{ "cells": [ { "cell_type": "markdown", "id": "5064e2e2", "metadata": {}, "source": [ "# Fortgeschrittenes Beispiel\n", "In diesem Abschnitt wollen wir uns mit einem komplexeren Beispiel beschäftigen, um weitere Methoden von `iminuit` kennzulernen.\n", "Hierzu betrachten wir ein Zählexperiment, z.B. ein Teilchendetektor, bei dem ein Energiespektrum aufgenommen wird. Für jedes Energieintervall (Bin) wird die Anzahl der registrierten Ereignisse bestimmt. Hierbei können wir annehmen, dass die Verteilung der gemessenen Anzahl durch eine Poisson-Verteilung beschrieben wird. Dann entspricht der Fehler in jedem Bin gerade $\\sqrt n$. \n", "Dieses Spektrum soll aus zwei gauß-förmigen Peaks über einem exponentiellen Untergrund bestehen und wird mit Hilfe eines Zufallszahlengenerator \"erzeugt\"." ] }, { "cell_type": "markdown", "id": "100a4fe4-a5c4-4be3-a7f7-13337b97a194", "metadata": {}, "source": [ "Nun wollen wir die Messdaten mit Hilfe von `iminuit` fitten. Hierzu müssen wir zunächste zwei Module des packages importieren und eine Funktion für die Entladekurve des Kondensators definieren:" ] }, { "cell_type": "code", "execution_count": 1, "id": "520f4973", "metadata": {}, "outputs": [], "source": [ "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `iminuit` zu installieren!\n", "# import sys\n", "# import subprocess\n", "# subprocess.check_call([\n", "# sys.executable, \n", "# '-m',\n", "# 'pip',\n", "# 'install',\n", "# '--proxy',\n", "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", "# 'iminuit'\n", "# ])" ] }, { "cell_type": "code", "execution_count": 2, "id": "2ffe340b-cd0f-45ec-b5b8-42e7a0349d4c", "metadata": {}, "outputs": [], "source": [ "from iminuit import Minuit, cost\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "id": "143a2a23-0a62-439f-9d28-9f555ae85589", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Number of counts per bin')" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR2UlEQVR4nO3deXhTVfoH8G9aupemLF2H0hZEa6EgFIT8UECoIFTFaYcBBhGxAw6WtcimgAJCC6PI4CAIw6aCC4rKoiBlKSOUddhBoFgsSlNEIAVKW9re3x+YS5ImTW6b9Ca338/z5Hlyl6TvJSR5c857zlEJgiCAiIiISKHc5A6AiIiIyJGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlK0enIH4AwqKipw+fJl1K9fHyqVSu5wiIiIyAaCIODmzZsIDw+Hm5vl9hsmOwAuX76MiIgIucMgIiKiarh06RKaNGli8TiTHQD169cHcO8fKyAgQOZoiIiIyBaFhYWIiIgQv8ctYbIDiF1XAQEBTHaIiIhcjLUSFBYoExERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0REBopKyxA1eTOiJm9GUWmZ3OEQkR0w2SEiIiJFY7JDRIrH1hqiuo3JDhERESkakx0iIiJSNCY7REREpGhMdoiIqsB6HyLXx2SHiIiIFI3JDhERESkakx0iqlPYLUVU9zDZISKyQKsrljsEIrIDJjtERAa+PPyLeD9hfpbRNhG5pnpyB0BEVFNFpWWInb4VAHB6Zi/4elr+aCsoNG6tMXzsjvFd8caGU+KxCgFG20TkmtiyQ0SKZ9g688x7eyye9/Pvt1EhGO8z3SYi18Nkh4gULV93p1JrjSWRjfzgpjLeZ7pNRK5H9mTn119/xfPPP49GjRrBx8cHcXFxOHTokHhcEARMnz4dYWFh8PHxQUJCAs6fP2/0HNeuXcOgQYMQEBCAwMBApKSk4NatW7V9KUTkhHKvVm6tsSRU7Y0Zz7YUt91UMNomItcka7Jz/fp1dO7cGR4eHvjuu+9w+vRpvPPOO2jQoIF4zrx587Bw4UIsWbIE+/fvh5+fH3r16oXi4vv97oMGDcKpU6ewbds2bNq0Cbt378bw4cPluCQicgKGw8tDA7wltc4kxzcR72emdTXaJiLXJGuB8ty5cxEREYGVK1eK+6Kjo8X7giBgwYIFmDp1Kvr27QsA+PDDDxESEoKvv/4aAwYMwJkzZ7BlyxYcPHgQ7du3BwC899576NOnD95++22Eh4fX7kURkVPRt9ZM++ZeV5abyvY6nFC1t9G2VleMZkH+9g6RiBxM1padDRs2oH379ujXrx+Cg4PRtm1bLFu2TDyem5sLrVaLhIQEcZ9arUbHjh2RnZ0NAMjOzkZgYKCY6ABAQkIC3NzcsH//frN/t6SkBIWFhUY3IlIuw9aZjaM6S3qs6VD0zw7m2S0uIqodsiY7P/30ExYvXowWLVpg69atGDFiBEaPHo3Vq1cDALRaLQAgJCTE6HEhISHiMa1Wi+DgYKPj9erVQ8OGDcVzTKWnp0OtVou3iIgIe18aETmpkID7rTXWJg3U6oorFTe/tv4k8nV3HBYfEdmfrMlORUUF2rVrhzlz5qBt27YYPnw4hg0bhiVLljj0706ZMgU6nU68Xbp0yaF/j4icx9dHLov3rU0aaG4oerkg4OLVIkeFR0QOIGuyExYWhtjYWKN9Dz/8MPLy7jUTh4aGAgAKCgqMzikoKBCPhYaG4sqVK0bHy8rKcO3aNfEcU15eXggICDC6EVHdMOfbM+J9a5MGmhuK7q5SIaqxr6PCIyIHkDXZ6dy5M86ePWu079y5c4iMjARwr1g5NDQU27dvF48XFhZi//790Gg0AACNRoMbN27g8OHD4jk7duxARUUFOnbsWAtXQUTOxFrXVFWTBpo+1txQ9DlJrRCm9qlxnERUe2RNdsaNG4d9+/Zhzpw5yMnJwdq1a7F06VKkpqYCAFQqFcaOHYu33noLGzZswIkTJ/DCCy8gPDwczz33HIB7LUFPPfUUhg0bhgMHDmDPnj0YOXIkBgwYwJFYRHWElPWsTFtqDDfNPdZ0KHr/Dk1rFCsR1T5Zk50OHTrgq6++wieffIJWrVph1qxZWLBgAQYNGiSeM3HiRIwaNQrDhw9Hhw4dcOvWLWzZsgXe3veLDNesWYOYmBj06NEDffr0wWOPPYalS5fKcUlEVMvMzZBcVdfUa30eFu+bTr9j7bGmQ9GJyDXIvhDo008/jaefftricZVKhZkzZ2LmzJkWz2nYsCHWrl3riPCIyMmZmyG5qnl0nmsbjrc236vbebtfa4xfd9zmxxKRa5I92SEiqonoxn6VJgo03Nbqii22yLRt2qDSY91VKvww+QmxLqeotMxRoRNRLZF9bSwiopoIU/tUKiJ+ts39er2qanhYgExUNzDZISKXZ1hE/MmwTthw7P5cOhUC8OaG08ie0h0XMxLh61nP4mNZgEykTEx2iEhRikrLqj0RIAuQiZSJyQ4RKQonAiQiU0x2iEhRWIdDRKaY7BCR4rAOh4gMceg5ESlaTetwfD3r4WJGop2iISI5sGWHiIiIFI0tO0RUp5i21HDSQCLlY8sOERERKRqTHSIiIlI0dmMRkcurSdcUC5CJlI8tO0TkcopKyxA1eTOiJm9mzQ0RWcVkh4iIiBSNyQ4REREpGmt2iEhxWIdDRIbYskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdojIpWl1xXKHQEROjskOEbmcLw//It5PmJ+Fzw7myRgNETk7JjtE5FLydXfwxoZT4naFALy2/iTydXdkjIqInBmTHSJyeoZrYf2YX4gKwfh4uSDg4tUiWePiGl1EzovJDhG5lMhGfnBTGe9zV6kQ1djX4X+byQ2Ra2KyQ0QuJVTtjRnPthS33VTAnKRWCFP7yBgVETkzJjtE5HKS45uI9zPTuqJ/h6YyRkNEzo7JDhG5tFC1t9whEJGTY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0TkUpx1LSxnjYuImOwQkQswXQvLcFsuWl0x1+gichH15A6AiKgq5tbCMtyuTYbJTY93soyO6dfo6vJgECc4JHIyTHaIyKnlXr1daS2sCgH4ZFgnaJo3qrU4TJMuwcw5+jW6mOwQORd2YxGRU4tuLN9aWIbMJV2m5IiLiKxjskNETi1M7eMUa2GZS7oMN7lGF5HzYrJDRE7PGdbCMpd0zex7f5trdBE5LyY7ROQUikrLEDV5M6Imb0ZRaZnF8+RcC8s06TLc5hpdRM6LyQ4RUTUwuSFyHbImO2+++SZUKpXRLSYmRjxeXFyM1NRUNGrUCP7+/khOTkZBQYHRc+Tl5SExMRG+vr4IDg7GhAkTUFZm+VchERER1S2yDz1v2bIlMjMzxe169e6HNG7cOGzevBnr1q2DWq3GyJEjkZSUhD179gAAysvLkZiYiNDQUOzduxf5+fl44YUX4OHhgTlz5tT6tRAREZHzkT3ZqVevHkJDQyvt1+l0WL58OdauXYvu3bsDAFauXImHH34Y+/btQ6dOnfD999/j9OnTyMzMREhICB555BHMmjULkyZNwptvvglPT0+zf7OkpAQlJSXidmFhoWMujoiIiGQne83O+fPnER4ejmbNmmHQoEHIy7s33frhw4dx9+5dJCQkiOfGxMSgadOmyM7OBgBkZ2cjLi4OISEh4jm9evVCYWEhTp2yPMNqeno61Gq1eIuIiHDQ1REREZHcZE12OnbsiFWrVmHLli1YvHgxcnNz8fjjj+PmzZvQarXw9PREYGCg0WNCQkKg1WoBAFqt1ijR0R/XH7NkypQp0Ol04u3SpUv2vTAiIiJyGrJ2Y/Xu3Vu837p1a3Ts2BGRkZH4/PPP4ePjuIm5vLy84OXl5bDnJyIiIuche82OocDAQDz44IPIycnBk08+idLSUty4ccOodaegoECs8QkNDcWBAweMnkM/WstcHRARuY6i0jLETt8KADg9sxcuZiTKHFFlvp71nDIuIjIme82OoVu3buHChQsICwtDfHw8PDw8sH37dvH42bNnkZeXB41GAwDQaDQ4ceIErly5Ip6zbds2BAQEIDY2ttbjJyL70OqK5Q7BLH1yczEjEb6eTvVbkYiqIGuy8+qrryIrKwsXL17E3r178ec//xnu7u4YOHAg1Go1UlJSkJaWhp07d+Lw4cMYOnQoNBoNOnXqBADo2bMnYmNjMXjwYBw7dgxbt27F1KlTkZqaym4qIhfz5eFfxPsJ87OMtomIakLWnya//PILBg4ciN9//x1BQUF47LHHsG/fPgQFBQEA3n33Xbi5uSE5ORklJSXo1asX3n//ffHx7u7u2LRpE0aMGAGNRgM/Pz8MGTIEM2fOlOuSiKga8nV38MaG+yMoKwQYbRMR1YRKEARB7iDkVlhYCLVaDZ1Oh4CAALnDIapz9l64ir8t22/x+OmZvdhtRESV2Pr97VQ1O0RUN0U39oObynif6TYRUXUx2SEi2YWpfTDj2ZbitpsKRttERDVRrXbh8+fPY+fOnbhy5QoqKiqMjk2fPt0ugRFR3ZIc3wTTvrlXp5OZ1hWham9x21WZDp9nVxyRPCS/85YtW4YRI0agcePGCA0NhUp1v61ZpVIx2SGiGgtVe8sdAhEpiORk56233sLs2bMxadIkR8RDRFSJVleMZkH+codBRC5Kcs3O9evX0a9fP0fEQkQkMp1357ODeTJGQ0SuTHKy069fP3z//feOiIWICMC9lhzTeXdeW38S+bo7MkZFRK5KcjfWAw88gGnTpmHfvn2Ii4uDh4eH0fHRo0fbLTgiqpt+/v02KkxmACsXBFy8WoQwteMWCSYiZZKc7CxduhT+/v7IyspCVlaW0TGVSsVkh4hqLLLRvXl3DBMed5UKUY195QvKBqajr4jIOUhOdnJzcx0RBxGRKFTtjRnPthSHnrupgDlJrdiqQ0TVwkkFicgpJcc3Ee9npnVF/w5NZYyGiFyZTS07aWlpmDVrFvz8/JCWllblufPnz7dLYERUt/h61sPFjERxu6i0TLyvhHl3OHyeSD42JTtHjhzB3bt3xfuWGE4wSERU15kOn09PimMLFZEMbEp2du7cafY+ERGZZ2n4fJcHg1h7RFTLalSzc+nSJVy6dMlesRARKUZVw+eJqHZJTnbKysowbdo0qNVqREVFISoqCmq1GlOnThW7uoiI6jr98HlDrjB8nkiJJCc7o0aNwtKlSzFv3jwcOXIER44cwbx587B8+XLOsUNENisqLUPU5M2ImrzZqBhZKfTD5/U4fJ5IPpLn2Vm7di0+/fRT9O7dW9zXunVrREREYODAgVi8eLFdAyQickVaXTGS45uIcwVlpnXlaCwimUhOdry8vBAVFVVpf3R0NDw9Pe0RExFRpaHorsB09JVhy44Shs8TuSrJ3VgjR47ErFmzUFJSIu4rKSnB7NmzMXLkSLsGR0TkKvJ1dyqNvjLcJiL52NSyk5SUZLSdmZmJJk2aoE2bNgCAY8eOobS0FD169LB/hERELiD3auXRV6bbRCQPm5IdtVpttJ2cnGy0HRERYb+IiIhcUHTjyouXmm4TkTxsSnZWrlzp6DiIiFxamNqn0uKlhttEJB8uBEpEZCemi5cabhORfJjsEBE5AEdfETkPyUPPiYjsTakrgrvi8HkiJWLLDhHJwnROms8O5skYDREpmaRk5+7du+jRowfOnz/vqHiIqA4wNyfNa+tPIl93R8aoiEipJCU7Hh4eOH78uKNiIaI6wtycNFwRnIgcRXI31vPPP4/ly5c7IhYiqiP0c9IY4orgROQokguUy8rKsGLFCmRmZiI+Ph5+fn5Gx+fPn2+34IhImczNScMVwYnIUVSCIEia3/OJJ56w/GQqFXbs2FHjoGpbYWEh1Go1dDodAgIC5A6HqE4oKi1D7PStAIAd47kiOBFJZ+v3t+SWnZ07d9YoMCIiU5yThogcqdpDz3NycrB161bcuXNv9ITEBiIiIiKiWiE52fn999/Ro0cPPPjgg+jTpw/y8/MBACkpKRg/frzdAyQiIiKqCcnJzrhx4+Dh4YG8vDz4+t4fOdG/f39s2bLFrsERERER1ZTkmp3vv/8eW7duRZMmxgvctWjRAj///LPdAiMiIiKyB8ktO7dv3zZq0dG7du0avLy87BIUEUlTVFqGqMmbETV5M4pKy+QOh4jIqUhOdh5//HF8+OGH4rZKpUJFRQXmzZtX5bB0IiIiIjlI7saaN28eevTogUOHDqG0tBQTJ07EqVOncO3aNezZs8cRMRKRAnFFcCKqLZJbdlq1aoVz587hscceQ9++fXH79m0kJSXhyJEjaN68uSNiJCIiIqo2yS07AKBWq/H666/bOxYiIiIiu6vWpILXr1/H22+/jZSUFKSkpOCdd97BtWvXahRIRkYGVCoVxo4dK+4rLi5GamoqGjVqBH9/fyQnJ6OgoMDocXl5eUhMTISvry+Cg4MxYcIElJWxQJOIiIjukZzs7N69G1FRUVi4cCGuX7+O69evY+HChYiOjsbu3burFcTBgwfxwQcfoHXr1kb7x40bh40bN2LdunXIysrC5cuXkZSUJB4vLy9HYmIiSktLsXfvXqxevRqrVq3C9OnTqxUHERERKY/kZCc1NRX9+/dHbm4u1q9fj/Xr1+Onn37CgAEDkJqaKjmAW7duYdCgQVi2bBkaNGgg7tfpdFi+fDnmz5+P7t27Iz4+HitXrsTevXuxb98+APfm/Dl9+jQ+/vhjPPLII+jduzdmzZqFRYsWobS0VHIsREqg1RXLHQIRkVORnOzk5ORg/PjxcHd3F/e5u7sjLS0NOTk5kgNITU1FYmIiEhISjPYfPnwYd+/eNdofExODpk2bIjs7GwCQnZ2NuLg4hISEiOf06tULhYWFOHXqlMW/WVJSgsLCQqMbkSv78vAv4v2E+Vn47GCejNGQJZwPiUgekpOddu3a4cyZM5X2nzlzBm3atJH0XJ9++in+97//IT09vdIxrVYLT09PBAYGGu0PCQmBVqsVzzFMdPTH9ccsSU9Ph1qtFm8RERGS4iZyJvm6O3hjw/3kvkIAXlt/Evm6OzJGRUTkPCSPxho9ejTGjBmDnJwcdOrUCQCwb98+LFq0CBkZGTh+/Lh4rmkNjqFLly5hzJgx2LZtG7y9vasRevVNmTIFaWlp4nZhYSETHnJZuVdvo0Iw3lcuCLh4tQhhah95giIiciKSk52BAwcCACZOnGj2mEqlgiAIUKlUKC8vt/g8hw8fxpUrV9CuXTtxX3l5OXbv3o1///vf2Lp1K0pLS3Hjxg2j1p2CggKEhoYCAEJDQ3HgwAGj59WP1tKfY46XlxeXtiDFiG7sBzcVjBIed5UKUY0rL+tCRFQXSU52cnNz7fKHe/TogRMnThjtGzp0KGJiYjBp0iRERETAw8MD27dvR3JyMgDg7NmzyMvLg0ajAQBoNBrMnj0bV65cQXBwMABg27ZtCAgIQGxsrF3iJHJ2YWofzHi2JaZ9c68ry00FzElqxVYdIqI/SE52IiMj7fKH69evj1atWhnt8/PzQ6NGjcT9KSkpSEtLQ8OGDREQEIBRo0ZBo9GI3Wc9e/ZEbGwsBg8ejHnz5kGr1WLq1KlITU1lyw3VKcnxTcRkJzOtK5oF+Vs8t6i0DLHTtwIATs/sBV/Pas0tSkTkMpz6U+7dd9+Fm5sbkpOTUVJSgl69euH9998Xj7u7u2PTpk0YMWIENBoN/Pz8MGTIEMycOVPGqInkFeBTD1GTNwNgMkNEBDhZsrNr1y6jbW9vbyxatAiLFi2y+JjIyEh8++23Do6MiMi+tLriKlvgiMh+qrVcBBERScf5kIjkwWSHyAVwMjrXx/mQiOQjOdm5dOkSfvnl/q+TAwcOYOzYsVi6dKldAyMiy1wh+XGFGGtTVfMhEZFjSU52/va3v2Hnzp0A7s1S/OSTT+LAgQN4/fXXWRhMRBbV9eRHPx+SqYHL9tXJfw+i2iQ52Tl58iQeffRRAMDnn3+OVq1aYe/evVizZg1WrVpl7/iIiBRBPx+SnrnEh4gcQ3Kyc/fuXXEOm8zMTDz77LMA7i3SmZ+fb9/oiMgmvp71cDEjERczEiUNNecK6bUrOb6JeH/jqM4yRkJUt0hOdlq2bIklS5bgv//9L7Zt24annnoKAHD58mU0atTI7gESUfWZS2Y4Isg5hATU7pqARHWZ5GRn7ty5+OCDD9CtWzcMHDhQXOl8w4YNYvcWEcmnqmSGI4KIqC6SPKlgt27dcPXqVRQWFqJBgwbi/uHDh8PPz8+uwRFRZVpdMULV5lsFLCUzXR4MQpjahyukE1GdJLllp3v37rh586ZRogMADRs2RP/+/e0WGFFdZjpyybS1xnDbsKvK2vBmcyOCamOFdNYGEZGcJCc7u3btQmlpaaX9xcXF+O9//2uXoIjoPq2uuFJrzfRv7m8bdlWZS2bcVPeGN0dN3gy1j0elEUGOWiG9qgSNiKg22ZzsHD9+HMePHwcAnD59Wtw+fvw4jhw5guXLl+NPf/qTwwIlqqt+/r1ya43hpmHdjbnhzYbbgPGIoMy0rujfoandYzbXnWa4zZYeY/z3IHIsm2t2HnnkEahUKqhUKnTv3r3ScR8fH7z33nt2DY6IgMhG91prTBMeQ4Z1N8nxTTDtj5afzLSuCFV7i9umQtXeKCotQ+z0rQDst0q6ue40w+2E+VlIT4pzSKLlKr4+clm8z38PIsey+VMtNzcXgiCgWbNmOHDgAIKCgsRjnp6eCA4Ohru7u0OCJKrLQtXemPFsSzFh0fdSGeYSlupuLBUyO5q+O81SgmZaOF1X6OdDytfdQeeMHeL+uvrvQVRbbO7GioyMRFRUFCoqKtC+fXtERkaKt7CwMCY6RA5k2PW0fXxXzOxbO3U31WXanWZusuC6vC4U18kiql3Vaq8+f/48du7ciStXrqCiosLo2PTp0+0SGBGZF6r2rtRV1SzIX+aoKjOM8dPhnTBw2T6jL/jaGAXmrMy1fNXlfw8iR5Oc7CxbtgwjRoxA48aNERoaCpXq/m82lUrFZIfIzqqaVweQr6tKirgmaqOuOGdsjapN+pYv/nsQ1Q7Jyc5bb72F2bNnY9KkSY6Ih4hQedi26Yiq6rKWODmSK7RG1Sb+exDVHsnJzvXr19GvXz9HxEJEsD5sWyrTxCk9KQ4XMxLFfUWlZUb3azIyy/Dxh6b2sHieK7RG1Sb+exA5luRJBfv164fvv//eEbEQEawP27bGcAV03Z27ktbCKiiUNt+L6UzPRETOSHLLzgMPPIBp06Zh3759iIuLg4eHh9Hx0aNH2y04orrIXPGqtXl2LLFlLSzDlp9n3ttTnZCJiJya5GRn6dKl8Pf3R1ZWFrKysoyOqVQqJjtENWSueNVwWwpro37MdZkRESmN5GQnNzfXEXEQkQFzxauDNVFG5xjW3VhibdSPuZYfe9F3p+mxm4uI5CK5ZoeIaldNi1erWgvL3MKhVWGNDhG5IsktOy+99FKVx1esWFHtYIjIsUwTJ3MtP/Zq6dHqio2GU5u29NR1/Pcgqj2SW3auX79udLty5Qp27NiB9evX48aNGw4IkYgcybDlZ+OozuL96qzEbTrM/bODeTULjojIDiS37Hz11VeV9lVUVGDEiBFo3ry5XYIiInlkX7gm3pe6EveJX3Rmh7lzcUsikptdanbc3NyQlpaGd9991x5PR0QymfPtGfG+tTl5AOOWnAFL93FxSyJySnYrUL5w4QLKyliwSOTKpCQrWl2xUUuOuVIfLm5JRM5AcjdWWlqa0bYgCMjPz8fmzZsxZMgQuwVGpHRVLc0gV/GqlJW4f/696mHrXNySiJyF5GTnyJEjRttubm4ICgrCO++8Y3WkFhHVPimJ02t9HsZbm+91ZVlLVnw961U50zMXtyQiZyE52dm5c6cj4iAimRgmQ0WlZWKyYy5ZMazRGbhsH55tE46vj14GUHmmZy5uSUTOoto1O7/99ht++OEH/PDDD/jtt9/sGRMROQHTZMXc0hIbjl0WtzPTuhoNYycichaSk53bt2/jpZdeQlhYGLp06YIuXbogPDwcKSkpKCriqAsipbK2GjtbcojIWUlOdtLS0pCVlYWNGzfixo0buHHjBr755htkZWVh/PjxjoiRiJyAuaUlpCw1QUQkF8nJzpdffonly5ejd+/eCAgIQEBAAPr06YNly5bhiy++cESMRIqXe/WW0685pV9aQk9fo0NE5OwkJztFRUUICQmptD84OJjdWEQSGBb7PvPeHhkjsZ3poqKs0SEiVyA52dFoNHjjjTdQXHx/3Zw7d+5gxowZ0Gg0dg2OSKnMFfu6GnM1OvqRXRczEo3mDSIikpPkT6N//etf6NWrF5o0aYI2bdoAAI4dOwZvb29s3brV7gESKZG5Yl9nYDonj+nEh0RErkhystOqVSucP38ea9aswY8//ggAGDhwIAYNGgQfH86USmQLfbGvMyY8Usg10zMRkRTVamf29fXFsGHD7B0LUZ2hL/bVT8CnhMSHiMhZSa7ZSU9Px4oVKyrtX7FiBebOnWuXoIjqAsPi3o2jOov3tbpic6cTEVE1SU52PvjgA8TExFTa37JlSyxZskTScy1evBitW7cWh7BrNBp899134vHi4mKkpqaiUaNG8Pf3R3JyMgoKCoyeIy8vD4mJifD19UVwcDAmTJjA1dfJ5WRfuCbeT5ifhc8O5skYjWUsQHacotIyp59+gMhVSU52tFotwsLCKu0PCgpCfn6+pOdq0qQJMjIycPjwYRw6dAjdu3dH3759cerUvab9cePGYePGjVi3bh2ysrJw+fJlJCUliY8vLy9HYmIiSktLsXfvXqxevRqrVq3C9OnTpV4WkazmfHtGvF8hAK+tP4l83R0ZIyIiUg7JyU5ERAT27Kk8J8iePXsQHh4u6bmeeeYZ9OnTBy1atMCDDz6I2bNnw9/fH/v27YNOp8Py5csxf/58dO/eHfHx8Vi5ciX27t2Lffv2AQC+//57nD59Gh9//DEeeeQR9O7dG7NmzcKiRYtQWloq9dKIHKqqX+6m9TrlgoCLV51r3ip2rxGRq5Kc7AwbNgxjx47FypUr8fPPP+Pnn3/GihUrMG7cuBoVLZeXl+PTTz/F7du3odFocPjwYdy9excJCQniOTExMWjatCmys7MBANnZ2YiLizOa5LBXr14oLCwUW4fMKSkpQWFhodGNSE6myy64q1SIauwrTzAGDCc+dObuNSKiqkjudJ8wYQJ+//13vPLKK2Lribe3NyZNmoQpU6ZIDuDEiRPQaDQoLi6Gv78/vvrqK8TGxuLo0aPw9PREYGCg0fkhISHQarUA7nWpmc7mrN/Wn2NOeno6ZsyYITlWIkd5rc/DeGvzva4sNxUwJ6kVwtTyTuVgbuLD19afRJcHg2SPjYhICsktOyqVCnPnzsVvv/2Gffv24dixY7h27Vq162QeeughHD16FPv378eIESMwZMgQnD59ulrPZaspU6ZAp9OJt0uXLjn07xFZ81zb+13AmWld0b9DUxmjucfcxIfO2L1GRGRNtYdT+Pv7o0OHDjUOwNPTEw888AAAID4+HgcPHsS//vUv9O/fH6Wlpbhx44ZR605BQQFCQ0MBAKGhoThw4IDR8+lHa+nPMcfLywteXl41jp2oJgwn5DOs4TG3DIMczE186Czda0qn1RWjWZC/3GEQKYbklh1Hq6ioQElJCeLj4+Hh4YHt27eLx86ePYu8vDxxDS6NRoMTJ07gypUr4jnbtm1DQEAAYmNjaz12IiUxt8q5M3SvKRXro4gcR9aJMqZMmYLevXujadOmuHnzJtauXYtdu3Zh69atUKvVSElJQVpaGho2bIiAgACMGjUKGo0GnTp1AgD07NkTsbGxGDx4MObNmwetVoupU6ciNTWVLTdEdpAc30Sc5TkzrStbGxyE9VFEjiVrsnPlyhW88MILyM/Ph1qtRuvWrbF161Y8+eSTAIB3330Xbm5uSE5ORklJCXr16oX3339ffLy7uzs2bdqEESNGQKPRwM/PD0OGDMHMmTPluiQim7hiN4WzdK8pUVX1UUx2iGrOpmSnXbt22L59Oxo0aICZM2fi1Vdfha9vzfvtly9fXuVxb29vLFq0CIsWLbJ4TmRkJL799tsax0LkaKbdFOlJcU5RiEzyY30UkWPZVLNz5swZ3L59GwAwY8YM3Lp1y6FBESmNpW4KzpJMAOujiBzNppadRx55BEOHDsVjjz0GQRDw9ttvw9/ffBM8l2ogqsxaN4XhyCyqm1gfReQ4NiU7q1atwhtvvIFNmzZBpVLhu+++Q716lR+qUqmY7BCZwW4KkoL1UUT2ZVOy89BDD+HTTz8FALi5uWH79u0IDg52aGBESqLvptD/cneVbgq2OBGREkieZ6eiooKJDlE1JMc3Ee87yyzJRER1QbWGnl+4cAELFizAmTP31vKJjY3FmDFj0Lx5c7sGR6RU7KYgIqo9klt2tm7ditjYWBw4cACtW7dG69atsX//frRs2RLbtm1zRIxERERE1Sa5ZWfy5MkYN24cMjIyKu2fNGmSOCEgERHZjvVRRI4juWXnzJkzSElJqbT/pZdecvhq5URERERSSU52goKCcPTo0Ur7jx49ysJlIiIicjqSu7GGDRuG4cOH46effsL//d//AQD27NmDuXPnIi0tze4BEikFuymIiOShEgRBsH7afYIgYMGCBXjnnXdw+fJlAEB4eDgmTJiA0aNHQ6VSOSRQRyosLIRarYZOp0NAQIDc4RAREZENbP3+lpzsGLp58yYAoH79+tV9CqfAZIeIiMj12Pr9Xa15dvRcPckhsqei0jLETt8KADg9sxcAGG37etbo7UZERNUkuUCZiIiIyJUw2SEiIiJFY7JDREREiiYp2bl79y569OiB8+fPOyoeIiLCvRqwqMmbETV5M4pKy+QOh8ilSUp2PDw8cPz4cUfFQkRERGR3kruxnn/+eSxfvtwRsRAphlZXXOU2ERHVHsljYcvKyrBixQpkZmYiPj4efn5+Rsfnz59vt+CIXMmXh38R7yfMz8KzbcKNttOT4tC/Q1M5QiMFMJ3agFMZENlO8rvl5MmTaNeuHQDg3LlzRsdccfZkInvI193BGxtOidsVAvD10ctG26+tP4kuDwYhTO0jR4hERHWW5GRn586djoiDyKXlXr2NCitzkZcLAi5eLWKyQ5JpdcUIVXvLHQaRy6r20POcnBxs3boVd+7cAXBvzSyiuiq6sR/crDRsuqtUiGrsWzsBkcsz7RY13CYiaSQnO7///jt69OiBBx98EH369EF+fj4AICUlBePHj7d7gESuIEztgxnPthS33VTAc4+EG23PSWrFVh2yibluUcNtIpJGcrIzbtw4eHh4IC8vD76+93+l9u/fH1u2bLFrcESuJDm+iXg/M60r5iTFGW2zOJlsZa5b1HCbo/uIpJGc7Hz//feYO3cumjRpYrS/RYsW+Pnnn+0WGJErM62vYL0FSWGuW9RwM2F+Fj47mFerMRG5MsnJzu3bt41adPSuXbsGLy8vuwRFRFSXmXaLmpaD6Uf35evu1G5gRC5KcrLz+OOP48MPPxS3VSoVKioqMG/ePDzxxBN2DY6IqK4y7BZ9u19rmA4B0Y/uIyLrJA89nzdvHnr06IFDhw6htLQUEydOxKlTp3Dt2jXs2bPHETESEdVpbZs2gJvKuG6Ho/uIbCc52WnVqhXOnTuHf//736hfvz5u3bqFpKQkpKamIiwszBExErkEX896uJiRaLTPdJuoOkLV3pjxbEtM++beiCyO7iOSplrzjavVarz++uv2joWIiCxIjm8iJjuZaV3RLMhf5oiIXEe1kp3r169j+fLlOHPmDAAgNjYWQ4cORcOGDe0aHBERVcbRfUTSSC5Q3r17N6KiorBw4UJcv34d169fx8KFCxEdHY3du3c7IkYiojpH3y16MSORi34S1ZDkd1Bqair69++PxYsXw93dHQBQXl6OV155BampqThx4oTdgyQiIiKqLsktOzk5ORg/fryY6ACAu7s70tLSkJOTY9fgiIiIiGpKcstOu3btcObMGTz00ENG+8+cOYM2bdrYLTAiIrrP3Gg/IrKNTcnO8ePHxfujR4/GmDFjkJOTg06dOgEA9u3bh0WLFiEjI8MxURIRERFVk0oQBNOJOStxc3ODSqWCtVNVKhXKy8vtFlxtKSwshFqthk6nQ0BAgNzhEBERkQ1s/f62qWUnNzfXboERERER1Sabkp3IyEhHx0FERETkENWavOHy5cv44YcfcOXKFVRUVBgdGz16tF0CIyIiIrIHycnOqlWr8PLLL8PT0xONGjWCSqUSj6lUKiY7RERE5FQkz7Mzbdo0TJ8+HTqdDhcvXkRubq54++mnnyQ9V3p6Ojp06ID69esjODgYzz33HM6ePWt0TnFxMVJTU9GoUSP4+/sjOTkZBQUFRufk5eUhMTERvr6+CA4OxoQJE1BWVib10oiIiEiBJCc7RUVFGDBgANzcJD+0kqysLKSmpmLfvn3Ytm0b7t69i549e+L27dviOePGjcPGjRuxbt06ZGVl4fLly0hKShKPl5eXIzExEaWlpdi7dy9Wr16NVatWYfr06TWOj4iIiFyfTUPPDU2cOBENGzbE5MmT7R7Mb7/9huDgYGRlZaFLly7Q6XQICgrC2rVr8Ze//AUA8OOPP+Lhhx9GdnY2OnXqhO+++w5PP/00Ll++jJCQEADAkiVLMGnSJPz222/w9PSs9HdKSkpQUlIibhcWFiIiIoJDz4mIiFyIXYeeG0pPT8fTTz+NLVu2IC4uDh4eHkbH58+fLz3aP+h0OgAQV08/fPgw7t69i4SEBPGcmJgYNG3aVEx2srOzERcXJyY6ANCrVy+MGDECp06dQtu2bc1ew4wZM6odJxEREbmOaiU7W7duFZeLMC1Qrq6KigqMHTsWnTt3RqtWrQAAWq0Wnp6eCAwMNDo3JCQEWq1WPMcw0dEf1x8zZ8qUKUhLSxO39S07RFIUlZYhdvpWAMDpmb24MjURkZOS/On8zjvvYMWKFXjxxRftGkhqaipOnjyJH374wa7Pa46Xlxe8vLwc/neIiIhIfpKrjL28vNC5c2e7BjFy5Ehs2rQJO3fuRJMmTcT9oaGhKC0txY0bN4zOLygoQGhoqHiO6egs/bb+HCIiIqq7JCc7Y8aMwXvvvWeXPy4IAkaOHImvvvoKO3bsQHR0tNHx+Ph4eHh4YPv27eK+s2fPIi8vDxqNBgCg0Whw4sQJXLlyRTxn27ZtCAgIQGxsrF3iJCIiItcluRvrwIED2LFjBzZt2oSWLVtWKlBev369zc+VmpqKtWvX4ptvvkH9+vXFGhu1Wg0fHx+o1WqkpKQgLS0NDRs2REBAAEaNGgWNRiOuuN6zZ0/ExsZi8ODBmDdvHrRaLaZOnYrU1FR2VVGt0eqK0SzIX+4wiIjIDMnJTmBgoNE8NzWxePFiAEC3bt2M9q9cuVKsCXr33Xfh5uaG5ORklJSUoFevXnj//ffFc93d3bFp0yaMGDECGo0Gfn5+GDJkCGbOnGmXGIks+fLwL+L9hPlZSE+KQ/8OTWWMiOoSFsgT2U7yPDtKZOs4fSK9fN0ddM7YgQqDd4+7SoUfJj+BMLWPfIFRncFkh8j27++aT4NMVAflXr1tlOgAQLkg4OLVInkCIiIiiyT/FIiOjq5yPh2p62MRuaLoxn5wU6FSy05UY1/5giIiIrMkJztjx4412r579y6OHDmCLVu2YMKECfaKi8iphal9MOPZlpj2zSkAgJsKmJPUil1YJAsWyBNVTXKyM2bMGLP7Fy1ahEOHDtU4ICJXkRzfREx2MtO68suGahUL5IlsZ7eand69e+PLL7+019MRuZRQtbfcIVAdkq+7gzc2nBK3KwTgtfUnka+7I2NURM7LbsnOF198IS7gSUREjsMCeSJpJHdjtW3b1qhAWRAEaLVa/Pbbb0bz3xARkWOYK5AHgIHL9nEYOpEZkt8Rzz33nNG2m5sbgoKC0K1bN8TExNgrLiIissBcgbxp4kNE93FSQXBSQSJyPYaTCm4e3RmJC/cA4ASDVLdwUkEiojoiJIAF8kRVsTnZcXNzg7u7e5W3evX4a4KISE5aXbHcIRA5HZuzk6+++srisezsbCxcuBAVFRV2CYrIWXE9InJGXx+5LN7nnDtEldn8Sd23b99K+86ePYvJkydj48aNGDRoEFcaJyKqJb6e9XAxI1FclFZPP+dOlweDOKM30R+qVbNz+fJlDBs2DHFxcSgrK8PRo0exevVqREZG2js+IiKqAufcIbJOUrKj0+kwadIkPPDAAzh16hS2b9+OjRs3olWrVo6Kj4iIqqCfc8eQm+renDtRkzejqLRMnsCInIjNyc68efPQrFkzbNq0CZ988gn27t2Lxx9/3JGxETk1FoKSM9DPuaPnpoLRNhFJmGfHzc0NPj4+SEhIgLu7u8Xz1q9fb7fgagvn2SFbfZR90WgiNxaCkjMwLJzfMb4rQtXeLKSnOsHW72+b3wEvvPCC0TIRRHWNpcUXWQhKzsR0UVqtrhjNgvxliobIOdic7KxatcqBYRA5v6oKQZnskDP58vAv4n0ORSeqxtpYRHWVucUX3VUqRDX2lS8oItwfhg6wBZLIHC4XQVSFotIyRE3ejKjJm6H28ahUCDonqRW/QMipcCg6UWVMdogkSI5vIt7PTOvKrgFyOuaGorMFkuo6JjtE1WRaCErkDMwNRWcLJNV1THaIbMR5dchVsAWSyBiTHaIqmI5qMdwmcgVsgSTiaCwii8yNanlzw2lkT+nOLgEiIhfClh0iCziqhYhIGdiyQ2TAdNp9zqtDrshw3h0iYssOkUWham+OaiEiUgAmO0RV4KgWIiLXx2SHyALToeYc1UJE5JqY7BAZ4FBzIiLlYYEy0R841JyISJnYskP0Bw41J6UyXNC2qLRM7nCIah2THaI/cAFFIiJlYrJD9AcuoEhEpExMdogMcKg5KR0XtKW6iMkOkQUcak5KYTrK8LODeTJGQ1T7mOwQESmYuVGGr60/iXzdHRmjIqpdHHpOZIBrCpHSVDXKkPVoVFewZYeISME4ypCIyQ4RkaJxlCGRzMnO7t278cwzzyA8PBwqlQpff/210XFBEDB9+nSEhYXBx8cHCQkJOH/+vNE5165dw6BBgxAQEIDAwECkpKTg1q1btXgVRETOjaMMqa6TNdm5ffs22rRpg0WLFpk9Pm/ePCxcuBBLlizB/v374efnh169eqG4+P7QyUGDBuHUqVPYtm0bNm3ahN27d2P48OG1dQlERC6FowypLpK1QLl3797o3bu32WOCIGDBggWYOnUq+vbtCwD48MMPERISgq+//hoDBgzAmTNnsGXLFhw8eBDt27cHALz33nvo06cP3n77bYSHh9fatZBrKiotQ+z0rQCA0zN7wdeTNftERErjtDU7ubm50Gq1SEhIEPep1Wp07NgR2dnZAIDs7GwEBgaKiQ4AJCQkwM3NDfv377f43CUlJSgsLDS6EREplX6U4cWMRCb0VCc5bbKj1WoBACEhIUb7Q0JCxGNarRbBwcFGx+vVq4eGDRuK55iTnp4OtVot3iIiIuwcPbkizixLRKRMTpvsONKUKVOg0+nE26VLl+QOiWTCmWWJiJTPaZOd0NBQAEBBQYHR/oKCAvFYaGgorly5YnS8rKwM165dE88xx8vLCwEBAUY3qns4syzVVUWlZYiavBlRkzejqLRM7nCIHM5pk53o6GiEhoZi+/bt4r7CwkLs378fGo0GAKDRaHDjxg0cPnxYPGfHjh2oqKhAx44daz1mcg36D3pN+g6LM8sSEZFyyFqpduvWLeTk5Ijbubm5OHr0KBo2bIimTZti7NixeOutt9CiRQtER0dj2rRpCA8Px3PPPQcAePjhh/HUU09h2LBhWLJkCe7evYuRI0diwIABHIlFNnFTwSjh4cyyVNdodcVoFuQvdxhEDiVry86hQ4fQtm1btG3bFgCQlpaGtm3bYvr06QCAiRMnYtSoURg+fDg6dOiAW7duYcuWLfD2vj9PxJo1axATE4MePXqgT58+eOyxx7B06VJZrodcz8juD4j3ObMs1RWmtWofZV9ktxYpmkoQBMH6acpWWFgItVoNnU7H+p064KPsi5j2zb1aHcOWnR3ju/IXLilevu4OOmcYd+HyfUCuytbvb6et2SFyBHNFyXqcWZbqAnOroBtuc1QiKRGTHapTzH3QA8AnwzpxsjWqE8ytgm6IoxJJiZjsUJ1i7oOeRclUl5iugm4u7+GoRFIaJjtUp5h+0LMomeoiw1XQPx3eiT8ASPGY7FCdY/hBn5nWFf07NJUxGiJ5xTVR8wcAKR6LFKhOY1Ey1UX6hUH1kuObiCMUM9M4GouUh8kO1TmmH/REdB9/AJASMdkhIqrj+AOAlI41O0RERKRoTHZI8bjCMxFR3cZkh+oUra5Y7hCIiKiWMdkhxTFtyTFd9JBT4RNZxpZQUiImO+TyqvpwPvGLrtJaWJwKn8g2bAklpWCyQ4qi1RUbteQMWLqv0lpYnAqfyDK2hJISceg5uYSi0jLETt8KADg9s5fRop2GH8493skyepyZNT85FT6RBfm6O2ZbQrs8GMQZlcmlsWWHXI5h07rph7MA8wmOHqfCJ7Is9+ptqy2hrOkhV8Rkx0lU9QFieOyn327JFKG8cVhqWjf34WzKcJFDroVFZFl0Y79Ki4K6qYCBy/aZfd+zpodcBZMdJ2T6AWL6Rf9R9kVZflnJ1ZdvqWk9X3fH7Iez4aabCkhPisPFjERczEjkmj9EVQhT+1RaFPTZNuHidsL8LLy2/oTRNmt6yBUw2ZGJrcOjzX3RG27X1i+rqhIOR6uqad3ch/PMvve32ZJDJE1yfBPx/ifDOmHDscvidoUAfH3UeJujG8kVMNlxAlUNjzb3RW+4XVu/rCwlHJr0HQ7v1jLXemNYZGz44ZyZ1hWDNVFsySGqJv06WRczElEuCFa7iTm6kVwBkx0HsVbfYuvwaHNf9Ias/bKSWkxo6Xxr3UU1TbqqitNc640+0SoqLTP6cGZyQ2Q/1j5/AI5uJNfAZMdBqqpvMTeCyJT+A8T0i97c546toyWkdnkZnm8tDns2Z5uL07D1ZuOozlWeS0T2Ye6HxnOPhBttc3QjuQImOw5grb7F2ggi0w8Qwy/6T4d3kjRa4sPsn8X7trS+VJWkGcbxdr/WlZK0mjRnWyt+Nmy9+d/PN6o8l4jsx7SbeE5SnNE2a+LIFagEQbDSI6t8hYWFUKvV0Ol0CAgIqPHz7b1wFX9btr/S/k+GdYKmeSPk6+6gc8YOo4THTXW/FmfH+K5Vdsd8lH0R0745JT7u2TbhYtGg6bapqv6OubjcVSr8MPmJSr/cpJxrjuEkgZ8N74SBy/bVyt8lIiLlsPX7my07DmCtoNZc07Dh8OhQtXeV9T5SRkuYqqq42ZYJxfTMXYOU5mxbapbMFT9LiZGIiAhgsuMQ5hKBN5+NNfryHqyJQvaU7vhkWCfsmdzdqClYSpeOLaMlLDHtXrNUjDhw2T6rSZe55mxLtUO21CxZKn62lkgSERGZYrLjIKaJgCH9l3eY2gea5o2MWkOkzmdjy2gJPWvFzVUVIVtLuqyNgjIsJLZWs1RV8XNNW5SIiKju4UKgDqJPBABpi+tZm0DPlP7Lv6oanklPxaB1k0D4errhz+/vrVTvYtgqMlgThYTYEBy+eB2jPz0CfUVXdRYENG2h0v/dz/4osjaNY/0rGhSVVuD32yUYufaIxX8DfYwXrxaJI9aIiIgsYbJTC6QkMPqWmqoSElPJ8U3EZCcz7V7R8aTeMWaTAdPEyFyrSJjaBw39pSVdQOWiY9MET2/gsn2VErI5Sa3QJqIBgHvJobV/gzC1D5McIidg+L63NrjCFf5OTeNwljjJGLuxaoGUOpPqdNOY604y10UGmK+zydfdwd4LV426yqpTG2Ot6FivQoBRUbVpvQ+7qohchyPXzDP8bJJrbT5T1uJwljjJGIeew/5Dz80xHS6enhRncX6K2vxlUFVcUmI2NyTcGv1QfHP464jI+VX1vte/b/XL3kQ39pP0g8Xw80f/u8vwz1ibcsIRnyHWpr7g1Bi1z9bvb3Zj1RIpdSaG9T6OZK2WSErM1oqOTVlrJaqtfwMiqr6q3vcJ87MqdVenJ8Why4NBVSY/+bo7OHTxmtURm9a61U1bWCY9FYO4JmpEN/aD2sfDaiJkLkmzVpIgtebSmVU3SXVWTHZqkbPVmdjyxrQ1Zku1Rvqi48M/X8Pb358DwG4pIqUw977XM7dC+uQvT4iJi7nWYsPWHGuq+sFk7odc+nc/in/32Tb3l7xImJ9VZRyGcVqrqaxOzaUzJhVSWvUB12iJZ81OHWbPOWss1dm0iWgATfNGGNm9hcV5hYjINZm+760xzIlMp9UwTVBMGX5UWfvBVFWLk7kkrKo4pEx9IbXe8KPsi9Ck78Dflu1H54wdTlHfI3X6E8A16pRYs4PaqdlxVlIzeGvydXc4JJyojsnX3RGnq6juJKfv9GuN8euOmz1m2AWm/3ypqiuqOjWE1uL498C2aOjviejGfgBQ5eec6eegudYbe9f32Kt1xdpyR6bkrlNizQ7ZxN5z1jhbVx0ROV6Y2gdPt/HB7dIyvLb+JMoFAe4qFZ5pEya2opgrMlYZbL+67rjRNnCv6+G9v7VFu8gGRq0nwL0fanoJ87OMptXYMb4r0pPixFissRaHCsDIT+7N/WXLj0LDz0HTH5T62qFrt0trNL3H5tGdkbhwj3i9e3KuGv172PLD1TAJA+61iPl5ukvqinOVOiW27KBut+wQEdmTuVYN/Xbm6YIqR1gZJhlVJRXmWhPMPVbfEmRaM/jntn/C10cuo1wQ4PbH4yzFUZ2RYFXFafg3zD3v+lc0uF1aLrYCGSYkpv9+NYnRdLSb4b+ducJy09dBH5efp3ulyWrdACz8W1vE/5GkOrIuydbvbyY7YLJDRFRb9MmPuZnSgXvdRY38vapsabbU1WLI9MveUhJmLQ5Lxw27dSx9mVuL01qSYbhtLqGxxrDrzTDpMJegGDIcXGLudTBtrTJMHquTONUEu7GIiMjp6Lt4LM2UHh/VwOqv/6pGgelZG1lqaxzWZnSvqu7RWpwC7idV+uV89EwLqaW2Sph2vZkmTlU9X7kgoKi0wqhGxzBRMi1g/vrIZax/RYNL1+5UWmbIXDG4lGWH7IWjsYiIqNaFqX2QnhQHd9W9Ngt3lcrmKSlMH+uGygsI2zqy1FocVR23NnLJ9LGm9EmVpnkj3C4tr3ZxN3Dv+vWja02/2KUmTqb/dp8dzEPnjHujxp5bVLlFSJ8cNfT3tHoNhotP1ya27BARkSz6d2hqNMJKyq9908fuPvebUXG0lLm8rMVh6bgtxbmGjz3+6w3M++6s2Rhtaa1SAVD9cY7qjx2CcD8B0/8dS11vptyqeC7D7r8p60+IcZkLzzA5snYN1Z3epKaY7BARkWxqMoLT8LE1SZxsicPccVsnEdQ/VtO8EZ5tE242Rn0rkGHC9lzbcLEWxjSh0f8N0+ey1PVmyrQux9xzAZbnLNI/v2lyZMs1yDFKiwXKYIEyERFVz2cH8yq1KNlzrrLqzl1mGpe5pMOWOC3No1NVAbO9rsEWdW401qJFi/DPf/4TWq0Wbdq0wXvvvYdHH33Upscy2SEioupy1slUHZU41TShs6c6lex89tlneOGFF7BkyRJ07NgRCxYswLp163D27FkEBwdbfTyTHSIiIsucNaGrU8lOx44d0aFDB/z73/8GAFRUVCAiIgKjRo3C5MmTK51fUlKCkpIScbuwsBARERFMdoiIiFyIrcmOyw89Ly0txeHDh5GQkCDuc3NzQ0JCArKzs80+Jj09HWq1WrxFRETUVrhERERUy1w+2bl69SrKy8sREhJitD8kJARardbsY6ZMmQKdTifeLl26VBuhEhERkQzq5NBzLy8veHl5yR0GERER1QKXb9lp3Lgx3N3dUVBQYLS/oKAAoaGhMkVFREREzsLlkx1PT0/Ex8dj+/bt4r6Kigps374dGo1GxsiIiIjIGSiiGystLQ1DhgxB+/bt8eijj2LBggW4ffs2hg4dKndoREREJDNFJDv9+/fHb7/9hunTp0Or1eKRRx7Bli1bKhUtExERUd2jiHl2aoqTChIREbmeOjPPDhEREVFVmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFE0RQ89rSj8grbCwUOZIiIiIyFb6721rA8uZ7AC4efMmAHD1cyIiIhd08+ZNqNVqi8c5zw7uLS9x+fJl1K9fHyqVqsbPV1hYiIiICFy6dEmx8/bwGpWB1+j6lH59AK9RKRxxjYIg4ObNmwgPD4ebm+XKHLbsAHBzc0OTJk3s/rwBAQGK/U+rx2tUBl6j61P69QG8RqWw9zVW1aKjxwJlIiIiUjQmO0RERKRoTHYcwMvLC2+88Qa8vLzkDsVheI3KwGt0fUq/PoDXqBRyXiMLlImIiEjR2LJDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO3aSkZEBlUqFsWPHivuKi4uRmpqKRo0awd/fH8nJySgoKJAvyBoyd43dunWDSqUyuv3jH/+QL0iJ3nzzzUrxx8TEiMeV8Bpau0ZXfw31fv31Vzz//PNo1KgRfHx8EBcXh0OHDonHBUHA9OnTERYWBh8fHyQkJOD8+fMyRiydtWt88cUXK72WTz31lIwRSxMVFVUpfpVKhdTUVADKeD9au0ZXfz+Wl5dj2rRpiI6Oho+PD5o3b45Zs2YZrV0lx3uRMyjbwcGDB/HBBx+gdevWRvvHjRuHzZs3Y926dVCr1Rg5ciSSkpKwZ88emSKtPkvXCADDhg3DzJkzxW1fX9/aDK3GWrZsiczMTHG7Xr37bwulvIZVXSPg+q/h9evX0blzZzzxxBP47rvvEBQUhPPnz6NBgwbiOfPmzcPChQuxevVqREdHY9q0aejVqxdOnz4Nb29vGaO3jS3XCABPPfUUVq5cKW670lDmgwcPory8XNw+efIknnzySfTr1w+AMt6P1q4RcO3349y5c7F48WKsXr0aLVu2xKFDhzB06FCo1WqMHj0agEzvRYFq5ObNm0KLFi2Ebdu2CV27dhXGjBkjCIIg3LhxQ/Dw8BDWrVsnnnvmzBkBgJCdnS1TtNVj6RoFQai07WreeOMNoU2bNmaPKeU1rOoaBcH1X0NBEIRJkyYJjz32mMXjFRUVQmhoqPDPf/5T3Hfjxg3By8tL+OSTT2ojxBqzdo2CIAhDhgwR+vbtWzsB1YIxY8YIzZs3FyoqKhTzfjRleI2C4Prvx8TEROGll14y2peUlCQMGjRIEAT53ovsxqqh1NRUJCYmIiEhwWj/4cOHcffuXaP9MTExaNq0KbKzs2s7zBqxdI16a9asQePGjdGqVStMmTIFRUVFtRxhzZw/fx7h4eFo1qwZBg0ahLy8PADKeg0tXaOeq7+GGzZsQPv27dGvXz8EBwejbdu2WLZsmXg8NzcXWq3W6LVUq9Xo2LGjy7yW1q5Rb9euXQgODsZDDz2EESNG4Pfff5ch2porLS3Fxx9/jJdeegkqlUpR70c902vUc+X34//93/9h+/btOHfuHADg2LFj+OGHH9C7d28A8r0X2Y1VA59++in+97//4eDBg5WOabVaeHp6IjAw0Gh/SEgItFptLUVYc1VdIwD87W9/Q2RkJMLDw3H8+HFMmjQJZ8+exfr162s50urp2LEjVq1ahYceegj5+fmYMWMGHn/8cZw8eVIxr2FV11i/fn2Xfw0B4KeffsLixYuRlpaG1157DQcPHsTo0aPh6emJIUOGiK9XSEiI0eNc6bW0do3AvS6spKQkREdH48KFC3jttdfQu3dvZGdnw93dXeYrkObrr7/GjRs38OKLLwJQzmeqIdNrBFz/M3Xy5MkoLCxETEwM3N3dUV5ejtmzZ2PQoEEAINt7kclONV26dAljxozBtm3bXKK/vzpsucbhw4eL9+Pi4hAWFoYePXrgwoULaN68eW2FWm36XxsA0Lp1a3Ts2BGRkZH4/PPP4ePjI2Nk9lPVNaakpLj8awgAFRUVaN++PebMmQMAaNu2LU6ePIklS5aIiYCrs+UaBwwYIJ4fFxeH1q1bo3nz5ti1axd69OghS9zVtXz5cvTu3Rvh4eFyh+Iw5q7R1d+Pn3/+OdasWYO1a9eiZcuWOHr0KMaOHYvw8HBZ34vsxqqmw4cP48qVK2jXrh3q1auHevXqISsrCwsXLkS9evUQEhKC0tJS3Lhxw+hxBQUFCA0NlSdoiaxdo2GRnV7Hjh0BADk5ObUdrl0EBgbiwQcfRE5ODkJDQ13+NTTH8BrNccXXMCwsDLGxsUb7Hn74YbG7Tv96mY7ccaXX0to1mtOsWTM0btzYpV5LAPj555+RmZmJv//97+I+pb0fzV2jOa72fpwwYQImT56MAQMGIC4uDoMHD8a4ceOQnp4OQL73IpOdaurRowdOnDiBo0ePirf27dtj0KBB4n0PDw9s375dfMzZs2eRl5cHjUYjY+S2s3aN5prFjx49CuDeB7MrunXrFi5cuICwsDDEx8e7/GtojuE1muOKr2Hnzp1x9uxZo33nzp1DZGQkACA6OhqhoaFGr2VhYSH279/vMq+ltWs055dffsHvv//uUq8lAKxcuRLBwcFITEwU9ynt/WjuGs1xtfdjUVER3NyMUwt3d3dUVFQAkPG96LDS5zrItIr+H//4h9C0aVNhx44dwqFDhwSNRiNoNBr5ArQDw2vMyckRZs6cKRw6dEjIzc0VvvnmG6FZs2ZCly5d5A1SgvHjxwu7du0ScnNzhT179ggJCQlC48aNhStXrgiCoIzXsKprVMJrKAiCcODAAaFevXrC7NmzhfPnzwtr1qwRfH19hY8//lg8JyMjQwgMDBS++eYb4fjx40Lfvn2F6Oho4c6dOzJGbjtr13jz5k3h1VdfFbKzs4Xc3FwhMzNTaNeundCiRQuhuLhY5uhtV15eLjRt2lSYNGlSpWNKeD8KguVrVML7cciQIcKf/vQnYdOmTUJubq6wfv16oXHjxsLEiRPFc+R4LzLZsSPTZOfOnTvCK6+8IjRo0EDw9fUV/vznPwv5+fnyBWgHhteYl5cndOnSRWjYsKHg5eUlPPDAA8KECRMEnU4nb5AS9O/fXwgLCxM8PT2FP/3pT0L//v2FnJwc8bgSXsOqrlEJr6Hexo0bhVatWgleXl5CTEyMsHTpUqPjFRUVwrRp04SQkBDBy8tL6NGjh3D27FmZoq2eqq6xqKhI6NmzpxAUFCR4eHgIkZGRwrBhwwStVitjxNJt3bpVAGD2tVHC+1EQLF+jEt6PhYWFwpgxY4SmTZsK3t7eQrNmzYTXX39dKCkpEc+R472oEgSDaQ2JiIiIFIY1O0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0REALp16waVSgWVSiWuR7Rr1y6oVKpKi0/a25tvvin+7QULFjj0bxHVRUx2iEiyF198UfxyNrw99dRTcodWI8OGDUN+fj5atWpV4+cqKCiAh4cHPv30U7PHU1JS0K5dOwDAq6++ivz8fDRp0qTGf5eIKmOyQ0TV8tRTTyE/P9/o9sknnzj0b5aWljr0+X19fREaGop69erV+LlCQkKQmJiIFStWVDp2+/ZtfP7550hJSQEA+Pv7IzQ0FO7u7jX+u0RUGZMdIqoWLy8vhIaGGt0aNGggHlepVPjPf/6DP//5z/D19UWLFi2wYcMGo+c4efIkevfuDX9/f4SEhGDw4MG4evWqeLxbt24YOXIkxo4di8aNG6NXr14AgA0bNqBFixbw9vbGE088gdWrV4vdTbdv30ZAQAC++OILo7/19ddfw8/PDzdv3qz2NRcVFaF3797o3Lmz2LX1n//8Bw8//DC8vb0RExOD999/Xzw/JSUF27dvR15entHzrFu3DmVlZRg0aFC1YyEi2zHZISKHmTFjBv7617/i+PHj6NOnDwYNGoRr164BAG7cuIHu3bujbdu2OHToELZs2YKCggL89a9/NXqO1atXw9PTE3v27MGSJUuQm5uLv/zlL3juuedw7NgxvPzyy3j99dfF8/38/DBgwACsXLnS6HlWrlyJv/zlL6hfv361ruXGjRt48sknUVFRgW3btiEwMBBr1qzB9OnTMXv2bJw5cwZz5szBtGnTsHr1agBAnz59EBISglWrVlWKJSkpCYGBgdWKhYgkcuia6kSkSEOGDBHc3d0FPz8/o9vs2bPFcwAIU6dOFbdv3bolABC+++47QRAEYdasWULPnj2NnvfSpUsCAOHs2bOCIAhC165dhbZt2xqdM2nSJKFVq1ZG+15//XUBgHD9+nVBEARh//79gru7u3D58mVBEAShoKBAqFevnrBr1y6L19S1a1dhzJgxRvt27twpABDOnDkjtG7dWkhOThZKSkrE482bNxfWrl1r9JhZs2YJGo1G3J48ebIQHR0tVFRUCIIgCDk5OYJKpRIyMzMrxRAZGSm8++67FmMkouphyw4RVcsTTzyBo0ePGt3+8Y9/GJ3TunVr8b6fnx8CAgJw5coVAMCxY8ewc+dO+Pv7i7eYmBgAwIULF8THxcfHGz3n2bNn0aFDB6N9jz76aKXtli1bii0sH3/8MSIjI9GlS5dqXeuTTz6JBx54AJ999hk8PT0B3Ku7uXDhAlJSUoyu4a233jKK/6WXXkJubi527twJ4F6rTlRUFLp3716tWIhIuppX4RFRneTn54cHHnigynM8PDyMtlUqFSoqKgAAt27dwjPPPIO5c+dWelxYWJjR36mOv//971i0aBEmT56MlStXYujQoVCpVNV6rsTERHz55Zc4ffo04uLixPgBYNmyZejYsaPR+YaFxi1atMDjjz+OlStXolu3bvjwww8xbNiwasdCRNIx2SEiWbRr1w5ffvkloqKiJI1+euihh/Dtt98a7Tt48GCl855//nlMnDgRCxcuxOnTpzFkyJBqx5qRkQF/f3/06NEDu3btQmxsLEJCQhAeHo6ffvrJaqFxSkoKRowYgWeffRa//vorXnzxxWrHQkTSsRuLiKqlpKQEWq3W6GY4ksqa1NRUXLt2DQMHDsTBgwdx4cIFbN26FUOHDkV5ebnFx7388sv48ccfMWnSJJw7dw6ff/65WABs2FrSoEEDJCUlYcKECejZs2eN57B5++23MWjQIHTv3h0//vgjgHsF2Onp6Vi4cCHOnTuHEydOYOXKlZg/f77RY/v16wcPDw+8/PLL6NmzJyIiImoUCxFJw2SHiKply5YtCAsLM7o99thjNj8+PDwce/bsQXl5OXr27Im4uDiMHTsWgYGBcHOz/NEUHR2NL774AuvXr0fr1q2xePFicTSWl5eX0bkpKSkoLS3FSy+9VL2LNPHuu+/ir3/9K7p3745z587h73//O/7zn/9g5cqViIuLQ9euXbFq1SpER0cbPc7X1xcDBgzA9evX7RYLEdlOJQiCIHcQREQ1MXv2bCxZsgSXLl0y2v/RRx9h3LhxuHz5slhYbEm3bt3wyCOPyLpcQ1RUFMaOHYuxY8fKFgORErFlh4hczvvvv4+DBw/ip59+wkcffYR//vOfRjU5RUVFuHDhAjIyMvDyyy9bTXQMn9ff3x8nTpxwVOhmzZkzB/7+/pUmHyQi+2DLDhG5nHHjxuGzzz7DtWvX0LRpUwwePBhTpkwRC53ffPNNzJ49G126dME333wDf39/q8/566+/4s6dOwCApk2b2pwg2cO1a9fEyRaDgoKgVqtr7W8T1QVMdoiIiEjR2I1FREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJF+3+J4z6lPwcyhwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rnd_bkd = np.random.exponential(39.7, 5000)\n", "rnd_bkd += 40\n", "\n", "peak1 = np.random.normal(53.3, 2.1, 5000)\n", "peak2 = np.random.normal(60.5, 2.78, 12000)\n", "data = np.concatenate([rnd_bkd, peak1, peak2])\n", "\n", "entries, edges = np.histogram(data, bins=120, range=(40, 80))\n", "center = edges[:-1] + np.diff(edges)/2\n", "\n", "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", "plt.xlabel('Energy [keV]')\n", "plt.ylabel('Number of counts per bin')" ] }, { "cell_type": "markdown", "id": "b582615c-9251-409d-bcfc-d19fd579e161", "metadata": {}, "source": [ "Zunächst wollen wir das Fitmodel in der Form\n", "\n", "$$f(x) = A_1 \\cdot \\exp \\bigg\\{\\frac{-(x - \\mu_1)^2}{2 \\cdot \\sigma_1^2}\\bigg\\} + A_2 \\cdot \\exp \\bigg\\{\\frac{-(x - \\mu_2)^2}{2 \\cdot \\sigma_2^2}\\bigg\\} + A_3 \\exp\\{-x/\\tau\\}$$\n", "\n", "definieren. Hier lohnt es sich, erst Funktionen für die einzelnen Komponenten zu definieren und dann das Gesamtmodel. Hierdurch lassen sich später die einzelnen Komponenten besser darstellen." ] }, { "cell_type": "code", "execution_count": 4, "id": "f84d7527-c0d2-475d-966d-5363a8e09369", "metadata": {}, "outputs": [], "source": [ "def peak(x, A, mu, sigma):\n", " return A*np.exp(-(x-mu)**2/(2*sigma**2))\n", "\n", "def bkg(x, A, tau):\n", " return A*np.exp(-x/tau)\n", "\n", "def fit_model(x, A_p1, A_p2, mu_p1, mu_p2, sigma_p1, sigma_p2, A_bkg, tau_bkg):\n", " return peak(x, A_p1, mu_p1, sigma_p1) + peak(x, A_p2, mu_p2, sigma_p2) + bkg(x, A_bkg, tau_bkg)" ] }, { "cell_type": "markdown", "id": "32014861-316c-4692-9d52-48f2fb71321c", "metadata": {}, "source": [ "Nun wollen wir wieder die Kostenfunktion und die Minimierungsfunktion definieren. Startwerte können wir anhand unseres Plots ablesen, lediglich $\\tau$ lässt sich auf diese Weise nicht gut bestimmen." ] }, { "cell_type": "code", "execution_count": 5, "id": "a31901cf-a0ce-4db8-a072-a661fbbb7296", "metadata": {}, "outputs": [], "source": [ "ls = cost.LeastSquares(center, entries, np.sqrt(entries), fit_model)\n", "\n", "mi = Minuit(ls, \n", " A_p1 = 400, \n", " A_p2 = 700,\n", " mu_p1 = 54,\n", " mu_p2 = 60,\n", " sigma_p1 = 2,\n", " sigma_p2 = 2,\n", " A_bkg = 100,\n", " tau_bkg = 10, \n", " )\n", "mi.limits['tau_bkg'] = (0, None)" ] }, { "cell_type": "code", "execution_count": 