGE2KDoTOI+NX6fFQ1dUhdErkgBigiF5RVVI3s03VQKmRYPC1R6nKIXIogCJg3JQ5RQd6oae7E03/LQ6feIHVZ5GIYoIhcjM5gxOvbiwAA82+OR3SIj8QVEbketZccz9w+BD5KOQpKG7H4i8MwcpFNsgEDFJGLWf/DeZypbUWorxK/vm2I1OUQuaxwfzWeunUw5IKALYXleOs/xVKXRC6EAYrIhTS2dWF1VgkAIPOuYfBXc887or4YFRmIOWmxAIB1e07j/+Wck7YgchkMUEQu5I9fFaGxTYdhEX6YmRItdTlEbuGmoWGYkRwJAFi+9Rh2dK+tRnQtDFBELmJfSQ025V2AIACvP5AEhZz/+xLZy/Skgbg1IQyiCCz8rADfHK+SuiRycvwGJnIBrZ16LNl8BAAwNy0OKXEhEldE5F4EQcDs1FhMiguBziDi1+vzsftEtdRlkRNjgCJyAX/6uhgXGtoRFeSNFzKGS10OkVuSywTMvzkeKbHB6DIY8dTf8rDnZI3UZZGTYoAicnIHz9Xjr9nnAACvP5gEX5VC2oKI3JhcJuCXt8RjXEwQuvRGPPHJQXx1mD1RdCUGKCIn1tDahWc/K4AoAg+Oj8LUYQOkLonI7SlkMjx1y2BM6B6JWvBZPj7l3Xn0IwxQRE7KaBTxm02HUK7tQFyoD3533yipSyLyGAq5KUTdNmwARBFY+q9jWPV1MUSRi22SCQMUkZP6YN8Z7DpRDaVChrWzx3PNJyIHk8kEzE6NwX1jTUscvLvrFBZ8VoC2Lr3ElZEzYIAickK55+rxdveqyK/eO4qbBRNJRBAE3Dc2EnPSYiGXCfjqcAUefj8HFxvbpS6NJMYAReRkztW24qlP82Awirg/ORKzJnHBTCKp3ZowAP995zD4qxU4XtGE+977jnfoeTgGKCInUtvSibkfH0B9axeSogLx+gNJEARB6rKICEBChD9euXsEYkJ8UNfahbkfHcDr24vQpTdKXRpJgAGKyEm0dekx/6+5OF/XhugQb3z084lcsoDIyYT6qfDStETcPtx0R+wHe8/g4XXZOFXdInFl5GgMUEROoENnwK/X5+PQBS2Cfbzw13mTMMBfJXVZRNQDpUKG2amxeOa2IfBVynH4ghZ3v7MPa3aVQGfgaJSnYIAiklhrpx7zP8nFt8U1UClk+MvcFAwZ4Cd1WUR0HeNigrH83lEYHRmALoMRf/r6JO597zsUlDZIXRo5AAMUkYS07TrM+egAvj9VB1+lHH+dNwkTYrnPHZGrCPFVYtEdCZh/czz8VAqcqGzGA/+TjczPC1Gp7ZC6POpHDFBEEilvbMfPPvwBeecbEKBW4G+/TEXakFCpyyIiGwmCgLTBofj9faMwpfv/4c0FF3H7n77Fn3eeRFOHTuIKqT8IIpdVtbumpiYEBgZCq9UiICBA6nLICf1wpg7PrM9HXWsXQn2V+HR+KkZG8r8VqdS1dKKgtFHqMshNnK1txcbcUpyuaQUABHp74Zc3x+PnN8VxQVwnZ8vvbwaofsAARVcjiiI+/v4c/ri9CAajiJEDA/C/j09AdIiP1KV5NAYosjdRFJF3vgH/OlSOiu6pvEBvL/wsNQZz0+KgCVRLXCH1hAFKYgxQ1JOLje1YsvkI9nYvvjcjORIrHhwDb6Vc4sqIAYr6i9EoIvd8Pb48VIHKJlOQUsgE3Ds2Eo9NjsH4mGCu9eZEGKAkxgBFlzMaRaw/UIo3thehtcsApUKGJT9NxM+nxPGL00kwQFF/MxpFHLrQiK+PV6HksjWjhob74dGJ0bg/OYpLlzgBBiiJMUCR2b6SGry54wSOXmwCAEyIDcZbD4/hMgVOhgGKHOlsbSt2F1fj4LkGdHWvGyUTgLQhobhnTCQyRmkQ4quUuErPxAAlMQYozyaKIvJLG7Bq50l8f6oOAOCrlOM3dw3H3ClxkMs46uRsGKBICm1deuSea8B3p2pxtrbV8rxMAMbHBOOOERG4PXEAhoX7Q8bvDYdggJIYA5Rn6tIb8dWRcnz8/TkcvqAFAHjJBTw2ORYLbh+KUD8OzzsrBiiSWk1zJ3LP1SP3XD3KGtqtXgv28cLEuBBMig9BanwoRkYG8A9i/YQBSmIMUJ7DaBRx4Fw9vjxUju1HKtDQZlrvRamQYUZyJBb+JIF32LkABihyJnUtnTh8UYtDFxpRUtWCzh9tVuyvUmBCXDCSogIxYmAAEjX+iAv15SiVHTBASYwByr3Vt3bhu1O12HuyBntP1qC6udPyWri/Co9PjsXPUmM44uRCGKDIWemNRpTWteFkVQtOVjWjpLoF7TrDFcd5e8kxXOOPEQMDMCzCD7GhPogJ8UV0iDdUCt7p21u2/P52+q3e165di7fffhuVlZUYO3Ys3nvvPUyaNOmqx2/atAlLly7FuXPnkJCQgDfffBN333235XVRFLF8+XJ8+OGHaGxsxE033YT3338fCQkJlmPq6+uxcOFCfPnll5DJZHjooYfwzjvvwM+Pjb+eprGtCyXVLSiqaEJhaSMKyxpx5rJeBQDwVyswbZQG946NxJQhoVDIucA/EdmHQibD4AF+GDzAD9NGa2A0irjQ2I5T1S0oq29DWUMbLja2o11nQGGZ6TvqcoIADAxQIybUBzEhPtAEqBEeoEZEgBoRASpEBKgR6qvk99YNcOoA9fnnnyMzMxPr1q1DamoqVq9ejYyMDBQXFyM8PPyK47OzszFr1iysWLEC99xzDzZs2IAZM2YgPz8fo0ePBgC89dZbePfdd/HJJ58gPj4eS5cuRUZGBo4fPw612rSw2ezZs1FRUYGdO3dCp9Nh3rx5ePLJJ7FhwwaHXj/1H1EU0dShR31rF+pbO1HX0oW61i5UaDtwob4NFxracaa2FbUtnT2+f8TAANyaEIZbEgZgYnww/4RHRA4hkwmICTGFITOjUURVcwfK6ttR1tCGqqYO1DR3orq5E516I8q1HSjXduCHM/U9n1MwLfIZ5KNEgLcXgry9ENj9CPK59PeB3l7wUSrgrZTDp/vh7SXv/meFx/VlOfUUXmpqKiZOnIg1a9YAAIxGI6Kjo7Fw4UK89NJLVxw/c+ZMtLa2Ytu2bZbnJk+ejOTkZKxbtw6iKCIyMhK/+c1v8N///d8AAK1Wi4iICPz1r3/Fo48+iqKiIowcORK5ublISUkBAOzYsQN33303Lly4gMjIyOvW3V9TeO1dBuw5WQ0AuPzf2uX/Aq2fF6/y/OXH9/yvv1fn6cU5rc5uc209H28UAb3BCL1BhM5o+qveYITO2P1Xgwi90YgOnRHtXQa0dunR1mVAW/dfWzr0aGjrgs7Qu//0o4K8kRDhh7GDgpAcE4TkQUEI5i3GboVTeOSORFFEc4ceNS2mMFXb0gltmw6N7To0tnVB266Dtl0Ho51SgFIhg49SDrVCDi+FAC+5DEq5DF5yGbzk3f+s+NE/d78ulwtQyATIBAFymekhE7qfkwmQCwLkMiAq2BsPjBtkn4J74BZTeF1dXcjLy8OSJUssz8lkMqSnpyMnJ6fH9+Tk5CAzM9PquYyMDGzZsgUAcPbsWVRWViI9Pd3yemBgIFJTU5GTk4NHH30UOTk5CAoKsoQnAEhPT4dMJsP+/fvxwAMPXPG5nZ2d6Oy8NFKh1ZruwGpqarL9wq/hYkMbnvy/7+x6Tk/no5Qh2FeJYB8VQny9EO6vRlSwGlFBPhgU7I3BA/zgp/rR/yaGDjQ1cZd1d9LeoYNS5L9Tcj8qNRCmVmBEmAKA7xWvG4wimjv1aOnQo7Wr+6+dBsvft3Xp0dJpQGun6fVOnRFdegM6dEZ0Gozo0hktf7zt6AQ6Wq/4CLtKjg5CWrQPZIIAtZf9R/7Nv7d7M7bktAGqtrYWBoMBERERVs9HRETgxIkTPb6nsrKyx+MrKystr5ufu9YxP54eVCgUCAkJsRzzYytWrMDvfve7K56Pjo6+2uURERGRjcoADPxN/39Oc3MzAgMDr3mM0wYoV7JkyRKrkS+j0Yj6+nqEhobafauOpqYmREdHo6yszCPv8PP06wf4M/D06wf4M/D06wf4M+iv6xdFEc3Nzb1q13HaABUWFga5XI6qqiqr56uqqqDRaHp8j0ajuebx5r9WVVVh4MCBVsckJydbjqmurrY6h16vR319/VU/V6VSQaWyvmU9KCjo2hfYRwEBAR75P42Zp18/wJ+Bp18/wJ+Bp18/wJ9Bf1z/9UaezJz2vkWlUokJEyYgKyvL8pzRaERWVhbS0tJ6fE9aWprV8QCwc+dOy/Hx8fHQaDRWxzQ1NWH//v2WY9LS0tDY2Ii8vDzLMbt27YLRaERqaqrdro+IiIhcl9OOQAFAZmYm5s6di5SUFEyaNAmrV69Ga2sr5s2bBwCYM2cOoqKisGLFCgDAokWLMHXqVKxcuRLTp0/Hxo0bcfDgQXzwwQcAAEEQ8Nxzz+EPf/gDEhISLMsYREZGYsaMGQCAESNGYNq0aXjiiSewbt066HQ6LFiwAI8++mivhvSIiIjI/Tl1gJo5cyZqamqwbNkyVFZWIjk5GTt27LA0gZeWlkImuzSINmXKFGzYsAGvvPIKXn75ZSQkJGDLli2WNaAA4MUXX0RrayuefPJJNDY24uabb8aOHTssa0ABwPr167FgwQLccccdloU03333Xcdd+DWoVCosX778iilDT+Hp1w/wZ+Dp1w/wZ+Dp1w/wZ+AM1+/U60AREREROSOn7YEiIiIiclYMUEREREQ2YoAiIiIishEDFBEREZGNGKBcwBtvvGFZgsGso6MDzzzzDEJDQ+Hn54eHHnroikVEXd3Fixfx2GOPITQ0FN7e3khKSsLBgwctr4uiiGXLlmHgwIHw9vZGeno6SkpKJKzYfgwGA5YuXYr4+Hh4e3tjyJAheO2116w3anaz69+7dy/uvfdeREZGQhAEyx6WZr253vr6esyePRsBAQEICgrC/Pnz0dLS4sCruHHXun6dTofFixcjKSkJvr6+iIyMxJw5c1BeXm51Dne9/h97+umnIQgCVq9ebfW8K18/0LufQVFREe677z4EBgbC19cXEydORGlpqeV1V/7dcL3rb2lpwYIFCzBo0CB4e3tj5MiRWLdundUxjrx+Bignl5ubi//93//FmDFjrJ5//vnn8eWXX2LTpk3Ys2cPysvL8eCDD0pUpf01NDTgpptugpeXF/7973/j+PHjWLlyJYKDgy3HvPXWW3j33Xexbt067N+/H76+vsjIyEBHh+tvCvvmm2/i/fffx5o1a1BUVIQ333wTb731Ft577z3LMe52/a2trRg7dizWrl3b4+u9ud7Zs2fj2LFj2LlzJ7Zt24a9e/fiySefdNQl9Mm1rr+trQ35+flYunQp8vPzsXnzZhQXF+O+++6zOs5dr/9y//znP/HDDz/0uC6fK18/cP2fwenTp3HzzTcjMTER3377LQ4fPoylS5daLcPjyr8brnf9mZmZ2LFjB/72t7+hqKgIzz33HBYsWICtW7dajnHo9YvktJqbm8WEhARx586d4tSpU8VFixaJoiiKjY2NopeXl7hp0ybLsUVFRSIAMScnR6Jq7Wvx4sXizTfffNXXjUajqNFoxLffftvyXGNjo6hSqcTPPvvMESX2q+nTp4u/+MUvrJ578MEHxdmzZ4ui6P7XD0D85z//afnn3lzv8ePHRQBibm6u5Zh///vfoiAI4sWLFx1Wuz38+Pp7cuDAARGAeP78eVEUPeP6L1y4IEZFRYlHjx4VY2NjxT//+c+W19zp+kWx55/BzJkzxccee+yq73Gn3w09Xf+oUaPE3//+91bPjR8/Xvztb38riqLjr58jUE7smWeewfTp05Genm71fF5eHnQ6ndXziYmJiImJQU5OjqPL7Bdbt25FSkoK/uu//gvh4eEYN24cPvzwQ8vrZ8+eRWVlpdXPIDAwEKmpqW7xM5gyZQqysrJw8uRJAMChQ4fw3Xff4ac//SkA97/+H+vN9ebk5CAoKAgpKSmWY9LT0yGTybB//36H19zftFotBEGw7Lvp7tdvNBrx+OOP44UXXsCoUaOueN0Trv+rr77CsGHDkJGRgfDwcKSmplpNc7n774YpU6Zg69atuHjxIkRRxO7du3Hy5EncddddABx//QxQTmrjxo3Iz8+3bFNzucrKSiiVyis2LI6IiEBlZaWDKuxfZ86cwfvvv4+EhAT85z//wa9+9Ss8++yz+OSTTwDAcp3mVenN3OVn8NJLL+HRRx9FYmIivLy8MG7cODz33HOYPXs2APe//h/rzfVWVlYiPDzc6nWFQoGQkBC3+5l0dHRg8eLFmDVrlmUjVXe//jfffBMKhQLPPvtsj6+7+/VXV1ejpaUFb7zxBqZNm4avv/4aDzzwAB588EHs2bMHgPv/bnjvvfcwcuRIDBo0CEqlEtOmTcPatWtx6623AnD89Tv1Vi6eqqysDIsWLcLOnTut5rY9idFoREpKCl5//XUAwLhx43D06FGsW7cOc+fOlbi6/vf3v/8d69evx4YNGzBq1CgUFhbiueeeQ2RkpEdcP12dTqfDI488AlEU8f7770tdjkPk5eXhnXfeQX5+PgRBkLocSRiNRgDA/fffj+effx4AkJycjOzsbKxbtw5Tp06VsjyHeO+99/DDDz9g69atiI2Nxd69e/HMM88gMjLyipkaR+AIlBPKy8tDdXU1xo8fD4VCAYVCgT179uDdd9+FQqFAREQEurq60NjYaPW+qqoqaDQaaYq2s4EDB2LkyJFWz40YMcJyt4n5On98d4W7/AxeeOEFyyhUUlISHn/8cTz//POWEUl3v/4f6831ajQaVFdXW72u1+tRX1/vNj8Tc3g6f/48du7caRl9Atz7+vft24fq6mrExMRYvhPPnz+P3/zmN4iLiwPg3tcPAGFhYVAoFNf9XnTX3w3t7e14+eWXsWrVKtx7770YM2YMFixYgJkzZ+JPf/oTAMdfPwOUE7rjjjtw5MgRFBYWWh4pKSmYPXu25e+9vLyQlZVleU9xcTFKS0uRlpYmYeX2c9NNN6G4uNjquZMnTyI2NhYAEB8fD41GY/UzaGpqwv79+93iZ9DW1ma1UTYAyOVyy59C3f36f6w315uWlobGxkbk5eVZjtm1axeMRiNSU1MdXrO9mcNTSUkJvvnmG4SGhlq97s7X//jjj+Pw4cNW34mRkZF44YUX8J///AeAe18/ACiVSkycOPGa34sTJkxw298NOp0OOp3umt+LDr9+u7elU7+4/C48URTFp59+WoyJiRF37dolHjx4UExLSxPT0tKkK9DODhw4ICoUCvGPf/yjWFJSIq5fv1708fER//a3v1mOeeONN8SgoCDxX//6l3j48GHx/vvvF+Pj48X29nYJK7ePuXPnilFRUeK2bdvEs2fPips3bxbDwsLEF1980XKMu11/c3OzWFBQIBYUFIgAxFWrVokFBQWWu8x6c73Tpk0Tx40bJ+7fv1/87rvvxISEBHHWrFlSXZJNrnX9XV1d4n333ScOGjRILCwsFCsqKiyPzs5Oyznc9fp78uO78ETRta9fFK//M9i8ebPo5eUlfvDBB2JJSYn43nvviXK5XNy3b5/lHK78u+F61z916lRx1KhR4u7du8UzZ86IH3/8sahWq8X/+Z//sZzDkdfPAOUifhyg2tvbxV//+tdicHCw6OPjIz7wwANiRUWFdAX2gy+//FIcPXq0qFKpxMTERPGDDz6wet1oNIpLly4VIyIiRJVKJd5xxx1icXGxRNXaV1NTk7ho0SIxJiZGVKvV4uDBg8Xf/va3Vr8s3e36d+/eLQK44jF37lxRFHt3vXV1deKsWbNEPz8/MSAgQJw3b57Y3NwswdXY7lrXf/bs2R5fAyDu3r3bcg53vf6e9BSgXPn6RbF3P4P/+7//E4cOHSqq1Wpx7Nix4pYtW6zO4cq/G653/RUVFeLPf/5zMTIyUlSr1eLw4cPFlStXikaj0XIOR16/IIqXLW1MRERERNfFHigiIiIiGzFAEREREdmIAYqIiIjIRgxQRERERDZigCIiIiKyEQMUERERkY0YoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERL1QU1MDjUaD119/3fJcdnY2lEolsrKyJKyMiKTAzYSJiHpp+/btmDFjBrKzszF8+HAkJyfj/vvvx6pVq6QujYgcjAGKiMgGzzzzDL755hukpKTgyJEjyM3NhUqlkrosInIwBigiIhu0t7dj9OjRKCsrQ15eHpKSkqQuiYgkwB4oIiIbnD59GuXl5TAajTh37pzU5RCRRDgCRUTUS11dXZg0aRKSk5MxfPhwrF69GkeOHEF4eLjUpRGRgzFAERH10gsvvIAvvvgChw4dgp+fH6ZOnYrAwEBs27ZN6tKIyME4hUdE1AvffvstVq9ejU8//RQBAQGQyWT49NNPsW/fPrz//vtSl0dEDsYRKCIiIiIbcQSKiIiIyEYMUEREREQ2YoAiIiIishEDFBEREZGNGKCIiIiIbMQARURERGQjBigiIiIiGzFAEREREdmIAYqIiIjIRgxQRERERDZigCIiIiKy0f8HByiqFSq2NssAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = np.arange(40., 180.)\n", + "# plt.plot(x, chi_distribution(x, 112))\n", + "plt.plot(x,chi2.pdf(x, 112))\n", + "x = np.arange(chi_square, 180, 0.1)\n", + "plt.fill_between(x, chi2.pdf(x, 112), alpha=0.3)\n", + "plt.ylim(0, None)\n", + "plt.xlabel('x')\n", + "plt.ylabel('$\\chi^2(x)$')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b30829b3-a9e8-4d93-8895-9fd9f67ab9dc", + "metadata": {}, + "source": [ + "Der erste Schritt für den Hypothesen-Test ist die Berechnung des $P$-Werts\n", + "$$ P = \\int_{\\chi^2}^{\\infty} f(z,n_d)dz $$\n", + "wobei $f(z,n_d)$ die $\\chi^2$-Verteilung und $n_d$ die Anzahl der Freiheitsgrade ist.\n", + "Im Bild oben entspricht dies der ausgefüllten Fläche.\n", + "\n", + "Die praktische Berechnung erfolgt mittels der kumulativen Verteilungsfunktion via\n", + "$$ P = 1 - \\chi^2_{CDF}(x, n_d) $$\n", + "wobei für $x$ das im Fit bestimmte $\\chi^2$ eingesetzt wird. Die praktische Bedeutung des $P$-Werts ist die Wahrscheinlichkeit bei einer Wiederholung des Experiments in größeres $\\chi^2$ zu erhalten, wenn unser Model die Daten richtig beschreibt und die ermittelten Fitparameter den wahren Werten entsprechen." + ] + }, + { + "cell_type": "code", + "execution_count": 529, + "id": "cfa9d88a-eada-49dd-8cb3-73c7dd345c08", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.6323451110506132, 0.884238547608047, 0.48222800598351057)" + ] + }, + "execution_count": 529, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_value = lambda x, ndof: 1 - chi2.cdf(x, ndof)\n", + "p_value(chi_square, ndof), p_value(chi_square*10, ndof*10), p_value(ndof, ndof)" + ] + }, + { + "cell_type": "markdown", + "id": "9cba146a-6309-42d1-92cb-8bdde2da42a2", + "metadata": {}, + "source": [ + "Kehren wir zu unserem Doppelpeak-Spektrum zurück und änderen das Fitmodell, indem wir statt eines exponentiellen einen konstanten Untergrund annehmen." + ] + }, + { + "cell_type": "code", + "execution_count": 530, + "id": "9b91ee55-ac17-4dd6-9827-48677f772096", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Migrad
FCN = 369.6 (χ²/ndof = 3.3) Nfcn = 415
EDM = 5.63e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 319 7
1 A_p2 583 7
2 mu_p1 53.31 0.08
3 mu_p2 60.52 0.06
4 sigma_p1 2.23 0.07
5 sigma_p2 2.72 0.04
6 c 21.4 0.6 0
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 c
A_p1 47.8 10 (0.148) 0.096 (0.167) 0.0895 (0.224) -0.108 (-0.235) -0.0881 (-0.301) 0.1 (0.023)
A_p2 10 (0.148) 52.4 -0.036 (-0.060) -0.0034 (-0.008) -0.064 (-0.132) -0.1062 (-0.347) 0.0 (0.005)
mu_p1 0.096 (0.167) -0.036 (-0.060) 0.00694 0.0038 (0.785) 0.004 (0.743) -0.0025 (-0.711) 0.002 (0.030)
mu_p2 0.0895 (0.224) -0.0034 (-0.008) 0.0038 (0.785) 0.00333 0.0027 (0.695) -0.0017 (-0.714) -0.0018 (-0.051)
sigma_p1 -0.108 (-0.235) -0.064 (-0.132) 0.004 (0.743) 0.0027 (0.695) 0.00444 -0.0016 (-0.559) -0.005 (-0.132)
sigma_p2 -0.0881 (-0.301) -0.1062 (-0.347) -0.0025 (-0.711) -0.0017 (-0.714) -0.0016 (-0.559) 0.00179 -0.0033 (-0.124)
c 0.1 (0.023) 0.0 (0.005) 0.002 (0.030) -0.0018 (-0.051) -0.005 (-0.132) -0.0033 (-0.124) 0.39