6, "id": "1e69a046-770f-4c38-9b91-0176bb0686a1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB74klEQVR4nO3deViU5foH8O/LvsmgyKoIKCou4JYLaWpqbqSZHo+aqZnHzB/mQset0lxyyU7WsWyxTO2czLKsXEoUFyrFNXcRBVFQWURkkH2Z9/cHZ8aZYYCZYYZZ+H6ua654l3nnfqUZ7nme+3keQRRFEURERERWysbUARAREREZE5MdIiIismpMdoiIiMiqMdkhIiIiq8Zkh4iIiKwakx0iIiKyakx2iIiIyKrZmToAcyCTyXDv3j00atQIgiCYOhwiIiLSgiiKePToEfz9/WFjU337DZMdAPfu3UNAQICpwyAiIiI9pKWloXnz5tUeZ7IDoFGjRgAq/7Hc3d1NHA0RERFpIy8vDwEBAYq/49VhsgMouq7c3d2Z7BAREVmY2kpQWKBMREREVo3JDhEREVk1JjtERERk1VizQ0REZqeiogJlZWWmDoNMzN7eHra2tnW+DpMdIiIyG6IoIiMjA7m5uaYOhcyEh4cHfH196zQPHpMdIiIyG/JEx9vbGy4uLpzotQETRRGFhYXIysoCAPj5+el9LSY7RERkFioqKhSJjqenp6nDITPg7OwMAMjKyoK3t7feXVosUCYiIrMgr9FxcXExcSRkTuT/P9SlhovJDhERmRV2XZEyQ/z/wGSHiIiIrBqTHSIiIrJqTHaIiIhMQBAE/PzzzzWe89JLL2HUqFFaX/PWrVsQBAHnz5+vU2zWhqOxiMhqiaKIBw8ewMnJCW5ubqYOh6zYSy+9hNzc3FqTF2Xp6elo3LgxgMokJTg4GOfOnUPnzp0V5/z73/+GKIoGjrbhMWnLTlBQEARBqPKIiooCABQXFyMqKgqenp5wc3PDmDFjkJmZqXKN1NRUREZGwsXFBd7e3pg/fz7Ky8tNcTtEZEauXbuGrl27wsvLC56enli2bBk/G8is+Pr6wtHRscZzJBIJPDw86icgK2bSZOf06dNIT09XPA4ePAgAGDt2LABg3rx52LNnD3bu3Im4uDjcu3cPo0ePVjy/oqICkZGRKC0txfHjx7Ft2zZs3boVS5cuNcn9EJF5uHXrFiIiIhRN+aWlpVi+fDkWLVpk2sBIZ6IooqCgwCSPurSo9O/fH7Nnz8aCBQvQpEkT+Pr6YtmyZSrnKHdjBQcHAwC6dOkCQRDQv39/AFW7sfbv348+ffrAw8MDnp6eePbZZ5GcnKxTbOnp6YiMjISzszOCg4Oxfft2BAUF4cMPPwSguSssNzcXgiDg6NGjin2XL1/GsGHD4ObmBh8fH0yaNAnZ2dmK4z/88APCwsLg7OwMT09PDBo0CAUFBQCAo0ePokePHnB1dYWHhwd69+6N27dv63QfujBpsuPl5QVfX1/FY+/evWjVqhX69esHqVSKzZs3Y/369RgwYAC6deuGLVu24Pjx4zhx4gQA4MCBA7h69Sr++9//onPnzhg2bBhWrlyJjRs3orS0tNrXLSkpQV5ensqDiKyDTCbDlClTkJubi27duiE9PR2bN28GALz//vvYv3+/iSMkXRQWFsLNzc0kj8LCwjrFvm3bNri6uuLkyZNYt24dVqxYofhSr+7UqVMAgNjYWKSnp2PXrl0azysoKEB0dDTOnDmDQ4cOwcbGBs8//zxkMpnWcU2ePBn37t3D0aNH8eOPP2LTpk2KWYq1lZubiwEDBqBLly44c+YM9u/fj8zMTPz9738HUJlQTZgwAS+//DISEhJw9OhRjB49GqIoory8HKNGjUK/fv1w8eJFxMfH45VXXjHulAOimSgpKRE9PT3FVatWiaIoiocOHRIBiA8fPlQ5r0WLFuL69etFURTFJUuWiJ06dVI5fvPmTRGA+Ndff1X7Wm+//bYIoMpDKpUa9J6IqP599913IgDR1dVVTEpKUuyfNWuWCEDs1KmTKJPJTBghVaeoqEi8evWqWFRUpNiXn5+v8fO6Ph75+flaxz5lyhTxueeeU2z369dP7NOnj8o53bt3FxcuXKjYBiD+9NNPoiiKYkpKighAPHfuXI3XVXf//n0RgHjp0qUaryOXkJAgAhBPnz6t2Hfjxg0RgPjBBx9Ue42HDx+KAMQjR46IoiiKK1euFAcPHqxy7bS0NBGAmJiYKJ49e1YEIN66datKDA8ePBABiEePHq32vpRp+v9CTiqVavX322xGY/3888/Izc3FSy+9BKByfRQHB4cqfZU+Pj7IyMhQnOPj41PluPxYdRYvXgypVKp4pKWlGe5GiMhkRFHEmjVrAAD//Oc/0apVK8WxZcuWwc3NDRcuXMCePXtMFSLpyMXFBfn5+SZ51HUm5/DwcJVtPz8/nVtQ1N24cQMTJkxAy5Yt4e7ujqCgIACV9avaSExMhJ2dHbp27arYFxISoiiU1taFCxdw5MgRlZaw0NBQAEBycjI6deqEgQMHIiwsDGPHjsUXX3yBhw8fAgCaNGmCl156CUOGDMGIESPw73//G+np6Tq9vq7MJtnZvHkzhg0bBn9/f6O/lqOjI9zd3VUeRGT5YmNjcf78ebi6umL27Nkqxzw9PRWDH+S1CWT+BEGAq6urSR517Vaxt7evci+6dDdpMmLECOTk5OCLL77AyZMncfLkSQCosXRDVzY2lamBqFSzpL5UQ35+PkaMGIHz58+rPG7cuIG+ffvC1tYWBw8exG+//Yb27dvjo48+Qtu2bZGSkgIA2LJlC+Lj4/Hkk0/iu+++Q5s2bRQlKsZgFsnO7du3ERsbi3/84x+Kfb6+vigtLUVubq7KuZmZmfD19VWcoz46S74tP4eIGo4tW7YAqCzqbNKkSZXjr776KoDK4khtvwkT1QcHBwcAlQNvqvPgwQMkJibirbfewsCBA9GuXTtFa4m22rZti/Lycpw7d06xLykpSeU6Xl5eAKDS2qI+b0/Xrl1x5coVBAUFISQkROXh6uoKoDK56927N5YvX45z587BwcEBP/30k+IaXbp0weLFi3H8+HF07NgR27dv1+ledGEWyc6WLVvg7e2NyMhIxb5u3brB3t4ehw4dUuxLTExEamoqIiIiAAARERG4dOmSSrPgwYMH4e7ujvbt29ffDRCRyeXl5SlGtkyZMkXjOUFBQejfvz9EUcQ333xTj9ER1czb2xvOzs6KQl+pVFrlnMaNG8PT0xObNm1CUlISDh8+jOjoaJ1eJzQ0FIMGDcIrr7yCU6dO4dy5c3jllVfg7OysaMlydnZGr169sHbtWiQkJCAuLg5vvfWWynWioqKQk5ODCRMm4PTp00hOTkZMTAymTp2KiooKnDx5EqtXr8aZM2eQmpqKXbt24f79+2jXrh1SUlKwePFixMfH4/bt2zhw4ABu3LiBdu3a6f8PWAuTJzsymQxbtmzBlClTYGf3eI5DiUSCadOmITo6GkeOHMHZs2cxdepUREREoFevXgCAwYMHo3379pg0aRIuXLiAmJgYvPXWW4iKiqp17gIisi67du1CUVERQkND8cQTT1R73uTJkwEA3377bX2FRlQrOzs7bNiwAZ9//jn8/f3x3HPPVTnHxsYGO3bswNmzZ9GxY0fMmzcP7733ns6v9fXXX8PHxwd9+/bF888/j+nTp6NRo0ZwcnJSnPPVV1+hvLwc3bp1w9y5c/HOO++oXMPf3x/Hjh1DRUUFBg8ejLCwMMydOxceHh6wsbGBu7s7fv/9dwwfPhxt2rTBW2+9hffffx/Dhg2Di4sLrl27hjFjxqBNmzZ45ZVXEBUVhRkzZuj+D6ctrUqhjSgmJkZRva2uqKhI/L//+z+xcePGoouLi/j888+L6enpKufcunVLHDZsmOjs7Cw2bdpUfP3118WysjKdYtC2mpuIzNeoUaNEAOKyZctqPC87O1u0sbERAYi3b9+up+hIGzWNuiHjkY+iio2NNXUoGhliNJYgipyHOi8vDxKJBFKplMXKRBaouLgYnp6eKCwsxF9//YUuXbrUeH6fPn1w7NgxfPLJJ5g5c2Y9RUm1KS4uRkpKCoKDg1VaGciwDh8+jPz8fISFhSE9PR0LFizA3bt3cf369SpF1eagpv8vtP37bfJuLCKiujp69CgKCwvRrFkzlXWFqvPss88CAPbt22fkyIjMT1lZGd544w106NABzz//PLy8vHD06FGzTHQMhckOEVk8edLy7LPPajVcWD4Y4vDhwwYdsktkCYYMGYLLly+jsLAQmZmZ+OmnnxAYGGjqsIyKyQ4RWTz5qM3BgwdrdX7Hjh3RtGlTFBUV4cyZM8YMjfTA6gpSZoj/H5jsEJFFy8jIQEJCgsriibURBAH9+vUDAMTFxRkxOtKFvBulrmtSkXWR//9Ql242u9pPISIyX/JVmDt37qxxIsHq9OvXDz/++COOHj2KxYsXGyk60oWtrS08PDwUc6e5uLgYd3FIMmuiKKKwsBBZWVnw8PCAra2t3tdiskNEFu3w4cMAgKefflqn58lbdo4dO4by8nKVeb7IdOSz39d1DSmyHh4eHnVeFYHvbiKyaMeOHQPwOHnRVseOHRVDVi9fvqzVKC4yPkEQ4OfnB29v7yrrMVHDY29vX6cWHTkmO0RksfLy8pCQkAAA6Nmzp07PtbGxQffu3REbG4uTJ08y2TEztra2BvkjRwSwQJmILNiZM2cgiiICAwPh4+Oj8/PlCZJ85Wgisk5MdojIYsmTFF1bdeSY7BA1DEx2iMhinTp1CgDQo0cPvZ4vT3YSEhKQl5dnsLiIyLww2SEiiySKYp1bdry9vREYGAhRFHHu3DlDhkdEZoTJDhFZpLt37yI9PR22trbo2rWr3teRLxrKZIfIejHZISKLJG/VCQsLg4uLi97XYbJDZP2Y7BCRRaprvY4ckx0i68dkh4gskrxlp67Jjnx+natXr6K4uLiuYRGRGWKyQ0QWp6KiQrFaeV2TnebNm8PT0xMVFRW4fPmyIcIjIjPDZIeILM7NmzdRUFAAJycntGvXrk7XEgQBnTp1AgAmO0RWiskOEVmcixcvAgA6dOhgkAU8O3ToAKCyK4uIrA+THSKyOJcuXQIAhIeHG+R67du3B8Bkh8haMdkhIosjb9lhskNE2mCyQ0QWx1jJzq1bt1BQUGCQaxKR+WCyQ0QWJT8/H8nJyQAqJxQ0hKZNm8LLywuiKOLatWsGuSYRmQ8mO0RkUeQjpvz8/ODl5WWw68pbd85dvISgRfsQtGgfCkvLDXZ9IjIdJjtEZFH06cIqLC2vNYGRJzvXEhLqHiQRmRUmO0RkUQxdryPHZIfIejHZISKLIk92DFWvIyefa4fJDpH1YbJDRBZDFEWjt+ykpNyErKzEoNcmItNiskNEFuPOnTuQSqWws7NDaGioQa/t7e2NJk2aQCaTofzhXYNem4hMi8kOEVkM+czJbdu2haOjo0GvLQiConWnLDtNsV+b4mYiMm9MdojIYiT8r55GnpQYmvy6pdmpRrk+EZkGkx0ishjyZKeuK51X11rTtm1bAED5w3t1uj4RmRcmO0RkMQyV7FQnJCQEACArqVwyIkNabJTXIaL6xWSHiCyCKIoGSXZqSmBat24Nt/Bn4P23ZQCAQevj8OPZO3q/FhGZBztTB0BEpI2srCw8fPgQgiCgTZs2VY4Xlpaj/dIYAMDVFUPg4vD44005YRm0Pg7LR3bQ+FyxvBRNhrwGwabye6BMBN7efcUYt0NE9YjJDhFZBHmrTnBwMJydnbV+Xrq0SCVhqSmBEewcquyTiToGSkRmx+TdWHfv3sWLL74IT09PODs7IywsDGfOnFEcF0URS5cuhZ+fH5ydnTFo0CDcuHFD5Ro5OTmYOHEi3N3d4eHhgWnTpiE/P7++b4WIjEjfLqyU7IIqCUuNCYwoU9m0EXR6OSIyQyZNdh4+fIjevXvD3t4ev/32G65evYr3338fjRs3Vpyzbt06bNiwAZ999hlOnjwJV1dXDBkyBMXFj/vdJ06ciCtXruDgwYPYu3cvfv/9d7zyyiumuCUiMhJdkh3l0Va+7k5VEpaaEpi2+RcgyioU5yl3ebFgmcgymTTZeffddxEQEIAtW7agR48eCA4OxuDBg9GqVSsAla06H374Id566y0899xzCA8Px9dff4179+7h559/BlD5Abh//358+eWX6NmzJ/r06YOPPvoIO3bswL17HD5KZC30bdnxlTipJCzqCYy63s3scPezl5H753bERvdTOTZofRy+O805eIgsjUmTnd27d+OJJ57A2LFj4e3tjS5duuCLL75QHE9JSUFGRgYGDRqk2CeRSNCzZ0/Ex8cDAOLj4+Hh4YEnnnhCcc6gQYNgY2ODkydPanzdkpIS5OXlqTyIyLzVZSTWmG7NFT/HRvdT2VYX3LIVKh49QFFS5eeHer3PG7suI11apHMMRGQ6Jk12bt68iU8//RStW7dGTEwMZs6cidmzZ2Pbtm0AgIyMDACAj4+PyvN8fHwUxzIyMuDt7a1y3M7ODk2aNFGco27NmjWQSCSKR0BAgKFvjYgM6NGjR7h7t3K9qrquieUrcVLZVu+aavm/uXbKHqbj1oOq9T4Voohb2YV1ioGI6pdJkx2ZTIauXbti9erV6NKlC1555RVMnz4dn332mVFfd/HixZBKpYpHWlpa7U8iIpO5du0agMovOso1ffpSH4quvB0YFAxAgFhaCDcUVanvsRUEBDV1qXMMRFR/TJrs+Pn5VVnjpl27dkhNrewT9/X1BQBkZmaqnJOZmak45uvri6ysLJXj5eXlyMnJUZyjztHREe7u7ioPIjJfhpw5OUNaXONQdCcnJ9i6NwUA5GemVqn3WT26I/wk2g99JyLTM2my07t3byQmJqrsu379OgIDAwFUzqfh6+uLQ4cOKY7n5eXh5MmTiIiIAABEREQgNzcXZ8+eVZxz+PBhyGQy9OzZsx7ugoiMTd6yo22yk5lX/aip2xq6ppS3M/OKYd/YDwCQlJRUpd5nXPcWWkZNRObCpMnOvHnzcOLECaxevRpJSUnYvn07Nm3ahKioKACAIAiYO3cu3nnnHezevRuXLl3C5MmT4e/vj1GjRgGo/PAbOnQopk+fjlOnTuHYsWOYNWsWxo8fD39/fxPeHREZyvXr1wE8XqhTE+WuqBEfHav2vEBP1ypdU8qbIz46BtcOAwEAN5OTVc5Tr/chIstg0mSne/fu+Omnn/Dtt9+iY8eOWLlyJT788ENMnDhRcc6CBQvw2muv4ZVXXkH37t2Rn5+P/fv3w8np8YfON998g9DQUAwcOBDDhw9Hnz59sGnTJlPcEhEZgTzZad26tcbjmmZJro76UHT1KXdkIuDa8WnYNvJEslqyQ0SWyeTLRTz77LN49tlnqz0uCAJWrFiBFStWVHtOkyZNsH37dmOER0QmJpPJkJSUBAAa18QCNM+SLJchLa7SIjOmW3Ms+aUyOfrX2HC8vvOiynFBsIGdhz9SkpPqGD0RmQOTLxdBRFSTe/fuoaioCHZ2dggKCtJ4TnDTql1TcrWtXN6lRWONMyyX595DSkqKnlETkTlhskNEZk3ehRUcHAw7O82N0X4S52pnRZaJwLLdVxG/eABurY1UWQ0d0DzD8tvDW6Pi0QPk5ORw0lEiK8Bkh4jMmnzh3+q6sORqmhW5tokA1UdcTXmqDTw9PQEAt26xdYfI0jHZISKzVltxsiZ1mQhQXt8THBwMALidckvr1yUi88Rkh4jMmrYtO8reGP54Ph59JwKU1wfdvn1Lp+cRkfkx+WgsIqKa6NOyM6qLP97ZVznrcmx0P7T0ctP5deUtO3fTUnHr36/r/HwiMh9s2SEis1VeXo6bN28C0K1lR5m+EwHKkx2OyCKyfGzZISKzdfv2bZSVlcHJyQnNm1dfgKwrFwc73FobqdguLC2vcg6THSLrwZYdIjJb8nqdkJAQ2NjU78eVcrIjijVMyUxEZo/JDhGZLX3qdQxFviBxQUEBsrOz6/31ichw2I1FRGarppFYhaXlaL80BgBwdcUQla4pTd1SNVHv1gIAJycn+Pn5IT09Hbdu3YKXl5c+t0BEZoAtO0RktkzZsgOwbofIWjDZISKzJW/ZYbJDRHXBbiwiMkslJSW4ffs2AN2HnWvqltIHkx0i68CWHSIySzdv3oRMJoObmxt8fHxMEoN8FmUmO0SWjckOEZkl5eJkQRBqOds45C07t27dMsnrE5FhMNkhIrNk6uJkQDXZkclkJouDiOqGyQ4RmSV9FgA1tICAANjY2KC0tBTp6ekmi4OI6obJDhGZJV1adjKkxUaJwc7ODs2aNQMApKWlGeU1iMj4mOwQkVmqrWXnx7N3FD8PWh+H706nGiUO+UzKqanGuT4RGR+THSIyOwUFBbh79y4AzS076dIivL37imJbJgJv7LqMdGmRwWNp0aIFACiGwROR5WGyQ0RmJykpCQDg6emJJk2aAKhcAiJo0T4ELdqHa+l5kKmtzVkhiriVXWjwWOTJTnUtO8px6bpMBRHVDyY7RGR2aqvXCfR0hY3aaHRbQUBQUxeDx1JbskNE5o/JDhGZndqWifCVOGH5yA6KbRsBWD26I/wkzgaPRT3ZYUsOkeVhskNEZkfeslPTsPMx3Zorfo6N7odx3VsYJRa27BBZPr3Wxrpx4waOHDmCrKysKhNtLV261CCBEVHDpesCoL4SJ6PFIh+NlZOTg/z8fNg4GO+1iMg4dE52vvjiC8ycORNNmzaFr6+vyjTugiAw2SGiOtOmZae+uLu7QyKRQCqVIjU1FUEhpo+JiHSjc7LzzjvvYNWqVVi4cKEx4iGiBu7hw4fIzs4GAISEhJg4mkotWrTApUuXmOwQWSida3YePnyIsWPHGiMWIiJFF5afnx8aNWpk4mgqsW6HyLLpnOyMHTsWBw4cMEYsRERa1esYa3mI6mib7NR3XESkHZ27sUJCQrBkyRKcOHECYWFhsLe3Vzk+e/ZsgwVHRA1PdctEqC8PoTz03NiqWzIiQ1qMY0nZKnGtGR1mtJFhRKQfnZOdTZs2wc3NDXFxcYiLi1M5JggCkx0iqhNNEwpqWh5CedvYlFt2lJOuge+rfgbKl63o28bLKHP+EJF+dE52UlJSjBEHEREAzd1YKdkFVZaHUN82JnmycytLqpJkaQpBvmwFkx0i86HXPDtERMYgiqLGYefBTSuXh1BOcGwFAX8uerpekgp5snO/GPCqJcky1rIVRKQ/rZKd6OhorFy5Eq6uroiOjq7x3PXr1xskMCJqeO7fv4+8vDwIgoBWrVop9vtJnLF8ZAcs+aWyVcWYy0No4ufnB1tbW5Rkp1VJugQ8buGp77iISDtaJTvnzp1DWVmZ4ufqKE8wSESkK3mrTkBAAJycVGcqHtOtuSLZiY3uh5ZebvUWl52dHZo1a4bU1FRM6eiELZcqR13ZCFBJwuo7LiLSjlbJzpEjRzT+TERkKIWl5Ri1eicAIKR1zRP3GXN5iOoEBgYiNTUVwcgEIAFQmdz4SpwUyY4p4iKi2tVpIdC0tDSkpaXp/fxly5ZBEASVR2hoqOJ4cXExoqKi4OnpCTc3N4wZMwaZmZkq10hNTUVkZCRcXFzg7e2N+fPno7ycKxETWaKynHsAtF8Tqz7J63bSUh9/5jG5IbIMOic75eXlWLJkCSQSCYKCghAUFASJRIK33npL0dWliw4dOiA9PV3x+PPPPxXH5s2bhz179mDnzp2Ii4vDvXv3MHr0aMXxiooKREZGorS0FMePH8e2bduwdetWrs9FZKHKHt4FAISYdbJz28SREJGudB6N9dprr2HXrl1Yt24dIiIiAADx8fFYtmwZHjx4gE8//VS3AOzs4OvrW2W/VCrF5s2bsX37dgwYMAAAsGXLFrRr1w4nTpxAr169cODAAVy9ehWxsbHw8fFB586dsXLlSixcuBDLli2Dg4ODrrdHRCZUniNPdsxv/SlFspOWJu/FIiILoXPLzvbt27F161bMmDED4eHhCA8Px4wZMxSJia5u3LgBf39/tGzZEhMnTlTMUHr27FmUlZVh0KBBinNDQ0PRokULxMfHA6hMssLCwuDj46M4Z8iQIcjLy8OVK9VPOFZSUoK8vDyVBxGZVkVFBcoepgMw826sNK6PRWRpdE52HB0dERQUVGV/cHCwzi0pPXv2xNatW7F//358+umnSElJwVNPPYVHjx4hIyMDDg4O8PDwUHmOj48PMjIyAAAZGRkqiY78uPxYddasWQOJRKJ4BAQE6BQ3ERnenbQ0oKIMsLFDi/8tz2BO5EtG3KlDnSIRmYbOyc6sWbOwcuVKlJSUKPaVlJRg1apVmDVrlk7XGjZsGMaOHYvw8HAMGTIEv/76K3Jzc/H999/rGpZOFi9eDKlUqnjUpciaiAxDPnOyfePKOW3MjfxL0cOHDyErKTRxNESkC61qdpSLggEgNjYWzZs3R6dOnQAAFy5cQGlpKQYOHFinYDw8PNCmTRskJSXhmWeeQWlpKXJzc1VadzIzMxU1Pr6+vjh16pTKNeSjtTTVAck5OjrC0dGxTrESkWEl3bgO20aecG7zJDKkxfCVOKH90hgAwNUVQ+DiYIdbayNNFp+7uzs8PDyQm5uL8kfZcHCs7NYydVxEVDutkh2JRLUab8yYMSrbhuoGys/PR3JyMiZNmoRu3brB3t4ehw4dUrxeYmIiUlNTFYXRERERWLVqFbKysuDt7Q0AOHjwINzd3dG+fXuDxERE9ePIrSI0e3ULBBubel/VXFstWrRAbm4uNo8JwrBhw0wdDhFpSatkZ8uWLUZ58X/+858YMWIEAgMDce/ePbz99tuwtbXFhAkTIJFIMG3aNERHR6NJkyZwd3fHa6+9hoiICPTq1QsAMHjwYLRv3x6TJk3CunXrkJGRgbfeegtRUVFsuSGyIOnSIlxy7ABBqOxZr+9VzbXVokULXLx4UTGQgogsg0kXAr1z5w4mTJiABw8ewMvLC3369MGJEyfg5eUFAPjggw9gY2ODMWPGoKSkBEOGDMEnn3yieL6trS327t2LmTNnIiIiAq6urpgyZQpWrFhhqlsiIj2kZBcAgmoJYX2uaq4t+YgsJjtElsWkyc6OHTtqPO7k5ISNGzdi48aN1Z4TGBiIX3/91dChEVE9atbIHqJMBsHmccKjvuCmOZB32XNQA5FlqdNyEUREhlCQfRc5MR9BlFUAeLzAprlhskNkmZjsEJHJXb9+HfkXDyLrx5UAKhfYHNOtuYmjqkrXZKewtBxBi/YhaNE+FJZyzT4iU9Ep2SkrK8PAgQMV82EQERnC9evXAQA2Tq4Aqi6wmSEtrveYNJHX7Ny5cwcymczE0RCRtnRKduzt7XHx4kVjxUJEDZQ82bFv3Eyx78ezdxQ/D1ofh+9Om74ouFmzZhAEASUlJbh//76pwyEiLencjfXiiy9i8+bNxoiFiBooRbLTpDLZyZAWqww9l4nAG7suI11aZJL45Ozt7RUTlrJuh8hy6Dwaq7y8HF999RViY2PRrVs3uLq6qhxfv369wYIjooZBnuzY/S/Zuf2goMpIrApRxK3sQvhJnOs7PBUBAQFIT09HWloannjiCZPGQkTa0TnZuXz5Mrp27Qrg8QeUnCAIhomKiBoMqVSqWObFvrE/ACDQ07XK0HNbQUBQUxdThKgiICAAp06dYssOkQXROdk5cuSIMeIgogZKPuDBx9cXNo6VyYyvxAnLR3bAkl8qu7JsBGD16I4mb9UBah6RVVharrKeFxGZB72HniclJSEmJgZFRZV96KJoZrN/EZFFkLcQt27dWmW/8tDz2Oh+GNe9Rb3GVR3OtUNkeXRu2Xnw4AH+/ve/48iRIxAEATdu3EDLli0xbdo0NG7cGO+//74x4iQiKyVPdkLbtsUfSquHK89Loz4U3ZTkw891TXYypMVo6eVmjJCIqBY6t+zMmzcP9vb2SE1NhYvL4/7zcePGYf/+/QYNjois37Vr1wAAbdq0MXEk2pG37GizPpY5Dp8naoh0btk5cOAAYmJi0Ly56uymrVu3xu3btw0WGBE1DAkJCQCA9u3bmzgS7ciTnXv37qG8vBx2dpo/RqsbPt+3jZdZ1B4RNSQ6t+wUFBSotOjI5eTkwNHR0SBBEVHDUFFRgcTERABAu3btTByNdnx8fGBnZweZTIb09PRqz6tp+DwR1S+dk52nnnoKX3/9tWJbEATIZDKsW7cOTz/9tEGDIyLrlpKSgpKSEjg5OSEwMNDU4WjF1tYWzZpVzgdUU92OfPi8ynPNZPg8UUOjczfWunXrMHDgQJw5cwalpaVYsGABrly5gpycHBw7dswYMRKRlTp/8TIAoMLdDyUVIlxsTRyQlgICAnD79u1ai5TNdfg8UUOjc8tOx44dcf36dfTp0wfPPfccCgoKMHr0aJw7dw6tWrUyRoxEZKXkxcn2ngEmjkQ31Y3IUi9IVmZOw+eJGhqdW3YAQCKR4M033zR0LETUwCQmVhYna0p2XBzscEtpKLo50TTXTrq0qEpBsvK2OQ2fJ2po9Ep2Hj58iM2bN6uMopg6dSqaNGli0OCIyLolWmjLjqbh5ynZVQuS1beJyDR07sb6/fffERQUhA0bNuDhw4d4+PAhNmzYgODgYPz+++/GiJGIrJAoikrJTvNazjYvmlp2gptWLUhW3yYi09A52YmKisK4ceOQkpKCXbt2YdeuXbh58ybGjx+PqKgoY8RIRFYoPT0deXl5gGAD+8bNTB2OTjQlO34SZywf2UGxbSNAZZuITEfnZCcpKQmvv/46bG0fD5uwtbVFdHQ0kpKSDBocEVmvq1evAgDsGvtBsLM3cTS6kSc7WVlZKCkpUexXX89LeZuITEfnZKdr166KWh1lCQkJ6NSpk0GCIiLrJ/8ccWxeOXNyhrTYlOHoxNPTE87OlUPI79y5o/EcFiQTmQ+dC5Rnz56NOXPmICkpCb169QIAnDhxAhs3bsTatWtx8eJFxbnh4eGGi5SIrEpCQgLcwp9Bk6GvAagcqr1mdJhFDM8WBAEBAQG4fv060tLSqp12w5xHlBE1JDonOxMmTAAALFiwQOMxQRAgiiIEQUBFRUXdIyQiq3QpOQ1NhrwGQahsYLa0taPkyY42C4ISkWnpnOykpKQYIw4iakBEUcT19Fw4d1HtSZevHWUpyQ5Q85IRRGQedE52LGX9GiIyX5mZmXhwKwHNZDIINo8THktaO4rJDpHl0LlAmYiori5evIiKRw9gf36nYp+lrR3FZIfIcug1gzIRUV3IBzKENyrEX//bFxvdDy293EwXlI40JTssSCYyT2zZIaJ6d+nSJQBAx7AwxT5LG6pd3WKgRGR+mOwQUb2Tt+x07BhWy5nmS96yk5ubi0ePHpk4GiKqic7JTlpamsokWqdOncLcuXOxadMmgwZGRNaprKxMMXtyh44dTRyN/ho1agSJRAKArTtE5k7nZOeFF17AkSNHAAAZGRl45plncOrUKbz55ptYsWKFwQMkIuty48YNlJaWws3NDYFBQaYOp05YpExkGXROdi5fvowePXoAAL7//nt07NgRx48fxzfffIOtW7caOj4i0lJhaTmCFu1D0KJ9KCwtN3U41ZJ3YYWFhcHGxrJ70pnsEFkGnT9pysrK4OjoCACIjY3FyJEjAQChoaFIT083bHREZHWUkx1Lx2SHyDLoPPS8Q4cO+OyzzxAZGYmDBw9i5cqVAIB79+7B09PT4AESkX7u378PQRDg6ekJQRBMHY6CfCRWeHi4xQ/V5ogsIsugc8vOu+++i88//xz9+/fHhAkTFCud7969W9G9RUSmIYoi8q8cQbdO4fD29oaXlxfatWuHL7/8EqIomjo8AEpz7FjBQsFs2SGyDIKoxydgRUUF8vLy0LhxY8W+W7duwdXVFV5eXgYNsD7k5eVBIpFAKpXC3d3d1OEQ6eVRUQn8ejyLgsuxGo+PHDkSO3bsgLOz6WYozs3NVXxu5OTkqHyGWKIjR45gwIABaNu2La5du2bqcIgaHG3/fuvcsjNgwAA8evSoyodUkyZNMG7cON0j/Z+1a9dCEATMnTtXsa+4uBhRUVHw9PSEm5sbxowZg8zMTJXnpaamIjIyEi4uLvD29sb8+fNRXm6+xZlExhI9Z3ZlomNji6XLliM3NxdSqRTr1q2Dk5MTdu/ejZEjR6K0tNRkMZ49exYAEBwcbPGJDvC4ZSc1NdVsWs6IqCqdk52jR49q/LAsLi7GH3/8oVcQp0+fxueff16lWXvevHnYs2cPdu7cibi4ONy7dw+jR49WHK+oqEBkZCRKS0tx/PhxbNu2DVu3bsXSpUv1ioPIUu3YsQNffrEJEGzQdMR8LFz8BiQSCdzd3TF//nwcPHgQbm5uiI2NVflCUd9Onz4NAHjiiSdMFoMhNW/eHABQVFSEnJwcE0dDRNXROtm5ePGioq/96tWriu2LFy/i3Llz2Lx5M5o1a6ZzAPn5+Zg4cSK++OILlW96UqkUmzdvxvr16zFgwAB069YNW7ZswfHjx3HixAkAwIEDB3D16lX897//RefOnTFs2DCsXLkSGzdurPHba0lJCfLy8lQeRJbq/v37mDlzJgDAo99LcA3tgwxpsco5ffr0wY4dOyAIAj799FP88MMPpggVZ86cAQB0797dJK9vaE5OToque23qdixlegAia6N1stO5c2d06dIFgiBgwIAB6Ny5s+LRrVs3vPPOO3q1qERFRSEyMhKDBg1S2X/27FmUlZWp7A8NDUWLFi0QHx8PAIiPj0dYWBh8fHwU5wwZMgR5eXm4cuVKta+5Zs0aSCQSxUPeFE1kid5++23k5uYiNHIa3Hs8DwAYtD4O351OVTkvMjISixcvBgDMnDkT9+/fr/dY5S071pLsAByRRWQJtE52UlJSkJycDFEUcerUKaSkpCged+/eRV5eHl5++WWdXnzHjh3466+/sGbNmirHMjIy4ODgAA8PD5X9Pj4+yMjIUJyjnOjIj8uPVWfx4sWQSqWKBz+kyFJdv34dn3/+OWwbeaK44/OKIeYyEXhj12WkS4tUzl+6dCnCwsKQnZ2Nt99+u15jzcrKQmpqKgRBQNeuXev1tY2JI7KIzJ/W8+wEBgYCAGQymUFeOC0tDXPmzMHBgwfh5FS/qx07OjoqJkYksmTr1q2DTCZD/2FjkKJ2rEIUcSu7EH6Sx6OvHB0d8dFHH6F///7YtGkTZs+ejdDQ0HqJVd6F1bZtW6sa9chkh8j86TypIFC5ts2RI0eQlZVVJfnRtivr7NmzyMrKUvmGV1FRgd9//x0ff/wxYmJiUFpaitzcXJXWnczMTPj6+gIAfH19cerUKZXrykdryc8hslZ37tzB119/DQB4fcZkzD6YC5nSgCBbQUBQU5cqz+vXrx9GjhyJ3bt3Y+HChfjll1/qJV5r7MICmOwQWQKdk50vvvgCM2fORNOmTeHr66syM6sgCFonOwMHDlTMpCo3depUhIaGYuHChQgICIC9vT0OHTqEMWPGAAASExORmpqKiIgIAEBERARWrVqFrKwseHt7AwAOHjwId3d3tG/fXtdbI7IomzZtQllZGZ566ik8O6A3HjrfwpJfKmvVbARg9eiOKq06ypatXIXde/Zi9+7d2H/wEIY+M9Do8Vp7spOamlrLmURkKjonO++88w5WrVqFhQsX1umFGzVqhI4dO6rsc3V1haenp2L/tGnTEB0djSZNmsDd3R2vvfYaIiIi0KtXLwDA4MGD0b59e0yaNAnr1q1DRkYG3nrrLURFRbGbiqxaWVkZvvzySwDArFmzAABjujVXJDt7XuuNyA3HsPDHS7i6YghcHFTf6m1DQ+HWeSjyz/2Kd1YsM3qyI4qi1Q07l2PLDpH503menYcPH2Ls2LHGiKWKDz74AM8++yzGjBmDvn37wtfXF7t27VIct7W1xd69e2Fra4uIiAi8+OKLmDx5MlasWFEv8RGZyt69e5Geng5vb2+MGjWqynEf99rr4CQRfwds7XDszz/1niNLW3fu3EFWVhbs7OzQuXNno75WfZMnO3fv3tWpplF9egAiMh6dk52xY8fiwIEDxogFR48exYcffqjYdnJywsaNG5GTk4OCggLs2rWrSi1OYGAgfv31VxQWFuL+/fv417/+BTs7vUqRiCyGvFbnpZdegoODg17XsGvUFG4dK6d20DQi0pDktXUdOnQw6XIVxuDv7w8bGxuUlZVVmeFd3Y9n7yh+1jQ9ABEZh85ZQUhICJYsWYITJ04gLCwM9vb2Ksdnz55tsOCI6LHC0nK0XxqDiqJHyNy3DwDwn+wW+G7RPlxdMUSva7r3HIPCSwfw22+/4dy5c+jSpYshQ1bEnHPoPwCAJ5980qDXNwd2dnbw9/fHnTt3kJaWBj8/P43npUuL8Pbux/N/yacH6NvGq9raKiIyDJ2TnU2bNsHNzQ1xcXGIi4tTOSYIApMdIiMrTDyGsrIydAwLwyOvoDpdy76xH8aOG4fvvv0Wq1evxs6dOw0TpJqSO1cBVM7kbI0CAgIUyU6PHj00npOSXaAyWg7QPD0AERmezslOSor6bB5EVJ8Krx8HAIwdNx5fPar79V6fvwDfffstfvzxRyQlJSEkJKTuF1UiKy1CaWYyAOCJnhEIWlTZKqWpcNpSBQQEID4+vsYi5eCmrrARoJLw2AjAhC8ql7+xpn8PInOjc80OEZmOrKQQxbcr16gbMWKkyjEXBzvcWhuJW2sjdfqj6dk8BMOHD4coivjggw8MGi8AlNxLBEQZAlq0QHMrXZpFm+HnfhJnLB/ZQbFtI0Blm4iMR+evEbUtCfHVV1/pHQwR1awo5S9AVo7WrdugbWgogNu1PidDWoyWXm4q+9QLZadMmItff/0VW7ZswfLly9G0aVODxVySWjmf1pO9exvsmuZG2+HnytMDxEb3g6/ESbFNRMaj19Bz5UdWVhYOHz6MXbt2ITc31wghEpFcUdJJAMDwZ5+t8byaRv1oKpT9+kopuvQegKKiImzcuNGgMRffvgAA6Nf/aYNe15zosxior6R+l8khash0btn56aefquyTyWSYOXMmWrVqZZCgiKiq8vJylGYmw7FFGCIGRaocU269qW3Uj+ZCWeBvL83EuWOH8fHHH2P+/Plwcam61ISupFIpyh89gGOLMIT17Fvn65krTixIZN4MUrNjY2OD6Ohoo/T3EzVUhaXlCFq0D0GL9qGwtBzv7YyD39SP4TthDRb/UYQ3dj1ebkW59aamUT/A40JZZbaCgEnPD0VQUBCys7Oxbds2g9zD+h//RLNXN8N3whpM3pGk0uJkTeTJTnp6OsrKykwcDRGpM1iBcnJyMsrLyw11OSJSkiEtxn+ulkGwqXzLykTg5/P3FMflrTfp0iKNyYx81E/Qon2QONtXKZRdPbojAjzdEB0dDQB4//33UVFRUaeY06VF2JliqxKzcouTNc0g7OXlBQcHB4iiiHv37tX+BA2s6d+DyNzo3I0l/zCUE0UR6enp2LdvH6ZMmWKwwIjosdsPCgBBqPEceetNRCtPLB/ZQWVRUOVtQHOhbNCifZCV+qNJkyZITk7GL7/8gtGjR+sdc8r9qjErtzgNWh+HNaPDMK57C71fw1zY2NigefPmuHnzJlJTUxEYGKjV89Rrq6zl34PI3OjcsnPu3DmVx8WLlcNg33//fZWlHojIcBxL8yDWsu6SrSAgqGllnc2Ybs0V+2Oj+6lsq1MulLVxcML0Ga8CAN577z2Ioljd02pV8iCtxpiVW6OsgTZ1O8rTA0iLyjTWVlnLvweROdG5ZefIkSPGiIOIanD59B/IidmBJkNeg2BjAxsBGNnJX9GVJe+K0jQTr66jfmbM/D98uP59nDhxAseOHdN71uP4Q78hJ+aoImYBgHrqZE0zCOs6IoszKhPVH71rdu7fv48///wTf/75J+7fv2/ImIhIzdEjh5F/8SCkJ38EUNlas3p0mOJ4bHQ/g3V/+Pj4YPLkyQAqW3f09dNPPyH/4kEUJFQuK7PjlV4aC6PlrVGWTtcRWdUVilvLvweROdE52SkoKMDLL78MPz8/9O3bF3379oW/vz+mTZuGwsJCY8RI1KCJooi4U+cBAI5+rQFUba0x9Jwtr7/+OgRBwO7du3Ht2jWdn3/9+nWcOXMGtra2cA7uCgAIay7RWBhtLa0YuiY7mmZUtqZ/DyJzonOyEx0djbi4OOzZswe5ubnIzc3FL7/8gri4OLz++uvGiJGoQZIXrwqCALtRa+DRdTgcm7Wr83W1GfXTtm1bjBxZuRzFO++8o/W15cPle7y8HAAwcNAzsHWRKI6r1xJZUzGuPnPtWPO/B5E50TnZ+fHHH7F582YMGzYM7u7ucHd3x/Dhw/HFF1/ghx9+MEaMRA2O+sSAgo0NJINehY29o17XUx/1s+fCvWrX0UrJzkfQon046VE54/H27dtx/vx5rV9LFGUouFJZ2/f38eOrPc/aZhCu68SC1vbvQWROdE52CgsL4ePjU2W/t7c3u7GIDERT8SoE7d+uuo76UU6GRnx0DADg6BuCsePGQxRFLFy4sNrXUp/8sDjlHMpz0yGRSDBi5HNax2zp5MlOdnY2PwuJzIzOyU5ERATefvttFBc/bgovKirC8uXLERERYdDgiBqq6iYG1EdtMyprWl5C7u1ly2Fvb48DBw4gNjZWq9d79NdeAMCLk6fAzc2tlrOth4eHB1xdXQEAd+5Y50zRRJZK56Hn//73vzFkyBA0b94cnTp1AgBcuHABTk5OiImJMXiARA2RvHj1rZ8vQxAEiLIKvDM6HC/0ClI579baSM0XUCJPnJSTGOVRPxpbkeTPbdkSM2fOxIYNGxAdHY0zZ87AwcGh2te6eOE8ipJPAxDwyoxXFS1McoWl1jvLuiAIaNGiBRISEpCWloY2bdqYOiQi+h+dW3Y6duyIGzduYM2aNejcuTM6d+6MtWvX4saNG+jQoUPtFyAirYzp1hwFV44gY/tiBF78qkqio63aRv1oakVStmTJEjRt2hSXLl3C2rVrq3RbKVu9YhkAwKV9X4S0bq1XvJaMC4ISmSedW3YAwMXFBdOnTzd0LESkpijlLErSLqHvS8/X6Trqy0PIV0gHHidDystLKLf0NG3aFBs2bMALL7yAFStWoEdEb42vUXDtTxw6EANbd2807j9VZSV2OfWWHmuja7Jj7f8eROZC55adNWvW4Kuvvqqy/6uvvsK7775rkKCIqFLJnQQAQK+IJw12TU2jfpSHQO957XEyIx+mPn78eLz44ouoqKjApBfGozTrpsrzyx7eQ07MRriFP4Nmr34Ju0ZNVVZibyjYskNknnROdj7//HOEhoZW2d+hQwd89tlnBgmKiIC7d+6gIi8LEGzQvUePenvd+OQcxc/yhEUQBHz++ed44oknkJ2djYzti/Ho/H5kZGTg1717kf3Lu3AMDIfn0NcgCI9XOW9oaz0x2SEyTzp3Y2VkZMDPz6/Kfi8vL6SnpxskKCIC4uOPAwAcvIPRqFGjenvd1b8mKH6WJyx923jBT+KCgwcPYtjw4TgRH4+cmI/RKvBjuIU/A9/JH0CwqfrdqaGt9SRPdlJTG1aLFpG507llJyAgAMeOHauy/9ixY/D39zdIUEQNRU3FvvH/e585Nm9frzHVNEzdw8MDMbGH0fjpl2HX2A+2jTwVC31q0tDWetJ1MVAiqh86t+xMnz4dc+fORVlZGQYMGAAAOHToEBYsWMDlIogM6OSJeADAlwterDLLsTHVNEwdAOzs7ODeYzTce4zGu8+3w8KfEjRcpWGu9SRv2Xn06BGkUikkEkktzyCi+qDzJ+j8+fPx4MED/N///R9KS0sBAE5OTli4cCEWL15s8ACJGqJHjx7hwoULAIDevTWPftKFLqN+3hjeDu/sq0xgNCUsyrMtL/opAQIATdP0qI/6aghcXFzQpEkT5OTkIC0tjckOkZnQOdkRBAHvvvsulixZgoSEBDg7O6N169ZwdNRvzR4iqurEiROQyWQICgpCs2bNjP56yslQYWm5ItlRT1jUZ1sWAShP0aPcKtRQ13oKCAhQJDsdO3Y0dThEBD1qduTc3NzQvXt3dOzYkYkOkYGdOHECAEy+BIt6wqJptmXlTeVh6w0VR2QRmR+9kx0iMp5Tp04BAHr27GniSFTVtmaXj3vDbM1RxmSHyPww2SEyEynZ+QhatA+BC/fixMmTAMwv2dG09ITyNnH4OZE5YrJDZELKxb4jPqocal4uzUT2/fuwt7dH586dTRRZ9ZRnW46N7qeyTRx+TmSOtEp2unbtiocPHwIAVqxYgcLCQqMGRdQQqBf7ymthyu7fAgB06tQJTk713y0kL1a+tTay1iHv6jU9ujzXWrEbi8j8aJXsJCQkoKCgAACwfPly5OfnGzUoooZAU7EvAJTnZQMwny6smiY+BJjgqJMnO3fu3IEoahqUT0T1TatPps6dO2Pq1Kno06cPRFHEv/71L7i5aZ4/Y+nSpQYNkMhayYt91ROe4tvnAZhPskO6adasGQRBQHFxMbKzs+Hl5WXqkIgaPK2Sna1bt+Ltt9/G3r17IQgCfvvtN9jZVX2qIAhMdoi0JC/2XfJLZVeWjQBUVFRALC+FbSNP9KjHxT/JcBwcHODj44OMjAykpaUx2SEyA1p1Y7Vt2xY7duzA6dOnIYoiDh06hHPnzlV5/PXXXzq9+Kefforw8HC4u7vD3d0dERER+O233xTHi4uLERUVBU9PT7i5uWHMmDHIzMxUuUZqaioiIyPh4uICb29vzJ8/H+XlVZvaicyRcnHvrAEhgGADn7+vQLNXt+AvKYdxWyp963Zq6zIkIv3oPBpLJpPB29vbIC/evHlzrF27FmfPnsWZM2cwYMAAPPfcc7hypfKb7rx587Bnzx7s3LkTcXFxuHfvHkaPHq14fkVFBSIjI1FaWorjx49j27Zt2Lp1K1uXyCJ9fDgJglA5aY1gY4O3frqCdGmRiaOqijU6tZOPyOLwcyLzoNcnVXJyMj788EMkJFROKd++fXvMmTMHrVq10uk6I0aMUNletWoVPv30U5w4cQLNmzfH5s2bsX37dsWCo1u2bEG7du1w4sQJ9OrVCwcOHMDVq1cRGxsLHx8fdO7cGStXrsTChQuxbNkyODg46HN7RCZR3Wrj5rSQZoa0uMGtd6UPjsgiMi86t+zExMSgffv2OHXqFMLDwxEeHo6TJ0+iQ4cOOHjwoN6BVFRUYMeOHSgoKEBERATOnj2LsrIyDBo0SHFOaGgoWrRogfj4ytWg4+PjERYWBh8fH8U5Q4YMQV5enqJ1SJOSkhLk5eWpPIjqQ03dFOozE6uvNm4qynMBDVofh+9Os7WiNpxYkMi86JzsLFq0CPPmzcPJkyexfv16rF+/HidPnsTcuXOxcOFCnQO4dOkS3Nzc4OjoiFdffRU//fQT2rdvj4yMDDg4OMDDw0PlfHnhHwBkZGSoJDry4/Jj1VmzZg0kEoniIf9gIjKl+c+0giirAKB5tXFT0DQX0Bu7Lptl95o5CQoKAgDcunXLpHEQUSWdu7ESEhLw/fffV9n/8ssv48MPP9Q5gLZt2+L8+fOQSqX44YcfMGXKFMTFxel8HV0sXrwY0dHRiu28vDwmPGQSyquN/37sOO5+9jIcfFvj0p8H0Mq7kYmj0zwXkDl2r5mb4OBgAHVLdthlSGQ4OrfseHl54fz581X2nz9/Xq/CZQcHB4SEhKBbt25Ys2YNOnXqhH//+9/w9fVFaWkpcnNzVc7PzMyEr68vAMDX17fK6Cz5tvwcTRwdHRUjwOQPIlM799dfqHj0AGJ5Gfw8zCOR0LTwp7l0r5kzectOZmamTjPOs8uQyDh0TnamT5+OV155Be+++y7++OMP/PHHH1i7di1mzJiB6dOn1zkgmUyGkpISdOvWDfb29jh06JDiWGJiIlJTUxEREQEAiIiIwKVLl5CVlaU45+DBg3B3d0f79u3rHAtRfTp3rnLqBgffEBNH8pimhT/NoXvN3DVu3BgSiQQAcPv2ba2ewy5DIuPRuRtryZIlaNSoEd5//30sXrwYAODv749ly5Zh9uzZOl1r8eLFGDZsGFq0aIFHjx5h+/btOHr0KGJiYiCRSDBt2jRER0ejSZMmcHd3x2uvvYaIiAj06tULADB48GC0b98ekyZNwrp165CRkYG33noLUVFRcHR01PXWiOqVejfF+XPnAACOPrqNajS2Md2aKyY+jI3ux64VLQUFBeHChQtISUlBu3btaj2fXYZExqNzsiMIAubNm4d58+bh0aNHAIBGjfSrLcjKysLkyZORnp4OiUSC8PBwxMTE4JlnngEAfPDBB7CxscGYMWNQUlKCIUOG4JNPPlE839bWFnv37sXMmTMREREBV1dXTJkyBStWrNArHiJjU++mWDM6DOO6t0BJSQmu/m8EoTm17KhTX/iTqhccHIwLFy5oXbejafkQdhkSGUadZgTTN8mR27x5c43HnZycsHHjRmzcuLHacwIDA/Hrr7/WKQ6i+lBdN0XfNl64e+MKysrKYOPsDlt3Li9gDeR1OykpKVqdr2n5EHYZEhmGzjU7RKSfmrop5EutDOzTE7fffZYzE1sBfYafKy8fEhvdD+O6tzBwVEQNE5MdonpS08ims2fPAgC6detmgsjIGOTDz7Vt2VHHLkMiw2GyQ1RPahrZZM7JDtfC0g8nFiQyHzolO2VlZRg4cCBu3LhhrHiIrJqmborS0lJcunQJANC1a1dThUYGJk92Hjx4oBjMQUSmoVOyY29vj4sXLxorFqIGRd5NceXKFZSWlqJx48aKrg+yfO7u7mjSpAkAtu4QmZrO3VgvvvhiraOoiEh78i6srl27QhCEWs4mS6Jr3Q67DImMQ+d3U3l5Ob766ivExsaiW7ducHV1VTm+fv16gwVH1BAoJztkXYKCgnD27Fm27BCZmM7JzuXLlxUfytevX1c5xm+lRLqTDzs3x+Jkqpu6jsgiIsPQOdk5cuSIMeIgahCUVzkHKov+L1y4AIDJjjXiiCwi86D30POkpCTExMSgqKhykTpRFGt5BhGpu3r1KkpKSuDu7o6WLVuaOhwyMLbsEJkHnZOdBw8eYODAgWjTpg2GDx+O9PR0AMC0adPw+uuvGzxAImsm78Lq2rUrbGw47ZW1YcsOkXnQ+dN13rx5sLe3R2pqKlxcHi9QN27cOOzfv9+gwRFZmsLScgQt2oegRftQWFpeZVudOU8mSHUXGBgIAJBKpXj48KGJoyFquHSu2Tlw4ABiYmLQvHlzlf2tW7fG7du3DRYYUUPAkVjWzdXVFd7e3sjKysKtW7fQuHFjU4dE1CDp3LJTUFCg0qIjl5OTA0dHR4MERdQQlJeXszi5AdB19XMiMjydk52nnnoKX3/9tWJbEATIZDKsW7cOTz/9tEGDI7Jm165dQ1FREdzc3NC6dWtTh0NGIi9S1rVup7YuUCLSns7dWOvWrcPAgQNx5swZlJaWYsGCBbhy5QpycnJw7NgxY8RIZJXkXVhdunRhcbIVY8sOkenp/AnbsWNHXL9+HX369MFzzz2HgoICjB49GufOnUOrVq2MESORRcqQFte4zckEGwZ9W3aIyHD0WnxFIpHgzTffNHQsRBbvx7N3FD8PWh+HkZ38VbbXjA7DuO4tAHAkVkNhqOHnhaXlaL80BgBwdcUQrp1FpAO93i0PHz7E5s2bkZCQAABo3749pk6dqljhl6ghSpcW4e3dVxTbMhH4+fw9le03dl1G3zZe8HZzwLlz5wBwJJa1U55YUBRFvZbVyZAWw1fiZOjQiBoMnbuxfv/9dwQFBWHDhg14+PAhHj58iA0bNiA4OBi///67MWIksggp2QWQ1TKReIUo4lZ2Ia5fv47CwkK4urqibdu29RMgmURgYCAEQUBBQQHu37+v9fPUWwmVt4lINzonO1FRURg3bhxSUlKwa9cu7Nq1Czdv3sT48eMRFRVljBiJLEJwU1fY1PKl3VYQENTURdGF1blzZ9ja2tZDdGQqjo6OinnJkpOTtXqOplZC5W0i0o3OyU5SUhJef/11lQ9oW1tbREdHIykpyaDBEVkSP4kzlo/soNi2EYBRnf1VtleP7gg/iTMnE2xgQkJCAEDrz0hNrYTK2+rF7kRUM52Tna5duypqdZQlJCSgU6dOBgmKyFKN6fZ4ZvHY6H5YPTpMZVtenMyRWA2LfKSqtsmOplZC5c1B6+Pw3elUA0VHZP20KlC+ePGi4ufZs2djzpw5SEpKQq9evQAAJ06cwMaNG7F27VrjRElkgdQLSuXbMplMUZzMZKdhkLfsaNuNJW8lXPJLZdeVeu+ocrG7n8TZkKESWSWtkp3OnTtDEASI4uN21AULFlQ574UXXsC4ceMMFx2RFbpx4wYePXoEZ2dnhIaGmjocqge6dmMBla2E8mTnX2PD8frOiyrH5cXuTHaIaqdVssOZP4kMR96F1alTJ9jZca6UhkDejaVty466Li0aw0ZQrduRF7sTUe20+qQNDAw0dhxEVsHFwQ631kaq7FPf5mSCDY882cnOzkZubi48PDx0er6vxEmlW0u52J2IaqfX18p79+7hzz//RFZWFmQymcqx2bNnGyQwImt15swZAEx2GpJGjRrB29sbWVlZSE5O1ut3r9ytFRvdDy293AwdJpHV0jnZ2bp1K2bMmAEHBwd4enqqzAYqCAKTHaIayGQyjsRqoEJCQuqU7CjjbMpEutE52VmyZAmWLl2KxYsXc6VmIh0lJSXh0aNHcHJyQvv27U0dDtWjkJAQHD9+XOsiZfUu0cLScmOFRmT1dM5WCgsLMX78eCY6RHpQnjmZxckNS12LlIlIfzpnLNOmTcPOnTuNEQuR1WNxcsOlz/BzZfKWnltrI7niOZGOdH7HrFmzBs8++yz279+PsLAw2Nvbqxxfv369wYIjsjZMdhoutuwQmY5eyU5MTIxipWb1AmUi0kwmkzHZacDkLTt3795FYWEhXFw4Rw5RfdE52Xn//ffx1Vdf4aWXXjJCOETWi8XJDVuTJk3g4eGB3Nxc3Lx5Ex07djR1SEQNhs41O46Ojujdu7cxYiGyavJWHc6c3DAJgqBo3blx44aJoyFqWHROdubMmYOPPvrIGLEQWTV5svPEE0+YOBIylTZt2gAArl+/buJIiBoWnZOdU6dOYdu2bWjZsiVGjBiB0aNHqzx0sWbNGnTv3l0xu+ioUaOQmJiock5xcTGioqLg6ekJNzc3jBkzBpmZmSrnpKamIjIyEi4uLvD29sb8+fNRXs45Kci8sF6H5LWO6p9zRGRcOrele3h46JzUVCcuLg5RUVHo3r07ysvL8cYbb2Dw4MG4evUqXF1dAQDz5s3Dvn37sHPnTkgkEsyaNQujR4/GsWPHAAAVFRWIjIyEr68vjh8/jvT0dEyePBn29vZYvXq1QeIkqivOnEwAkx0iUxFEURRrP61+3L9/H97e3oiLi0Pfvn0hlUrh5eWF7du3429/+xsA4Nq1a2jXrh3i4+PRq1cv/Pbbb3j22Wdx7949+Pj4AAA+++wzLFy4EPfv34eDg0Otr5uXlweJRAKpVAp3d3ej3iM1TNevX0fbtm3h5OSER48esWangTp//jy6dOkCT09PZGdnmzocIoun7d9vs5oGWSqVAqgctQBUNvuXlZVh0KBBinNCQ0PRokULxMfHAwDi4+MRFhamSHQAYMiQIcjLy8OVK1c0vk5JSQny8vJUHkTGxOJkAoDWrVsDAB48eIAHDx6YOBqihkPnT93g4OAa59O5efOmXoHIZDLMnTsXvXv3VgzJzMjIgIODAzw8PFTO9fHxQUZGhuIc5URHflx+TJM1a9Zg+fLlesVJpK6wtBztl8YAAK6uGKJxdlvW6xAAuLq6IiAgAGlpaUhMTMSTTz5p6pCIGgSdk525c+eqbJeVleHcuXPYv38/5s+fr3cgUVFRuHz5Mv7880+9r6GtxYsXIzo6WrGdl5eHgIAAo78uNVxMdkiubdu2THaI6pnOyc6cOXM07t+4cSPOnDmjVxCzZs3C3r178fvvv6N58+aK/b6+vigtLUVubq5K605mZiZ8fX0V55w6dUrlevLRWvJz1Dk6OsLR0VGvWIl0pVyczGHn1LZtW8TGxrJImageGaxmZ9iwYfjxxx91eo4oipg1axZ++uknHD58GMHBwSrHu3XrBnt7exw6dEixLzExEampqYiIiAAARERE4NKlS8jKylKcc/DgQbi7u3OWWjILycnJyMvL48zJBIAjsohMwWCVkj/88IOisFhbUVFR2L59O3755Rc0atRIUWMjkUjg7OwMiUSCadOmITo6Gk2aNIG7uztee+01REREoFevXgCAwYMHo3379pg0aRLWrVuHjIwMvPXWW4iKimLrDdW7DGkxWnq5qeyTt3iyOJkAwyU72tSKEVElnd8dXbp0USlQFkURGRkZuH//Pj755BOdrvXpp58CAPr376+yf8uWLYq1tz744APY2NhgzJgxKCkpwZAhQ1Rex9bWFnv37sXMmTMREREBV1dXTJkyBStWrND11oj08uPZO4qfB62Pw5rRYRjXvYViH+t1SJk82UlKSkJ5eTkTYKJ6oPO7bNSoUSrbNjY28PLyQv/+/REaGqrTtbSZ4sfJyQkbN27Exo0bqz0nMDAQv/76q06vTWQI6dIivL378RQHMhF4Y9dl9G3jBT+JMwAmO6QqICAAzs7OKCoqwq1btxTrZRGR8eic7Lz99tvGiIPIIqVkF0CmlrNXiCJuZRfCT+KMiooKJjukwsbGBq1bt8bFixeRmJjIZIeoHpjVpIJElia4qSts1KadshUEBDV1AVA54/ejR4/g6uqKDh06mCBCMkeGLlLOkBYb5DpE1krrZMfGxga2trY1Ptj3TA2Nn8QZy0c+TmJsBGD16I6KLqyTJ08CqBxyzvcHycm7/K9du6b3NdRrxb47nVrnuIisldafvj/99FO1x+Lj47FhwwbIZDKDBEVkScZ0a44lv1TW7cRG91MZjSVPdnr27GmS2Mg8yacgqG5Jm9poUytGRI9pnew899xzVfYlJiZi0aJF2LNnDyZOnMgRUNTg+UqcVLaZ7JAm8iVxLl++DFEUa1yCR5PaasWISJVeNTv37t3D9OnTERYWhvLycpw/fx7btm1DYGCgoeMjslgFBQW4dOkSACY7pKpNmzaws7NDXl4e7t69q/PzNdWK2QjAhC9OIGjRPhSWlhsoUiLroFOyI5VKsXDhQoSEhODKlSs4dOgQ9uzZo/iWQtQQuTjY4dbaSNxaG6kysdvZs2chk8nQrFkzNGvWzIQRkrlxcHBQrICuT1eWplox5W0iUqV1srNu3Tq0bNkSe/fuxbfffovjx4/jqaeeMmZsRBaNXVhUE/noPH3rdsZ0e7yOYGx0P5VtIlKldc3OokWL4OzsjJCQEGzbtg3btm3TeN6uXbsMFhyRJTtx4gQAJjukWYcOHfDDDz/g8uXLdb6Weq2YpmVLiBoyrZOdyZMn61xER9SQsWWHaiLv/te3ZUddbcuWEDVkgqjNmg1WLi8vDxKJBFKpFO7u7qYOh8ycNgsw3r17F82bN4eNjQ3y8vLg6upa32GSmUtISED79u3h5uaGvLy8On2ZTJcWoffawyojtGwFAX8uepqjs8iqafv3mzMoExmBvFUnLCyMiQ5pFBISAnt7e+Tn5yM1tW4TAtY0FJ2ImOwQ1Ul10/SzC4tqY29vr1g2oq51O5qGogOVQ9E5DJ2IyQ6RzrSZpp/JDmmjriOy5DQNRSeix5jsEOmgumn606VFin0VFRU4c+YMACY7VDNDFikrDz3f81pvxc9cJJSIyQ6RTrSpjbhy5QoKCgrQqFEjxYKPRJrIW3bkM20bSnxyjuJnLhJKxGSHSCeaaiNsBQFBTV0U28ePHwcA9OjRA7a2tvUZHlmYTp06AahMkMvKygx23dW/Jih+1tT6SNTQMNkhqkVhaTmCFu1D0KJ9kDjbV6mNWD26o8rw3j///BMAOMM41SooKAju7u4oLS1FQkJC7U+ogXzZku3Te3JkFpEaJjtEOlKfpl994jZ5stOnT596jYssj42NDTp37gwAOH/+vEGuqU3rI1FDw2SHqA7Up+lPS0vD7du3YWtry+Jk0kqXLl0AAOfOnTPI9TSNzFJvfSRqaJjsEOmgtpEtx44dAwB07twZbm5cm4hqJ2/ZMVSyA9Te+kjU0Gi9NhZRQ6VpzaFbayM1nssuLNKVvGXn/PnzEEXR4GsQqrc+EjVEbNkhqoE28+ooY7JDumrXrh0cHBwglUpx69YtU4dDZJWY7BDVQJc1h6RSKS5evAgA6N27d5XjRJo4ODgo5tsxVJGyfGTWrbWRGheqJWpomOwQqVEeau7r7qT1yJb4+HiIoohWrVrBz8+vnqIla2DoImUiUsVkh6gGvhInrUe2/PHHHwDYqkO6Y7JDZFxMdohqkCEt1npky9GjRwEA/fr1q4/QyIoYeq4dIlLFZIdIjfroK+Xt6ka25Ofn49SpUwCAp59+2rgBktXp1KkTBEHAnTt3kJWVZepwiKwOkx0iJZpGXy3bfRXxiwfUWOx57NgxlJeXIzAwEMHBwfUVLlmJRo0aoV27dgCgSJqJyHCY7BAp0WX0lbIjR44AYKsO6U8+4/aJEycMfm3lovvC0nKDX5/I3DHZIVKi77pC8mRnwIABxgqNrFyvXr0AACdPnjRxJETWh8kOkRJ91hWSSqU4c+YMALbskP7kLTunTp2CTCYz2uvUtuQJkTViskOkRtd1hf744w/IZDKEhISgefPmNZ5LVJ0OHTrAxcUFeXl5uHbtmkGvrV50/93pVINen8jcMdkhqoE26wqxXocMwc7ODt27dwdg2K4sXZc8IbJGTHaI1Og61f7hw4cBMNmhujNGkbK+RfdE1oTJDlEdZGRkKCaCGzhwoGmDIYtnjCJlfYvuiawJkx2iOjhw4AAAoFu3bvD29jZxNGTp5C07ly5dQn5+vkGuqU/RPZG1MWmy8/vvv2PEiBHw9/eHIAj4+eefVY6LooilS5fCz88Pzs7OGDRoEG7cuKFyTk5ODiZOnAh3d3d4eHhg2rRpBvuQIKrN/v37AQBDhw41cSRkDfz9/REQEACZTKYY4WcIuhbdE1kbkyY7BQUF6NSpEzZu3Kjx+Lp167BhwwZ89tlnOHnyJFxdXTFkyBAUFz8eOjlx4kRcuXIFBw8exN69e/H777/jlVdeqa9bICuhz6RrFRUVipYdJjtkKE8++SSAxwvLGpo2RfdEVkc0EwDEn376SbEtk8lEX19f8b333lPsy83NFR0dHcVvv/1WFEVRvHr1qghAPH36tOKc3377TRQEQbx79261r1VcXCxKpVLFIy0tTQQgSqVSw98YWYSCkjIxcOFeMXDhXrGgpEyr55w6dUoEILq7u4ulpaVGjpAaik8//VQEIA4YMMDUoRCZPalUqtXfb7Ot2UlJSUFGRgYGDRqk2CeRSNCzZ0/Ex8cDAOLj4+Hh4YEnnnhCcc6gQYNgY2NTY4HfmjVrIJFIFI+AgADj3QhZHG0nXZN3YQ0aNAj29vbGDIkakP79+wMAjh8/jpKSEtMGQ2QlzDbZycjIAAD4+Pio7Pfx8VEcy8jIqFIUamdnhyZNmijO0WTx4sWQSqWKR1pamoGjJ0ujz6RrrNchY2jbti18fHxQXFzMRUGJDMRskx1jcnR0hLu7u8qDGi59Jl3LyclRzIUyZMgQo8dIDYcgCIrWnaNHj5o0FiJrYbbJjq+vLwAgMzNTZX9mZqbimK+vL7KyslSOl5eXIycnR3EOUW30mXRt7969kMlkCA8PR4sWHNlChmXsZIeroFNDY7bJTnBwMHx9fXHo0CHFvry8PJw8eRIREREAgIiICOTm5uLs2bOKcw4fPgyZTKaYr4JIE+UPe193J50nXZNPkzBq1CjjBUkNVn3W7XBhUGoITJrs5Ofn4/z584oZaFNSUnD+/HmkpqZCEATMnTsX77zzDnbv3o1Lly5h8uTJ8Pf3V/yBadeuHYYOHYrp06fj1KlTOHbsGGbNmoXx48fD39/fdDdGFkeXSdcKCwsV9TpMdsgYjF23o16j9p/4W2zpIatm0mTnzJkz6NKlC7p06QIAiI6ORpcuXbB06VIAwIIFC/Daa6/hlVdeQffu3ZGfn4/9+/fDyenxPBHffPMNQkNDMXDgQAwfPhx9+vTBpk2bTHI/ZDnUP+yV1Tbp2sGDB1FUVITAwEB07tzZWCFSA6ZctyNfaNZQNNWoKW+zpYeskSCKolj7adYtLy8PEokEUqmUxcoNQLq0CL3XHlap07ERoNi+umJIjQuATp06FVu3bsWcOXPw4YcfGjdYarA2bdqEGTNmICIiAsePHzfYdY8nZ+OFL6qfmsNGANaMDuMsy2QRtP37bbY1O0TGoqkgWSYC307vVetK5+Xl5dizZw8AdmGRcQ0bNgxA5Qro2dnZBruupoVBlWkzGpHI0jDZoQanLqtA//HHH3jw4AE8PT3Rp08fI0VIBAQEBCA8PByiKCImJsZg11VfGFRT3lPbaEQiS8NkhxqcuqwC/e233wIAnnvuOdjZVd8CRGQIkZGRAIB9+/YZ9LrKC4PueKWX3sk/kaVgskMNkj6rQJeUlGDnzp0AKhegJTI2ebKzf/9+lJcbbpSUi4Mdbq2NxK21kejZ0lPv5J/IUrBAGSxQJu388ssvGDVqFPz9/ZGamgpbW1tTh0RWrqKiAt7e3sjJycEff/xhtK7TwtJytF9a2VV2+PV+aOnlZpTXITI0FigTGdg333wDAJgwYQITHaoXtra2iuVIDN2VpUy5pYeJDlkjJjtEWsjLy1OMwmIXFtUneVeW/P8/ItIdkx1qEJSXh7h5P1/n5+/atQvFxcUIDQ3lRIJUr4YPHw57e3tcuXIFV65cqf0JRFQFkx2ySuoLHarPmPzd6VSdrvfVV18BAF588UUIQg2TlBAZWOPGjTF06FAAwI4dO4z+elwklKwRkx2yepfuSKtMj6/LpGmXL1/GH3/8AVtbW0ydOtVYYRJVa8KECQAqk536HFPCpSPIWjDZIaug3k2l3JIzftOJKjMm6zJp2ueffw6gcm4dLjBLpjBixAg4OzsjKSkJZ8+eNepr1bUVlMgcMdkhi1FT87ryB/TA9+Ow9JfHLTmavgdrO2laQUEBvv76awDAzJkz9QucqI7c3NwwcuRIAI8ntjQGTYuEcukIsgZMdsgiKTevq39Ai9Cc4MjpOmNyXl4eQkJCMGDAgDpETFQ348ePBwB89913kMlkRnkNTevGqbeCsqaHLBGTHTNS24dIXUcUGYqp4qiueV3TB7Q65enwtZ0xWRRFbNy4EQAwY8YM2Njw7UKmM2zYMHh4eODu3bs4ePCgUV5D07pxNgIw4YsTGt/vrOkhS8FPbzOl6UNE/Y/9f+JvmeQblin69GtqXtf0Aa28aSMAa0aH6Txp2oEDB3D+/Hm4urqyMJlMztHREVOmTAEAfPLJJ0Z5DU3rxo3s9LhObdD6OLyx65LKNmt6yBJwuQiYdrkI5WnaZw8MwYZDSQAe/4GWt0CkS4vQe+1hlRYMGwGK7fqa4t1UcRxPzsYLX5yssv/b6b0Q0coT/4m/hSX/q9OR/9v1beOFW9mFCGrqotc6P/3790dcXBzmzZuH9evX1/keiOoqMTERoaGhsLGxwc2bNxEYGGiU10mXFuFWdiFcHGzw/CfHa2w5tRUE/Lnoaa6lRSbB5SLMRG1dPsqtJPJEB6haGKipq0Z5u76+YZkqDk2tN8pFxpoW9vSTOCOiladeH8LHjx9HXFwc7O3tER0dXafYiQylbdu2GDhwIGQyGTZt2mS015G/dwpKK2rtItZlZCORqTDZMbKaunzUu2bUKX+IaPpjr6y2URO61NnUdG5d49D3dTU1ry8b2R4Raw4jaNE+ZEiLDbq2z5o1awAAkyZNQvPmzWs5m6j+yEcFfvnllygpKTHqa9X2fge0H9lIZEpMdoyotmGctRXWKn+IqP+x1/T5UyGKiFhzGDfv59c470xtrS81nattHPp806stxkkRQYhfPADfTu+FY4tUR0YZskXp1KlT2Lt3LwRBwIIFCwxyTSJDGTlyJPz9/ZGVlWX0GZU1fckY1dlfZVvbkY1EpsSaHRivZqe2OhNN9S9y6jU7ctr0pcuLCn8+fw/A44REVDtHU52Nppg09cnXFIcuffjKNUuCAIhaXkfbOHUliiL69euHP/74A5MnT8a2bdv0vhaRsbz77rtYtGgRQkJCkJCQADs7O6O+nvz9Lq9/U98mMhXW7JiB2upMNH1rWjwsVNFyMaKTf5VuHXlfeqeAxirPVSYToUh0AM3zzlRXZ6PNPBs1xaHrNz3l1hz1tFveUqWpW0vbOHX1888/448//oCTkxNWrVpVp2sRGUtUVBQ8PT2RlJSE7du3G/311Ovf6lIPR2QKTHaMqLY6k5v386t0zczo10rxIaJtt85bke3qFGdtw7hrmmcD0FwcLFdTHU5tNUvKYajff22JpD5KS0sV3Vavv/46a3XIbLm5uWH+/PkAgJUrV6K8nJP7EdWEyY6RqScCyuR/wDV9S9J22nY/iTMiw/1qLSIUqvlZTt4qos08G+pJl4uDXbXFwZoStnRpEY4nZ+Ps7YfV1iypx6h+/5rirGvtwPvvv4+kpCR4e3tj4cKFel+HqD5ERUWhadOmSEpKwn/+8x9Th0Nk1lizg/qbZ0eXOpPa6n3Uqc8zo1yzoz7vjDZ1NoaoydF0vwIed6lprCUC8NELXSACmLX9XK33b6jagatXr6JLly4oLS3Ftm3bMHnyZL2vRVRf3nvvPSxYsAC+vr64du0aJBKJSeJIlxYhJbsAwU1d2bUF/nvUJ23/fhu3qo1U1FRnov6GkHfTqCcZ1XXTTIoIwqD2Pip/+BcOC62SCMj/u3xkB5XkSL1VxE/iDD+JM44nZ2sdM6BacPz+2PAqzxXVftY003FkuD/SpUVa3b88zrooLy/H1KlTUVpaiuHDh2PSpEl1uh5RfZk9eza+/PJLXL9+HUuWLMGGDRvqPQZNE3pqsxyLrpQ/W+prElV94qivfw/SDbux6pEudSb6dNPoUkSoXiukqRha15gB1W6rf+68qLHLTJkI4OMJXRRxyD8UjNFNVZ1169bh1KlTkEgk2LRpEwShtqiJzIOjo6Ni6YiNGzfi7Nmz9fr61XW3X0h7iOPJ2UiXFim6rXWde6su02fIY9PndWujy9xpXDXefLAbC/W7XISuWX99DfGsKS5tY9an26q2LjFj339MTAyGDRsGURSxZcsWvPTSSwZ/DSJjmzhxIrZv347OnTsjPj4eTk5O9fK61XW3yym//5W702vq4pF3Af11+yH+deC64jqA9p8d1S0fo/y6NXU1VXestlIEXcsPzJmldMWxG8tMaepuqokhumlqU923kb5tvOAncdY6Zk3ddPKWG083RwQ1dUHs1cwau8/UGfP+k5OTMX78eIiiiH/84x+KRRaJLM3777+PmJgYnD9/HtHR0UZbKFSdpu52Zcq7ZSKw6MdLVZIf5S9OyklKddeRq647XdPnmfrraqpp1ObLXW2lCLqWH8jjNbekQp8v5eZ2D+qY7JhAfSQwutCmlkibmKt7o3cLaqx4rq7JnrFkZWVhxIgRyM3NRc+ePfHxxx+z+4oslq+vL/773/9i+PDh+PTTT9G7d29MnDjR6K8r726W/2FUbsnRRD35eWPXZYT6NkJBaQVcHWxrnIpCna0gwMXBBseTs1X+yFb3pUv5dZXnIVOOIzWnsMYvfrUlM+r/HrV9oTN0fY8hko7avvyqs5QaJXZjwbSrnpsDQ85G/N3pVLyx6zIqRBG2goDVozua3f/4Dx48wNNPP41Lly6hWbNmOHnyJJo1a2bqsIjqbOnSpVi5ciVcXFwQGxuLiIiIenldXVZJr05tiZKAylnWZWLl59OITn4aR5yeuZWDOTvO6xVDdT6e0AVN3BwQ3NQVv1+/X+tnnHL3OwC9usQ0UU9mlLfVW831TTp06Yoz1kz2utD27zeTHTDZAQybpJjzVPLp6emIjIzEuXPn4Ofnh7i4OLRu3drUYREZREVFBZ599lns378fEokEhw8fRteuXes1BuXPktpq9rQl/0yqafqMKq/1v+VnbKB5FnltVVd3pM1nXE21QzkFpRqn11BOrABUm8zUtiSQvomTq4Ot1tONVJcYKd+Dsf8GMNnRAZOdSuacpBjCX3/9hZEjR+Lu3bvw8vJCXFwc2rWr2+zTROamoKAAQ4cOxZ9//glPT0/ExMSgW7du9RqDesuG/GflP9i1teTYCMDCoaEIb+5R5TOptsJo4PGcXV0DG1dJFJ7v0gw/n7uHClGEDQBZNdfQNonQ1H2kz4AN9eN1TRTfimyHyHC/Kp/ntc3LVlNNk/L9akqM1JPDhUNDEdZcYrTEh8mODpjsWDeZTIbPP/8cr7/+OoqKihAaGoo9e/YgJCTE1KERGUVeXh4GDRqE06dPw9nZGVu2bMG4ceNMHRaA2ics3fV/ESgsldX4paumRZSVKXe9VLeYqaY4dJnc9LvTqVi86xJkompioE1CZqiWr5qotyhpSlDU1fR7UE+U1BPH6lrRjFXPw9FYRABu3LiBV199FYcPHwYADB06FDt27DDZTLNE9cHd3R0HDx7ECy+8gF9//RXjx4/HsWPHsHr1ari5mWYyPjnlwQ5rRodV6T7vFNBYq2soP1fTH1n1UVDqgyxqi0ObyU3TpUWKRAdQLeatbaQaoDpa9UFBicbESlvKNU3K1Eej1daiBlQOUCkslakkivJESb14+edz9xSJUU33UFuhs7Ex2SGrlJqainfeeQdfffUVKioq4OzsjLVr12LWrFmwseFcmmT9JBIJdu/ejcWLF+O9997DRx99hN27d+Pf//43Ro4caRajD8d1b6F1/Uttz9VUOKzt9aqLQz2pUr9uTSNZI1p5apWQyUerakqslKkXaI/q4q9oUVGuadp3MR3v7EtQea76zPW1UU7olFtyNCVKyolRbfdQ0+z7xsZuLLAby1qUlpbi0KFD2LRpE3bv3g2ZrLInPjIyEh9++CG7rajBiomJwYwZM3D79m0AQNeuXfHmm29i5MiRsLOznu+8xqo7rO662oxGUn5ubSO51Iu75UXW6gXa6l1xynFp28VnU0viNK57C62upX6/yvdQ27mG0OBqdjZu3Ij33nsPGRkZ6NSpEz766CP06NFDq+cy2bFMMpkM165dw/Hjx3H06FHs27cPubm5iuMDBgzA8uXL0adPH9MFSWQmCgoK8M477+Cjjz5CQUEBAMDHxwcTJ07Ec889h4iICNjb25s4Ssuj60jW2hKy6oq7dUkQlGOqrkVJvSZHU1zV1R0pJ0o1Db2/eDcX635LNOpUJA0q2fnuu+8wefJkfPbZZ+jZsyc+/PBD7Ny5E4mJifD29q71+Ux2zJMoipBKpcjKykJWVhYyMzNx8+ZNXL9+HdevX8fFixdVkhsA8Pb2xrhx4/Dqq6+iffv2pgmcyIzdv38fH3zwAb788kvcv39fsd/d3R29evVC165d0a1bN4SFhSEwMLDelp6wZOY4klWXFqWarqGp5UqbInJNcXA0Vh317NkT3bt3x8cffwyg8ht/QEAAXnvtNSxatKjW5xsr2enYsSMSExNhY2MDQRAs8r+6nCuKouIhk8m0+lkmk6G4uBiFhYUoKipS+W9+fj7Kyspq/Dd2cXFBjx498OSTT2LYsGGIiIiAra2twX6HRNaqrKwMv/32G7777jvExMTgwYMHGs/z9fVFixYt4OXlhSZNmigejRo1gpOTk8rD0dERTk5OsLOzU/kMUf8s0fTZok0NUW3nGOIalnpObe7nl+FuXimauTvAy61qC151r7Ev4SHe//2eYrTZ6339Edmu9iJyTZo1a2bw1sMGk+yUlpbCxcUFP/zwA0aNGqXYP2XKFOTm5uKXX36p8pySkhKUlJQotvPy8hAQEGDwZKdt27a4fv26wa7XULm7u8Pb2xteXl4IDAxEmzZt0KZNG7Rr1w5hYWFseieqo4qKCpw/fx5nzpzBX3/9hbNnzyIxMRH5+fmmDo3MgG0jT9h5+KM89x4qHmlOirWRmJiINm3aGDCyBjT0PDs7GxUVFfDx8VHZ7+Pjg2vXrml8zpo1a7B8+XKjx/b777+jrKxMpUXDUP81xjXr8l+ZTKb4dqb8TU19W/1nGxsbODk5wcXFBc7OznB2dlb87OrqCi8vLzg7m0ezMJG1srW1Rbdu3VQmHxRFETk5Obh9+zZSU1ORk5ODBw8eKP5bUFCA4uJiFBcXo6SkRPFzcXExKioqFJ8L6p8T1e3XhrbfzU11nqlf22jXqCiCmJ0EBwCow+exKUcAWnyyo4/FixcjOjpasS1v2TE09QSMiMhSCIIAT09PeHp61vuSE0SGZvHJTtOmTWFra4vMzEyV/ZmZmfD19dX4HEdHRzg6OtZHeERERGRiFj+7moODA7p164ZDhw4p9slkMhw6dKjeVvwlIiIi82XxLTsAEB0djSlTpuCJJ55Ajx498OGHH6KgoABTp041dWhERERkYlaR7IwbNw7379/H0qVLkZGRgc6dO2P//v2smSEiIiLLH3puCJxUkIiIyPJo+/fb4mt2iIiIiGrCZIeIiIisGpMdIiIismpMdoiIiMiqMdkhIiIiq8Zkh4iIiKwakx0iIiKyakx2iIiIyKox2SEiIiKrZhXLRdSVfBLpvLw8E0dCRERE2pL/3a5tMQgmOwAePXoEAAgICDBxJERERKSrR48eQSKRVHuca2MBkMlkuHfvHho1agRBEAx23by8PAQEBCAtLc1q19yy9nu09vsDrP8erf3+AOu/R2u/P8D679FY9yeKIh49egR/f3/Y2FRfmcOWHQA2NjZo3ry50a7v7u5ulf/zKrP2e7T2+wOs/x6t/f4A679Ha78/wPrv0Rj3V1OLjhwLlImIiMiqMdkhIiIiq8Zkx4gcHR3x9ttvw9HR0dShGI2136O13x9g/fdo7fcHWP89Wvv9AdZ/j6a+PxYoExERkVVjyw4RERFZNSY7REREZNWY7BAREZFVY7JDREREVo3JjoGtXbsWgiBg7ty5in3FxcWIioqCp6cn3NzcMGbMGGRmZpouyDrSdI/9+/eHIAgqj1dffdV0Qepo2bJlVeIPDQ1VHLf032Ft92fpvz8AuHv3Ll588UV4enrC2dkZYWFhOHPmjOK4KIpYunQp/Pz84OzsjEGDBuHGjRsmjFh3td3jSy+9VOX3OHToUBNGrJugoKAq8QuCgKioKACW/z6s7f4s/X1YUVGBJUuWIDg4GM7OzmjVqhVWrlypsm6Vqd6HnEHZgE6fPo3PP/8c4eHhKvvnzZuHffv2YefOnZBIJJg1axZGjx6NY8eOmShS/VV3jwAwffp0rFixQrHt4uJSn6HVWYcOHRAbG6vYtrN7/Pawht9hTfcHWPbv7+HDh+jduzeefvpp/Pbbb/Dy8sKNGzfQuHFjxTnr1q3Dhg0bsG3bNgQHB2PJkiUYMmQIrl69CicnJxNGrx1t7hEAhg4dii1btii2LWko8+nTp1FRUaHYvnz5Mp555hmMHTsWgOW/D2u7P8Cy34fvvvsuPv30U2zbtg0dOnTAmTNnMHXqVEgkEsyePRuACd+HIhnEo0ePxNatW4sHDx4U+/XrJ86ZM0cURVHMzc0V7e3txZ07dyrOTUhIEAGI8fHxJopWP9XdoyiKVbYtzdtvvy126tRJ4zFr+B3WdH+iaPm/v4ULF4p9+vSp9rhMJhN9fX3F9957T7EvNzdXdHR0FL/99tv6CLHOartHURTFKVOmiM8991z9BFQP5syZI7Zq1UqUyWRW8T5Up3x/omj578PIyEjx5ZdfVtk3evRoceLEiaIomvZ9yG4sA4mKikJkZCQGDRqksv/s2bMoKytT2R8aGooWLVogPj6+vsOsk+ruUe6bb75B06ZN0bFjRyxevBiFhYX1HGHd3LhxA/7+/mjZsiUmTpyI1NRUANbzO6zu/uQs+fe3e/duPPHEExg7diy8vb3RpUsXfPHFF4rjKSkpyMjIUPkdSiQS9OzZ02J+h7Xdo9zRo0fh7e2Ntm3bYubMmXjw4IEJoq270tJS/Pe//8XLL78MQRCs5n0op35/cpb8PnzyySdx6NAhXL9+HQBw4cIF/Pnnnxg2bBgA074P2Y1lADt27MBff/2F06dPVzmWkZEBBwcHeHh4qOz38fFBRkZGPUVYdzXdIwC88MILCAwMhL+/Py5evIiFCxciMTERu3btqudI9dOzZ09s3boVbdu2RXp6OpYvX46nnnoKly9ftorfYU3316hRI4v//d28eROffvopoqOj8cYbb+D06dOYPXs2HBwcMGXKFMXvycfHR+V5lvQ7rO0egcourNGjRyM4OBjJycl44403MGzYMMTHx8PW1tbEd6Cbn3/+Gbm5uXjppZcAWM9nqZz6/QGW/zm6aNEi5OXlITQ0FLa2tqioqMCqVaswceJEADDp+5DJTh2lpaVhzpw5OHjwoEX0++tDm3t85ZVXFD+HhYXBz88PAwcORHJyMlq1alVfoepN/s0DAMLDw9GzZ08EBgbi+++/h7OzswkjM4ya7m/atGkW//uTyWR44oknsHr1agBAly5dcPnyZXz22WeKRMDSaXOP48ePV5wfFhaG8PBwtGrVCkePHsXAgQNNEre+Nm/ejGHDhsHf39/UoRiFpvuz9Pfh999/j2+++Qbbt29Hhw4dcP78ecydOxf+/v4mfx+yG6uOzp49i6ysLHTt2hV2dnaws7NDXFwcNmzYADs7O/j4+KC0tBS5ubkqz8vMzISvr69pgtZRbfeoXHAn17NnTwBAUlJSfYdrEB4eHmjTpg2SkpLg6+tr8b9Ddcr3p4ml/f78/PzQvn17lX3t2rVTdNXJf0/qI3cs6XdY2z1q0rJlSzRt2tRifo9yt2/fRmxsLP7xj38o9lnT+1DT/Wliae/D+fPnY9GiRRg/fjzCwsIwadIkzJs3D2vWrAFg2vchk506GjhwIC5duoTz588rHk888QQmTpyo+Nne3h6HDh1SPCcxMRGpqamIiIgwYeTaq+0eNTWPnz9/HkDlB7Qlys/PR3JyMvz8/NCtWzeL/x2qU74/TSzt99e7d28kJiaq7Lt+/ToCAwMBAMHBwfD19VX5Hebl5eHkyZMW8zus7R41uXPnDh48eGAxv0e5LVu2wNvbG5GRkYp91vQ+1HR/mlja+7CwsBA2Nqppha2tLWQyGQATvw+NWv7cQKlX1L/66qtiixYtxMOHD4tnzpwRIyIixIiICNMFaADK95iUlCSuWLFCPHPmjJiSkiL+8ssvYsuWLcW+ffuaNkgdvP766+LRo0fFlJQU8dixY+KgQYPEpk2billZWaIoWv7vsKb7s4bf36lTp0Q7Oztx1apV4o0bN8RvvvlGdHFxEf/73/8qzlm7dq3o4eEh/vLLL+LFixfF5557TgwODhaLiopMGLn2arvHR48eif/85z/F+Ph4MSUlRYyNjRW7du0qtm7dWiwuLjZx9NqrqKgQW7RoIS5cuLDKMUt/H4pi9fdnDe/DKVOmiM2aNRP37t0rpqSkiLt27RKbNm0qLliwQHGOqd6HTHaMQD3ZKSoqEv/v//5PbNy4seji4iI+//zzYnp6uukCNADle0xNTRX79u0rNmnSRHR0dBRDQkLE+fPni1Kp1LRB6mDcuHGin5+f6ODgIDZr1kwcN26cmJSUpDhu6b/Dmu7PGn5/oiiKe/bsETt27Cg6OjqKoaGh4qZNm1SOy2QyccmSJaKPj4/o6OgoDhw4UExMTDRRtPqp6R4LCwvFwYMHi15eXqK9vb0YGBgoTp8+XczIyDBhxLqLiYkRAWj83Vj6+1AUq78/a3gf5uXliXPmzBFbtGghOjk5iS1bthTffPNNsaSkRHGOqd6HgigqTW1IREREZGVYs0NERERWjckOERERWTUmO0RERGTVmOwQERGRVWOyQ0RERFaNyQ4RERFZNSY7REREZNWY7BAREZFVY7JDRASgf//+EAQBgiAo1iQ6evQoBEGosvikoS1btkzx2h9++KFRX4uoIWKyQ0Q6e+mllxR/nJUfQ4cONXVodTJ9+nSkp6ejY8eOdb5WZmYm7O3tsWPHDo3Hp02bhq5duwIA/vnPfyI9PR3Nmzev8+sSUVVMdohIL0OHDkV6errK49tvvzXqa5aWlhr1+i4uLvD19YWdnV2dr+Xj44PIyEh89dVXVY4VFBTg+++/x7Rp0wAAbm5u8PX1ha2tbZ1fl4iqYrJDRHpxdHSEr6+vyqNx48aK44Ig4Msvv8Tzzz8PFxcXtG7dGrt371a5xuXLlzFs2DC4ubnBx8cHkyZNQnZ2tuJ4//79MWvWLMydOxdNmzbFkCFDAAC7d+9G69at4eTkhKeffhrbtm1TdDcVFBTA3d0dP/zwg8pr/fzzz3B1dcWjR4/0vufCwkIMGzYMvXv3VnRtffnll2jXrh2cnJwQGhqKTz75RHH+tGnTcOjQIaSmpqpcZ+fOnSgvL8fEiRP1joWItMdkh4iMZvny5fj73/+OixcvYvjw4Zg4cSJycnIAALm5uRgwYAC6dOmCM2fOYP/+/cjMzMTf//53lWts27YNDg4OOHbsGD777DOkpKTgb3/7G0aNGoULFy5gxowZePPNNxXnu7q6Yvz48diyZYvKdbZs2YK//e1vaNSokV73kpubi2eeeQYymQwHDx6Eh4cHvvnmGyxduhSrVq1CQkICVq9ejSVLlmDbtm0AgOHDh8PHxwdbt26tEsvo0aPh4eGhVyxEpCOjr6tORFZnypQpoq2trejq6qryWLVqleIcAOJbb72l2M7PzxcBiL/99psoiqK4cuVKcfDgwSrXTUtLEwGIiYmJoiiKYr9+/cQuXbqonLNw4UKxY8eOKvvefPNNEYD48OFDURRF8eTJk6Ktra147949URRFMTMzU7SzsxOPHj1a7T3169dPnDNnjsq+I0eOiADEhIQEMTw8XBwzZoxYUlKiON6qVStx+/btKs9ZuXKlGBERodhetGiRGBwcLMpkMlEURTEpKUkUBEGMjY2tEkNgYKD4wQcfVBsjEemHLTtEpJenn34a58+fV3m8+uqrKueEh4crfnZ1dYW7uzuysrIAABcuXMCRI0fg5uameISGhgIAkpOTFc/r1q2byjUTExPRvXt3lX09evSost2hQwdFC8t///tfBAYGom/fvnrd6zPPPIOQkBB89913cHBwAFBZd5OcnIxp06ap3MM777yjEv/LL7+MlJQUHDlyBEBlq05QUBAGDBigVyxEpLu6V+ERUYPk6uqKkJCQGs+xt7dX2RYEATKZDACQn5+PESNG4N13363yPD8/P5XX0cc//vEPbNy4EYsWLcKWLVswdepUCIKg17UiIyPx448/4urVqwgLC1PEDwBffPEFevbsqXK+cqFx69at8dRTT2HLli3o378/vv76a0yfPl3vWIhId0x2iMgkunbtih9//BFBQUE6jX5q27Ytfv31V5V9p0+frnLeiy++iAULFmDDhg24evUqpkyZonesa9euhZubGwYOHIijR4+iffv28PHxgb+/P27evFlrofG0adMwc+ZMjBw5Enfv3sVLL72kdyxEpDt2YxGRXkpKSpCRkaHyUB5JVZuoqCjk5ORgwoQJOH36NJKTkxETE4OpU6eioqKi2ufNmDED165dw8KFC3H9+nV8//33igJg5daSxo0bY/To0Zg/fz4GDx5c5zls/vWvf2HixIkYMGAArl27BqCyAHvNmjXYsGEDrl+/jkuXLmHLli1Yv369ynPHjh0Le3t7zJgxA4MHD0ZAQECdYiEi3TDZISK97N+/H35+fiqPPn36aP18f39/HDt2DBUVFRg8eDDCwsIwd+5ceHh4wMam+o+m4OBg/PDDD9i1axfCw8Px6aefKkZjOTo6qpw7bdo0lJaW4uWXX9bvJtV88MEH+Pvf/44BAwbg+vXr+Mc//oEvv/wSW7ZsQVhYGPr164etW7ciODhY5XkuLi4YP348Hj58aLBYiEh7giiKoqmDICKqi1WrVuGzzz5DWlqayv7//Oc/mDdvHu7du6coLK5O//790blzZ5Mu1xAUFIS5c+di7ty5JouByBqxZYeILM4nn3yC06dP4+bNm/jPf/6D9957T6Ump7CwEMnJyVi7di1mzJhRa6KjfF03NzdcunTJWKFrtHr1ari5uVWZfJCIDIMtO0RkcebNm4fvvvsOOTk5aNGiBSZNmoTFixcrCp2XLVuGVatWoW/fvvjll1/g5uZW6zXv3r2LoqIiAECLFi20TpAMIScnRzHZopeXFyQSSb29NlFDwGSHiIiIrBq7sYiIiMiqMdkhIiIiq8Zkh4iIiKwakx0iIiKyakx2iIiIyKox2SEiIiKrxmSHiIiIrBqTHSIiIrJq/w+xzFBpiLLyOwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", "plt.xlabel('Energy [keV]')\n", "plt.ylabel('Number of counts per bin')\n", "\n", "x = np.arange(40, 80, 0.1)\n", "plt.plot(x, fit_model(x, *mi.values), color='k', label='Initial guess')\n", "plt.legend()" ] }, { "cell_type": "markdown", "id": "89f755f4-b780-43a6-a923-49662c4c701a", "metadata": {}, "source": [ "Unsere Startparameter sind bereits nicht schlecht, aber weichen noch stark von den Daten ab. Bei komplexeren Daten und Fitmodellen lohnt es sich, den Fit schrittweise durchzuführen. Bevor wir uns den beiden Peaks widmen, welche uns eigentlich interessieren, sollten wir versuchen, den Untergrund etwas besser zu beschreiben. Um den Untergrund besser fitten zu können, sollten wir erst den Fitbereich auf einen Energiebereich limitieren, in welchem der Untergrund dominiert. Dem Plot können wir entnehmen, dass dies für alle Werte unterhalb von 45 keV und oberhalb von 70 keV der Fall ist. Im Allgemeinen können wir Wertebereiche in Python mit Hilfe von „Masken“ selektieren. Eine Maske lässt sich wie folgt erstellen:" ] }, { "cell_type": "code", "execution_count": 505, "id": "d53e8386-ea7f-43fa-b4fe-65229308a2ec", "metadata": {}, "outputs": [], "source": [ "mask_outside_of_peaks = (center < 45) | (center >= 70)" ] }, { "cell_type": "markdown", "id": "84cef7a6-13a0-4ba8-ac40-eb86a54411dc", "metadata": {}, "source": [ "Die Maske hat hierbei die Selbe länge wie unseren Daten…" ] }, { "cell_type": "code", "execution_count": 506, "id": "d1d06116-d726-4163-b414-6ccde6a19027", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(120, 120)" ] }, "execution_count": 506, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(mask_outside_of_peaks), len(mask_outside_of_peaks)" ] }, { "cell_type": "markdown", "id": "80db0ae0-5cbd-4db9-b184-610d77bf1c58", "metadata": {}, "source": [ "… und beinhaltet Wahrheitswerte `True` und `False`, bzw. 1 und 0, mit welchen wir unsere Daten selektieren können:" ] }, { "cell_type": "code", "execution_count": 507, "id": "f24d19d8-3483-45b5-aee9-1d3f8755da22", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True]),\n", " array([40.16666667, 40.5 , 40.83333333, 41.16666667, 41.5 ,\n", " 41.83333333, 42.16666667, 42.5 , 42.83333333, 43.16666667,\n", " 43.5 , 43.83333333, 44.16666667, 44.5 , 44.83333333,\n", " 70.16666667, 70.5 , 70.83333333, 71.16666667, 71.5 ,\n", " 71.83333333, 72.16666667, 72.5 , 72.83333333, 73.16666667,\n", " 73.5 , 73.83333333, 74.16666667, 74.5 , 74.83333333,\n", " 75.16666667, 75.5 , 75.83333333, 76.16666667, 76.5 ,\n", " 76.83333333, 77.16666667, 77.5 , 77.83333333, 78.16666667,\n", " 78.5 , 78.83333333, 79.16666667, 79.5 , 79.83333333]))" ] }, "execution_count": 507, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mask_outside_of_peaks, center[mask_outside_of_peaks]" ] }, { "cell_type": "markdown", "id": "5b5c07e7-1865-48f2-bd9e-0540661fd71e", "metadata": {}, "source": [ "Unsere Selektion können wir an unsere Kostenfunktion direkt übergeben." ] }, { "cell_type": "code", "execution_count": 508, "id": "3034bb22-0b96-498d-9736-ed9bb2189460", "metadata": {}, "outputs": [], "source": [ "ls.mask = (center < 45) | (center >= 70)" ] }, { "cell_type": "markdown", "id": "77a664fd-513e-4c89-ba52-945b6f68512f", "metadata": {}, "source": [ "Nun können wir nochmal unsere Funktion und Messwerte für den ausgewählten Bereich plotten…" ] }, { "cell_type": "code", "execution_count": 509, "id": "81232354-a7b8-4e2a-9ac0-159ce0a03da4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 509, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF6klEQVR4nO3deViUZffA8e+wbwKKsikCueGC+0aZmpq7WdpiWWmammGmlpplZmpp9qvMXlssU3tfzbJs0UpzN/cl11xRFBUQFQFFZZvn9wfNMAMDzMAMs3A+1zWXM896HmGGM/dz7vtWKYqiIIQQQgjhoJysHYAQQgghhCVJsiOEEEIIhybJjhBCCCEcmiQ7QgghhHBokuwIIYQQwqFJsiOEEEIIhybJjhBCCCEcmou1A7AFarWaxMREqlSpgkqlsnY4QgghhDCCoijcvHmT0NBQnJyKb7+RZAdITEwkLCzM2mEIIYQQogwuXrxIrVq1il0vyQ5QpUoVIP8/y9fX18rRCCGEEMIYGRkZhIWFaf+OF0eSHdDeuvL19ZVkRwghhLAzpZWgSIGyEEIIIRyaJDtCCCGEcGiS7AghhBDCoUnNjhBCCJuTl5dHTk6OtcMQVubq6oqzs3O5jyPJjhBCCJuhKArJycmkpaVZOxRhI/z9/QkODi7XOHiS7AghhLAZmkQnMDAQLy8vGei1ElMUhdu3b5OSkgJASEhImY8lyY4QQgibkJeXp010AgICrB2OsAGenp4ApKSkEBgYWOZbWlKgLIQQwiZoanS8vLysHImwJZrfh/LUcEmyI4QQwqbIrSuhyxy/D5LsCCGEEMKhSbIjhBBCCIcmyY4QQghhBSqVip9//rnEbYYOHcrDDz9s9DHPnz+PSqXi0KFD5YrN0UhvLCGEw1IUhevXr+Ph4YGPj4+1wxEObOjQoaSlpZWavOhKSkqiatWqQH6SEhkZycGDB2nevLl2m48//hhFUcwcbeVj1ZadiIgIVCpVkUdsbCwAd+/eJTY2loCAAHx8fBg4cCBXrlzRO0ZCQgJ9+vTBy8uLwMBAJk6cSG5urjUuRwhhQ06ePEnLli2pUaMGAQEBTJ8+XT4bhE0JDg7G3d29xG38/Pzw9/evmIAcmFWTnX379pGUlKR9rF+/HoDHHnsMgPHjx7N69WpWrlzJ1q1bSUxMZMCAAdr98/Ly6NOnD9nZ2ezcuZOlS5eyZMkSpk2bZpXrEULYhvPnzxMTE6Ntys/Ozubtt9/mtddes25gwmSKopCZmWmVR3laVDp37szYsWOZNGkS1apVIzg4mOnTp+tto3sbKzIyEoAWLVqgUqno3LkzUPQ21tq1a+nQoQP+/v4EBATQt29fzp49a1JsSUlJ9OnTB09PTyIjI1m+fDkRERHMmzcPMHwrLC0tDZVKxZYtW7TLjh07Rq9evfDx8SEoKIhnnnmGa9euadf/8MMPREdH4+npSUBAAN26dSMzMxOALVu20LZtW7y9vfH39+e+++7jwoULJl2HKaya7NSoUYPg4GDtY82aNdSpU4dOnTqRnp7OokWL+PDDD+nSpQutWrVi8eLF7Ny5k927dwPw559/cvz4cf73v//RvHlzevXqxcyZM1mwYAHZ2dnFnjcrK4uMjAy9hxDCMajVaoYMGUJaWhqtWrUiKSmJRYsWAfDBBx+wdu1aK0coTHH79m18fHys8rh9+3a5Yl+6dCne3t7s2bOHuXPnMmPGDO2X+sL27t0LwIYNG0hKSmLVqlUGt8vMzGTChAns37+fjRs34uTkxCOPPIJarTY6rmeffZbExES2bNnCjz/+yMKFC7WjFBsrLS2NLl260KJFC/bv38/atWu5cuUKjz/+OJCfUD355JMMGzaMEydOsGXLFgYMGICiKOTm5vLwww/TqVMnjhw5wq5duxg5cqRlhxxQbERWVpYSEBCgvPPOO4qiKMrGjRsVQLlx44bedrVr11Y+/PBDRVEU5c0331SaNWumt/7cuXMKoPz999/Fnuutt95SgCKP9PR0s16TEKLifffddwqgeHt7K3FxcdrlY8aMUQClWbNmilqttmKEojh37txRjh8/rty5c0e77NatWwY/ryvicevWLaNjHzJkiNK/f3/t606dOikdOnTQ26ZNmzbK5MmTta8B5aefflIURVHi4+MVQDl48GCJxy3s6tWrCqAcPXq0xONonDhxQgGUffv2aZedOXNGAZSPPvqo2GPcuHFDAZTNmzcriqIoM2fOVLp376537IsXLyqAcurUKeXAgQMKoJw/f75IDNevX1cAZcuWLcVely5Dvxca6enpRv39tpneWD///DNpaWkMHToUyJ8fxc3Nrci9yqCgIJKTk7XbBAUFFVmvWVecKVOmkJ6ern1cvHjRfBcihLAaRVGYPXs2AK+++ip16tTRrps+fTo+Pj4cPnyY1atXWytEYSIvLy9u3bpllUd5R3Ju2rSp3uuQkBCTW1AKO3PmDE8++ST33HMPvr6+REREAPn1q8Y4deoULi4utGzZUrusbt262kJpYx0+fJjNmzfrtYRFRUUBcPbsWZo1a0bXrl2Jjo7mscce48svv+TGjRsAVKtWjaFDh9KjRw/69evHxx9/TFJSkknnN5XNJDuLFi2iV69ehIaGWvxc7u7u+Pr66j2EEPZvw4YNHDp0CG9vb8aOHau3LiAgQNv5QVObIGyfSqXC29vbKo/y3lZxdXUtci2m3G4ypF+/fqSmpvLll1+yZ88e9uzZA1Bi6YapnJzyUwNFp2ap8FQNt27dol+/fhw6dEjvcebMGTp27IizszPr16/njz/+oFGjRnzyySc0aNCA+Ph4ABYvXsyuXbu49957+e6776hfv762RMUSbCLZuXDhAhs2bOD555/XLgsODiY7O5u0tDS9ba9cuUJwcLB2m8K9szSvNdsIISqPxYsXA/lFndWqVSuy/oUXXgDyiyON/SYsREVwc3MD8jveFOf69eucOnWKqVOn0rVrVxo2bKhtLTFWgwYNyM3N5eDBg9plcXFxesepUaMGgF5rS+Fxe1q2bMk///xDREQEdevW1Xt4e3sD+cndfffdx9tvv83Bgwdxc3Pjp59+0h6jRYsWTJkyhZ07d9KkSROWL19u0rWYwiaSncWLFxMYGEifPn20y1q1aoWrqysbN27ULjt16hQJCQnExMQAEBMTw9GjR/WaBdevX4+vry+NGjWquAsQQlhdRkaGtmfLkCFDDG4TERFB586dURSFZcuWVWB0QpQsMDAQT09PbaFvenp6kW2qVq1KQEAACxcuJC4ujk2bNjFhwgSTzhMVFUW3bt0YOXIke/fu5eDBg4wcORJPT09tS5anpyft27dnzpw5nDhxgq1btzJ16lS948TGxpKamsqTTz7Jvn37OHv2LOvWreO5554jLy+PPXv28O6777J//34SEhJYtWoVV69epWHDhsTHxzNlyhR27drFhQsX+PPPPzlz5gwNGzYs+39gKaye7KjVahYvXsyQIUNwcSkY49DPz4/hw4czYcIENm/ezIEDB3juueeIiYmhffv2AHTv3p1GjRrxzDPPcPjwYdatW8fUqVOJjY0tdewCIYRjWbVqFXfu3CEqKorWrVsXu92zzz4LwLfffltRoQlRKhcXF+bPn88XX3xBaGgo/fv3L7KNk5MTK1as4MCBAzRp0oTx48fz/vvvm3yub775hqCgIDp27MgjjzzCiBEjqFKlCh4eHtptvv76a3Jzc2nVqhXjxo1j1qxZescIDQ1lx44d5OXl0b17d6Kjoxk3bhz+/v44OTnh6+vLtm3b6N27N/Xr12fq1Kl88MEH9OrVCy8vL06ePMnAgQOpX78+I0eOJDY2llGjRpn+H2cso0qhLWjdunXa6u3C7ty5o7z44otK1apVFS8vL+WRRx5RkpKS9LY5f/680qtXL8XT01OpXr268sorryg5OTkmxWBsNbcQwnY9/PDDCqBMnz69xO2uXbumODk5KYBy4cKFCopOGKOkXjfCcjS9qDZs2GDtUAwyR28slaLIONQZGRn4+fmRnp4uxcpC2KG7d+8SEBDA7du3+fvvv2nRokWJ23fo0IEdO3bw6aefMnr06AqKUpTm7t27xMfHExkZqdfKIMxr06ZN3Lp1i+joaJKSkpg0aRKXL1/m9OnTRYqqbUFJvxfG/v22+m0sIYQory1btnD79m1q1qypN69Qcfr27QvAb7/9ZuHIhLA9OTk5vP766zRu3JhHHnmEGjVqsGXLFptMdMxFkh0hhN3TJC19+/Y1qruwpjPEpk2bzNplVwh70KNHD44dO8bt27e5cuUKP/30E+Hh4dYOy6Ik2RFC2D1Nr83u3bsbtX2TJk2oXr06d+7cYf/+/ZYMTQhhAyTZEULYteTkZE6cOKE3eWJpVCoVnTp1AmDr1q0WjE4IYQsk2RFC2DXNLMzNmzc3OJBgcTTJju4szkIIxyTJjhDCrm3atAmABx54wKT9NMnOjh07yM3NNXtcQgjbIcmOEMKu7dixAyhIXozVpEkT/Pz8yMzM5NixY5YITVjR7excIl77jYjXfuN2tiSzlZ0kO0IIu5WRkcGJEycAaNeunUn7Ojk50aZNGwDtZIpCiJJ17tyZcePGmfWYQ4cO5eGHHzbrMQuTZEcIYbf279+PoiiEh4cTFBRk8v6aBEmSHVFeQ4cORaVSMWfOHL3lP//8s8mzp0dERDBv3jwzRick2RFC2C1NkmJqq46GJDvCnDw8PHjvvfdMnolcWJ4kO0IIu7V3714A2rZtW6b9NcnOiRMnyMjIMFtcwrYkp9+tkPN069aN4OBgZs+eXeJ2P/74I40bN8bd3Z2IiAg++OAD7brOnTtz4cIFxo8fj0qlKrFVSKVS8cUXX9C3b1+8vLxo2LAhu3btIi4ujs6dO+Pt7c29997L2bNntfucPXuW/v37ExQUhI+PD23atGHDhg16x/3000+pV68eHh4eBAUF8eijjxYbw2+//Yafnx/Lli0D4OLFizz++OP4+/tTrVo1+vfvz/nz57Xb5+XlMWHCBPz9/QkICGDSpElUxKxVkuwIIeySoijlbtkJDAwkPDwcRVE4ePCgOcMTVvbjgUva590+3Mp3+xIsfk5nZ2feffddPvnkEy5dumRwmwMHDvD4448zaNAgjh49yvTp03nzzTdZsmQJAKtWraJWrVrMmDGDpKQkkpKSSjznzJkzefbZZzl06BBRUVE89dRTjBo1iilTpmhv844ZM0a7/a1bt+jduzcbN27k4MGD9OzZk379+pGQkP//s3//fsaOHcuMGTM4deoUa9eupWPHjgbPvXz5cp588kmWLVvG4MGDycnJoUePHlSpUoW//vqLHTt24OPjQ8+ePbUjlX/wwQcsWbKEr7/+mu3bt5OamspPP/1k6n+16cw+PakdklnPhbA/mpmanZ2dlczMzDIfRzNb+kcffWS+4ESZmGvW88S020rka2uU8MkFj3te+01JTLttpkiLGjJkiNK/f39FURSlffv2yrBhwxRFUZSffvpJ0f1T+9RTTykPPvig3r4TJ05UGjVqpH0dHh5u1O8joEydOlX7eteuXQqgLFq0SLvs22+/VTw8PEo8TuPGjZVPPvlEURRF+fHHHxVfX18lIyPD4LadOnVSXn75ZeU///mP4ufnp2zZskW77r///a/SoEEDRa1Wa5dlZWUpnp6eyrp16xRFUZSQkBBl7ty52vU5OTlKrVq1tP93hphj1nNp2RFC2CVNq050dDReXl5lPo5mhnRp2XEc8dcyURe6M5KnKJy/drtCzv/ee++xdOlSbU9BXSdOnOC+++7TW3bfffdx5swZ8vLyTD5X06ZNtc81RfrR0dF6y+7evau9TXvr1i1effVVGjZsiL+/Pz4+Ppw4cULbsvPggw8SHh7OPffcwzPPPMOyZcu4fVv//+2HH35g/PjxrF+/Xm/Ih8OHDxMXF0eVKlXw8fHBx8eHatWqcffuXc6ePUt6ejpJSUl6LbEuLi60bt3a5Os2lSQ7Qgi7VN56HQ1JdhxPZHVvnAqVujirVERUL3tSbIqOHTvSo0cPpkyZYvFz6c5UrqnvMbRMrVYD8Oqrr/LTTz/x7rvv8tdff3Ho0CGio6O1t5mqVKnC33//zbfffktISAjTpk2jWbNmpKWlaY/ZokULatSowddff61Xb3Pr1i1atWrFoUOH9B6nT5/mqaeestj/gTEk2RFC2CVNy06Zkp3sTJjuB9P9aN6oPgDHjx/n7t2KKWQVlhXi58nbDzXWvnZSwbsDmhDi51lhMcyZM4fVq1eza9cuveUNGzbUDoSpsWPHDurXr4+zszMAbm5uZWrlMcaOHTsYOnQojzzyCNHR0QQHB+sVEEN+a0u3bt2YO3cuR44c4fz589qRygHq1KnD5s2b+eWXX3jppZe0y1u2bMmZM2cIDAykbt26eg8/Pz/8/PwICQnR6/2Ym5vLgQMHLHKtuiTZEULYnby8PO1s5eVt2alVqyYBAQHk5eXJSMoOZGCrWtrnGyZ04ok2tSv0/NHR0QwePJj58+frLX/llVfYuHEjM2fO5PTp0yxdupT//Oc/vPrqq9ptIiIi2LZtG5cvX+batWtmjatevXqsWrWKQ4cOcfjwYZ566iltqw/AmjVrmD9/PocOHeLChQt88803qNVqGjRooHec+vXrs3nzZn788UftIIODBw+mevXq9O/fn7/++ov4+Hi2bNnC2LFjtQXbL7/8MnPmzOHnn3/m5MmTvPjii3qtRpYiyY4Qwu6cO3eOzMxMPDw8aNiwYbmOpVKpaNasGYAkOw4q2M/DKuedMWOGXiIB+a0f33//PStWrKBJkyZMmzaNGTNmMHToUL39zp8/T506dahRo4ZZY/rwww+pWrUq9957L/369aNHjx60bNlSu97f359Vq1bRpUsXGjZsyOeff863335L48aNixyrQYMGbNq0iW+//ZZXXnkFLy8vtm3bRu3atRkwYAANGzZk+PDh3L17F19fXyA/2XvmmWcYMmQIMTExVKlShUceecSs12iISlEqoIO7jcvIyMDPz4/09HTtD0QIYbt+/PFHHn30UVq1aqVt4TFJdia8G5r//PVExr46hU8++YSJEycyd+5c8wYrjHb37l3i4+OJjIzEw6N8Ccrt7FwaTVsHwPEZPfByczFHiMIKSvq9MPbvt7TsCCHsztGjRwH9nijl0ahRIyC/bkcI4Xgk1RVC2J0jR44AkuyI4nm5uXB+Th9rhyFshLTsCCHsjqWSnfPnz5OZmWmWYwohbIckO0IIu3Lr1i3tXD+6g6eVR/Xq1alRowaKonDy5EmzHFMIYTsk2RFC2BVNj6mQkBDz9FTJSAR0bmUdOagdg4dsaeURwhFIsiOEsCtmuYV1aHnB8wVt4e9vCpKdE9KyI4SjkWRHCGFXyp3spF+GPyYVvFbUsHocbRrUBCTZEcIRSbIjhLArmmSnzPU6qWfzExxdSh7Na1cBJNkRwhFJsiOEsBuKopS/ZadaHVAV+uhTOVOraf7szefi47mTU+nHWrV/OvOfSe2VkGRHCGE3Ll26RHp6Oi4uLkRFRZXtIH41oZfOKMkqZ+g3j+r3NKVatWqo1WpOX1cXv78QVqZSqfj555/NesyIiAjmzZtn1mPaEkl2hBB2QzNycoMGDXB3dy/7gZo/VfA8dg+0fBaVSlVQpHxVJ9mRFgJhhKFDh6JSqXjhhReKrIuNjUWlUunNfyUqliQ7Qgi7ceLECaCgm7hZ+IZqn2qO+8/VPPMdX1QaYWFhrFixgjt37miX3b17l+XLl1O7dsXOui70SbIjhLAbmmSn1JnOy9ga06BBAwDOpMptLIfy71hKltayZUvCwsJYtWqVdtmqVauoXbs2LVq00C5bu3YtHTp0wN/fn4CAAPr27asdKBMgOzubMWPGEBISgoeHB+Hh4cyePbvY87711luEhIRo69m2b9/O/fffj6enJ2FhYYwdO1ZvZPCUlBT69euHp6cnkZGRLFu2zJz/DTZJkh0hhN0wOtkpo7p16wKQfvffAuUK+iMpLMDAWEoVYdiwYSxevFj7+uuvv+a5557T2yYzM5MJEyawf/9+Nm7ciJOTE4888ghqdX6SPX/+fH799Ve+//57Tp06xbJly4iIiChyLkVReOmll/jmm2/466+/aNq0KWfPnqVnz54MHDiQI0eO8N1337F9+3bGjBmj3W/o0KFcvHiRzZs388MPP/Dpp5+SkpJimf8QGyETgQoh7IKiKBZPdurVq8ewFq4s7OuRv2BBW/1iZmEfihlLiTpd8wvULejpp59mypQpXLhwAYAdO3awYsUKtmzZot1m4MCBevt8/fXX1KhRg+PHj9OkSRMSEhKoV68eHTp0QKVSER4eXuQ8ubm5PP300xw8eJDt27dTs2b+dc2ePZvBgwczbtw4IP93ev78+XTq1InPPvuMhIQE/vjjD/bu3UubNm0AWLRokcXeU7ZCkh0hhF1ISUnhxo0bqFQq6tevb5FzRAa4s7CvB85OqvwFihr+mGyRcwkLKmYsJVLPWTzZqVGjBn369GHJkiUoikKfPn2oXr263jZnzpxh2rRp7Nmzh2vXrmlbdBISEmjSpAlDhw7lwQcfpEGDBvTs2ZO+ffvSvXt3vWOMHz8ed3d3du/erXf8w4cPc+TIEb1bU4qioFariY+P5/Tp07i4uNCqVSvt+qioKPz9/S3wv2E75DaWEMIuaFp1IiMj8fT0tMg5PDIvFSQ6GooUK9udYsZSoto9FXL6YcOGsWTJEpYuXcqwYcOKrO/Xrx+pqal8+eWX7Nmzhz179gD5tTqQX/sTHx/PzJkzuXPnDo8//jiPPvqo3jEefPBBLl++zLp16/SW37p1i1GjRnHo0CHt4/Dhw5w5c4Y6depY6Iptn9WTncuXL/P0008TEBCAp6cn0dHR7N+/X7teURSmTZtGSEgInp6edOvWjTNnzugdIzU1lcGDB+Pr64u/vz/Dhw/n1q1bFX0pQggLKtctLGMLlqvVIa/weIIqZ9PPJ6yrmLGULN2qo9GzZ0+ys7PJycmhR48eeuuuX7/OqVOnmDp1Kl27dqVhw4bcuHGjyDF8fX154okn+PLLL/nuu+/48ccfSU1N1a5/6KGHWL58Oc8//zwrVqzQLm/ZsiXHjx+nbt26RR5ubm5ERUWRm5vLgQMHtPucOnWKtLQ08/9H2BCrJjs3btzgvvvuw9XVlT/++IPjx4/zwQcfULVqVe02c+fOZf78+Xz++efs2bMHb29vevTowd27d7XbDB48mH/++Yf169ezZs0atm3bxsiRI61xSUIIC7F0vQ4AfjVZnt6aXPW/GY/KGXq9Z7nzCcsxMJZSRXF2dubEiRMcP34cZ2f9ZLlq1aoEBASwcOFC4uLi2LRpExMmTNDb5sMPP+Tbb7/l5MmTnD59mpUrVxIcHFzkVtMjjzzCf//7X5577jl++OEHACZPnszOnTsZM2YMhw4d4syZM/zyyy/aAmXNrbFRo0axZ88eDhw4wPPPP2+x1lJbYdWanffee4+wsDC9yvXIyEjtc0VRmDdvHlOnTqV///4AfPPNNwQFBfHzzz8zaNAgTpw4wdq1a9m3bx+tW7cG4JNPPqF379783//9H6GhoQgh7J9Zkx03b5iebnBVSkg3It7ZzMhWrkxbeSx/HJ7fX81fmZEI1euV//yiYvlW/N8BX19fg8udnJxYsWIFY8eOpUmTJjRo0ID58+fTuXNn7TZVqlRh7ty5nDlzBmdnZ9q0acPvv/+Ok1PR9olHH30UtVrNM888g5OTEwMGDGDr1q288cYb3H///SiKQp06dXjiiSe0+yxevJjnn3+eTp06ERQUxKxZs3jzzTfN/n9gS1SKolhtEphGjRrRo0cPLl26xNatW6lZsyYvvvgiI0aMAODcuXPUqVOHgwcP0rx5c+1+nTp1onnz5nz88cd8/fXXvPLKK3rNgLm5uXh4eLBy5UoeeeSRIufNysoiKytL+zojI4OwsDDS09OL/QUVQlhXrVq1uHz5Mjt37iQmJqbkjbMz4d1//8CN2Z//x07z+vXE/GSnGL/88B0PPzaIliFOHDifkd+FWZPsqJyg38cV2kpQmdy9e5f4+HgiIyPx8PAo38F0fwdK+ZkL21bS70VGRgZ+fn6l/v226m2sc+fO8dlnn1GvXj3WrVvH6NGjGTt2LEuXLgUgOTkZgKCgIL39goKCtOuSk5MJDAzUW+/i4kK1atW02xQ2e/Zs/Pz8tI+wsDBzX5oQwoxu3rzJ5cuXAYqfE0u3LufAkoLlC9rqj7lSinr18os441LVKMV1YU6/bOIVCCGsyaq3sdRqNa1bt+bdd98FoEWLFhw7dozPP/+cIUOGWOy8U6ZM0btHqmnZEULYppMnTwL5X3R0a/qK9efUgucmdh+/JzISFZCRBWnxh6hqpS7MopxKuFUpKh+rtuyEhIQUmeOmYcOGJCQkABAcHAzAlStX9La5cuWKdl1wcHCRkR9zc3NJTU3VblOYu7s7vr6+eg8hhO0yuV7HUIJiJA8PD8L88rufn72hWLULsxDCPKya7Nx3332cOnVKb9np06e1o0VGRkYSHBzMxo0bteszMjLYs2eP9p59TEwMaWlpet3oNm3ahFqtpl27dhVwFUIIS9O07Bid7BhKUExQt1r+/v9cSrdqF2YhhHlYNdkZP348u3fv5t133yUuLo7ly5ezcOFCYmNjAVCpVIwbN45Zs2bx66+/cvToUZ599llCQ0N5+OGHgfwPv549ezJixAj27t3Ljh07GDNmDIMGDZKeWEI4iNOnTwMFE3WWqvusgueFu48bMd9V3ar5H41xZ89atQtzZWXFfjPCBpnj98GqyU6bNm346aef+Pbbb2nSpAkzZ85k3rx5DB48WLvNpEmTeOmllxg5ciRt2rTh1q1brF27Vq8ie9myZURFRdG1a1d69+5Nhw4dWLhwoTUuSQhhAZpkp149I7t9Rz9e8Dx2j/46IyaFrBegSXbO6a+wQhfmysTV1RWA27dvWzkSYUs0vw+a34+ysPrcWH379qVv377FrlepVMyYMYMZM2YUu021atVYvtz43hZCCPuhVquJi4sD0J8Tq3DX4pKYOCmk5jbWmbizZQ1blIGzszP+/v7aOkwvLy9UKlUpewlHpSgKt2/fJiUlBX9//yIDNJrC6smOEEKUJDExkTt37uDi4kJERITpB0iNN21SSDdv7nl9N3zXjPjzF8oUsyg7TceSwh1PROXl7+9fbIcjY0myI4SwaZpbWJGRkbi4GPmRdTOp4Hm1yPyCZd2Ep5QeVZqR3FNTU8nIyED6a1YclUpFSEgIgYGB5OTkWDscYWWurq7latHRkGRHCGHTNBP/6t3CMkR34MCFnQqe+4bm96jSjoJceo+qKlWqEBAQwPXr14k/f4FmZYxdlJ2zs7NZ/sgJATYw67kQQpTEqOLkjMSidTm6ytCjStO6Ex9/3thQhRA2SpIdIYRNM6plx1BdTnGM7FGlqQ86fyHBuOMKIWyW3MYSQtg0o1p2DNXllJO2ZefiZfhYph0Qwp5Jy44Qwmbl5uZy7lz+WDcltuxo6nI0Co+gXAYFt7Hiy30sIYR1ScuOEMJmXbhwgZycHDw8PKhVq1bxG2Yk5tflaIqQY/dCdZ2WoOzMkk9UeMweN29JdoRwINKyI4SwWZp6nbp16+LkVOjjSrf31YK2+q/NMNKxbrIj0xcIYd8k2RFC2Kxi63XSLxftffXHZLOeWzMhcWZmJteuXTPrsYUQFUuSHSGEzSq2J1bqWcOjIpuRh4cHISEhAJw/f75gRXYmTPfLf5R2e0wIYRMk2RFC2KxiW3aq1SlahKwy/wB0UrcjhGOQZEcIYbM0LTtFkh2/moV6XzlDr/eKP5CbN0xPz3+4eRt9fkl2hHAMkuwIIWxSVlYWFy7kT8RpsNt54VGRdV+biSQ7QjgGSXaEEDbp3LlzqNVqfHx8CAoKKnljM/S+MkQzirIkO0LYN0l2hBA2Sbc4WaVSVdyJMxK1TzUtO3oFykIIuyPJjhDCJhk1TYSuMtblAEXH7Pn7G0A/2VGrzTcVhRCiYkmyI4SwSUZNAGoOhsbsWT0O0i8TFhaGk5MT2dnZJCUlWTYOIYTFSLIjhLBJJrfslFVxY/aknsPFxYWaNWsCcPHixaL76tzyEkLYLkl2hBA2qcJadoobs6faPUDBSMoJCQn564q55SWEsF2S7AghbE5mZiaXL18GKqBlx9CYPf3m5S8HateuDeRPSlrSLS8hhO2SWc+FEDYnLi4OgICAAKpVq2Z4I01BsjnozZi+R2/GdE2yk5CQUOItL01yJISwPdKyI4SwORVWr2NIoTF79JKd4m55Le0rc2UJYcMk2RFC2Jxip4mwAr1kx9RpKoQQNkGSHSGEzdG07OgVJ1tptnG9ZAcqZJoKIYR5lalm58yZM2zevJmUlJQiA21NmzbNLIEJISovW2rZ0fTGSk1N5datW/i46YzmbKFpKoQQ5mVysvPll18yevRoqlevTnBwsN4w7iqVSpIdIUS5GWzZsRJfX1/8/PxIT08nISGBRnXDrR2SEMJEJic7s2bN4p133mHy5MmWiEcIUcnduHGDa9euAVC3bl0rR5Ovdu3aHD16VJIdIeyUyTU7N27c4LHHHrNELEIIob2FFRISQpUqVawcTb4idTtCCLticrLz2GOP8eeff1oiFiGEsE69TimTiBqd7Mj0EULYJJNvY9WtW5c333yT3bt3Ex0djaurq976sWPHmi04IUTlU2HTRJigyJQRugpPH9HvY2j5bAVFJoQwhsnJzsKFC/Hx8WHr1q1s3bpVb51KpZJkRwhRLlYdULAYxbbsZCQanj6iTlcZUVkIG2JyshMfH2+JOIQQAjDyNlZGot6UDpamNz+W7jQV8dtk+ggh7IAMKiiEsBmKohTf7dyKs41rkp1Lly6Rl5dXsKKUGdOFELbBqJadCRMmMHPmTLy9vZkwYUKJ23744YdmCUwIUflcvXqVjIwMVCoVderUKVhR3GzjFXS7KCQkBGdnZ3Jzc0lOTqZmzX/PqZk+QjOJaKEZ04UQtsGoZOfgwYPk5ORonxdHd4BBIYQwlaZVJywsDA8Pj4IVVp5t3MXFhZo1a5KQkEBCQkJBsgMlzpguhLANRiU7mzdvNvhcCCHMSZPsNGjQQH+F5naRbsJTwbeLwsPDtclOTEyM4Y1k+gghbFK5anYuXrzIxYsXy7z/9OnTUalUeo+oqCjt+rt37xIbG0tAQAA+Pj4MHDiQK1eu6B0jISGBPn364OXlRWBgIBMnTiQ3N7fMMQkhrKfYeh1Ds41X8O0iGVhQCPtlcrKTm5vLm2++iZ+fHxEREURERODn58fUqVO1t7pM0bhxY5KSkrSP7du3a9eNHz+e1atXs3LlSrZu3UpiYiIDBgzQrs/Ly6NPnz5kZ2ezc+dOli5dypIlS2R+LiHsVIlzYhWebbyCx7LR65ElhLArJnc9f+mll1i1ahVz587VNuXu2rWL6dOnc/36dT777DPTAnBxITg4uMjy9PR0Fi1axPLly+nSpQsAixcvpmHDhuzevZv27dvz559/cvz4cTZs2EBQUBDNmzdn5syZTJ48menTp+Pm5mbq5QkhrMjoCUCtcLtIWnaEsF8mt+wsX76cJUuWMGrUKJo2bUrTpk0ZNWqUNjEx1ZkzZwgNDeWee+5h8ODB2g+SAwcOkJOTQ7du3bTbRkVFUbt2bXbt2gXkJ1nR0dEEBQVpt+nRowcZGRn8888/xZ4zKyuLjIwMvYcQwrry8vKIi4sDbGv0ZA1JdoSwXyYnO+7u7kRERBRZHhkZaXJLSrt27ViyZAlr167ls88+Iz4+nvvvv5+bN2+SnJyMm5sb/v7+evsEBQWRnJwMQHJysl6io1mvWVec2bNn4+fnp32EhYWZFLcQwvwuXrxIVlYWrq6u2ukZbEmJU0YIIWyaycnOmDFjmDlzJllZWdplWVlZvPPOO4wZM8akY/Xq1YvHHnuMpk2b0qNHD37//XfS0tL4/vvvTQ3LJFOmTCE9PV37KE+RtRDCPDS3sOrWrYuzs7OVoylK86Xoxo0b3Lx508rRCCFMYVTNjm5RMMCGDRuoVasWzZo1A+Dw4cNkZ2fTtWvXcgXj7+9P/fr1iYuL48EHHyQ7O5u0tDS91p0rV65oa3yCg4PZu3ev3jE0vbUM1QFpuLu74+7uXq5YhRDmZXS9jpX4+vri7+9PWloaFy9epFGjRvkrdKePEELYJKOSHT8/P73XAwcO1HttrttAt27d4uzZszzzzDO0atUKV1dXNm7cqD3fqVOn9Ma4iImJ4Z133iElJYXAwEAA1q9fj6+vb8EHkRDCLth6sgP5dTtpaWlcuHBBPmOEsCNGJTuLFy+2yMlfffVV+vXrR3h4OImJibz11ls4Ozvz5JNP4ufnx/Dhw5kwYQLVqlXD19eXl156iZiYGNq3bw9A9+7dadSoEc888wxz584lOTmZqVOnEhsbKy03QtgZe0l2jhw5InU7QtgZk7uem9OlS5d48sknuX79OjVq1KBDhw7s3r2bGjVqAPDRRx/h5OTEwIEDycrKokePHnz66afa/Z2dnVmzZg2jR48mJiYGb29vhgwZwowZM6x1SUKIMiqS7GRnwrv/djF/PdEmbhdJjywh7JNVk50VK1aUuN7Dw4MFCxawYMGCYrcJDw/n999/N3doQogKlJWVxfnz5wGo/2sfaF98b0pr0tyyl04NQtiXck0XIYQQ5nD27FkURcHXHYK8bXdCYUl2hLBPkuwIIaxOewsrwAmVSpIdIYR5mZTs5OTk0LVrV86cOWOpeIQQlZBusmPLNDU7ly5dQq1Wl7K1EMJWmPTJ4urqypEjRywVixCiktImO9VsbzBBXTVr1kSlUpGVlcXVq1etHY4Qwkgmf416+umnWbRokSViEUJUUvbSsuPq6qodsFRuZQlhP0zujZWbm8vXX3/Nhg0baNWqFd7e3nrrP/zwQ7MFJ4SoHEpNdjISoXq9CoyoeGFhYSQlJXHx4kVat25t7XCEEEYwOdk5duwYLVu2BAo+oDRsubBQCGGb0tPTtdO8aJOdjEQ4t6VgowVtod/H0PLZig+wkLCwMPbu3SstO0LYEZOTnc2bN1siDiFEJaXp8DC+UwBV3HPyF/6njf5GihpWj4M6XcGvZsUGWIj0yBLC/pT5BnlcXBzr1q3jzp07ACiKYraghBCVx+nTp6lZRcX7nXJ0lir/PnQX5UHquYoMzSBJdoSwPyYnO9evX6dr167Ur1+f3r17k5SUBMDw4cN55ZVXzB6gEMKxnT59mnoBTjiXdhdc5QzV7qmQmEqi6X4uyY4Q9sPkZGf8+PG4urqSkJCAl5eXdvkTTzzB2rVrzRqcEMLxnTx5kjPX1agpnO3ovFY5Q795Vr+FBQUtOzI/lhD2w+Rk588//+S9996jVq1aesvr1avHhQsXzBaYEKISyM7kxJaVXL6pcCx0cMFylTP0fr/gdewemyhOhoJkJzExkdzcXP2V2Zkw3S//kZ1pheiEEIaYnOxkZmbqtehopKam4u7ubpaghBCVQ15eHqeu5Y9E7BMztGBF7B5o/lTBa9/Qig2sBEFBQbi4uKBWq7W38YUQts3kZOf+++/nm2++0b5WqVSo1Wrmzp3LAw88YNbghBCOLT7+PFl54OEC4bXDClbYUHJTmLOzMzVr5t9OK7VuR1p6hLAJJnc9nzt3Ll27dmX//v1kZ2czadIk/vnnH1JTU9mxY4clYhRCOKgTJ08B0CDACWdn254qQldYWBgXLlyQImUh7ITJLTtNmjTh9OnTdOjQgf79+5OZmcmAAQM4ePAgderUsUSMQggHpUl2Gtaw7WkiCpMeWULYF5NbdgD8/Px44403zB2LEKKSOXHq32Snuv206oCMtSOEvSlTsnPjxg0WLVrEiRMnAGjUqBHPPfcc1apVM2twQgjHpm3ZqW5fLTvS/VwI+2LyJ8y2bduIiIhg/vz53Lhxgxs3bjB//nwiIyPZtm2bJWIUQjggRVE4cfIUNauoaB3qBDftp2eTUS07GYkVFI0QojQmt+zExsbyxBNP8Nlnn2kLCvPy8njxxReJjY3l6NGjZg9SCOF4kpKSeLTOHRb29cHZSQULO8FDn+iPpzM93XoBlqDYZOfQ8oLnC9pCr7kVGJUQojgmt+zExcXxyiuv6PWccHZ2ZsKECcTFxZk1OCGE4zp78C8W9vXIT3SgYLLP9MtWjcsYmmQnJSWFrKys/IXpl+GPSQUbKWr4Y3LBa2npEcJqTE52WrZsqa3V0XXixAmaNWtmlqCEEI7v6qndBYmOho1M9lmagIAAPD09Abh06VL+wtSz+QmOLiWv4PmCtvD3NwghKp7Jt7HGjh3Lyy+/TFxcHO3btwdg9+7dLFiwgDlz5nDkyBHttk2bNjVfpEIIh7L/3A36V1P0Ex4bmeyzNCqVirCwME6fPs3Fixfzh92oVgdUTkUTHg1Ny1WdrjYxx5cQlYnJyc6TTz4JwKRJkwyuU6lUKIqCSqUiLy+vyDZCCAGw658LjEy/y5f9PHBSqWxqsk9jaJIdbY8sv5r5NTq/v/rvFk6AgZae1HN2c41COAqTk534+HhLxCGEqEQUReHYsWNsuZbD2LZuNAt2zp8Pq3o9a4dmNINFys2fKkh2hq6Gpf30W3rspOVKCEdjcrITHh5uiTiEEJXIlStXuHbtGk5OTtQP+Ld00IbnwzKk1O7noS30W3rsrOVKCEdiXyN5CSEcgqa2r17dOni6qkrZ2jYZNdaO7sztsXv0u9ULISqMJDtC2AsHmkFbk+xEN2ls5UjKzuQpI+ys5UoIR1Km6SKEEKJMsjPh3VCO/nwHgKbRTYBN1o2pjGQyUCHsh7TsCCEq3JEr+T01mzZpYuVIyk7TspOWlsbNmzetHI0QoiQmJzsXL14sGEQL2Lt3L+PGjWPhwoVmDUwI4Zhy8hSOX83voWTPt7GqVKmCn58fIK07Qtg6k5Odp556is2bNwOQnJzMgw8+yN69e3njjTeYMWOG2QMUQjiWM6lqsvPAx8eHiPqN8ue/mp4Obt7WDs1kRep23Lzt+nqEcFQmJzvHjh2jbdu2AHz//fc0adKEnTt3smzZMpYsWWLu+IQQDubIlYJWHScn+76TbnKRshDCKkwuUM7JycHd3R2ADRs28NBDDwEQFRVFUlKSeaMTQjgcTb1OdONGVo6k/EpNdjQtPUIIqzL5a1Xjxo35/PPP+euvv1i/fj09e/YEIDExkYCAALMHKIQwwIgZtK9evcq1a9dQFKUCAjLe0ZT8lp38nlj2TXpkCWEfTE523nvvPb744gs6d+7Mk08+qZ3p/Ndff9Xe3hJCWMCh5QXPi5lBW1EU/ve//9GoUSMCAwOpUaMGDRs25KuvvrKZpCclU03nCGda1w+xdijlZvJtLAcaK0kIe2LybazOnTtz7do1MjIyqFq1qnb5yJEj8faWgjwhLCL9MvyhM/mugRm08/LyeP7554vUzp06dYoRI0awevVqVqxYgaenZ8XFXcjtnYvYOcwbZycVyt4XISjHrkcVlpodIeyDyS07Xbp04ebNm3qJDkC1atV44oknyhzInDlzUKlUjBs3Trvs7t27xMbGEhAQgI+PDwMHDuTKlSt6+yUkJNCnTx+8vLwIDAxk4sSJ5ObmljkOIWxS6ln9CSWhYAbtf40ZM4YlS5bg4uLCzJkzSUtLIz09nblz5+Lh4cGvv/7KQw89RHZ2dgUH/6/0y3humYazU/70ECpNwpZ+2TrxmIEm2UlISLCZljMhRFEmJztbtmwx+GF59+5d/vrrrzIFsW/fPr744guaNm2qt3z8+PGsXr2alStXsnXrVhITExkwYIB2fV5eHn369CE7O5udO3eydOlSlixZwrRp08oUhxA2q1odUBV6u+rMoL1ixQo+//xznJycWL58OVOnTsXPzw9fX18mTpzI+vXr8fHxYcOGDXpfKCpU6llUFEoICiVs9qZWrVoA3Llzh9TUVCtHI4QojtHJzpEjR7Tz2Rw/flz7+siRIxw8eJBFixZRs6bps/neunWLwYMH8+WXX+q1FqWnp7No0SI+/PBDunTpQqtWrVi8eDE7d+5k9+7dAPz5558cP36c//3vfzRv3pxevXoxc+ZMFixYUOK316ysLDIyMvQeQtg0v5r5M2hr6MygffXqVUaPHg3A1KlTeeyxx4rs3qFDB1asWIFKpeKzzz7jhx9+qKDAdVSrg7pw44dOwmaPPDw8qFGjBiC3soSwZUYnO82bN6dFixaoVCq6dOlC8+bNtY9WrVoxa9asMrWoxMbG0qdPH7p166a3/MCBA+Tk5Ogtj4qKonbt2uzatQuAXbt2ER0dTVBQkHabHj16kJGRwT///FPsOWfPno2fn5/2oWmKFsKmFTOD9ltvvUVaWhotWrTgzTffLHb3Pn36MGXKFABGjx7N1atXLRpuEX41eW2HJ7majEcnYbNn0iNLCNtndLITHx/P2bNnURSFvXv3Eh8fr31cvnyZjIwMhg0bZtLJV6xYwd9//83s2bOLrEtOTsbNzQ1/f3+95UFBQSQnJ2u30U10NOs164ozZcoU0tPTtQ/5kBJ2xzcUsjM5/ZIPX3z+GQDz5s3DxaXkPgfTpk0jOjqaa9eu8dZbb1VEpFopKSm8v/EKkfNukZmt6CVs9qzMRcpGDB8ghDAPo3tjhYeHA6BWq0vZ0jgXL17k5ZdfZv369Xh4eJjlmMZyd3fXDowohD2buyMbtQJ9e/eiY8eOpW7v7u7OJ598QufOnVm4cCFjx44lKiqqAiKF/fv3A+DjrsLbTZWfsDkAk5KdwsMH9PvYIRI+IWydyV3PAc6cOcPmzZtJSUkpkvwYeyvrwIEDpKSk0LJlS+2yvLw8tm3bxn/+8x/WrVtHdnY2aWlpeq07V65cITg4GIDg4GD27t2rd1xNby3NNkI4qkuXLvPN4RwAXp/8qtH7derUiYceeohff/2VyZMn88svv1gqRD379u0DoE2oc4Wcr6IYnewYMXyAEMIyTE52vvzyS0aPHk316tUJDg5GpVJp16lUKqOTna5du3L06FG9Zc899xxRUVFMnjyZsLAwXF1d2bhxIwMHDgTyxwtJSEggJiYGgJiYGN555x1SUlIIDAwEYP369fj6+tKokf0PRS9ESRYu+pocNdxf25mY9u1M2ve9997jt99+49dff2XLli107tzZMkHqcPRkJyEhoeQNSxo+QJIdISzK5GRn1qxZvPPOO0yePLlcJ65SpQpNmugPF+/t7U1AQIB2+fDhw5kwYQLVqlXD19eXl156iZiYGNq3bw9A9+7dadSoEc888wxz584lOTmZqVOnEhsbK7ephEPLycnhq8VLARjT1q30HbIz4d1/bxu9nkhUVBQjR47ks88+Y9q0aWzbts0ygf57XkVR2Lcv/3Z161D7nvyzMKNbdjTDB+gmPHbeG00Ie2Hyp86NGzcMdm21hI8++oi+ffsycOBAOnbsSHBwMKtWrdKud3Z2Zs2aNTg7OxMTE8PTTz/Ns88+y4wZMyokPiEqlGZSyenprPlzM0lJyQR6q3g4ysB3FiOmJXjjjTdwc3Pjr7/+KvMYWca6lKGQknIVFxcXmgc7ZsvO5cuXS65pLGH4ACGEZZncsvPYY4/x559/8sILL5g9mC1btui99vDwYMGCBSxYsKDYfcLDw/n999/NHosQtuybb/LnxRrazBU3Z1UpWxtWs2ZNhg4dysKFC5k9ezb333+/OUPUs/dy/kznjRs3xvOdQxY7jzWEhobi5ORETk4OV65cISSkhDm/mj8Fv/9bXxW7B6rXq5gghajkTE526taty5tvvsnu3buJjo7G1dVVb/3YsWPNFpwQoqjU1FR+++03AJ5r8e/7LyOxTH84J02axFdffcUff/zBwYMHadGihTlD1dpxMT/Zuffeey1yfGtycXEhNDSUS5cucfHixZKTHV0O0htNCHtgcrKzcOFCfHx82Lp1K1u3btVbp1KpJNkRwsJ++OEHcnJyeKtvBFHV/52ioIzdmOvUqcOTTz7JsmXLePfdd1m5cqUFIoa/EvLnq+vQoYNFjm9tYWFh2mSnbdu21g5HCFGIyclOfHy8JeIQQhRWqKgYN28AVq1aRc0qKqa1ulGwbTm6Mb/22mssW7aMH3/8kbi4OOrWrWumC8h3K1vhYFJ+LYslb5VZU1hYGLt27ZIBSoWwUY7VLUIIB5eRkcGmTZuoF+CEk5km1WzSpAm9e/dGURQ++ugjM0VaYPelPPIUqF07zGGnZjG6+7kQwipMbtkpbUqIr7/+uszBCCFKtm7dOnJycsjzqwOq68Z1Y85I1K8PMVDfM3HiRH7//XcWL17M22+/TfXq1csWYOHWKOBgUi6dI5yJvt8y9UC2oMxTRgghKkSZup7rPlJSUti0aROrVq0iLS3NAiEKITR+/fVXANo9+EjJ3ZgLT0uw+mX9139/o3fcTp060bp1a+7cuVNi70eTHVrOhBh3Ng/xZt49W4uc11EYPRmozvABmtuSQgjLM7ll56effiqyTK1WM3r0aOrUqWOWoIQQReXm5mp7YT300EPQvKXhbsyGpiU4ulL/daH6HpVKxauvvsqgQYP4z3/+w8SJE/Hy8ipfwBmJKH9Mwtkpv2u8E4rDTo8gLTtC2Daz1Ow4OTkxYcIEi9zvF0Lk2759Ozdu3CAgIKBoF27d21SGpiUozEB9z8CBA4mIiODatWssXbq0/AGnxqMqbnoEB6NJdpKSksjJybFyNEKIwsxWoHz27Flyc3PNdTghhK6MRO0trL59++LsbGAUYs2oyUv75U9LUBID9T0uLi5MmDABgA8++IC8vLzyxVwtEnWhGmpHnR6hRo0auLm5oSgKiYmJ1g5HCFGIybexNB+GGoqikJSUxG+//caQIUPMFpgQlV6huhvPEz4A9OvXr/R9u8+Cda/nP1c5Q5MBBbeySpimYNiwYUyfPp2zZ8/yy1NVGPDfq2WuLVGqhPDaTk/ejbmNi5PKoadHcHJyolatWpw7d46EhATCw8OtHZIQQofJLTsHDx7Uexw5cgTI/yY4b948c8cnROVkoO7m7TbphPk507Vr19L3j3684HnsnvwBB3VfFzP4oLe3Ny+Oeh6A93dmoyiFm2aMd3L/Ft7fcIWo/9ziTo5S4nkdgdTtCGG7TG7Z2bx5syXiEELoMlB34+Kkok9MFP7+/qYdq/C0BKVMUzBm9CjenzuX3Zfy2LFzFx0eeND4c+m0RjVY/zTDWrhy5ZaCp6vK4adHMLpHlhCiwpW5Zufq1ats376d7du3c/XqVXPGJISoVqdI3U2uWiG8RZeCBRbqxhwUFMSzzfLn3Hr/w49L2VpHodYoJxS+6OvBoMYmf6eyS9KyI4TtMjnZyczMZNiwYYSEhNCxY0c6duxIaGgow4cP5/bt25aIUYjKx6+m3jg6uWoYteYurbs8VCGnfyXGDRXw65rfOHnypHE7FdMa1be+JDtCCOsyOdmZMGECW7duZfXq1aSlpZGWlsYvv/zC1q1beeWVVywRoxCVU/OnAEhIzyNi3k2WHXfivvvuM27fm0nlOnWD6s68fr8bNauomDVrlnE7GWiNylPA37NyzEojyY4QtsvkT6Eff/yRRYsW0atXL3x9ffH19aV37958+eWX/PDDD5aIUYhKbc3pPC7fVLj33nvx9PQsfkPd3lsLO5X9hP8eZ1YXDy6M88Hj+EoOHTpU+n7/tkZpippz1Qp7qz9eyk6OQ5IdIWyXye3Lt2/fJigoqMjywMBAuY0lhAVsjM8fv6rEXliGRk3WpanvKU2h4zg7qfi8rztD3hzHstVbSt+/+VNsWTCOt7dmkZLrzd6TH4HPl6Xv5wA0yc61a9e4fft2+UegFkKYjcktOzExMbz11lvcvXtXu+zOnTu8/fbbxMTEmDU4ISo7taKw2Zhkp7hRk4esMVy8rBmAcLpf/vMSjuPipOLy0e1s2LDBqJg/2JXN1gt59BjwDD4+Pkbt4wj8/f3x9s7/v7506ZKVoxFC6DK5Zefjjz+mR48e1KpVi2bNmgFw+PBhPDw8WLdundkDFKIyO5ai5sZd8PHxoXXr1sVvqKmXMWYW9JIYOI5aURGXqmbChAns378fN3L0ZzbXSaYOHjrMb2dyUQEvjhph2rntnEqlonbt2pw4cYKLFy9Sv359a4ckhPiXyS07TZo04cyZM8yePZvmzZvTvHlz5syZw5kzZ2jcuLElYhSi0tqRkD9lQ/u2bXBxKeG7SaHeW2UerdjAcTK7vkuWewBHjx5lzpw5Je7+xrS3AXgy2oV69eqadm4HIHU7QtimMvUJ9fLyYsSIyvWtTYgK5+bNdv8BwHI6dDSi4Lj5U4ZnQTdVoeNUqV6P+fOr8tRTTzFjxgw6xrShs4HdfvjhB/5Y9ycuTvB2Z4+yndvOSbIjhG0yuWVn9uzZfP3110WWf/3117z33ntmCUoIkW/Hjh0Axnc51zDXaMX/HmfQoEE8/fTT5OXl8dhTz3A4WX+S0Li4OEaNGgXAxHvdqFutcnQ3L0ySHSFsk8mfSF988QVRUVFFljdu3JjPP//cLEEJUSkVKhq+dOkSFy5cwMnJiXbt2lk1NJVKxRdffEHr1q25du06nZZk8uWBbJKTr7B69Wo6depEamoqrVq1YvrGm2Yf1dleSLIjhG0y+TZWcnIyISEhRZbXqFGDpKTyDWQmhCigadVp3rw5VapUsdyJMhKNuuXl5eXF+vXr6dO7Fzt37Wbkmruwpo52fZMmTfj9999xc3OzXKw2TpPsJCQkWDkSIYQuk1t2wsLCtB/Cunbs2EFoqGNP9CdERdq+fTtQhltYxtAdgHBBW/j7G6N28/f3Z+uGtXzex53B0a7UrKIiIKAaE+91Y3ufCwT6V77WHF0yGagQtsnklp0RI0Ywbtw4cnJy6NIlf1LCjRs3MmnSJJkuQggz0nyp6NChg3E7lHHgQBQ1rB4Hdboa1XvL5dj3jGrtzqjWoKicUPWaU1DQXMlpWnZu3rxJeno6fn5+Vo5ICAFlSHYmTpzI9evXefHFF8nOzgbAw8ODyZMnM2XKFLMHKERldPPmTQ4fPgxYoGXH0ACESh6knstPdkpKmgolSipFDX9MNm98dszLy4tq1aqRmprKxYsXJdkRwkaYfBtLpVLx3nvvcfXqVXbv3s3hw4dJTU1l2rRplohPiEpp9559qNVqIiIiqFnTxLFySmNgwk6jByAsLlESWlKkLITtKXP/UB8fH9q0aUOTJk1wd3c3Z0xCVHr/7N0IYJkpWMozAGFxiZLQkmRHCNtTOQfDEMIW6RQNj1UWM6yFq+W6nDd/quB57B5o+axx+xlKlHrJ+Fq6TEp2ipujTAhhVpLsCGELCtXCOKngi74e3N/MxLmtysLUAQgLJ0q6rzMSzROTHZPu50LYHkl2hLAFxcw23iTEy0oBGck3tMzd2B2VdD8XwvYYley0bNmSGzduADBjxgxu375t0aCEqHQM1MLkqcEtuOho5TYlI9FwN/b0y1YLydqkZkcI22NUsnPixAkyM/PvJ7/99tvcunXLokEJUekUqoXJVSusyGxv+qzlZVXW2pHU+OK7sVdSmmTn0qVLKIpi5WiEEGDkODvNmzfnueeeo0OHDiiKwv/93//h4+NjcFvpgi5EGf072/iY3+/w88lcZi942nLnKjyWTlmLY6tF5rdI6SY8xnZjd1A1a9ZEpVJx9+5drl27Ro0aNYzb0chpO4QQpjMq2VmyZAlvvfUWa9asQaVS8ccff+DiUnRXlUolyY4QpsjOhHf/LRB+NY6cPIVFB3O4mwtt27a1bmzG8A3Nb5HSjKBsSjd2B+Xm5kZQUBDJyclcvHix5GSncL1Tv4+N7xknhDCaUbexGjRowIoVK9i3bx+KorBx40YOHjxY5PH333+bdPLPPvuMpk2b4uvri6+vLzExMfzxxx/a9Xfv3iU2NpaAgAB8fHwYOHAgV65c0TtGQkICffr0wcvLi8DAQCZOnEhubq5JcQhhK46mqLmbmz8HVb16NvItv/AtLk2rkGZm87J2Y3dgRtXtFDdtRyWudxLCUkzujaVWqwkMDDTLyWvVqsWcOXM4cOAA+/fvp0uXLvTv359//vkHgPHjx7N69WpWrlzJ1q1bSUxMZMCAAdr98/Ly6NOnD9nZ2ezcuZOlS5eyZMkSaV0SdmvPpfzRiNu2boWTkx12ljS1G7uD0vTIKrH7eUnTdgghzMrkubEAzp49y7x58zhx4gQAjRo14uWXX6ZOnTomHadfv356r9955x0+++wzdu/eTa1atVi0aBHLly/XTji6ePFiGjZsyO7du2nfvj1//vknx48fZ8OGDQQFBdG8eXNmzpzJ5MmTmT59Om5ubmW5PCGsZl/iv8lOm1bWC0JqR8rNqJYdTQ88qXcSwuJM/uq4bt06GjVqxN69e2natClNmzZlz549NG7cmPXr15c5kLy8PFasWEFmZiYxMTEcOHCAnJwcunXrpt0mKiqK2rVrs2vXLgB27dpFdHQ0QUFB2m169OhBRkaGtnXIkKysLDIyMvQeQlSIkno9uXlxQN0QgNbt7q3YuGSsHLMyamDB4kaj/qiRjKgshJmZnOy89tprjB8/nj179vDhhx/y4YcfsmfPHsaNG8fkyabPfnz06FF8fHxwd3fnhRde4KeffqJRo0YkJyfj5uaGv7+/3vaawj+A5ORkvURHs16zrjizZ8/Gz89P+9B8MAlhTXdSzmmT9FatKrBlR2pHzC4iIgKA8+fPl7xhSaNRCyHMxuRk58SJEwwfPrzI8mHDhnH8+HGTA2jQoAGHDh1iz549jB49miFDhpTpOKaYMmUK6enp2ocM/iWsRqdFxeOr+xnS1IkaNWqYf6bzkphSO2JoOojCBcuCyMhIwIhkR5fUOwlhMSYnOzVq1ODQoUNFlh86dKhMhctubm7UrVuXVq1aMXv2bJo1a8bHH39McHAw2dnZpKWl6W1/5coVgoODAQgODi7SO0vzWrONIe7u7toeYJqHEBWu0OjDKhS+6OtBj5gmqFSqioujuJnMNbUjcovLZJqWnStXrpR9xPns2zJJqBBmYnKyM2LECEaOHMl7773HX3/9xV9//cWcOXMYNWoUI0aMKHdAarWarKwsWrVqhaurKxs3btSuO3XqFAkJCcTExAAQExPD0aNHSUlJ0W6zfv16fH19adSoUbljEcKiDIw+7OKkonPT2hUbh6HaEc1YOXKLq0yqVq2Kn58fABcuXLByNEIIk3tjvfnmm1SpUoUPPviAKVOmABAaGsr06dMZO3asSceaMmUKvXr1onbt2ty8eZPly5ezZcsW1q1bh5+fH8OHD2fChAlUq1YNX19fXnrpJWJiYmjfvj0A3bt3p1GjRjzzzDPMnTuX5ORkpk6dSmxsLO7u7qZemhAVy8Dow7lqhdDGHSo+ln9Hbwbya0c0vbFKusVViQcONEZERASHDx8mPj6ehg0bmn6Am0nmD0qISsrkZEelUjF+/HjGjx/PzZs3AahSpUqZTp6SksKzzz5LUlISfn5+NG3alHXr1vHggw8C8NFHH+Hk5MTAgQPJysqiR48efPrpp9r9nZ2dWbNmDaNHjyYmJgZvb2+GDBnCjBkzyhSPEBVOZ/ThXLXCqDV3mTb8QevGpFs7It2jyywyMpLDhw+XXLdTeNqOvV8WPF/YyWKxCVHZlGmcHY2yJjkaixYtKnG9h4cHCxYsYMGCBcVuEx4ezu+//16uOISoMIXrX/69fXTqWh5dv7nNXbdqfFW7gm9jlURzi0umgzCZpm4nPj7euB0M3TIUQpiFHQ7RKoSdMvTH7I/84Rq2Xsjj8k2Fli1bVmxxsjFkOogyMbr7uYahW4YahnrBCSGMJsmOEBWluPoX4MC/IydX6Pg6ZSHdo42m6X5udMuOoV5xGtILTohykWRHiIpSXBdv4ECSlZMdGSvH7Exu2SncK06X9IITolxMSnZycnLo2rUrZ86csVQ8QjiuYqYHyM5TOJqS3+LTsmVLKwUnzE2T7Fy/fl3bmaNUJY2gLJOEClFmJiU7rq6uHDlyxFKxCOH4Cte/tB3BPwO2kp2XPzaL5taHsH++vr5Uq1YNMHEkZY2SBnoUQpjE5NtYTz/9dKm9qIQQRvi3/uXAgQMAtlmcDHKLqxxMrtvR1X1WwXPpBSdEuZjc9Tw3N5evv/6aDRs20KpVK7y99T/8PvzwQ7MFJ0RloJvsCMcSERHBgQMHytayE/04rHs9/7nuQI9CCJOZnOwcO3ZM+6F8+vRpvXU2+a1UCBv3999/A3bQE0uYrFwtO7qkF5wQ5WJysrN582ZLxCFEpZSTk8Phw4cBSXYckck9snRHVJbJP4UwmzKPoBwXF8fZs2fp2LEjnp6eKIoiLTtCFJadCe/++6389cQi0wMcP3yYrKwsfH19ueceKT51NGZr2RFClIvJBcrXr1+na9eu1K9fn969e5OUlD9Z3fDhw3nllVfMHqAQjkxzC6tly5Y4OcmwV47G5JYdIYRFmPzpOn78eFxdXUlISMDLy0u7/IknnmDt2rVmDU4IR6cpTpZbWI4pPDwcgPT0dG7cuGHaztILTgizMfk21p9//sm6deuoVauW3vJ69epx4cIFswUmRGUgPbEcm7e3N4GBgaSkpHD+/HmqVq1q7ZCEqJRMbtnJzMzUa9HRSE1Nxd3d3SxBCVEZ5ObmSnFyJWDy7OdCCLMzOdm5//77+eabggnpVCoVarWauXPn8sADD5g1OCEcSqGZq0+ePMmdO3fw8fGhXj0ZQ8VRaYqUpW5HCOsx+TbW3Llz6dq1K/v37yc7O5tJkybxzz//kJqayo4dOywRoxD269DygucL2kK/j6Hls0DBLawWLVpIcbIDM1vLjqGefUIIo5j8CdukSRNOnz5Nhw4d6N+/P5mZmQwYMICDBw9Sp04dS8QohH1Kvwx/TCp4XWjmahlMsHKQlh0hrK9M4+z4+fnxxhtvmDsWIRxL6tn8BEeXZuZqv5rSE6uSkO7nQlhfmZKdGzdusGjRIk6cOAFAo0aNeO6557Qz/AohgGp18meu1k14/p25Oi8vj4MHDwLSE8vR6Q4sKIOvCmEdJt/G2rZtGxEREcyfP58bN25w48YN5s+fT2RkJNu2bbNEjELYJ7+a0GtuwWudmatPnz7N7du38fb2pkGDBlYLUVheeHg4KpWKzMxMrl69ap6DFip2F0KUzORkJzY2lieeeIL4+HhWrVrFqlWrOHfuHIMGDSI2NtYSMQphv5o/VfA8dk+R4uTmzZvj7OxsjchEBXF3d9eOS3b27NmyH6hwsfvf3xS/rRBCj8nJTlxcHK+88oreB7SzszMTJkwgLi7OrMEJYXeyM2G6X/6j8ESOOjNXy2CClUvdunUByv4ZWUqxuxCiZCYnOy1bttTW6ug6ceIEzZo1M0tQQjg66YlVuWh6qpY52Smp2F0IUSqjCpSPHDmifT527Fhefvll4uLiaN++PQC7d+9mwYIFzJkzxzJRCuFA1Gq1tjhZkp3KQdOyU+bbWCUUuwshSmdUstO8eXNUKhWKomiXTZo0qch2Tz31FE888YT5ohPC3mkmc9Rx5swZbt68iaenJ1FRUVYKTFSkct/G0hS7//5q/mudYnchROmMSnZkThchyiAjEaoXnQZCcwurWbNmuLiUafQHYWc0t7HKVaDc/KmCZCd2j8HfLSGEYUZ90oaHh1s6DiEcQwnTQ2jIYIKVjybZuXbtGmlpafj7+5fvgDrF7kKI0pXpa2ViYiLbt28nJSUFtVq/aG7s2LFmCUwIu1Ncj5k6XfVuN+zfvx+QZKcyqVKlCoGBgaSkpHD27Fn52QtRwUxOdpYsWcKoUaNwc3MjICBAbzRQlUolyY6ofHQnaCxMZ3oIyC9Olp5YlVPdunUl2RHCSkxOdt58802mTZvGlClTZKZmIQorpcdMXFwcN2/exMPDg0aNGlkhQGEtdevWZefOnWUvUjZQ7C6EMI7J2crt27cZNGiQJDpCGNJ9VsFzAz1mdEdOluLkysUsRcpCiDIxOWMZPnw4K1eutEQsQti/6McLnutMD6EhxcmVV7m7nwshyszkr5azZ8+mb9++rF27lujoaFxdXfXWf/jhh2YLTgi7czOp4LmBHjOS7FRe0rIjhPWUKdlZt26ddqbmwgXKQlQ6ut3NF3YqdjO1Wi3JTiWmadm5fPkyt2/fxsvLy8oRCVF5mJzsfPDBB3z99dcMHTrUAuEIYWcMdTcvhhQnV27VqlXD39+ftLQ0zp07R5MmTawdkhCVhsk1O+7u7tx3332WiEUI+2NogkaAIWvye8/o0LTqyMjJlZNKpdK27pw5c8bK0QhRuZic7Lz88st88sknlohFCPujmaBRVzETNGqSndatW1dEZMIG1a9fH4DTp09bORIhKheTk529e/eydOlS7rnnHvr168eAAQP0HqaYPXs2bdq00Y4u+vDDD3Pq1Cm9be7evUtsbCwBAQH4+PgwcOBArly5ordNQkICffr0wcvLi8DAQCZOnEhubq6plyaE6TQTNGqUMEGj1OsITa1j4c85IYRlmZzs+Pv7M2DAADp16kT16tXx8/PTe5hi69atxMbGsnv3btavX09OTg7du3cnMzNTu8348eNZvXo1K1euZOvWrSQmJuolVXl5efTp04fs7Gx27tzJ0qVLWbJkCdOmTTP10oQom+ZPFTw30N0cZORkkU+SHSGsQ6UoimLtIDSuXr1KYGAgW7dupWPHjqSnp1OjRg2WL1/Oo48+CsDJkydp2LAhu3bton379vzxxx/07duXxMREgoKCAPj888+ZPHkyV69exc3NrdTzZmRk4OfnR3p6Or6+vha9RuGAdKeLeD2xSK0O5N+2aNCgAR4eHty8eVNqdiqpQ4cO0aJFCwICArh27Zq1wxHC7hn799umhkFOT88fCr1atWpAfrN/Tk4O3bp1024TFRVF7dq12bVrFwC7du0iOjpam+gA9OjRg4yMDP755x+D58nKyiIjI0PvIYQlSXGyAKhXrx4A169f5/r16+U7WHYmTPfLf2Rnlr69EJWYyZ+6kZGRJY6nc+7cuTIFolarGTduHPfdd5+2S2ZycjJubm74+/vrbRsUFERycrJ2G91ER7Nes86Q2bNn8/bbb5cpTiHKQup1BIC3tzdhYWFcvHiRU6dOce+991o7JCEqBZOTnXHjxum9zsnJ4eDBg6xdu5aJEyeWOZDY2FiOHTvG9u3by3wMY02ZMoUJEyZoX2dkZBAWFmbx8woHZcQEjZLsCI0GDRpIsiNEBTM52Xn55ZcNLl+wYAH79+8vUxBjxoxhzZo1bNu2jVq1ammXBwcHk52dTVpaml7rzpUrVwgODtZus3fvXr3jaXprabYpzN3dHXd39zLFKoSpdIuTpdu5aNCgARs2bJAiZSEqkNlqdnr16sWPP/5o0j6KojBmzBh++uknNm3aRGRkpN76Vq1a4erqysaNG7XLTp06RUJCAjExMQDExMRw9OhRUlJStNusX78eX19fGaVW2ISzZ8+SkZEhIycLwEI9sjISzXcsIRyQ2Solf/jhB21hsbFiY2NZvnw5v/zyC1WqVNHW2Pj5+eHp6Ymfnx/Dhw9nwoQJVKtWDV9fX1566SViYmJo3749AN27d6dRo0Y888wzzJ07l+TkZKZOnUpsbKy03giboGnxlOJkAWZMdnTnZFvQFvp9bHDYAyFEGZKdFi1a6BUoK4pCcnIyV69e5dNPPzXpWJ999hkAnTt31lu+ePFi7dxbH330EU5OTgwcOJCsrCx69Oihdx5nZ2fWrFnD6NGjiYmJwdvbmyFDhjBjxgxTL00Ii5B6HaFLk+zExcWRm5tbtgTY0Jxsq8dBna4GB7QUorIz+V328MMP6712cnKiRo0adO7cmaioKJOOZcwQPx4eHixYsIAFCxYUu014eDi///67SecWoqJIsiN0hYWF4enpyZ07dzh//rx2viyTGJqTTcmD1HOS7AhhgMnJzltvvWWJOIRwSHl5eZLsCD1OTk7Uq1ePI0eOcOrUqbIlO5o52XQTnmLmZBNC2NiggkI4mpMnT3Lz5k28vb1p3LixtcMRNqLcdTsmzMkmhDAh2XFycsLZ2bnEhxRfCqFvz549QH6Xc3l/CA3NLf+TJ0+W/SBGzMkmhMhn9KfvTz/9VOy6Xbt2MX/+fNRqdbHbCFEZaZKddu3aWTkSYUs0QxAUN6WNyXxDzXMcIRyU0clO//79iyw7deoUr732GqtXr2bw4MHSA0qIQiTZEYZopsQ5duwYiqKUOAWPEKL8ylSzk5iYyIgRI4iOjiY3N5dDhw6xdOlSwsPDzR2fEHYrMzOTo0ePApLsCH3169fHxcWFjIwMLl++XLaDaKYpmZ6e/1wIUSyTkp309HQmT55M3bp1+eeff9i4cSOrV6/WfksRQhQ4cOAAarWamjVrUrOmFI6KAm5ubtoZ0M12K0sIUSyjk525c+dyzz33sGbNGr799lt27tzJ/fffb8nYhLBrcgtLlETTO89syU52Jkz3y3/culrwPDvTPMcXwo4ZXbPz2muv4enpSd26dVm6dClLly41uN2qVavMFpwQ9mz37t2AJDvCsMaNG/PDDz9w7Ngxa4cihMMzOtl59tlnpYhOCMj/pvzuv71fXk8stl5CWnZESTS3/+U2lhCWZ3Sys2TJEguGIYRjuXz5MpcvX8bJyYnWrVtbOxxhgzS3sY4fP27+Hlk3kwqeZyRC9XrmO7YQdkhGUBbCAjStOtHR0Xh7S08ZUVTdunVxdXXl1q1bJCQklP+AurOgf9Gx4PmCtvD3N+U/vhB2TJIdIcojI9HgYrmFJUrj6uqqnTai3HU7hWdBR2eSZc2M6Oll7OIuhAOQZEcIU+l+gy7mW7MkO8IYZuuRZWgWdF2aGdGFqKQk2RHCFIW/QRv41pyXl8f+/fsBSXZEycxWpKyZBb04MiO6qOQk2RHCFIa+QRf61vzPP/+QmZlJlSpVtBM+CmGIpmVHM9J2mRWeBR2dYmeZEV0ISXaEMImhb9CFvjXv3LkTgLZt2+Ls7FyR0Qk706xZMyA/Qc7JySnfwXRnQR+1reC5zIguhCQ7Qpik8DdoA9+at2/fDiAjjItSRURE4OvrS3Z2NidOnDDfgauEFDyXGdGFkGRHCJPpfoM28K1Zk+x06NChIqMSdsjJyYnmzZsDcOjQIavGIoQjk2RHiPIo9K354sWLXLhwAWdnZylOFkZp0aIFAAcPHizfgXRnQfepITOiC6FDkh0hzGjHjh0ANG/eHB8fHytHI+yBpmWn3MmOEKJYRk8XIUSlZWgurOnpBjeVW1jCVJqWnUOHDpl/2gghBCAtO0KYlSQ7wlQNGzbEzc2N9PR0zp8/b+1whHBIkuwIYYpipocASE9P58iRIwDcd999FRWRsHNubm7a8XakSFkIy5BkR4jSGDE9BMCuXbtQFIU6deoQEhJicBshDDFbkbIQwiBJdoQoiRHTQ2j89ddfgLTqCNNJsiOEZUmyI0RJjJgeQmPLli0AdOrUqQICE45ExtoRwrIk2RGiJEZMDwFw69Yt9u7dC8ADDzxQUdEJB9GsWTNUKhWXLl0iJSXF2uEI4XAk2RGiJEZMDwH54+vk5uYSHh5OZGRkxcYo7F6VKlVo2LAhgDZpFkKYjyQ7QpSmlOkhADZv3gxIq44oO82I27t377ZyJEI4Hkl2hDBFMZMqapKdLl26VGQ0woG0b98egD179lg5EiEcjyQ7QpRTeno6+/fvB6RlR5SdpmVn7969qNXqUrY2UXYmTPfLf2RnmvfYQtgBmS5CiNKUMD0E5Hc5V6vV1K1bl1q1alVgYMKRNG7cGC8vLzIyMjh58iSNGjWydkhCOAxp2RGinKReR5iDi4sLbdq0ASx8K6uEUcCFcFSS7AhRTps2bQIk2RHlZ7EiZSNHARfCUUmyI0Q5JCcnaweC69q1q3WDEXbPIkXKJowCLoSjkmRHiMJMKOb8888/AWjVqhWBgYEVEZ1wYJqWnaNHj3Lr1i3zHNSEUcCFcFRWTXa2bdtGv379CA0NRaVS8fPPP+utVxSFadOmERISgqenJ926dePMmTN626SmpjJ48GB8fX3x9/dn+PDh5vuQEKIUa9euBaBnz55WjkQ4gtDQUMLCwlCr1doefuVm5CjgQjgyqyY7mZmZNGvWjAULFhhcP3fuXObPn8/nn3/Onj178Pb2pkePHty9e1e7zeDBg/nnn39Yv349a9asYdu2bYwcObKiLkE4Cr3WnNsFy0so5szLy9O27EiyI8zl3nvvBQomli03I0cBF8KRWTXZ6dWrF7NmzeKRRx4psk5RFObNm8fUqVPp378/TZs25ZtvviExMVHbAnTixAnWrl3LV199Rbt27ejQoQOffPIJK1asIDGx+D9SWVlZZGRk6D2E0Dr6fcHzEoo5//77b65fv46vr6/29oMQ5dW5c2egYGJZsyg8CniTgTLujqhUbLZmJz4+nuTkZLp166Zd5ufnR7t27di1axcAu3btwt/fn9atW2u36datG05OTiUW+M2ePRs/Pz/tIywszHIXIuzPn1MLnpdQzKm5hdWtWzdcXV0rKDjh6DTJzs6dO8nKyjL/CYoZBVwIR2azyU5ycjIAQUFBesuDgoK065KTk4sUhbq4uFCtWjXtNoZMmTKF9PR07ePixYtmjl7YHd2uuUYWc0q9jrCEBg0aEBQUxN27d803KahmYMzp6fnPdcm4O6ISsNlkx5Lc3d3x9fXVe4hKrHDX3MIMFHOmpqZqx0Lp0aOHJaMTlYxKpbLMrSxdMu6OqGRsNtkJDg4G4MqVK3rLr1y5ol0XHBxMSkqK3vrc3FxSU1O12whRKkNdczWKKeZcs2YNarWapk2bUrt2bcvHKCoViyY7Mu6OqIRsNtmJjIwkODiYjRs3apdlZGSwZ88eYmJiAIiJiSEtLY0DBw5ot9m0aRNqtVoKRoXxDHXN1YjdAy2fLbJYUyT/8MMPWy4uUWlZtG5Hxt0RlZBVk51bt25x6NAh7Qi08fHxHDp0iISEBFQqFePGjWPWrFn8+uuvHD16lGeffZbQ0FDtH5iGDRvSs2dPRowYwd69e9mxYwdjxoxh0KBBhIZKEZ4wUpGuuTpvCwPFnLdv39bW60iyIyzBInU7GjLujqiErJrs7N+/nxYtWtCiRQsAJkyYQIsWLZg2bRoAkyZN4qWXXmLkyJG0adOGW7dusXbtWjw8PLTHWLZsGVFRUXTt2pXevXvToUMHFi5caJXrEXZMr2vu3uKLOYH169dz584dwsPDad68ecXFKCoN3bodzUSzZiPj7ohKSKUoimLtIKwtIyMDPz8/0tPTpVi5ssrOhHf/bcV5PdFgkqPx3HPPsWTJEl5++WXmzZtXMfGJSmfhwoWMGjWKmJgYdu7cad6D6/6+j9kP1euZ9/hCVBBj/35LsoMkO8J4ubm5BAcHc/36dTZv3qz99i2EuV28eJHatWujUqlISUmhevXqljuZCcm+ELbE2L/fNlugLIQt+uuvv7h+/ToBAQF06NDB2uEIBxYWFkbTpk1RFIV169ZV3Ill3B3hgCTZEZWTCTOb6/r2228B6N+/Py4uLpaKTggA+vTpA8Bvv/1m2RPJuDvCwUmyI4SR32SzsrJYuXIlkD8BrRCWpkl21q5dS25urmVOIuPuiEpAkh1ROZXhm+zatWtJS0sjNDSUTp06WTA4IfK1b9+eatWqcePGDe2I3WYn4+6ISkCSHVH5lPGb7LJlywB48skncXZ2tmCAQuRzdnbWTkdisVtZMu6OqAQk2RGVTxm+yWZkZLB69WpAbmGJiqW5laX5/TM7GXdHVAKS7IjKpwzfZFetWsXdu3eJioqSgQRFherduzeurq78888//PPPP5Y5id6gmoanSBHCnkmyIxyDKb2ryvBN9uuvvwbg6aefRqVSmSFgIYxTtWpVevbsCcCKFSsscxI374JRw2WAQeGAJNkRjicjUT/5uXam6DYmfJM9duwYf/31F87Ozjz33HMWCFiIkj355JNAfrIj48AKYTpJdiqp29m5RLz2GxGv/ca5q7esHU75Fe5dtfpl/deFe1uZ8E32iy++APLH1pEJZoU19OvXD09PT+Li4jhw4IC1wxHC7kiyU0n9eOCS9nm3D7fy3b4EK0ZTToZ6Vx1dqf+6jOOGZGZm8s03+YnS6NGjyxmoEGXj4+PDQw89BBQMbCmEMJ4kO5VQUvod3vq1oNBRrcDrq46RlH7HilGVg6HeVYUpefBRozKNmJyRkUHdunXp0qVLOQMVouwGDRoEwHfffYdaXcrvuxBCjyQ7FqZ7u+h2toVGQDVR/LVM1IVu++cpCuev3bZOQGWlqctZ2q9o76rCVDrj4hg5YrKiKCxYsACAUaNG4eQkbxdhPb169cLf35/Lly+zfv16a4dToLT6OCFsgHx6V6Dk9LvWDgGAyOreOBXqUOSsUhFR3cs6AZlDx4kFz1XOEP2Y/usmAwpeGzli8p9//smhQ4fw9vaWwmRhde7u7gwZMgSATz/91HInMnXeOJlXS9gBSXYsrHBtzH93nS9zYbC5iopD/Dx5+6HG2tdOKnh3QBNC/DzLfMximfKtr7RtC6/X/ZDd9j48OAOGrIFxR6HfxwXrhvwKx34seG1kDc/s2bMBGDlyJAEBAaVcqBCWp6kbW7NmDRcuXLD8CQ21guq+D89vl3m1hF2QZMeCDNXGTPul4LWphcHmLCoe2KqW9vmGCZ14ok3tYrctNckqKUkx5Vtfadvqrv9PG/hdpzVHUcOGt/MHBvSrqd/bSlGbPGLyzp072bp1K66urkyYMKH4mIWoQA0aNKBr166o1WoWLlxomZOY8j5c0lfm1RJ2QaXIoA1kZGTg5+dHeno6vr6+ZjvuzrPXeOrLPSVu46RCWz+z6ZVO3FPDR7vudnYujaatA+C7ke158svderU2Je1rTv/ddZ43/03SnFTw9kONta83vdKJe+K/hd9fzd9Y5ZTfqtLy2fxvd/Oa6H8YqpzzPwwBxuwH31B4N7Rg38Lbjjuan7wYOpYhQ9ZA5P36y4qLQ3NsA/r168eaNWsYNmwYixYtKvmcQlSgH3/8kUcffZTAwEASEhJwd3c338FLe68Y8z4s5b0lhDkZ+/dbWnYsyFBtTGG6yUvh1hrdlpxBC3cXKSouaV9TFdd6U1rr1NMfrkL5vVAz9q8v5bfyxG8z/K1Po/B4OCV9QzSmx1VxUz6YOGLy3r17WbNmDSqVikmTJhncRghreeihhwgNDSUlJcX8IyoXN2+cpiejofe0rsLvLSleFjZCkh0LKlwbo/r3URzdLuCFk4zSmt/K2328uFtkhnpu6b4MVyWjopgPv59HU+IVFx4PpzCVMyztm/9BqXIy0ONKpb9tSVM+tB0B448X1PQUM2Kyoii8+mp+K9UzzzxDgwYNio9PCCtwdXVl7NixAMyaNYvcXDP28jQ0b5zu+8zQe1rlDM9vMvzekuJlYSPkNhaWu42lkZR+h/PXbhNR3YsNx69obwGpKD6J+eCxpryy8kixxyxp302vdCLYz0N7C8zQa91bXknpd7hvzia9pMZZpWL7aw8AFFmnK5jr7HAfi7OquGh0I3WC4hKjIrv924NKkwypnKDJQJ3X/yY3dbrmt/5oanXK6aeffmLAgAF4eHhw5swZatWqVfpOQlSwW7duERERwfXr11m6dCnPPmvGiTv3fllwWxon8t+/uu9vnfe05n1o6MtDGW4fC2EqY/9+S7KD5ZOdwjTJj5ebE498utNgIqH57qS7ylmlYtWLMdzOVpe4r5MKHmoWys+HEot9PXtAtLYoubjaom9HtCemToBezY6huAY5b2a2y5cUOz/mo0vAuzq4esGibqXfjgIY+lv++DmFPyiHr4ec22ZLbnRlZ2fTuHFj4uLieOONN5g1a5ZZjy+EOb333nu89tpr1K1blxMnTuDi4mK+g6dfzv8SkXkVfihh2IUx+4tOt5KdWVCHZ4ihujohykhqdmxYiJ8nMXUCaBZWVe82l67COYyme3izsKql7qtW0CY2xb3WveVlqLbICbiemUVS+h2eiYlg15QufDuiPTundGFGf/1u6y0eHotqwvH8pKZwE7jKGcLa5n+41WpVtHam8Hg4D31Scg+qnNv5x7LAN8MPPviAuLg4AgMDmTx5stmPL4Q5xcbGUr16deLi4vjvf/9r3oP71cx/n4W1M/yeHn+8+HnldG9dFVZcXZ0QFiYtO1R8y05hSel3+O1IErN+O1Fk3X+ebEGAjzsR1b0MjoNT0r6l0bTcAEVab7Q3ngq1AumeV3NrTi8u3Sbw4pq4Nd8aNa0zhV9rtqnAJvDjx4/TokULsrOzzX9bQAgLef/995k0aRLBwcGcPHkSPz8/85/EmPe0Rkm9tQztq9sKZKiVSIhSyG0sE1g72YGS62ZKG+zP0L6lMXTspPQ7HDh/g7ErDpYpDi1DyUtZmPIhWw65ubncd9997N27l969e2t7Yglh67KysmjatCmnT5/mpZdeYv78+ZY5kbHv6fht+befC+vxLjR6WOfLzdn8YuhTvxsetkIII8ltLDtTnlGNDe37cPPQEl8bOnaInyfVfNzKP2+Wpgm8vC0wRvagKq+5c+eyd+9e/Pz8WLhwoSQ6wm64u7trp45YsGABBw4csMyJjH1PG+rNpXIuSHT2fpnfjX1pP/iocdGBQQuPvpx+OT+B+ndZUvoddp69Zr+TFgurkZYdbKNlR6PY20Nl2Le018Udo6wtTPZo3bp19OrVC0VRWLx4MUOHDrV2SEKYbPDgwSxfvpzmzZuza9cuPDw8rBdMcS2yxg4M+ugS8A6Ai3tg07+dBFRO7Gr0Jk8eyB8Korjb67qS0u8Qfy2TyOreZv/ssuSxrcVer0luY5nAlpIdW1B4xOTSPlTs1dmzZ2ndujVpaWk8//zz0qoj7FZycjJNmjTh+vXrjB492rIThRrD0G2v4m5x6Sl+UI1cxYkOWR+TTH6dYUlfwsryGWbsH3tLfz5aI+ko7ZpsORGSZMcEkuwUVZ4WJnuQkpJC586dOXHiBO3atWPr1q3mHXZfiAq2du1aevfujaIo/O9//2Pw4MHWDkmfwZYdFahU/y4zNKaPvkHZU9mtbqR9rdvJAvI/t/afT+XlFYdMap02NoEpS8u3KYmCqYmUOZKQ0q7J1r/8Gvv324wDMwhHEuLn6ZBJDsD169fp1q0bJ06coGbNmvz444+S6Ai717NnT6ZOncrMmTMZOXIk99xzDzExMdYOq4Bm2pbCt7g0A4OWMqZPruLEeXWQ9rWzSoWXmxM7z14jsrq33oCthWnqDgt3yIi/lom3m3ORKXFeX3WMjvVrFPkMNDSifJ6icOD8Dar5FCQdmmP/feEG//fnaaD0RMHQ1DxTfjyKt7sLrcKrFonFUBLSsX4NbfKjibe0RKika1JINfh/ExVchczsvCLXa4stPxrSsoO07FQmSUlJ9OnTh4MHDxISEsLWrVupV0+6uwrHkJeXR9++fVm7di1+fn5s2rSJli1bWjssfcX17Cql2/quRlP1anZ0B0o1NNipLs2ArJo/0MaMZF+41QgMt4IUHqpDN67S4tBNFFIzsxmz/KDB/QonSqXFYWj4EN1EqHDSV9KxSlLagLUVQW5jmUCSncrh77//5qGHHuLy5cvUqFGDrVu30rBhQ2uHJYRZZWZm0rNnT7Zv305AQADr1q2jVatW1g7LOH9/k98jS8nLb/np9haEttQmRsaMPl+YqYkR5N9Qm/9UC22Lim7LxbbTV3l91THyFMWIG2/mi0s3USopMTKktOSncPJXUhylqegOLZLsmECSHcemVqv54osveOWVV7hz5w5RUVGsXr2aunXrWjs0ISwiIyODbt26sW/fPjw9PVm8eDFPPPGEtcMyjhFj+hQ3xY0uJ+CTp1pQq6qn0YkR6P+xL67lomP9Gpy/dpvrmVkmJR3GnFulotRYy5uQ6J7HlGsytsVHt1XM0re4ZJwdIYAzZ87w4IMP8uKLL3Lnzh169uzJ7t27JdERDs3X15f169fTu3dv7ty5w6BBgxg7diy3bt2ydmilM2JMH0NT3KhAu8xZpWL2wGj6NA0lMzuv1OTBWaXil9h7+c+TLfLrpf9dXtxUOwAxdQJoFV61SBzFMeaPrQLMH9SC/zzZosTj6rbSaI5tSj9ShYKEyphrcgIWPNWCn2PvLfV6dWup/rPpDDGzN/HUl3u4b84mvtuXYEKU5iXJjnBICQkJjBw5koYNG7Jp0yY8PT35+OOP+e233ywzpL4QNsbPz49ff/2ViRPzB+775JNPaNKkCb/88gv23qAf4ufJ7AHROP87VISzSsWcgdHseC1/Dr/trz2grRsxJjHSzDtoaFDVwnQHWTUUx8CWNfVeT+kVxbcj2vOTkYlCq4iq9G0WqndcQ3+oNYnRtyPas2NKF+YMLNhe03Kj2be0RKi0a9Ikjs3CqpZ6vf2ahdB/wU6e+nKPtjgbis7JWNHkNhZyG8tRZGdns3HjRhYuXMivv/6KWp1f6NinTx/mzZsnrTmi0lq3bh2jRo3iwoULALRs2ZI33niDhx56yLyzpVcwY4fI+G5fgrbORpPcaG7b6O5rzNQ7xU21Y8wAroXjeLhFKD8fTNSLq/D4NsXVKJUWB6B9XlqdkTHXVNL/uym1VIYKv8uj0tXsLFiwgPfff5/k5GSaNWvGJ598Qtu2bY3aV5Id+6RWqzl58iQ7d+5ky5Yt/Pbbb6SlpWnXd+nShbfffpsOHTpYL0ghbERmZiazZs3ik08+ITMzE4CgoCAGDx5M//79iYmJwdXV1cpRWk5ZE6PSEpLyxlGehM2UOHTPo5v8mOOaNEqrpbJE8XKlSna+++47nn32WT7//HPatWvHvHnzWLlyJadOnSIwMLDU/SXZsU2KopCenk5KSgopKSlcuXKFc+fOcfr0aU6fPs2RI0f0khuAwMBAnnjiCV544QUaNWpk+MBCVGJXr17lo48+4quvvuLq1ava5b6+vrRv356WLVvSqlUroqOjCQ8Pt+7UE1ZS1oSkouOylWPpHrO4ljFzJlW6KlWy065dO9q0acN//vMfIP8bf1hYGC+99BKvvfZaqftbKtlp0qQJp06dwsnJCZVKZZf/mrKtoijah1qtNuq5Wq3m7t273L59mzt37uj9e+vWLXJyckr8P/by8qJt27bce++99OrVi5iYGJydnc32MxTCUeXk5PDHH3/w3XffsW7dOq5fv25wu+DgYGrXrk2NGjWoVq2a9lGlShU8PDz0Hu7u7nh4eODi4qL3GVL4s8TQZ4sxU7WUto05jmGv25SXuc7x24kbfLAtUdvTa2S7IBrU8KSmnxstGkSYvfWw0iQ72dnZeHl58cMPP/Dwww9rlw8ZMoS0tDR++eWXIvtkZWWRlZWlfZ2RkUFYWJjZk50GDRpw+vTp0jcUJfL19SUwMJAaNWoQHh5O/fr1qV+/Pg0bNiQ6Otqhm96FqAh5eXkcOnSI/fv38/fff3PgwAFOnTplH723hM1xrhKAi38ouWmJ5N0sSKJPnTpF/fr1zXquSjNdxLVr18jLyyMoKEhveVBQECdPnjS4z+zZs3n77bctHtu2bdvIycnRa9Ew17+WOGZ5/lWr1dpvZ7rf1Aq/LvzcyckJDw8PvLy88PT0xNPTU/vc29ubGjVq4Olpm8OPC+EonJ2dadWqld7gg4qikJqayoULF0hISCA1NZXr169r/83MzOTu3bvcvXuXrKws7fO7d++Sl5en/Vwo/DlR3HJjGPvd3FrbWfvcNnOM3NtwLQ43AJ3Pb2tOtGz3yU5ZTJkyhQkTJmhfa1p2zK1wAiaEEPZCpVIREBBAQECA7U05IYSJ7D7ZqV69Os7Ozly5ckVv+ZUrVwgODja4j7u7u0z8KIQQQlQSdj+ooJubG61atWLjxo3aZWq1mo0bN9rWjL9CCCGEsAq7b9kBmDBhAkOGDKF169a0bduWefPmkZmZyXPPPWft0IQQQghhZQ6R7DzxxBNcvXqVadOmkZycTPPmzVm7dq3UzAghhBDC/ruem4MMKiiEEELYH5n1XAghhBACSXaEEEII4eAk2RFCCCGEQ5NkRwghhBAOTZIdIYQQQjg0SXaEEEII4dAk2RFCCCGEQ5NkRwghhBAOTZIdIYQQQjg0h5guorw0g0hnZGRYORIhhBBCGEvzd7u0ySAk2QFu3rwJQFhYmJUjEUIIIYSpbt68iZ+fX7HrZW4sQK1Wk5iYSJUqVVCpVGY7bkZGBmFhYVy8eNFh59xy9Gt09OsDx79GR78+cPxrdPTrA8e/Rktdn6Io3Lx5k9DQUJyciq/MkZYdwMnJiVq1alns+L6+vg75y6vL0a/R0a8PHP8aHf36wPGv0dGvDxz/Gi1xfSW16GhIgbIQQgghHJokO0IIIYRwaJLsWJC7uztvvfUW7u7u1g7FYhz9Gh39+sDxr9HRrw8c/xod/frA8a/R2tcnBcpCCCGEcGjSsiOEEEIIhybJjhBCCCEcmiQ7QgghhHBokuwIIYQQwqFJsmNmc+bMQaVSMW7cOO2yu3fvEhsbS0BAAD4+PgwcOJArV65YL8hyMnSNnTt3RqVS6T1eeOEF6wVpounTpxeJPyoqSrve3n+GpV2fvf/8AC5fvszTTz9NQEAAnp6eREdHs3//fu16RVGYNm0aISEheHp60q1bN86cOWPFiE1X2jUOHTq0yM+xZ8+eVozYNBEREUXiV6lUxMbGAvb/Pizt+uz9fZiXl8ebb75JZGQknp6e1KlTh5kzZ+rNW2Wt96GMoGxG+/bt44svvqBp06Z6y8ePH89vv/3GypUr8fPzY8yYMQwYMIAdO3ZYKdKyK+4aAUaMGMGMGTO0r728vCoytHJr3LgxGzZs0L52cSl4ezjCz7Ck6wP7/vnduHGD++67jwceeIA//viDGjVqcObMGapWrardZu7cucyfP5+lS5cSGRnJm2++SY8ePTh+/DgeHh5WjN44xlwjQM+ePVm8eLH2tT11Zd63bx95eXna18eOHePBBx/kscceA+z/fVja9YF9vw/fe+89PvvsM5YuXUrjxo3Zv38/zz33HH5+fowdOxaw4vtQEWZx8+ZNpV69esr69euVTp06KS+//LKiKIqSlpamuLq6KitXrtRue+LECQVQdu3aZaVoy6a4a1QUpchre/PWW28pzZo1M7jOEX6GJV2fotj/z2/y5MlKhw4dil2vVquV4OBg5f3339cuS0tLU9zd3ZVvv/22IkIst9KuUVEUZciQIUr//v0rJqAK8PLLLyt16tRR1Gq1Q7wPC9O9PkWx//dhnz59lGHDhuktGzBggDJ48GBFUaz7PpTbWGYSGxtLnz596Natm97yAwcOkJOTo7c8KiqK2rVrs2vXrooOs1yKu0aNZcuWUb16dZo0acKUKVO4fft2BUdYPmfOnCE0NJR77rmHwYMHk5CQADjOz7C469Ow55/fr7/+SuvWrXnssccIDAykRYsWfPnll9r18fHxJCcn6/0M/fz8aNeund38DEu7Ro0tW7YQGBhIgwYNGD16NNevX7dCtOWXnZ3N//73P4YNG4ZKpXKY96FG4evTsOf34b333svGjRs5ffo0AIcPH2b79u306tULsO77UG5jmcGKFSv4+++/2bdvX5F1ycnJuLm54e/vr7c8KCiI5OTkCoqw/Eq6RoCnnnqK8PBwQkNDOXLkCJMnT+bUqVOsWrWqgiMtm3bt2rFkyRIaNGhAUlISb7/9Nvfffz/Hjh1ziJ9hSddXpUoVu//5nTt3js8++4wJEybw+uuvs2/fPsaOHYubmxtDhgzR/pyCgoL09rOnn2Fp1wj5t7AGDBhAZGQkZ8+e5fXXX6dXr17s2rULZ2dnK1+BaX7++WfS0tIYOnQo4DifpRqFrw/s/3P0tddeIyMjg6ioKJydncnLy+Odd95h8ODBAFZ9H0qyU04XL17k5ZdfZv369XZx378sjLnGkSNHap9HR0cTEhJC165dOXv2LHXq1KmoUMtM880DoGnTprRr147w8HC+//57PD09rRiZeZR0fcOHD7f7n59araZ169a8++67ALRo0YJjx47x+eefaxMBe2fMNQ4aNEi7fXR0NE2bNqVOnTps2bKFrl27WiXuslq0aBG9evUiNDTU2qFYhKHrs/f34ffff8+yZctYvnw5jRs35tChQ4wbN47Q0FCrvw/lNlY5HThwgJSUFFq2bImLiwsuLi5s3bqV+fPn4+LiQlBQENnZ2aSlpentd+XKFYKDg60TtIlKu0bdgjuNdu3aARAXF1fR4ZqFv78/9evXJy4ujuDgYLv/GRame32G2NvPLyQkhEaNGukta9iwofZWnebnVLjnjj39DEu7RkPuueceqlevbjc/R40LFy6wYcMGnn/+ee0yR3ofGro+Q+ztfThx4kRee+01Bg0aRHR0NM888wzjx49n9uzZgHXfh5LslFPXrl05evQohw4d0j5at27N4MGDtc9dXV3ZuHGjdp9Tp06RkJBATEyMFSM3XmnXaKh5/NChQ0D+B7Q9unXrFmfPniUkJIRWrVrZ/c+wMN3rM8Tefn733Xcfp06d0lt2+vRpwsPDAYiMjCQ4OFjvZ5iRkcGePXvs5mdY2jUacunSJa5fv243P0eNxYsXExgYSJ8+fbTLHOl9aOj6DLG39+Ht27dxctJPK5ydnVGr1YCV34cWLX+upApX1L/wwgtK7dq1lU2bNin79+9XYmJilJiYGOsFaAa61xgXF6fMmDFD2b9/vxIfH6/88ssvyj333KN07NjRukGa4JVXXlG2bNmixMfHKzt27FC6deumVK9eXUlJSVEUxf5/hiVdnyP8/Pbu3au4uLgo77zzjnLmzBll2bJlipeXl/K///1Pu82cOXMUf39/5ZdfflGOHDmi9O/fX4mMjFTu3LljxciNV9o13rx5U3n11VeVXbt2KfHx8cqGDRuUli1bKvXq1VPu3r1r5eiNl5eXp9SuXVuZPHlykXX2/j5UlOKvzxHeh0OGDFFq1qyprFmzRomPj1dWrVqlVK9eXZk0aZJ2G2u9DyXZsYDCyc6dO3eUF198Ualatari5eWlPPLII0pSUpL1AjQD3WtMSEhQOnbsqFSrVk1xd3dX6tatq0ycOFFJT0+3bpAmeOKJJ5SQkBDFzc1NqVmzpvLEE08ocXFx2vX2/jMs6foc4eenKIqyevVqpUmTJoq7u7sSFRWlLFy4UG+9Wq1W3nzzTSUoKEhxd3dXunbtqpw6dcpK0ZZNSdd4+/ZtpXv37kqNGjUUV1dXJTw8XBkxYoSSnJxsxYhNt27dOgUw+LOx9/ehohR/fY7wPszIyFBefvllpXbt2oqHh4dyzz33KG+88YaSlZWl3cZa70OVougMbSiEEEII4WCkZkcIIYQQDk2SHSGEEEI4NEl2hBBCCOHQJNkRQgghhEOTZEcIIYQQDk2SHSGEEEI4NEl2hBBCCOHQJNkRQgghhEOTZEcIIYDOnTujUqlQqVTaOYm2bNmCSqUqMvmkuU2fPl177nnz5ln0XEJURpLsCCFMNnToUO0fZ91Hz549rR1auYwYMYKkpCSaNGlS7mNduXIFV1dXVqxYYXD98OHDadmyJQCvvvoqSUlJ1KpVq9znFUIUJcmOEKJMevbsSVJSkt7j22+/teg5s7OzLXp8Ly8vgoODcXFxKfexgoKC6NOnD19//XWRdZmZmXz//fcMHz4cAB8fH4KDg3F2di73eYUQRUmyI4QoE3d3d4KDg/UeVatW1a5XqVR89dVXPPLII3h5eVGvXj1+/fVXvWMcO3aMXr164ePjQ1BQEM888wzXrl3Tru/cuTNjxoxh3LhxVK9enR49egDw66+/Uq9ePTw8PHjggQdYunSp9nZTZmYmvr6+/PDDD3rn+vnnn/H29ubmzZtlvubbt2/Tq1cv7rvvPu2tra+++oqGDRvi4eFBVFQUn376qXb74cOHs3HjRhISEvSOs3LlSnJzcxk8eHCZYxFCGE+SHSGExbz99ts8/vjjHDlyhN69ezN48GBSU1MBSEtLo0uXLrRo0YL9+/ezdu1arly5wuOPP653jKVLl+Lm5saOHTv4/PPPiY+P59FHH+Xhhx/m8OHDjBo1ijfeeEO7vbe3N4MGDWLx4sV6x1m8eDGPPvooVapUKdO1pKWl8eCDD6JWq1m/fj3+/v4sW7aMadOm8c4773DixAneffdd3nzzTZYuXQpA7969CQoKYsmSJUViGTBgAP7+/mWKRQhhIovPqy6EcDhDhgxRnJ2dFW9vb73HO++8o90GUKZOnap9fevWLQVQ/vjjD0VRFGXmzJlK9+7d9Y578eJFBVBOnTqlKIqidOrUSWnRooXeNpMnT1aaNGmit+yNN95QAOXGjRuKoijKnj17FGdnZyUxMVFRFEW5cuWK4uLiomzZsqXYa+rUqZPy8ssv6y3bvHmzAignTpxQmjZtqgwcOFDJysrSrq9Tp46yfPlyvX1mzpypxMTEaF+/9tprSmRkpKJWqxVFUZS4uDhFpVIpGzZsKBJDeHi48tFHHxUboxCibKRlRwhRJg888ACHDh3Se7zwwgt62zRt2lT73NvbG19fX1JSUgA4fPgwmzdvxsfHR/uIiooC4OzZs9r9WrVqpXfMU6dO0aZNG71lbdu2LfK6cePG2haW//3vf4SHh9OxY8cyXeuDDz5I3bp1+e6773BzcwPy627Onj3L8OHD9a5h1qxZevEPGzaM+Ph4Nm/eDOS36kRERNClS5cyxSKEMF35q/CEEJWSt7c3devWLXEbV1dXvdcqlQq1Wg3ArVu36NevH++9916R/UJCQvTOUxbPP/88CxYs4LXXXmPx4sU899xzqFSqMh2rT58+/Pjjjxw/fpzo6Ght/ABffvkl7dq109tet9C4Xr163H///SxevJjOnTvzzTffMGLEiDLHIoQwnSQ7QgiraNmyJT/++CMREREm9X5q0KABv//+u96yffv2Fdnu6aefZtKkScyfP5/jx48zZMiQMsc6Z84cfHx86Nq1K1u2bKFRo0YEBQURGhrKuXPnSi00Hj58OKNHj+ahhx7i8uXLDB06tMyxCCFMJ7exhBBlkpWVRXJyst5DtydVaWJjY0lNTeXJJ59k3759nD17lnXr1vHcc8+Rl5dX7H6jRo3i5MmTTJ48mdOnT/P9999rC4B1W0uqVq3KgAEDmDhxIt27dy/3GDb/93//x+DBg+nSpQsnT54E8guwZ8+ezfz58zl9+jRHjx5l8eLFfPjhh3r7PvbYY7i6ujJq1Ci6d+9OWFhYuWIRQphGkh0hRJmsXbuWkJAQvUeHDh2M3j80NJQdO3aQl5dH9+7diY6OZty4cfj7++PkVPxHU2RkJD/88AOrVq2iadOmfPbZZ9reWO7u7nrbDh8+nOzsbIYNG1a2iyzko48+4vHHH6dLly6cPn2a559/nq+++orFixcTHR1Np06dWLJkCZGRkXr7eXl5MWjQIG7cuGG2WIQQxlMpiqJYOwghhCiPd955h88//5yLFy/qLf/vf//L+PHjSUxM1BYWF6dz5840b97cqtM1REREMG7cOMaNG2e1GIRwRNKyI4SwO59++in79u3j3Llz/Pe//+X999/Xq8m5ffs2Z8+eZc6cOYwaNarUREf3uD4+Phw9etRSoRv07rvv4uPjU2TwQSGEeUjLjhDC7owfP57vvvuO1NRUateuzTPPPMOUKVO0hc7Tp0/nnXfeoWPHjvzyyy/4+PiUeszLly9z584dAGrXrm10gmQOqamp2sEWa9SogZ+fX4WdW4jKQJIdIYQQQjg0uY0lhBBCCIcmyY4QQgghHJokO0IIIYRwaJLsCCGEEMKhSbIjhBBCCIcmyY4QQgghHJokO0IIIYRwaJLsCCGEEMKh/T8447YWtW/KwAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.errorbar(center[ls.mask], entries[ls.mask], np.sqrt(entries[ls.mask]), ls='', marker='.', label='Not masked')\n", "plt.errorbar(center[~ls.mask], entries[~ls.mask], np.sqrt(entries[~ls.mask]), ls='', marker='.', label='Masked')\n", "plt.xlabel('Energy [keV]')\n", "plt.ylabel('Number of counts per bin')\n", "\n", "x = np.arange(40, 80, 0.1)\n", "plt.plot(x, fit_model(x, *mi.values), color='k', label='Initial guess')\n", "plt.legend()" ] }, { "cell_type": "markdown", "id": "ec675b22", "metadata": {}, "source": [ "Außerdem müssen wir noch alle Fitparameter, welche nicht zum Untergrund beitragen, als konstant festhalten" ] }, { "cell_type": "code", "execution_count": 510, "id": "4a93a1c2-17df-46c2-b38e-9a509fe16fc7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "mi.fixed[:] = True\n", "mi.fixed[['tau_bkg', 'A_bkg']] = False\n", "print (mi.fixed)" ] }, { "cell_type": "markdown", "id": "c5a8d247-5b71-42ae-9706-d16192374686", "metadata": {}, "source": [ "bevor wir die Minmierung starten und das Resultat darstellen." ] }, { "cell_type": "code", "execution_count": 511, "id": "3e90c2ed-c282-47c2-b0fe-3063f9545639", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 32.8 (χ²/ndof = 0.8) Nfcn = 98
EDM = 4.43e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 400 4 yes
1 A_p2 700 7 yes
2 mu_p1 54.0 0.5 yes
3 mu_p2 60.0 0.6 yes
4 sigma_p1 2.00 0.02 yes
5 sigma_p2 2.00 0.02 yes
6 A_bkg 137 15
7 tau_bkg 34.9 2.3 0
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 0 0 0 0 0 0 0 0
A_p2 0 0 0 0 0 0 0 0
mu_p1 0 0 0 0 0 0 0 0
mu_p2 0 0 0 0 0 0 0 0
sigma_p1 0 0 0 0 0 0 0 0
sigma_p2 0 0 0 0 0 0 0 0
A_bkg 0 0 0 0 0 0 229 -33 (-0.962)
tau_bkg 0 0 0 0 0 0 -33 (-0.962) 5.18
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:40:49.875185\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 32.8 (χ²/ndof = 0.8) │ Nfcn = 98 │\n", "│ EDM = 4.43e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 400 │ 4 │ │ │ │ │ yes │\n", "│ 1 │ A_p2 │ 700 │ 7 │ │ │ │ │ yes │\n", "│ 2 │ mu_p1 │ 54.0 │ 0.5 │ │ │ │ │ yes │\n", "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", "│ 4 │ sigma_p1 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ │\n", "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 0 0 0 0 0 0 0 0 │\n", "│ A_p2 │ 0 0 0 0 0 0 0 0 │\n", "│ mu_p1 │ 0 0 0 0 0 0 0 0 │\n", "│ mu_p2 │ 0 0 0 0 0 0 0 0 │\n", "│ sigma_p1 │ 0 0 0 0 0 0 0 0 │\n", "│ sigma_p2 │ 0 0 0 0 0 0 0 0 │\n", "│ A_bkg │ 0 0 0 0 0 0 229 -33 │\n", "│ tau_bkg │ 0 0 0 0 0 0 -33 5.18 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 511, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mi.migrad()\n", "mi.hesse()" ] }, { "cell_type": "code", "execution_count": 512, "id": "0b435af3-73ea-42de-9ab7-6a16ae9dbceb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 512, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7p0lEQVR4nO3dd3hTddsH8O9JujeUTuhilkJZBaEvyiwgS7Q8ioiAwAOOIksFUUBFkeHjQlEUBXHgQFGGyF4KBcrepZRCgTYtUJpCd5vz/lFzSNq0TdqkGf1+riuXzTkn59yHmvTOb92CKIoiiIiIiGyUzNwBEBEREZkSkx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIptmZOwBLoFKpkJaWBnd3dwiCYO5wiIiISA+iKOLu3bsIDAyETFZ5+w2THQBpaWkICgoydxhERERUA9euXUOTJk0q3c9kB4C7uzuAsn8sDw8PM0dDRERE+sjJyUFQUJD0d7wyTHYAqevKw8ODyQ4REZGVqW4ICgcoExERkU1jskNEREQ2jckOERER2TSO2SEiIotTWlqK4uJic4dBZmZvbw+5XF7r8zDZISIiiyGKIhQKBbKzs80dClkILy8v+Pv712odPCY7RERkMdSJjq+vL1xcXLjQaz0miiLy8vKQmZkJAAgICKjxuZjsEBGRRSgtLZUSHW9vb3OHQxbA2dkZAJCZmQlfX98ad2lxgDIREVkE9RgdFxcXM0dClkT9/0NtxnAx2SEiIovCrivSZIz/H5jsEBERkU1jskNEREQ2jckOERGRGQiCgD/++KPKY5555hk8+uijep/zypUrEAQBJ06cqFVstoazsYjIZqlUKmRkZMDd3R1ubm7mDods2DPPPIPs7OxqkxdN6enpaNCgAYCyJCUsLAzHjx9Hhw4dpGM+/vhjiKJo5GjrH7bsEJFNSkhIQEREBAIDA+Ht7Y358+ejtLTU3GERSfz9/eHo6FjlMZ6envDy8qqbgGwYkx0isjlnzpxBz549kZiYCEEQUFRUhDfeeAOzZ882d2hkIFEUkZuba5ZHbVpUevXqhSlTpmDmzJlo2LAh/P398eabb2odo9mNFRYWBgDo2LEjBEFAr169AFTsxtqyZQsefPBBeHl5wdvbG0OGDEFycrJBsaWnp2Pw4MFwdnZGWFgY1qxZg9DQUHz00UcAdHeFZWdnQxAE7NmzR9p25swZDBw4EG5ubvDz88Po0aNx69Ytaf+vv/6KyMhIODs7w9vbGzExMcjNzQUA7NmzBw888ABcXV3h5eWF7t274+rVqwbdhyGY7BCRTSkoKMCTTz6J/Px89OnTB7dv38aKFSsAAO+99x62bdtm5gjJEHl5eXBzczPLIy8vr1axr169Gq6urjh06BCWLFmC+fPnY/v27TqPPXz4MABgx44dSE9Px7p163Qel5ubixkzZuDIkSPYuXMnZDIZHnvsMahUKr3jGjNmDNLS0rBnzx789ttv+PLLL6VVivWVnZ2NPn36oGPHjjhy5Ai2bNmCjIwMPPHEEwDKEqqRI0di/PjxOH/+PPbs2YPY2FiIooiSkhI8+uij6NmzJ06dOoX4+HhMmjTJpEsOcMwOEdmUr776CmfPnoWfnx9+/PFHNGjQAP/9739x4sQJLFu2DLNmzUK/fv24lguZXLt27fDGG28AAFq0aIFPP/0UO3fuRL9+/Soc6+PjAwDw9vaGv79/peccPny41vOVK1fCx8cH586dQ9u2bauN6cKFC9ixYwcSEhLQuXNnAGXvmRYtWuh9XwDw6aefomPHjnj33Xe1YgkKCsLFixdx7949lJSUIDY2FiEhIQCAyMhIAEBWVhaUSiWGDBmCZs2aAQBat25t0PUNxWSHiGxGYWEhFi1aBAB444034OvrK+1766238O233+LEiRNYv369QTNcyHxcXFxw7949s127Ntq1a6f1PCAgwOAWlPKSkpIwb948HDp0CLdu3ZJadFJTU/VKdhITE2FnZ4dOnTpJ25o3by4NlNbXyZMnsXv3bp0D/5OTk9G/f3/07dsXkZGRGDBgAPr374///Oc/aNCgARo2bIhnnnkGAwYMQL9+/RATE4MnnniiVrWvqsNuLCKyGT/++CNu3LiBJk2aYPz48Vr7vL298eKLLwKANDaBLJ8gCHB1dTXLo7atf/b29hXuxZDuJl2GDh2KrKwsrFixAocOHcKhQ4cAAEVFRbU6ryaZrCw10ByzVL5Uw7179zB06FCcOHFC65GUlIQePXpALpdj+/bt+OuvvxAREYFPPvkErVq1QkpKCgBg1apViI+Px//93//h559/RsuWLXHw4EGj3UOFezLZmYmI6tjKlSsBAC+88ILOWS7PPfccBEHA3r17pQ9dIkvg4OAAAFXOGLx9+zYSExMxZ84c9O3bF61bt8adO3cMuk6rVq1QUlKC48ePS9suXbqkdR51l1p6erq0rfy6PZ06dcLZs2cRGhqK5s2baz1cXV0BlCV33bt3x1tvvYXjx4/DwcEBv//+u3SOjh07Yvbs2Thw4ADatm2LNWvWGHQvhmCyQ0Q24dKlS/j7778hk8kwZswYnccEBQWhb9++AIDvvvuuLsMjqpKvry+cnZ2lgb5KpbLCMQ0aNIC3tze+/PJLXLp0Cbt27cKMGTMMuk54eDhiYmIwadIkHD58GMePH8ekSZPg7OwstWQ5OzujW7duWLRoEc6fP4+9e/dizpw5WueJi4tDVlYWRo4ciYSEBCQnJ2Pr1q0YN24cSktLcejQIbz77rs4cuQIUlNTsW7dOty8eROtW7dGSkoKZs+ejfj4eFy9ehXbtm1DUlKSScftMNkhIpug/lbYr18/NG7cuNLjxo4dC6Csy4vIUtjZ2WHp0qX44osvEBgYiGHDhlU4RiaT4aeffsLRo0fRtm1bTJ8+He+9957B1/r222/h5+eHHj164LHHHsPEiRPh7u4OJycn6ZiVK1eipKQEUVFRmDZtGt555x2tcwQGBmL//v0oLS1F//79ERkZiWnTpsHLywsymQweHh7Yt28fBg0ahJYtW2LOnDl4//33MXDgQLi4uODChQsYPnw4WrZsiUmTJiEuLg7PPvus4f9wehJELs2InJwceHp6QqlUwsPDw9zhEFENdOrUCcePH8fKlSsxbty4So9TKpVo1KgRSkpKkJSUhObNm9dhlFSVgoICpKSkICwsTOsPL5nW9evXERQUhB07dkgtn5akqv8v9P37zZYdIrJ6qampOH78OGQyGYYMGVLlsZ6enujRowcAYOPGjXURHpFF2bVrFzZs2ICUlBQcOHAATz75JEJDQ6X3hS0ya7ITGhoKQRAqPOLi4gCUZXNxcXHw9vaGm5sbhg8fjoyMDK1zpKamYvDgwXBxcYGvry9eeeUVlJSUmON2iMhMNmzYAADo3r27NLiyKkOHDgXAZIfqp+LiYrz22mto06YNHnvsMfj4+GDPnj0VZo/ZErMmOwkJCUhPT5ce6pUlH3/8cQDA9OnTsXHjRqxduxZ79+5FWloaYmNjpdeXlpZi8ODBKCoqwoEDB7B69Wp88803mDdvnlnuh4jM46+//gIAPPLII3odP3jwYADAP//8U+tVcomszYABA3DmzBnk5eUhIyMDv//+u7Twn62yqDE706ZNw6ZNm5CUlIScnBz4+PhgzZo1+M9//gOgbOXH1q1bIz4+Ht26dcNff/2FIUOGIC0tDX5+fgCA5cuXY9asWbh586Y0la+8wsJCFBYWSs9zcnIQFBTEMTtEVqioqAgNGzZEbm4uTpw4gfbt21f7GlEUERwcjOvXr2P79u2IiYmpg0ipOuqxGaGhoXB2djZ3OGQh8vPzparwVj9mp6ioCN9//z3Gjx8PQRBw9OhRFBcXa30IhYeHIzg4GPHx8QCA+Ph4REZGSokOUJax5uTk4OzZs5Vea+HChfD09JQeQUFBprsxIjKpQ4cOITc3Fz4+PtJy9NURBAG9e/cGAK3ChmRe6m4UtraRJvX/D7XpZrOYchF//PEHsrOz8cwzzwAAFAoFHBwcKpS29/Pzg0KhkI7RTHTU+9X7KjN79myttQnULTtEZH127twJAOjTp4+08qs+evfuje+++w67d+82VWhkILlcDi8vL6mkgouLC2uY1WOiKCIvLw+ZmZnw8vKCXC6v8bksJtn5+uuvMXDgQAQGBpr8Wo6OjjpXVyUi66NOVgydMturVy8AZdWm8/Lyal0HiYxDXQSztjWkyHZ4eXlVWRxVHxaR7Fy9ehU7duzQKmnv7++PoqIiZGdna7XuZGRkSDft7++Pw4cPa51LPVurtv8wRGT5iouLkZCQAAB48MEHDXptaGgoAgMDkZaWhqNHj+Khhx4yRYhkIEEQEBAQAF9f3wr1mKj+sbe3r1WLjppFJDurVq2Cr6+vNEMCAKKiomBvb4+dO3dKJe0TExORmpqK6OhoAEB0dDQWLFiAzMxMqbrx9u3b4eHhgYiIiLq/ESKqU6dPn0Z+fj68vLzQqlUrg14rCAK6deuGdevW4eDBg0x2LIxcLjfKHzkiwAIGKKtUKqxatQpjx46Fnd393MvT0xMTJkzAjBkzsHv3bhw9ehTjxo1DdHQ0unXrBgDo378/IiIiMHr0aJw8eRJbt27FnDlzEBcXx24qonpAXSW5a9euBo3XUVN/lpiy2jIRmZ/ZW3Z27NiB1NRUjB8/vsK+Dz/8EDKZDMOHD0dhYSEGDBiAzz77TNovl8uxadMmPP/884iOjoarqyvGjh2L+fPn1+UtEJGZqJMUddJiKPXr4uPjIYoiB8MS2SiLWmfHXFgbi8g6tWzZEklJSfjrr7/w8MMPG/z6vLw8eHh4oLS0FKmpqZyVSWRlrG6dHSIiQ9y6dQtJSUkAyrqxasLFxQVt27YFABw9etRosRGRZWGyQ0RW6dChQwDKFhtt0KBBjc/TqVMnAMCxY8eMEhcRWR4mO0RklWo7XkdNnewcP3681jERkWViskNEVkmd7KiXoqgptuwQ2T4mO0RkdVQqlbSgaG1bdtq1awdBEJCWllZlmRkisl5MdojI6ly+fBk5OTlwcnKq9QKibm5u0oKEJ06cMEJ0RGRpmOwQkdU5efIkAKBt27Zai5HWlLpa+pkzZ2p9LiKyPEx2iMjqqFtg2rdvb5TztWnTBgBw9uxZo5yPiCwLkx0isjrqlp0OHToY5XxMdohsG5MdIrI66mTH2C07586dg0qlMso5ichyMNkhIquSlZWF1NRUAGUzqYyhefPmsLe3R25urnRuIrIdTHaIyKqcOnUKABAaGgpPT0+jnNPe3l6akcWuLCLbw2SHiKyKscfrqHHcDpHtYrJDRFbF2DOx1JjsENkuJjtEZFWMMTg5r6gEoa/+idBX/0ReUQkAJjtEtozJDhFZjeLiYikZMVU31vnz5zkji8jGMNkhIqtx4cIFFBUVwcPDA6GhoUY9d7NmzeDg4IC8vDxcuXLFqOcmIvNiskNEVkNdzqFt27YQBMGo57azs0N4eDgAdmUR2RomO0RkNc6dOwfgfpeTsXHcDpFtYrJDRFbD1MmOuoL6hQsXTHJ+IjIPJjtEZDXUyY46KTG2Fi1aAACSkpJMcn4iMg8mO0RkFYqKiqQkhMkOERmCyQ4RWYWLFy+itLQUHh4eCAwMNMk11MnOzZs3kZ2dbZJrEFHdY7JDRFZBswvLmDOxFMoC6Wd3d3f4+fsDAFpPXSUtOEhE1o3JDhFZBWMOTv7t6HXp55gP9uLnhPuVzps3bw4AKLmTVuvrEJFlYLJDRFbBWIOT05X5eGPD/anlKhF4bd0ZpCvzAQDN/k12irOY7BDZCiY7RGQV1Gvf1DbZSbmVC5Wova1UFHHlVh4AoFnzsnE7bNkhsh1MdojI4hUXF+PixYsAap/shDVyhazckB+5ICC0kQuA+4OUi+/cqNV1iMhyMNkhIot36dIllJSUwM3NDUFBQbU6V4CnM9565P64H5kAvBvbFgGezgDud2OVZKVBFEWdFdKJyLow2SEii2fsmVjDo5pIP++Y0RMjugRLz5s2bQYAUBXm4vbt27W+FhGZH5MdIrJ46mSndevWeh1vSGuMv6eT1nMXFxfI3RsBAC4lXaxBtERkaZjsEJHFU9eq0jfZqS3HxuFwDI7EsfOX6+R6RGRaduYOgIioOurByS1btjT5tX47eh2NHpkJQZDh0ysi/DTW5CEi68SWHSKyaKIoIjExEQDQqlUrk15LvQaPIKg/GgWtNXmIyDox2SEii5aRkYG7d+9CJpOhWbNmJr2WrjV4yj8nIutj9mTnxo0bePrpp+Ht7Q1nZ2dERkbiyJEj0n5RFDFv3jwEBATA2dkZMTExFSoSZ2VlYdSoUfDw8ICXlxcmTJiAe/fu1fWtEJEJqFt1QkND4ejoWKNz6DtgWdcaPOWfE5H1MWuyc+fOHXTv3h329vb466+/cO7cObz//vto0KCBdMySJUuwdOlSLF++HIcOHYKrqysGDBiAgoL7xftGjRqFs2fPYvv27di0aRP27duHSZMmmeOWiMjI6qoLC7i/Bo8oljXniKpSzOwbavLrEpFpmXWA8uLFixEUFIRVq1ZJ28LCwqSfRVHERx99hDlz5mDYsGEAgG+//RZ+fn74448/8OSTT+L8+fPYsmULEhIS0LlzZwDAJ598gkGDBuF///sfAgMD6/amiMioTDE42cXBDlcWDda5b3hUE8xdfxaZvy9AUfpFRMb+Ke1TKAvQ1MfNaHEQUd0wa8vOhg0b0LlzZzz++OPw9fVFx44dsWLFCml/SkoKFAoFYmJipG2enp7o2rUr4uPjAQDx8fHw8vKSEh0AiImJgUwmw6FDh3Ret7CwEDk5OVoPIrJMtW3ZUSgLqj9IB9W9Oyi9extrj1ReIZ2IrINZk53Lly/j888/R4sWLbB161Y8//zzmDJlClavXg0AUCgUAAA/Pz+t1/n5+Un7FAoFfH19tfbb2dmhYcOG0jHlLVy4EJ6entKjtsvPE5Hp6NuyozkuZ82h+wlJzAd78VsNpo/Lvfwgd/fG+uv3xwmVr5BORNbBrMmOSqVCp06d8O6776Jjx46YNGkSJk6ciOXLl5v0urNnz4ZSqZQe165dM+n1iKhmiouLcfly2cJ+hrTsvLv5vPSzSkSNpo/be/rDrkEgRGiPUNaskE5E1sGsyU5AQECFCsatW7dGamrZtzJ/f38AZVNPNWVkZEj7/P39kZmZqbW/pKQEWVlZ0jHlOTo6wsPDQ+tBRJbn8uXLKCkpgYuLCxo3bqz364wxfdzOyw8ld9IAUaW1XbNCOhFZB7MmO927d5f649UuXryIkJAQAGWDlf39/bFz505pf05ODg4dOoTo6GgAQHR0NLKzs3H06FHpmF27dkGlUqFr1651cBdEZCqaXViGFAA1xvRxOy9/lN69DdnRn7XOo1khnYisg1mTnenTp+PgwYN49913cenSJaxZswZffvkl4uLiAACCIGDatGl45513sGHDBpw+fRpjxoxBYGAgHn30UQBlLUEPP/wwJk6ciMOHD2P//v2YPHkynnzySc7EIrJyNR2c/Nqg+zW0ZALw1iNtpOf6Dli28yxrGb6+7xeIqlIAFSukE5F1MGuy06VLF/z+++/48ccf0bZtW7z99tv46KOPMGrUKOmYmTNn4sUXX8SkSZPQpUsX3Lt3D1u2bIGT0/1KxT/88APCw8PRt29fDBo0CA8++CC+/PJLc9wSERlRTaedP9rx/hedHTN6au3Td0aV3N0bdnZ2KC4uRum92wAqVkgnIutg9kKgQ4YMwZAhQyrdLwgC5s+fj/nz51d6TMOGDbFmzRpThEdEZlRVy05eUQki5m0FAJybP6DK82gOUFbPqOrR0qfK7ihBJkdwcAguX05GSXYG7Dx8Kz2WiCyb2ctFEBFVRt2yU5vVk6/erljvqqoZVeoFB68sGoxmzZoCAEqydS9jQUTWgckOEVmknJwcaa0sQ7uxMnLuj8sJ8a5Y70rfGVXqFd2Z7BBZNyY7RGSR1F1Y/v7+ei0Poblw4NBP9ks/+3s6aQ1QNmRGVdOm/7bsKDOqOZKILBmTHSKySIYMTlYoCyqMy9E0PKqJ9LMhM6rYskNkG5jsEJFFMmTaua5xOZUxZEYVW3aIbAOTHSKySIYMTtY1LscY1MlOae4dnJvXGy4OZp/ASkQ1wGSHiCySumVHn24sXeNyjKFBgwZwd3cHAFy9etU4JyWiOsdkh4gsjkqlMqhlR6EsqDAuRz19XJ/WGM2K6XlFJdJ2QRCk8jXqmn1EZH2Y7BCRxUlLS0NeXh7s7OykQcLlac6+ivlgr9ZzY650HBxcNpiZLTtE1ovJDhFZHHUXVtOmTWFvb19hf7oyv8LsK83nxqRu2VEnO5W1AhGR5WKyQ0QWp7pp5ym3Ks6+0nc2lqHKJztEZH2Y7BCRxalu2nlYo4qzr0wxGwtgskNkC5jsEJHFqW5wcoCnc4XZV5rPy9Osd2Xo9HEmO0TWj8kOEVkcfaadl599pfncmNTJzo0bN1BSwjE6RNaIyQ4RWZTCwkJcuXIFgP7Vzo05+0qhLNB67u/vDwcHB6hUKty4ccNo1yGiulOj5UCTkpKwe/duZGZmQqVSae2bN2+eUQIjovopOTkZKpUK7u7u8PPz0/t16q6qmig/jX1hbKRUP0smkyEoKAjJycm4evUqfAIa1+gaRGQ+Bic7K1aswPPPP49GjRrB398fgnB/VKAgCEx2iKhWNAcna36+mIquaeyvrTuDHi19pMrowcHBUrLTudv/mTwmIjIug5Odd955BwsWLMCsWbNMEQ8R1XOGrJxsDLqmsZeKIq7cypOSncoGKSuUBWjq41YncRJRzRk8ZufOnTt4/PHHTRELEZFBNbGMQdc0drkgILSRi/RcM9kp3+X1cwLLSBBZOoOTnccffxzbtm0zRSxERHXesqNrGvu7sW2lVh3gfrJzKe22zi6vdGV+ncRKRDVjcDdW8+bNMXfuXBw8eBCRkZEVlnKfMmWK0YIjovqnrlt2gLJp7HPXlyUxO2b0rNA1pU52risLq+3yIiLLI4iiaNAi65UV5QPKBihfvny51kHVtZycHHh6ekKpVMLDw8Pc4RDVW1lZWfD29gYA3Lt3D66urnVy3byiEkTM2woAODd/QIWFB5OTk9G8eXO4+jSG74QvtBIemXC/VIWu1xKR6ej799vgd2VKSkqtAiMiqoy6Vadx48Z1lujoo0mTJhAEAbk3b+Cl3sF4b1fZOB31ys3qViEiskxcVJCILIY62QkPD6+wz5zVxh0dHeHv7w8AaOd2T9puypWbich49GrZmTFjBt5++224urpixowZVR77wQcfGCUwIqp/qisAak4hISFIT09HamoqgLIxPcZcuZmITEevZOf48eMoLi6Wfq5MXSwARkS2y9KTnYMHDyL1aiqACHOHQ0QG0CvZ2b17t86fiYiMydKTHQC4lnoVcGeyQ2RNajVm59q1a7h27ZqxYiGieqykpARJSUkALDzZ4WcekdUxONkpKSnB3Llz4enpidDQUISGhsLT0xNz5syRurqIiAx15coVFBcXw8nJCcHBwXV6bXUR0SuLBlc6dVyd7KSmXtW5H6hYMZ2ILIPByc6LL76IL7/8EkuWLMHx48dx/PhxLFmyBF9//TUXFCSiGtNcTFAms7yJove7sbTLQ7B8BJHlM3idnTVr1uCnn37CwIEDpW3t2rVDUFAQRo4cic8//9yoARJR/WDJ43UASK1Nd+7cgVthHmSOLlAoC6qtmE5E5mfw1ydHR0eEhoZW2B4WFgYHBwdjxERE9ZAhyY45uos8PDzg5eUFANg8oTWuLBoMRU5BpeUjiMhyGJzsTJ48GW+//TYKCwulbYWFhViwYAEmT55s1OCIqP64cOECgMqTHUvoLtKsfg7oVzGdiMxPr26s2NhYrec7duxAkyZN0L59ewDAyZMnUVRUhL59+xo/QiKqF6paPTldmW8R3UUhISE4efKklOyoK6ary0XoqphOROanV7Lj6emp9Xz48OFaz4OCgowXERHVO0qlEhkZGQB0VztPuZVrEdXGdU0/r65iOhGZn17JzqpVq0wdBxHVY+pWnYCAAJ2Vi9XdRZoJjzm6i9SDlFNTdXehsXwEkWUy6/zON998E4IgaD00m7ALCgoQFxcHb29vuLm5Yfjw4dK3P7XU1FQMHjwYLi4u8PX1xSuvvIKSkrotEkhEtVPdeB11d5GaubqLqkt2iMgymX0xizZt2iA9PV16/PPPP9K+6dOnY+PGjVi7di327t2LtLQ0rfFDpaWlGDx4MIqKinDgwAGsXr0a33zzDebNm2eOWyGiGtJnJpZmdfEdM3piRJe6XXgQYLJDZK0MXmfH6AHY2cHf37/CdqVSia+//hpr1qxBnz59AJR1p7Vu3RoHDx5Et27dsG3bNpw7dw47duyAn58fOnTogLfffhuzZs3Cm2++WelU+MLCQq3ZZDk5Oaa5OSLSi6Fr7Jiru0g9PvHGjRsoKSmBnZ3ZP0KJSA9mb9lJSkpCYGAgmjZtilGjRknfmI4ePYri4mLExMRIx4aHhyM4OBjx8fEAgPj4eERGRsLPz086ZsCAAcjJycHZs2dRmYULF8LT01N6cIA1kXlVNRPLkvj7+8POzg6lpaVIT083dzhEpCeDkp3i4mL07dtXKtZXW127dsU333yDLVu24PPPP0dKSgoeeugh3L17FwqFAg4ODtIiXmp+fn5QKBQAAIVCoZXoqPer91Vm9uzZUCqV0oOF/YjMp7S01KILgGqSy+Vo0qSsO42fG0TWw6A2WHt7e5w6dcpoFy9fcqJr164ICQnBL7/8Amdn0w08dHR0hKOjo8nOT0T6u3r1KgoLC+Ho6ChN7bZkwcHBuHLlClJTU/F///d/5g6HiPRgcDfW008/ja+//toUscDLywstW7bEpUuX4O/vj6KiImRnZ2sdk5GRIY3x8ff3rzA7S/1c1zggIrI86i6s5s2bQy6Xmzma6pUfpKxPxXQiMi+D35klJSVYuXIlduzYgaioKLi6umrt/+CDD2oczL1795CcnIzRo0cjKioK9vb22Llzp7SIYWJiIlJTUxEdHQ0AiI6OxoIFC5CZmQlfX18AwPbt2+Hh4YGIiIgax0FEdcfSC4CWpx7jxxlZRNbD4GTnzJkz6NSpEwDg4sWLWvsEQdD1kkq9/PLLGDp0KEJCQpCWloY33ngDcrkcI0eOhKenJyZMmIAZM2agYcOG8PDwwIsvvojo6Gh069YNANC/f39ERERg9OjRWLJkCRQKBebMmYO4uDh2UxFZierW2FFTt6CYG6efE1kfg5Od3bt3G+3i169fx8iRI3H79m34+PjgwQcfxMGDB+Hj4wMA+PDDDyGTyTB8+HAUFhZiwIAB+Oyzz6TXy+VybNq0Cc8//zyio6Ph6uqKsWPHYv78+UaLkYhM69y5cwDK1tzSlFdUgoh5W8uOmT/AYrqI1MkOBygTWQ9BFEWx+sMqunTpEpKTk9GjRw84OztDFEWDW3YsRU5ODjw9PaFUKnUuVU9EpiGKIho1aoSsrCwcOJyAkb+Vjbk7N38AAFhksnPmzBlERkaiYcOGuH37trnDIarX9P37bfAA5du3b6Nv375o2bIlBg0aJK01MWHCBLz00ks1j5iI6p3MzExkZWVBEAS0bGkdY3bULTtZWVm4d++emaMhIn0YnOxMnz4d9vb2SE1NhYvL/SJ8I0aMwJYtW4waHBHZNvXin02bNjXpchPG5OHhAU9PTwDsyiKyFgYnO9u2bcPixYulhbXUWrRogatXrxotMCKyfZWN17F0nJFFZF0MTnZyc3O1WnTUsrKyOAOKiAyiTnasbakIzsgisi4GJzsPPfQQvv32W+m5IAhQqVRYsmQJevfubdTgiMi2qbuxrK1lhzOyiKyLwdMblixZgr59++LIkSMoKirCzJkzcfbsWWRlZWH//v2miJGIbJS+LTsKZQGa+rjVRUh6YcsOkXUxuGWnbdu2uHjxIh588EEMGzYMubm5iI2NxfHjx9GsWTNTxEhENigzMxO3bt2CIAgVqp0rlAX47eh16XnMB3vxc4LlJBZMdoisS40WrvD09MTrr79u7FiIqB5Rt+qEhYXBxcUF38Vfkfb1fX+v1rEqEXht3Rn0aOmDAE/zz9piskNkXWqU7Ny5cwdff/01zp8/D6CsCXrcuHFo2LChUYMjItulORMrXZmPNzaclfbpWum0VBRx5VaeRSQ76tlY165dg0qlgkxmcCM5EdUhg9+h+/btQ2hoKJYuXYo7d+7gzp07WLp0KcLCwrBv3z5TxEhENkg9ODkiIgIpt3KhqmYtd7kgILRRxZmg5tC4cWMIgoCioiLcvHnT3OEQUTUMTnbi4uIwYsQIpKSkYN26dVi3bh0uX76MJ598EnFxcaaIkYhskLpl56szxXhqxSHIylWb0XwqE4B3Y9taRKsOANjb2yMwMBCAdldWXlEJQl/9E6Gv/om8ohJzhUdE5Ric7Fy6dAkvvfQS5HK5tE0ul2PGjBm4dOmSUYMjItskiiJOnToFALBvVDb+5bVBraX9MgGYP+z+dPQdM3piRJfgug2yGhy3Q2Q9DE52OnXqJI3V0XT+/Hm0b9/eKEERkW27ceMGsrKyIJfL4fBvsvNox0Bp/44ZPTE86v4q7f6eTnUeY3X0SXbY0kNkGQweoDxlyhRMnToVly5dQrdu3QAABw8exLJly7Bo0SLp2xoAtGvXzniREpHNOHnyJACgZatw5Nk5VNhviclNeSwZQWQ9DE52Ro4cCQCYOXOmzn2CIEAURQiCgNLS0tpHSEQ2R53sRLaLxCEzx1JTXEWZyHoYnOykpKSYIg4iqkekZCeyPQ7lmDmYGuKYHSLrYXCyExISYoo4iKgeud+y0w74p5o55xaKyQ6R9eBKWERUp/Ly8pCUlATg32TnXxk5BeYKqUbUyU5GRgYKCirGrlBa1/0Q2bIaraBMRFRTZ86cgUqlgq+vL/bfuD9Daegn2oWEXRzscGXR4LoOT28NGzaEi4sL8vLycP36dTRv3rxCPa+3HrGuau5EtootO0RUp9RdWBGdu2uViFCJZaskx8/uAxcHy/8eJgiC1oys8iUvVCK0nrOlh8h8mOwQ2Zhbt27hgw8+wIgRIzB27FisXr0aeXl55g5Lok52giOiKpSIUNe/shaaM7J0lbzQfG5plduJ6hODk51r167h+vX7TbWHDx/GtGnT8OWXXxo1MCIy3Lp169CqVSu89NJL+OWXX/Dtt9/imWeeQdu2bXHgwAFzhwfgfrLzQERohRIRllT/Sh+ag5TDGrlWuB9N6srt6cr8OoqOiNQMTnaeeuop7N69GwCgUCjQr18/HD58GK+//jrmz59v9ACJSD/fffcd/vOf/yArKwuRkZFYtGgR5s6diyZNmiAlJQW9e/fG5s2bzRqjZpmIHp3baY1psbT6V/rQTHYCPJ217kdX3mNtLVdEtsLgZOfMmTN44IEHAAC//PKL9I3xhx9+wDfffGPs+IhID4cPH8aECRMgiiImTZqEo0ePYtasWZg/fz7Onj2LYcOGoaioCLGxsTh8+LDZ4kxOTkZOTg4cHR0RHh6uVRLCEutfVaf89HPN+/lpUjerb7kishUGJzvFxcVwdHQEAOzYsQOPPPIIACA8PBzp6enGjY6IqpWbm4sRI0aguLgY//nPf7B8+XLY29tL+z08PLB27VoMGTIEhYWFiI2Nxa1bt8wSqzrR6tixo1aMgHWUiCivqpIRkU08rb7lishWGJzstGnTBsuXL8fff/+N7du34+GHHwYApKWlwdvb2+gBElHVFi5ciCtXriA4OBhfffUVBKFiB4q9vT1++OEHhIeH48aNG5g8ebIZIr2f7Khbh62d5gBlUay4OKK1t1wR2QqDk53Fixfjiy++QK9evTBy5Eip0vmGDRts5gOMyBLpqqB99epVvPfeewCAjz/+GJ6enpW+3sPDA99//z3kcjl+/vlnbNy4sU7i1nToUFklLFv5rGjSpCyZyc3NxZ07d6o81hpbrohshcHJTq9evXDr1i3cunULK1eulLZPmjQJX3zxhVGDI6KqLVy4EEVFRejduzeGDRtW7fFRUVF4+eWXAQAvv/wyiouLTR2ipKioCMePHwcAzNyXJyVs1szZ2Rm+vr4AWDaCyJIZnOz06dMHd+/eRYMGDbS2N2zYECNGjDBaYERUtevXr0tfON566y2d3Ve6vPbaa/Dx8cHFixfr9AvKqVOnUFhYCJmTG+y8AursuqbGGllEls/gZGfPnj0oKiqqsL2goAB///23UYIioup99tlnKC4uRo8ePfDQQw/p/ToPDw+89dZbAIA333wT2dnZJopQm3q8jkNAS70TM2vAZIfI8um9Jrt6bQwAOHfuHBQKhfS8tLQUW7ZsQePGjY0bHRHpVFBQgBUrVgAApk2bZvDrJ06ciE8++QTnz5/H4sWLsXDhQiNHWJE62XEMaCVts/T6V/pQz8i6du1ahfuxha46Ilugd7LToUMHCIIAQRDQp0+fCvudnZ3xySefGDU4ItLt93W/4datWwgKCsLQoUMNfr2dnR0WLVqEYcOG4dNPP8Urr7yChg0bmiDS+9SDkx0CW5r0OnWtqpYdW0jmiGyB3slOSkoKRFFE06ZNcfjwYfj4+Ej7HBwc4OvrC7lcbpIgiUjbd6tXAwD++9//ws6uZkUzhw4divbt2+PkyZNYunQp3nzzTSNGqE2pVOLChQsAAMeA+pPsEJFl0HvMTkhICEJDQ6FSqdC5c2eEhIRIj4CAACY6RHWkNPcO9h89DQAYM2ZMjc8jCAJef/11AMDSpUtx9+5do8SnS0JCAgAgNDQMcpey6fG2UgXckGRH1/IBRGR6NfpKmJSUhN27dyMzMxMqlUpr37x584wSGBFp++1oWQFeuWsDBD63Ej5XtiE0NLRW54yNjUWrVq2QmJiIzz//HDNnzjRCpBWpJy+ExjyFlH+3xXywFwtjI61+oT11spOWlobi4uIKK0MTkfkZPBtrxYoVaN26NebNm4dff/0Vv//+u/T4448/ahzIokWLIAiC1mDLgoICxMXFwdvbG25ubhg+fDgyMjK0XpeamorBgwfDxcUFvr6+eOWVV1BSwm9MZFvSlfl4Y8NZ6bkgk+F20wG1rqAtl8vx2muvAQDef/99FBSYprVl3759kLt744p3N2mbrVQB9/X1hb29PVQqFdLS0swdDhHpYHCy884772DBggVQKBQ4ceIEjh8/Lj2OHTtWoyASEhLwxRdfoF27dlrbp0+fjo0bN2Lt2rXYu3cv0tLSEBsbK+0vLS3F4MGDUVRUhAMHDmD16tX45ptv2LpENiflVi5U5aoRiBCMUkF75MiRCA4ORmZmJr799ttan6+8wsJCHDx4EHYNAiGWqwVuC1XAZTKZ1owsIrI8Bic7d+7cweOPP260AO7du4dRo0ZhxYoVWgsVKpVKfP311/jggw/Qp08fREVFYdWqVThw4AAOHjwIANi2bRvOnTuH77//Hh06dMDAgQPx9ttvY9myZTrXAiKyVmGNXE1WQdve3h4zZswAAPzvf/9DaWlprc+p6fDhwygoKICXvNhmq4BzkDKRZTM42Xn88cexbds2owUQFxeHwYMHIyYmRmv70aNHUVxcrLU9PDwcwcHBiI+PBwDEx8cjMjISfn5+0jEDBgxATk4Ozp49i8oUFhYiJydH60FkyQI8nfHWI20g/jtGToBo1AraEyZMQIMGDZCUlIT169cb5Zxqe/bsAQD06Bxps1XAmewQWTaDByg3b94cc+fOxcGDBxEZGVlhMN6UKVP0PtdPP/2EY8eOSTM1NCkUCjg4OMDLy0tru5+fn7SgoUKh0Ep01PvV+yqzcOFCaQVZImvRI9gRN5ZPgJ2XP7at/xk9OhpvYK+bmxvi4uLwzjvvYPHixXjssceMtsqx+stRTEwMhkc1wdz1ZV9EdszoiaY+bka5hrkx2SGybAYnO19++SXc3Nywd+9e7N27V2ufIAh6JzvXrl3D1KlTsX37djg51W014NmzZ0vN9gCQk5Mj9bkTWarNmzai9O5NyF080LlNC+QVlSBi3lYAwLn5A+DiULP1dtRefPFFvPfeezh8+DD+/vtv9OjRo9Yx5+TkSC2x/fr109pnS1XAa5LsKJQFNpPsEVk6g7uxUlJSKn1cvnxZ7/McPXoUmZmZ6NSpE+zs7GBnZ4e9e/di6dKlsLOzg5+fH4qKiirU7cnIyIC/vz8AwN/fv8LsLPVz9TG6ODo6wsPDQ+tBZOk2btgAAHBuGW2S8/v6+mLcuHEAgCVLlhjlnLt370ZpaSlatGiBsLAwo5zTEuk7QFm9fABQNvX+5wS2BBHVBYOTHWPp27cvTp8+jRMnTkiPzp07Y9SoUdLP9vb22Llzp/SaxMREpKamIjq67MM+Ojoap0+fRmZmpnTM9u3b4eHhgYiIiDq/JyJTKSwsxJ7duwAALs0fMNl1XnrpJQiCgD///BNnzpyp9fm2bNkCoGKrjq3Rp2Wn/PIBtjL1nsgaGNzuPX78+Cr3r1y5Uq/zuLu7o23btlrbXF1d4e3tLW2fMGECZsyYgYYNG8LDwwMvvvgioqOj0a1b2Vod/fv3R0REBEaPHo0lS5ZAoVBgzpw5iIuLg6Ojo6G3RmSxDhw4gPz8fMhcvWDvY7oWkubNm2P48OH49ddf8d5772H1v2UpakKlUmHDv61RQ4YMMVaIFkndspOdnY2cnBydrcW6lg9QT723hUHaRJasRlPPNR+ZmZnYtWsX1q1bV6HLqbY+/PBDDBkyBMOHD0ePHj3g7++PdevWSfvlcjk2bdoEuVyO6OhoPP300xgzZgzmz59v1DiIzG379u0AAOeQDjUaOGxImQL1Kspr1qyp1boxR44cQVpaGgQHZzy3s9CmyyO4u7tLS2dU9m9myuUDiKhqBrfs/P777xW2qVQqPP/882jWrFmtglFPUVVzcnLCsmXLsGzZskpfExISgs2bN9fqukSWTp3sfDZrHMaMKauiXVXyUH7wsiG6dOmC3r17Y/fu3fjoo4/w/vvv1yhm9Yrqzk07Q7Cz/RIKwcHBuHPnDlJTU9GmTZsK+9XLB6hno9nS1HsiS2eUMTsymQwzZszAhx9+aIzTEZGG27dv4+jRowBQYT0qNWMX1VS37nz55Ze4c+eOwa8XRRG//PILAMClxf0SES4OdriyaDCuLBpc69ljlkY9bqeq1rDhUU2kn3fM6Gn1dcGIrIXRBignJyezJhWRCezatQuiKKJNmzYIDAyUtptyZs+AAQMQGRmJe/fu4ZNPPjH49fHx8UhOToarqyucm3c1WlyWTD1uR9/p57Y09Z7I0hn81UpzfRqg7Btceno6/vzzT4wdO9ZogRFRGfWifJozmiqb2dOjpY9RukUEQcBrr72GkSNH4n//+x+ee+45+Pr66v367777DgAw7LHHsN+hfvxR58KCRJbL4JYdzcKfx48fx6lTpwCUVUz+6KOPjB0fUb2VV1SCkFmbsOqXshlNmslOVTN7jOWJJ55AVFQU7t69i7ffflvv1929exdr1qwBAIx86mmjxWPpmOwQWS6DW3Z2795tijiISIcSZQZKczJhb2+Pnj17StvVM3s0Ex59Z/bou3KvTCbDe++9hz59+mD58uWYMmUKWrRoUeVr8opKEBL7CnJyctCyZSv06t0b2LvdoOtaKyY7RJarxmN2bt68iX/++Qf//PMPbt68acyYiOhfhdfKuqo6RUXB1dVV2q6e2aNW1cwehbKgxuN7evfujUGDBqGkpASvvPJKtccXFxfj7pGyQqJxL76I34+n1ei61kid7Fy/fh2qfwu2EpFlMDjZyc3Nxfjx4xEQEIAePXqgR48eCAwMxIQJE5CXZ7wmdCICCq+XJTvdH3yowr6qZvZoJjd939+LeetrvnLv4sWLYWdnh/Xr12Pt2rVVHrvq669Qkq2AzMUTfYY+Xq9WDA4ICIBMJkNxcXGFMjZqtjwbjciSGZzszJgxA3v37sXGjRuRnZ2N7OxsrF+/Hnv37sVLL71kihiJ6q2Ca2UlG7p3f7DK4zRn9pQfvCz++9BkyPietm3bYvbs2QCA5557DlevXtV53K1bt7DgnbKxPV7dR+JmvmjycUWWxM7ODo0bNwbAriwiS2NwsvPbb7/h66+/xsCBA6UimoMGDcKKFSvw66+/miJGonpJoVBALCmEY3A7NI2MqvZ49SrJ0Qt3VUgyyjN05d7XX38dUVFRyMrKwmOPPVZhtXSVSoXx48fj1s2bsPcOglv7hxHiXf9WDOa4HSLLZHCyk5eXBz8/vwrbfX192Y1FZERLNxxC4+dWwX/ku4j96oRB413KJxlCuX1Vrdyrq7SEo6MjfvvtNzRq1AjHjx9Hnz59cPHixbLj8/Iwfvx4bNy4EQ4ODmg09BUIcjv4ezrpPa7IVjDZIbJMBic70dHReOONN1BQcH/F1vz8fLz11ltSNXIiqp10ZT7+uOYIQVb2FjV0vMtrg1pLP8sEYP6w+0lHTVfuDQkJwc6dO+Hj44Pjx48jIiICnTt3RkhICFavXg25XI7lK76Cg19TAGUDo+vbisFMdogsk8HJzscff4z9+/ejSZMm6Nu3L/r27YugoCAcOHAAH3/8sSliJKp3Um7lAuUKfhoy3uXRjvdXWt4xo6dW0lGblXvbtWuHI0eOYODAgSgtLcXRo0dx69YthIaGYsOGDbBrcX8gdcwHe7UGSteHFYP1KRlBRHXP4OkAbdu2RVJSEn744QdcuHABADBy5EiMGjUKzs622zxNVJe87UshqlRSyw5QcbyLemaPWmWFQY2dZAQHB2Pz5s24fPkyjh8/Dh8fH0RHR+NWXgm6L9olHacSoTVQuj4wtGQEEdWNGs19dHFxwcSJE40dCxH9K/nMUWRt/QQNB0yGIJNb5HiXpk2bomnTptLzlFvKCgOjqxsobWvYjUVkmQzuxlq4cCFWrlxZYfvKlSuxePFiowRFVN8dOHAA905tx509qwAYPt4lI8c4VdANqaauXtVZU/nntk6d7Ny8eRP5+ba5nhCRNTI42fniiy8QHh5eYXubNm2wfPlyowRFVN8dPHgQAGDfsGysjT5dUZrjY4Z+sr/G167pasu6VnXWfF4feHl5wc2trCQGx+0QWQ6Du7EUCgUCAgIqbPfx8UF6erpRgiKqz0pLS3Ho0CEAgGPjil8sdNFVBV1T+fE9hpzHkGrqw6OaYO6/qzXvmNETTX3cMDo6VK97sAWCICA4OBjnzp1DamoqWrZsae6QiAg1aNkJCgrC/v0VvzXu378fgYGBOl5BRIY4e/Ys7t27B3d3d9h7B+n1Gl1V0AHgx4nddJYl0LWWTmXnqemqx/Vh9pUu6kHKbNkhshwGt+xMnDgR06ZNQ3FxMfr06QMA2LlzJ2bOnMlyEURGoO7CiurcBSkyuV6vqU0VdEPPk1dUgoh5WwEA5+YPYI2ncjhImcjyGPwp9corr+D27dt44YUXUFRUBABwcnLCrFmzpPo5RFRz8fHxAIAHunZFip6zmdTjZdRdSDWdvWWs89RnTHaILI/ByY4gCFi8eDHmzp2L8+fPw9nZGS1atICjo6Mp4iOqd9TJTo8Hu2Px4OrH2ajpGi9TE8Y6T33FZIfI8tS4/dnNzQ1dunQxZixE9V5WVhYSExMBAN26davxeYw1Xqa+jrupDSY7RJaHne1EFiKvqAStn/0EANC8eQt4e3vXyXUVygKjtd7oO+vLlmmWjBBFEYJQzxYbIrJABs/GIiLTKUwra9V5oFtXk16npmvpUPUaN24MoKxA8u3bt80cDREBTHaILEph+kUAQOfOpusirmwtHX0rqmtSKAsqncZeXzk6OsLf3x8Au7KILIVeyU6nTp1w584dAMD8+fORl2f4mhtEVDVRFFGkSAIARHXubPDr1V1IVxYNrnI6eG3X0infKqT5nMpw3A6RZdEr2Tl//jxyc3MBAG+99Rbu3btn0qCI6qPUq1ehys8BZHaIbNfeZNfRVcNKcy2dqpImXa1C9a2yuT6Y7BBZFr0GKHfo0AHjxo3Dgw8+CFEU8b///U+q/1LevHnzjBogUX1x7NhRyN294dy0M+4UiGjgbprr1GYtHV2tQvWtsrk+NAcpE5H56ZXsfPPNN3jjjTewadMmCIKAv/76C3Z2FV8qCAKTHaIa+u3YDTR+bhUEmQwxH+zFwthIgyqdG6Kma+noWmG5/HO6n+xcuXKlyuO4GjVR3dDrndWqVSv89NNPAACZTIadO3fC19fXpIER1SfpynwcE1pAEMp6lg0twFkbhqylo6tVSPO5MaexW7PQ0FAAQEpKinkDISIANZiNpVKpmOgQGdnlzHuAoP12rGkBTlMbHtVE+nnHjJ5a+ziNvUzTpk0BMNkhshQ1mnqenJyMF198ETExMYiJicGUKVOQnJxs7NiI6g0h9yZElUprW00KeZqDsaax25KwsDAAZSti5+TkmDkaIjI42dm6dSsiIiJw+PBhtGvXDu3atcOhQ4fQpk0bbN++3RQxEtm8K+dOIGvrJ1LCU9cFOGu6Vs7V27Wbxm6r3Nzc0KhRIwBs3SGyBAaPhnv11Vcxffp0LFq0qML2WbNmoV+/fkYLjqi+OHLkCO6d2g6Za0M06DHaagpwhnhXHLBsLS1SphYWFoZbt27h8uXLaN+++qUEON6JyHQMbtk5f/48JkyYUGH7+PHjce7cOaMERVRfqFtUPlu7DQBg3zAQgOkLcOq7AGF1/D2d8NYjbaTndd0iZcnUXVlVteywbAdR3TA42fHx8cGJEycqbD9x4gQHLhPVgKgqRVFG2Zg3B/8WZo6meuUTpfIDlk01Xd7aVDdI2ZhlO4ioagYnOxMnTsSkSZOwePFi/P333/j777+xaNEiPPvss5g4caJB5/r888/Rrl07eHh4wMPDA9HR0fjrr7+k/QUFBYiLi4O3tzfc3NwwfPhwZGRkaJ0jNTUVgwcPhouLC3x9ffHKK6+gpIT1ech6FN++DrG4AC6urrBv2Njc4VRgyHgeU7dIWZPqWnZqW7aDiPRncPv13Llz4e7ujvfffx+zZ88GAAQGBuLNN9/ElClTDDpXkyZNsGjRIrRo0QKiKGL16tUYNmwYjh8/jjZt2mD69On4888/sXbtWnh6emLy5MmIjY3F/v37AQClpaUYPHgw/P39ceDAAaSnp2PMmDGwt7fHu+++a+itEZlFkeISAKB9h45Ik8nNHA3HjhhLdcmOrgUaOd6JyDQMbtkRBAHTp0/H9evXoVQqoVQqcf36dUydOhWCIFR/Ag1Dhw7FoEGD0KJFC7Rs2RILFiyAm5sbDh48CKVSia+//hoffPAB+vTpg6ioKKxatQoHDhzAwYMHAQDbtm3DuXPn8P3336NDhw4YOHAg3n77bSxbtgxFRUWVXrewsBA5OTlaDyJzKVKUVTrv0LGT2WLg2BHj00x2RLHiEtPqBRrVZALw5iMRiF64ixXkiYysRuvsqLm7u8Pd3TgFfEpLS/HTTz8hNzcX0dHROHr0KIqLixETEyMdEx4ejuDgYMTHxwMA4uPjERkZCT8/P+mYAQMGICcnB2fPVl6ccOHChfD09JQeQUFBRrkHouro6hIqVt6EY3AkWnV8wCiDhg3FsSOmERwcDEEQkJ+fX6H7Xa38eCfN50RkPLVKdozh9OnTcHNzg6OjI5577jn8/vvviIiIgEKhgIODA7y8vLSO9/Pzg0KhAAAoFAqtREe9X72vMrNnz5ZapZRKJYv1kdn8fPgqfGPnwH/kQnyU5GWWFhVDxo4olAV1FJX1c3BwQJMmZcmLPmvtcLwTkemYPdlp1aoVTpw4gUOHDuH555/H2LFjTT6F3dHRURoUrX4Q1TWFsgDzN12AICt7G4pmalFRjx3RpDl2pLouLmNNY7dFLBtBZBnMnuw4ODigefPmiIqKwsKFC9G+fXt8/PHH8Pf3R1FREbKzs7WOz8jIgL+/PwDA39+/QvOw+rn6GCJLdfV2LsqP5DDHbBxdY0fUa+Wwi6t21ON2Ll++bPBra7qqNRFVZFCyU1xcjL59+yIpKclU8UClUqGwsBBRUVGwt7fHzp07pX2JiYlITU1FdHQ0ACA6OhqnT59GZmamdMz27dvh4eGBiIgIk8VIZAwh3q5lzTkazDUbp7K1cjg9unb0WViwMhk57DIkMhaD2pzt7e1x6tQpo1189uzZGDhwIIKDg3H37l2sWbMGe/bswdatW+Hp6YkJEyZgxowZaNiwITw8PPDiiy8iOjoa3bp1AwD0798fERERGD16NJYsWQKFQoE5c+YgLi4Ojo6ORouTyFScz/6BvIhHIMjkFrP6sObYEU6Prh1Dkx3NLsOhn+w3SUxE9ZHB3VhPP/00vv76a6NcPDMzE2PGjEGrVq3Qt29fJCQkYOvWrVJ9rQ8//BBDhgzB8OHD0aNHD/j7+2PdunXS6+VyOTZt2gS5XI7o6Gg8/fTTGDNmDObPn2+U+IiMrfz4l7QbN3Bj+XiU5t6xyNWHq+rioupVl+xojndS5hdX6DIkIuMweDRhSUkJVq5ciR07diAqKgqurq5a+z/44AO9z1Vd0uTk5IRly5Zh2bJllR4TEhKCzZs3631NInPRNf7Fq9/zyL+RCJmLl8XOxhke1QRz15fFbS0FSi2FeoDytWvXUFxcDHt7+0qP1dVlSETGYXCyc+bMGXTqVLb42cWLF7X2GbqoIFF9ouuPmSCTw6lpJ6t571hqQmap/P394ejoiMLCQly7dk1KfnTR1WWoxlWtiWrH4GRn9+7dpoiDyObp+mMmqkohd/Y0X1D/UnenkHHJZDKEhoYiMTERKSkpVSY76i5DdSuaAEiz9WI+2IuFsZEW181JZC1qPPX80qVL2Lp1K/Lzy6ag6loOnYjuKz/+BSoVsrZ+Cntvyyv+ScZjyCBlrRWUNRr7OOWfqHYMTnZu376Nvn37omXLlhg0aBDS09MBABMmTMBLL71k9ACJbIn6j5mquBBpX0zAvVPbcfKT57kgnw2r6fTz8t8fOeWfqOYMTnamT58Oe3t7pKamwsXl/vTTESNGYMuWLUYNjshWFWVcQnHOTTRu3BgBAQHmDqdKXCG5dmq6sGBVq1oTkWEMTna2bduGxYsXSzVf1Fq0aIGrV68aLTAiW1aUXrYwZ+fOnc0cCZlaTUtGvDaotfQzp/wT1Y7ByU5ubq5Wi45aVlYWF/Ij0lOhoizZ6dKli5kjIVOraTfWox0DpZ8tcQ0mImticLLz0EMP4dtvv5WeC4IAlUqFJUuWoHfv3kYNjshWFSkuAWDLTn2gTnYyMzNx7969Ko+trMuQU/6JasfgDvglS5agb9++OHLkCIqKijBz5kycPXsWWVlZ2L+fy5sTacorKkHEvK0AgHPzB8DFwQ4nXu2OBotvAACioqLMGR7VgQYNGqBhw4bIyspCcnIy2rdvb+6QiOodg1t22rZti4sXL+LBBx/EsGHDkJubi9jYWBw/fhzNmjUzRYxENuXYsWMAyr7xN2rUyMzRUF1o0aIFgLIlO4io7tVoaoWnpydef/11Y8dCVC8kJCQAYBdWfdK8eXMcOnTIoGSHCz0SGU+Nkp07d+7g66+/xvnz5wEAERERGDduHBo2bGjU4IhskTrZ4eDk+qN58+YAgKSkJDNHQlQ/GdyNtW/fPoSGhmLp0qW4c+cO7ty5g6VLlyIsLAz79u0zRYxENoXJTv3Dbiwi8zK4ZScuLg4jRozA559/DrlcDgAoLS3FCy+8gLi4OJw+fdroQRLZAoWyAG5iHlJTUyEIglRQl2yfMVp2dA12JyL9GPxuuXTpEn799Vcp0QEAuVyOGTNmaE1JJyLgt6PXpZ9jPtiLkWV/89CqVSt4eHiYKSqqa+pkJy0tDbm5uXB1dTVzRET1i8HdWJ06dZLG6mg6f/48p1QSaUhX5uONDWel5yoRWJMkQu7uzS6sesbb2xsNGjQAYHjZCCKqPb1adk6dOiX9PGXKFEydOhWXLl1Ct27dAAAHDx7EsmXLsGjRItNESWSFUm7lQlWumKMIAXZegUx26qHmzZsjISEBSUlJiIyMNHc4RPWKXslOhw4dIAgCRI0yvDNnzqxw3FNPPYURI0YYLzoiKxbWyBUyAVoJj6gqRUl2GpOdeqhFixZISEjgIGUiM9Ar2TG0pgsRAQGeznjrkTaYu76sK0smADe3fgohX8ku33pIPW7HGMmOQlmApj5utT4PUX2hV7ITEhJi6jiIbNLwqCZSsvNKRB5eWLQdHTp0gLMzq1fXN7WdkVV+sPvC2EgWByXSU43mLqalpeGff/5BZmYmVCqV1r4pU6YYJTAia1R+erCmS6e4vk59Vpu1dnQNdn9t3Rn0aOmDAE8mzkTVMTjZ+eabb/Dss8/CwcEB3t7eEARB2icIApMdokocO3oUAJOd+krdsnP9+nXk5eXBxcVF79fqGuxeKoq4ciuPyQ6RHgyeej537lzMmzcPSqUSV65cQUpKivTglEoi3URRhePHmOzUZ97e3vDy8gJg+PRz9WB3TXJBQGgj/RMmovrM4GQnLy8PTz75JGQyg19KVO+oizlun9AKSqUSTk5OaNOmjbnDIjMQBEFq3bl48aJBr1UPdleTCcC7sW3ZqkOkJ4MzlgkTJmDt2rWmiIXIpiiUBdLP6npYHTp0gL29vblCIjMLDw8HACQmJhr82uFRTaSfd8zoycHJRAYweMzOwoULMWTIEGzZsgWRkZEVPrg/+OADowVHZG0qmzHD4p8E3E92Lly4UKvz+Hs6GSMconqjRsnO1q1b0apVKwCoMECZqL6qasYMkx0CIH1u1jbZISLDGJzsvP/++1i5ciWeeeYZE4RDZH00p5uXVyqKSM64i+PHjwNgslPfaXZjiaLIL4hEdcTgZMfR0RHdu3c3RSxEVq98eQi5IKAo6zry8/Ph7u6Oli1bmi84MrvmzZtDJpNBqVQiIyMD/v7+er9WPdidiAxn8ADlqVOn4pNPPjFFLERW77VBraWf1TNmUs6WtepERUVxFmM95+TkhLCwMADsyiKqSwa37Bw+fBi7du3Cpk2b0KZNmwoDlNetW2e04IiszaMdA/HOn+cBlM2Yaerjhue+5ngdui88PBzJycm4cOECevXqZe5wiOoFg5MdLy8vxMbGmiIWIquXkXN/url6xgwHJ5Om8PBw/Pnnn2zZIapDBic7q1atMkUcRFZLc7r50E/2a+3Ly8vDqVOnAAAPPPBAncZFlqk2a+0QUc1wAAFRLeiabq7pyJEjKCkpQUBAAIKDuQgccfo5kTkY3LITFhZW5XRJ1sei+kRXgUYA+HFiN7g42CE+Ph4AEB0dzWnGBOB+y87Vq1cNLghKRDVjcMvOtGnTMHXqVOnxwgsvIDo6GkqlEpMmTTLoXAsXLkSXLl3g7u4OX19fPProoxWadgsKChAXFwdvb2+4ublh+PDhyMjI0DomNTUVgwcPhouLC3x9ffHKK6+gpKTE0FsjMlh1BRo1kx0iAGjUqBEaNmwIURSRlJRk7nCI6gWDW3amTp2qc/uyZctw5MgRg861d+9exMXFoUuXLigpKcFrr72G/v3749y5c3B1dQUATJ8+HX/++SfWrl0LT09PTJ48GbGxsdi/v2xsRGlpKQYPHgx/f38cOHAA6enpGDNmDOzt7fHuu+8aentEBlEXaJy7vqwrS7NAoyiKTHaoAkEQEB4ejgMHDuDChQto3769uUMisn2ikSQnJ4vu7u61OkdmZqYIQNy7d68oiqKYnZ0t2tvbi2vXrpWOOX/+vAhAjI+PF0VRFDdv3izKZDJRoVBIx3z++eeih4eHWFhYqNd1lUqlCEBUKpW1ip/qp9zCYjFk1iYxZNYmMTnzrrQ9OTlZBCDa29uL+fn5ZoyQLM348eNFAOKbb75p7lCIrJq+f7+NNkD5119/RcOGDWt1DqVSCQDSeY4ePYri4mLExMRIx4SHhyM4OFj6xhwfH4/IyEj4+flJxwwYMAA5OTk4e/YsdCksLEROTo7Wg8gYNAs0qv8f7dixI5ycWLiR7ouIiACASj+j9JFXVILQV/9E6Kt/Iq+I3fZEVTG4G6tjx45aAy1FUYRCocDNmzfx2Wef1TgQlUqFadOmoXv37mjbti0AQKFQwMHBAV5eXlrH+vn5QaFQSMdoJjrq/ep9uixcuBBvvfVWjWMl0ge7sKgy6s+4M2fOmDkSovrB4GTn0Ucf1Xouk8ng4+ODXr16SbMMaiIuLg5nzpzBP//8U+Nz6Gv27NmYMWOG9DwnJwdBQUEmvy7ZpspqFjHZocqok52LFy+isLAQjo6OZo6IyLYZnOy88cYbRg9i8uTJ2LRpE/bt24cmTZpI2/39/VFUVITs7Gyt1h3NAnr+/v44fPiw1vnUs7UqK7Ln6OjIDxcyqdzcXJw8eRIAkx2qKDAwEF5eXsjOzkZiYiLatWtn7pCIbJpZFxUURRGTJ0/G77//jl27dkkF8tSioqJgb2+PnTt3StsSExORmpoq/QGJjo7G6dOnkZmZKR2zfft2eHh4SP3iRHXtyJEjKC0tRWBgIFsNqQJBEIzalaVQFlR/EFE9pneyI5PJIJfLq3zY2RnWUBQXF4fvv/8ea9asgbu7OxQKBRQKBfLz8wEAnp6emDBhAmbMmIHdu3fj6NGjGDduHKKjo9GtWzcAQP/+/REREYHRo0fj5MmT2Lp1K+bMmYO4uDi23pDZcDFBqo462Tl9+nSNXq9ZpiTmg734OSHVKHER2SK9s5Pff/+90n3x8fFYunQpVCqVQRf//PPPAaBC5d9Vq1bhmWeeAQB8+OGHkMlkGD58OAoLCzFgwACtgdByuRybNm3C888/j+joaLi6umLs2LGYP3++QbEQGRPH61B1atOyo6tMyWvrzqBHSx8EeDobLUYiW6F3sjNs2LAK2xITE/Hqq69i48aNGDVqlMEJhijqWGe/HCcnJyxbtgzLli2r9JiQkBBs3rzZoGsTmYrIxQRJD7VJdnSVKSkVRVy5lcdkh0iHGo3ZSUtLw8SJExEZGYmSkhKcOHECq1evRkhIiLHjI7I6ly9fxs2bN2Fvb49OnTqZOxyyUOpk58qVK7h7965Br62uTAkRaTMo2VEqlZg1axaaN2+Os2fPYufOndi4caP0piUiSKVMOnXqxMUEqVLe3t4ICAgAAJw7d86g16rLlKhplikhoor0TnaWLFmCpk2bYtOmTfjxxx9x4MABPPTQQ6aMjcgq/f333wCAHj16mDkSsnS16coaHnV/mY4dM3piRJdgo8VFZGv0HrPz6quvwtnZGc2bN8fq1auxevVqncetW7fOaMERWaN9+/YBYLJD1Wvbti22b99e4xlZapplSoioIr2TnTFjxnAKLVE1FAoFLl68CEEQ0L17d3OHQxauttPPiUg/eic733zzjQnDILIN6i6sdu3aoUGDBmaOhiydeuXkkydPQhRFg75QVlamhIgqMusKykS2hl1YZIi2bdtCLpfj9u3buH79evUvqIJmFfRb9wpYEZ1IA5MdIiNiskOGcHJyQps2ZbOqjh07ZuZoiGwXkx0iI8nKypLGXnCmIulLvRYTkx0i02GyQ2Qgze4CzS6C/fv3QxRFtGrVCn5+fmaMkKxJx44dAQDHjx832jkzcu4XBmWRUCImO0RGs3fvXgBs1SHDGKtlR7Mw6JCl+6WfWSSUiMkOkdHs3LkTANCnTx8zR0LWpH379hAEATdu3EBmZmaNzlG+MKhm2Sx1kdB0ZX4tIyWyXkx2iGpB3UVw8+ZNnDhxAgCTHTKMu7s7WrRoAaDmXVm6CoNqUhcJJaqvmOwQGUizu0DdRbB7924AQGRkJMfrkMFq25WlqzCoJhYJpfqOyQ6RAcp3F6i7CP7cVTZGom/fvuYKjayYOtmpactO+cKgmnkPi4QSMdkhMoiu7oJSUcTfJy4AAGJiYswQFVk79Yys2gxS1iwMumnK/VIlLBJKxGSHyCC6ugtkApB67ijs7Oy4mCDViDrZSU5ORnZ2dq3P5+dxvzAoi4QSMdkhMkj57gKZAAzyUaL07m088MADcHd3N2N0ZK28vb3RrFkzAMDhw4fNHA2R7WGyQ2Qgze6CHTN64nbCRgDswqLa6datGwAgPj6+Rq9XFwa9smgwGrk5ST+7OOhd75nIZjHZIaoFHzd7bN++HQCTHaqd6OhoADVPdoiockz5iaqRV1SCiHlbAQDn5g+QvkEDZX+Ybt++DU9PT+mPFVFNqFt2Dh06BJVKBZmM30WJjIXvJqJa2Lx5MwBgwIABsLPjdwequXbt2sHZ2RnZ2dlITEw0dzhENoXJDlEt/PnnnwCAwYMHmzkSsnb29vbo0qULAODgwYNmjobItjDZITKAZgXptLQ0HD9+HIIg4OGHHzZjVGQrajtImYh0Y7JDVA1d5SEAYMuWLQCALl26wNfX1yyxkW1Rj/tiyw6RcTHZIapCZeUh0pX5UhfWoEGDzBUe2Rh1y86ZM2eQk5Nj5miIbAeTHaIqVFYe4pJCKU05Z7JDxuLv74/Q0FCIosjFBYmMiMkOURV0lYeQCwKunT+Gu3fvwt/fH1FRUeYJjmxS9+5lda327t1r5kiIbAeTHaIq6CoP8W5sW+zc+BsAIDY2luuhkFH17t0bALBr1y4zR0JkO/gpTVSN8uUhhncMxPr168v2DR9urrDIRvXp0wdAWY2se/fumTkaItvAZIfIAP6eTti7dy9u376NRo0asco5GV1YWBhCQkJQUlKC/fv3mzscIpvAZIeoGpoFFl0c7PDbb2VdWI8++ihXTSaTUHdl7d692yjnyysqQeirfyL01T+RV1RilHMSWRMmO0QGKC0txbp16wCwC4tMx9jJDlF9x2SHyAD79+9HRkYGvLy8pLEVRMamTnaOHDkCpVJp1HNrrgJOVF8w2SEywPfffw8AeOyxx+Dg4GDmaMhWBQUFoXnz5lCpVPj7779rfb7KVgEnqi+Y7BDpKT8/Hz///DMAYMyYMWaOhmydunVn586dtTpPVauAE9UXZk129u3bh6FDhyIwMBCCIOCPP/7Q2i+KIubNm4eAgAA4OzsjJiYGSUlJWsdkZWVh1KhR8PDwgJeXFyZMmMDpmlQrlQ3m3LBhA3JychASEsJZWGRy/fv3BwBs3ry5VuepbBXwK7fyanVeImti1mQnNzcX7du3x7Jly3TuX7JkCZYuXYrly5fj0KFDcHV1xYABA1BQcL/PedSoUTh79iy2b9+OTZs2Yd++fZg0aVJd3QLZOM3xDd9++y0AYPTo0VxIkEyuf//+sLe3x8WLF3Hx4sUan6eyVcBDG7nUMkIi6yGIoihWf5jpCYKA33//HY8++iiAsladwMBAvPTSS3j55ZcBAEqlEn5+fvjmm2/w5JNP4vz584iIiEBCQgI6d+4MoKwS9aBBg3D9+nUEBgbqvFZhYSEKCwul5zk5OQgKCoJSqYSHh4dpb5QsUl5RCSLmbQUAzBncGu/8eR5A2YrJC2Mj0TPIAU2aNEFpaSkSExPRsmVLc4ZL9US/fv2wY8cOvP/++5gxY0aNz/Nd/BXMXV/WlSUTgLceaSM9Pzd/AFwcuIQCWaecnBx4enpW+/fbYr+epqSkQKFQICYmRtrm6emJrl27Ij4+HgAQHx8PLy8vKdEBgJiYGMhkMhw6dKjScy9cuBCenp7SIygoyHQ3QlZnwebz0s/q8Q1ffPszSktL0a1bNyY6VGeGDBkCANi0aVOtzlNhFXCN55ydRfWBxSY7CoUCAODn56e13c/PT9qnUCjg6+urtd/Ozg4NGzaUjtFl9uzZUCqV0uPatWtGjp6sjeZslfJtnaWiiG9/3wIAeOaZZ+owKqrv1MnO33//jezs7BqfR3NhzKY+bpydRfWOxSY7puTo6AgPDw+tB9Vf5WerlCcDcPVsAjw9PTFq1Ki6C4zqvWbNmiE8PBwlJSXYtm2bUc7J2VlUH1lssuPv7w8AyMjI0NqekZEh7fP390dmZqbW/pKSEmRlZUnHEFVH12wVNZkA+F3bhdK7tzF+/Hi4ubnVbXBU76lbdzZu3GiU83F2FtVHFpvshIWFwd/fX2uNiZycHBw6dAjR0dEAgOjoaGRnZ+Po0aPSMbt27YJKpULXrl3rPGayTrpmq6h9HRuCg2s+gCAIeOGFF+o2MCIAQ4cOBVA2bkdzYkVNcXYW1UdmTXbu3buHEydO4MSJEwDKBiWfOHECqampEAQB06ZNwzvvvIMNGzbg9OnTGDNmDAIDA6UZW61bt8bDDz+MiRMn4vDhw9i/fz8mT56MJ598stKZWETlBXg6461H2kjPNf8Q/PbdCgDAwIED0bx587oOjQjdu3dHYGAgsrOzsWXLllqfT9f/7+/GtkWAp3Otz01ksUQz2r17twigwmPs2LGiKIqiSqUS586dK/r5+YmOjo5i3759xcTERK1z3L59Wxw5cqTo5uYmenh4iOPGjRPv3r1rUBxKpVIEICqVSmPdGlmZ3MJiMWTWJjFk1iYxObPs/59bt26Jbm5uIgBx8+bNZo6Q6rMZM2aIAMQnnnjCKOfT9f87kTXS9++3xayzY076ztMn26W5zo563ZE5c+ZgwYIF6NChA44dOwZBqKSvi8jEjh49is6dO8PJyQmZmZlwd3ev1fl0/f9OZI30/fvNZAdMdqiiO3fuICQkBHfv3sW6devw2GOPmTskqsdEUUR4eDguXryI7777Dk8//bRRz8/kh6yV1S8qSGRKldW/Uvv4449x9+5dREZGYtiwYWaIkOg+QRDw1FNPAQDWrFlj0mtxkUGyRUx2qN4r/+F++/ZtfPTRRwCAuXPnsg4WWQR1srNt27YqF02tCS4ySLaOn+JUL1X14T5v3jwolUq0a9cOw4cPN0d4RBW0aNEC//d//4fS0lKsWLHCaOflIoNUHzDZoXqnqg/3kydPYvny5QDKurLYqkOWZPLkyQCA5cuXo7i42Cjn5CKDVB/wk5zqnco/3HMxdepUqFQqPP744+jVq5dZ4iOqzPDhw+Hn54e0tDT88ccfRjknFxmk+oDJDtU7lX24H927BXv37oWTkxPee+898wRHVAUHBwdMmjQJALBs2TKjnJOLDFJ9wGSH6h1dH+4v9QzA69PjAJQNSg4JCTFXeERVevbZZyGXy7F3716cOnXKKOccHtVE+nnHjJ4Y0SXYKOclshRMdsgmaE4lv3zzXrVTyzU/3LdNewi/LJqOnJwcREdHY+bMmXUZOpFBGjdujNjYWADAggULjHJOFwc7XFk0GFcWDUZTHxa7JdvDZKeeqi4ZsDblZ1dpPte1bojmh/svX3+KvXv3wtXVFd999x3s7LigGlm2OXPmAAB++eUXnD592szREFk+Jjtk9YuI6ZpdNW/9/edVrRvy+++/S384Pv74YzRr1sy0wRIZQbt27fD4448DAN58803zBkNkBZjs1FO2tIiYrtlVmk8rWzfk2LFjePrppyGKIuLi4jBhwgTTB0tkJG+88QYEQcC6detw/Phxc4dDZNGY7NRDtraImK7ZVeWViiKiF+6SxvScPn0aAwcORF5eHvr37y+tmExkLdq0aYORI0cCAF5++WWYq8xh+fFyRJaIyY6JWeIHga0sIqb+t41euAuT+zSXtgv/PjRpPu/7/l70e3YeMjMz0bFjR/zyyy8cp0NW6e2334aTkxN27dqFH374wSwx2FIrMdkuJjsmVv6D4Lv4KzVOfoyVONXlImLGTPbKn0vz3/bTXZekn3e+1BPzh92fWl4+8REBOD44Dp17xGDnzp3w9PSsVVxE5tK0aVPMnTsXADBjxgxkZWXV+pyGvGdtrZWYbBeTHROqzcBZXYz1DcrQRcSq+/Crar8hMVd3Hc1z9X1/r9a/pUosS9jiZ/dBUx83jI4ORfzsPvhxYjd88lRHlG/gF2RyLF62Eg0aNKg0HiJr8PLLLyMiIgI3b97EK6+8UuvzVfee1XyfHrh0yyZaicn2MdkxoZoOnNVFV+I0e93pGreaaCYD+1/tU+UiYtV9+FW239BvfVVdp/y5RKBCAlP+QzbA0xnRzbxRnJYIiCqtY2UC0DqoUSV3TGQ9HBwcpHpuK1euxI8//ljjc+nzntV8n7689lSFllOWmiBLxGTHhP786RugmkGDpaKIB+b9geAZvyEpQ6m1r7pvUJrPa9LSo04GAjydK21VqS7JOnT5doX9s347XeW3Ps2BwprXnVfFh6yuxLG88h+yCQkJiI2NRezAPri95ROIqlIAZYnOwthILodPNuOhhx7C66+/DgCYOHEizp07V6PzVDaeT/2eLf9+L/+WZKkJslSCaK4h/BYkJycHnp6eUCqV8PDwMNp5W7ZsiXTnUDQcMBmCTF72x1YQIAj3c0xRVdbiIMhkEFUq3Nv9BexSE+Du7g67Vj2Q3/axsuNFFQABEDS/R4nQHJEiE4CvhgUgzK8B3Nzc4O7uDkdHRwhCNVOVAHwXfwVz/+0WUicDI7oE40DyLTy14lClrxNQ8QNPcx/K7dc8XiYAj7QPxB8n0qqN7+dJ3TByxUGtD+Ly51oYG4kBLTzw66+/4ttvv8Xff/9ddpwg4Nlnn8WUV+chu8QBoY1c+GFMNqe0tBT9+/fHrl27EB4ejgMHDhjcTZuuzEf3RbsqfZ9V9X4HgF0v9dRagTmvqAQR87bq3EdkDPr+/WayA9MlOx9++CHS0tJw814xbhXJoFJmIEPmjVuh/f5NbnQlP6W4tWEJSpQZ8B/9AQRZ+cRIlBInQSavcM2sHSuQd/EflN69Dbm7Nxy9g+BYnAMXoQi3hAaw926Cdr5yNHKSSQmRzM0bm+2ioZk4CRDxTlcBLs4umLEnr8oPuKqU/6AEqv6wrOy15RMjdXLTtpEcOw+dQlriSRzYuRnx8fEoKSlbEVoul+Ppp5/GrFmz0Lp16xreAZH1yMzMRKdOnXDjxg088MAD2L59u8GfaZpffPR5z8oFAf+82lvnF4jKvkQRGQuTHQOYKtmpTLoyH1du5eF2biEmrzFsMbAHhUSIBTkozLuHI149Ac1ESRQhCAJElQq5Z3fBtU0fqcWo/POsrZ/g3qntAADH4Ej4j1xY4VqKNbNReO003Nr102qd0pVkiSqVVmKm6f9wHl5OcqgcXLElp7Ged1o+RSpLwHoUHILidjYyL59F6oWTOmeftGnTBqNHj8aoUaPQpEmTCvuJbNmZM2fQq1cv3L59Gw899BA2b94MNzfDWlT0/YyqLIFJV+bjyJUsTP3phFYrUVWJEVFNMNkxQF0nO2q6moyrUv6DQvNbk6EEiBjXKAVCfjYy7hZik9BNu4tMVMHt9K8oSU9E3u005MMRhQ6eKMxV6mhxKoXiu5cg9/CDz7BZFfbdWD5eamlq/Nwq7f3/Jmiax9/asAQA4PPo7ApxqxMwTS1atEBUVBR69eqFfv36oWnTpjX6NyGyFceOHUOfPn2gVCrRrl07bNiwASEhIQafR9dnlFwQsO6FaOQVqXR2CVf3ufTjxG6IbuZtcCxEujDZMYC5kh1A/4Slqm9Qf55Kxzt/njf42pofOuWbrsuPhVFft7S0FCv3JeGdLZcgCAJkAvDf9q7o6lOK3Nxc7LhSgPU3XCAIAgSI6Cq7jID8FOTm5iI3Nxep9kFI9e1elvCIKrhknkGuT9uy5yoVnM/+DhfFScjcGuJmtylaLVcQVXhESECzAG+EhYVJD0O/tRLVBwkJCRg6dCgyMjLg4+ODH3/8EX379jX4PIZ0RVX3Ba78FzaO6aHaYrJjAHMmO0DZB8TRK3cw5afjBn2D0ny9IS1E6nOXb06uKg5dx165laczrqr26dpf2fHs7yeqnWvXrmHYsGFS7az//ve/eO+99+Dl5WXQeap7T6tVNaFBLgh4N7YterT0QcqtXIQ1csWOcxl8j1OtMNkxgLmTHbXa/HEv/9ryg3l1De7Vde7KPqzM1fSs74csEemWm5uLmTNn4rPPPgMAeHt7Y+bMmYiLi4Orq6tRr6Xri5cMwCdPdUSnkAZayY2uwc/lv1ilK/OlxIjvf9KFyY4BLCXZAWr3x726FhN9zl1ZHz0HFRJZt3379uHZZ5/FhQsXAJQlPaNHj8aECRPQtm1bo12nsi9t+rZAfzqyIxq6OeDY1Tv437aL0nneeqSNdF59urxMmSjZYhJmrffEZMcAlpTsWAJ2HxHZppKSEqxZswbz589HcnKytL1Vq1YYOnQoevXqha5du6JRo9qtLq7ri1V1a3YB1a/bVdlYwvJq8hmm7x97U38+miPpqO6eLDkRYrJjACY7FbH7iMh2lZaWYuvWrfjqq6+wceNGaW0qtWbNmqFTp05o0aIFWrRogWbNmiEwMBB+fn41nhBQ2YKFglC2YroMusvAVKaysYQ1mfKubwJTk5ZvQxIFQxMpYyQh1d2TpX/51ffvt10dxkRWJMDTmUkOkY2Sy+UYNGgQBg0aBKVSiW3btuGvv/5CfHw8Lly4gOTkZK2WH02urq7w8/ODt7c3PDw84O7uXuG/zs7OcHJygqOjo/RfR0dHjGwpx/cXSqSZnFO7+6J704bIzFMhp0jEqxuS9L6HUlHE0St30NCt4mBnXcdeuZVXITFKuZULVwe5znpgPVr6VPgMrKychmYc6iEDKbdyK3TFVTeTrUJpnt9Ow9XRDlEhDaqc4q8+t+bgb3W81SVCVd2TiCyd/zbh/u7ILSqtcL+W2PKjxpYdsGWHiEjtzp07SEhIwJkzZ5CUlIRLly7h8uXLSE9PR35+9UWLqyN394adVyBKstNQeve21vbK1uHStdo8RFVZwZxKy+ncJ4gq9CxKAOyd0MC+BOlogPiSsH/X+NIuu6P2YptStPFxgL29PRwcyv6bUyLHs5syK5TAUf0bp0wABrf1w4ZTCp1letQzbHUlClm5RZUu4Fg+UTKkrIeuRKh80lfVuapiyOQXU2E3lgGY7BARVU0URdy7dw8ZGRlQKBS4c+cO7t69i5ycnAr/zc/PR2FhIQoLC1FQUKD138q2AaiwWnv23m9QmH4JJdlpcA7rVGWdwUrjVpUi9+xurRXky/Ki6hc3LUy7IC2IatcgECV3qo+j/Lkq/juqpARNfu0YSpp0ktYdqyphg6hCl+y9EOydUGLnhGNOHau9d40XQxQhrX/2dCsZIn3skVUkQ2NPR5zILMZXJ3L/3a9+Rc3U9YQWJjsGYLJDRGQ+oiiitLQURUVFuH77Hi7fvAd/VxkaOAkoKipCcXExioqKoFAW4Fp2AbLyivH5yaLqzor+rtfgXJqH9QWtoKv1RvtwVdkipppJh6iC/PoxlDQuS0hEUYXi/atRePU4VC6NIDq6wmvQSwbdp1ZSVSHJul//UPfryxIlXQmbIcoXoM7a+gnyU47BzisQchcPnavXl71Od7mg8uz2fQpHZSrs7OwguDaE4O4Lx+Ic/LxqeY1W8q4Kx+wQEZFVEAQBdnZ2sLOzQ0sXF7QM8q3y+HRlPr44Vflg57IFDCMxossQHEi+hfXVzAKTCwLWxT2Ia1n52ouqCjKUBnWW0iRBkMH5ofE4+mdvqQtK3wVdBaBCq035FiBBJsPIkDyUlpRg7Q13iFoJmiglN2VdfSL+ba6pvlWofCwaXYWCTAbvAZNR/PtslORkoETMrVDrsMoC1Tpaxa6lXILg4AwH/2Zo8OA4Kalaf/omphg52dEXkx0iIrIqAZ7OWBgbidfWnUGpKGqtzlx+FmlYI1fI/k2C1ComRm3RPqgBcotKq01cNAc764rj0Y6B+ON4mvR85sOt0K6JF1wcZHjsswNVnl8uCJjy1BAEeDojKiFVOq8MgKpCy5SAT5/qCG83R4Q2csG+izel44V/b1LUd5abTI5ft+yTFo79WePacgF4OzYSj765DcXFxfj1WBoWbLtcNoNOAPo298DO5LvS8/8LdsLfYz7Umch9tD8Djz+Ub5ZBzOzGAruxiIiskb5LZGj/8a48MdKnpUaf8jmVxVU+jvKJ0buxbSusb3PlVp7ORKm6OABIP2smQrqSn9qWBKoqzvKMvRp/vRuzs2zZMrz33ntQKBRo3749PvnkEzzwwAN6vZbJDhGRbatpYlRdQlLbOGqTsBkSh+Z1NJMfY9yTWnULR5pi8HK9SnZ+/vlnjBkzBsuXL0fXrl3x0UcfYe3atUhMTISvb9V9vwCTHSIiuq+mCUldx2Up59I8Z2UtY8ZMqjTVq2Sna9eu6NKlCz799FMAgEqlQlBQEF588UW8+uqr1b6eyQ4REVHtlW+BUo9ZMlWiWG9mYxUVFeHo0aOYPfv+VDmZTIaYmBjEx8frfI3mug5A2T8WERER1c6ILsE6x0OZW80m6VuQW7duobS0FH5+flrb/fz8oFAodL5m4cKF8PT0lB5BQUF1ESoREZHNC/B0RnQzb4tJdAAbSHZqYvbs2VAqldLj2rVr5g6JiIiITMTqu7EaNWoEuVyOjIwMre0ZGRnw9/fX+Rp1UToiIiKyfVbfsuPg4ICoqCjs3LlT2qZSqbBz505ER0ebMTIiIiKyBFbfsgMAM2bMwNixY9G5c2c88MAD+Oijj5Cbm4tx48aZOzQiIiIyM5tIdkaMGIGbN29i3rx5UCgU6NChA7Zs2VJh0DIRERHVPzaxzk5tcZ0dIiIi66Pv32+rH7NDREREVBUmO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7REREZNNsYp2d2lLPvmf1cyIiIuuh/rtd3So6THYA3L17FwBY/ZyIiMgK3b17F56enpXu56KCKKullZaWBnd3dwiCYLTz5uTkICgoCNeuXbPZxQpt/R5t/f4A279HW78/wPbv0dbvD7D9ezTV/YmiiLt37yIwMBAyWeUjc9iyA0Amk6FJkyYmO7+Hh4dN/s+rydbv0dbvD7D9e7T1+wNs/x5t/f4A279HU9xfVS06ahygTERERDaNyQ4RERHZNCY7JuTo6Ig33ngDjo6O5g7FZGz9Hm39/gDbv0dbvz/A9u/R1u8PsP17NPf9cYAyERER2TS27BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsGNmiRYsgCAKmTZsmbSsoKEBcXBy8vb3h5uaG4cOHIyMjw3xB1pKue+zVqxcEQdB6PPfcc+YL0kBvvvlmhfjDw8Ol/db+O6zu/qz99wcAN27cwNNPPw1vb284OzsjMjISR44ckfaLooh58+YhICAAzs7OiImJQVJSkhkjNlx19/jMM89U+D0+/PDDZozYMKGhoRXiFwQBcXFxAKz/fVjd/Vn7+7C0tBRz585FWFgYnJ2d0axZM7z99ttadavM9T7kCspGlJCQgC+++ALt2rXT2j59+nT8+eefWLt2LTw9PTF58mTExsZi//79Zoq05iq7RwCYOHEi5s+fLz13cXGpy9BqrU2bNtixY4f03M7u/tvDFn6HVd0fYN2/vzt37qB79+7o3bs3/vrrL/j4+CApKQkNGjSQjlmyZAmWLl2K1atXIywsDHPnzsWAAQNw7tw5ODk5mTF6/ehzjwDw8MMPY9WqVdJza5rKnJCQgNLSUun5mTNn0K9fPzz++OMArP99WN39Adb9Ply8eDE+//xzrF69Gm3atMGRI0cwbtw4eHp6YsqUKQDM+D4UySju3r0rtmjRQty+fbvYs2dPcerUqaIoimJ2drZob28vrl27Vjr2/PnzIgAxPj7eTNHWTGX3KIpihefW5o033hDbt2+vc58t/A6ruj9RtP7f36xZs8QHH3yw0v0qlUr09/cX33vvPWlbdna26OjoKP744491EWKtVXePoiiKY8eOFYcNG1Y3AdWBqVOnis2aNRNVKpVNvA/L07w/UbT+9+HgwYPF8ePHa22LjY0VR40aJYqied+H7MYykri4OAwePBgxMTFa248ePYri4mKt7eHh4QgODkZ8fHxdh1krld2j2g8//IBGjRqhbdu2mD17NvLy8uo4wtpJSkpCYGAgmjZtilGjRiE1NRWA7fwOK7s/NWv+/W3YsAGdO3fG448/Dl9fX3Ts2BErVqyQ9qekpEChUGj9Dj09PdG1a1er+R1Wd49qe/bsga+vL1q1aoXnn38et2/fNkO0tVdUVITvv/8e48ePhyAINvM+VCt/f2rW/D78v//7P+zcuRMXL14EAJw8eRL//PMPBg4cCMC870N2YxnBTz/9hGPHjiEhIaHCPoVCAQcHB3h5eWlt9/Pzg0KhqKMIa6+qewSAp556CiEhIQgMDMSpU6cwa9YsJCYmYt26dXUcac107doV33zzDVq1aoX09HS89dZbeOihh3DmzBmb+B1WdX/u7u5W//u7fPkyPv/8c8yYMQOvvfYaEhISMGXKFDg4OGDs2LHS78nPz0/rddb0O6zuHoGyLqzY2FiEhYUhOTkZr732GgYOHIj4+HjI5XIz34Fh/vjjD2RnZ+OZZ54BYDufpWrl7w+w/s/RV199FTk5OQgPD4dcLkdpaSkWLFiAUaNGAYBZ34dMdmrp2rVrmDp1KrZv324V/f41oc89Tpo0Sfo5MjISAQEB6Nu3L5KTk9GsWbO6CrXG1N88AKBdu3bo2rUrQkJC8Msvv8DZ2dmMkRlHVfc3YcIEq//9qVQqdO7cGe+++y4AoGPHjjhz5gyWL18uJQLWTp97fPLJJ6XjIyMj0a5dOzRr1gx79uxB3759zRJ3TX399dcYOHAgAgMDzR2KSei6P2t/H/7yyy/44YcfsGbNGrRp0wYnTpzAtGnTEBgYaPb3Ibuxauno0aPIzMxEp06dYGdnBzs7O+zduxdLly6FnZ0d/Pz8UFRUhOzsbK3XZWRkwN/f3zxBG6i6e9QccKfWtWtXAMClS5fqOlyj8PLyQsuWLXHp0iX4+/tb/e+wPM3708Xafn8BAQGIiIjQ2ta6dWupq079eyo/c8eafofV3aMuTZs2RaNGjazm96h29epV7NixA//973+lbbb0PtR1f7pY2/vwlVdewauvvoonn3wSkZGRGD16NKZPn46FCxcCMO/7kMlOLfXt2xenT5/GiRMnpEfnzp0xatQo6Wd7e3vs3LlTek1iYiJSU1MRHR1txsj1V9096moeP3HiBICyD2hrdO/ePSQnJyMgIABRUVFW/zssT/P+dLG231/37t2RmJiote3ixYsICQkBAISFhcHf31/rd5iTk4NDhw5Zze+wunvU5fr167h9+7bV/B7VVq1aBV9fXwwePFjaZkvvQ133p4u1vQ/z8vIgk2mnFXK5HCqVCoCZ34cmHf5cT5UfUf/cc8+JwcHB4q5du8QjR46I0dHRYnR0tPkCNALNe7x06ZI4f/588ciRI2JKSoq4fv16sWnTpmKPHj3MG6QBXnrpJXHPnj1iSkqKuH//fjEmJkZs1KiRmJmZKYqi9f8Oq7o/W/j9HT58WLSzsxMXLFggJiUliT/88IPo4uIifv/999IxixYtEr28vMT169eLp06dEocNGyaGhYWJ+fn5Zoxcf9Xd4927d8WXX35ZjI+PF1NSUsQdO3aInTp1Elu0aCEWFBSYOXr9lZaWisHBweKsWbMq7LP296EoVn5/tvA+HDt2rNi4cWNx06ZNYkpKirhu3TqxUaNG4syZM6VjzPU+ZLJjAuWTnfz8fPGFF14QGzRoILq4uIiPPfaYmJ6ebr4AjUDzHlNTU8UePXqIDRs2FB0dHcXmzZuLr7zyiqhUKs0bpAFGjBghBgQEiA4ODmLjxo3FESNGiJcuXZL2W/vvsKr7s4XfnyiK4saNG8W2bduKjo6OYnh4uPjll19q7VepVOLcuXNFPz8/0dHRUezbt6+YmJhopmhrpqp7zMvLE/v37y/6+PiI9vb2YkhIiDhx4kRRoVCYMWLDbd26VQSg83dj7e9DUaz8/mzhfZiTkyNOnTpVDA4OFp2cnMSmTZuKr7/+ulhYWCgdY673oSCKGksbEhEREdkYjtkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIpjHZISIC0KtXLwiCAEEQpJpEe/bsgSAIFYpPGtubb74pXfujjz4y6bWI6iMmO0RksGeeeUb646z5ePjhh80dWq1MnDgR6enpaNu2ba3PlZGRAXt7e/z0008690+YMAGdOnUCALz88stIT09HkyZNan1dIqqIyQ4R1cjDDz+M9PR0rcePP/5o0msWFRWZ9PwuLi7w9/eHnZ1drc/l5+eHwYMHY+XKlRX25ebm4pdffsGECRMAAG5ubvD394dcLq/1dYmoIiY7RFQjjo6O8Pf313o0aNBA2i8IAr766is89thjcHFxQYsWLbBhwwatc5w5cwYDBw6Em5sb/Pz8MHr0aNy6dUva36tXL0yePBnTpk1Do0aNMGDAAADAhg0b0KJFCzg5OaF3795YvXq11N2Um5sLDw8P/Prrr1rX+uOPP+Dq6oq7d+/W+J7z8vIwcOBAdO/eXera+uqrr9C6dWs4OTkhPDwcn332mXT8hAkTsHPnTqSmpmqdZ+3atSgpKcGoUaNqHAsR6Y/JDhGZzFtvvYUnnngCp06dwqBBgzBq1ChkZWUBALKzs9GnTx907NgRR44cwZYtW5CRkYEnnnhC6xyrV6+Gg4MD9u/fj+XLlyMlJQX/+c9/8Oijj+LkyZN49tln8frrr0vHu7q64sknn8SqVau0zrNq1Sr85z//gbu7e43uJTs7G/369YNKpcL27dvh5eWFH374AfPmzcOCBQtw/vx5vPvuu5g7dy5Wr14NABg0aBD8/PzwzTffVIglNjYWXl5eNYqFiAxk8rrqRGRzxo4dK8rlctHV1VXrsWDBAukYAOKcOXOk5/fu3RMBiH/99ZcoiqL49ttvi/3799c677Vr10QAYmJioiiKotizZ0+xY8eOWsfMmjVLbNu2rda2119/XQQg3rlzRxRFUTx06JAol8vFtLQ0URRFMSMjQ7SzsxP37NlT6T317NlTnDp1qta23bt3iwDE8+fPi+3atROHDx8uFhYWSvubNWsmrlmzRus1b7/9thgdHS09f/XVV8WwsDBRpVKJoiiKly5dEgVBEHfs2FEhhpCQEPHDDz+sNEYiqhm27BBRjfTu3RsnTpzQejz33HNax7Rr10762dXVFR4eHsjMzAQAnDx5Ert374abm5v0CA8PBwAkJydLr4uKitI6Z2JiIrp06aK17YEHHqjwvE2bNlILy/fff4+QkBD06NGjRvfar18/NG/eHD///DMcHBwAlI27SU5OxoQJE7Tu4Z133tGKf/z48UhJScHu3bsBlLXqhIaGok+fPjWKhYgMV/tReERUL7m6uqJ58+ZVHmNvb6/1XBAEqFQqAMC9e/cwdOhQLF68uMLrAgICtK5TE//973+xbNkyvPrqq1i1ahXGjRsHQRBqdK7Bgwfjt99+w7lz5xAZGSnFDwArVqxA165dtY7XHGjcokULPPTQQ1i1ahV69eqFb7/9FhMnTqxxLERkOCY7RGQWnTp1wm+//YbQ0FCDZj+1atUKmzdv1tqWkJBQ4binn34aM2fOxNKlS3Hu3DmMHTu2xrEuWrQIbm5u6Nu3L/bs2YOIiAj4+fkhMDAQly9frnag8YQJE/D888/jkUcewY0bN/DMM8/UOBYiMhy7sYioRgoLC6FQKLQemjOpqhMXF4esrCyMHDkSCQkJSE5OxtatWzFu3DiUlpZW+rpnn30WFy5cwKxZs3Dx4kX88ssv0gBgzdaSBg0aIDY2Fq+88gr69+9f6zVs/ve//2HUqFHo06cPLly4AKBsAPbChQuxdOlSXLx4EadPn8aqVavwwQcfaL328ccfh729PZ599ln0798fQUFBtYqFiAzDZIeIamTLli0ICAjQejz44IN6vz4wMBD79+9HaWkp+vfvj8jISEybNg1eXl6QySr/aAoLC8Ovv/6KdevWoV27dvj888+l2ViOjo5ax06YMAFFRUUYP358zW6ynA8//BBPPPEE+vTpg4sXL+K///0vvvrqK6xatQqRkZHo2bMnvvnmG4SFhWm9zsXFBU8++STu3LljtFiISH+CKIqiuYMgIqqNBQsWYPny5bh27ZrW9u+++w7Tp09HWlqaNLC4Mr169UKHDh3MWq4hNDQU06ZNw7Rp08wWA5EtYssOEVmdzz77DAkJCbh8+TK+++47vPfee1pjcvLy8pCcnIxFixbh2WefrTbR0Tyvm5sbTp8+barQdXr33Xfh5uZWYfFBIjIOtuwQkdWZPn06fv75Z2RlZSE4OBijR4/G7NmzpYHOb775JhYsWIAePXpg/fr1cHNzq/acN27cQH5+PgAgODhY7wTJGLKysqTFFn18fODp6Vln1yaqD5jsEBERkU1jNxYRERHZNCY7REREZNOY7BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU1jskNEREQ27f8BnoX1+ZXL7RcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", "plt.xlabel('Energy [keV]')\n", "plt.ylabel('Number of counts per bin')\n", "\n", "x = np.arange(40, 80, 0.1)\n", "plt.plot(x, fit_model(x, *mi.values), color='k', label='Initial guess')\n", "plt.legend()\n" ] }, { "cell_type": "markdown", "id": "6def3e2b-5edf-48bb-99b8-2b7fdaae51c5", "metadata": {}, "source": [ "Das Resultat sieht bereits sehr gut aus. Nun können wir uns den eigentlichen Peaks widmen und starten im Folgenden mit dem kleineren der beiden. Zunächst sollten wir den maskierten Bereich entweder neu definieren oder komplett entfernen." ] }, { "cell_type": "code", "execution_count": 513, "id": "ebd77c40-6fcd-4881-bc1d-e3ca8ae0bf3b", "metadata": {}, "outputs": [], "source": [ "ls.mask = None" ] }, { "cell_type": "markdown", "id": "7850ae53-ae2d-49aa-ac7b-dcef60a2dab7", "metadata": {}, "source": [ "Außerdem können wir dem Plot entnehmen, dass durch den höheren Untergrund unsere Anfangsstartwerte nicht mehr ganz so gut passen. Diese können wir wie folgt aktualisieren:" ] }, { "cell_type": "code", "execution_count": 514, "id": "823e05a0-516c-4d30-8dc7-5381e0e2e617", "metadata": {}, "outputs": [], "source": [ "mi.values['A_p1'] = 700\n", "mi.values['sigma_p1'] = 3" ] }, { "cell_type": "markdown", "id": "8648bf00-901e-40dc-ada2-9a6b684e8f31", "metadata": {}, "source": [ "Nun sollten wir alle Parameter wieder festhalten und nur die Parameter des ersten Peaks freigeben." ] }, { "cell_type": "code", "execution_count": 515, "id": "3c83690c-103e-47ff-b18f-13ac763ee87d", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 1296 (χ²/ndof = 11.1) Nfcn = 177
EDM = 2.92e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 348 7
1 A_p2 700 7 yes
2 mu_p1 53.51 0.04
3 mu_p2 60.0 0.6 yes
4 sigma_p1 2.085 0.034
5 sigma_p2 2.00 0.02 yes
6 A_bkg 137 15 yes
7 tau_bkg 34.9 2.3 0 yes
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 42.2 0 -0.0042 (-0.016) 0 -0.1247 (-0.558) 0 0 0
A_p2 0 0 0.0000 0 0.0000 0 0 0
mu_p1 -0.0042 (-0.016) 0.0000 0.00167 0.0000 0.0004 (0.252) 0.0000 0.0000 0.0000
mu_p2 0 0 0.0000 0 0.0000 0 0 0
sigma_p1 -0.1247 (-0.558) 0.0000 0.0004 (0.252) 0.0000 0.00118 0.0000 0.0000 0.0000
sigma_p2 0 0 0.0000 0 0.0000 0 0 0
A_bkg 0 0 0.0000 0 0.0000 0 0 0
tau_bkg 0 0 0.0000 0 0.0000 0 0 0
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:40:50.416590\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 1296 (χ²/ndof = 11.1) │ Nfcn = 177 │\n", "│ EDM = 2.92e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 348 │ 7 │ │ │ │ │ │\n", "│ 1 │ A_p2 │ 700 │ 7 │ │ │ │ │ yes │\n", "│ 2 │ mu_p1 │ 53.51 │ 0.04 │ │ │ │ │ │\n", "│ 3 │ mu_p2 │ 60.0 │ 0.6 │ │ │ │ │ yes │\n", "│ 4 │ sigma_p1 │ 2.085 │ 0.034 │ │ │ │ │ │\n", "│ 5 │ sigma_p2 │ 2.00 │ 0.02 │ │ │ │ │ yes │\n", "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ yes │\n", "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ yes │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 42.2 0 -0.0042 0 -0.1247 0 0 0 │\n", "│ A_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "│ mu_p1 │ -0.0042 0.0000 0.00167 0.0000 0.0004 0.0000 0.0000 0.0000 │\n", "│ mu_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "│ sigma_p1 │ -0.1247 0.0000 0.0004 0.0000 0.00118 0.0000 0.0000 0.0000 │\n", "│ sigma_p2 │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "│ A_bkg │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "│ tau_bkg │ 0 0 0.0000 0 0.0000 0 0 0 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 515, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mi.fixed[:] = True\n", "mi.fixed[['A_p1', 'mu_p1', 'sigma_p1']] = False\n", "mi.migrad()" ] }, { "cell_type": "markdown", "id": "34df75bf-3750-4186-ae12-4f6bb9e49931", "metadata": {}, "source": [ "Jetzt wiederholen wir das ganze für den zweiten Peak…" ] }, { "cell_type": "code", "execution_count": 516, "id": "264a9891-423c-479a-8906-c048aac2fd2e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 137 (χ²/ndof = 1.2) Nfcn = 226
EDM = 1.24e-06 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 348 7 yes
1 A_p2 584 7
2 mu_p1 53.51 0.04 yes
3 mu_p2 60.605 0.031
4 sigma_p1 2.085 0.034 yes
5 sigma_p2 2.666 0.026
6 A_bkg 137 15 yes
7 tau_bkg 34.9 2.3 0 yes
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 0 0 0 0e-3 0 0 0 0
A_p2 0 55.2 0 0.7e-3 (0.003) 0 -110.5e-3 (-0.563) 0 0
mu_p1 0 0 0 0e-3 0 0 0 0
mu_p2 0e-3 0.7e-3 (0.003) 0e-3 0.000983 0e-3 -0.2e-3 (-0.210) 0e-3 0e-3
sigma_p1 0 0 0 0e-3 0 0 0 0
sigma_p2 0 -110.5e-3 (-0.563) 0 -0.2e-3 (-0.210) 0 0.000697 0 0
A_bkg 0 0 0 0e-3 0 0 0 0
tau_bkg 0 0 0 0e-3 0 0 0 0
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:40:50.691377\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 137 (χ²/ndof = 1.2) │ Nfcn = 226 │\n", "│ EDM = 1.24e-06 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 348 │ 7 │ │ │ │ │ yes │\n", "│ 1 │ A_p2 │ 584 │ 7 │ │ │ │ │ │\n", "│ 2 │ mu_p1 │ 53.51 │ 0.04 │ │ │ │ │ yes │\n", "│ 3 │ mu_p2 │ 60.605 │ 0.031 │ │ │ │ │ │\n", "│ 4 │ sigma_p1 │ 2.085 │ 0.034 │ │ │ │ │ yes │\n", "│ 5 │ sigma_p2 │ 2.666 │ 0.026 │ │ │ │ │ │\n", "│ 6 │ A_bkg │ 137 │ 15 │ │ │ │ │ yes │\n", "│ 7 │ tau_bkg │ 34.9 │ 2.3 │ │ │ 0 │ │ yes │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", "│ A_p2 │ 0 55.2 0 0.7e-3 0 -110.5e-3 0 0 │\n", "│ mu_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", "│ mu_p2 │ 0e-3 0.7e-3 0e-3 0.000983 0e-3 -0.2e-3 0e-3 0e-3 │\n", "│ sigma_p1 │ 0 0 0 0e-3 0 0 0 0 │\n", "│ sigma_p2 │ 0 -110.5e-3 0 -0.2e-3 0 0.000697 0 0 │\n", "│ A_bkg │ 0 0 0 0e-3 0 0 0 0 │\n", "│ tau_bkg │ 0 0 0 0e-3 0 0 0 0 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 516, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mi.fixed[:] = True\n", "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", "mi.migrad()" ] }, { "cell_type": "markdown", "id": "32d67543-870f-4bd9-bba4-2d01086c671a", "metadata": {}, "source": [ "Zum Schluss geben wir wieder alle Parameter frei und führen einen letzten Fit durch. " ] }, { "cell_type": "code", "execution_count": 517, "id": "72d43004-cd80-418a-996a-f1e7a7133ce9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 500
EDM = 4.26e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 317 7
1 A_p2 580 7
2 mu_p1 53.24 0.07
3 mu_p2 60.43 0.05
4 sigma_p1 1.99 0.05
5 sigma_p2 2.80 0.04
6 A_bkg 147 14
7 tau_bkg 34.1 2.0 0
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.624) -0.0015 (-0.680) -0.0515 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.624) 0.00297 -0.0012 (-0.518) -0.1413 (-0.179) 0.0156 (0.142)
sigma_p2 -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0818 (0.137) -0.0143 (-0.172)
A_bkg -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0515 (-0.068) -0.1413 (-0.179) 0.0818 (0.137) 209 -28 (-0.965)
tau_bkg 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0156 (0.142) -0.0143 (-0.172) -28 (-0.965) 4.03