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2024-10-16T21:41:00.276254\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.8.2, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "┌─────────────────────────────────────────────────────────────────────────┐\n", + "│ Migrad │\n", + "├──────────────────────────────────┬──────────────────────────────────────┤\n", + "│ FCN = 369.6 (χ²/ndof = 3.3) │ Nfcn = 415 │\n", + "│ EDM = 5.63e-05 (Goal: 0.0002) │ │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ No parameters at limit │ Below call limit │\n", + "├──────────────────────────────────┼──────────────────────────────────────┤\n", + "│ Hesse ok │ Covariance accurate │\n", + "└──────────────────────────────────┴──────────────────────────────────────┘\n", + "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", + "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", + "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", + "│ 0 │ A_p1 │ 319 │ 7 │ │ │ │ │ │\n", + "│ 1 │ A_p2 │ 583 │ 7 │ │ │ │ │ │\n", + "│ 2 │ mu_p1 │ 53.31 │ 0.08 │ │ │ │ │ │\n", + "│ 3 │ mu_p2 │ 60.52 │ 0.06 │ │ │ │ │ │\n", + "│ 4 │ sigma_p1 │ 2.23 │ 0.07 │ │ │ │ │ │\n", + "│ 5 │ sigma_p2 │ 2.72 │ 0.04 │ │ │ │ │ │\n", + "│ 6 │ c │ 21.4 │ 0.6 │ │ │ 0 │ │ │\n", + "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", + "┌──────────┬────────────────────────────────────────────────────────────────┐\n", + "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 c │\n", + "├──────────┼────────────────────────────────────────────────────────────────┤\n", + "│ A_p1 │ 47.8 10 0.096 0.0895 -0.108 -0.0881 0.1 │\n", + "│ A_p2 │ 10 52.4 -0.036 -0.0034 -0.064 -0.1062 0.0 │\n", + "│ mu_p1 │ 0.096 -0.036 0.00694 0.0038 0.004 -0.0025 0.002 │\n", + "│ mu_p2 │ 0.0895 -0.0034 0.0038 0.00333 0.0027 -0.0017 -0.0018 │\n", + "│ sigma_p1 │ -0.108 -0.064 0.004 0.0027 0.00444 -0.0016 -0.005 │\n", + "│ sigma_p2 │ -0.0881 -0.1062 -0.0025 -0.0017 -0.0016 0.00179 -0.0033 │\n", + "│ c │ 0.1 0.0 0.002 -0.0018 -0.005 -0.0033 0.39 │\n", + "└──────────┴────────────────────────────────────────────────────────────────┘" + ] + }, + "execution_count": 530, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def alternative_fit_model(x, A_p1, A_p2, mu_p1, mu_p2, sigma_p1, sigma_p2, c):\n", + " return peak(x, A_p1, mu_p1, sigma_p1) + peak(x, A_p2, mu_p2, sigma_p2) + c\n", + "\n", + "ls = cost.LeastSquares(center, entries, np.sqrt(entries), alternative_fit_model)\n", + "\n", + "mi = Minuit(ls, \n", + " A_p1 = 800, \n", + " A_p2 = 1400,\n", + " mu_p1 = 54,\n", + " mu_p2 = 60,\n", + " sigma_p1 = 2,\n", + " sigma_p2 = 2,\n", + " c = 100, \n", + " )\n", + "mi.limits['c'] = (0, None)\n", + "mi.fixed[:] = True\n", + "ls.mask = (center < 45) | (center >= 70)\n", + "mi.fixed[['c']] = False\n", + "mi.migrad()\n", + "ls.mask = None\n", + "mi.values['A_p1'] = 700\n", + "mi.values['sigma_p1'] = 3\n", + "mi.fixed[:] = True\n", + "mi.fixed[['A_p1', 'mu_p1', 'sigma_p1']] = False\n", + "mi.migrad()\n", + "mi.fixed[:] = True\n", + "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", + "mi.migrad()\n", + "mi.fixed[:] = False\n", + "mi.migrad()\n", + "mi.hesse()" + ] + }, + { + "cell_type": "markdown", + "id": "c9fbbebc", + "metadata": {}, + "source": [ + "Diese Änderung ist gering und der Fit scheint die Daten weiterhin zu beschreiben. Allerdings gibt bei kleinen Energien eine deutlich sichtbare Diskrepanz. Dies zeigt sich auch in einem größeren $\\chi^2$-Wert. Wie wirkt sich dies auf den $P$-Wert aus?" + ] + }, + { + "cell_type": "code", + "execution_count": 478, + "id": "4aa0f3d9-1d0b-4b4c-b816-2a0cb9ae9793", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "329.01941626278426 113 2.911676250113135\n" + ] + } + ], + "source": [ + "chi_square, ndof = chi_square_ndof(center, entries, np.sqrt(entries), alternative_fit_model, mi)\n", + "print(chi_square, ndof, chi_square/ndof)" + ] + }, + { + "cell_type": "code", + "execution_count": 479, + "id": "607ddd33", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "329.01941626278426 113\n" + ] + }, + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 479, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p_value = lambda x, ndof: 1 - chi2.cdf(x, ndof)\n", + "print(chi_square, ndof)\n", + "p_value(chi_square, ndof)" + ] + }, + { + "cell_type": "markdown", + "id": "bcb62098-1e8b-4c9f-8aa3-048037f0d21e", + "metadata": {}, + "source": [ + "Der Fit ist offensichtlich viel schlechter und der $P$-Wert liegt nahe bei null, so dass man dieses Model ausschließen sollte.\n", + "\n", + "Was aber, wenn die Änderung nicht so dramatisch ist? Ist ein $P$-Wert von 0,4 besser als 0,2? Nein, das kann man so nicht beantworten. Aber für einen Hypothesen-Test sollten man vorher eine Schwelle festlegen für die Akzeptanz oder Ablehnung des Models.\n", + "\n", + "Wie ein solcher Hypothesen-Test aussehen kann, wollen wir im Folgenden betrachten. Hierbei benutzen wir\n", + "1. ein korrektes Model (Normalverteilung),\n", + "2. ein korrektes Model mit überschätztem Fehler (10% größer),\n", + "3. und ein falsches Model (Lorentzverteilung)" + ] + }, + { + "cell_type": "code", + "execution_count": 264, + "id": "c3f1f1d4-4b84-45a1-9d23-4cbb8ba32c8c", + "metadata": {}, + "outputs": [], + "source": [ + "def lorentzian( x, x0, a, gam ):\n", + " return a * gam**2 / ( gam**2 + ( x - x0 )**2)" + ] + }, + { + "cell_type": "markdown", + "id": "0e3fcfd5", + "metadata": {}, + "source": [ + "Den Fit der drei Modelle und die Bestimmung des entsprechenden $P$-Werts wiederholen wir 5000-mal um eine ausreichende Statistik zu erhalten." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9667c766", + "metadata": {}, + "outputs": [], + "source": [ + "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `tqdm` zu installieren falls es nicht vorhanden sein sollte!\n", + "# import sys\n", + "# import subprocess\n", + "# subprocess.check_call([\n", + "# sys.executable, \n", + "# '-m',\n", + "# 'pip',\n", + "# 'install',\n", + "# '--proxy',\n", + "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", + "# 'tqdm'\n", + "# ])" + ] + }, + { + "cell_type": "code", + "execution_count": 531, + "id": "c3b58808-f155-4194-b02e-e5f649cb86aa", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9401e27e0abe463ab485a539ee58e61e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/5000 