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:40:51.042163\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 500 │\n", "│ EDM = 4.26e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0515 0.0062 │\n", "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1413 0.0156 │\n", "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0818 -0.0143 │\n", "│ A_bkg │ -0 -0 -0.057 -0.0515 -0.1413 0.0818 209 -28 │\n", "│ tau_bkg │ 0 0 0.010 0.0062 0.0156 -0.0143 -28 4.03 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 517, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mi.fixed[:] = False\n", "mi.migrad()" ] }, { "cell_type": "code", "execution_count": 518, "id": "067fbf6f-14c4-4a46-afb3-71753d06af23", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 518, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACuwElEQVR4nOzdeVxU9frA8c+ZgWFnkH0TcFfccBe1cis1LUtvq+3+slsuldpVb7Zoi91uWta1um1aN223Mi3XFMs9FcUdVAQVBBTZYWDm/P4YZ2QElVFgWJ7368XrNnPOnPOMV4dnvt/n+3wVVVVVhBBCCCEaKI2jAxBCCCGEqEmS7AghhBCiQZNkRwghhBANmiQ7QgghhGjQJNkRQgghRIMmyY4QQgghGjRJdoQQQgjRoDk5OoC6wGQycfr0aby8vFAUxdHhCCGEEKIKVFUlLy+P0NBQNJrLj99IsgOcPn2apk2bOjoMIYQQQlyD1NRUwsPDL3tckh3Ay8sLMP9heXt7OzgaIYQQQlRFbm4uTZs2tf4evxxJdsA6deXt7S3JjhBCCFHPXK0ERQqUhRBCCNGgSbIjhBBCiAZNkh0hhBBCNGhSsyOEEKLOMRqNlJaWOjoM4WDOzs5otdrrvo4kO0IIIeoMVVVJT0/n/Pnzjg5F1BE+Pj4EBwdfVx88SXaEEELUGZZEJzAwEHd3d2n02oipqkphYSEZGRkAhISEXPO1JNkRQghRJxiNRmui4+fn5+hwRB3g5uYGQEZGBoGBgdc8pSUFykIIIeoES42Ou7u7gyMRdYnl78P11HBJsiOEEKJOkakrUV51/H2QZEcIIYQQDZokO0IIIYRo0CTZEUIIIRqYl19+maCgIBRF4aeffuKRRx7hjjvucHRYDiPJjhBCCHGdHnnkERRFsf74+fkxdOhQ9u7dW233ePnll4mJibnqeQcPHmTWrFn897//JS0tjWHDhjF//nwWLVpkPad///4888wz1RZbXSfJjhBCCFENhg4dSlpaGmlpaaxbtw4nJydGjBhR63EcPXoUgJEjRxIcHIyLiwt6vR4fH59aj6WukGRHCNHoFBrKiJq+gqjpKyg0lDk6HHEFqqpSUFDgkB9VVe2K1cXFheDgYIKDg4mJiWH69OmkpqaSmZlpPSc1NZW7774bHx8ffH19GTlyJMnJydbjGzZsoGfPnnh4eODj40Pfvn05ceIEixYtYtasWezZs8c6elR+pMbi5Zdf5rbbbgNAo9FYVzKVn8Z65JFHiIuLY/78+dZrlY+hIZKmgkIIIeqswsJCPD09HXLv/Px8PDw8rvm1X375JS1btrQ2SCwtLWXIkCHExsbyxx9/4OTkxKuvvmqd7tJoNNxxxx08/vjjfPXVVxgMBrZv346iKNxzzz3s27ePlStXsnbtWgD0en2F+06dOpWoqCgeffRR0tLSKo1t/vz5HDlyhA4dOjB79mwAAgICrul91heS7AghhBDVYPny5dbErKCggJCQEJYvX45GY55E+eabbzCZTHzyySfWEZeFCxfi4+PDhg0b6N69Ozk5OYwYMYIWLVoA0K5dO+v1PT09cXJyIjg4+LIxeHp6WqerLneeXq9Hp9Ph7u5+xWs1JJLsCCGEqLPc3d3Jz8932L3tMWDAAD744AMAsrOzef/99xk2bBjbt28nMjKSPXv2kJSUhJeXl83riouLOXr0KLfccguPPPIIQ4YM4eabb2bw4MHcfffd17UnlDCTZEcIIUSdpSjKNU8l1TYPDw9atmxpffzJJ5+g1+v5+OOPefXVV8nPz6dbt24sXry4wmst00gLFy5k0qRJrFy5km+++YaZM2eyZs0aevfuXWvvoyGSZEcIIYSoAYqioNFoKCoqAqBr16588803BAYG4u3tfdnXdenShS5dujBjxgxiY2NZsmQJvXv3RqfTYTQaqyW26rxWfSCrsYQQQohqUFJSQnp6Ounp6Rw8eJCJEyeSn59vXR01ZswY/P39GTlyJH/88QfHjx9nw4YNTJo0iZMnT3L8+HFmzJjBli1bOHHiBKtXryYxMdFatxMVFcXx48eJj48nKyuLkpKSa441KiqKbdu2kZycTFZWFiaTqVr+DOoqSXaEEEKIarBy5UpCQkIICQmhV69e7Nixg++++47+/fsD5hqgjRs3EhERwahRo2jXrh1jx46luLgYb29v3N3dOXToEKNHj6Z169aMGzeO8ePH88QTTwAwevRohg4dyoABAwgICOCrr7665linTp2KVqslOjqagIAAUlJSquOPoM5SVHsbCTRAubm56PV6cnJyrji0KIRoGAoNZUS/uAqAA7OH4K6TGf26oLi4mOPHj9OsWTNcXV0dHY6oI67096Kqv79lZEcIIcqRhoNCNDyS7AghGrX0nGJHhyCEqGGS7AghGp0fdp60/vfgeXF8s6Nh1ysI0dhJsiOEaFTScop4adl+62OTCv9cuo+0nCIHRiWEqEmS7AghGpXjWQWYLlmWYVRVkrMKHROQEKLGSbIjhGhUmvl7oFFsn9MqClH+9m0NIISoPyTZEUI0KiF6N2bd3t76WKPA66M6EKJ3c2BUQoiaJMmOEKLRGd0t3PrfayffxD09Ii57rixFF6L+k2RHCNHg2JOgBOuleZ2oH/r3788zzzzj6DDqJUl2hBBCiOv0yCOPoCgKiqKg0+lo2bIls2fPpqzMsaOBkyZNolu3bri4uBATE+PQWBxJkh0hhLgMaTgo7DF06FDS0tJITExkypQpvPzyy/z73/92dFg89thj3HPPPY4Ow6Ek2RFCiHIubThY/rEQV+Li4kJwcDCRkZE8+eSTDB48mGXLlgHmHdGnTp1KWFgYHh4e9OrViw0bNlhfe/bsWe677z7CwsJwd3enY8eOV93oc8WKFej1ehYvXnzZc959913Gjx9P8+bNq+U91ley+50QQlxQWcPB8o+F4xgMhsse02g0ODk5VelcRVFwdna+6rk6ne4aorTl5ubG2bNnAZgwYQIHDhzg66+/JjQ0lB9//JGhQ4eSkJBAq1atKC4uplu3bkybNg1vb29WrFjBgw8+SIsWLejZs2eFay9ZsoS///3vLFmyhBEjRlx3rA2dJDtCCHFBZQ0HL30sHGPOnDmXPdaqVSvuv/9+6+O33nqL0tLSSs+NjIzkkUcesT6eP38+hYUVG0q+9NJL1xyrqqqsW7eOVatWMXHiRFJSUli4cCEpKSmEhoYCMHXqVFauXMnChQt5/fXXCQsLY+rUqdZrTJw4kVWrVvHtt99WSHYWLFjA888/zy+//MJNN910zXE2JpLsCCEavEJDGdEvrkJVTXw4yI29e+LJ25OCa0RHm/MsDQfLJziXPhbicpYvX46npyelpaWYTCbuv/9+Xn75ZTZs2IDRaKR169Y255eUlODn5weA0Wjk9ddf59tvv+XUqVMYDAZKSkpwd7dtdvn999+TkZHBpk2b6NGjR629t/rO4cnOqVOnmDZtGr/99huFhYW0bNmShQsX0r17d8CcIb/00kt8/PHHnD9/nr59+/LBBx/QqlUr6zXOnTvHxIkT+eWXX9BoNIwePZr58+fj6enpqLclhKhjSk4f5uzK97j1zeRyzyqMzd/ARx9+iJeXl7Xh4As/m6euNAo2j4XjzJgx47LHNBrb8tPyIySXUhTb9tlPP/309QVWzoABA/jggw/Q6XSEhoZap9by8/PRarXs3LkTrVZr8xrL76l///vfzJ8/n3feeYeOHTvi4eHBM888U2GarUuXLuzatYvPPvuM7t27V3g/onIOLVDOzs6mb9++ODs789tvv3HgwAHmzp1LkyZNrOe8+eabvPvuu3z44Yds27YNDw8PhgwZQnHxxVUSY8aMYf/+/axZs4bly5ezceNGxo0b54i3JISog5YvW0b6kumUZibj7e3NyDvuxKVpB0Dl6yVL6N27NxkZGUDFhoPlH8vqLMfR6XSX/Slfr3O1c8vX61zp3Gvh4eFBy5YtiYiIsImpS5cuGI1GMjIyaNmypc1PcHAwAJs2bWLkyJE88MADdO7cmebNm3PkyJEK92jRogXr16/n559/ZuLEidcUZ2Pk0JGdf/3rXzRt2pSFCxdan2vWrJn1v1VV5Z133mHmzJmMHDkSgC+++IKgoCB++ukn7r33Xg4ePMjKlSvZsWOHdTTovffe49Zbb+Wtt96yzo+WV1JSQklJifVxbm5uTb1FIYSDbdu6hYceuB+Mpbi17Mn+P34hPDgQgC1btvC3v/2NAwcOMGLECPPqGKeLv+iC9a4VVmfNGdXxih2XhbhU69atGTNmDA899BBz586lS5cuZGZmsm7dOjp16sTw4cNp1aoV33//PZs3b6ZJkybMmzePM2fOEB0dXen11q9fT//+/XFycuKdd9657L2TkpLIz88nPT2doqIi4uPjAYiOjq6WIuz6wqEjO8uWLaN79+7cddddBAYG0qVLFz7++GPr8ePHj5Oens7gwYOtz+n1enr16sWWLVsA84eVj4+PNdEBGDx4MBqNhm3btlV63zlz5qDX660/TZs2raF3KISoLZV1TTYainjg/56kpKQEt5Y9CbjzeXx9fa2viY2N5ffff8fPz48dO3Ywffp0m2um5xRXWJ31z6X7SMspqp03JRqMhQsX8tBDDzFlyhTatGnDHXfcwY4dO4iIMCfOM2fOpGvXrgwZMoT+/fsTHBzMHXfccdnrtWnTht9//52vvvqKKVOmXPa8//u//6NLly7897//5ciRI3Tp0oUuXbpw+vTp6n6LdZpDR3aOHTvGBx98wOTJk/nnP//Jjh07mDRpEjqdjocffpj09HQAgoKCbF4XFBRkPZaenk5gYKDNcScnJ3x9fa3nXGrGjBlMnjzZ+jg3N1cSHiEakJ92mz/ItTo3NHfMofnubyntOBJFo61wbps2bVi8eDFDhw41jwrfNtJ67MTZiquzjKpKclahbBwqbCxatOiKx52dnZk1axazZs2q9Livry8//fTTFa9Rvi8PQLt27Thz5oxdr2msHDqyYzKZ6Nq1K6+//jpdunRh3LhxPP7443z44Yc1el8XFxe8vb1tfoQQDcfrvx60/rei0aB2uxeN7vLJyZAhQ6x1fs9NeRbVZAQg0s+8Oqs8raIQ5e9+6SWEEHWYQ5OdkJCQCvOR7dq1IyUlBcBauHVp5nrmzBnrseDgYGthoUVZWRnnzp2zniOEaFwq9Mqpwmtef/11fHx82JeQQMG+dYC5ZmfW7e2t52gUeH1UBxnVEaKecWiy07dvXw4fPmzz3JEjR4iMjATMxcrBwcGsW7fOejw3N5dt27YRGxsLmOfcz58/z86dO63n/P7775hMJnr16lUL70IIUdco2GY7l47OVMbPz4/nn38egJwt31pHdy5dnSXFyULUPw5Ndp599lm2bt3K66+/TlJSEkuWLOGjjz5i/PjxgLkfwjPPPMOrr77KsmXLSEhI4KGHHiI0NNRauNWuXTuGDh3K448/zvbt29m0aRMTJkzg3nvvrXQllhCiYVNVFc9DK6zJiqVXjsWVlo8/+eST+Pv7U3Y+nYKDGyscD9a7Vn/AQoga59Bkp0ePHvz444989dVXdOjQgVdeeYV33nmHMWPGWM/5xz/+wcSJExk3bhw9evQgPz+flStX4up68UNn8eLFtG3blkGDBnHrrbfSr18/PvroI0e8JSGEg5WcOsS+nz/k1EdPYCzKZe1k23b6g+fF8c2OlEpf6+HhwfiJkwDI2/ETqiqtk4VoCBzeQXnEiBFX3MRMURRmz57N7NmzL3uOr68vS5YsqYnwhBB1lGULCIADs4dYn8/fsxIA14gOaN3Miw8qWz5+Y+uASmtvxj4+jlmzX8Fw5ig7tm+jZ6/eNfk2hBC1wKEjO0IIUZ2MxfkUHvoDAK+YYcCVl49XpmlIEA8/YN5U8tOP/ltzwQohao0kO0KIBqNg/3rUMgPtO3REF2LedLGy5eMaBTzUypMdgKeeegowb7qYk5NTY/EKIWqHJDtCiAZBVVUKj2zFJaIjdz40zrpB4sXl4+bhHQWVWKdkSnMyLnutHj160K5dO4qLi/nxh+9rI3whRA2SZEcI0SC89f1Ggu55heD75rD4XDObY0Na6xmiO8xQ3WHuct3LwChX/P39rcfPnTtHZmam9bGiKDzyyCMALP7yf7USvxBX079/f5555hlHh1EvSbIjhKj30nOKWbi3CEVj/kgrX6NTWlrKD999Q6g2H29NMeMeHsPYsWOt/bwyMzP57LPP+N///kdeXp71dWPGjEFRFDZv2kRZXlatvh9R/zzyyCMoioKiKOh0Olq2bMns2bMpKytzWEx79uzhvvvuo2nTpri5udGuXTvmz5/vsHgcSZIdIUS9dzwzD5TKOweuW72KjDNnKFKd+LWkLaFhYTbHPTw8cHd3x93dHYPBYH0+LCyMPn36AFCUuLXmghcNxtChQ0lLSyMxMZEpU6bw8ssv8+9//9th8ezcuZPAwEC+/PJL9u/fz/PPP8+MGTP4z3/+47CYHEWSHSFEvZdxdD+qqeKmEIFKHgl79wCwwdCcfNWlwjnu7u48+OCD/N///R9+fn42x0aNGgVAjPEIyW8Mx13n8G4dog5zcXEhODiYyMhInnzySQYPHsyyZcsAKCkpYerUqYSFheHh4UGvXr1sNuk8e/Ys9913H2FhYbi7u9OxY0e++uqrK95vxYoV6PV6Fi9eXOnxxx57jPnz53PTTTfRvHlzHnjgAR599FGWLl1abe+5vpBkRwhR78X9upRzq96zJjwaBebc2YEHQ811OF27dSfddPkNf7UubrScuYqo6SsoNFycdrjzzjvN14+LIytLprIcyWAw2P1jKpcAm0wmDAYDpaWlVbpudXBzc7Nea8KECWzZsoWvv/6avXv3ctdddzF06FASExMBKC4uplu3bqxYsYJ9+/Yxbtw4HnzwQbZv317ptZcsWcJ9993H4sWLbRrxXk1OTg6+vr7X/+bqGfmaIoSo11STkZ9WbyD/2EHc2/XHLaozayffRHbKYY6cO4eHhwf9buoPf2646rW0GNn0x0a0CgwcOJBmzZoRExNDfHw8v/zyC48++miNvx9RuTlz5tj9mr/97W+0b2/eKuTgwYN8//33REZGWovPAebPn09hYcU2BC+99NI1x6qqKuvWrWPVqlVMnDiRlJQUFi5cSEpKinUbo6lTp7Jy5UoWLlzI66+/TlhYGFOnTrVeY+LEiaxatYpvv/2Wnj172lx/wYIFPP/88/zyyy/cdJNth/Ar2bx5M9988w0rVqy45vdWX0myI4Sol37YeRIARaPFZfS/CNj4Ka5NowHw93Dip7g4AG644QZcXCpOX1UmSJPP5j934+TkRK9evfDw8GDUqFHEx8ezdOlSSXbEFS1fvhxPT09KS0sxmUzcf//9vPzyy2zYsAGj0Ujr1q1tzi8pKbFOnRqNRl5//XW+/fZbTp06hcFgoKSkBHd3d5vXfP/992RkZLBp0yZ69OhR5dj27dvHyJEjeemll7jllluu/83WM5LsCCHqnbScIpstIBSNBvebxoJinpk/uH8feXl5eHl50a1bNwwVy3kqddrkTXBwCOnpaWzZsoXBgwczatQoXnzxRVavXk1ubi7e3pefDhM1Z8aMGXa/xsnp4q+4du3aMWPGDGv/JYunn376umOzGDBgAB988AE6nY7Q0FDr/fPz89FqtezcuROtVmvzGk9PTwD+/e9/M3/+fN555x06duyIh4cHzzzzTIUptS5durBr1y4+++wzunfvXuH9VObAgQMMGjSIcePGMXPmzGp6t/WL1OwIIeqd41kVt4CwJDoARw4fAqBXr142v/CuTqF3376AeSVLaWkp0dHRtGrVCoPBwLp16yg0lBE1fUWF+h5Rs3Q6nd0/Gs3FvxMajQadToezs3OVrnstPDw8aNmyJRERETZ/77p06YLRaCQjI4OWLVva/AQHBwOwadMmRo4cyQMPPEDnzp1p3rw5R44cqXCPFi1asH79en7++WcmTpx41Zj279/PgAEDePjhh3nttdeu6X01BJLsCCHqnWb+lW8BYXHn3+7mrrvuolu3bnZfu0XLVvj4+FBcXExCQgKKojB06FAAVq9efT1hi0aqdevWjBkzhoceeoilS5dy/Phxtm/fzpw5c6z1M61atWLNmjVs3ryZgwcP8sQTT3DmzJnLXm/9+vX88MMPV2wyuG/fPgYMGMAtt9zC5MmTSU9PJz093aaBZmMhyY4Qot4J0bsx6/b2qOqF+SnVdGFLCDONRkN0dDSurq4AuOucSH5jeJWWj2s0GmstxI4dOwCsNQ6S7IhrtXDhQh566CGmTJlCmzZtuOOOO9ixYwcREREAzJw5k65duzJkyBD69+9PcHAwd9xxx2Wv16ZNG37//Xe++uorpkyZUuk533//PZmZmXz55ZeEhIRYf+yp9WkoFFVVLx0MbnRyc3PR6/Xk5OTIfLwQ9UShoYyAzgMxFpxn2oT/Y9ozT9Hxxd8wobB/9lC7euIUGsqIfnEVAAdmD0ExljJ37lyMRiNPPPEEnp6e+Pr6UlpaSsKBQ4z4PMl6rvTeqT7FxcUcP36cZs2aWRNVIa7096Kqv79lZEcIUS/l5+dTeGQLJakJjB5+MwCttVnc5bqXPfG7r+vabm5utGnTBoD4+Hg8PT2t3ZTXrV1zfYELIWqdJDtCiHppw++/g6kMJ58QWrZqBUBT7Xk8lFJKr6MpXHpOMQAxMTEAJCQkYDKZrFNZ69auvb7AhRC1TpIdIUS9tHrVSgDcmpuLkN11Trz/4kTuueceunTuZNe1LD17AAbPi+ObHSm0aNECNzc3CgsLOXHihDXZiduwHtUoq7CEqE8k2RFC1DuqqrJ6tbnGxq15d+vzTk5OtG3bFi8vrypf69KePSYV/rl0H2fySqxTWQcOHKBLly74+fmRm5tLSVrFJcFCiLpLkh0hRL2TlJREakoKaJ1wiehwXdeqrGePUVVJziokOtrckfnQoUNoNBoGDx4MQHFy/HXdUwhRuyTZEULUO7///jsALmHt0Di7kpuby3/+8x/Wr1+PvQtMK+vZo1UUovzdadasGS4uLmi1WnJycujfvz8ApWdTgIv1PUKIuk2SHSFEvWNJdlwjzLU5Rw4d5OzZs5w4caJK7fPLs/TssdAo8PqoDoTo3XBycuLvf/87Tz/9ND4+Ptx44414droZ/9v+AVys7xFC1G2S7Agh6hWTycT69esBcI3sDEBSYiJg3v/oWozuFm7977WTb+KeHhHWxz4+PtYEyic0Ct8hE1EubENgqe9Jyym6pvsKIWqHJDtCiHpl//79ZGZm4uHhQcpnT3N41mBOnUwFzC33r1ewvvJmdiaTiaNn8qyJjoVRVYmd87vslSVEHSbJjhCiXrFMYd1www3odDqOHTuGyWTC19cXX1/fGrnn5s2beeuttzh34hAKtjVBl9b7CFFToqKieOeddxwdRrVatGgRPj4+NX4fSXaEEPWKJdkZOHAgYF6ZBdCyZcsau6eTkxNFRUXkZ57k/7p4oZqMgDnRKV/vIxqvRx55BEVRrD9+fn4MHTqUvXv3Ojo0AcimLkKIeqHQUEa7mb+SutLcwXjgwIGoqloryU50dDTBwcGEh4dTUFLKy0+1QOvhy/f/+5iB3cJ54ef9V7+IaPCGDh3KwoULAUhPT2fmzJmMGDGClJS6W8RuMBjQ6XSODqPGyciOEKLeMJw5imooxMfHh5iYGDIzM8nNzcXJyYmoqKgau6+npycRERFoNBq0Wi1OPsGUpCZwaOfmGrunqH9cXFwIDg4mODiYmJgYpk+fTmpqKpmZmQBMmzaN1q1b4+7uTvPmzXnhhRcoLS21ucYvv/xCjx49cHV1xd/fnzvvvPOy9/vkk0/w8fFh3bp1AOTl5TFmzBg8PDwICQnh7bffpn///jzzzDPW10RFRfHKK6/w0EMP4e3tzbhx4wD44YcfaN++PS4uLkRFRTF37lybeymKwk8//WTznI+PD4sWLQIgOTkZRVFYunQpAwYMwN3dnc6dO7Nlyxab1yxatIiIiAjc3d258847OXv2bJX/fK+HJDtCiHqjJHUfAH369kOr1VpHdaKionB2dq61OFzDzVNXm/78s9bu2VipqorBYHDIj709m8rLz8/nyy+/pGXLlvj5+QHg5eXFokWLOHDgAPPnz+fjjz/m7bfftr5mxYoV3Hnnndx6663s3r2bdevW0bNnz0qv/+abbzJ9+nRWr17NoEGDAJg8eTKbNm1i2bJlrFmzhj/++INdu3ZVeO1bb71F586d2b17Ny+88AI7d+7k7rvv5t577yUhIYGXX36ZF154wZrI2OP5559n6tSpxMfH07p1a+677z7KysyF+9u2bWPs2LFMmDCB+Ph4BgwYwKuvvmr3Pa6FTGMJIeqN4pMHAHOyA7VTr2ORn5/Phg0byDp7Dpdwc2fl7du31fh9G7vS0lLmzJnjkHvPmDHDrime5cuX4+npCUBBQQEhISEsX74czYUVfDNnzrSeGxUVxdSpU/n666/5xz/MfZtee+017r33XmbNmmU9r3PnzhXuM23aNP73v/8RFxdH+/bmxDsvL4/PP/+cJUuWWJOfhQsXEhoaWuH1AwcOZMqUKdbHY8aMYdCgQbzwwgsAtG7dmgMHDvDvf/+bRx55pMrvH2Dq1KkMHz4cgFmzZtG+fXuSkpJo27Yt8+fPZ+jQodb327p1azZv3szKlSvtuse1kJEdIUS9YDKZKLmQ7PTt15eysjJrLUSLFi1q/P7Ozs7s3r2bE8nH8QuJAEXD6VOnOJmaWuP3FvXDgAEDiI+PJz4+nu3btzNkyBCGDRvGiRMnAPjmm2/o27cvwcHBeHp6MnPmTJt6nvj4eGuicjlz587l448/5s8//7QmOgDHjh2jtLTUZiRIr9db93crr3v37jaPDx48SN++fW2e69u3L4mJiRiNxqr/AQCdOl3chDckJASAjIwM63169eplc35sbKxd179WMrIjhKgXDh8+hKkoF8XJhZguXTl58iRGoxFPT0/rNEFNcnFxoWnTppw4cYJwl2KSApthOHP0wuhO1TceFfZxdnZmxowZDru3PTw8PGxGGT/55BP0ej0ff/wxw4cPZ8yYMcyaNYshQ4ag1+v5+uuvbWpj3NzcrnqPG264gRUrVvDtt98yffp0u+IrH6e9FEWpMK13ab0R2P6ZWZpxmkwmu+9X3STZEULUC5sv1MfoQtug0+ms34ijoqLs3iLiUu46J5LfGH7V85o1a8aJEycI1uSjC21rTna2bQNX8wah6TnFNA/wvK5YhC1FUertaiFFUdBoNBQVFbF582YiIyN5/vnnrcctIz4WnTp1Yt26dTz66KOXvWbPnj2ZMGECQ4cOxcnJialTpwLQvHlznJ2d2bFjBxER5g7gOTk5HDlyhBtvvPGKcbZr145NmzbZPLdp0yZat26NVqsFICAggLS0NOvxxMRECgsLq/CnYHufbdtsp363bt1q1zWulSQ7Qoh6YdMmc7JjKQ6+4YYbaN269XUnOvaIjIwEIFibh0toG/J3ryAupRham48PnhfHnFEdbbabEI1HSUkJ6enpAGRnZ/Of//yH/Px8brvtNnJzc0lJSeHrr7+mR48erFixgh9//NHm9S+99BKDBg2iRYsW3HvvvZSVlfHrr78ybdo0m/P69OnDr7/+yrBhw3BycuKZZ57By8uLhx9+mOeeew5fX18CAwN56aWX0Gg0V/03MmXKFHr06MErr7zCPffcw5YtW/jPf/7D+++/bz1n4MCB/Oc//yE2Nhaj0ci0adPsHvmaNGkSffv25a233mLkyJGsWrWqVup1QGp2hBD1xOZNm9B6+eHWqhfpOcUoikJwcDBBQUG1FkNYWBharRZ3pZSAiJZovfw43/JW63HZK6txW7lyJSEhIYSEhNCrVy927NjBd999R//+/bn99tt59tlnmTBhAjExMWzevNlaEGzRv39/vvvuO5YtW0ZMTAwDBw5k+/btld6rX79+rFixgpkzZ/Lee+8BMG/ePGJjYxkxYgSDBw+mb9++tGvXDlfXyrdAsejatSvffvstX3/9NR06dODFF19k9uzZNsXJc+fOpWnTptxwww3cf//9TJ06FXd3d7v+fHr37s3HH3/M/Pnz6dy5M6tXr7Yp2q5Jino9a+saiNzcXPR6PTk5OXh7ezs6HCHEJVJSUmh/2/9ZN+HUKDhsBGXhwoWkpKRw2223MezhSbgNr1hP8tXjvYltUfN1RA1NcXExx48fp1mzZlf9BS2urqCggLCwMObOncvYsWMdHc41u9Lfi6r+/paRHSFEnbf89z8r7DY+/Ye9bN+XWOuxWKayUlJSiGkRhnpJ8aVWUYjyt+8brxDVYffu3Xz11VccPXqUXbt2MWbMGABGjhzp4MgcT5IdIUSdF7fzYIXdxlUUDqZm1noslmTnxIkT3NC9I+dWvWdNeDQKvD6qAyH6q6+qEaImWBoGDh48mIKCAv744w/8/f0dHZbDSYGyEKLOO7RjI+qNPW0SHg3QK7p5rcfStGlTFEXh/PnzdO/enfwXXsCQlUrIg2+xdvJNshpLOEyXLl3YuXOno8Ook2RkRwhRp+Xn57Nvx5/mEZQLJYYaBeaM7kjbyOBaj0en01m70lr6+xhOH8JYmEOwXupMhKiLHJrsvPzyyyiKYvPTtm1b6/Hi4mLGjx+Pn58fnp6ejB49mjNnzthcIyUlheHDh+Pu7k5gYCDPPfecdR8OIUT9t2PHDkwmE/pzB61LaNdOvsmhy7stU1kZGRm0bNkKAEN6ksPiaWhk3Yworzr+Pjh8ZKd9+/akpaVZf/4st7Hes88+yy+//MJ3331HXFwcp0+fZtSoUdbjRqOR4cOHYzAY2Lx5M59//jmLFi3ixRdfdMRbEULUAMuuyb169QaghfYs+RkplJSUOCwmS9O21NRUunTrBph3ZBfXx9K3xd5mdaJhs/x9uJ7Nfh1es+Pk5ERwcMWh6JycHD799FOWLFnCwIEDAfOSz3bt2rF161Z69+7N6tWrOXDgAGvXriUoKIiYmBheeeUVpk2bxssvv1xvu24KIS6yJDs9e/Vi51mV7s6p/Pj9cR599FFr0lHbIiIiuO2222jatCm5+YV8983XMrJTDbRaLT4+Pta9lNzd3Wu1aaSoW1RVpbCwkIyMDHx8fKzdnK+Fw5OdxMREQkNDcXV1JTY2ljlz5hAREcHOnTspLS1l8ODB1nPbtm1LREQEW7ZsoXfv3mzZsoWOHTvaNBUbMmQITz75JPv376dLly6V3rOkpMTmW2Fubm7NvUEhxDVTVdXaTr5X797879cM3JUyNBpNpbs51xY3Nze6du0KQJcL/1uSXvvL4Bsiy5dfS8IjhI+PT6WDIvZwaLLTq1cvFi1aRJs2bUhLS2PWrFnccMMN7Nu3j/T0dHQ6HT4+PjavCQoKsrbjTk9Pr9A91fLYck5l5syZw6xZs6r3zQghqt3Ro0fJyspCp9PROaYLgSt/ACAoOBgnJ4d/VwOgc0wMAMbcTLKysogIrf2i6YZEURRCQkIIDAysdKNJ0bg4Oztf14iOhUM/LYYNG2b9706dOtGrVy8iIyP59ttvq7T767WaMWMGkydPtj7Ozc2ladOmNXY/IcS1sUxhdevWDRcXFwI1+QCEhoU7MizAvErswIEDFBQV49QklLLs0+zetYuI0Fuv/mJxVVqttlp+yQkBdaBAuTwfHx9at25NUlISwcHBGAwGzp8/b3POmTNnrMNZwcHBFVZnWR5facjLxcUFb29vmx8hRN1jSXZiY2MBrMlOWB1IdvLy8vjtt9/YtmUzumDziqz43bscHJUQojLXNLKTmJjI+vXrycjIwHRJq/TrWQmVn5/P0aNHefDBB+nWrRvOzs6sW7eO0aNHA3D48GFSUlKsH3yxsbG89tprZGRkEBgYCMCaNWvw9vYmOjr6muMQQtQN5ZMdg8FAE8W8wWZoWJgjwwIgMDCQ1q1bExoayiwnJ557Lo698bsdHZYQohJ2Jzsff/wxTz75JP7+/gQHB9tUyiuKYleyM3XqVG677TYiIyM5ffo0L730Elqtlvvuuw+9Xs/YsWOZPHkyvr6+eHt7M3HiRGJjY+nd27wE9ZZbbiE6OpoHH3yQN998k/T0dGbOnMn48eNxcXGx960JIeqQ/Px89u7dC5h3S047fRqNAvkmHV51YDTW8lkFF/uA/PXXX44MSQhxGXYnO6+++iqvvfYa06ZNu+6bnzx5kvvuu4+zZ88SEBBAv3792Lp1KwEBAQC8/fbbaDQaRo8eTUlJCUOGDOH999+3vl6r1bJ8+XKefPJJYmNj8fDw4OGHH2b27NnXHZsQwrEszQTDw8MJDw/njz/+AKBXx1a46+pGcbKFZeVnSkoKWVlZsheREHWM3Z8Y2dnZ3HXXXdVy86+//vqKx11dXVmwYAELFiy47DmRkZH8+uuv1RKPEKLu2LhpMwDnPKIoNJRx+vRpAIcuOa9MXl4eWVlZtGrVisTERHbu3MmQIUMcHZYQohy7C5TvuusuVq9eXROxCCEasUJDGVHTVxA1fQWFhjK2X+iv4xJm3kLm1KlTAITVgXodi4KCAubNm8eXX35Jjx49AGQjRiHqILtHdlq2bMkLL7zA1q1b6dixY4X2zZMmTaq24IQQjZOqqmzfdiHZCW1Lfn4eeXl51h4sdYWHhwdeXl7k5eXRuXNnlixZInU7QtRBdic7H330EZ6ensTFxREXF2dzTFEUSXaEENft2IVmgmid0AW1ID0tDQB/f/86tw1MaGgohw8ftk6vyciOEHWP3cnO8ePHayIOIYSw2mYZ1QlqieLkjIuLC23atMHX19fBkVVkSXYso9xSpCxE3VO3ljQIIQRY63V0F+p1mkZE0qZlC0eGdFmWabXMzEwpUhaijqpSsjN58mReeeUVPDw8bLZZqMy8efOqJTAhROO1rVy9Tl1nmb46e/YsPXr0IDExkd27d0uyI0QdUqVkZ/fu3dYN2XbvvnyH0PINBoUQ4lqYDMXs37cPMCc7ThjJzc3Fza9JnfyM8fDwwNvbm9zcXNq3bw9AfHy8Y4MSQtioUrKzfv36Sv9bCCGqmyE9EaPRSFh4OE7e/vhrcpn3nw/p1DKCBx54wNHhVSo0NJTc3FzrlNaePXscHJEQorzr2gg0NTWV1NTU6opFCCEoyz+H1suP5oPNiU26yZvvijtxsKSJgyO7PMtUlqVI+ciRIxQWFjoyJCFEOXYnO2VlZbzwwgvo9XqioqKIiopCr9czc+ZM61SXEELY64edJwHwjL6JsL8vJCWor/WYisJXSZCWU+So8K7IMqKTnZ1NYGAgJpOJfRem4oQQjmd3sjNx4kQ++ugj3nzzTXbv3s3u3bt58803+fTTT6XHjhDimqTlFPHSsv3Wx4pGA9jW55hUSM6qm6MllpGdc+fO0bVrV0CmsoSoS+xeer5kyRK+/vprhg0bZn2uU6dONG3alPvuu48PPvigWgMUQjR8x7MKMKlXPkerKET5u9dOQHZyd3dHr9eTk5ND586dWblypRQpC1GH2J3suLi4EBUVVeH5Zs2a1bnOpkKI+qGZvwcaBZuERwFUVEBBA7w+qgMhejcHRXh1oaGhmEwmgoODARnZEaIusXsaa8KECbzyyiuUlJRYnyspKeG1115jwoQJ1RqcEKJhs2z+GTvnd/55aztU1WQ+oJqYPbI9HbTpDNUdZmaXUu7pEeHYYK9i1KhR/H3CJGZtNwKwd+9eTCaTg6MSQkAVR3ZGjRpl83jt2rWEh4fTuXNnwPwNxmAwMGjQoOqPUAjRKNzRJZRJY8dgKi7g9ZlTGd0tnLjf8gnR5tE6ItjR4V2Vk5MTBkMZzn7hoHUmLy+PA4cTGfF5EgAHZg/BXSdN64VwhCr9y9Pr9TaPR48ebfO4adOm1ReREKJRMhgMFB3bCcZSBvftAYCfxlyQHBRU95MdC0WjQRcQiSE9iYSEvUDdrDMSojGpUrKzcOHCmo5DCNHI7U/YC8ZSNK5etGjZkvz8fNyVUlQVAgIDHR1elaz67VfucU3gl+gYDqYnsXfPHiDW0WEJ0ehdV1NBIYSoLjv/2gGALrQ1iqKQcSYdgBzVtd4sfiguLsJdKSO0qbm+KGHvXgdHJIQASXaEEHXEzh3bgYubf2acOQPAWVP9mQbqHduH5cVtOVQWAMDevbIiS4i6QJIdIUSd8Jc12WkDwJl088jOObX+JDtBwSFkqp5oApoDkJqSgrE438FRCSEk2RFCOJyxMIfkY8cAcAlpDcCZC9NY9Wlkx0Lj4kFkZBQApRnHHRuMEMK+ZKe0tJRBgwaRmJhYU/EIIRqh0uw0tF5+OPmGo3H1pKS4mJzz5wH4/YU76tWS7aaabNpp0+kc2x8AQ8YxxwYkhLCvg7KzszN7peBOCFFNLJt/uoa1JezvC2mbt4tVbwwnOTkZMLe9cHOru12TL/XDzpOkmnwABSJH49npFGW5mQCk5xTTPMDTofEJ0VjZPY31wAMP8Omnn9ZELEKIRqSyzT+P6LuRllNEWloacHE38frg4vuxbGCq4DtkIk0GPAbA4HlxfLMjxWHxCdGY2T02XFZWxmeffcbatWvp1q0bHh4eNsfnzZtXbcEJIRquyjb/VFFIziok/UJxsmWfqfqgsvdj3r3dzKTCP5fu48bWAXV6jy8hGiK7k519+/bRtWtXAI4cOWJzTFGUyl4ihBAVVLb5p0aBKH93mvfpQ3h4eL3qzl7Z+7mUUVVJziqUZEeIWmZ3srN+/fqaiEMI0ciE6N2YdXt7Zv60z/xFSTUxZ3RncyKgdyMoKMjRIdrF8n5e+Hkflj3bzZu2X/wSqFUUovzr3+oyIeq7a156npSUxKpVqygqKgJAVa/wdUYIISoxuls45zcsJH3JDIaZttX5nc2vZnS3cEChj3Myd7vupWNJAqrJvAu6RoHXR3WQUR0hHMDuZOfs2bMMGjSI1q1bc+utt1oLCceOHcuUKVOqPUAhRMNWdHwXJakJ9O/ZBYBTp06xa9cuMjMzHRzZtVNQ8VBK6R0Ipz58jOw//sfayTfV+2ROiPrK7mTn2WefxdnZmZSUFNzdLw7H3nPPPaxcubJagxNCNGx5eXmUZplXKHXv2RMw1wX+8ssv/PXXX44M7bqcu9AI0dPTA2PeWQoPbiRY7+rgqIRovOyu2Vm9ejWrVq0iPDzc5vlWrVpx4sSJagtMCGGr0FBG9IurADgwe0i9arR3Obt27gTVhNY7wLrM3N/fn+bNm9er4uRLWba4KC0tBaAsO52CggLcdXpHhiVEo2X3p2VBQYHNiI7FuXPncHFxqZaghBAN06UJ2/bt24CLm38CdOvWjW7dujkkvuqSbTLX5RTk5+PuG0ThuTMcPLCfgL59HByZEI2T3dNYN9xwA1988YX1saIomEwm3nzzTQYMGFCtwQkhGrYd2y4kOxf2w2ooDDih15tHccJbdQRg/759jgxJiEbN7pGdN998k0GDBvHXX39hMBj4xz/+wf79+zl37hybNm2qiRiFEA2Qqqps3bIZAJfwaACKi4sBcHWt//UtAUFB5OTkEBwRxZFt5lokIYRj2J3sdOjQgSNHjvCf//wHLy8v8vPzGTVqFOPHj69Xrd2FEI515PBhzp49i6urKyc+mYBO58TWrX+xatUqunTpwu233+7oEO3mrnMi+Y3hAOzatQs3Vzd+OpgHyMiOEI50TRWOer2e559/vrpjEUI0IpZRnV69eqHT6QA4c+YMAF5eXg6Lq7p07dqVth06Mf6nZAD275dkRwhHuaZkJzs7m08//ZSDBw8CEB0dzaOPPoqvr2+1BieEaLg2bzZPe/ft29f6XEZGBkC96558Oe46J45+MA7P/00mKzOTM2fONJj3JkR9YneB8saNG4mKiuLdd98lOzub7Oxs3n33XZo1a8bGjRtrIkYhRAO0dfMWAPr16weAyWRqcMmO0WgkLy+P6GhzTVJCQoKDIxKicbJ7ZGf8+PHcc889fPDBB2i1WsD8D/qpp55i/Pjx8o9ZiFqQnlNM8wBPR4dxzYwF2ZxISkRRFGJjYwHziHFZWRlOTk40adLEwRFWj88//5zU1FR69uzJ/v372bk7nv9bWwI0nF5JQtQHdo/sJCUlMWXKFGuiA6DVapk8eTJJSUnVGpwQ4qIfdp60/vfgeXF8syPFgdFcn9Jzp9B6+dGhQwd8fHyAi/U6gYGBaDTXvG1fneLv74+LiwsREeZtIqRuRwjHsPsTpWvXrtZanfIOHjxI586drzmQN954A0VReOaZZ6zPFRcXM378ePz8/PD09GT06NHWD0SLlJQUhg8fjru7O4GBgTz33HOUlZVdcxxC1EVpOUW8tGy/9bFJhX8u3UdaTpEDo7KfJWFzbdqBsL8vJKL/vdZjlimswMBAh8RWE4YNG8a0adPo2FF67QjhSHaPoU6aNImnn36apKQkevfuDcDWrVtZsGABb7zxBnv37rWe26lTpypdc8eOHfz3v/+tcP6zzz7LihUr+O6779Dr9UyYMIFRo0ZZ+/kYjUaGDx9OcHAwmzdvJi0tjYceeghnZ2def/11e9+aEHXW8awCTKrtc0ZVJTmrsN7son1pwqZoNOx370RaThEhercGmew4OzsDWJOdgwcOEDDQiKLRXullQohqZneyc9999wHwj3/8o9JjiqKgqiqKomA0Gq96vfz8fMaMGcPHH3/Mq6++an0+JyeHTz/9lCVLljBw4EAAFi5cSLt27di6dSu9e/dm9erVHDhwgLVr1xIUFERMTAyvvPIK06ZN4+WXX7YuZxWivmvm74FGwSbh0SoKUf4Vt26pqypL2FQUa8JmGbVtKMXJ5bVo0QI3NzeKioooO5+Os2+Yo0MSolGxexrr+PHjV/w5duyY9X+rYvz48QwfPpzBgwfbPL9z505KS0ttnm/bti0RERFs2WJexbFlyxY6duxo8+E4ZMgQcnNz2b9/P5dTUlJCbm6uzY8QdVmI3o1Zt7e3PtYo8PqoDvVmVAcuJmzlaRWI8nfHYDBw7tw5oOElO7/88gsLFiygTx/zvlilmbJhshC1ze6RncjIyGq7+ddff82uXbvYsWNHhWPp6enodDpr8aJFUFAQ6enp1nMu/WC0PLacU5k5c+Ywa9as64xeiNo1uls4L/xsTuLXTr6p3q3GsiRsM39KQFE0oJp4fXRnQvRunDp1CgAPDw88PDwcHGn1ysnJITs7m3bt2rFu3ToMmcm4t5ENQYWoTQ5b8pCamsrTTz/N4sWLa30fnBkzZpCTk2P9SU1NrdX7C3G9gvWuFBrKiJq+gqjpKyg01I+i/NHdwsla8TbpS2bwiH8y9/Qwr1JqyFNYlhoky3Y6xryzgLl9gBCidjgs2dm5cycZGRl07doVJycnnJyciIuL491338XJyYmgoCAMBgPnz5+3ed2ZM2cIDg4GIDg4uMLqLMtjyzmVcXFxwdvb2+ZHCFHzTCYTRUnbKUlN4OYbe1mfz8rKAhpWcbKFJYFzc3PDs9PN+A4ZD9T/9gFC1CcOS3YGDRpEQkIC8fHx1p/u3bszZswY6387Ozuzbt0662sOHz5MSkqKtQlZbGwsCQkJ1lUcAGvWrMHb29vasVQIUXckJOxFLSlA0bnRsePF1Zc333wzTz/9tHWFZ0NiSXbOFhnxHTIR5UIPofraPkCI+shh7Tu9vLzo0KGDzXMeHh74+flZnx87diyTJ0/G19cXb29vJk6cSGxsrPUD8ZZbbiE6OpoHH3yQN998k/T0dGbOnMn48eNxcXGp9fckhLiyjRs2AOASHo2T08WPH0VRKtTnNRT+/v4oikJWscaa6FjUt/YBQtRXdic7qampKIpCeHg4ANu3b2fJkiVER0czbty4ag3u7bffRqPRMHr0aEpKShgyZAjvv/++9bhWq2X58uU8+eSTxMbG4uHhwcMPP8zs2bOrNQ4hRPXYGBcHgGtE1XpwNQROTk74+fmRn5kDqgmUiwlPfWsfIER9ZXeyc//99zNu3DgefPBB0tPTufnmm2nfvj2LFy8mPT2dF1988ZqD2XDhW5+Fq6srCxYsYMGCBZd9TWRkJL/++us131OIxqDQUEb0i6uA2t2Tqfx9E14azKY//wBsk53U1FS2bt1Ks2bN6N69e63EVduCgoLIysqim5rIX2pLFI22XrYPEKK+srtmZ9++ffTs2ROAb7/9lg4dOrB582YWL17MokWLqjs+IcQF7jonkt8YTvIbw6+arNTFlVp74neTk5OD4uKBLqi59fnU1FQOHDjA8ePHHRhdzbIUXvfwK+XUh49x7vdPWTv5JutqNCFEzbL7611paam1Hmbt2rXcfvvtgLnhX1paWvVGJ4SokvqwC/rGuI0AjLhlIMvevN36fIsWLQDw9fV1SFy1wVKk7OTkhDHvLAUH1hOsr92WG0I0ZnaP7LRv354PP/yQP/74gzVr1jB06FAATp8+jZ+fX7UHKISoXH3bBX1j3AYABgwYYPN8UFAQffr0oW3btg6IqnZYRnaKCgvRaDSYCs6TmZnp4KiEaDzsTnb+9a9/8d///pf+/ftz3333WXc6X7ZsmXV6SwhRs+rbLuiqycjmTX8C0L9/f8cG4wA+Pj7odDpMJhOBUW0A2QFdiNpk9zRW//79ycrKIjc3lyZNmlifHzduXINr8y6EI12pqLi+7YJuSE8iLy+PJk2aWL8ggXkj4OPHjxMcHExAQIADI6xZiqIQGBjIyZMnCW3ehvRjB9m/L4Fbh9zs6NCEaBTsHtkZOHCg9UOrPF9fX+65555qC0wIcXmVb6pZd5cxFyXvBsxfljTles2cOHGCpUuX8vPPPzsqtFrTr18/br9zFGll5i+F+/fLyI4QtcXuZGfDhg0YDIYKzxcXF/PHH39US1BCiCsL0bvxwvC2qKp5eMeeZcw1uSfT5VaBmQpy0Hr5WWv8LBrynliXatOmDW3atqNU3xSQaSwhalOVp7H27t1r/e8DBw7Y7CpuNBpZuXIlYWFh1RudEKKC/Px85syZw3vvvUchOpx8QjHlpPPZri60eO21Cr1q0nOK2ZSUZX08eF4cc0Z1rJVlzz/sPImqqvje/ARNBj1OWUS4zXHLVi8NcU+syrjrnPjjjYdp9/MbHDxwAJPJZDPSJYSoGVVOdmJiYlAUBUVRGDhwYIXjbm5uvPfee9UanBDC1vHjx7ntttvYv99cnKxx8aDsfBrGvCxWr17NmjVreOWVV2g64H7rawbNjbO5hqWY+cbWATVa35OeU8xLy/ajKOb5NkWjYW5cGnfGtrXetzGN7KiqSlJSEpmZmXh5eZGXl8fx48etS++FEDWnysnO8ePHUVWV5s2bs337dptiQp1OR2BgIFqttkaCFEKY2zsMGDCAEydOEBISwtvz3+Mff+lQFA0rHmnFa7Nf5quvvuKlf71NeG5nuJBkqJVcqzaKmU+cvXIRdUlJCefPnwcaR7KjKArLly8nNzeXnj17sm7dOhISEiTZEaIWVDnZiYyMBMBkMtVYMEKIypWWlnLHHXdw4sQJWrZsyYYNG2gSEMS0nebVWs2aN+eTRV+w6pwvBQf/sCY6l1MbxcyRfuYi6vIJT/n7WqawvLy8cHOreyvIakLr1q0pKiri5Elzj6SEhATuuOMOxwYlRCNwTRvkJCYmsn79ejIyMiokP9ezN5YQonLPv/IGO3bsoEmTJqxatYqwsLBKt4HwihmGxtUL1WSy2WFb4eIIz9WKmatrH61gvStPdG/C+9uyKt0LqjFNYVkMHz4cgOTkZMCc7Aghap7dn2Iff/wxTz75JP7+/gQHB1vn48E8TCvJjhDVo3yH5F9M3fHsdDMfvTCO5s2bX+FV4NG2Hz00x9heFmlNMmbd3p4XfjbX+aydfFOtbS1hStrEqQ//hXu7m4hf/rnNfRtbcXJ5HTt2BCTZEaK22J3svPrqq7z22mtMmzatJuIRQlCxQ7Ki0eA3dCJ9bx5cpdcvmD6WZr2GYSzIplWIDyP++RsvXGhlU1t7MqXnFPPbr8sx5p3Fycuvwn0tIzuNLdlRVZWICPNKuMTERIqLi3F1lX2yhKhJdic72dnZ3HXXXTURixDigso6JKNobIqKLbugW5Sf1tJoNDQZOJa0hRPZl5rArJdeBF3FVZTV7dL9urJyLsTaKtbmPFVVrSM7jWkay2Qy8eabb1JSUkJERAQpKSkcPHiQLl26ODo0IRo0uxs83HXXXaxevbomYhFCXFAdHZKdvPzwG/Y0AO/Nf4eS9KTqDLGCyvbranLLU7g274aT3nb0Ji8vj+LiYhRFwd/fv0bjqks0Gg3e3t4A1n5IMpUlRM2ze2SnZcuWvPDCC2zdupWOHTvi7Oxsc3zSpEnVFpwQjVWI3o372zjxvwMllRb3Xs2ZXHOXZPdWvfjb3ffw/bffcG7VAoIffKvGYq5sNErRaPGI7l8xvgtTWP7+/jg5XVsBdH0VFBREZmamdcm5JDtC1Dy7P2U++ugjPD09iYuLIy7OtlmZoiiS7AhRTeJ/WMCpuM149biTnV+/fdWi4vJTSLe9t8n63//691usWbWSnPRE8nb/Ctxa5RjSc4qrXMxsGY0qn/CoJiMuoW0qnGs0GvHz8yM4OLjKsTQUlholPz8/QJIdIWqD3cnO8ePHayIOIUQ5R48e5dcVy1FVFffm3a9aVFzZFJJFcHAwc+bM4amnnqJs2xJyzr6Ee0jIZa91ad1NVbeWCNG72az6Uk1GXPb+wImVn1c4t23btrRte3Fvr8bEUqNkGdEqvxWPEKJmyKYsQtRBn332Gaqq4tqsK85+4Vc9v9KCZuCrx3vjrnPiiSeeoGfPnuTl5TFjxozLXqeypOmfS/eRllNUpbhHdzPHev7PxZz68DHu7t70iucrV2l+2BBZRnYKCwvRarWkpaVx9uxZB0clRMNm98jOY489dsXjn3322TUHI4QwT/F88cUXAHh2uqVKr6lsCql8QbNGo+G9996jV69efP755zz82Fge/TUXsG0cWFnSZO/WEqbifHK3/YBaZmDUqFEVjltGcxpjogOg1+txcXGhpKSEjh07Eh8fT0JCAv3793d0aEI0WHaP7GRnZ9v8ZGRk8Pvvv7N06VLrPjdCiGu3fv16Tp48iY+PD+4te1bpNZYpJIvKCpp79uxp/bIy5dlnUE3GCtepyiqwQkMZUdNXEDV9RaVdnAsObkQtM9C+Q4dKl1RnZGTwxhtvsHjx4iq9t4ZGURTr6E6nTp0AqdsRoqbZPbLz448/VnjOZDLx5JNPyoZ2QlSDzz8317j87a67WeOkq/LrRncLv2qX5Ndff53vv/+e3bt24Ru4Fq/OQ2yOX1p3Y+8qMID8hDUAPPjQw5WO3pw5cwaDwUBJSUmVr9nQBAYGkpqaat1zUJIdIWpWtdTsaDQaJk+ezNtvv10dlxOi0crLy2Pp0qUA/N/Yx0h+YzjJbwy3e3+qyxU0BwUFMWvWLADOx32OsTi/wjmWuhswJ01VKU622L9/H4a0RNBouff+MZWe0759e5566imGDh1a5es2NJYiZUvPHUl2hKhZ1VagfPToUcrKKg5pCyGq7vvvv6ewsJA2bdrQs2fVprDsNX78eNq1i8ZUlEvOn1eeSrJ3a4n/XRiVcmvZk4CAgErP0Wq1BAQEEBoaate1GxJLsmPZSHnfvn0VNlUWQlQfu6exJk+ebPNYVVXS0tJYsWIFDz/8cLUFJkRj9O233wLw0EMP1VgBr7OzM/+e9zYjhg0hb9cK9u1LoGfX69+uwGAw8PUSc/L07dx/XvNu6Y2BpWanqKgIT09P8vPzOXHiBM2aNXNwZEI0THZ/Gu3evdvmsUajISAggLlz5151pZYQ4vLSMs+ycvVaAG69bWSN3mvAwIF4dhpC6fnTPDv9Bf5c9ct1J1fffPMNmZmZhISEXHaKqqioiFWrVhEUFETv3r0b7YosV1dXvL29yc3NpVu3bsTFxZGQkCDJjhA1xO5kZ/369TURhxCN3upVK8FUhpNvOK3bVOw6XJ1+2HkS36ETUBSFkyYTz33wI289VXGZeFWpqsrcuXMBmDhx4mW3gMjIyGDPnj3o9XpiY2MrPaexeOCBB/D29iYxMREw1+3cfvvtDo5KiIbpmmt2MjMz+fPPP/nzzz/JzMyszpiEaJR++flnANxb12wSYGkcaBlVUTQavkt24kDyabuvlZ5TTKGhjOB7XmHPnj24u7vzxBNPXPZ8y55YjWmn88sJCAjAxcWFjh07AlKkLERNsjvZKSgo4LHHHiMkJIQbb7yRG2+8kdDQUMaOHUthYWFNxChEg1dSUsKqlb8B4N6q9zVdw13nVKXVW5fbsPMfs/9dpftcup3E93+lcv6PLwF47P8ex9fX97KvtSQ7lpoVIb12hKgNdic7kydPJi4ujl9++YXz589z/vx5fv75Z+Li4pgyZUpNxChEg7du3Try8/PRevqiC2lVo/eqrHGgajKy8vv/sXTp0ismTZVtJ/HSsv0YC86hOLsy5bl/XPHeGRkZgIzsABQXF/Pbb79x+rR5RO3w4cONuveQEDXJ7mTnhx9+4NNPP2XYsGF4e3vj7e3Nrbfeyscff8z3339fEzEK0eD99NNPALi1ikVRanbLusq6LffWHseYd5YnnniCkydPXva1lY0KqSg4+YTi3eOOK47YqKpqTXZkZMe8Ku6vv/7i5MmTNG3aFKPRyKFDhxwdlhANkt2fqoWFhZV+KwsMDJRpLCGugaqq/PLLLwC4t+0HmGthatKljQO/ePnvxMTEkJWVxV133UVxceX3v9yokFpmwLv33654z/Pnz2MwGNBqtfj5+V33e6jvtFot/W7qzx+GKHKczX8eMpUlRM2wO9mJjY3lpZdesvkwLCoqYtasWY1+dYUQ1yIhIYH09HR8uw/HtWkHwFwL882OlFq5f7DeFRcXF77//nt8fHzYunUrDz30EEZjxb2zLh0VUk1Gzq36Dz5970XjfOUGhJZRHX9/f7RabfW+iXqqV+9Ykoz+mPRhgCQ7QtQUu5Od+fPns2nTJsLDwxk0aBCDBg2iadOmbN68mfnz59dEjEI0aKtWrULr5YfXwCesK6RMKvxz6T7ScopqLY4WLVrwww8/4OzszHfffceYMWMqrSEZ3S2ckrREznz7Iqc+fIwHb2iDW4sewJVHpGQl1uXpAmSPLCFqkt3JTocOHUhMTGTOnDnExMQQExPDG2+8QWJiIu3bt7/6BYQQNlatWoVTk1C4pFbHqKokZ5mnhk0mE1u3bsVgMFiPnz17llOnTlVrLAMHDuSrr77C2dmZb775hj59+rBz586LMRmNLPz0E84smUbx8V3079WVHvc8bT1+pREpSXYqKisrI0iTR3Rz87SiJDtC1Ixr6ufu7u7O448/Xt2xCNHoFBYW8scff2B08UIBytf+ahWFKH93SktL+frrrzl27Bje3t5ER0cDsHXrVnbt2sWIESPo0uX6t3uwGD16NCtWrOC+++5j165ddO/enc6dOxMWFsbevXutBcyuzbvx9if/Y+SHf1lfaxmRurF1QIWd0iXZqaiwsJBbXQ5jCoItWi0nT54kOzubJk2aODo0IRoUu0d25syZw2effVbh+c8++4x//etf1RKUEI1FXFwcBoOBsCYezLo92vq8RoHXR3UgyMuFb7/9lmPHjuHs7GxT61JaWorJZGLZsmUcPHjwuuIoNJQRNX0FUdNXUGgo4+abb2bPnj08+OCDaDQa9uzZw6+//srJkydp0qQJPv0fI3D0i2QVUWF1VvkRqfKxnjt3DpCVWOV5eXlRomrRKNC+g7lea9++fQ6OSoiGx+5k57///S9t27at8Hz79u358MMPqyUoIRqLVatWAXDLLbfwt+5Nrc+vnXwT9/SI4I8//iApKQlnZ2ceeOAB2pTbRmLkyJF069YNgB9//NGaTFRFVRoQhoWF8cUXX5CWlsZ3333HJ598wqpVqzhyLBl9r1EoGi2RfhVXZ1lGpMrLzMxEVVXc3d3x9PSscpwNnaIonDZ6kWb0ok3nXgDs3bvXwVEJ0fDYPY2Vnp5OSEhIhecDAgJIS0urlqCEaCxWrVoNwE+Z/swxlFmfD9a7kp6eTlxcHAAjRowgIiLC5rWKonDrrbeSlZXFiRMn+Pnnn3nkkUeqfXPNwMBA/va3i8vKCy+Jc9bt7XnhZ3OjQcuI1KVTWC4uLvTq1QtFURrt5p+V+WHnSTaUtgAUCGmNZ6fjUrcjRA2we2SnadOmbNq0qcLzmzZtIjQ0tFqCEqIxOHnyJIcOHQRFg2tUjM0xVVX57bffUFWV6Oho65YCl9JoNIwcORJnZ2dSUlLYv39/peddj0unuC4dFbq0Z889PSIqXMPPz4+hQ4cyZMiQao+vvrrYjdqS/Cn4DplA/OFkB0YlRMNkd7Lz+OOP88wzz7Bw4UJOnDjBiRMn+Oyzz3j22WftLlr+4IMP6NSpk7UTc2xsLL/99pv1eHFxMePHj8fPzw9PT09Gjx5tLXK0SElJYfjw4bi7uxMYGMhzzz1HWVnZpbcSos6xjNroglqgdbWd2jl1MpWUlBScnJy45ZZbrnidJk2a0K+fuRnhunXrKu2PU1uC9VfutSMuutweZYnp51FVtfIXCSGuid3TWM899xxnz57lqaeesi6DdXV1Zdq0acyYMcOua4WHh/PGG2/QqlUrVFXl888/Z+TIkezevZv27dvz7LPPsmLFCr777jv0ej0TJkxg1KhR1pElo9HI8OHDCQ4OZvPmzaSlpfHQQw/h7OzM66+/bu9bE6JWbdiwAcDaSLC88KYRjB07lnPnzqHX6696rdjYWM6fP0/37t3rXMM+VVU5efIkgYGBuLi4ODqcOsPSjbp8wqOajOScSiIlJYXIyEjHBSdEA2P3yI6iKPzrX/8iMzOTrVu3smfPHs6dO8eLL75o981vu+02br31Vlq1akXr1q157bXX8PT0ZOvWreTk5PDpp58yb948Bg4cSLdu3Vi4cCGbN29m69atAKxevZoDBw7w5ZdfEhMTw7Bhw3jllVdYsGCBTT8SIeoiy8iOS0THSo+Hh4dfdvrqUs7Oztx+++3VMpVc3VtVFBQUWFdrlpaWVuu167NLu1ErqPgnr8GYd5YeUz61qY0SQlyfa95x0NPTkx49etChQ4dq+bZmNBr5+uuvKSgoIDY2lp07d1JaWsrgwYOt57Rt25aIiAi2bNkCwJYtW+jYsaNN344hQ4aQm5t7xdqFkpIScnNzbX6EqA2W+pfw8V+QmJiIoii4hpuXnFtqYY7MvvmyK6Sqyt5pkB92Xtz8s7q3qsjLy8Pb2xtfX1+cnZ2r7boNgaXeqavTSe5y3UuvABMAhjPHHBmWEA3O9X2iVoOEhARiY2MpLi7G09OTH3/8kejoaOLj49HpdPj4+NicHxQURHp6OmBeGXZpgzLLY8s5lZkzZw6zZs2q3jcihB1KUs29VDrHxJB9oV4nPacYb6WYjz76iM6dO3PrrbfavXIpJyeHP/74g/z8fO69994qveZioazZlRoDXouQkBCeffZZGdW5Cg+lFK8Q88hcacZxB0cjRMPi8GSnTZs2xMfHk5OTw/fff8/DDz9sHd6vKTNmzGDy5MnWx7m5uTRt2vQKrxCiehWnmpcXR/S/l+wLzw2eF8eY1gpOpaXk5eVd8xLtXbt2oaoqWVlZ+Pv7X/X8ygplLY0BL0120nOKaR5gW0xtGZG6GhnVubxs1dyXyM3N/OdtkGRHiGp1zdNY1UWn09GyZUu6devGnDlz6Ny5M/Pnzyc4OBiDwcD58+dtzj9z5gzBwcEABAcHV1idZXlsOacyLi4u1hVglh8halNxyj60Xn7s1V3smmxS4cvDJgpUZ2uzQHvp9XpatWoFwO7du6v0GkuhbHnlGwPW5BSXMMs2mZOckpJiFEWh7HwaZ7LO2Sz5F0JcuyolO127diU72/z9c/bs2RQWFl7lFdfOZDJRUlJCt27dcHZ2Zt26ddZjhw8fJiUlhdjYWMC8AiUhIYGMjAzrOWvWrLHZP0iIusaYn03ZuZM4+4ahYptlqCiUuTahRYsW13z9zp07A7B///4q1e5cWihbvjHg5aa4qrobu9Fo5J133uF///sfxcXVW/jckOSoLhfaZwTh7meeytq/T5oLClFdqpTsHDx4kIKCAgBmzZpFfn5+tdx8xowZbNy4keTkZBISEpgxYwYbNmxgzJgx6PV6xo4dy+TJk1m/fj07d+7k0UcfJTY2lt69ewPmFvvR0dE8+OCD7Nmzh1WrVjFz5kzGjx8vS1xFnVV8oV6nRZB3hREVBZXeHVqi0Vz7oGurVq3Q6XTk5OSQmppapddcrjHglaa4quLs2bPk5ORw8uRJ+Td5BSoanpr0DGMeehiC2+AS0ZGt8QccHZYQDUaVanZiYmJ49NFH6devH6qq8tZbb112fxt7lqBnZGTw0EMPkZaWhl6vp1OnTqxatYqbb74ZgLfffhuNRsPo0aMpKSlhyJAhvP/++9bXa7Vali9fzpNPPklsbCweHh48/PDDzJ49u8oxCFHbDBnHcInoSM9evRlQbqsFBZU+zie4qcffrnKFK3N2dqZdu3bs2bOHhISECttMXE35xoCV9YKpbO+ryym/07lsE1HRpfVO/9uSjN+tz6AoGr48q4L8kQlRLaqU7CxatIiXXnqJ5cuXoygKv/32G05OFV+qKIpdyc6nn356xeOurq4sWLCABQsWXPacyMhIfv311yrfUwhH+mHnSXxueBBFo2E9KgMuPB+syeFGXTIR/t7Vsit4hw4d2LNnDwcOHGDo0KHX3GjQMsV1tb2vLseS7MhO51dnmTJUlAujepIcClFtqpTstGnThq+//how78Wzbt06+fASwk7WX2YXpqhUFGs9TL7qyi03xqL38qyWEZDmzZsTFhZGs2bNKCsru66uyqO7hVuTnbWTb6qwGutKLPV0l7aIEBXtPJxaYcpQCFE97F56bjKZaiIOIRq8yupfLI/zVRf69LvhupsJWmg0Gv7v//6vWq5Vnr17X5WfxhJX1jq0CQqqTdG6qqooilLpkn8hRNVdUxXk0aNHmThxIoMHD2bw4MFMmjSJo0ePVndsQjQozfw94JLVUZcWKDvKpTuZV4eioiJrd3IZCb66VmH+TOobDJj/jqjlvljKkn8hro/dyc6qVauIjo5m+/btdOrUiU6dOrFt2zbat2/PmjVraiJGIRqEEL0bHgeXoZrMu5JrFJh1e3vaac8QpTlXI/u5lZaWcuTIEbKysqr92ldjmcLS6/W4uspu6FejKApPDIkBFPL2rLI+B/Yv+RdC2LL7K9z06dN59tlneeONNyo8P23aNOtKKiGErYKCAg7/+hlsWErIw+/w+4t3ENHElZMbzmAwGCjIycbHs2qrnKpqxYoV7Nmzhz59+tT6v02Zwrp2Wo8m1toui8t1tRZCXJ3dIzsHDx5k7NixFZ5/7LHHOHBA+kIIcTk7duzAaDSCChp3H4L1rqSkpGAwGPD09KyWHcsv1bJlSwASExOr/dpXIyux7Jdz/jxdnU7SvamXzTQW2LfkXwhhy+5kJyAggPj4+ArPx8fHy4eaEFewefNmAFzC2lmnJ5KSkgBzUlITfWhatGiBoihkZmZau6Db61rreWRkx34lhhI6O6cToy8ie/UCmylPe5b8CyFs2T2N9fjjjzNu3DiOHTtGnz59ANi0aRP/+te/bDbXFELYsiY74e2sz5VPdmqCm5sbkZGRJCcnc+TIEXr16lUj97mUyWSq0j51wpafnz9GVcFFMdHK6Sx7PnyMgJH/ZNO8cbIaS4jrYHey88ILL+Dl5cXcuXOZMWMGAKGhobz88stMmjSp2gMUoiEwmUxs2bIFMI/sAOTm5JCZmYmiKDRv3rzG7t2qVataT3bOnTtHWVkZzs7O+Pr61so9GwIvNxfCQoJIT08npksMu3b+RXHKHruX/AshbNmd7CiKwrPPPsuzzz5LXl4eAF5eXtUemBANyeHDhzl37hxubm6kfDIBZ2dn/vrrLwDCw8Nxc6u56YnWrVuzZs0akpOTMRgM6HS6GruXhbe3N2PGjCE/P/+69vlqjIKDg0lPTycyIhIAQ8ZxB0ckRP13XQ01JMkR4soKDWVEv7iKvD2rAejRowfOzs4AZGZmAjU3hWXh5+eHXq+3bgx6PTuqV5VOp6vx99VQWab9vL3Nn6+S7Ahx/aqne5gQ4opKTh0EsNa5AQwbNow+ffpc11YOVaEoCrfffjteXl74+/vX6L3E9bMkO2WlZeb/PXeKgoIC3HV6R4YlRL0m48tC1AJLstO3b1+b5/V6PZ6eNV942rx5cwICAmpl53FVVYmLi2P//v2UlZXV+P0aGsvqtYKCfKKiogCVo4cPOjQmIeo7SXaEqGHGolzKzp0EoHfv3oA5IWio8vPz2bBhAz/88EODfp81xdXVFR8fHwB69uwJUGm7DyFE1dmV7JSWljJo0CCHNCgTor4qOXUIgNat21inkRYvXszixYuty7Nrw6FDh/j+++85dOhQjd7HZDLRtWtXoqOjrfVJwj6WqaxWrVoBsGfPHkeGI0S9Z1fNjrOzM3v37q2pWIRokAyZJ3CJ6EjMhSksg8HA8ePHMZlM3HrrrbUWR0pKCvv378fZ2Zm2bdvW2H30ej233XZbjV2/MQgODubQoUP4+fkBsGvXLgdHJET9Zvc01gMPPMCnn35aE7EI0eD8sPMk+t6jCb5vDtsDh/PNjhRSUlIwmUzo9XrrdEVtsPTyOXbsmEwv1XGWkR3Lsv09e/aQU1BE1PQVRE1fQaFBaqGEsIfdq7HKysr47LPPWLt2Ld26dcPDw8Pm+Lx586otOCHqs7ScIl5ath9FMf/CUlH459J9vN7H/M+uWbNmtVIwbBEZGYlWqyU3N5dz585ZRw2qW0ZGBr6+vjg5yWLPa2VJdnJzc/H19eXcuXMcOLDfwVEJUX/Z/Wm0b98+unbtCsCRI0dsjtXmB7cQdd3xrAJMlwygGFWVhONpOGNOdmqTs7Mz4eHhnDhxguTk5BpJdgwGAx988AEajYapU6fWaLPEhszb25tOnTrh5+fHH3/8wZo1a4jftQsIc3RoQtRLdic769evr4k4hGhwmvl7oKCicvFLgEaB0nOncVa4sKy4dkVGRnLixAlSUlLo1q1btV/fUnDt4eEhic51UBSFO++8E4CYmBjWrFnDrp07wVeSHSGuxTUvPU9KSmLVqlUUFRUBDXsprRDXIkTvRkTGZpudqyfFBuCuGPDz88Pb27vWY4qMNG9BcOLEiRq5fnp6OiCbf1an7t27A7B7txQpC3Gt7E52zp49y6BBg2jdujW33noraWlpAIwdO5YpU6ZUe4BC1GdH1/yPUx8+hiH9KGsn38SIaF+aN29O69atHRJPeHg4Wq0WDw8PSkpKqv36lmTH0hhPXDtVVcnOziY8PByAfQkJqMZSANJzih0ZmhD1jt3TWM8++yzOzs6kpKTQrl076/P33HMPkydPZu7cudUaoBD1VWpqKqdOngRFg5NvGMF6V9wDWjp0zyidTse0adNqrP+NjOxUn4yMDD788ENcXFzw8fGhLKIHaMwf2YPnxTFnVEfu6RHh4CiFqB/sTnZWr17NqlWrrN82LFq1alVjQ+NC1BeWjT8BZnfMAUAX2AyNztWRYdmoqUTHZDKRkZEBSLJTHfz9/dHpdDRp0oSu/QaS1O4R6yIQkwr/XLqPG1sHEKKX2ighrsbuZKegoAB3d/cKz587dw4XF5dqCUqIhmDrli0AuISZR0ALCwtQS50qtGtwlNLS0mpNfLKysigrK0On0+Hr61tt122stFot06ZNQ6PRsOXYWY4qtlUHRlUlOatQkh0hqsDump0bbriBL774wvpYURRMJhNvvvkmAwYMqNbghKjPtm/bCoBLmLlb8Z7du3nrrbdYuXKlI8PCZDLx2Wef8cYbb5CXl1dt17XU7wUHB0sbimpiaSrYp2MrVJPJ5phWUYjyr/jFUwhRkd3JzptvvslHH33EsGHDMBgM/OMf/6BDhw5s3LiRf/3rXzURoxD1jqm0hD0XNm/c8e54kt8YTtop82agjh710Gg0lJaWYjKZqnXq+fTp0wCEhIRU2zWF2cDeXTi36j2blX2vj+ogozpCVJHdyU6HDh04cuQI/fr1Y+TIkRQUFDBq1Ch2795NixYtaiJGIeodQ3oiZWVlBAcHExkZiclk4uRJc7LTtGlTB0cHERHmwtbqTHYsIzuhoaHVds3GLjs7m48++ogVK1bgnPqXeWXfuVOsnXyTFCcLYYdr6ueu1+t5/vnnqzsWIRqMsryzaL386NOnD4qicObMGUpKStDpdHViWXZkZCTbt28nJSWlWq5nMpmsK7FkZKf6eHh4kJ6ejqqq9OjZi9WrVlKSkkCwvu4UvAtRH1xTspOdnc2nn37KwYMHAYiOjubRRx91+PC8EI72w07z6I1n9E14tL0Bvbc5AUhNTQXMfW4sdRiOZGkumJGRQWFhYaWLDuyRlZVlLXiuqT23GiOdToe/vz+ZmZnExMSwetVKDOlJjg5LiHrH7k/djRs3EhUVxbvvvkt2djbZ2dm8++67NGvWjI0bN9ZEjELUC5aNPy0UjYYNBaGk5RRZR1As00eO5uHhgb+/P0C1jO5kZ2ej1WoJCQmpE8lcQ2KZFgwLM28VYUhPdGQ4QtRLdo/sjB8/nnvuuYcPPvgArVYLgNFo5KmnnmL8+PEkJCRUe5BC1GXle+tcyqRCclahNaGoC/U6FpGRkWRlZXHixAnatm17Xddq06YNM2bMoLCwsJqiExYhISHs2bMHV1dzaw9D5glKSkpw18mu8kJUld1fwZKSkpgyZYo10QFzP4jJkyeTlCTDq6Jx01yy4lqrKET6uTFgwAC6du1aoRmnI7Vs2ZJ27dpZRwyul1arxcvLq1quJS6yjOzk5eaaSwVMZSQe3H+VVwkhyrM72enatau1Vqe8gwcP0rlz52oJSoj66p+3tkNVzf1QFFXl9VEdCPVxJyYmhttuuw2dTufgCC9q27Ytd999Nx06dHB0KOIKLH2L8vPz6devHwDbtm1zcFRC1C9VGgfdu3ev9b8nTZrE008/TVJSEr179wZg69atLFiwgDfeeKNmohSinrijSygTHvobGMuY9+rMRrE8ODMzk6VLlxIZGcnQoUMdHU6D4+zsTEBAABkZGXTt2pVly5axdetWJk6c6OjQhKg3qpTsxMTEoCgKqqpan/vHP/5R4bz777+fe+65p/qiE6KeOXb6LCUn9oBqYsiN5i8D8fHxBAQE1MniXcvO2gaD4Zr3szp9+jTp6el1atSqoQkNDSUjI8M65bh161YHRyRE/VKlZOf48eM1HYcQ9ZZluTnAPZ/F49lxEEXJ8YSEhlJSUsKyZctQVZXJkyfXuZqWXbt2sXz5clq0aMEDDzxwTddo2bIld999t00dn6heoaGhxMfH4+Rk/sg+duwYmZmZBAQEODgyIeqHKiU7lp4cQghbly43VwHfIRM4t/a/AJw8eRJVVfHx8alziQ5cXM6cmpqKyWS6ppEnDw8P2rVrV92hiXIsjRozMzNp27Ythw4dYtu2bYwYMcLBkQlRP1zT2sXTp0/z559/kpGRgemSzekmTZpULYEJUR8czyrApNo+p2i0/P2+kbjrnOpcf51LBQYGotPpMBgMZGRkXPNUlqhZQUFBaDQaCgsL6du3L4cOHWLr1q2S7AhRRXYnO4sWLeKJJ55Ap9Ph5+dns7uxoiiS7IhGpZm/BxoFm4RHNRkZ3Mu8MtHSObku9dcpT6PR0LRpU44ePUpKSordyc758+fZu3cv4eHhNG/evIaiFM7OzgQGBpKenk7Hjh0BqdsRwh52j1m/8MILvPjii+Tk5JCcnMzx48etP8eOHbPrWnPmzKFHjx54eXkRGBjIHXfcweHDh23OKS4uZvz48fj5+eHp6cno0aM5c+aMzTkpKSkMHz4cd3d3AgMDee655ygrK7P3rQlhtxC9G7Nub299rJqM5P3+EQNju2I0Gq2bf9bVkR24GNu1dFI+ceIE69evJy4urrrDEpcYMmQI48aN48YbbwRg+/btGI1GB0clRP1gd7JTWFjIvffeWy2rSuLi4hg/fjxbt25lzZo1lJaWcsstt1BQUGA959lnn+WXX37hu+++Iy4ujtOnTzNq1CjrcaPRyPDhwzEYDGzevJnPP/+cRYsW8eKLL153fEJUxehu5kaBhUk7OPXhY3T0yMPZ2ZkzZ85QWlqKq6trnS4ktYw6paSk2Ky4rIpTp04BsvlnbYiKiiIkJISOHTvi4eFBXl4ehw4dcnRYQtQLdmcsY8eO5bvvvquWm69cuZJHHnmE9u3b07lzZxYtWkRKSgo7d+4EICcnh08//ZR58+YxcOBAunXrxsKFC9m8ebN1CHf16tUcOHCAL7/8kpiYGIYNG8Yrr7zCggULMBgM1RKnEFVRlLgFY95Z+vTpA2CzRUT56d66JiwsDI1GQ15eHjk5OXa91pLs1KXO0A2dk5MT3bt3B2QqS4iqsrtmZ86cOYwYMYKVK1fSsWNHnJ2dbY7PmzfvmoOxfNBadk/fuXMnpaWlDB482HpO27ZtiYiIYMuWLfTu3ZstW7bQsWNHgoKCrOcMGTKEJ598kv3799OlS5cK9ykpKaGkpMT6ODc395pjFsKi5JS5s3hsbCwA3bp1q5O9dS6l0+m4+eab8fHxsWv387KyMtLTzbu6S7JTO3bv3k1qaiqxsbHExcWxdetWxo4d6+iwhKjzrinZWbVqFW3atAGoUKB8rUwmE8888wx9+/a1tq+3NCrz8fGxOTcoKMj6IZuenm6T6FiOW45d7j3MmjXrmmMV4lLG4nxKz5qLkS3JjrOzc71p22Dphm6PtLQ0TCYTHh4e6PX6GohKXGrnzp2cOnWK1q1bA/D5z2tZ47eCA7OHyMagQlyB3f865s6dy2effcYjjzxSrYGMHz+effv28eeff1brdSszY8YMJk+ebH2cm5tbZ1fLiPrBcMpcO9GiRcs6XZ9TnSzF1+Hh4XV6mq4h6dy5M82aNbOumivNPIGpRHaaF+Jq7E52XFxc6Nu3b7UGMWHCBJYvX87GjRtthsODg4MxGAycP3/eZnTnzJkz1n/swcHBbN++3eZ6ltVal1tG6+LigouLS7W+B9F4ueuceKKdkVeAvn3N9TqJiYkkJSXRpk2berMk+9ixY5w4cYLevXvj5uZ21fMt9TrVtWu6uLoePXpY/zsiMpKUEycoSU90YERC1A92FxM8/fTTvPfee9Vyc1VVmTBhAj/++CO///47zZo1sznerVs3nJ2dWbdunfW5w4cPk5KSYp0qiI2NJSEhgYyMDOs5a9aswdvbm+jo6GqJU4irsYxIWv5eHj58mO3bt5OUlOTIsOyyYsUKNm7caO0NdDWWkR1JdhyjR4+ewMVRRSHE5dk9srN9+3Z+//13li9fTvv27SsUKC9durTK1xo/fjxLlizh559/xsvLy1pjo9frcXNzQ6/XM3bsWCZPnoyvry/e3t5MnDiR2NhYa43BLbfcQnR0NA8++CBvvvkm6enpzJw5k/Hjx8vojagVBoPBuirmhhtuAGxXYtUXERERnDt3jtTUVGtNyOXk5+dbFxRIslO7ioqKOHnyJD179eKnVb9jNBSSnlNM8wBPR4cmRJ1ld7Lj4+Nj0+fmenzwwQcA9O/f3+b5hQsXWmuC3n77bTQaDaNHj6akpIQhQ4bw/vvvW8/VarUsX76cJ598ktjYWDw8PHj44YeZPXt2tcQoxNXs2rWLoqIi/Pz8aNeuHUVFRWRmZgJ1u5ngpSIiIoiPj69Sc0HLFFZAQIB8qahlP//8M4cPHybHvwNhf1+IotEweF4cc0Z15J4e9efvmxC1ye5kZ+HChdV286o0MHN1dWXBggUsWLDgsudERkby66+/VltcQtjjjz/+AKBfv35oNBrr9I6vry8eHh6ODM0ulsTs1KlTlJWVWXfYrkz54mRRu8LDw9l16Bg/prqgaMyF4SYV/rl0Hze2DiBEf/V6KyEam7rdAESIemDjxo1AxSms+jSqA+bkzN3dHaPRSFpa2hXPleJkxwkPDyfX5IqK7Qo4o6qSnCUrs4SojN0jO82aNbviMlN798cSoj4zmUxs2rQJuJjs1PXNPy9HURQiIiI4dOgQKSkpV4y/RYsWaDSaepfQNQShoaHoNSUoqDYJj1ZRiPKvelNIIRoTu5OdZ555xuZxaWkpu3fvZuXKlTz33HPVFZcQ9cL+/fvJzs7Gw8ODLl26oKoq+fn5QP0b2QFzgnbo0CFOnz59xfP69u1b7S0oRNXodDqaBTehz6kTbDJEgqKgmoy89rcYmcIS4jLsTnaefvrpSp9fsGABf/3113UHJER9YqnXiY2Nta5MnDBhAjk5OXh7ezsytGvSsWNHWrRo0WgaI9ZX4eHhtD6zk9wyLWu++i9l51Lp9eQOR4clRJ1VbTU7w4YN44cffqiuywlRL1xar2Oh1+vrZVdhLy8vgoKCrrifV3p6unX0SjiGpTA83LkAtbQIY95Za+IthKio2pKd77//3rqBpxCNgaqq1l8wlyY7DdmPP/7I3LlzSUyUzr2OYkl2/DWFuDdtD1ArW+0IUV/ZPY3VpUsXm2+sqqqSnp5OZmamTf8bIRq648ePc/r0aZydnenVqxeqqvL+++/j6+vLiBEj8PLycnSI1+TUqVNs374dLy8vBg8ebHPMaDRa//2HhIQ4IjwB+Pn54erqSnFxMaEt23N+21Li4uIcHZYQdZbdyc4dd9xh81ij0RAQEED//v1p27ZtdcUlRJ1nGdXp3r077u7unD17lqysLLKzs6u0t1RdVVRUxN69e2nSpEmFZEer1fL3v/+d4uJiXF1dHRShUBSF8PBwkpKSeP/xQQz86jWOHDnC6dOnCQ0NdXR4QtQ5dic7L730Uk3EIUS9c7n+OmFhYVdsyFfXWaZIsrOzycvLq3SEShIdx7MkO1lZWXTp0oWdO3fS6Yl5eLYfwF8zB9H9VfOeggdmD8FdV3//PgpRHaSpoBDX6NJ6nfq4H1ZlXF1dCQoKAqiwKajJZHJESKISltYGJ06cYMCAAQCUpCQ4MiQh6qwqJzsajQatVnvFn/r8bVYIe6SlpZGYmIiiKNZ+M5ZkJzIy0pGhVQvLL9Ly+2SVlZXx73//m4ULF1JUVOSo0MQF4eHheHh4EBISwo033ghAccpeB0clRN1U5ezkxx9/vOyxLVu28O6778q3PtEoFBrK6PTEPAA6x8TQpEkT8vPzOXfuHFD/R3bA/B527NhhM7KTlpZGcXExWVlZMo1VBzg7OzNlyhQURSEvLw+tVkvZ+XTKcjMcHZoQdU6Vk52RI0dWeO7w4cNMnz6dX375hTFjxshO46LRKD5h/gZ9U3/z9IFlBCQoKKhBJAKWkZ20tDQMBgM6nc5mz6/62EOoIbL8/+Dl5UXXbt3YdfAopVknOZNbbD0nPaeY5gGejgpRiDrhmmp2Tp8+zeOPP07Hjh0pKysjPj6ezz//vEEM3wtRFcUn9gAXkx1nZ2ciIyNp3ry5I8OqNnq9Hh8fHwIDA8nLywPq7wanjUFeXh5Nb7qXsL8vxK15V0a8u8l6bPC8OL7ZkXKFVwvR8NlVZJOTk8Prr7/Oe++9R0xMDOvWrWtUzdSEADiRnIxqKsMlsjMtOnUHoFWrVrRq1crBkVWv8ePHW+vwVFW1TmlJslN3lJWVsWDBAk5lF7BL0wnlwsagarlzTCr8c+k+bmwdIHtniUaryiM7b775Js2bN2f58uV89dVXbN68WRId0Si9+8s2wv6+kOB7X+OO/+5ssN+ayy84yMzMpKioCGdnZ4KDgx0YlSjPyckJnU5HnupqswP6pYyqSnJWYS1GJkTdUuWRnenTp+Pm5kbLli35/PPP+fzzzys9b+nSpdUWnBB1TVpOEb9l6FE05l8sJhVmLE2gZ4QXzYKaODi6mlFWVsbx48cBc+GyVqt1cESivLvuuovhqo5V8/7ApFZ+jlZRiPJ3r93AhKhDqpzsPPTQQ1KUKBq945kFcMm/A5MK/1qwkL/d2KlCx+H67quvvuLo0aPWqauoqCjHBiQq8Pf3B2DW7e2Z+VMCiqIB1QSKeeBeo8DrozrIFJZo1Kqc7CxatKgGwxCifjDlnkE1mVDK7QquoOKtKaZJk4Y3smMymTAajZw8eRKQZKcuG90tnGmfrODcmv+iM+TQ5MH5KFpn1k6+SVZjiUZPOigLYYc9WzZwbtV7qBd6SmkU6OeSiodS2iALdy3vqbS0FGdnZ9l3qY7aunUr/1v4Gc2DvCk9m0LemRRKTh0CIFhf/1shCHG9JNkRwg4rV64kf+8a8uJ/A2Dx/W1oqcnAzc3NOp3QkJRP4KRep+46e/Ys6elphGnzcYvqAkBR8m4HRyVE3SHJjhBVZDAYWL9+PQCuYe0AKMlOAxpuo73yIzmyCqvuskwv9g+F96c9CkArw1GS3xgum4AKgSQ7QlTZpk2bKCgoIDAoCOfAKABOnWzYvWecnJysozmy913dZUl2MjIy6NevHwC7du0iMzPTgVEJUXdIsiNEFa1atQqAQYMHm1e8oHIy1Vy421CTHUVR6N7d3DjR0klZ1D0eHh4EBgYCUFRURKdOnVBV1fp3VojGTr6qCXEVhYYyol9cxemF3wEwfNgwlowZjtFoZO/eMFJSUggJCXFwlDWnVatWnD9/vsEmdA1Fs2bNyMjIIDk5meHDh7N3716WL1/OAw884OjQhHA4RVXVy7Shajxyc3PR6/Xk5OTg7e3t6HBEHVNoKKPNlK85+Z8HAThz5oz1W7QQdcWhQ4f45ptv8PPzo1u3bvTp0we9Xk9mZibOzs6ODk+IGlHV398yjSVEFRQdN69sienSpdEkOmVlZXz00Uf89ttvlJaWOjoccRVRUVEoisLZs2dp06YNAQEB5OTk8Oeffzo6NCEcTpIdIaqg5PRhXCI60ufmEYC52d62bdtIT0+noQ6OpqamkpaWxoEDB9BqtZw/f5709HRHhyUuw9XVlbCwMACSk5O59dZbAfjll18cGZYQdYIkO0JcxTfbT+A7+AmC75vDr0ovvtmRQnp6OitXrmTRokUNNtkJDQ3lrrvuYuDAgezfv5/58+fz66+/OjoscQUtWrQA4OjRo9x2220ALF++3JEhCVEnSLIjxBWk5RQxe/kh6/YQKvDPpfv468BRACIjI9FoGuY/IxcXF6Kjo+nSpYt1xODUqVMYDAYHRyYux5LsHDt2jMGDB+Ps7ExiYiKHDx92cGRCOFbD/JQWopoczyrg0nEbo6qy5+hpoPHsFdWkSRP0ej0mk4mUlBRHhyMuIywsDFdXV4qLi8nLy6N///4ALFu2zLGBCeFgkuwIcQVRfu7mHaTL0ShQlGn+hd+sWTNHhFXjjh07xoYNG6w1OoqiWN/rsWPHHBmauAKNRkPz5s0B8/9PI0eOBGDp0qWODEsIh5NkR4grOHfyGGdXvodqMgLmROe5/uG4GAtxc3MjKCjIwRHWjISEBOLi4ti7d6/1Ocsv0ePHjzsqLFEF/fr14//+7//o168fd955J4qisHXrVlJTUx0dmhAOI8mOEFewbNky8veu4exv8wFYO/kmOrjnAheX+jY0qqqSmJgIQMuWLa3PW0Z20tPTKSgocEhs4upCQkIICwtDo9EQGhpK3759ARndEY2bJDtCXMHPP/8MgEtYNADBeldOnDgBNNx6ndOnT1NQUIBOpyMyMtL6vKenp3UkS0Z36o+//e1vAHz//fcOjkQIx5EOykgHZVG55ORkmjVrhqIonDp1yrolRGlpKampqQQEBODl5eXgKKvf+vXr2bhxI9HR0dx11102xw4cOACYp7RcXV0dEZ6ogoyMDLZs2YKLiwsdOnSgadOmgELYU4s48vb9shO6aDCkg7IQ18nyTfimm26y2fvK2dmZ5s2bN8hEB+DIkSOAeU+sS0VHRxMdHS2JTh1XVFREfHw8e/bsITQ0lF69ewMqRYlbHB2aEA4hyY4Ql/Htt98CcPfddzs4ktqTm5trXYFVWbIj6oemTZsSGxtrHZm7485RaL38KD13mvScYgdHJ0Ttk7FMISpx7NgxduzYgUajYfTo0dbnly5dioeHB7GxsQ1yytNSmBweHo6Hh0el55w5c4ZDhw4RHBxMmzZtajM8UUUajYZbbrnF+tit/SDC/t4WRaNh0Lw43hjVkXt6yC72ovGQkR0hKvHdd98BMGDAAOvGn4WFhSQkJLB169YGuQoLLk5htW7d+rLnHDp0iA0bNtgsSxd1V1pOEfP/TLvYBVw1dwFPyylycGRC1B5JdoS4RKGhjBff/hiAO0ZdHNU5etS8RURgYGCDrNcxGAzWhoFXmsIq329H1jfUbSdOnODbXzdguuT/JqOqkpxV6JighHAAhyY7Gzdu5LbbbiM0NBRFUfjpp59sjquqyosvvkhISAhubm4MHjzYOsxuce7cOcaMGYO3tzc+Pj6MHTuW/Pz8WnwXoqE5fOgQhjNHQdFw+x13Wp+3JDvle880JElJSZSVldGkSZMrNksMDQ1Fp9NRVFREWlpaLUYo7LVx40ZOHd7NpeOQGgWi/N0dEpMQjuDQZKegoIDOnTuzYMGCSo+/+eabvPvuu3z44Yds27YNDw8PhgwZQnHxxQK7MWPGsH//ftasWcPy5cvZuHEj48aNq623IBqg/33xOQBuLbrj7+8PmBNvS7Jj2WyxoTl48CAA7dq1u+I0nVartTYYTEpKqpXYxLVp27YtHkopwwLOW59TTUY6Fu8jRO/muMCEqGUOLVAeNmwYw4YNq/SYqqq88847zJw507q/yxdffEFQUBA//fQT9957LwcPHmTlypXs2LGD7t27A/Dee+9x66238tZbbxEaGlrptUtKSigpKbE+zs3NreZ3JuqbQkMZ0S+uQjUZKf7yS7Refnj3HEV6TjHNAzzJyMggPz8fZ2dnIiIaXmFnWVmZtV6nXbt2Vz2/VatWHD58mMTERG688caaDk9co3bt2vHrr78SlJ+EGx05f+o4mT/PodBFIdKpDYrWmQOzh0jfHdHg1dmanePHj5Oens7gwYOtz+n1enr16sWWLeZeEVu2bMHHx8ea6AAMHjwYjUbDtm3bLnvtOXPmoNfrrT/mhltCQNHxXRQGdSTs7wtxbdqBwfPi+GZHinUEIyoqCienhveLQavV8tBDD3HTTTcRFhZ21fMtNT0nT56ksFBqP+oqT09Paxfs5k7Z6EJa4e/hTFZWFoWJl/+MFKKhqbPJjqXXx6W1A0FBQdZj6enp1pUyFk5OTvj6+lrPqcyMGTPIycmx/sgGecKiNCsV3yETrStXTBdWrmSXmH9xNNQpLEVRCAsLo3///lVaaebt7U1QUBAuLi5kZmbWQoTiWkVHm7c6idJmo2i0PPTwIwAUHt4MIH13RKPQ8L6iVoGLiwsuLi6ODkPUIT/sPImqquh7japwzKiq+EW2ZfKAPhiNRgdEVzfde++9eHl5odVqHR2KuIJ27drx22+/EagpYM+MfmRnt+eD33bhO2QCAIPnxTFH+u6IBq7OjuwEBwcD5gZm5Z05c8Z6LDg4mIyMDJvjZWVlnDt3znqOEFeTllPES8v2X3ZEQ6soRPm7oyhKg5zCOnr0KD///DMpKSl2vc7Hx0cSnXrAy8vLWmd24MABXJoE4Td0QoXRS+m7IxqyOpvsNGvWjODgYNatW2d9Ljc3l23bthEbGwtAbGws58+fZ+fOndZzfv/9d0wmE7169ar1mEX9dDyroEIfEguNAs8PaUawd8PdCyo+Pp74+HjrJp/2UlWVsrKyao5KVCfLVNb+/fs5nlUAiu1Hv/TdEQ2dQ5Od/Px86wctmIuS4+PjSUlJQVEUnnnmGV599VWWLVtGQkICDz30EKGhodxxxx2AeXh26NChPP7442zfvp1NmzYxYcIE7r333suuxBLiUs38PVCoPNtZ9Uw/zmz5iblz53L+/PnaDayW9OzZk27dutG5c2e7X7tnzx7effdd1q9fXwORierSvn17FEXh1KlT+GgNaC4ZxLSMXgrRUDk02fnrr7/o0qULXbp0AWDy5Ml06dKFF198EYB//OMfTJw4kXHjxtGjRw/y8/NZuXKlzY7Lixcvpm3btgwaNIhbb72Vfv368dFHHznk/Yj6KUTvhk/ib6gmcz1O+V8EpefPYDAYUBQFvV7voAhrVtOmTRkxYoTNzu5V5eTkxPnz5zl48KB0U67DyhfXnzl+mFm3t0dVTeaDqonX7uwgfXdEg+bQAoT+/ftf8QNSURRmz57N7NmzL3uOr68vS5YsqYnwRCOxe/du4pe+j9b7e0IefpvfX7id5gGeAPz666+Aea+ohrof1vVo1aoVWq2W7OxsMjIyrth5WThW586dSUpKYu/evfzf3/vxz6+3kvXLvynNOkHALd8AUqAsGq46W7MjRG156623AHAJa4fWXU+w3jxyqKoqhw8fBq68MWZ9lZuby4oVK66r9YJOp7Nun3GtNT+idrRp0wYXFxfOnz/PmfR0tG5eODcJxZh3lrlz5zo6PCFqlCQ7olE7dOgQX3/9NQB/fDmP5DeGW7vJnjx5ktzcXHQ6XYPsr5OQkMBff/3FmjVrrus6lo7Lhw4dqo6wRA1xdnZm5MiRTJgwgeaRTUl+Yzi7v30HRVH47bffCB27gKjpKyg0SLG5aHgk2RGN2iuvvILJZGLkyJF07drV5tj+/fsB8/5CDW3Juaqq7Nq1C4CYmJjrulbr1q3RaDRkZGRw9uzZaohO1JR27drh5+dnfdyiRQtGjTL3lsrfswqQJoOiYZJkRzRKhYYywh7/kCVLvgLgpZdesjmuqqp1WsaybLchSU5O5ty5c+h0Ojp06HBd13Jzc7NuDGrZTFTUfSaTuUB5+vTpeHa6mSYDHwewbpEiREPSsL6uCmGH3J2/4BLRgf7dO1pXBJZ39913c/DgwQY5hWXpTdWxY0d0Ot11Xy8mJoYmTZpYkx5Rd2VnZ7N27Vpyc3MZO3YsYa3a4zd0orX3jqXJ4I2tA2SFlmgwJNkRjdK/v4vDd/DfUTQaDgPf7EixaZevKArh4eGEh4c7LsgaUlBQYB2B6datW7Vcs0OHDtc9QiRqh06n4/DhwxiNRjIzMzmeq1y2yaAkO6KhkGRHNDonzxWwcG+htV2+SuP6Jrtnzx5MJhOhoaHX1FtH1G8eHh7WvkoBAQGU6YrQKNh0EZcmg6KhkZod0eh8+OUPV2yXn5yczM8//3xdS7LrKpPJxI4dO4DqG9WxUFWVlJQU1q5dKw0G67iYmBhrT6QQvduFJoPm/89Uk5FHO7o2isRfNB6S7IhGJSsri4/mvop6oTjTovw32V27dhEfH8+ePXscEWKNOnToEOfPn8fNzY2OHTtW67XLyspYvHgxmzZtapCJYkNlNBoZ3S0cRVHI2b6UUx8+xk/z/mEtYBaiIZBkRzQaqqoybtw4MlMScdm71PpNVqPA66PM7fKLi4ut9SyVFS3Xd1u3bgWge/fuODs7V+u1nZ2drSvX9u7dW63XFtWvsLCQn376iQULFmA0mrdK8Ww/EA+llJ07d/L55587OEIhqo8kO6JBKDSUETV9hbUp2qWPARYtWsSPP/6Is7Mzn78y3rr9w9rJN1mLk/fv309ZWRn+/v4NbjPZkydPkpqailarpWfPnjVyD8tokeXPUdRdOp2OpKQksrOzOZ54mOQ3hpP63hheeOEFAGbMmNFgN78VjY8kO41UZclAQ3FpU7T0nGKSkpKYNGkSYG4kGNujO8lvDCf5jeHWfbAA69RVTExMg9sLa8uWLYA5IfH09LzK2dcmKioKb29vmxEyUTc5OTnRq1cvADZv3mwd6Zw0aRKtW7fmzJkzPPfcc44MUYhqI8mOaBAdU3/YedL634PnxfHPpQk2j4eNf4X8/HxuuOEGpk6dWuk1zp49S2pqKoqi0KlTpxqPuTaZTCZKS0sB6N27d43dR6PRWDtR//XXXzV2H1E9LNOZZ86c4dixY4B5xOeTTz4B4JNPPmHt2rWODFGIaiHJTiN1aXJQnzumpuUU8dKy/dbHJhV+ij9t89jQeTRhrdrzzTffoNVqK72OZZVSy5Yt8fLyqtmga5lGo+H+++9n/PjxNb4zedeuXVEUhZSUFDIyMmr0XuL6uLm5WZPTjRs3Wkd3brjhBsaPHw/A448/Tn5+vsNiFKI6SLLTCFWWHPxz6T7ScoocGNW1O55VYNMjpDKKRovafxKx83dddtrOz88PvV5fY/UsdYG/v3+N38PLy4u2bdui1+vJzc2t8fuJ69O3b1+cnJxISUnh6NGj1ufnzJlDREQEycnJTJw40YERCnH9JNmpYXWxNqay5KB8n5n6wvJne//H29BcpbxGQcXZNwy4/LRdjx49mDRpUoPbHmLPnj21/s18xIgRTJo0iZYtW9bqfYX9vLy86N69OwDr16+3ju54eXnxxRdfoNFoWLRoEYsWLar09eU/445lygiQqJsk2alFdaU2ppm/R4XkoL53TJ0w8OIvVY0CTc4fQTWZl9MqqIyMCbMev9K0nUajaVCFyRkZGfz000/Mnz+/VhMed3d3NBr5eKkv+vXrh7OzM6dPn2bv/gPW5KVHbF9mzZoFwFNPPcX+/fsrvLYhTYmLhks+jWrYpR8E/9uSfM3fgqrrG5SlY6pF+T4z1c2emK82Cnbptcr/2f7n9yQAynIy0a18lfj/TubUf8dRfPIAX4+LZdke2xqe8tN2J0+eZN++fdZeIw2JqqqEhYXRqlWrGluBdSVGo5F9+/ZJg7o6zsPDw7oy68+4OMybqJi/oM2YMYObb76ZoqIibr/9dk6cSrP5d9iQpsRFwyXJTg2qrDbmxZ8vPrb3W1B1foMa3e3iBpfl+8xU5moJy5WOX2vMlY2Clb/WoLlxNn+WJtU8gpP340scjt9KSEgIG39bSvqXz2FU1StO261fv54ffviB9evXVym2+iQoKIixY8cycuTIWr+3qqp8+umn/PDDDxw4cKDW7y/s06dPH9zc3NicfvEfy+B5cXy/6xSLFy+mWbNmHDt2jHvvGo1aZgBgd0p2g5gSFw2fJDs1aN7HX1b4ICj/0J5vQZUlTjOWJlzzSI+7zqnSPjOVuVrCcrnj9hZCX+k+l15LxfbP0vycQolOz0033cSuXbvo06cPcOVpu9TUVI4dO4ZGo7HWLTQ0iqLg4uLikPu2adMGgE2bNsl+WXWcm5sbnXrdyObSSMD8D8byb7ZM58mKFSvw8fFhX4EnaM17SE/9bi+XTvrW9ylx0TApqnwCkZubi16vJycnB29v72q77pNT/slK5z6oFT4ObPU27UdTVoyXqQA3StBoNGi1WjRaLTvTyyh08qJT8zBW5layQ7WqgqKgUWDOqI5XHKG5kkJDGdEvrgLg9yk3WROgtJwi+r7xu03SVn6H5G/G9ea+j7dWuhpq7l2dmPLd5bcN+H3KTQTrXa33VRTz27HQKgp/Th9AiN6NzUezuP/jbVd8D6rJyITIDKY8+ViFepH/bUnmhQsjQeX/rBYvXkxSUhIxMTEOGf2oKTt27CA3N5d+/fo5JNGxKCws5J133qG0tJQxY8ZIwXIdtykxkzGfbr/s8enddczZXoxS7t+XwsUvHtf7OSSEvar6+9upFmNqdHxdFWKKD7Lbqa15l23Lb3KbAliVrZpo0CkoqPRxPkFrpywAjpT5czQ4EhWF07mWsQzb11quZVJh+vd7Wb/kfVzVYhRFQaPR4OTkhE6nw9XVFTc3Nzw8PPD09ESv1+Pt7Y1er6dJkyasOlaEqqooisLgeXHWD6zKVm6Vf3zvR1srjLBYWL71lT9e/vHgeXHc3vnilgyXpt1GVSV2zu+AOakqn2QBFzbzVFE0WlBVnr+lOeMG315pLA/GRjE4OojkrEKi/N0J0btx6tQpkpKSUBSFG2644TLvov7Jzs5mzZo1lJaW4uvr69A9vtzd3enatSvbtm0jLi6OFi1aNKgC8IameaBnhX9n5f/N/usvg02iA7b/vtdOvslmpPhyX6KEqG0yskPNjexYpOUUWX/Jrj1wxjrCYPnIt/k/QFXxz95P7xAty0vaYpPc2CRLlyY+Zj2cUmjmlI2HUlrhWIHqTK7JFW9Nsc3xAtWZ74o72YxAKarKzcUbAVjtemOFBK1C0nWZ0avyH5SVvt8rUi8MXCmgmsjf9zse7QeYe+aYjKjbFzO6b3sG33EfXVuH211gvWTJEhITE+ncuTN33HGHXa+tq1RV5csvv+TYsWNERkby8MMPOzy5yM/P591336W0tJS77rrLulmoqJvKj4JW6d+samLV+J60iajYrPJyI6pCVJeq/v6Wmp1aEKJ3I7aFHyF6N5vC4Lfu6lTxQ0RRyPLtwIqSdlRIIBTFmnR8My62Ym8ZVWVHWQTfFXfihFM4vx8vZF2qiaxCI3vyPPi2qBMrDW34tqgTe/I8KCwspLS0lFyTa4WpNlVR0OiDCfP1oK/uBIo10soSm0vHb8pdB+hStIuuOX8SnbOtyomOajJaR5rMt9Dg0X4AmT+/Se7O5bzWx4Xj65bw9msvMrxHK7sTnaNHj5KYmNjgRnXi4+M5duwYTk5O3HbbbQ5PdAA8PT2JjY0FYN26dQ1y1VtD8mBsFFtmDOSrx3vz7zvbXfHfrGoycnble9w5dACJiYk2xxpa81JRv8k0Vi2zFAaD+cPg0iFji8o+YMrXsADMur299VsTYE2EVBTW5wWjBgcDkAq2/08rCnuco1lw4VopWXmsnrvxkqFrlfaRgTgZ3HDLL+D0gT9QnV1p5evMGjXGZqRHUVVuMu2i1MmDTWobyidDCir/396Zx0dVnf//c2fNvpCQyUZCCGEREiQskS2EsBikSkEDVLABAgWLhWBVUIs7iNqvWloVlRqogAhIgYKAEA19ASkGNCw/QkJCIJANsodsM5k5vz/iXOfOlsnGMJfn/XpduPfcc859njk5dz5z1ghvKVw5J9QzOS41MSNhZdpKFCdvXcU1XSMc38FJpPhj8u8R7q5Fc8VNbN++HQqFwuSQy+Vmww0PJycnBAcHIygoCD4+PmY+bcejoqIChw8fBgDExcXdU36NHj0aZ86cgbe3NxobG+0yDZ6wnQBPZ7hLtTi0ay849BPUWSnHYc8fR6FBrUN92TXM334J2UVFiI6OxsaNGzEjcTbfdWWMfqZWdyxzQRDWILFjR/Tr3QgEiwXMrYXz+LBgi2mZhXM9hi+dEF93gR2tAozD/13xxvd//i369HTDCwZpTZqmH4/C7BG/AQD861RB65TwXwZNPxPjg7GBk9DQ0IDGxkZorzXim2sKgGsdoxTl0YxztUoArddTvCswQKFDRaMWnEYojDgwSBrKcavRtIuuI0gkEpSXlyM7O7vDosk4rlwut8tiei0tLdi9ezfUajVCQ0P5lpR7BaVSiaVLl4puzzEx4+bmhqH9w3DrSiUOV/YAwPHvoSG9vFsjhfvgxx9/xJNPPonjx49j3rx5GP99NpjvQ2ZbFc3N1CqpaURBeT3CfF1JBBHdBo3ZQfeP2WmLkppGnL1WheU7fha0rhj+gtIPqrWU3njGVFsYtxIZDiRcPrEvNqS1LtJnqZ/dcBySoV22DEg0Tmspr3+dKsAr+/8f9C/ZFyf1xtT+nlCr1e06NBqN4LqlpXu37ZBKpQLxY3xuLsyWc/21OTH17bffIjMzEy4uLliyZIld/o4J8aFWq9Go0WLIm60TBSzVaa1Wi7feegtr3/8IAUv+aTKIGTD/LqExPURnsfX7m8QO7C929HSm4rc1qNDW6aHmhJOxMLpbdPVMDsYYdu/eDQ8PD4wZMwY6na7DgsnccbfQiym9+NFoNPyGm8HBwfD29m6XiJLJZAJBJZPJunWsT2NjI7777jsMHjxYdPuQiZ1bt27Bz8/P4v3Nh07hteNVJuEvP9IfvxkSBE9nOV+nzS1bYa93DeG40NRzB8Tc9OiOpjWc9aUXN7H9eraZt7VNQu/2C8hwfFNXcOHCBVy6dAkSiQQPPvggVCrT2SMdhTGGlpYWaDQaXhjpz42vLZ1buzYUU1qtFlqtFk1NpqtM37x5Ezdv3jQJby+GgspYELX33Pj69OnTyMrKQkFBAZYsWQJnZ/picwQyMjLw3Xff4Te/+Q2GDRtmNs7Do4fijf9+b7REhBbrnp6FxiXzoXhgIh9ubtkKw3cNTVsnuhISO/cYAZ7OHRYVhmktCae28tavNmz8a8vRV0Stra3FoUOHAADjx4/vUqEDtE6P13+ZdweMMWi1WoEYKi4uxoEDB6DRaBAaGoqhQ4faJKjMhbW0tAhmSVkTVF1FTU0N3n33XV5Y2SKWjOMYhps7LN27F2apORrNzc0AgIMHD8Ld3R39+vUziWM8DpEDQ9OJzSi79DOe/UshgpaG8V1cliZhuCgkOJVfjp+u/9pCNOn944J87S1+aJyR40HdWLh3urHuFcTWj67RaLB582YUFxcjMDAQycnJDr8jN2MMn376KcrKyhAaGop58+ZBJuvcbxedTidonbJ0bu3a1vT2nn4ulUrbFET6cEMx1h5BZS5cKpU6rNBijGH//v3IysqCVCrF7NmzERERYTau4Tg8TznDli1b8I+d36E+ZpHZfLlfJjQ8NiQQe7OKzeTYvpWau7NVqLvfj/YQUo7cikZjdtoBiR1TLA0adjQYY9i7dy/Onz8PZ2dnLF68GN7e3vY2q0uorKxEWloaHnvsMbtuCdERGGM4ceIEvv/+e0gkEsyYMQO+vr4WBZWxWNILppaWFoHQMj4Mw++VV505UWQovozPzd2zFt/W+x0R/FqtFrt378bly5chlUqRmJjI73/WFiU1jRj99vfCmaI6LUq//DM4uTNclDJ4zHy9dbV5GzA3vkcvFH66XoW/fpcLwDZBYuuXfXePabTXD01rz73XhRCN2SE6RWe60+4lTp06hfPnz4PjOCQmJjq80KmtreUrdI8ePZCYmGhnizoGx3EYO3YsSkpKkJ2djYMHD2LBggXo1atXtz3TUBxZEkTtudceoWWIuTB7oN+Drz1CSSqVwtXVFT169EBlZSV27NiB/v37IzQ01Kqw0h/Px4fg3e+vQz/DMtatFMWRYTh16hQafcPhYaPQAVrH9xzIuITgnl4YFOqH41cqzC7FoV/MMLZfT4vvNONNiC2JDFvHNOpFl7+HE+L/7ziAtoWC2c2ev7kAV6UMw0K9TWw3J0I60ipkafHHAf7uqFdrTboTLc3Ovde79ahlB9SyI2auXr2Kr776CpMmTUJMTIy9zekUGRkZSEtLw5w5c0SzoaZarcaXX36JmpoazJs3z+pMH0eFMQadTmdVFBkKsbbOLf3fVvx7QWAB7du2Rr/RMZgOACdYzFQQZu6+EWOQDVc54Ktk8HGWQC11QYPUDS4KCT4r8BQ8V8IBG6f5IcjbBc7OzvxRo+Yw4YMTZpcIqVdrEebrarIlkK1db9Y2O7Zl2r5hF6CEA1YlDEBksCcvQCwJEls2WTbEmr/2GPZA3VjtgMSOuKmuroaXl5e9zeg0Bw8exJkzZxATE4OEhAR7m9NlNDY2orm5WRRldC+jF10dEVaWzm/evImioiIAgLOzM1QqFSQSiSCepcNc12Juiy9OaVo3P+bAMEx2E76SBnhImlCk9eTvme6416b3fHwODOHSCuRrfQzyMs0nQZGDAGkdAKFAu6Fxx/+0Ya02MoYQVorrnP8vosvcZs+/wjGGOO1Z6DgZPCRNcJO0oIlzQr3EFQopw8HmgSZb9/BpwbCodzWYVAEXuQR/v2y6zY/QZcYv7jptsAr/uVAKfYuaoSDpyDptv9r0y6MMwu728gEkdtoBiR3xoNVqcfToUQwZMgQBAQH2NqdTMMagVqv58TgajQaXLl1CVFSUww5ytYXs7Gy4uLggNDTU3qYQNpCdnY19+/ahubkZCoUCkydPRnR0tE1jgnQ6nUCAabVaFFc14FpFAwI95PB1kQruldY242Z1EyobNHj3REUbuetFjBlhpG8xsnQNhrGSXPjLGlDCvAUCbLT8OoKkNajVOUHGaa0KFGt2GYsuUxHWlk/tf6YeDgyTkAWNTgIXXT1K4Y2fpQPA9ILN2vulrfsAHnW9ihCnJkilUjRyStTqnODrxJCU+FiXt96S2GkHJHbEQW1tLfbu3YuCggJ4enpi2bJl3TYVvLu5ffs2jh49iqamJixYsEDU4saQoqIipKamgjGGCRMmYMyYMfeN745MTU0N9uzZg8LCQkilUixbtqxbx8eZa43g0PodrGOtrQsvJPRHVLAXKuqb8cz2n9vMU7/khjl5xIzipc4Ihpu0BWdv1mFdRn07LDfdC1AgQn5p+alnCvwoi7QuyMwItI4IINsEnO0iiwPDNGU2WpgU5ToXnG0J5sXckmgPrJ4V2w4b24YGKBP3DYwxnDt3DocPH0ZzczPkcjkSEhIcUuiUl5fjxIkTOH/+PBhjkEgkKCkpQWBgoL1Nuyv4+flh4MCBuHjxItLS0pCfn49p06bB19fX3qYRVvD09ERSUhIyMzOh0WgEQqe8vLzLyy/A0xlvz4zES3suQssYpByHdTMHm1041dqGy3r041BuVDZi+Y6f+d4oc0l0DFD4BGNYuA8C+zZi/f8siy7ulwDGAAkAnYlQEF4zjsMfnn4Go8J98HVmIe+fBIDOWPT/0kWlF3e/HRqEvT8XQ2tz+8WvG0ef0oTi5YGt3WpqtRpcRS0OlHnwImWUyy30lDZAomvB3vq+JkKI++VffbfegaaBv3brGWxQ/dnPdUh6uNEug5ipZQfUsuPIXLt2DWlpafyqwUFBQZg+fTp69uxpZ8tsR6fTIT8/H5mZmbhy5QofPnDgQMTHx993X/SMMWRlZeHQoUPQaDSQSCQYOXIkxo4dC1dXV3ubR7SDGzdu4IsvvkCfPn0wb968Lm+ls3WJDEPh0CoMAnlhoBdKs0eE2DRY13hMinHexqILAK6VN8BFIcGMj0+1KboM89b7Zy6tub0T9fHPF1Xj3UM5Zv1tFV2mfLX4IYwK92nzs7Xmry0+Gj+ns1A3VjsgseOYVFRU4B//+AcAQC6XIzY2FqNHj3aIBQNbWlpw7do15Obm4tKlS6iv/7UpvF+/foiNjUVQUJAdLbQ/lZWVOHLkCHJzW9dLcXd3R0pKikOUL9FKRkYGjh07hqioKEyfPh1Aq5jNy8tD796972rrqy0bENvSPaYXRtbytoStosuWtNbiWvPXknBqz6BiS/62JRa7Y/DyfSd2PvroI7z33nsoLS3FkCFD8Pe//x0jR460KS2JnXsftVqN69evo7KyUjCFfMuWLfD19cX48ePh5nZvLXZljsuXL+Onn37CtWvXoNH8Ou3WxcUFkZGRGDFiBHx8uu5Xjxi4cuUK0tPT0adPH0yc2Lq3kk6nw+nTpxEWFgaVSkXjeu5h6urqoNPp4OnpCQAoLi7G559/DqlUiqCgIPTu3RuhoaHw9/eHi4v9t6Vpq6Wms1/UtoguW9N2lPYKJ1uxNrOrK59jyH0ldr7++mv8/ve/x8aNGxETE4MPP/wQu3btQk5Ojk0jv0ns3Fs0NTXh9u3bKCsrQ1lZGUpKSlBcXAzGGKRSKZ577jk4OTkBaP3Suxd+6TPGoNFooFAo+LD09HQUFxdjypQpfFfUiRMnkJaWBqC1pSIiIgL9+/dHeHg4pFKpXWx3BPTTpvWfUX5+PrZu3QqgVSgGBgYiICAAgYGB8PHxgbe3d6e3zyC6h5ycHBw6dAg1NTUm9zw8PKBSqdCjRw94e3vDy8sL3t7e8PT0vKurhItlBXlrdJePxkJKP1C8uz7L+0rsxMTEYMSIEXyXhk6nQ69evfCnP/0Jq1evbjN9d4qdkpISaDQafj0Jw4+b4zjB8+rq6qDVaiGXy/mdoLVaLerq6iCRSBAWFsbHLSoqQkNDg+BZjDE+f8PWgdraWqjVaigUCri6uvJfHPqXTf/+/XnBcOPGDdTW1lpcWt/Hx4ePW1tbi8bGRsjlcri7u/M2VFZWgjGGgQMH8i+ovLw8lJSU8NNI9ZtRNjc3o6mpCePGjePj/ve//0VOTo7Js93d3REUFITJkyejR48e/Gdm7qVp/LkYIpPJBNPSS0pK0NTUBJVKxf+yrKioQGFhoWBNkObmZjQ3Nwvsbm5uRkNDA+7cuQNXV1ekpKTw+W7atAlFRUVITEzEAw88AAC4desW8vLyEB4eDj8/P2qR6CAFBQX43//+h4KCAkELmZ4ZM2YgKioKAFBYWIizZ8/yC8MpFArB3lUhISF8Payvr0dlZSUkEgk4jjM5PDw8eKGtVqsF3Y/GuLi4CJYNuHPnjsW4zs7OfL4tLS2oq6uzOa61fJVKpcm7xJa4Op0OtbW1FuMqFAq+rrQnLmMMNTU1/P83b97EzZs3UVpaarUeu7q6YtGiX/fVOn78OBoaGhAfH89v6puXl4fCwkK+XCUSCX/I5XK4urry142NjQBa3wWGY+Jqamqg1WoRGBjIf8a3b98WfG6GdVYqlfItyhzHob6+Hjpd64gYw3d7Q0MDdDodevbsyf9NVFVVWSwPjuP4d6o+vX5RSDc3N/4d3NjYCI1GAz8/P97e2tpaVFdXW/ws3d3deR8M83V1deV/TOjfdT4+Pvw4uTt37qCystJivoZ2Fd6uRUH5HQR5KtHbzxMymQweHh7d8sP0vpmNpVarcfbsWbz44ot8mEQiwaRJk5CRkWE2jb4g9VirqJ3liy++6LKVS1999VX+fNu2bXyF7SyrVq3iK8qePXusVpT24Ovri+DgYABAWloaSktLLcYtKCgwCVMqlRg2bBhUKhVCQkKQmpqKy5cvIzb216mL586d41tKbMXb2xvLly/nr/fv34/S0lLMmzcP4eHhAFoHPh84cKBd+d65c4ff1BBoFeHNzc0CYeXn5yfKVYLvNmFhYQgLC0NLSwtKS0v51r/S0lJUVVUJZgPdunUL58+ft5jXrFmz+Jdkfn4+/v3vf1uMO3PmTERGRvJxd+7caTHuo48+iujoaADA9evXsW3bNotxExIS+O7ZoqIibN682WLc+Ph4jBs3DkDrF/Fnn31mMe64ceMQHx8PoPXL9aOPPrIY96GHHsLDDz8MoPVHxN/+9jeLcaOjo/Hoo48CaH2fWosbFRWFGTNmAGgVXNbihoSEYPDgwaiqqkJ1dTWys7MBtIpQc+keeugh/nzHjh1dtsHsE088gUGDBgFo7Sq3Jmrbw9SpU/nhFdu3b0d5eXmX5Dt+/HjExcUBaH2HX79+vUvyNSznI0eO4OLFi+1Kn2VwvnLlSrv2nDi82CkvL4dWq+XVvR6VSoXLly+bTfP222/j9ddfvxvmtalkDQfo6VcU1e8pA/y6sJxxC0BbTfR68QKAX45eJpPx4YwxsxVYoVBYbW1wdnbm76vVarS0tEAmk/Hqn+M4/peboe/u7u64ffs2n9b4F7NcLjd5bkBAACZPnsxfe3h4tO6ObJCvUqk0WXm3rdYS/dgBPV5eXtDpdILP1MvLCxEREYJ9fZRKpdnD2dkZ7u7ucHNzEzxb/6VIdB8ymQzBwcG8qAZMW/KCg4MxefJkNDQ08L9kDfeuMvwFLZfL4e3tzbd+6ltL9deGfyMSiUTQbWmM4d+pvnXBlrj6+mAJ4+5Oa+8Cw7gcx1mNa2yDrfm2ZYPxO9BaXHd3d4wYMYK/XrduHf/5G9YtnU4HHx8fQQu2TCbjW1X06P8WFAoFevToAa1WC51Oh6qqKj6uoT1ardbEd2vvcMOyYowJVoU2ztf4ndhWt7W59Pp0+s+iu/LVL/Zo/DdsDXN2GYfbE4fvxiouLkZQUBBOnTqFUaNG8eEvvPACjh8/jtOnTUeGm2vZ6dWrF43ZIQiCIAgH4r7pxvL19YVUKkVZWZkgvKysDP7+/mbT6H+REwRBEAQhfuw/jaWTKBQKDBs2TDBuQ6fTIS0tTdDSQxAEQRDE/YnDt+wAwLPPPoukpCQMHz4cI0eOxIcffoj6+nosWLDA3qYRBEEQBGFnRCF2Zs+ejdu3b+OVV15BaWkpHnzwQRw+fNhk0DJBEARBEPcfDj9AuSugRQUJgiAIwvGw9fvb4cfsEARBEARBWIPEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQoobEDkEQBEEQokYU20V0Fv0i0rW1tXa2hCAIgiAIW9F/b7e1GQSJHQB1dXUAgF69etnZEoIgCIIg2ktdXR08PT0t3qe9sQDodDoUFxfD3d0dHMd1Wb61tbXo1asXbty4Ido9t8Tuo9j9A8Tvo9j9A8Tvo9j9A8TvY3f5xxhDXV0dAgMDIZFYHplDLTsAJBIJgoODuy1/Dw8PUf7xGiJ2H8XuHyB+H8XuHyB+H8XuHyB+H7vDP2stOnpogDJBEARBEKKGxA5BEARBEKKGxE43olQq8eqrr0KpVNrblG5D7D6K3T9A/D6K3T9A/D6K3T9A/D7a2z8aoEwQBEEQhKihlh2CIAiCIEQNiR2CIAiCIEQNiR2CIAiCIEQNiR2CIAiCIEQNiZ0uZv369eA4DikpKXxYU1MTli1bBh8fH7i5ueHxxx9HWVmZ/YzsJOZ8jIuLA8dxgmPp0qX2M7KdvPbaayb2DxgwgL/v6GXYln+OXn4AUFRUhHnz5sHHxwfOzs6IjIzEmTNn+PuMMbzyyisICAiAs7MzJk2ahCtXrtjR4vbTlo/z5883KceEhAQ7Wtw+evfubWI/x3FYtmwZAMevh2355+j1UKvVYs2aNQgLC4OzszPCw8Px5ptvCvatslc9pBWUu5DMzEx8+umniIqKEoSvXLkSBw8exK5du+Dp6YlnnnkGM2fOxMmTJ+1kacex5CMALF68GG+88QZ/7eLicjdN6zSDBg3CsWPH+GuZ7NfqIYYytOYf4NjlV1VVhTFjxmDChAk4dOgQevbsiStXrsDb25uP8+6772LDhg3YsmULwsLCsGbNGjz88MO4dOkSnJyc7Gi9bdjiIwAkJCQgNTWVv3akqcyZmZnQarX89cWLFzF58mQkJiYCcPx62JZ/gGPXw3feeQeffPIJtmzZgkGDBuHMmTNYsGABPD09sXz5cgB2rIeM6BLq6upYREQEO3r0KBs/fjxbsWIFY4yx6upqJpfL2a5du/i42dnZDADLyMiwk7Udw5KPjDGTa0fj1VdfZUOGDDF7TwxlaM0/xhy//FatWsXGjh1r8b5Op2P+/v7svffe48Oqq6uZUqlkX3311d0wsdO05SNjjCUlJbHp06ffHYPuAitWrGDh4eFMp9OJoh4aY+gfY45fD6dNm8YWLlwoCJs5cyabO3cuY8y+9ZC6sbqIZcuWYdq0aZg0aZIg/OzZs9BoNILwAQMGICQkBBkZGXfbzE5hyUc927Ztg6+vLwYPHowXX3wRDQ0Nd9nCznHlyhUEBgaiT58+mDt3LgoLCwGIpwwt+afHkctv//79GD58OBITE+Hn54ehQ4fi888/5+8XFBSgtLRUUIaenp6IiYlxmDJsy0c96enp8PPzQ//+/fH000+joqLCDtZ2HrVaja1bt2LhwoXgOE409VCPsX96HLkejh49GmlpacjNzQUAnDt3DidOnMDUqVMB2LceUjdWF7Bjxw789NNPyMzMNLlXWloKhUIBLy8vQbhKpUJpaeldsrDzWPMRAJ588kmEhoYiMDAQ58+fx6pVq5CTk4M9e/bcZUs7RkxMDDZv3oz+/fujpKQEr7/+OsaNG4eLFy+Kogyt+efu7u7w5Xf16lV88sknePbZZ/HSSy8hMzMTy5cvh0KhQFJSEl9OKpVKkM6RyrAtH4HWLqyZM2ciLCwM+fn5eOmllzB16lRkZGRAKpXa2YP2sXfvXlRXV2P+/PkAxPMu1WPsH+D479HVq1ejtrYWAwYMgFQqhVarxdq1azF37lwAsGs9JLHTSW7cuIEVK1bg6NGjDtHv3xFs8fEPf/gDfx4ZGYmAgABMnDgR+fn5CA8Pv1umdhj9Lw8AiIqKQkxMDEJDQ7Fz5044Ozvb0bKuwZp/ycnJDl9+Op0Ow4cPx7p16wAAQ4cOxcWLF7Fx40ZeCDg6tvg4Z84cPn5kZCSioqIQHh6O9PR0TJw40S52d5R//vOfmDp1KgIDA+1tSrdgzj9Hr4c7d+7Etm3bsH37dgwaNAhZWVlISUlBYGCg3eshdWN1krNnz+LWrVuIjo6GTCaDTCbD8ePHsWHDBshkMqhUKqjValRXVwvSlZWVwd/f3z5Gt5O2fDQccKcnJiYGAJCXl3e3ze0SvLy80K9fP+Tl5cHf39/hy9AYQ//M4WjlFxAQgAceeEAQNnDgQL6rTl9OxjN3HKkM2/LRHH369IGvr6/DlKOe69ev49ixY1i0aBEfJqZ6aM4/czhaPXz++eexevVqzJkzB5GRkXjqqaewcuVKvP322wDsWw9J7HSSiRMn4sKFC8jKyuKP4cOHY+7cufy5XC5HWloanyYnJweFhYUYNWqUHS23nbZ8NNc8npWVBaD1Be2I3LlzB/n5+QgICMCwYcMcvgyNMfTPHI5WfmPGjEFOTo4gLDc3F6GhoQCAsLAw+Pv7C8qwtrYWp0+fdpgybMtHc9y8eRMVFRUOU456UlNT4efnh2nTpvFhYqqH5vwzh6PVw4aGBkgkQlkhlUqh0+kA2Lkeduvw5/sU4xH1S5cuZSEhIez7779nZ86cYaNGjWKjRo2yn4FdgKGPeXl57I033mBnzpxhBQUFbN++faxPnz4sNjbWvka2gz//+c8sPT2dFRQUsJMnT7JJkyYxX19fduvWLcaY45ehNf/EUH4//vgjk8lkbO3atezKlSts27ZtzMXFhW3dupWPs379eubl5cX27dvHzp8/z6ZPn87CwsJYY2OjHS23nbZ8rKurY8899xzLyMhgBQUF7NixYyw6OppFRESwpqYmO1tvO1qtloWEhLBVq1aZ3HP0esiYZf/EUA+TkpJYUFAQO3DgACsoKGB79uxhvr6+7IUXXuDj2KsektjpBozFTmNjI/vjH//IvL29mYuLC5sxYwYrKSmxn4FdgKGPhYWFLDY2lvXo0YMplUrWt29f9vzzz7Oamhr7GtkOZs+ezQICAphCoWBBQUFs9uzZLC8vj7/v6GVozT8xlB9jjP3nP/9hgwcPZkqlkg0YMIB99tlngvs6nY6tWbOGqVQqplQq2cSJE1lOTo6drO0Y1nxsaGhgU6ZMYT179mRyuZyFhoayxYsXs9LSUjta3H6OHDnCAJgtG0evh4xZ9k8M9bC2tpatWLGChYSEMCcnJ9anTx/28ssvs+bmZj6Oveohx5jB0oYEQRAEQRAig8bsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBEAQhakjsEARBAIiLiwPHceA4jt+TKD09HRzHmWw+2dW89tpr/LM//PDDbn0WQdyPkNghCKLdzJ8/n/9yNjwSEhLsbVqnWLx4MUpKSjB48OBO51VWVga5XI4dO3aYvZ+cnIzo6GgAwHPPPYeSkhIEBwd3+rkEQZhCYocgiA6RkJCAkpISwfHVV1916zPVanW35u/i4gJ/f3/IZLJO56VSqTBt2jR88cUXJvfq6+uxc+dOJCcnAwDc3Nzg7+8PqVTa6ecSBGEKiR2CIDqEUqmEv7+/4PD29ubvcxyHTZs2YcaMGXBxcUFERAT2798vyOPixYuYOnUq3NzcoFKp8NRTT6G8vJy/HxcXh2eeeQYpKSnw9fXFww8/DADYv38/IiIi4OTkhAkTJmDLli18d1N9fT08PDywe/duwbP27t0LV1dX1NXVddjnhoYGTJ06FWPGjOG7tjZt2oSBAwfCyckJAwYMwMcff8zHT05ORlpaGgoLCwX57Nq1Cy0tLZg7d26HbSEIwnZI7BAE0W28/vrrmDVrFs6fP49HHnkEc+fORWVlJQCguroa8fHxGDp0KM6cOYPDhw+jrKwMs2bNEuSxZcsWKBQKnDx5Ehs3bkRBQQGeeOIJ/Pa3v8W5c+ewZMkSvPzyy3x8V1dXzJkzB6mpqYJ8UlNT8cQTT8Dd3b1DvlRXV2Py5MnQ6XQ4evQovLy8sG3bNrzyyitYu3YtsrOzsW7dOqxZswZbtmwBADzyyCNQqVTYvHmziS0zZ86El5dXh2whCKKddPu+6gRBiI6kpCQmlUqZq6ur4Fi7di0fBwD7y1/+wl/fuXOHAWCHDh1ijDH25ptvsilTpgjyvXHjBgPAcnJyGGOMjR8/ng0dOlQQZ9WqVWzw4MGCsJdffpkBYFVVVYwxxk6fPs2kUikrLi5mjDFWVlbGZDIZS09Pt+jT+PHj2YoVKwRhP/zwAwPAsrOzWVRUFHv88cdZc3Mzfz88PJxt375dkObNN99ko0aN4q9Xr17NwsLCmE6nY4wxlpeXxziOY8eOHTOxITQ0lH3wwQcWbSQIomNQyw5BEB1iwoQJyMrKEhxLly4VxImKiuLPXV1d4eHhgVu3bgEAzp07hx9++AFubm78MWDAAABAfn4+n27YsGGCPHNycjBixAhB2MiRI02uBw0axLewbN26FaGhoYiNje2Qr5MnT0bfvn3x9ddfQ6FQAGgdd5Ofn4/k5GSBD2+99ZbA/oULF6KgoAA//PADgNZWnd69eyM+Pr5DthAE0X46PwqPIIj7EldXV/Tt29dqHLlcLrjmOA46nQ4AcOfOHTz66KN45513TNIFBAQIntMRFi1ahI8++girV69GamoqFixYAI7jOpTXtGnT8M033+DSpUuIjIzk7QeAzz//HDExMYL4hgONIyIiMG7cOKSmpiIuLg7/+te/sHjx4g7bQhBE+yGxQxCEXYiOjsY333yD3r17t2v2U//+/fHtt98KwjIzM03izZs3Dy+88AI2bNiAS5cuISkpqcO2rl+/Hm5ubpg4cSLS09PxwAMPQKVSITAwEFevXm1zoHFycjKefvppPPbYYygqKsL8+fM7bAtBEO2HurEIgugQzc3NKC0tFRyGM6naYtmyZaisrMTvfvc7ZGZmIj8/H0eOHMGCBQug1WotpluyZAkuX76MVatWITc3Fzt37uQHABu2lnh7e2PmzJl4/vnnMWXKlE6vYfPXv/4Vc+fORXx8PC5fvgygdQD222+/jQ0bNiA3NxcXLlxAamoq3n//fUHaxMREyOVyLFmyBFOmTEGvXr06ZQtBEO2DxA5BEB3i8OHDCAgIEBxjx461OX1gYCBOnjwJrVaLKVOmIDIyEikpKfDy8oJEYvnVFBYWht27d2PPnj2IiorCJ598ws/GUiqVgrjJyclQq9VYuHBhx5w04oMPPsCsWbMQHx+P3NxcLFq0CJs2bUJqaioiIyMxfvx4bN68GWFhYYJ0Li4umDNnDqqqqrrMFoIgbIdjjDF7G0EQBNEZ1q5di40bN+LGjRuC8C+//BIrV65EcXExP7DYEnFxcXjwwQftul1D7969kZKSgpSUFLvZQBBihFp2CIJwOD7++GNkZmbi6tWr+PLLL/Hee+8JxuQ0NDQgPz8f69evx5IlS9oUOob5urm54cKFC91lulnWrVsHNzc3k8UHCYLoGqhlhyAIh2PlypX4+uuvUVlZiZCQEDz11FN48cUX+YHOr732GtauXYvY2Fjs27cPbm5ubeZZVFSExsZGAEBISIjNAqkrqKys5Bdb7NmzJzw9Pe/aswnifoDEDkEQBEEQooa6sQiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDUkdgiCIAiCEDX/Hzi9oo2CGWatAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.errorbar(center, entries, np.sqrt(entries), ls='', marker='.')\n", "plt.xlabel('Energy [keV]')\n", "plt.ylabel('Number of counts per bin')\n", "\n", "x = np.arange(40, 80, 0.1)\n", "plt.plot(x, fit_model(x, *mi.values), color='k', label='Best fit')\n", "plt.plot(x, peak(x, *mi.values['A_p1', 'mu_p1', 'sigma_p1']), color='gray', ls='--', label='Peak 1')\n", "plt.plot(x, peak(x, *mi.values['A_p2', 'mu_p2', 'sigma_p2']), color='gray', ls='-.', label='Peak 2')\n", "plt.plot(x, bkg(x, *mi.values['A_bkg', 'tau_bkg']), color='gray', label='Background')\n", "plt.legend()\n" ] }, { "cell_type": "markdown", "id": "7ef19633-0947-4568-b537-a1c69e42b7c2", "metadata": {}, "source": [ "Das Ergebnis sieht sehr gut aus. Alle Kacheln sind grün und die Daten scheinen durch die Funktion gut beschrieben zu werden. Natürlich können wir das gesamte Fitverfahren auch etwas kompakter in einer Zelle darstellen:" ] }, { "cell_type": "code", "execution_count": 519, "id": "2311f135-8410-4f35-8d58-b9bcef0fed53", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 530
EDM = 1.61e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 317 7
1 A_p2 580 7
2 mu_p1 53.24 0.07
3 mu_p2 60.43 0.05
4 sigma_p1 1.99 0.05
5 sigma_p2 2.80 0.04
6 A_bkg 147 14
7 tau_bkg 34.1 2.0 0
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.623) -0.0015 (-0.680) -0.0513 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.623) 0.00297 -0.0012 (-0.518) -0.1409 (-0.179) 0.0155 (0.142)
sigma_p2 -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0816 (0.137) -0.0142 (-0.172)
A_bkg -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0513 (-0.068) -0.1409 (-0.179) 0.0816 (0.137) 209 -28 (-0.965)
tau_bkg 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0155 (0.142) -0.0142 (-0.172) -28 (-0.965) 4.01
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:40:51.617180\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 530 │\n", "│ EDM = 1.61e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0513 0.0062 │\n", "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1409 0.0155 │\n", "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0816 -0.0142 │\n", "│ A_bkg │ -0 -0 -0.057 -0.0513 -0.1409 0.0816 209 -28 │\n", "│ tau_bkg │ 0 0 0.010 0.0062 0.0155 -0.0142 -28 4.01 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 519, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ls = cost.LeastSquares(center, entries, np.sqrt(entries), fit_model)\n", "\n", "mi = Minuit(ls, \n", " A_p1 = 800, \n", " A_p2 = 1400,\n", " mu_p1 = 54,\n", " mu_p2 = 60,\n", " sigma_p1 = 2,\n", " sigma_p2 = 2,\n", " A_bkg = 100,\n", " tau_bkg = 10, \n", " )\n", "mi.limits['tau_bkg'] = (0, None)\n", "mi.fixed[:] = True\n", "ls.mask = (center < 45) | (center >= 70)\n", "mi.fixed[['tau_bkg', 'A_bkg']] = False\n", "mi.migrad()\n", "ls.mask = None\n", "mi.values['A_p1'] = 700\n", "mi.values['sigma_p1'] = 3\n", "mi.fixed[:] = True\n", "mi.fixed[['A_p1', 'mu_p1', 'sigma_p1']] = False\n", "mi.migrad()\n", "mi.fixed[:] = True\n", "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", "mi.migrad()\n", "mi.fixed[:] = False\n", "mi.migrad()" ] }, { "cell_type": "markdown", "id": "b2d4c8e9-da2c-489e-9b2f-de24f042c341", "metadata": {}, "source": [ " # Wann fittet ein Fit?\n", "Nach dem wir nun unser Model an unsere Daten angepasst haben, stellt sich die Frage: „Spiegelt unser Model unsere Daten gut wider?“. Um diese Frage beantworten zu können, gibt es verschiedene Möglichkeiten, welche wir im Folgenden etwas näher betrachten wollen. \n", "## Fit Residual: \n", "Schauen wir uns zunächst noch einmal an, wie das Chi-Quadrat definiert ist:\n", "$$ \\chi^2 = \\sum_i \\frac{(y_i - \\lambda_i)^2}{\\Delta y_i^2} $$\n", "Wir minimieren den Abstand zwischen einem Messwert und unserem Model und gewichten diesen mit den Unsicherheiten unserer Messwerte. Fitresiduen spiegeln genau dies wider. Sie sind definiert als \n", "$$ \\frac{(y_i - \\lambda_i)}{\\Delta y_i} $$\n", "Für unseren Fit sehen sie wie folgt aus.\n" ] }, { "cell_type": "code", "execution_count": 520, "id": "30cafddc-ea17-4158-82cc-f132dee2c8de", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Residuals [$\\\\sigma$]')" ] }, "execution_count": 520, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6bUlEQVR4nO3df3gV1Z3H8c9NgBgCCUgCCRoggEoVsIiIKYogSqVuVVIprugCUlYttojFCrpSrUKwKu3DtlVruwF/tfgDrdtttSrQLmppUFGoCoKRUAhoVG4wSYMmZ/9gc5tLft3fM3Pm/XqePA+5mdx8h7kz851zvuecgDHGCAAAwCJpTgcAAACQaCQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOl2cDsAJTU1N2rdvn3r27KlAIOB0OAAAIALGGB06dEj9+/dXWlrHbTS+THD27dunwsJCp8MAAAAx2LNnj44//vgOt/FlgtOzZ09JR/6DsrOzHY4GAABEoqamRoWFhaH7eEd8meA0d0tlZ2eT4AAA4DGRlJdQZAwAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDggMAAKxDguMDVcF6vbKrWlXBeqdDAQAgJTyZ4JSWlmrMmDHq2bOn+vbtq0suuUTbt293OixXWlNeqXHL1+nyBzdp3PJ1WlNe6XRIAAAknScTnD/96U+aN2+e/vKXv+iFF17Q559/rsmTJ6u2ttbp0FylKlivxWu3qskc+b7JSDev3UZLDgDAel2cDiAWzz33XNj3q1atUt++ffXaa69p/PjxrbZvaGhQQ0ND6Puampqkx+gGFdW1oeSmWaMx+qC6TgU5mc4EBQBACniyBedowWBQknTssce2+fPS0lLl5OSEvgoLC1MZnmOKcrOUFgh/LT0Q0KDc7s4EhKhQOwUAsQsYY0znm7lXU1OTLrroIh08eFAbN25sc5u2WnAKCwsVDAaVnZ2dqlAdsaa8Ujev3aZGY5QeCGhZyXBNHzPA6bDQiTXllaHuxbSAVFoyguOGTlUF61VRXaui3CxaaWGlmpoa5eTkRHT/9mQXVUvz5s3Ttm3b2k1uJCkjI0MZGRkpjMo9po8ZoPEn5umD6joNyu3ORc8D2qudGn9iHscP7SIpBsJ5uovquuuu0+9+9zutX79exx9/vNPhuFZBTqaKh/Th5ugRHdVOAW1hQAHQmicTHGOMrrvuOj399NNat26dioqKnA4JSBhqpxAtkmKgNU8mOPPmzdMjjzyixx57TD179tT+/fu1f/9+1dfztALvK8jJVGnJCKUHjmQ5zbVTtMChPSTFQGueLDIOBAJtvl5WVqZZs2Z1+vvRFCkBTqkK1lM7hYgxoAB+YH2RsQdzMiBqBTmZJDaIGAMKgHCeTHAAAK2RFAP/5MkaHAAAgI6Q4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAolIVrNcru6pZ6wquxjw4AICIsWo5vIIWHABARFi1HF5CggMAiAirlsNLSHAAABFh1XJ4CQkOACAiBTmZKi0ZofTAkSynedVy1r+CG1FkDACIGKuWwytIcAAAUWHVcngBXVQAAMA6JDgAgIRiIkC4AV1UAICEYSJAuAUtOECUeDoF2sZEgHATWnCAKPB0CrSvo4kAKUpGqtGCA0SIp1OgY0wECDchwQEiZPM09XS7IRGYCBBuQhcVEKHmp9OWSY4NT6d0uyGRmAgQbkELDhAhG59O6XZDMhTkZKp4SB9PnxvwPlpwgCjY9nRKUSgAW5HgAFGyaZp6W7vdAIAuKsDHbOx2AwCJFhzA92zrdgMAiQQHgOzqdgMQmapgvSqqa1WUm2Xl+U+CAwCAz/hheghqcAAA8BG/TA9BggMAgI/YPCt7SyQ4AAD4iF/WDCPBAQDAR/wyPQRFxvAs20cAwDl8tmA7P0wPQYIDT/LDCAA4g88W/ML26SHoooLn+GUEAFKPzxZgDxIceI5fRgAg9fhsAfYgwYHn+GUEAFKPzxZgDxIceI5fRgAg9fhsAfYIGGNM55vZpaamRjk5OQoGg8rOznY6HMSoKlhv9QgAOIfPFuBO0dy/GUUFz7J9BACcw2cL8D66qAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAAgHVIcAAA6ERVsF6v7KpmZXkPYSZjAAA6sKa8UovXblWTkdICUmnJCE0fM8DpsNAJWnAAAGhHVbA+lNxIUpORbl67zfqWHBtarGjBAQCgHRXVtaHkplmjMfqgus7a9cpsabGiBQcAgHYU5WYpLRD+WnogoEG53Z0JKMlsarEiwQEApIzXuj4KcjJVWjJC6YEjWU56IKBlJcOtbb3pqMXKa+iiAgCkhFe7PqaPGaDxJ+bpg+o6Dcrtbm1yI/2zxaplkuPVFitacAAASef1ro+CnEwVD+ljdXIj2dViRQsOACDp/Fis61W2tFiR4CChqoL1qqiuVVFulmdPCsApNp8/NnV9+EFBTqbnP4MkOEgYr/avA25g+/nT3PVx89ptajTG010f8IaAMcZ0vpldampqlJOTo2AwqOzsbKfDsUJVsF7jlq9r9XS2cdFELmBAJ/x0/lQF6z3f9QHnRHP/pgUHCUH/OhA7P50/NnR9wBsYRYWE8NtkWEAicf74l9fmBfISEhwkhE1DC23BhdM7OH/8aU15pcYtX6fLH9ykccvXaU15pdMhWYUaHGpwEor+dXewvWA10dwyeuno88ctcSHx/FR3lUjU4MAx9K87r70J1cafmMexaYObksGW54+b4kLi+anuyime7KL685//rK9//evq37+/AoGAnnnmGadDAlzDprVkks2ts+u6NS4kDnVXyefJBKe2tlannnqqfvaznzkdCuA6XDgj59Zk0K1xIXGou0o+T3ZRTZkyRVOmTIl4+4aGBjU0NIS+r6mpSUZYgCswoVrk3Dq7rlvjQmLZsiSCW3kywYlWaWmpbr/9dqfDAFKGC2dk3JoMujUuJB51i8nj+VFUgUBATz/9tC655JJ2t2mrBaewsJBRVAAkuXf0n1vjApzCKKqjZGRkKCMjw+kwALiUW5+i3RoX4AWeLDIGgGgx8SHgL75owYE7MYkZUoU5ZQD/8WSC89lnn2nnzp2h7ysqKrRlyxYde+yxGjCAi5YXcMNBqjDxIeBPnuyi2rx5s0aNGqVRo0ZJkm644QaNGjVKS5YscTgyRIJJzJBKzCkD+JMnW3AmTJggjw/+8jWmKEcqMacM4E+ebMGBtzHTLlKJGWMBf/JkCw68jUnMkGpMfAj4DwkOHMENB6nGnDKAv5DgwDHccAAcjekjkCgkOAAAV2hr+ojxJ+aR8CAmJDgAAMe1NX3Eoqe2KvD/I+CYLwvRYhQVAMBxbU0fYSTmy0LMSHAAAI5ra/qIozFBI6JBggMAcNzR8xWlSTo632G+LESDGhxEhREOAJLl6Okj/rzjo6jmy+L6hJZIcBAxFsgEkGwtp4+IZr4srk84Gl1UiIgbFsisCtbrlV3VFBkCPlKQk6niIX06bblx+voE96EFBxFxeoFMns4AtMfp6xPciRYcRMTJBTJ5OgPQERbwRVtIcBARJ1Zkbu6Sem33p+0+ncF50XQd0s2IZGDFeLSFLipELJULZLbskgroyFfLHIenM3eIpuvQpm5GRuu4Dwv44mgkOIhKKhbIPLpLyuhIgpP2/1O283TmDu11HY4/Ma/VsYlmW7ezKVGzDQv4oiUSHLTi9NNpe1O2/+dlo9SnRwZPZy4RTWGnLUWgNiVqQDycvk9EggQHYdzwdNpcMNjyhpgeCGj0oN6uPZH8qL3j1FbXYTTbulkkiZoXLvxAPNxwn4gERcYIcctoJQoGvSGa42TLMe1stM6a8kqNW75Olz+4SeOWr9Oa8koHogSSxy33iUjQgoMQN3UjUDDoDdEcJxuOaXOi1tbyAXRfwQ/cdJ/oDAkOQtzWjUDBoDdEc5xsOKbtJWpeuvADsXLbfaIjdFEhxJZuBCDZ2lo+gMnm4Adeuk8EjDGm883sUlNTo5ycHAWDQWVnZzsdjutUBes93Y2AxKJoNnJryitbdV+5sfgSiJdT94lo7t8kOAlOcLgZwCZeGS3hJjwgAMkTzf2bGpwE4mYAmySqaNZvSb8NdUZwr2SeT7adqyQ4CcIICmdFe2LadiInQyKKZkn6gcRJ5vlk47lKgpMgjKBwTrQnpo0ncjLEO1qCpB9u5rWHnGSeT7aeq4yiShBGUDgj2kmnvDRJldPiHS3RUdLvJ6yg7j5enJAxmeeTrecqLTgJ0tEEYEieaFvOaGmLTjyT83lpvoxkobXQfbzaWpHM88nWc5UWnASaPmaANi6aqF/PPVMbF03kQpYC0bac0dIWvbbmfIn097wyX0Yy0FroTl5trUjm+WTruUoLToIxgiK1om05o6UttWxYniFWtBa6k5dbK5J5Ptl4rpLguJjXiuCcEu2JaeOJ7GaJTPq9dE54+UZqM68/5CTzIdq2B3Qm+nPpTMb03XuHl266XubFc4KZjd2LCRm9iZmMO+H2BKcqWK9xy9e1evLbuGgiJ6LLePGm60VePie4kQKJE839myJjF/JqEZzfUESaOl4+J2It0gYQHxIcF7JppI/Nc4B4+abrNTadEwBSI+Ii42effTbqNz///POVmclTS7S8XgTXrK3um/En5llTr0IRaerYck4ASJ2Ia3DS0qJr7AkEAnrvvfc0ePDgmAJLJrfX4DTzct99WzUTAUmB/08IbKlXoYg0tbx8TgBe5pbBFElbTXz//v3q27dvRNv27NkzmrdGG7w8ZK+t7hsjyXhs9tDOMOQ8tbx8TgDJkIrEw6uDKSJOcGbOnBlVd9MVV1zh6tYRJFdb3TdHs2XSM7fcdN3yhAUgNVKReHh1aQspiiLjsrKyUKvMZ5991un29913n3Jzc2OPDJ529NTfaTrSRdUS9SrR6ahg24uLBwKIXapGcXp5MEVMMxnn5OTo8ccf1ze+8Y1ExwOLHN198+cdH1EkGqOOntS8/IQF2CgVrampWgrEy4MpYkpwjDF64IEHtGLFCgUCAZ1++umaMWOGxowZk+j44HEtu2+oV4lNZwkMax4B7pGqepVUJR5eHsEY8zw4b7zxhk477TSdddZZ+tvf/qazzz5bCxcuTGRssBCTnkWvsyZi5ogB3CGVk3+mcgXw6WMGaOOiifr13DO1cdFETxQYS3EstvnYY4/p/PPPD33/1ltv6eKLL9Zxxx2nBQsWJCQ4AJ0/qXn5CQuwSapbU1PZKu6WwRTRiCnBOfbYY1VYWBj22siRI/XTn/5UCxYsIMEBEiiSBMar3X+M/IJNnKhX8WLikSoxJThf/vKXVVZWprvuuivs9aFDh6qyktEbtuEm5LxIEhivXei8NLcG5wAiQWuqu8SU4Nx5552aOHGi9u3bp29/+9saOXKkamtrtWzZMhUVFSU6RjjISzch23ktgemIl0Z+cQ4gGvG2ppJMJ05MCc6ZZ56pv/zlL5o/f77OPvtsNa/2cMwxx+iJJ55IaIBwjpduQvAWr4z84hyInx9v2LE+jJBMJ1bMRcannnqqNmzYoA8//FCvvfaampqaNHbsWCb3s4hXbkI28cvNwCtza3AOxIcbduRIphMv5gSnWd++fTVlypRExAKX8cpNyBa23AwiSdK8UqvAORA7btjRIZlOvIjnwXnrrbfU1NQU8Rv/7W9/0xdffBFTULboaGp9L4hkngWv76NbpHL+jGSKZskIL8ytkcq5RmwT6RT/XEOOYD6rxIu4BWfUqFHav3+/8vLyItq+uLhYW7Zs0eDBg2MOzstseRrvqGDOln10Axue3mJ5YvdC4bRXh+A7LZLWL64h/+SVVk0viTjBMcbo1ltvVffukWWThw8fjjkor7Otabatm5Bt++g0G7pCbEjS2uOFRMxtOrthcw1pjWQ6sSJOcMaPH6/t27dH/MbFxcXKzPTnwbH5Qt/MD/uYSjY8vdmQpKFtsRa/d3TD5hrStniSab8MUohUxAnOhg0bkhiGXfxwoffDPqaa15/ebEjSbBbrzS/ebqT2bthcQxKL7r7WAqZ5EhsfqampUU5OjoLBoLKzs5PyN9aUV7a60Nv2YfPDPiJ6VcF6zyZptor15lcVrNe45etaJSEbF01MyLHlGpIYyT5ObhLN/TvuYeJom9efxiPhh31E9KhXcZd4al2S3Y3ENSQx6O5rGwlOEvnhQu+HfQS8LJ6bXyq6kbiGxI/uvrZFPA8OAMB74plfJdJ5gJjLxlnM19S2mGpw6uvrZYwJDRnfvXu3nn76aZ188smaPHlywoNMtFTU4ACAW8Rb69JRXRXFre7hh/q3aO7fMSU4kydPVklJia655hodPHhQw4YNU9euXVVdXa0VK1bo2muvjTn4VCDBAezDENmOJePm56fiVrhDNPfvmLqoXn/9dZ199tmSpCeffFL9+vXT7t279dBDD2nlypWxvCUAxCyaJSL8qiAnU8VD+iQ08Yh0OQbb0UXnTjEVGdfV1alnz56SpD/+8Y8qKSlRWlqazjzzTO3evTuhAQJAR5gR1zkUt9JF52YxteAMHTpUzzzzjPbs2aPnn38+VHfz4Ycf0uUDIKVoRXCO34tbbVkk11YxteAsWbJEl19+uRYsWKBJkyapuLhY0pHWnFGjRiU0QADoCK0IznJyLhun666Yf8bdYmrBufTSS1VZWanNmzfrueeeC70+adIk/fjHP05YcB352c9+pkGDBumYY47R2LFj9de//jUlfxeAu/i9FcENklHf0xk31F3FMwQfyefJpRrWrFmjf/u3f9P999+vsWPH6ic/+YmeeOIJbd++XX379u309xlFhVRx+gnTT/wwRBZHuGn0FstNpFZShonfcMMNEQewYsWKiLeNxdixYzVmzBj99Kc/lSQ1NTWpsLBQ3/nOd7Ro0aJW2zc0NKihoSH0fU1NjQoLC0lwkFQUHyYXyaN/vbKrWpc/uKnV67+ee6aKh/RJeTwk16mTlLWo3njjjYi2CwQCnW8Uh8OHD+u1117T4sWLQ6+lpaXpvPPO06uvvtrm75SWlur2229PalxAS4zsSS6SR39zW90Vy024U8QJzvr165MZR8Sqq6vV2Niofv36hb3er18/vfvuu23+zuLFi8NaoJpbcIBkofgweUge0Vx3dXTXEMcfLflisc2MjAxlZGQ4HQZ8xG1PmDYheYTESuSR8Hs3blwJzttvv63KykodPnw47PWLLroorqA6kpubq/T0dB04cCDs9QMHDig/Pz9pf9cmfv/QpwJPmMlD8ohmdA21j27cGBOc999/X1OnTtXWrVsVCATUXKfcXH/T2NiYuAiP0q1bN40ePVovvfSSLrnkEklHioxfeuklXXfddUn7u05LVFLChz51eMJMDpLHxOBBx1504x4RU4Izf/58FRUV6aWXXlJRUZH++te/6uOPP9b3vvc93XPPPYmOsZUbbrhBM2fO1Omnn64zzjhDP/nJT1RbW6vZs2cn/W87IVFJCR/61OMJMzlIHuPDg