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHdCAYAAAAU4dNnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUhElEQVR4nO3dd1gU1/4G8HfpVRBQioBdIhYUC9cSBUOuJTGiXuNNLGiMJhEMir2bxKgxFtS7xpui6I1GU8TcG2MloLFEFMWoIDYMFsCGhQVB4Pz+8Mcmq6AsO8sus+/neXjCzsye+e642X05c+aMQgghQERERCRDZoYugIiIiEhfGHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIgq6cqVKwgODoa/vz9at26N7777ztAlEdFzKHhTTyKiysnKykJOTg7atGmD7OxstGvXDufOnYO9vb2hSyOiCrBHh4hkKzg4GOPHj5esPU9PT7Rp0wYA4OHhATc3N9y5c0ey9olIegw6RGRQI0aMgEKhgEKhgKWlJRo2bIgpU6bg4cOHhi7tmZKTk1FSUgIfHx9Dl0JEz2Bh6AKIiHr16oV169bh0aNHSE5ORnh4OBQKBT755BNDl1auO3fuYPjw4fjiiy8MXQoRPQd7dIjI4KytreHh4QEfHx+EhYUhNDQUe/bsUa8vLS3FwoUL0bBhQ9ja2iIgIADff/+9RhsqlQrDhw+Hg4MDPD09sXTpUq3rGDRoEOrUqYPPP/9cvezIkSOwsrLC7t27AQCFhYUICwvDtGnT0Llz5yq+YiKqLgw6RGRUTp8+jUOHDsHKykq9bOHChdiwYQPWrFmDM2fOYMKECRg6dCj27dun3mby5MnYt28ffvzxR+zevRuJiYk4fvy4VvteuXIlBg4ciA8//BAAkJeXh6FDh+K9997D3//+dwghMGLECPTo0QPDhg2T5gUTkV7xqisiMqgRI0bg66+/ho2NDYqLi1FYWAgzMzN8++23GDhwIAoLC+Hi4oK9e/eiU6dO6ue9/fbbyM/Px6ZNm5CXlwdXV1d8/fXXGDRoEIDHp5e8vb0xZswYxMTEVLqes2fPonnz5rh16xYmT56MpKQkHDt2DDY2Njhw4AC6deuG1q1bq7f/z3/+g1atWkl2PIhIWhyjQ0QGFxISgs8++wwqlQrLly+HhYUFBg4cCAC4cOEC8vPz8fLLL2s8p6ioCG3btgUAXLx4EUVFRQgKClKvd3FxgZ+fn9a1NGvWDHZ2dpgzZw42btyIpKQk2NjYAAC6du2K0tLSqr5MIjIABh0iMjh7e3s0adIEALB27VoEBATgq6++wqhRo5CXlwcA2L59O+rVq6fxPGtra8lrMTMzQ6tWrbB69WosXrwYAQEBku+DiKoPx+gQkVExMzPDjBkzMGvWLBQUFMDf3x/W1tbIzMxEkyZNNH7KLu1u3LgxLC0tceTIEXU7ubm5OHfunNb7LzubHxgYiIkTJ0rzoojIYBh0iMjoDBo0CObm5lAqlXB0dMSkSZMwYcIErF+/HhcvXsTx48exatUqrF+/HgDg4OCAUaNGYfLkyfjll19w+vRpjBgxAmZmf37E/etf/8JLL7303H3HxMTgyJEjKC0t1Xg+EdVMPHVFREbHwsICkZGRWLx4Md577z189NFHqFOnDhYuXIhLly7B2dkZgYGBmDFjhvo5n376KfLy8tC3b184Ojpi4sSJuHfvnnr9rVu3cPHixWfu99SpU5g+fTrGjh2LL7/8EsXFxbCw4MckUU3Gq66IiAA8fPgQHTp0QGBgIGJiYuDi4oJTp06hZcuWhi6NiHTAflkiIgDTpk2DSqXCv/71L9SuXRv169dHTEwMrl+/bujSiEgHDDpEZPJ2794NpVKJr7/+Go6OjgCAWbNmYdu2bYiIiDBwdUSkC566IiIiItlijw4RERHJFoMOERERyRaDDhEREckWgw4Ztf3796Nv377w8vKCQqHAtm3bDF0S1QB831B14vvNuDHokF5dv34dxcXFVX6+SqVCQEAAlEqlhFWR3PF9Q1LKzc1V33OtPHy/GTdO+Ul69cUXX+Czzz7D0KFDER4ejlatWmn1/N69e6N37956qo7kiu8b0lVxcTF27dqF2NhY/O9//8ORI0cqvMEr32/GjT06pFdTp07FihUrkJaWhsDAQAQGBmLlypW4efOmoUsjInrKqVOnMHHiRHh7e2P48OGoU6cOEhISeBf7GoxBh/TKxsYGgwcPxvbt23Ht2jUMHz4csbGxqFevHsLCwhAXF6fTqS0iIl3dvn0bK1asQGBgINq3b49Lly5h9erVyMrKwurVq9GpUydDl0g6YNChalO3bl2MHz8ex48fx48//ojDhw9jwIABOH36tKFLIyITtmrVKowfPx4ODg64cOEC4uLiMGDAAFhZWRm6NJIAgw5VmwcPHmDdunXo0aMH+vbti5YtW2L9+vXw9/c3dGlEZMLGjBmDjz76CNnZ2WjRogVGjhyJX375BaWlpYYujSTAoEN6VVJSgh07duDNN9+Eu7s7Fi1ahJdeegmXLl1CfHw8hg8fzr+aiMigvLy8MGvWLJw7dw47d+6ElZUVBgwYgPr162PatGk4c+aMoUskHTDokF4tWLAAb7zxBhwdHbF3716kp6dj5syZ8PX1rdTz8/LykJKSgpSUFABARkYGUlJSkJmZqceqqabj+4aqqnPnzvj3v/+N7OxsfPrpp0hJSUFAQABOnTpV4XP4fjNuvKkn6dXly5fh4eEBGxubKj0/MTERISEhTy0PDw9HbGysjtWRXPF9Q1K6fv06HBwcUKtWrXLX8/1m3Bh0iIiISLZ46oqIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeMRmFhIebNm4fCwkJDl0IywfcUSYnvp5qJ8+iQ0bh//z6cnJxw7969CifmItIG31MkJb6faib26BAREZFsMegQERGRbFkYugBDKy4uxokTJ+Du7g4zM+Y+Q3rw4AEA4Nq1a7h//76BqyE54HuKpMT3k3EpLS1FTk4O2rZtCwuLiuOMyY/ROXr0KDp27GjoMoiIiKgKkpKS0KFDhwrXm3yPjru7O4DHB8rT09PA1RhOfn4+/Pz8AADp6emws7MzcEVEREQVy8rKQseOHdXf4xUx+aBTdrrK09MT3t7eBq7GcFQqlfr3evXqwd7e3oDVEBERVc7zhp1wUAoRERHJlskGHaVSCX9/fwQHBxu6FCIiItITkw06ERERSE1NRWJioqFLISIiIj0x+TE6RGTcSkpK8OjRI0OXQUTVzNLSEubm5jq3w6BDREZJCIHs7GzcvXvX0KUQkYE4OzvDw8MDCoWiym0w6BCRUSoLOXXr1oWdnZ1OH3REVLMIIZCfn48bN24AgE7TvzDoEJHRKSkpUYccV1dXQ5dDRAZga2sLALhx4wbq1q1b5dNYJjsYmVddERmvsjE5nLiSyLSVfQboMk7PZIMOr7oiMn48XUVk2qT4DDDZoENERETyxzE6RFRj3Mu8h/xb+dW2Pzs3Ozj5OlXb/qSgUCgQFxeHsLAwQ5eC4OBgtGnTBjExMZXaPjY2FuPHj+eVdiQpBh0iqhHuZd6DsrkSj/Krb04dSztLRKRFaBV2srOzsXDhQmzfvh1Xr16Fk5MTmjRpgqFDhyI8PJzjjoiqGYMOEdUI+bfy8Sj/Efp/3R91mtfR+/5upt1E3NA45N/Kr3TQuXTpErp06QJnZ2csWLAArVq1grW1NU6dOoXPP/8c9erVw2uvvabnyonorxh09EmVCRTe0r0dazfA3lf3dohkoE7zOvAMrPqcGvo0duxYWFhY4NixY7C3t1cvb9SoEfr16wchhHpZZmYmxo0bh/j4eJiZmaFXr15YtWoV3N3d1dt89tlnWLJkCa5cuYKGDRti1qxZGDZsmHr9+fPnMWrUKCQlJaFRo0ZYsWLFc2sMDg5Gq1atYG5ujvXr18PKygrz58/Hm2++icjISHz//fdwd3fHqlWr0Lt3b/Xz9u3bh8mTJ+PkyZNwcXFBeHg45s+fDwuLx18jKpUK7733HrZu3QpHR0dMmjTpqX0XFhZi5syZ+Oabb3D37l20bNkSn3zyCa9+Jb0y2aCjVCqhVCpRVFSknx2oMoGfmgMlEownMLcDXk1j2CEyYrdv38bu3buxYMECjZDzV2VXkJSWlqJfv35wcHDAvn37UFxcjIiICAwePFh9JWhcXByioqIQExOD0NBQ/PTTTxg5ciS8vb0REhKC0tJSDBgwAO7u7jhy5Aju3buH8ePHV6rW9evXY8qUKUhKSsKWLVvw3nvvIS4uDv3798eMGTOwfPlyDBs2DJmZmbCzs8O1a9fQp08fjBgxAhs2bMDZs2cxevRo2NjYYN68eQCAyZMnY9++ffjxxx9Rt25dzJgxA8ePH0ebNm3U+42MjERqaio2b94MLy8vxMXFoVevXjh16hSaNm1a1UNP9GzCxF25ckUAEFeuXJG24dvJQmyEEJe+fvx7VX8uff24ndvJ0tb3hLy8PAFAABB5eXl63RfR8xQUFIjU1FRRUFCgXnY9+bqYh3nievL1aqlB2/399ttvAoDYunWrxnJXV1dhb28v7O3txZQpU4QQQuzevVuYm5uLzMxM9XZnzpwRAERSUpIQQojOnTuL0aNHa7Q1aNAg0adPHyGEELt27RIWFhbi2rVr6vU7duwQAERcXFyFdXbv3l107dpV/bi4uFjY29uLYcOGqZdlZWUJAOLw4cNCCCFmzJgh/Pz8RGlpqXobpVIpHBwcRElJiXjw4IGwsrIS3377rXr97du3ha2trYiKihJCCPHHH38Ic3NzjXqFEOKll14S06dPF0IIsW7dOuHk5FRh7WR6yvssKFPZ72+T7dGpNk7NAZdAQ1dBRAaSlJSE0tJSDBkyBIWFhQCAtLQ0+Pj4wMfHR72dv78/nJ2dkZaWhg4dOiAtLQ1jxozRaKtLly7q01NlbXh5eanXd+rUqVI1tW7dWv27ubk5XF1d0apVK/WystNnZdPvp6WloVOnThpzmnTp0gV5eXm4evUqcnNzUVRUhKCgIPV6FxcX+Pn5qR+fOnUKJSUlaNasmUYthYWFnP2a9IpBh4hIAk2aNIFCoUB6errG8kaNGgH4czp7Y2BpaanxWKFQaCz76yk2qeTl5cHc3BzJyclPTeXv4OAg2X6InsQJA4mIJODq6oqXX34Z//rXv6BSqZ65bfPmzXHlyhVcuXJFvSw1NRV3796Fv7+/epuDBw9qPO/gwYMa669cuYKsrCz1+t9++02ql/NUvYcPH9YYTH3w4EE4OjrC29sbjRs3hqWlJY4cOaJen5ubi3Pnzqkft23bFiUlJbhx4waaNGmi8ePh4aGXuokABh0iIsmsXr0axcXFaN++PbZs2YK0tDSkp6fj66+/xtmzZ9U9GaGhoWjVqhWGDBmC48ePIykpCcOHD0f37t3Rvn17AI8H98bGxuKzzz7D+fPnsWzZMmzdulV9NVNoaCiaNWuG8PBwnDx5Er/++itmzpypl9c1duxYXLlyBePGjcPZs2fx448/Yu7cuYiOjoaZmRkcHBwwatQoTJ48Gb/88gtOnz6NESNGwMzsz6+YZs2aYciQIRg+fDi2bt2KjIwMJCUlqeccItIXnroiohrlZtpNo91P48aNceLECSxYsADTp0/H1atXYW1tDX9/f0yaNAljx44F8PjU0I8//ohx48ahW7duGpeXlwkLC8OKFSuwZMkSREVFoWHDhli3bp36UmwzMzPExcVh1KhR6NixIxo0aICVK1eiV69ekrz+v6pXrx5+/vlnTJ48GQEBAXBxccGoUaMwa9Ys9Taffvop8vLy0LdvXzg6OmLixIm4d++eRjvr1q3D/PnzMXHiRFy7dg1ubm7429/+hldffVXymonKKMRf+yJN0NWrV+Hj44MrV67A29tbuobvHAd2tgN6Jes2GFmqdp5DpVKpz5Pn5eVVeHksUXV4+PAhMjIy0LBhQ9jY2ACoOTMjE5F0yvssKFPZ72/26BBRjeDk64SItAje64qItGKyQUfvEwYSkeScfJ0YPIhIKyY7GDkiIgKpqanqWUiJiIhIfkw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsMegQERGRbDHoEBERkWyZ7Dw6RFQDqTKBwlvVtz9rN8Det/r2Z2JGjBiBu3fvYtu2bZXaPjExESEhIcjNzYWzs7NeayP5YNAhoppBlQn81Bwoqb6ZkWFuB7yaVqmws2bNGkyePBm5ubmwsHj80ZqXl4fatWujS5cuGnN2lX1hX7hwAY0bN9ZX9UQEBh0iqikKbz0OOZ2+Bpya639/99KAw0Mf77cSQSckJAR5eXk4duwY/va3vwEAfv31V3h4eODIkSN4+PCh+l49CQkJ8PX1LTfkFBUVwcrKStrXQmTCTHaMjlKphL+/v/pOwERUQzg1f3yDW33/aBmm/Pz84Onp+VTPTb9+/dCwYUP89ttvGstDQkIAPD59ExYWho8//hheXl7w8/MDAJw6dQo9evSAra0tXF1dMWbMGOTl5anbKHvekiVL4OnpCVdXV0RERODRoz9vepqVlYVXXnkFtra2aNiwITZt2oQGDRogJiamwtdR1u6CBQvg7u4OZ2dnfPjhhyguLsbkyZPh4uICb29vrFu3TuN5z6u3pKQE0dHRcHZ2hqurK6ZMmYIn7yldWlqKhQsXomHDhrC1tUVAQAC+//77yv8jEJXDZIMObwFBRFILCQlBQkKC+nFCQgKCg4PRvXt39fKCggIcOXJEHXQAID4+Hunp6dizZw9++uknqFQq9OzZE7Vr18bRo0fx3XffYe/evYiMjNTYX0JCAi5evIiEhASsX78esbGxiI2NVa8fPnw4rl+/jsTERPzwww/4/PPPcePGjee+jl9++QXXr1/H/v37sWzZMsydOxevvvoqateujSNHjuDdd9/FO++8g6tXrwJApepdunQpYmNjsXbtWhw4cAB37txBXFycxn4XLlyIDRs2YM2aNThz5gwmTJiAoUOHYt++fZX/RyB6kjBxV65cEQDElStXpG34drIQG/H4v8bQznPk5eUJAAKAyMvL0+u+iJ6noKBApKamioKCgj8XVtP/C7rs74svvhD29vbi0aNH4v79+8LCwkLcuHFDbNq0SXTr1k0IIUR8fLwAIP744w8hhBDh4eHC3d1dFBYWqtv5/PPPRe3atTX+X9y+fbswMzMT2dnZ6ufVr19fFBcXq7cZNGiQGDx4sBBCiLS0NAFAHD16VL3+/PnzAoBYvnx5ha+hrN2SkhL1Mj8/P/Hiiy+qHxcXFwt7e3vxzTffVLpeT09PsXjxYvX6R48eCW9vb9GvXz8hhBAPHz4UdnZ24tChQxr1jBo1SrzxxhtCCCESEhIEAJGbm1th/SQv5X4W/L/Kfn9zjA4RkUSCg4OhUqlw9OhR5ObmolmzZqhTpw66d++OkSNH4uHDh0hMTESjRo3g6/vnuJ9WrVppjMtJS0tDQEAA7O3t1cu6dOmC0tJSpKenw93dHQDQokULmJubq7fx9PTEqVOnAADp6emwsLBAYGCgen2TJk1Qu3bt576OFi1awMzszw5/d3d3tGzZUv3Y3Nwcrq6u6t6h59VrY2ODrKwsBAUFqddbWFigffv26tNXFy5cQH5+Pl5++WWNWoqKitC2bdvn1kxUEQYdIiKJNGnSBN7e3khISEBubi66d+8OAPDy8oKPjw8OHTqEhIQE9OjRQ+N5fw0I2rC0tNR4rFAoUFpaWrXin9OuvvZVpmw8z/bt21GvXj2NddbW1pLth0yPyY7RISLSh5CQECQmJiIxMVHjYodu3bphx44dSEpK0hifU57mzZvj5MmTUKlU6mUHDx6EmZmZerDy8/j5+aG4uBgnTpxQL7tw4QJyc3O1e0GV8Lx6nZyc4OnpiSNHjqjXFxcXIzk5Wf3Y398f1tbWyMzMRJMmTTR+fHx8JK+ZTAeDDhGRhEJCQnDgwAGkpKSoe3QAoHv37vj3v/+NoqKi5wadIUOGwMbGBuHh4Th9+jQSEhIwbtw4DBs2TH3a6nleeOEFhIaGYsyYMUhKSsKJEycwZswY2NraQqFQ6PQaq1JvVFQUFi1ahG3btuHs2bMYO3Ys7t69q27D0dERkyZNwoQJE7B+/XpcvHgRx48fx6pVq7B+/XpJ6yXTwlNXRFSz3Esz6v2EhISgoKAAL7zwgkYo6d69Ox48eKC+DP1Z7OzssGvXLkRFRaFDhw6ws7PDwIEDsWzZMq1q2bBhA0aNGoVu3brBw8MDCxcuxJkzZ9Tz+UilMvVOnDgRWVlZCA8Ph5mZGd566y30798f9+7dU2/z0UcfoU6dOli4cCEuXboEZ2dnBAYGYsaMGZLWS6ZFIcQTExmYmKtXr8LHxwdXrlyBt7e3dA3fOQ7sbAf0Sn48J4eh23kOlUoFBwcHAI/PlVd1zACRFB4+fIiMjAw0bNjwzy9lI58ZuSYo+7zbu3cvXnrpJUOXQ/Rc5X4W/L/Kfn+zR4eIagZ738ehg/e6qrRffvkFeXl5aNWqFbKysjBlyhQ0aNAA3bp1M3RpRNWGQYeIag573xodPKrbo0ePMGPGDFy6dAmOjo7o3LkzNm7c+NQVVERyxqBDRCRTPXv2RM+ePQ1dBpFB8aorIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki2TDTpKpRL+/v4aU7QTERGRvJhs0ImIiEBqaioSExMNXQoRERHpCS8vJ6IaI//6dRTduVNt+7NycYGdl1e17U8biYmJCAkJQW5uLpydnQ1djslQKBSIi4tDWFiYTu00aNAA48ePx/jx4yWpqzzx8fGIjIzE6dOnYW5urrf9VMXOnTsxbdo0HD9+HGZm+u1zYdAhohoh//p1JP797ygpKKi2fZrb2iJ49+5KhZ3n3Shz7ty5mDdvnkSVkS4uX76Mhg0b4sSJE2jTpo1Wz83KykLt2rUrvX1sbCzGjx+vcQNTADh69Kjeb7UzZcoUzJo1Sx1ysrKyMHHiRBw7dgwXLlzA+++/j5iYmKee991332H27Nm4fPkymjZtik8++QR9+vSpcD8nTpzAW2+9hfPnzyMkJATr16+Hi4sLgMd3qQ8KCsJnn32Gjh07qp/Tq1cvzJ49Gxs3bsSwYcOkfeFPYNAhohqh6M4dlBQUoO2yZXBo3Fjv+8u7eBEnoqNRdOdOpYJOVlaW+vctW7Zgzpw5SE9PVy8ru5ecMSkqKoKVlZWhy6hWRUVFOj3fw8NDkjrq1KkjSTsVOXDgAC5evIiBAweqlxUWFqJOnTqYNWsWli9fXu7zDh06hDfeeAMLFy7Eq6++ik2bNiEsLAzHjx9Hy5Yty33O22+/jR49emDLli14++23sWDBAixZsgQAsHTpUnTp0kUj5JQZMWIEVq5cqfegA2Hirly5IgCIK1euSNvw7WQhNuLxf42hnefIy8sTAAQAkZeXp9d9ET1PQUGBSE1NFQUFBepluadOif82aiRyT52qlhp02d+6deuEk5OT+nFJSYn44IMPRL169YSVlZUICAgQO3bs0HjO77//LkJCQoSNjY1wcXERo0ePFg8ePKhwHwkJCQKAyM3NFUIIcevWLfHPf/5TeHl5CVtbW9GyZUuxadMmjed0795dREREiKioKOHq6iqCg4OFEEL8+OOPokmTJsLa2loEBweL2NhYjbaFEOLXX38VXbt2FTY2NsLb21uMGzfumZ8V4eHhol+/fhrLoqKiRPfu3TXqGTdunJg8ebKoXbu2cHd3F3PnztV4Tm5urhgzZoyoW7eusLa2Fi1atBD/+9//Kl1X/fr1xYcffiiGDRsmHB0dRXh4uPqzruynrKakpCQRGhoqXF1dRa1atUS3bt1EcrLmZy8AERcXJ4QQIiMjQwAQP/zwgwgODha2traidevW4tChQxr/Rn/9KXt99evXF8uXL9d4naNGjRJubm7C0dFRhISEiJSUFPX6lJQUERwcLBwcHISjo6MIDAwUR48erfD4R0REiH/84x8Vru/evbuIiop6avnrr78uXnnlFY1lQUFB4p133qmwLVtbW5GWliaEEGL16tWiT58+QgghLl68KJo2bSru379f7vP++OMPAUBcuHChwrbL+ywoU9nvb5MdjExEVF1WrFiBpUuXYsmSJfj999/Rs2dPvPbaazh//jwAQKVSoWfPnqhduzaOHj2K7777Dnv37kVkZGSl9/Hw4UO0a9cO27dvx+nTpzFmzBgMGzYMSUlJGtutX78eVlZWOHjwINasWYOMjAz84x//QFhYGE6ePIl33nkHM2fO1HjOxYsX0atXLwwcOBC///47tmzZggMHDmhVX0XWr18Pe3t7HDlyBIsXL8aHH36IPXv2AABKS0vRu3dvHDx4EF9//TVSU1OxaNEi9amYyta1ZMkSBAQE4MSJE5g9e7b6mOzduxdZWVnYunUrAODBgwcIDw/HgQMH8Ntvv6Fp06bo06cPHjx48MzXMHPmTEyaNAkpKSlo1qwZ3njjDRQXF6Nz586IiYlBrVq1kJWVhaysLEyaNKncNgYNGoQbN25gx44dSE5ORmBgIF566SXc+f8xaUOGDIG3tzeOHj2K5ORkTJs27Zn3LPv111/Rvn37SvwLaDp8+DBCQ0M1lvXs2ROHDx+u8DkBAQHYs2cPiouLER8fj9atWwMA3n33XSxevBiOjo7lPs/X1xfu7u749ddfta5TK8+MQSaAPTqPsUeHjIncenS8vLzExx9/rLFNhw4dxNixY4UQQnz++eeidu3aGv/vbd++XZiZmYns7Oxy9/Fkj055XnnlFTFx4kT14+7du4u2bdtqbDN16lTRsmVLjWUzZ87UaHvUqFFizJgxGtv8+uuvwszMrNy/tIWofI9O165dNbbp0KGDmDp1qhBCiF27dgkzMzORnp5e7j4qU1f9+vVFWFiYxjZlPTEnTpwot90yJSUlwtHRUaMHCeX06Hz55Zfq9WfOnBEA1D0cT74Xyvy1R+fXX38VtWrVEg8fPtTYpnHjxuLf//63EEIIR0dHERsb+8x6/8rJyUls2LChwvUV9ehYWlo+1ROoVCpF3bp1K2zr9OnTolu3bsLX11e88cYb4t69e2LDhg2iX79+4urVq+Lvf/+7aNy4sZg5c+ZTz23btq2YN29ehW1L0aPDMTpERHp0//59XL9+HV26dNFY3qVLF5w8eRIAkJaWhoCAAI3BqV26dEFpaSnS09Ph7u7+3P2UlJRgwYIF+Pbbb3Ht2jUUFRWhsLAQdnZ2Gtu1a9dO43F6ejo6dOigsezJ8RQnT57E77//jo0bN6qXCSFQWlqKjIwMNG/e/Ln1VaTsr/8ynp6euHHjBgAgJSUF3t7eaNasWbnPrWxdle3ZyMnJwaxZs5CYmIgbN26gpKQE+fn5yMzMrPRr8PT0BADcuHEDL7zwQqX2e/LkSeTl5cHV1VVjeUFBAS5evAgAiI6Oxttvv43//Oc/CA0NxaBBg9D4GWPVCgoKYGNjU6n966pFixbYt2+f+vHt27cxd+5c7N+/H+PGjUPnzp2xdetWdOjQAUFBQejbt696W1tbW+Tn5+u1PgYdIiIZ+PTTT7FixQrExMSgVatWsLe3x/jx458afFuVK33y8vLwzjvv4P33339qna+vb7nPMTMzgxBCY9mjR4+e2u7J0y8KhQKlpaUAHn8JSlFXZV9zeHg4bt++jRUrVqB+/fqwtrZGp06dnjuA+a+voezqu7LXUBl5eXnw9PQsd163sqkD5s2bhzfffBPbt2/Hjh07MHfuXGzevBn9+/cvt003Nzfk5uZWuoYyHh4eyMnJ0ViWk5Oj1SDs6OhojB8/Ht7e3khMTMT8+fNhb2+PV155BYmJiRpB586dO3ofmM2gQ0SkR7Vq1YKXlxcOHjyI7t27q5cfPHhQ3XPSvHlzxMbGQqVSqb+UDx48CDMzM/j5+VVqPwcPHkS/fv0wdOhQAI+/aM+dOwd/f/9nPs/Pzw8///yzxrKjR49qPA4MDERqaiqaNGlSqVqAx1cVnT59WmNZSkrKM8eVPKl169a4evUqzp07V26vTlXqAqC+0qykpERj+cGDB7F69Wr1pdRXrlzBrVu3tGq7vH09uZ8nBQYGIjs7GxYWFmjQoEGF2zVr1gzNmjXDhAkT8MYbb2DdunUVBp22bdsiNTVV63o7deqE+Ph4jfl99uzZg06dOlXq+fHx8UhLS8O6desAPD7GZQH3yaD78OFDXLx4EW3bttW6Tm1wMDIRkZ5NnjwZn3zyCbZs2YL09HRMmzYNKSkpiIqKAvB4oKmNjQ3Cw8Nx+vRpJCQkYNy4cRg2bFilTlsBQNOmTbFnzx4cOnQIaWlpeOedd576y7w877zzDs6ePYupU6fi3Llz+PbbbxEbGwvgz96JqVOn4tChQ4iMjERKSgrOnz+PH3/88ZmDkXv06IFjx45hw4YNOH/+PObOnftU8Hme7t27o1u3bhg4cCD27NmDjIwM7NixAzt37qxyXQBQt25d2NraYufOncjJycG9e/cAPD6G//nPf5CWloYjR45gyJAhz+1Vep4GDRogLy8P8fHxuHXrVrmnaUJDQ9GpUyeEhYVh9+7duHz5Mg4dOoSZM2fi2LFjKCgoQGRkJBITE/HHH3/g4MGDOHr06DNPGfbs2RMHDhx4anlKSgpSUlKQl5eHmzdvIiUlRSMQRUVFYefOnVi6dCnOnj2LefPm4dixY5UaeP7w4UNERkbi888/V08C2KVLFyiVSpw8eRI//PCDxinc3377Td1rpk/s0SGiGiXv/8cs1KT9vP/++7h37x4mTpyIGzduwN/fH//973/RtGlTAICdnR127dqFqKgodOjQAXZ2dhg4cCCWLVtW6X3MmjULly5dQs+ePWFnZ4cxY8YgLCxM/SVekYYNG+L777/HxIkTsWLFCnTq1AkzZ87Ee++9B2trawCPe1b27duHmTNn4sUXX4QQAo0bN8bgwYMrbLdnz56YPXs2pkyZgocPH+Ktt97C8OHDcerUqUq/JgD44YcfMGnSJLzxxhtQqVRo0qQJFi1aVOW6AMDCwgIrV67Ehx9+iDlz5uDFF19EYmIivvrqK4wZMwaBgYHw8fHBggULKrxKqrI6d+6Md999F4MHD1aPXXly4kiFQoGff/4ZM2fOxMiRI3Hz5k14eHigW7ducHd3h7m5OW7fvo3hw4cjJycHbm5uGDBgAD744IMK9ztkyBBMmTIF6enpGr2Cf+09SU5OxqZNm1C/fn1cvnxZXe+mTZswa9YszJgxA02bNsW2bdsqnEPnrz744AO88sorGpMwrly5Em+++Sa6deuGIUOGaMzr880332DIkCFPjSOTmkI8eRLVxFy9ehU+Pj64cuUKvL29pWv4znFgZzugVzLgEmj4dp5DpVKpJzTLy8vT+4ydRM/y8OFDZGRkoGHDhuoBlcY+M7KcfPzxx1izZg2uXLli6FJIB5MnT8b9+/fx73//29ClPOXWrVvw8/PDsWPH0LBhwwq3K++zoExlv7/Zo0NENYKdlxeCd+/mva70YPXq1ejQoQNcXV1x8OBBfPrpp5LMkUOGNXPmTKxevRqlpaV6v5+Uti5fvozVq1c/M+RIhUGHiGoMOy8vkwge1e38+fOYP38+7ty5A19fX0ycOBHTp083dFmkI2dnZ8yYMcPQZZSrffv2VZrQsCoYdIiITNzy5csrvPcRUU1nXH1ZRERERBJi0CEio2Xi10oQmTwpPgMYdIjI6JRNKqfvqeGJyLiVfQZoM9HkkzhGh4iMjrm5OZydndX3PLKzs1NPXkdE8ieEQH5+Pm7cuAFnZ2f1HeurgkGHiIxS2b11ysIOEZkeZ2dnre6zVZ4aH3Tu3r2L0NBQFBcXo7i4GFFRURg9erShyyIiHSkUCnh6eqJu3brl3gySiOTN0tJSp56cMjU+6Dg6OmL//v2ws7ODSqVCy5YtMWDAgKdud09ENZO5ubkkH3ZEZJpq/GBkc3Nz9X0yCgsLIYTglRpEREQEwAiCzv79+9G3b194eXlBoVBg27ZtT22jVCrRoEED2NjYICgoCElJSRrr7969i4CAAHh7e2Py5Mlwc3OrpuqJiIjImBk86KhUKgQEBECpVJa7fsuWLYiOjsbcuXNx/PhxBAQEoGfPnhoDFJ2dnXHy5ElkZGRg06ZNyMnJqXB/hYWFuH//vvrnwYMHkr8mIiIiMg4GDzq9e/fG/Pnz0b9//3LXL1u2DKNHj8bIkSPh7++PNWvWwM7ODmvXrn1qW3d3dwQEBODXX3+tcH8LFy6Ek5OT+sff31+y10JERETGxeBB51mKioqQnJyM0NBQ9TIzMzOEhobi8OHDAICcnBx1r8y9e/ewf/9++Pn5Vdjm9OnTce/ePfVPamqqfl8EERERGYxRX3V169YtlJSUwN3dXWO5u7s7zp49CwD4448/MGbMGPUg5HHjxqFVq1YVtmltbQ1ra2v14/v37+uneCIiIjI4ow46ldGxY0ekpKQYugwiIiIyQkZ96srNzQ3m5uZPDS7OycnReaZEpVIJf39/BAcH69QOERERGS+jDjpWVlZo164d4uPj1ctKS0sRHx+PTp066dR2REQEUlNTkZiYqGOVREREZKwMfuoqLy8PFy5cUD/OyMhASkoKXFxc4Ovri+joaISHh6N9+/bo2LEjYmJioFKpMHLkSANWTURERDWBwYPOsWPHEBISon4cHR0NAAgPD0dsbCwGDx6MmzdvYs6cOcjOzkabNm2wc+fOpwYoExERET3J4EEnODj4ubdsiIyMRGRkZDVVRERERHJh1GN09ImDkYmIiOTPZIMOByMTERHJn8kGHSIiIpI/Bh0iIiKSLQYdIiIiki2TDTocjExERCR/Jht0OBiZiIhI/kw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsmWzQ4VVXRERE8meyQYdXXREREcmfyQYdIiIikj8GHSIiIpItBh0iIiKSLQYdIiIiki0LQxdARERExif/+nUU3bmjcztWLi6w8/KSoKKqYdAhIiIiDfnXryPx739HSUGBzm2Z29oiePdug4Udkw06SqUSSqUSRUVFhi6FiIjIqBTduYOSggK0XbYMDo0bV7mdvIsXcSI6GkV37jDoVLeIiAhERETg6tWr8PHxMXQ5RERERsehcWM4t2xp6DJ0wsHIREREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWyZ7eTnn0SEiIjmSYkbjvIsXJarG8Ew26HAeHSIikhupZzS2cnGRoCrDMtmgQ0REJDdSzWgMGP4eVVJh0CEiIpIZOcxoLBUORiYiIiLZYo8OERGRDqQY/CsVOQ0ilgqDDhERURVJOfhXKnIZRCwVBh0iIqIqknLwr1TkMohYKgw6REREOuLgX+PFwchEREQkWww6REREJFs8dUVERCaJt0owDSYbdHivKyKimkmKgFJ05w6OjR3LWyWYAJMNOrzXFRFRzSP1vZyC1q3TOaTwKifjZrJBh4iIah7ey4m0xaBDREQ1Di/npsriVVdEREQkWww6REREJFsMOkRERCRbDDpEREQkWxyMTEREzyTFvDVS4QR9pC2tg87OnTvh4OCArl27Ang88d4XX3wBf39/KJVK1K5dW/IiiYhIe8Y2sZ5UOEEfaUProDN58mR88sknAIBTp05h4sSJiI6ORkJCAqKjo7Fu3TrJiyTg5tmbKLbJ0lv7+QX56t+zU7JhZ2tX4bZ2bnZw8nXSWy1Eps7YAopUE+tJhfPfkDa0DjoZGRnw9/cHAPzwww949dVXsWDBAhw/fhx9+vSRvEBT9yD7ARwBbB2yFdmXf9Pbforw560w1nZdCytYVbitpZ0lXt/6Ouzr2OutHm1IFbzuZd5D/q38529YTfWQaeLMv0TS0jroWFlZIT//8ZfB3r17MXz4cACAi4sL7t+/L211hId3H8IRQI/5PeDQvJve9pNfkI8FXRcAAN468FaFPTqqmyp8O+BbbOy1UW+1aMvSzhIRaRE6hYt7mfegbK7Eo/xHRlEPmS5jnPn3XuY9ZB3XvUeZfwSQIWgddLp27Yro6Gh06dIFSUlJ2LJlCwDg3Llz8Pb2lrzAmk7XU055GXdRRwE4N3RGnUBPCSvTpFKp1L97tPGAvX3FvTURaRGS9HxI4WbaTcQNjUP+rXydPkDzb+XjUf4j9P+6P+o0r6NzPX/8+odO7QDsqTJ1xjLzL/8IoJpO66Dzr3/9C2PHjsX333+Pzz77DPXq1QMA7NixA7169ZK8wJpKqlNOHg2uo+nHgI2zjXTF6cjJ10m2H1R1mteBpw6B0s7NDpZ2logbGqdzLcbYUyXVKUu5hiYpQqXq0i2JqpGmnptpNyX9I0DXP0qItKV10PH19cVPP/301PLly5dLUpBcSHXKyeLh78Dlz+Ho4ShdcTJ0M+2mQZ9fxsnXSZIeL2PrqZL6lKVUoUmqwCTF4N+87Dx80/+/yM+z1qkdW6vbaO79uD1nHTp0pA659V+sz4BCNZLWQcfc3BxZWVmoW7euxvLbt2+jbt26KCkpkaw4fVIqlVAqlSgqKnr+xjrQ+ZTTnSzgsmTlyI7UPSh2bhVfbVZZxtjjpWtPFSDdKUspQ5MUganwZjbORA9F6cOHOtfT1M0CvotWw7OTf5XbuBr/G7LXbEfWiSyYu1T9tLdUPTGAtD1wUvxRwR7B6iGX46x10BFClLu8sLAQVlYVX6ljbCIiIhAREYGrV6/Cx8fH0OVQFUnVgwLI539qfZEywEnxbyZVYHrcg/IQfjPmo25Qqyq3czU+GRkrP0Qtd3OdQmXJHU9kA0iYlYCCKb9XuR3AuHpijO20LmBc49ek7IGTilzGVFU66KxcuRIAoFAo8OWXX8LBwUG9rqSkBPv378cLL7wgfYVEz2GMPSj0bFL9m0kRmMp6UMycPHUa/HvrrDRjaxw8Hn+2Dtg4APaN/HRqy5jCu7Gd1jW2QdZSnWaWipzGVFU66JSNwRFCYM2aNTA3N1evs7KyQoMGDbBmzRrpKyQyYcYy9shYWVqoYGul29gaW6vH02LkZuTqdAl1bkauTnU8ye0FNzi31N+VloZgTH+USH2lpVSBQIrTzKSp0kEnIyMDABASEoKtW7fyVg9EemSMY4+MjZQT65WWWmDP9EN4VFL1U0Vlg4iN6QpJOZPqjwAGC/nTeoxOQkKCPuogor/g2KPnk3JivcICC3Q01+0YqS6lI23qdkCVg7unT1e5Hd608tmM9Y8Aufa+6lqXlNMlVFWlgk50dDQ++ugj2NvbIzo6+pnbLlu2TJLCiEydMXXzGzNjmVgv30PgnK0tTjznM7IyeNPKihnbHwHGGrx0JdXrkmq6BF1UKuicOHECjx49HrB1/PhxKBSKcreraDkR0V9JMm+NkfV82Hl5IXj3bp1fF8B7Sz2PMf0RYGzBSypSva6ywf4P7+o+fUNVVSrorFixArVq1QIAJCYm6rMeIpKYFKFCSlLfVduYej7svLwYUEyQMQUvKUnxulSXaiNbonqqqlJBp23btupJAhs1aoSjR4/C1dVV37URkY6kHLArJd5Vm4iqS6WCjrOzMzIyMlC3bl1cvnwZpaWl+q6LiCQg5YBdKTGgEFF1qVTQGThwILp37w5PT08oFAq0b99eYx6dv7p06ZKkBRKZKinHsRjLgF0ioupWqaDz+eefY8CAAbhw4QLef/99jB49Go6OvMkkkb5IecrJ2MaxEBFVp0rPo9OrVy8AQHJyMqKiohh0iCogVU+MVKeceJqIiEyZ1hMGrlu3Th91EMmC1D0xLh06MKQQEelA66BDRBWTcvAve2KIiHTHoEOkBxz8S0RkHMwMXQARERGRvlQq6AQGBiI3NxcA8OGHHyI/X/epromIiIj0rVJBJy0tDSqVCgDwwQcfIC8vT69FEREREUmhUmN02rRpg5EjR6Jr164QQmDJkiVwcHAod9s5c+ZIWiBRdZHjjSaJiExdpYJObGws5s6di59++gkKhQI7duyAhcXTT1UoFAw6VO2kCChyvtEkEZEpq1TQ8fPzw+bNmwEAZmZmiI+PR926dfVaWGVduXIFw4YNw40bN2BhYYHZs2dj0KBBhi6LqonU89bwRpNERPKi9eXlxnZDTwsLC8TExKBNmzbIzs5Gu3bt0KdPH9jb2xu6NKoGnLeGiIiepUrz6Fy8eBExMTFIS0sDAPj7+yMqKgqNDXB3ZE9PT3h6egIAPDw84Obmhjt37jDomBjOW0NEROXReh6dXbt2wd/fH0lJSWjdujVat26NI0eOoEWLFtizZ4/WBezfvx99+/aFl5cXFAoFtm3b9tQ2SqUSDRo0gI2NDYKCgpCUlFRuW8nJySgpKYGPj4/WdRAREZH8aN2jM23aNEyYMAGLFi16avnUqVPx8ssva9WeSqVCQEAA3nrrLQwYMOCp9Vu2bEF0dDTWrFmDoKAgxMTEoGfPnkhPT9cYJ3Tnzh0MHz4cX3zxxTP3V1hYiMLCQvXjBw8eaFUvERER1Rxa9+ikpaVh1KhRTy1/6623kJqaqnUBvXv3xvz589G/f/9y1y9btgyjR4/GyJEj4e/vjzVr1sDOzg5r165Vb1NYWIiwsDBMmzYNnTt3fub+Fi5cCCcnJ/WPv7+/1jUTERFRzaB1j06dOnWQkpKCpk2baixPSUmR/EqsoqIiJCcnY/r06eplZmZmCA0NxeHDhwEAQgiMGDECPXr0wLBhw57b5vTp0xEdHa1+fO3aNYYdA+G8NUREpG9aB53Ro0djzJgxuHTpkrr35ODBg/jkk080AoQUbt26hZKSEri7u2ssd3d3x9mzZ9X73rJlC1q3bq0e3/Of//wHrVq1KrdNa2trWFtbqx/fv39f0pqpcqS+LJzz1hARUXm0DjqzZ8+Go6Mjli5dqu5p8fLywrx58/D+++9LXuDzdO3a1egueafn42XhRERUHbQOOgqFAhMmTMCECRPUA3kdHR0lLwwA3NzcYG5ujpycHI3lOTk58PDw0KltpVIJpVKJoqIindoh3fCycCIi0ietByP/laOjo95CDgBYWVmhXbt2iI+PVy8rLS1FfHw8OnXqpFPbERERSE1NRWJioo5VEhERkbGq0oSBUsrLy8OFCxfUjzMyMpCSkgIXFxf4+voiOjoa4eHhaN++PTp27IiYmBioVCqMHDnSgFUTERFRTWDwoHPs2DGEhISoH5cNaA4PD0dsbCwGDx6MmzdvYs6cOcjOzkabNm2wc+fOpwYoExERET3J4EEnODgYQohnbhMZGYnIyMhqqoiIiIjkQqug8+jRI/Tq1Qtr1qx5ah6dmoaDkauO898QEVFNoVXQsbS0xO+//66vWqpVREQEIiIicPXqVd4bSwuc/4aIiGoSrU9dDR06FF999dVT97oi08D5b4iIqCbROugUFxdj7dq12Lt3L9q1awd7e3uN9cuWLZOsODJenP+GiIhqAq2DzunTpxEYGAgAOHfunMY6hUIhTVVEREREEtA66CQkJOijjmrHwchERETyV+XLyy9cuICLFy+iW7dusLW1hRCiRvXomOJg5GddLaXKz1f/fvfMGTyysyt3O14tRURENYnWQef27dt4/fXXkZCQAIVCgfPnz6NRo0YYNWoUateujaVLl+qjTtLR866WeviXG6MeGjwYNmYV3x2EV0sREVFNoXXQmTBhAiwtLZGZmYnmzZurlw8ePBjR0dEMOkbqeVdLqfLzgaAgAEDnLVtgX0GPDsCrpYiIqObQOujs3r0bu3btgre3t8bypk2b4o8//pCsMNKPiq6WslSp1L87t2jx1NV0RERENZHWdy9XqVSwK+ev/Tt37sDa2lqSooiIiIikoHXQefHFF7Fhwwb1Y4VCgdLSUixevFjj5pzGTqlUwt/fH8HBwYYuhYiIiPRE61NXixcvxksvvYRjx46hqKgIU6ZMwZkzZ3Dnzh0cPHhQHzXqhSledUVERGRqtO7RadmyJc6dO4euXbuiX79+UKlUGDBgAE6cOIHGOt4SgIiIiEhKVZpHx8nJCTNnzpS6FiIiIiJJVSno5Obm4quvvkJaWhoAwN/fHyNHjoQL51YhIiIiI6L1qav9+/ejQYMGWLlyJXJzc5Gbm4uVK1eiYcOG2L9/vz5qJCIiIqoSrXt0IiIiMHjwYHz22WcwNzcHAJSUlGDs2LGIiIjAqVOnJC+SiIiIqCq0DjoXLlzA999/rw45AGBubo7o6GiNy85JOvl3zVF09hJQy6rKbfAeVUREZIq0DjqBgYFIS0uDn5+fxvK0tDQEBARIVpi+1ZS7l+dn30TiSh+UPJqqc1u8RxUREZmaSgWd33//Xf37+++/j6ioKFy4cAF/+9vfAAC//fYblEolFi1apJ8q9aCmzKNTdPcBSh6Zoe2H78Mh4CWd2uI9qoiIyNRUKui0adMGCoUCQgj1silTpjy13ZtvvonBgwdLVx2pOTSsV+49qoiIiKhilQo6GRkZ+q6DiIiISHKVCjr169fXdx1EREREkqvShIHXr1/HgQMHcOPGDZSWlmqse//99yUpjIiIiEhXWged2NhYvPPOO7CysoKrqysUCoV6nUKhYNAhIiIio6F10Jk9ezbmzJmD6dOnw8xM64mViYiIiKqN1kklPz8f//znP2t8yFEqlfD390dwcLChSyEiIiI90TqtjBo1Ct99950+aqlWERERSE1NRWJioqFLISIiIj3R+tTVwoUL8eqrr2Lnzp1o1aoVLC0tNdYvW7ZMsuKIiIiIdFGloLNr1y71LSCeHIxMREREZCy0DjpLly7F2rVrMWLECD2UIy/5d82hupwJy1qnq9xGXsY1CSsiIiIyLVoHHWtra3Tp0kUftchK4a07OLrSByWPdL//l7llKaycHSWoioiIyLRoHXSioqKwatUqrFy5Uh/1yEZxXh5KHpmhybsj4Nm7f9Ubun8WVin/hJ1HHemKIyIiMhFaB52kpCT88ssv+Omnn9CiRYunBiNv3bpVsuLkwLaeh24347xTBFwuka4gIiIiE6J10HF2dsaAAQP0UQsRERGRpLQOOuvWrdNHHURERESSq9nTGxMRERE9g9Y9Og0bNnzmfDmXLl3SqSAiIiIiqWgddMaPH6/x+NGjRzhx4gR27tyJyZMnS1WX3imVSiiVShQVFRm6FCIiItKTKl1eXh6lUoljx47pXFB1iYiIQEREBK5evQofHx9Dl0NERER6INkYnd69e+OHH36QqjkiIiIinUkWdL7//nu4uLhI1RwRERGRzrQ+ddW2bVuNwchCCGRnZ+PmzZtYvXq1pMURERER6ULroBMWFqbx2MzMDHXq1EFwcDBeeOEFqeoiIiIi0pnWQWfu3Ln6qIOIiIhIcpwwkIiIiGSr0j06ZmZmz5woEAAUCgWKi4t1LoqIiIhICpUOOnFxcRWuO3z4MFauXInS0lJJiiIiIiKSQqWDTr9+/Z5alp6ejmnTpuF///sfhgwZgg8//FDS4oiIiIh0UaUxOtevX8fo0aPRqlUrFBcXIyUlBevXr0f9+vWlro+IiIioyrQKOvfu3cPUqVPRpEkTnDlzBvHx8fjf//6Hli1b6qs+IiIioiqr9KmrxYsX45NPPoGHhwe++eabck9lERERERmTSgedadOmwdbWFk2aNMH69euxfv36crfbunWrZMURERER6aLSQWf48OHPvbyciIiIyJhUOujExsbqsYzqp1QqoVQqUVRUZOhSiIiISE9MdmbkiIgIpKamIjEx0dClEBERkZ6YbNAhIiIi+WPQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItmSRdDp378/ateujX/84x+GLoWIiIiMiCyCTlRUFDZs2GDoMoiIiMjIyCLoBAcHw9HR0dBlEBERkZExeNDZv38/+vbtCy8vLygUCmzbtu2pbZRKJRo0aAAbGxsEBQUhKSmp+gslIiKiGsfC0AWoVCoEBATgrbfewoABA55av2XLFkRHR2PNmjUICgpCTEwMevbsifT0dNStW1fr/RUWFqKwsFD9+MGDBzrVX23upenehrUbYO+reztEREQ1hMGDTu/evdG7d+8K1y9btgyjR4/GyJEjAQBr1qzB9u3bsXbtWkybNk3r/S1cuBAffPBBleutdtZugLkdcHio7m2Z2wGvpjHsEBGRyTB40HmWoqIiJCcnY/r06eplZmZmCA0NxeHDh6vU5vTp0xEdHa1+fO3aNfj7++tcq97Y+z4OJ4W3dGvnXtrjsFR4i0GHiIhMhlEHnVu3bqGkpATu7u4ay93d3XH27Fn149DQUJw8eRIqlQre3t747rvv0KlTp3LbtLa2hrW1tfrx/fv39VO8lOx9GU6IiIiqwKiDTmXt3bvX0CUQERGRETL4VVfP4ubmBnNzc+Tk5Ggsz8nJgYeHh05tK5VK+Pv7Izg4WKd2iIiIyHgZddCxsrJCu3btEB8fr15WWlqK+Pj4Ck9NVVZERARSU1ORmJioY5VERERkrAx+6iovLw8XLlxQP87IyEBKSgpcXFzg6+uL6OhohIeHo3379ujYsSNiYmKgUqnUV2ERERERVcTgQefYsWMICQlRPy67Iio8PByxsbEYPHgwbt68iTlz5iA7Oxtt2rTBzp07nxqgTERERPQkgwed4OBgCCGeuU1kZCQiIyOrqSIiIiKSC6Meo6NPHIxMREQkfyYbdDgYmYiISP5MNugQERGR/DHoEBERkWwx6BAREZFsmWzQ4WBkIiIi+TPZoMPByERERPJnskGHiIiI5I9Bh4iIiGSLQYeIiIhki0GHiIiIZMtkgw6vuiIiIpI/kw06vOqKiIhI/kw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsMegQERGRbJls0OHl5URERPJnskGHl5cTERHJn8kGHSIiIpI/Bh0iIiKSLQYdIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki0GHSIiIpItkw06nDCQiIhI/kw26HDCQCIiIvkz2aBDRERE8segQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREsmWyQYf3uiIiIpI/kw06vNcVERGR/Jls0CEiIiL5Y9AhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2TLZoKNUKuHv74/g4GBDl0JERER6YrJBJyIiAqmpqUhMTDR0KURERKQnJht0iIiISP4YdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLZkEXR++ukn+Pn5oWnTpvjyyy8NXQ4REREZCQtDF6Cr4uJiREdHIyEhAU5OTmjXrh369+8PV1dXQ5dGREREBlbje3SSkpLQokUL1KtXDw4ODujduzd2795t6LKIiIjICBg86Ozfvx99+/aFl5cXFAoFtm3b9tQ2SqUSDRo0gI2NDYKCgpCUlKRed/36ddSrV0/9uF69erh27Vp1lE5ERERGzuBBR6VSISAgAEqlstz1W7ZsQXR0NObOnYvjx48jICAAPXv2xI0bN6q5UiIiIqppDD5Gp3fv3ujdu3eF65ctW4bRo0dj5MiRAIA1a9Zg+/btWLt2LaZNmwYvLy+NHpxr166hY8eOFbZXWFiIwsJC9eMHDx5I8CpqkHtp5S9XFfz5+50UoNC2WsqRhLUbYO9r6CqIiMgIGTzoPEtRURGSk5Mxffp09TIzMzOEhobi8OHDAICOHTvi9OnTuHbtGpycnLBjxw7Mnj27wjYXLlyIDz74QO+1Gx1rN8DcDjg8tPz1D//y+56ugE21VCUNczvg1TSGHSIieopRB51bt26hpKQE7u7uGsvd3d1x9uxZAICFhQWWLl2KkJAQlJaWYsqUKc+84mr69OmIjo5WP7527Rr8/f318wKMib3v4zBQeKv89aoCAF0f//7yAcC+hvTo3Et7HN4KbzHoEBHRU4w66FTWa6+9htdee61S21pbW8Pa2lr9+P79+/oqy/jY+1YcBqxVf/7u0gawt6+WkoiIiPTJ4IORn8XNzQ3m5ubIycnRWJ6TkwMPDw8DVUVEREQ1hVEHHSsrK7Rr1w7x8fHqZaWlpYiPj0enTp10alupVMLf3x/BwcE6VklERETGyuCnrvLy8nDhwgX144yMDKSkpMDFxQW+vr6Ijo5GeHg42rdvj44dOyImJgYqlUp9FVZVRUREICIiAlevXoWPj4+uL4OIiIiMkMGDzrFjxxASEqJ+XDZQODw8HLGxsRg8eDBu3ryJOXPmIDs7G23atMHOnTufGqBMRERE9CSDB53g4GAIIZ65TWRkJCIjI6upIiIiIpILox6jQ0RERKQLkw06HIxMREQkfyYbdCIiIpCamorExERDl0JERER6YrJBh4iIiOSPQYeIiIhki0GHiIiIZMtkgw4HIxMREcmfyQYdDkYmIiKSP4NPGGhopaWlAICsrCxJ2826nYtbxcXIup0Li6tXJW1bH/Lz89W/X7t2DXZ2dgasRgu5OcBtANdygHzjP85ERKYk6/bN//8uvAkbib8Ly763y77HK6IQz5uWWOaOHj2Kjh07GroMIiIiqoKkpCR06NChwvUmH3SKi4tx4sQJuLu7w8xMujN5Dx48gL+/P1JTU+Ho6ChZu6SJx7l68DhXHx7r6sHjXD30eZxLS0uRk5ODtm3bwsKi4hNUJh909OX+/ftwcnLCvXv3UKtWLUOXI1s8ztWDx7n68FhXDx7n6mEMx9lkByMTERGR/DHoEBERkWwx6OiJtbU15s6dC2tra0OXIms8ztWDx7n68FhXDx7n6mEMx5ljdIiIiEi22KNDREREssWgQ0RERLLFoENERESyxaBDREREssWgowOlUokGDRrAxsYGQUFBSEpKeub23333HV544QXY2NigVatW+Pnnn6up0ppNm+P8xRdf4MUXX0Tt2rVRu3ZthIaGPvffhR7T9v1cZvPmzVAoFAgLC9NvgTKi7bG+e/cuIiIi4OnpCWtrazRr1oyfH5Wg7XGOiYmBn58fbG1t4ePjgwkTJuDhw4fVVG3NtH//fvTt2xdeXl5QKBTYtm3bc5+TmJiIwMBAWFtbo0mTJoiNjdVvkYKqZPPmzcLKykqsXbtWnDlzRowePVo4OzuLnJyccrc/ePCgMDc3F4sXLxapqali1qxZwtLSUpw6daqaK69ZtD3Ob775plAqleLEiRMiLS1NjBgxQjg5OYmrV69Wc+U1i7bHuUxGRoaoV6+eePHFF0W/fv2qp9gaTttjXVhYKNq3by/69OkjDhw4IDIyMkRiYqJISUmp5sprFm2P88aNG4W1tbXYuHGjyMjIELt27RKenp5iwoQJ1Vx5zfLzzz+LmTNniq1btwoAIi4u7pnbX7p0SdjZ2Yno6GiRmpoqVq1aJczNzcXOnTv1ViODThV17NhRREREqB+XlJQILy8vsXDhwnK3f/3118Urr7yisSwoKEi88847eq2zptP2OD+puLhYODo6ivXr1+urRFmoynEuLi4WnTt3Fl9++aUIDw9n0KkkbY/1Z599Jho1aiSKioqqq0RZ0PY4R0REiB49emgsi46OFl26dNFrnXJSmaAzZcoU0aJFC41lgwcPFj179tRbXTx1VQVFRUVITk5GaGioepmZmRlCQ0Nx+PDhcp9z+PBhje0BoGfPnhVuT1U7zk/Kz8/Ho0eP4OLioq8ya7yqHucPP/wQdevWxahRo6qjTFmoyrH+73//i06dOiEiIgLu7u5o2bIlFixYgJKSkuoqu8apynHu3LkzkpOT1ae3Ll26hJ9//hl9+vSplppNhSG+Cyu+3SdV6NatWygpKYG7u7vGcnd3d5w9e7bc52RnZ5e7fXZ2tt7qrOmqcpyfNHXqVHh5eT31Pxb9qSrH+cCBA/jqq6+QkpJSDRXKR1WO9aVLl/DLL79gyJAh+Pnnn3HhwgWMHTsWjx49wty5c6uj7BqnKsf5zTffxK1bt9C1a1cIIVBcXIx3330XM2bMqI6STUZF34X3799HQUEBbG1tJd8ne3RIthYtWoTNmzcjLi4ONjY2hi5HNh48eIBhw4bhiy++gJubm6HLkb3S0lLUrVsXn3/+Odq1a4fBgwdj5syZWLNmjaFLk5XExEQsWLAAq1evxvHjx7F161Zs374dH330kaFLIx2xR6cK3NzcYG5ujpycHI3lOTk58PDwKPc5Hh4eWm1PVTvOZZYsWYJFixZh7969aN26tT7LrPG0Pc4XL17E5cuX0bdvX/Wy0tJSAICFhQXS09PRuHFj/RZdQ1XlPe3p6QlLS0uYm5urlzVv3hzZ2dkoKiqClZWVXmuuiapynGfPno1hw4bh7bffBgC0atUKKpUKY8aMwcyZM2Fmxn4BKVT0XVirVi299OYA7NGpEisrK7Rr1w7x8fHqZaWlpYiPj0enTp3KfU6nTp00tgeAPXv2VLg9Ve04A8DixYvx0UcfYefOnWjfvn11lFqjaXucX3jhBZw6dQopKSnqn9deew0hISFISUmBj49PdZZfo1TlPd2lSxdcuHBBHSYB4Ny5c/D09GTIqUBVjnN+fv5TYaYsXAreElIyBvku1NswZ5nbvHmzsLa2FrGxsSI1NVWMGTNGODs7i+zsbCGEEMOGDRPTpk1Tb3/w4EFhYWEhlixZItLS0sTcuXN5eXklaHucFy1aJKysrMT3338vsrKy1D8PHjww1EuoEbQ9zk/iVVeVp+2xzszMFI6OjiIyMlKkp6eLn376SdStW1fMnz/fUC+hRtD2OM+dO1c4OjqKb775Rly6dEns3r1bNG7cWLz++uuGegk1woMHD8SJEyfEiRMnBACxbNkyceLECfHHH38IIYSYNm2aGDZsmHr7ssvLJ0+eLNLS0oRSqeTl5cZs1apVwtfXV1hZWYmOHTuK3377Tb2ue/fuIjw8XGP7b7/9VjRr1kxYWVmJFi1aiO3bt1dzxTWTNse5fv36AsBTP3Pnzq3+wmsYbd/Pf8Wgox1tj/WhQ4dEUFCQsLa2Fo0aNRIff/yxKC4uruaqax5tjvOjR4/EvHnzROPGjYWNjY3w8fERY8eOFbm5udVfeA2SkJBQ7mdu2bENDw8X3bt3f+o5bdq0EVZWVqJRo0Zi3bp1eq1RIQT75IiIiEieOEaHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeITMq8efPQpk0bQ5dBRNWEQYeIiIhki0GHiIiIZItBh4gMJjg4GJGRkYiMjISTkxPc3Nwwe/ZslHcLvvv378PW1hY7duzQWB4XFwdHR0fk5+cDAKZOnYpmzZrBzs4OjRo1wuzZs/Ho0aNn1jB+/HiNZWFhYRgxYoT6cWFhISZNmoR69erB3t4eQUFBSExMrPLrJqLqw6BDRAa1fv16WFhYICkpCStWrMCyZcvw5ZdfPrVdrVq18Oqrr2LTpk0ayzdu3IiwsDDY2dkBABwdHREbG4vU1FSsWLECX3zxBZYvX65TjZGRkTh8+DA2b96M33//HYMGDUKvXr1w/vx5ndolIv2zMHQBRGTafHx8sHz5cigUCvj5+eHUqVNYvnw5Ro8e/dS2Q4YMwbBhw5Cfnw87Ozvcv38f27dvR1xcnHqbWbNmqX9v0KABJk2ahM2bN2PKlClVqi8zMxPr1q1DZmYmvLy8AACTJk3Czp07sW7dOixYsKBK7RJR9WCPDhEZ1N/+9jcoFAr1406dOuH8+fP4+OOP4eDgoP7JzMxEnz59YGlpif/+978AgB9++AG1atVCaGio+vlbtmxBly5d4OHhAQcHB8yaNQuZmZlVru/UqVMoKSlBs2bNNOrZt28fLl68WPUXTkTVgj06RGSU3n33XQwePFj92MvLCxYWFvjHP/6BTZs24Z///Cc2bdqEwYMHw8Li8UfZ4cOHMWTIEHzwwQfo2bMnnJycsHnzZixdurTC/ZiZmT01JuivY3ry8vJgbm6O5ORkmJuba2zn4OAgxUslIj1i0CEigzpy5IjG499++w1NmzaFq6srXF1dn9p+yJAhePnll3HmzBn88ssvmD9/vnrdoUOHUL9+fcycOVO97I8//njm/uvUqYOsrCz145KSEpw+fRohISEAgLZt26KkpAQ3btzAiy++WKXXSESGw1NXRGRQmZmZiI6ORnp6Or755husWrUKUVFRFW7frVs3eHh4YMiQIWjYsCGCgoLU65o2bYrMzExs3rwZFy9exMqVKzXG75SnR48e2L59O7Zv346zZ8/ivffew927d9XrmzVrhiFDhmD48OHYunUrMjIykJSUhIULF2L79u06v34i0i8GHSIyqOHDh6OgoAAdO3ZEREQEoqKiMGbMmAq3VygUeOONN3Dy5EkMGTJEY91rr72GCRMmIDIyEm3atMGhQ4cwe/bsZ+7/rbfeQnh4OIYPH47u3bujUaNG6t6cMuvWrcPw4cMxceJE+Pn5ISwsDEePHoWvr2/VXzgRVQuFKG/CCiKiahAcHIw2bdogJibG0KUQkUyxR4eIiIhki0GHiIiIZIunroiIiEi22KNDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLL1f5QROv7aux+5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 266, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig, axes = plt.subplots()\n", + "axes.hist(res_good_model, bins=25, range=(0, 1), histtype='step', color='purple', label='Good model')\n", + "axes.hist(res_wrong_model, bins=25, range=(0, 1), histtype='step', color='orange', label='Wrong model')\n", + "axes.hist(res_overfitting, bins=25, range=(0, 1), histtype='step', color='firebrick', label='Too large uncertainties (10 %)')\n", + "axes.set_xlabel('p-value')\n", + "axes.set_ylabel('Number of fits')\n", + "axes.legend()\n", + "axes.axvline(0.1, color='k')\n", + "axes2 = plt.twiny()\n", + "axes2.set_xlabel('Red. $\\chi^2$')\n", + "axes2.set_xticks([0.2, 0.5, 0.8], ['> 1', '1', '< 1'])\n", + "plt.show()\n", + "\n", + "axes.set_yscale('log')\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "86237b4b", + "metadata": {}, + "source": [ + "Wie man sieht, wird das falsche Modell nahezu immer verworfen während das richtige Modell meistens nicht verworfen wird. Das Modell mit dem überschätzten Fehler wird sogar häufiger akzeptiert, so dass man hier keine Unterscheidung vornehmen kann." + ] + }, + { + "cell_type": "code", + "execution_count": 532, + "id": "fc58ee5c-308c-4479-9236-751d7f158fe5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fraction of wrong model fits rejected: 0.9998\n", + "Fraction of good model fits rejected: 0.1002\n", + "Fraction of overfitting model fits rejected: 0.0250\n" + ] + } + ], + "source": [ + "print(f'Fraction of wrong model fits rejected: {np.sum(res_wrong_model<0.1)/len(res_wrong_model):.4f}')\n", + "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.1)/len(res_good_model):.4f}')\n", + "print(f'Fraction of overfitting model fits rejected: {np.sum(res_overfit_model<0.1)/len(res_overfit_model):.4f}')" + ] + }, + { + "cell_type": "markdown", + "id": "392f4ef2", + "metadata": {}, + "source": [ + "Wenn man das Limit für den Hypothesen-Test auf 0,05 festlegt, ändern die Ergebnisse wie folgt:" + ] + }, + { + "cell_type": "code", + "execution_count": 533, + "id": "d5f5efbe-ef8f-48b0-b27b-166f21cb5a06", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fraction of wrong model fits rejected: 0.9986\n", + "Fraction of good model fits rejected: 0.0534\n", + "Fraction of overfitting model fits rejected: 0.0114\n" + ] + } + ], + "source": [ + "print(f'Fraction of wrong model fits rejected: {np.sum(res_wrong_model<0.05)/len(res_wrong_model):.4f}')\n", + "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.05)/len(res_good_model):.4f}')\n", + "print(f'Fraction of overfitting model fits rejected: {np.sum(res_overfit_model<0.05)/len(res_overfit_model):.4f}')" + ] + }, + { + "cell_type": "markdown", + "id": "de9861f6-7870-4dd8-8366-15e0c7dd5125", + "metadata": {}, + "source": [ + "Der Hypothesen-Test kann das Modell nicht ablehnen, statt es zu bestätigen!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "jupyter", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/custom_set_up.py b/custom_set_up.py index 0973b0e..b763374 100644 --- a/custom_set_up.py +++ b/custom_set_up.py @@ -3,7 +3,7 @@ # # Since the directory structure for the custom.css file changed # this set-up only works for IPython and Jupyter versions after -# the so called the "big splitt" (version 4 and higher). +# the so called the "big split" (version 4 and higher). import os import jupyter_core import IPython