47d6MY9IqYE59VXX9W6deuUm5urtLQ0paWl6ayzzlJpaam++93vRjziKlbTp0/XRx99pCVLlmj//v368pe/rOeee65V4bENEpmU8KGHTUgeY8ODjv3oxj0ippmMGxsbQ4tt5ubmat++fZKkgQMHavv27YmLrgPXXXeddu/erYaGBm3atEljx45Nyd9NtUSus8OsmwBYu8t+zO59REwtOMOHD9ebb76poqIijR07Vj/60Y/UrVs3/eIXv9DgwYMTHaOvJTITp3YBsEssdTQ83fsD3bgxLtXw/PPPq7a2ViUlJdq5c6f+5V/+RTt27FCfPn30m9/8RpMmTUpGrAnjtaUaEj0VOLNudiye4ksKN5Eq8dTRsLwAvCopSzV05pNPPlHv3r2TPpNxIngtwZFISlIl3psGhZtIhUSsxcQ1BV6UlKUaWvrhD3/Y4c+XLFkSy9uiAxRUJl88xZcUbiKVEjFggGsKbBdTgvP000+Hff/555+roqJCXbp00ZAhQ0hw4Enx3DQYoYZUaO4CzeqWTh0N0ImYEpy2hoHX1NRo1qxZmjp1atxBAU6Ip/iSwk0k29FdoFNHHadn3tjHgAGgHQmrwZGkrVu36utf/7o++OCDRL1lUnixBgepEU/xJYWbSJb2am7WfrtYdYebqKOBbyS9Bqc9wWBQwWAwkW8JJESko5viGVrJsEwkS3tdoHWHm1Q8pI8zQQEuF1OCs3LlyrDvjTGqqqrSww8/rClTpiQkMCBRoh3dFE/xJYWbSAa6QN2HKSHcL6YuqqKiorDv09LSlJeXp3PPPVeLFy8OzXLsVnRR+UcihtMCbkAXqHswJYRzkt5FVVFREVNgQKoxugm2iLYLlBaG5GBKCO9IaA0OEI9kXJBp2odNIu0CpYUheXho8o6IE5wbbrgh4jddsWJFTMHAv5J1QWb9LfgNLQzJxUOTd0Sc4Bw9983rr7+uL774QieddJIkaceOHUpPT9fo0aMTGyGsl+wLMqOb4Ce0MCQXD03eEXGCs379+tC/V6xYoZ49e2r16tXq3bu3JOnTTz/V7NmzdfbZZyc+SlgtFRdkRjfBL2hhSD4emrwhLZZfuvfee1VaWhpKbiSpd+/euvPOO3XvvfcmLDj4Q/MFuSUuyEBsmlsY0v9/4WNaGJKjICdTxUP68P/qYjEVGdfU1Oijjz5q9fpHH32kQ4cOxR0U/IUmXyCxaGEAYkxwpk6dqtmzZ+vee+/VGWecIUnatGmTbrzxRpWUlCQ0QPiDmy/IDLeFF9EtC7+LKcG5//77tXDhQl1++eX6/PPPj7xRly6aM2eO7r777oQG6Cd+v5G68YLMcFsA8Ka4Ftusra3Vrl27JElDhgxRVlZWwgJLJjfOZMyN1H2YBRkA3CVli21mZWVp5MiR8bwFxLwVbsVwWwDwrqgm+rvjjjuUlZXV6aR/TPQXHW6k7mTTcFu/d38C8J+oJvprrrc5etK/lgKBQLs/Q9tsupHaxJbRXXR/AvCjuGpwvMqtNTisFOxOVcF6V47uigR1RABskvQanPr6ehlj1L37kRaG3bt36+mnn9bJJ5+syZMnx/KWvufmYdJ+58bRXZGi+xOAX8U0k/HFF1+shx56SJJ08OBBnXHGGbr33nt18cUX67777ktogH7CzJhINGaJBuBXMSU4r7/+emjNqSeffFL5+fnavXu3HnroIa1cuTKhAQKIHdP2A/CrmLqo6urq1LNnT0nSH//4R5WUlCgtLU1nnnmmdu/endAAAcSH7k/gCEYT+ktMCc7QoUP1zDPPaOrUqXr++ee1YMECSdKHH37omqJdAP/k5ToiIBEYTeg/MXVRLVmyRAsXLtSgQYM0duxYFRcXSzrSmjNq1KiEBmiTqmC9XtlVrapgvdOhAIBvtDeZKtdiu8XUgnPppZfqrLPOUlVVlU499dTQ65MmTdLUqVMTFpxNeHoAAGcwmtCfYl6qIT8/X/n5+WGvNa8sjnAsxQAAzmEyVX+KqYtKkv73f/9XV1xxhYqLi7V3715J0sMPP6yNGzcmLDhbdPT0AABILkYT+lNMLThPPfWUrrzySs2YMUNvvPGGGhoaJEnBYFDLli3T73//+4QG6XU8PQCxYdQLEoXRhP4TUwvOnXfeqfvvv18PPvigunbtGnp93Lhxev311xMWnC14egCit6a8UuOWr9PlD27SuOXrtKa80umQ4HFMpuovMbXgbN++XePHj2/1ek5Ojg4ePBhvTFbi6QGIHHVraAsteohGTAlOfn6+du7cqUGDBoW9vnHjRg0ePDgRcVmJuUiAyDDqBUdjJCqiFVMX1dy5czV//nxt2rRJgUBA+/bt06OPPqqFCxfq2muvTXSMAHyGNbTQkm3z2DAnWmrE1IKzaNEiNTU1adKkSaqrq9P48eOVkZGhhQsX6jvf+U6iYwTgM811azev3aZGY6hb8zmbWvRoiUqdgDHGdL5Z2w4fPqydO3fqs88+08knn6wePXqovr5emZnu/sDV1NQoJydHwWCQpSUAF6sK1lO3BlUF6zVu+bpWI1E3Lproqc+FLfvhpGju3zHPgyNJ3bp108knn6wzzjhDXbt21YoVK1RUVBTPWwJwuVQ2rzPqBZI9I1GZEy21ouqiamho0G233aYXXnhB3bp10/e//31dcsklKisr0y233KL09PTQwpsA7EPzOpzi5ZGozaO/srqlMydaCkWV4CxZskQPPPCAzjvvPL3yyiuaNm2aZs+erb/85S9asWKFpk2bpvT09GTFCsBBDN2G07w4EvXoh4Kpo47TM2/so7YsBaJKcJ544gk99NBDuuiii7Rt2zaNHDlSX3zxhd58800FAoHO3wCAZ9lU6AmkQlsPBc+8sU9rv12susNNnmuJ8pqoEpy///3vGj16tCRp+PDhysjI0IIFC0huAB9gyREgOu09FNQdblLxkD7OBOUjURUZNzY2qlu3bqHvu3Tpoh49eiQ8KADuY0uhJ5AqzOfkrKhacIwxmjVrljIyMiRJ//jHP3TNNdcoKysrbLu1a9cmLkIAruHlQk8g1ZjPyVlRJTgzZ84M+/6KK65IaDAA3M+LhZ6AU3gocE5cE/15FRP9AQDgPSmb6A8AEB/WJQKSI6a1qAAA8WPiRHSmeZLAotwsureiRIIDwEpuvzEwcSI6QwIcHxIcANbxwo2BiRPRERLg+FGDA8Aq7d0Y3Fbjwhwp6AgLc8aPBAeAVbxyY2DixOTzcgE3CXD86KICYBUvLSnBHCnJ44Vuyo4wSWD8mAeHeXAA66wpr2x1Y/DSzQ3xqQrWa9zyda2S3I2LJnouQagK1pMAtxDN/ZsWHADWoWXE32wq4Gbm8NiR4FjK7UNkgWTjxuBfXuqmTCW/3RdIcCzk9b5nAIgH9Sut+fG+QA2OZTU4NvU9A0A8qF85wqb7AjU4PmZT3zMAxINuyiP8el9gHhzLMHcCAKAlJ+4LbpiDiATHMkweBgBoKdX3hTXllRq3fJ0uf3CTxi1fpzXllUn5O52hBseyGpxm9D0DAFpKxX0h2fU+1OCAvmcAQJhU3BfcVO9DFxV8zw19xQBgAzfVgXouwVm6dKm+8pWvqHv37urVq5fT4cDj3NJXDAA2cFMdqOe6qA4fPqxp06apuLhYv/rVr5wOBx5WFawPTXwlHZn19Oa12zT+xDy69wAgRm5ZKsVzCc7tt98uSVq1alXEv9PQ0KCGhobQ9zU1NYkOK+X8NuV2MriprxgAbOKGOlDPJTixKC0tDSVGNvDjlNvJ4Ib1akhUASA5PFeDE4vFixcrGAyGvvbs2eN0SDFrr1uFAtnoOd1XTP0PACSPK1pwFi1apLvuuqvDbd555x0NGzYspvfPyMhQRkZGTL/rNnSrJJZTfcXU/wBAcrkiwfne976nWbNmdbjN4MGDUxOMy7mhW8U2TvQVJyJRpXsLANrnigQnLy9PeXl5TofhCc3dKjev3aZGY1iKwaPiTVSpwwKAjrkiwYlGZWWlPvnkE1VWVqqxsVFbtmyRJA0dOlQ9evRwNrgUccsQPMQunkSV7i0A6JznEpwlS5Zo9erVoe9HjRolSVq/fr0mTJjgUFSp54YheIhey26lWBNV6rAAoHOeS3BWrVoV1Rw4gFu0160UbVJCHRYAdM4Xw8T9gPWU3C2Rw/udHt4OAF7guRYctEbBqfsluluJOiz3YDQb4E4kOB5Hwak3JKNbiTos5/FwAbgXXVQe11HLANyDbiX7MKs44G604HgcBafeQbeSXRjNBrgbLTgeR8uAtxTkZKp4SB+OTzu8VCzf/HDREg8X9vDSZxFtowXHArQMwAZeq2dhVnF7ee2ziLYFjDGm883sUlNTo5ycHAWDQWVnZzsdDuB7VcF6jVu+rlVX68ZFE12fMFQF63m4sIiXP4t+EM39mxYcAI7zcj0Lo9ns4uXPIsJRgwPAcdSzwC34LNqDBAeA4yiWh1vwWbQHNTjU4ACuQT0L3ILPojtRgwPAk6hngVvwWfQ+uqgcxDwLAAAkBy04DmGeBQAAkocWHAewhg0AAMlFguMAFsiE29F9CsDr6KJyAAtkws3oPgVgA1pwHMA8C3Aruk8B2IIWHIewQCbciGnqAdiCBMdBzLMAt6H7FIAt6KICEEL3KQBb0IIDIAzdpwBsQIIDoBW6TwF4HV1UAADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADAOiQ4AADfqwrW65Vd1aoK1jsdChKExTZhpapgvSqqa1WUm8WikW3g/wf4pzXllVq8dquajJQWkEpLRmj6mAFOh4U4keDAOlysOsb/D/BPVcH60PkgSU1GunntNo0/MY/k3+PoooJV2rtY0ex8BP8/QLiK6trQ+dCs0Rh9UF3nTEBIGBIcWNX3zMWqY/z/AOGKcrOUFgh/LT0Q0KDc7s4EhIQhwfG5NeWVGrd8nS5/cJPGLV+nNeWVTocUFy5WHeP/BwhXkJOp0pIRSg8cOTHSAwEtKxlO95QFAsYY0/lmdqmpqVFOTo6CwaCys7OdDscxVcF6jVu+LuyJPj0Q0MZFEz19cq8pr9TNa7ep0ZjQxYoak3/i/wdorSpYrw+q6zQot7unr3+2i+b+TZGxj3XUXeHlE3z6mAEaf2IeF6t28P8DtFaQk8m5YBkSHB9r7q44ugXHhu4KLlYd4/8HgO2owfEx+p4BALaiBcfn6K4AANiIBAd0VwAArEMXFQAAiIsb51OjBQcAAMTMrcu/0IIDAABi4ublX0hwAABATNy8/AsJDgAAiImbl38hwQEAADFx83xqFBkDAICYuXU+NRIcAAAQFzfOp0YXFQAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgAAsA4JDgCglapgvV7ZVe2KRROBWDDRHwCkUFWwXhXVtSrKzXLdxGjN1pRXhlaITgtIpSUjNH3MAKfDAqJCggMAKeKFxKEqWB+KUZKajHTz2m0af2KeaxMyoC10UQFACrSXOLitC6iiujYUY7NGY/RBdZ0zAQExIsEBgBTwSuJQlJultED4a+mBgAbldncmICBGnkpwPvjgA82ZM0dFRUXKzMzUkCFD9IMf/ECHDx92OjQA6JBXEoeCnEyVloxQeuBIsOmBgJaVDKd7Cp7jqRqcd999V01NTXrggQc0dOhQbdu2TXPnzlVtba3uuecep8MDgHY1Jw43r92mRmNcnThMHzNA40/M0wfVdRqU292VMQKdCRhjTOebudfdd9+t++67T++//3672zQ0NKihoSH0fU1NjQoLCxUMBpWdnZ2KMAFA0pFaHBIHIDY1NTXKycmJ6P7tqS6qtgSDQR177LEdblNaWqqcnJzQV2FhYYqiA4BwBTmZKh7Sh+QGSDJPJzg7d+7Uf/7nf+rqq6/ucLvFixcrGAyGvvbs2ZOiCAEAgBNckeAsWrRIgUCgw69333037Hf27t2rCy64QNOmTdPcuXM7fP+MjAxlZ2eHfQEAAHu5ogbno48+0scff9zhNoMHD1a3bt0kSfv27dOECRN05plnatWqVUpLiy5Pi6YPDwAAuEM0929XjKLKy8tTXl5eRNvu3btXEydO1OjRo1VWVhZ1cgMAAOznigQnUnv37tWECRM0cOBA3XPPPfroo49CP8vPz3cwMgAA4CaeSnBeeOEF7dy5Uzt37tTxxx8f9jMX9LQBAACX8FT/zqxZs2SMafMLAACgmacSHAAAgEiQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4AAAAOuQ4ADwpapgvV7ZVa2qYL3ToQBIAk/NgwMAibCmvFKL125Vk5HSAlJpyQhNHzPA6bAAJBAtOAB8pSpYH0puJKnJSDev3UZLDmAZEhwAvlJRXRtKbpo1GqMPquucCQhAUpDgAPCVotwspQXCX0sPBDQot7szAQFIChIcAL5SkJOp0pIRSg8cyXLSAwEtKxmugpxMhyMDkEgUGQPwneljBmj8iXn6oLpOg3K7k9wAFiLBAeBLBTmZJDYtVAXrVVFdq6LcLP5fYAUSHADwOYbNw0bU4ACAjzFsHrYiwQEAH2PYPGxFggMAPsawediKBAcAfIxh87AVRcYA4HMMm4eNSHAAAAybh3XoogIAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANYhwQEAANbx5VpUxhhJUk1NjcORAACASDXft5vv4x3xZYJz6NAhSVJhYaHDkQAAgGgdOnRIOTk5HW4TMJGkQZZpamrSvn371LNnTwUCgYS8Z01NjQoLC7Vnzx5lZ2cn5D3dxvZ9tH3/JPbRFuyjHWzfx2TsnzFGhw4dUv/+/ZWW1nGVjS9bcNLS0nT88ccn5b2zs7Ot/KC2ZPs+2r5/EvtoC/bRDrbvY6L3r7OWm2YUGQMAAOuQ4AAAAOuQ4CRIRkaGfvCDHygjI8PpUJLG9n20ff8k9tEW7KMdbN9Hp/fPl0XGAADAbrTgAAAA65DgAAAA65DgAAAA65DgAAAA65DgxGH58uUKBAK6/vrrQ6/94x//0Lx589SnTx/16NFD3/jGN3TgwAHngoxDW/s3YcIEBQKBsK9rrrnGuSBjcNttt7Xah2HDhoV+bsMx7GwfbTiOe/fu1RVXXKE+ffooMzNTI0aM0ObNm0M/N8ZoyZIlKigoUGZmps477zy99957DkYcvc72cdasWa2O4wUXXOBgxNEZNGhQq/gDgYDmzZsnyY5zsbN9tOFcbGxs1K233qqioiJlZmZqyJAhuuOOO8LWi3LifPTlTMaJUF5ergceeEAjR44Me33BggX6n//5Hz3xxBPKycnRddddp5KSEr388ssORRqb9vZPkubOnasf/vCHoe+7d++eytAS4pRTTtGLL74Y+r5Ll3+eCrYcw472UfL2cfz00081btw4TZw4UX/4wx+Ul5en9957T7179w5t86Mf/UgrV67U6tWrVVRUpFtvvVVf/epX9fbbb+uYY45xMPrIRLKPknTBBReorKws9L2XhhyXl5ersbEx9P22bdt0/vnna9q0aZLsOBc720fJ2+eiJN1111267777tHr1ap1yyinavHmzZs+erZycHH33u9+V5ND5aBC1Q4cOmRNOOMG88MIL5pxzzjHz5883xhhz8OBB07VrV/PEE0+Etn3nnXeMJPPqq686FG302ts/Y0yr773oBz/4gTn11FPb/Jktx7CjfTTG+8fxpptuMmeddVa7P29qajL5+fnm7rvvDr128OBBk5GRYX7961+nIsS4dbaPxhgzc+ZMc/HFF6cmoBSYP3++GTJkiGlqarLmXDxay300xvvnojHGXHjhheaqq64Ke62kpMTMmDHDGOPc+UgXVQzmzZunCy+8UOedd17Y66+99po+//zzsNeHDRumAQMG6NVXX011mDFrb/+aPfroo8rNzdXw4cO1ePFi1dXVpTjC+L333nvq37+/Bg8erBkzZqiyslKSPcdQan8fm3n5OD777LM6/fTTNW3aNPXt21ejRo3Sgw8+GPp5RUWF9u/fH3Ycc3JyNHbsWM8cx872sdmGDRvUt29fnXTSSbr22mv18ccfOxBt/A4fPqxHHnlEV111lQKBgFXnYrOj97GZl89FSfrKV76il156STt27JAkvfnmm9q4caOmTJkiybnzkS6qKP3mN7/R66+/rvLy8lY/279/v7p166ZevXqFvd6vXz/t378/RRHGp6P9k6TLL79cAwcOVP/+/fXWW2/ppptu0vbt27V27doURxq7sWPHatWqVTrppJNUVVWl22+/XWeffba2bdtmxTGUOt7Hnj17ev44vv/++7rvvvt0ww036Oabb1Z5ebm++93vqlu3bpo5c2boWPXr1y/s97x0HDvbR+lI91RJSYmKioq0a9cu3XzzzZoyZYpeffVVpaenO7wH0XnmmWd08OBBzZo1S5Id19OjHb2Pkh3X1EWLFqmmpkbDhg1Tenq6GhsbtXTpUs2YMUOSHDsfSXCisGfPHs2fP18vvPCCJ/rwoxXJ/v37v/976N8jRoxQQUGBJk2apF27dmnIkCGpCjUuzU8VkjRy5EiNHTtWAwcO1OOPP67MzEwHI0ucjvZxzpw5nj+OTU1NOv3007Vs2TJJ0qhRo7Rt2zbdf//9oZu/10Wyj5dddllo+xEjRmjkyJEaMmSINmzYoEmTJjkSd6x+9atfacqUKerfv7/ToSRNW/vo9XNRkh5//HE9+uijeuyxx3TKKadoy5Ytuv7669W/f39Hz0e6qKLw2muv6cMPP9Rpp52mLl26qEuXLvrTn/6klStXqkuXLurXr58OHz6sgwcPhv3egQMHlJ+f70zQUehs/1oWyjUbO3asJGnnzp2pDjdhevXqpRNPPFE7d+5Ufn6+p49he1ruY1u8dhwLCgp08sknh732pS99KdQN13ysjh5x46Xj2Nk+tmXw4MHKzc31zHFstnv3br344ov61re+FXrNtnOxrX1si9fORUm68cYbtWjRIl122WUaMWKErrzySi1YsEClpaWSnDsfSXCiMGnSJG3dulVbtmwJfZ1++umaMWNG6N9du3bVSy+9FPqd7du3q7KyUsXFxQ5GHpnO9q+tJu8tW7ZIOnIx9qrPPvtMu3btUkFBgUaPHu3pY9ielvvYFq8dx3Hjxmn79u1hr+3YsUMDBw6UJBUVFSk/Pz/sONbU1GjTpk2eOY6d7WNb/v73v+vjjz/2zHFsVlZWpr59++rCCy8MvWbbudjWPrbFa+eiJNXV1SktLTydSE9PV1NTkyQHz8eklS/7xNEV8Ndcc40ZMGCAWbdundm8ebMpLi42xcXFzgUYp5b7t3PnTvPDH/7QbN682VRUVJjf/va3ZvDgwWb8+PHOBhml733ve2bDhg2moqLCvPzyy+a8884zubm55sMPPzTG2HEMO9pHG47jX//6V9OlSxezdOlS895775lHH33UdO/e3TzyyCOhbZYvX2569eplfvvb35q33nrLXHzxxaaoqMjU19c7GHnkOtvHQ4cOmYULF5pXX33VVFRUmBdffNGcdtpp5oQTTjD/+Mc/HI4+co2NjWbAgAHmpptuavUzG85FY9rfRxvORWOOjOY77rjjzO9+9ztTUVFh1q5da3Jzc833v//90DZOnI8kOHE6OsGpr6833/72t03v3r1N9+7dzdSpU01VVZVzAcap5f5VVlaa8ePHm2OPPdZkZGSYoUOHmhtvvNEEg0Fng4zS9OnTTUFBgenWrZs57rjjzPTp083OnTtDP7fhGHa0j7Ycx//+7/82w4cPNxkZGWbYsGHmF7/4RdjPm5qazK233mr69etnMjIyzKRJk8z27dsdijY2He1jXV2dmTx5ssnLyzNdu3Y1AwcONHPnzjX79+93MOLoPf/880ZSm8fGhnPRmPb30ZZzsaamxsyfP98MGDDAHHPMMWbw4MHmlltuMQ0NDaFtnDgfA8a0mGoQAADAAtTgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAAAA65DgAPClCRMmKBAIKBAIhNb/2bBhgwKBQKsFHhPttttuC/3tn/zkJ0n9W4BfkeAA6NSsWbNCN+SWXxdccIHTocVl7ty5qqqq0vDhw+N+rwMHDqhr1676zW9+0+bP58yZo9NOO02StHDhQlVVVen444+P++8CaBsJDoCIXHDBBaqqqgr7+vWvf53Uv3n48OGkvn/37t2Vn5+vLl26xP1e/fr104UXXqj/+q//avWz2tpaPf7445ozZ44kqUePHsrPz1d6enrcfxdA20hwAEQkIyND+fn5YV+9e/cO/TwQCOiXv/ylpk6dqu7du+uEE07Qs88+G/Ye27Zt05QpU9SjRw/169dPV155paqrq0M/nzBhgq677jpdf/31ys3N1Ve/+lVJ0rPPPqsTTjhBxxxzjCZOnKjVq1eHupJqa2uVnZ2tJ598MuxvPfPMM8rKytKhQ4di3ue6ujpNmTJF48aNC3Vb/fKXv9SXvvQlHXPMMRo2bJh+/vOfh7afM2eOXnrpJVVWVoa9zxNPPKEvvvhCM2bMiDkWANEhwQGQMLfffru++c1v6q233tLXvvY1zZgxQ5988okk6eDBgzr33HM1atQobd68Wc8995wOHDigb37zm2HvsXr1anXr1k0vv/yy7r//flVUVOjSSy/VJZdcojfffFNXX321brnlltD2WVlZuuyyy1RWVhb2PmVlZbr00kvVs2fPmPbl4MGDOv/889XU1KQXXnhBvXr10qOPPqolS5Zo6dKleuedd7Rs2TLdeuutWr16tSTpa1/7mvr166dVq1a1iqWkpES9evWKKRYAMUjqWuUArDBz5kyTnp5usrKywr6WLl0a2kaS+Y//+I/Q95999pmRZP7whz8YY4y54447zOTJk8Ped8+ePUaS2b59uzHGmHPOOceMGjUqbJubbrrJDB8+POy1W265xUgyn376qTHGmE2bNpn09HSzb98+Y4wxBw4cMF26dDEbNmxod5/OOeccM3/+/LDX1q9fbySZd955x4wcOdJ84xvfMA0NDaGfDxkyxDz22GNhv3PHHXeY4uLi0PeLFi0yRUVFpqmpyRhjzM6dO00gEDAvvvhiqxgGDhxofvzjH7cbI4DY0YIDICITJ07Uli1bwr6uueaasG1GjhwZ+ndWVpays7P14YcfSpLefPNNrV+/Xj169Ah9DRs2TJK0a9eu0O+NHj067D23b9+uMWPGhL12xhlntPr+lFNOCbWkPPLIIxo4cKDGjx8f076ef/75Gjp0qNasWaNu3bpJOlJHs2vXLs2ZMydsH+68886w+K+66ipVVFRo/fr1ko603gwaNEjnnntuTLEAiE38lXUAfCErK0tDhw7tcJuuXbuGfR8IBNTU1CRJ+uyzz/T1r39dd911V6vfKygoCPs7sfjWt76ln/3sZ1q0aJHKyso0e/ZsBQKBmN7rwgsv1FNPPaW3335bI0aMCMUvSQ8++KDGjh0btn3LYuETTjhBZ599tsrKyjRhwgQ99NBDmjt3bsyxAIgNCQ6AlDjttNP01FNPadCgQVGNWjrppJP0+9//Puy18vLyVttdccUV+v73v6+VK1fq7bff1syZM2OOdfny5erRo4cmTZqkDRs26OSTT1a/fv3Uv39/vf/++50WC8+ZM0fXXnutLrroIu3du1ezZs2KORYAsaGLCkBEGhoatH///rCvliOgOjNv3jx98skn+td//VeVl5dr165dev755zV79mw1Nja2+3tXX3213n33Xd10003asWOHHn/88VARb8tWkd69e6ukpEQ33nijJk+eHPccM/fcc49mzJihc889V++++66kI0XUpaWlWrlypXbs2KGtW7eqrKxMK1asCPvdadOmqWvXrrr66qs1efJkFRYWxhULgOiR4ACIyHPPPaeCgoKwr7POOivi3+/fv79efvllNTY2avLkyRoxYoSuv/569erVS2lp7V+KioqK9OSTT2rt2rUaOXKk7rvvvtAoqoyMjLBt58yZo8OHD+uqq66KbSeP8uMf/1jf/OY3de6552rHjh361re+pV/+8pcqKyvTiBEjdM4552jVqlUqKioK+73u3bvrsssu06effpqwWABEJ2CMMU4HAQDRWLp0qe6//37t2bMn7PWHH35YCxYs0L59+0LFwe2ZMGGCvvzlLzu6VMKgQYN0/fXX6/rrr3csBsBWtOAAcL2f//znKi8v1/vvv6+HH35Yd999d1iNTV1dnXbt2qXly5fr6quv7jS5afm+PXr00NatW5MVepuWLVumHj16tJoQEEDi0IIDwPUWLFigNWvW6JNPPtGAAQN05ZVXavHixaFi5dtuu01Lly7V+PHj9dvf/lY9evTo9D337t2r+vp6SdKAAQMiTooS4ZNPPglNgJiXl6ecnJyU/W3AL0hwAACAdeiiAgAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1iHBAQAA1vk/wb4ggVHhO2UAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "residuals = (entries - fit_model(center, *mi.values))/np.sqrt(entries)\n", "\n", "plt.plot(center, residuals, ls='', marker='.')\n", "plt.xlabel('Energy [keV]')\n", "plt.ylabel('Residuals [$\\sigma$]')" ] }, { "cell_type": "markdown", "id": "d0ef61ca-afc5-472d-8e8e-b4726ef2a3dd", "metadata": {}, "source": [ "Als einzelner Plot sind sie noch nicht sehr informativ. Hilfreicher ist es bereits, wenn wir die Residuen zusammen mit unseren Daten und Fitmodel darstellen. " ] }, { "cell_type": "code", "execution_count": 521, "id": "d9fbe83b-3146-4d72-89a4-084c29752e24", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Matthias\\AppData\\Local\\Temp\\ipykernel_67644\\53208542.py:7: UserWarning: The figure layout has changed to tight\n", " fig_fit.tight_layout()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBAUlEQVR4nOzdd3hUZfrw8e/MpPcCSQiBkJAAoUNAiICLgCBNUdaKCygKq4hgl9/r2tjVVVdFWHRBUbBjwxVUqiC9t0BCGukVSE9ImznvH7NzSIUMJJkkc3+45iJzzplz7hPI5J6n3I9GURQFIYQQQgjR5mktHYAQQgghhGgaktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTktgJIYQQQrQTNpYOoDUwGAxkZGTg6uqKRqOxdDhCCCGEsBKKolBUVIS/vz9a7fW3t0liB2RkZNClSxdLhyGEEEIIK5WamkpAQMB1n0cSO8DV1RUwflPd3NwsHI0QQgghrEVhYSFdunRRc5HrJYkdqN2vbm5uktgJIYQQosU11VAwmTwhhBBCCNFOSGInhBBCCNFOSGInhBBCCNFOyBg7IYQQop3T6/VUVlZaOgyrZGtri06na7HrSWInhBBCtFOKopCVlUV+fr6lQ7FqHh4e+Pn5tUitXEnshBBCiHbKlNT5+Pjg5OQkRfhbmKIolJaWkpOTA0CnTp2a/ZqS2AkhhBDtkF6vV5M6b29vS4djtRwdHQHIycnBx8en2btlZfKEEEII0Q6ZxtQ5OTlZOBJh+jdoiXGOktgJIYQQ7Zh0v1peS/4bSGInhBBCCNFOSGInhBBCCNGAV155BV9fXzQaDT/99BOzZ89m2rRplg6rQZLYCSGEEKLVmD17NhqNRn14e3tz6623curUqSa7xiuvvMLAgQOvelx0dDSvvvoqK1euJDMzk4kTJ/L++++zZs0a9ZjRo0ezaNGiJovtekliJ4QQzaCkpET9xVRSUmLpcIRoU2699VYyMzPJzMxk+/bt2NjYMGXKlBaPIyEhAYDbb78dPz8/7O3tcXd3x8PDo8VjaSxJ7IQQQgjRqtjb2+Pn54efnx8DBw7khRdeIDU1lfPnz6vHpKamcvfdd+Ph4YGXlxe33347SUlJ6v6dO3dyww034OzsjIeHByNGjCA5OZk1a9bw6quvcvLkSfXDV/UWOJNXXnmFqVOnAqDVatUJENW7YmfPns0ff/zB+++/r56regyWIHXshBBCCCugKAqVpZZZVszWyfaaZ4YWFxfzxRdfEBISotbjq6ysZMKECURERLB7925sbGz4+9//rnbZarVapk2bxiOPPMLXX39NRUUFhw4dQqPRcM8993D69Gk2bdrEtm3bAHB3d69z3WeeeYZu3brx4IMPkpmZWW9s77//PrGxsfTt25fXXnsNgI4dO17TfTYVSeyEEEIIK1BZWskbLm9Y5NqLixdj52zX6OM3btyIi4sLYBzW0KlTJzZu3IhWa+xoXLduHQaDgY8//lhNGD/99FM8PDzYuXMnQ4YMoaCggClTptC9e3cAwsLC1PO7uLhgY2ODn59fgzG4uLioXa4NHefu7o6dnR1OTk5XPFdLkq5YIYQQQrQqN998MydOnODEiRMcOnSICRMmMHHiRJKTkwE4efIk8fHxuLq64uLigouLC15eXpSVlZGQkICXlxezZ89mwoQJTJ06lffff7/BVrf2RlrshBBCCCtg62TL4uLFFru2OZydnQkJCVGff/zxx7i7u/PRRx/x97//neLiYsLDw/nyyy/rvNbUFfrpp5/yxBNPsGnTJtatW8eLL77I1q1bGT58+PXdTCsniZ0QQghhBTQajVndoa2JRqNBq9Vy6dIlAAYPHsy6devw8fHBzc2twdcNGjSIQYMGsXjxYiIiIvjqq68YPnw4dnZ26PX6JomtKc/VFKQrVgghhBCtSnl5OVlZWWRlZREdHc2CBQsoLi5WZ6nOmDGDDh06cPvtt7N7924SExPZuXMnTzzxBGlpaSQmJrJ48WL2799PcnIyW7ZsIS4uTh1n161bNxITEzlx4gQXLlygvLz8mmPt1q0bBw8eJCkpiQsXLmAwGJrke3CtJLETQohmlp6eXu92qXUnRP02bdpEp06d6NSpE8OGDePw4cN89913jB49GgAnJyd27dpF165dufPOOwkLC2POnDmUlZXh5uaGk5MTZ8+eZfr06fTo0YO5c+cyf/585s2bB8D06dO59dZbufnmm+nYsSNff/31Ncf6zDPPoNPp6N27Nx07diQlJaUpvgXXTKMoimLRCFqBwsJC3N3dKSgouGKTrhBCNNYHH3zA/PnzAWMNrFWrVjFnzpwax5SUlKgz/4qLi3F2dm7xOEX7VVZWRmJiIkFBQTg4OFg6HKt2pX+Lps5BpMVOCCGaWFpaGgsWLFCfGwwG5s2bR1pamgWjEkJYA0nshBCiicXFxdUZZ6PX64mPj7dQREIIayGJnRBCNLHQ0FC1kKqJTqerUb5BCCGagyR2QgjRxAICAli+fLn6XKfTsXLlSgICAiwYlRDCGkhiJ4QQzWDWrFnq11FRUXUmTjREZsqKpiZzJC2vJf8NJLETQggzmZt8de7cuQWiEqImW1vjag+lpaUWjkSY/g1M/ybNSVaeEEKIViA9PZ0ePXpYOgzRjuh0Ojw8PMjJyQGMtd80Go2Fo7IuiqJQWlpKTk4OHh4e6HS6Zr+mJHZCCGEha9euVb8OCwtj1apV3HvvvRaMSLQ3fn5+AGpyJyzDw8ND/bdobpLYCSGEBTRU627UqFEWjEq0NxqNhk6dOuHj40NlZaWlw7FKtra2LdJSZ2LxxC49PZ3nn3+e3377jdLSUkJCQvj0008ZMmQIYGzGfPnll/noo4/Iz89nxIgRfPjhh4SGhqrnyM3NZcGCBWzYsAGtVsv06dN5//331YruQgjR2jRU6y4hIcFCEYn2TKfTtWhyISzHopMn8vLyGDFiBLa2tvz2229ERUXxzjvv4OnpqR7z1ltvsWzZMv7zn/9w8OBBnJ2dmTBhAmVlZeoxM2bM4MyZM2zdupWNGzeya9cu5s6da4lbEkJYKdOECheNCwdXHmT3K7u5mZsZwAAuXbxU5/iGat117969pUIWQrRDFl0r9oUXXmDv3r3s3r273v2KouDv78/TTz/NM888A0BBQQG+vr6sWbOGe++9l+joaHr37s3hw4fVVr5NmzYxadIk0tLS8Pf3v2ocslasEMIc9a3xmnMuh3nd59GPfuio2TKitdEy8KGBjPn7GJw7Xl4Ptvp6sqZad/fee6+sHyuEFWlXa8X+/PPPDBkyhLvuugsfHx8GDRrERx99pO5PTEwkKyuLcePGqdvc3d0ZNmwY+/fvB2D//v14eHioSR3AuHHj0Gq1HDx4sOVuRghhtRK2JPBJ+CcMZCA6dPgO9mXIY0MY8ugQ/Ab6YagycGzVMT7s+yEpe1PU112t1l16enqL3YMQon2w6Bi7c+fO8eGHH/LUU0/xf//3fxw+fJgnnngCOzs7Zs2aRVZWFgC+vr41Xufr66vuy8rKwsfHp8Z+GxsbvLy81GNqKy8vp7y8XH1eWFjYlLclhLAiv6/4neP/dxxFr5BJJhvZSMyumBotbcm7k/nl0V84f+Y8a29ey93f303P23rWOI+p1l19M2UbW9xYCCEs2mJnMBgYPHgwr7/+OoMGDWLu3Lk88sgj/Oc//2nW677xxhu4u7urjy5dujTr9YQQbVvtgsTVk6/bn7+do/qj9L6vNx/zMenUbWULHBXIwwcfptcdvTBUGvju7u9I3JFY57iGZsqmpaU1z40JIdodiyZ2nTp1onfv3jW2hYWFkZJi7Kow1XzJzs6ucUx2dra6z8/Pr059nqqqKnJzcxusGbN48WIKCgrUR2pqapPcjxCi/UtPT6+RfCkobNRspP/L/dGjb/B1ds523PXtXfSa1gt9uZ7v/vwdBSkFNY5paKZsfHx8096EEKLdsmhiN2LECGJiYmpsi42NJTAwEICgoCD8/PzYvn27ur+wsJCDBw8SEREBQEREBPn5+Rw9elQ95vfff8dgMDBs2LB6r2tvb4+bm1uNhxBCNEZ8fHyd5MugGDh37txVX6u10TL96+n4D/XnUu4lNvxlA9pqb8MNzZQNCQlpmuCFEO2eRRO7J598kgMHDvD6668THx/PV199xapVq9RZYhqNhkWLFvH3v/+dn3/+mcjISGbOnIm/vz/Tpk0DjC18t956K4888giHDh1i7969PP7449x7772NmhErhBDmCAkJqbMskzllSmwcbLjru7tw9HIk62gWIxmp7gsICGD58uU1zrty5UoCAgKaJnghRLtn0cRu6NChrF+/nq+//pq+ffuyZMkSli5dyowZM9RjnnvuORYsWMDcuXMZOnQoxcXFbNq0CQcHB/WYL7/8kl69ejF27FgmTZrEyJEjWbVqlSVuSQjRzlXGVDJVmYoGY3JnSr5Mkx/g6rNZPQI9mLh8IgB/4k90pKO672ozZYUQ4kosWseutZA6dkIIk/pq1Jm26dDxTvd3yE/IZ+f//sTExNCjR48aNem0Wu1VZ7MqisKXU74k4dcEznGOFUUrcHFxqff6Qoj2q13VsRNCiLZkGMPIT8jH2deZfewDjGVKrmU2q0ajYfK/J6Oz1xFMMGnbZearEOL6SWInhBCN4IQTf+JPAIx6bRQVVKj7GprNevbsWa7UKeIZ5EnEU8aJYNue24ahytDgsUII0RiS2AkhRCMMYQgZZGDX244+9/Wpsa++2axarZZff/2Vd955B72+4TIoIxePxNHbkYuxF4n8KrJZYhdCWA9J7IQQ4ipWLVvFbnazlrW8GP0in33+WY39AQEBvPTSS+pznU7HO++8g7u7O35+fuh0l9eOrd2CZ+9qz4jnRgDwx6t/oK9sOAkUQoirseiSYkII0dqlpaXx9P97GgVjQmZQDDzxxBM1jtm3zzje7sEHH+Szzz4jKiqK0NBQKioqarTW5ebm8v333zN9+nS8vb3V7UPnD2Xfv/aRdy6PmB9r1vYUQghzSIudEEJcwZnjZ+q0slVP1g4cOMDWrVsB46o4Go2Gzp07o9FosLe3x8nJST12y5YtZGZm8tlnn5GXl6dut3O2Y/ii4QAcXnq4OW9HCNHOSWInhBBXUHqgVK1ZZ2LqWu3Xrx979uwBYNSoUfz6669UVVU1eK6pU6fSoUMHCgsL+fLLLykvL1f3DXl0CLbOtpyPPE/cpjgURZFSJ0IIs0liJ4QQDUhJTCFxbSJTmapuMxUkzs7O5p577gGMSxs2tIRhbS+88AIFBQVcvHiR9evXq62Bjp6ODH5kMACHlh9q4jsRQlgLSeyEEKKatWvXql/37d+XP9L/YJTfKHVN16ioKGbNmsUPP/xAVVUVISEh3HLLLY0+f3FxMevWrUOn0xETE8Px48fVfUMfGwpA/G/xFKQUNNEdCSGsiSR2QgjxP3UKDSsGNrCBLvd3wYCxxlznzp3ZtWsXOTk5ODs7c/vtt9dZO/ZqMjIyGDVqFACbN28mPz8fAO9Qb4LGBKEYFI59fKxpbkoIYVUksRNCiP+pr9CwgoLD8MtrU1+8eJG9e/cCMGnSJHX5L3MNHjyYLl26UFFRwebNm9Xt4X8NB+DYx8fQV+opKSlBo9Gg0WgoKSm5pmsJIayHJHZCCPE/9RYa1mgJGxCmPt+xYwcGg4HQ0FDCwsJqn6LRtFotU6ZMQaPRcPbsWc6dOwdAr9t74ezjTHFmMbEbY6/5/EII6ySJnRBC/E9AQADLly9Xn2vQ8Ob/vUnnzp0BCA4OJikpCa1Wy6233lqjC9bZ2RlFUcyazerj48PQocZxdZs3b0ZRFHR2OgY+NBCAoyuPNtGdCSGshSR2QghRzaxZsxjIQGYxiyW9lvD0kqcB0Gg0jBs3DoAhQ4bg5eXVJNcbPXo09vb25OTkcObMGQDCHzF2xyZsTiA/Mb9JriOEsA6S2AkhRDWKohBBBEEE8adH/qS2ytnY2JCZmYmjoyM33XRTk13P0dGRiIgIAHbu3InBYMAz2JPgW4IBiP42usmuJYRo/ySxE0KIarKOZOGLL5VUEnb35TF0lZWVbNiwgUceeaRJCgenp6erXw8fPhxPT0969uypFjjuN6MfANHrJLETQjSeJHZCCFHNqTWnAIgiCgdP42zY6uPnPD09r/nc1WvkhYWFsXr1agDs7e15/PHHueWWW7CzszPuvyMMnb2O3Nhc/PC75msKIayLJHZCCPE/laWVnP3hLADHuFxHbu/evWRmZl7XuevUyDMYmDdvHmlpaQB1ZuPau9nTc2pPAPrR77quLYSwHpLYCSHE/8RujKWyuJI88kgmGYCcnBy2bdvGRx99RFFR0TWfu74aeXq9nvj4ePW5oigkJCSwa9cuAPre3xeAQAKBmt23QghRH0nshBDifyK/jDT+TaS6TafT0bdvX/r06YOrq+s1n7u+Gnk6nY6QkBD1eX5+Pl988QU7duwgLy+P0ImhnHI8xWqMXbbVu2+FEKI+ktgJIQRwKfcScb/FATUTO29vb6ZPn86dd955XeevXSNPp9OxcuVKAgIC1G2enp707t2boUOHotVqybqQxfqy9SgoQN3uWyGEqE0SOyGEAKK+j8JQacB3gC85Sk6dQsPmrgdbn1mzZl2+XlQUc+bMqXPMXXfdxaRJk3B3dycuLg5FUWrs1+v1REZGyjJjQoh6SWInhBBA5FfGVrp+91+eqLBv3z5ycnKa5Xqm1SyupKHu2+7duzdLTEKItk8SOyGEVSspKcFd407yH8bJEn3vM05YyMrKYuvWraxcuZJLly61aEyKopCSkkJCQgLLly9Hg7G1UKvRsnLlykYlhUII62Rj6QCEEMLS+mJM5gJGBODexR2A48ePA9CrVy8cHR1bNJ7i4mLWrFmDoijMnj2bt+e/zZ/4E118uvDQQw9RWlraovEIIdoOabETQli9PvQBoNddvQDjKhOnThkLFQ8aNKjF43F1daVHjx4AREdHk0Ya/vhjk21DxpGMFo9HCNF2SGInhLBqBSkFdKYzBgyE3hYKwNmzZykrK8Pd3Z3g4GCLxNWv3/+WFIuORq/RE4+x3t3Z9WctEo8Qom2QxE4IYdXi/msscZJMMs4+xlmwpta6AQMG1Jm80FJ69OiBnZ0dhYWFBAQEcBZjQnf2J0nshBANk8ROCGHVYn+KBSCaaABKS0s5d+4ccLnVrKlUX3O2eimV+tja2hIWFgZA//79iSUWra2WC9EXyI3NVY+T1SiEENVdU2JnMBiIjY1lz5497Nq1q8ZDCCHaisL0QjIOGsesmRK76OhoDAYDvr6+dOjQwZLhqYllnz59qNRW0vVPXQF4/5X31WNkNQohRHVmz4o9cOAA999/P8nJyXUKZ2o0GvR6fZMFJ4QQzSn6R2Myl0IKRRjXgT1z5gwAffv2tVhcJkFBQTg5OQEQEhJCyJQQTm47ydKfl6rHmFajmDBhQo1VLIQQ1snsFru//vWvDBkyhNOnT5Obm0teXp76yM3NvfoJhBCilYj+3pjYHcdY2iQuLo6kpCTA2EpmaVqtVm21e/311+l7Z19yyVWXGDPR6/XEx8dbIkQhRCtjdmIXFxfH66+/TlhYGB4eHri7u9d4CCFEW1CcXUzy7mSOcUxN7MLDwzl69CidO3fG09PTwhEamRK7s2fP4uTnRI9ePdSCxSY6nY6QkBBLhCeEaGXMTuyGDRsmnwyFEG1ezH9jKFAK2MAGdZvBYGDDhg107NjRgpHV5O/vj4eHB1VVVcTHx3PD7TcwlalqcqfT6Vi5cqV0wwohgGsYY7dgwQKefvppsrKy6NevH7a2tjX29+/fv8mCE0KI5hK7Ibbebk1FUbCxaT2L8mg0Gnr16sWBAwc4e/YsgycNZvCbg+lMZz7kQ6KiotRixkIIYXaL3fTp04mOjuahhx5i6NChDBw4kEGDBql/m+OVV15Bo9HUePTq1UvdX1ZWxvz58/H29sbFxYXp06eTnZ1d4xwpKSlMnjwZJycnfHx8ePbZZ6mqqjL3toQQVqSytJJz287hhVedOnVarZYBAwZYKLL6md4XY2Nj8R/mj727Pb74EkCArBsrhKjB7I+liYmJTRpAnz592LZt2+WAqn1SfvLJJ/nll1/47rvvcHd35/HHH+fOO+9k7969gHHA8OTJk/Hz82Pfvn1kZmYyc+ZMbG1tef3115s0TiFE+3Fu+zmqyqro2rUry55bxuOPPw603m7NLl26MGHCBHr06IGtvS2BYwKJXR9LKKGWDk0I0cqYndgFBgY2bQA2Nvj5+dXZXlBQwOrVq/nqq68YM2YMAJ9++ilhYWEcOHCA4cOHs2XLFqKioti2bRu+vr4MHDiQJUuW8Pzzz/PKK69gZ2fXpLEKIdqH2A3GosQ9pvbgT7P/pCZ2rbVbU6vVMnz4cPV58IRgSeyEEPVqVGL3888/M3HiRGxtbfn555+veOxtt91mVgBxcXH4+/vj4OBAREQEb7zxBl27duXo0aNUVlYybtw49dhevXrRtWtX9u/fz/Dhw9m/fz/9+vXD19dXPWbChAk8+uijnDlzpsGu4fLycsrLy9XnhYWFZsUshGi7FINC7MbLiR1Az5496dmzZ5upwxl0SxAA/vhTkl2Cc/CVV7EQQliPRiV206ZNIysrCx8fH6ZNm9bgceYWKB42bBhr1qyhZ8+eZGZm8uqrrzJq1ChOnz5NVlYWdnZ2eHh41HiNr68vWVlZAGRlZdVI6kz7Tfsa8sYbb/Dqq682Ok4hRPuReSyT4sxi7Fzs6Da6G+VV5fTr14++ffuSlJSkLuPVGkVFRREZGUl4eDgZZOCPP4lbE/GZ52Pp0IQQrUSjEjuDwVDv19dr4sSJ6tf9+/dn2LBhBAYG8u233+Lo6Nhk16lt8eLFPPXUU+rzwsJCunTp0mzXE0K0HjEbYgDoPr47NvY2lFeVc+jQIYqLi/nLX/5i4eiuLDo6mrNnz+Lq6ko88fjjT9L2JIbNG2bp0IQQrUTrmdMPeHh40KNHD+Lj47nllluoqKggPz+/Rqtddna2OibPz8+PQ4cO1TiHadZsfeP2TOzt7bG3t2/6GxBCtHrVx9eZpKSkkJKSUqcHoLUZNGgQ3t7eBAYGkkACN3ETyTuSUQwKGq3m6icQQrR7Zpc7Adi+fTtTpkyhe/fudO/enSlTptSY2XqtiouLSUhIoFOnToSHh2Nra8v27dvV/TExMaSkpBAREQFAREQEkZGR5OTkqMds3boVNzc3evfufd3xCCHal8K0QrKOZ4EGQie1vYkHwcHBjB49mqCgIBLKE7B1tuXShUtkn8q++ouFEFbB7MTugw8+4NZbb8XV1ZWFCxeycOFC3NzcmDRpEitWrDDrXM888wx//PEHSUlJ7Nu3jzvuuAOdTsd9992Hu7s7c+bM4amnnmLHjh0cPXqUBx98kIiICHV22Pjx4+nduzd/+ctfOHnyJJs3b+bFF19k/vz50iInhKjDNGkiYHgAzj7OKIrCnj176NatGxpN22rx0tnp6PanbgAkbE2wbDBCiFbD7MTu9ddf57333uPrr7/miSee4IknnuCrr77ivffeM7t2XFpaGvfddx89e/bk7rvvxtvbmwMHDqjL+bz33ntMmTKF6dOnc9NNN+Hn58ePP/6ovl6n07Fx40Z0Oh0RERE88MADzJw5k9dee83c2xJCWIGon6IAWLN/DSUlJeTk5HDgwAEefvhhysvLcXZu/bNLKyoqiI6O5sCBAwTfEgzAua3nLByVEKK1MHuMXX5+Prfeemud7ePHj+f5558361zffPPNFfc7ODiwYsWKK7YEBgYG8uuvv5p1XSFE+1dSUoKLiwtgHOZhiy0pO1MAiMXYchcXFwdAUFBQneURW6v8/Hy+/fZbbGxseHDygwCk7E6hqqwKG4dWNWxaCGEBZrfY3Xbbbaxfv77O9v/+979MmTKlSYISQoimdm7bOfTlevLIIwfjuNz4+HgAQkJCLBmaWTp27Ii7uztVVVUUORbh6u9KVVkVKXtSLB2aEKIVaNTHu2XLlqlf9+7dm3/84x/s3LlTncRw4MAB9u7dy9NPP908UQohxHUyzYY1tdaVl5eTmpoKtK3ETqPREBoaypEjR4iPjyf4lmBOrj1JwtYEgscFWzo8IYSFNSqxe++992o89/T0JCoqiqioKHWbh4cHn3zyCS+++GLTRiiEENep+moTMRjr2CUnJ2MwGPDy8sLLy8uS4ZnNlNjFxcUxZtwYTq49aRxn96alIxNCWFqjErvExMTmjkMIIZpN1rEsSrJLsHO1I7koGbj8vtaWWutMgoKC0Ol0FBQU4H6LOwBZx7MoOV+Cc8fWPwFECNF8rqmOnRBCtCUJvxrLgXQb2w09xmUPk5KSgLaZ2Nna2hIUZFwvNr0gHZ9+xiXFknYmWTAqIURrIImdEKLdS/jNmNh1n9QdMA4dSUtLw8bGhm7dulkwsmvXvbvxXhISEuh2czcAknYkWS4gIUSrIImdEKJdc8aZ+Mh4NFoN+/L2AcaSIUuXLiUpKanNlDmpzZTYpaSk0GWUca1rSeyEEJLYCSHapbVr1wJQQglLWcrprqd5evHlmfuKovDJJ5+QlpZmqRCvS4cOHXB1daWqqgptsBY0cOHsBYoyiiwdmhDCgsxK7Kqqqnjttdfa7BuhEMI6pKWlsWDBAvW5gsL3Sd9jMBhqHGcwGNRadm2NRqNRW+3SL6bjN9APkHF2Qlg7sxI7Gxsb3n77baqqqporHiGEuG5xcXF1kjgFpc56sDqdrk1OnjAJDjbWrUtISCBojHEyReIOqWIghDUzuyt2zJgx/PHHH80RixBCNInQ0FC02ppvbzqdjiVLlqjPtVotK1euJCAgoKXDazKmxC47Oxu/4f9rsZNxdkJYNbMXFpw4cSIvvPACkZGRhIeH11k0+7bbbmuy4IQQorFqrw27fPlyHp//OAoKWo0xibv33nvVIurR0dH06NHDkiFfN2dnZ4YPH463tzcdO3TEgIG8hDwyYzLp1LOTpcMTQliARlEUxZwX1P4UXONkGg16vf66g2pphYWFuLu7U1BQgJubm6XDEUJcg9qJnWJQeMbtGcooY+anMxkze0ydY2p/MG3LSkpKWOSyiAACmLhqIn3u79Nu71WI9qSpcxCzu2INBkODj7aY1Akh2qeso1l0+t+fIbcPMW7LyqJfv35qwtPeJJEEQMquFMsGIoSwGLO7YqsrKyvDwcGhqWIRQogmY1ptIoEEdHY6AE6fPs306dM5ePCgJUNrcrm5uURFRXHe+TyUQOquVEuHJISwELNb7PR6PUuWLKFz5864uLhw7tw5AP72t7+xevXqJg9QCCGuhWm1iRhi1G2enp5kZGSo71vtxS+//ML27dtx6uWEHj2FKYXkJ+VbOiwhhAWYndj94x//YM2aNbz11lvY2dmp2/v27cvHH3/cpMEJIcS1KEgp4Pzp8xgwEEecuj08PJxVq1YRExNzhVe3PSEhIXTp0oWCSwWkkw5Iq50Q1srsxO6zzz5j1apVzJgxA51Op24fMGAAZ8+ebdLghBDiWhz4+gAAqaRyiUsWjqb5RUREcM899xAVFcVxjlNAgSR2Qlgps8fYpaen11vQ02AwUFlZ2SRBCSGEuUxLiAH8ecmfmcpULnJR3ZadnY2npydmFgJoM0z3f5zjnOAEab/JCkFCWCOzW+x69+7N7t2762z//vvvGTRoUJMEJYQQ5qhvCbENbGDF7ytQFAUnJye++OIL3nzzTTIzMy0YafOodwm1gu9xw1g6IT093VKhCSFamNktdi+99BKzZs0iPT0dg8HAjz/+SExMDJ999hkbN25sjhiFEOKKGlpCLJdcAC5cuEBxcTE2NjZ07NjREiE2q4buv5BCAMLCwli1ahVz5syxRHhCiBZkdovd7bffzoYNG9i2bRvOzs689NJLREdHs2HDBm655ZbmiFEIIa6oviXEtBotoaGhAOos2K5du2Jjc11Vnlql+u6/OoPBwLx580hLk+5ZIdo7sxM7gFGjRrF161ZycnIoLS1lz549jB8/vqljE0KIRgkICGD58uXqcw0a/vHUP9R1YBMTEwEICgqySHzNLSAggGXLlqHRaADUv6vT6/XEx8e3dGhCiBZ2zR9djxw5QnR0NGAcdxceHt5kQQkhhLlmzZrFkvlLmMAEOrl24tk3ngWMrVVJSUlA+03sAGbPns3mzZvx8vIifEA4C59aiMLliSI6na7eiW9CiPbF7MQuLS2N++67j7179+Lh4QFAfn4+N954I9988436CVkIIVpaX/oSRBC9JvRCZ2ssx5STk0N5eTl2dnZ06tTJwhE2r+zsbMLDw3H1dOWBwAf4IvkLFBR0Oh0rV66U92chrIDZXbEPP/wwlZWVREdHk5ubS25uLtHR0RgMBh5++OHmiFEIIRqlF70ACJlyuWUqOTkZgC5dulxxHFp7YOpyTk9P5+7b7mYRixjOcKKiomTihBBWwuwWuz/++IN9+/bRs2dPdVvPnj1Zvnw5o0aNatLghBCNV1JSoi5uX1xcjLOzs4UjalkXYy7SgQ7o0RM0/nKXqymxCwwMtFRoLeb8+fMUFxfj4uKCU5gT7rgTTjidO3e2dGhCiBZi9sfXLl261FuIWK/X4+/v3yRBCSHElZSUlKDRaNBoNJSUlAAQ/4txYkAiidi72QOgKIpVJXaAOp6w3LccBYWOdKQkp8SyQQkhWozZid3bb7/NggULOHLkiLrtyJEjLFy4kH/9619NGpwQQjRW/EZjYneWy0sbXrx4kdLSUmxsbKzmg6epOzYjL4NssgFI3ycFioWwFmZ3xc6ePZvS0lKGDRum1oOqqqrCxsaGhx56iIceekg9Njc3t+kiFUKIBhRlFpF52LiiRAwx6nZTa11AQEC7rF9XH1OLXWZmJqmaVPwUP9L2pjFohqwMJIQ1MPudbunSpc0QhhBCXLvYDbGgQOcbOlN4sFDdbkrsunbtaqnQWoyzszOKoqAoCu+99x5FRUWUdCyBHEjbK4WJhbAWZid2s2bNao44hBDimsX819hK1/P2njW2a7VabG1t6datmwWisgyNRkO3bt2IjIxk8YeL2T99PzmROZTll+Hg4WDp8IQQzax9z/0XwkpZ06LvFUUVnNtmXDKs17ReNfZNmzaN559/3momTpgEBgbi6OiIract3j28QYGUvSmWDksI0QIksROinVi7dq36dVhYGKtXr7ZgNC3nwLcH0Ffo8QrxokNYhzr7dTpdu69fV9vAgQN59tlnufnmm+l6k7EbOnlXcr2ziYUQ7Uurebf75z//iUajYdGiReq2srIy5s+fj7e3Ny4uLkyfPp3s7Owar0tJSWHy5Mk4OTnh4+PDs88+S1VVVQtHL4RlpaWlsWDBAvV5e1/0vXoSO3nhZI5xjJ7TetZYI7W+skzWQqfTqd+LwJuMrZUpu6TFTghr0CoSu8OHD7Ny5Ur69+9fY/uTTz7Jhg0b+O677/jjjz/IyMjgzjvvVPfr9XomT55MRUUF+/btY+3ataxZs4aXXnqppW9BCIuKi4vDYDDU2NZeF32vncQqKGxgA+4R7jWO+/DDD/n3v/9NTk5OS4fYaiiKgt8NfgBkHMmgoqTCwhEJIZrbdSd2hYWF/PTTT0RHR1/T64uLi5kxYwYfffQRnp6e6vaCggJWr17Nu+++y5gxYwgPD+fTTz9l3759HDhwAIAtW7YQFRXFF198wcCBA5k4cSJLlixhxYoVVFTIG5iwHqGhoXW6G9vrou/1JbEKCiXul7sWS0pKyMvL4+LFi7i5ubV0iK1CfHw87733HlsObcGtixuGKgOZhzItHZYQopmZndjdfffd/Pvf/wbg0qVLDBkyhLvvvpv+/fvzww8/mB3A/PnzmTx5MuPGjaux/ejRo1RWVtbY3qtXL7p27cr+/fsB2L9/P/369cPX11c9ZsKECRQWFnLmzJkGr1leXk5hYWGNhxBtWUBAAMuXL1eft+dF3+tLYrUaLT169lCfOzs789xzzzFz5kwcHKxzJqiLiwtFRUVkZmaq3bFS9kSI9s/sxG7Xrl3qmrDr169HURTy8/NZtmwZf//738061zfffMOxY8d444036uzLysrCzs4ODw+PGtt9fX3JyspSj6me1Jn2m/Y15I033sDd3V19dOnSxay4hWiNqpcias+LvtdOYjVo+Puiv9dJYh0dHQkKCqr9cqvh6+vLrFmzePLJJyWxE8KKmJ3YFRQU4OXlBcCmTZuYPn06Tk5OTJ48mbi4uEafJzU1lYULF/Lll1+2+CfqxYsXU1BQoD5SU1Nb9PpCNLf2vuj7rFmz6EIXZjGLFzxe4Lk3n7N0SK2OqZ6dra2tmthlHs5E+7+3fWsqiSOENTE7sevSpQv79++npKSETZs2MX78eADy8vLMStCOHj1KTk4OgwcPxsbGBhsbG/744w+WLVuGjY0Nvr6+VFRUkJ+fX+N12dnZ+PkZBwP7+fnVmSVrem46pj729va4ubnVeAjRHrXn8hYDGEAQQQyZNgSdrU7dXlpaypo1a9ixYweKolgwwtbDu6c3Th2dOFR2CAPG8YnWVBJHCGtidmK3aNEiZsyYQUBAAJ06dWL06NGAsYu2X79+jT7P2LFjiYyM5MSJE+pjyJAhzJgxQ/3a1taW7du3q6+JiYkhJSWFiIgIACIiIoiMjKwx623r1q24ubnRu3dvc29NCNFGGKoMhBEGQM87aq42kZycTHJyMtHR0TXKn1ijsrIyNm3axNq1a3EZ4sIGNqj72ntJHCGsldlLij322GPccMMNpKamcsstt6iDmIODg80aY+fq6krfvn1rbHN2dsbb21vdPmfOHJ566im8vLxwc3NjwYIFREREMHz4cADGjx9P7969+ctf/sJbb71FVlYWL774IvPnz8fe3t7cWxNCtBGpu1NxxplSSulyU80xsqb1Ya1ttYn62NracuzYMSorK3Hu5IxCzRZMU0mc9jjJRghrZXZiBzBkyBD69+9PYmIi3bt3x8bGhsmTJzd1bLz33ntotVqmT59OeXk5EyZM4IMPPlD363Q6Nm7cyKOPPkpERATOzs7MmjWL1157rcljEcJalJSU4OLiAhjLETk7O1s4oroxxa6PBSCa6BrdsGAsWg6S2IHxPbJLly6cO3eOzgM6o0FTI7lrryVxhLBmZid2paWlLFiwQK38HhsbS3BwMAsWLKBz58688MIL1xzMzp07azx3cHBgxYoVrFixosHXBAYG8uuvv17zNYVoL5ydna9pTFntpKm1M1QZiP3ZmNhFEVVjX1lZmTojXhI7o8DAQM6dO4fOV8cdDnewvmw9Ckq7LokjhDUze4zd4sWLOXnyJDt37qwxWWLcuHGsW7euSYMTQjSd9jILMnlHMpcuXMKpgxMxFTE1WhRTU1NRFAUvLy9cXV0tGGXrYUpwU1JTuP2m21nEIsIIa9clcYSwZmYndj/99BP//ve/GTlyZI2ByX369CEhIaFJgxNCXJ/qa6q2l1mQZ74yFh/vc2+fOt2wpvF1Xbt2bfG4WqvOnTuj0+koKSnBa5AX7rjTj37tviSOENbK7MTu/Pnz+Pj41NluKqsghGgdaq+p2h5mQdphR/xG4/q3A/4yoM5+mThRl42Njdrdqgs2JsKBBEopGCHaKbMTuyFDhvDLL7+oz03J3Mcff6yWIRFCNL+r1airb01V0yzItqo3vam6VIV3D2/8h/rX2FdZWUlGRgYgiV1tpu9HkWsRlVTijDO5sbkWjkoI0RzMnjzx+uuvM3HiRKKioqiqquL9998nKiqKffv28ccffzRHjEKIa2BaU7V6cmfuLMj09HR69Ohx9QNbiA8+FFDAzTNvrtNDkJaWhsFgwM3Nrc5ShNbOlNilZaaRRhpBBJG2N42ug6XLWoj2xuwWu5EjR3LixAmqqqro168fW7ZswcfHh/379xMeHt4cMQohzKQoCtosLQtvXYgGYwKk1Wj5vxn/h5eDV4OvS09Pt/i4vPpaIk0xbWELS1nKSZuTdV5XvRtWhoXUFBAQgFarpaioiGx74+o8sm6sEO2TRpGBFhQWFuLu7k5BQYEsLybajIbqzaUdTGPTwk2kHzTOgi2ggFxy8cI4cF5np6PfA/0Ys2QMrv6ufPDBB8yfPx+4PLSi+tuCTqcjKSmpxcpi1L6vvLw8AgMD67Q81o5p7dq1JCUlMWXKFPmQWY/Vq1eTlpbGiE4j2DtvL+5d3VmUvMjSYQlh9Zo6B2lUi11hYWGNr6/0EEJYhmJQ2PnqTlYPX036wXR09jp63NGDAxzgNKcZ/8x4Og3uhL5Cz4lPTrC8x3J+e+u3GhMsFEWpM6je0uPyGjNWsKqqSp0UIuPr6meaKVzoXojWRktBSgH5yfmWDUoI0eQaNcbO09OTzMxMfHx88PDwqLebQ1EUNBoNer2+yYMUQlyZQW9g/cz1RH4ZCcCAmQMY99Y4NC4a7ne5H4BRr4yCV6CXSy8mMIEuJV1Y9/w6dVH4hlh6dYLQ0FC0Gi0GpeGxglqtlgceeIDU1FS8vb0tEWarFxgYyL59+0jPSadTeCfSD6aTsjsFj0APS4cmhGhCjUrsfv/9d7y8jONyduzY0awBCSHM99Xsr8han4XWRsuUlVMY9NAggHpny6aRxid8wvYl2yl8uRCNoeYyUxqNRm21M2d1guZaiiwgIICHBz3MR8c+anDFBK1WS2BgoLTWXUHXrl2ZMGECgYGBRKZEkn4wneRdyfR/oL+lQxNCNKFGJXZ/+tOfAGN3xx9//MFDDz0ky9AIYWHVJzk8uv5Rpmqm8sY3b9B7eu+rvlZB4YYnb6DrsK4k3ZZUY5mpZcuWqWPuoqKiLDorNj09HX93fwJOBbCIRaxhDQeiDrSqmbpthYODA8OHDweg8KZC9v9rP8m7ki0clRCiqZk1K9bGxoa3336bqqqq5opHCNEItYsPKyhs1GzEbZh5A2+739KdNze9yaM8yixm8ebQN7n/7vvV/ZZYnaD2rNwljy7BUGWgkELyyKsTk8FgYNOmTURFRclQkEbqOrIraOBizEVKcuq26goh2i6zy52MGTNG6tUJYWH1TSgwGAx1Jjk4OzurEyIa6hrtNKQTP/Mz/vhTfKCYDTM3qCVSWlp9q2W8vf5tCijgCEfqfU1mZiYHDx5kw4YNUubkKsrLyzl+/Dj7ju3Dp69xBaHk3dJqJ0R7YnaB4okTJ/LCCy8QGRlJeHh4nV8Wt912W5MFJ4SoX2hoKBpqjo27nkkOaaTxJV8y12Eu5347x3jGs5nNTRVuo9WXsCooFLsUc6b4TL2vsbe354YbbkCj0aDVmv1Z1apUVVXx888/AzDoxkHkROaQvCu5Ud33Qoi2wezE7rHHHgPg3XffrbNPZsUK0TIqYyuZylQ2sKHBCQVXU3tViRRSmLhqIhtmbiCCCC5y8Zrju9YVK+pbLUODhhvvupGPPv2o3td06NCBiRMnXnOs1sTZ2Zl+/frh7u6OR7oHx1ceJ2V3iqXDEkI0IbM/3hoMhgYfktQJ0fz0lXp+ffxXBjOY0YwGjJMc5syZc9XXXm1ViZ539mTkyyMBmMQkkn5PanRcTbFiRUBAAMuXL1efa9Bwm/Y2Jjw/wexzifrdeeedjB07lh63GBPvrBNZlBWUWTgqIURTMTux++yzzygvL6+zvaKigs8++6xJghJCNOzYR8e4EH0Bxw6O7Gc/0LhJDvWNX5s3bx7p6ek1jhvz8hgGzBqAFi0bZ20kN+Hqi8U3dG5T0WBzzJo1yxgHY1jEIh6c/SCdenaqd6xgUVERycnJMqHrGrh2csUrxAsUSN2baulwhBBNxOzE7sEHH6SgoKDO9qKiIh588MEmCUoIUb+K4gr+eM04eenGxTdSRuNbWhpawSEjI6NG0qTRaJiycgqdh3WmLK+MddPWkZedV2f91sac+1pXrPDBh5u4CXeNOyOfH9ngcdHR0axZs4Z169Zd03WsVVlZGbGxsQSMMHbdywQKIdoPsxM70woTtaWlpeHu7t4kQQkh6ndw2UFKskvwDPak/4PmFZY1jV+rrqEJFzb2Ntzz4z24+LmQczqH3+b+dsWZso09d0lJyRUTRJORGJO5nnf0xLtHwytJpKQYx4d16dKlwWNEXatWreLrr7/Gubex9TNll4yzE6K9aHRiN2jQIAYPHoxGo2Hs2LEMHjxYfQwYMIBRo0Yxbty45oxVCKtWUVzB/neNXa+jXxuNzk5n1utrj1+72oQLV39X7v7xbnR2OuJ+jmMUo5rs3FeSF59HX/oCMOyZYQ0epygKSUlJgKwPay7TurGV/pUApB9Op/JSpSVDEkI0kUbPip02bRoAJ06cYMKECerSQQB2dnZ069aN6dOnN3mAQgijwx8e5tLFS3iFetH33r5odVp16a/GmjVrllmrSnSJ6MKkFZPY8MgGxjCGLLKa7NwN2f3KbrRoiSUWn/4+DR6Xm5tLSUkJOp3OIoWU27KuXbty8uRJsiuycfV3pSijiPSD6XQb3c3SoQkhrlOjE7uXX34ZgG7dunHPPffg4ODQbEEJIWqqKq/iwLsHABi5eCRa3fXXa2tsMjT44cGkHkrlxEcnmM50LsZcxHnwldeBvdZEK3V/KrE/xWLAwDa2XfHY5GTjuLCAgABsbMyu3GTVTC2cGRkZ9BzVk6h1USTvSpbEToh2wOzfDrNmzcLBwYGKigrS0tJISUmp8RBCNL3jXxynOKuYQgrpfkf3Fr/+zW/dzBnOkEEGa6avoSy/6ctjGPQGNj2xCYDBDw0mW8lucLUMuJzYmboVReN5eXnh4uKCXq/Hra9xGTqpZydE+2D2x9y4uDgeeugh9u3bV2O7aVKF1LITomkpisLRD44CcJjD6GzNG1vXFL746gu+4zsANEka0m5K4z/H/3NdLYe1ixgf+c8RMo5kYO9mz5i/j7nq602JXbdu3a45Bmul0WgIDAzkzJkz6AOM79mp+1LRV+ot8v9LCNF0zH5Xnj17Nlqtlo0bN3L06FGOHTvGsWPHOH78OMeOHWuOGIWwaukH08k+lk0VVRzlaItfv3aNOgWFjyM/5rNZn5k9xq++IsYlJSV4ajxZ//h6AMa+MRbXTq5XPE9+fj4FBQVotdprmqAhLrd0XtRexNHLkcrSSjKPZVo4KiHE9TK7xe7EiRMcPXqUXr16NUc8QohaDi47CEAkkZRSel3ncnZ2NjsZa2j91p1f7qRrUFfGLLl66xo0XMR4xI0juIM7cMAB/+H+hM8Lv+q5TK11nTp1ws7Ozoy7ESamcXapaakEjQgidkMsKbtTCBgmibIQbZnZLXa9e/fmwoULzRGLEKKWoowior6LAuAQhywSQ3016rRaLV54sfvvu9n/nrEEiylprL06hElDRYz/+8p/CSSQcsqZ9NGkRnXvmhI7KXNy7Xx8fHBwcKCyshKPgR4AJO+SQsVCtHVmJ3Zvvvkmzz33HDt37uTixYsUFhbWeAghms6RlUcwVBnoHNGZTIzdZLWXAGtu9dWoW7VqFXf84w4Atjy1hT1v7rnqeRpKELO/zQZgAxvwCPJoVEymiVqS2F070zg7AP73V8qeFBSDeS26QojWxezEbty4cRw4cICxY8fi4+ODp6cnnp6eeHh44Onp2RwxCmGVDHoDJz45AUByr8stKaaxaS3JtH4rGGvUzZkzh5GLRzLqRWPR4u0vbOeXx35BX9nw5KnaCaJWq2WKMgV33NnNbk5zulGxFBcXc/HiRUBmxF4vPz8/AD7b8hm2zraU5ZWRcybHwlEJIa6H2WPsduzY0RxxCCFqSdyeSGFaIeXu5by59k11u2ls2oQJEywyccBUo06j0TBmyRgcPBzY+uxWjnx4hMxjmUxbO40OPTvU+1pTEeN+9GOcYRzuuNN3Zl9e+ewVoO5M2fqUlpYSGBiIXq+XeprXyfT/JzAoEP9h/iT/nkzyrmR8+/laODIhxLUyO7H705/+1BxxCCFqOfHpCQBcR7ti+G/dsWnx8fHqL2ZFUYiOjiYyMpKMjAwMBgPu7u6EhoYycuRIdLrmK2Fx49M34t3Dm/V/WU/6wXT+0/8/hP81nGELhuEV4qUepxgUknck8zAPE4Ax7iGPDSGpdxJ8ZjwmLCyMVatWMWfOnAav5+Pjw+zZs82eBCLq8vX1paCggKysLEbfMJrk35NJ2ZXCDfNvsHRoQohrpFGu4d1x9+7drFy5knPnzvHdd9/RuXNnPv/8c4KCghg5cmRzxNmsCgsLcXd3p6CgADc3N0uHIwSX8i7xTqd30JfrmfzLZIZNHVZj4oFOpyMpKYmAgAAuXLjADz/8QFZW3eW+QkNDuf/++687npKSEnUZweLi4nonRxSkFrDhkQ0kbE5Qt3n38MYrxAtDlYHsU9kUZxUDUE45U/89lS63dyEwMLDBexPNq/q/a/Rv0aybuA6XTi48lf4UGo3GwtEJYR2aOgcxe4zdDz/8wIQJE3B0dOTYsWOUl5cDUFBQwOuvv37dAQkh4PQ3p9GX6/Hp50P4xPA6kxdWrlxJQEAAlZWVfP7552RlZWFvb8+oUaN48MEHmTdvHrfddhvjx49XX2easdpUSkpK0Gg0aDQaSkpKcO/izgObHuCBLQ/QfUJ3NFoNF2MvEvdrHAlbEijOKsbOzY7DHGY5y+k/u3+DM2Xj4+PrvWZlZSWXLl1qsnsQl/kN8UNnp6M4s5i8hDxLhyOEuEZmt9gNGjSIJ598kpkzZ+Lq6srJkycJDg7m+PHjTJw4sd5Wg9ZOWuxEa/PRDR+RcTiD8e+OJ+LJiBotKzExMTXGoWVkZLB7924mT56sHlOboihs2rSJyspKpk6d2iStMVdrxSu9UErGkQwK0wrRaDV49/TGracbnh091dfk5eWZ1WJ39uxZ1q1bR69evbjnnnuu+x6sXfV/w6NHj3LiiROk7k3lttW3MeihQRaOTgjrYPEWu5iYGG666aY6293d3cnPzzfrXB9++CH9+/fHzc0NNzc3IiIi+O2339T9ZWVlzJ8/H29vb1xcXJg+fTrZ2dk1zpGSksLkyZNxcnLCx8eHZ599lqqqKnNvS4hWI+dMDhmHM9CjZ9xT4ygpKamx3zR5wcTf35977rmnwaQOjMnf4cOHOX78OLt27WqWuGtz6uBEyK0hDH54MIMeGkTXEV2xdbStcUx9pVRMrZH1OX/+vPHcTk7NF7gVqb4SyJAhQzjheAKQdWOFaMvMTuz8/Pzq7SbZs2cPwcHBZp0rICCAf/7znxw9epQjR44wZswYbr/9ds6cOQPAk08+yYYNG/juu+/4448/yMjI4M4771Rfr9frmTx5MhUVFezbt4+1a9eyZs0aXnrpJXNvS4hWI/LLSADiiKt3pYmKigrWrl2r1nJrjM6dOzN58mQAdu7cyblz55om2Kuo3V1bXxHj+kqpNGTUqFE8/fTT9X64FOaps1ScorDi9xUUUCCFioVow8xO7B555BEWLlzIwYMH0Wg0ZGRk8OWXX/LMM8/w6KOPmnWuqVOnMmnSJEJDQ+nRowf/+Mc/cHFx4cCBAxQUFLB69WreffddxowZQ3h4OJ9++in79u3jwIEDAGzZsoWoqCi++OILBg4cyMSJE1myZAkrVqygoqLC3FsTwuIUReH0N8Z6bpFE1nvMrl27SEpKYv369ej1DdeNqy08PJxBg4zda+vXr2+VY9Vqt0bWx8XFBXd39xaIpn2rb3yjwWAgT5NH3rk8CtOl4LwQbZHZid0LL7zA/fffz9ixYykuLuamm27i4YcfZt68eTU+/ZlLr9fzzTffUFJSQkREBEePHqWyspJx48apx/Tq1YuuXbuyf79xCaP9+/fTr18/fH0v11yaMGEChYWFaqufEG1J+qF08hPzsXW2JZbYOvu7devGiRMnAOMHI3PLmEycOJEOHTpQXFzMli1bmiJkoOVXwxDXr76VQHQ6HT3CjOM3RwaMrDMMQAjR+pmd2Gk0Gv7f//t/5Obmcvr0aQ4cOMD58+dZsmTJNQUQGRmJi4sL9vb2/PWvf2X9+vX07t2brKws7Ozs8PDwqHG8r6+vOkEjKyurRlJn2m/a15Dy8nJZCk20GtW7K098fgKAkMkhVFIJGJMmZ2dnqqqqePbZZwFj65u5Qx8AbG1tmTp1KgAnTpxQ11y9FtXHZ7XEahg7duzg888/Jy4urlmvYy0aGt/Yb2w/ALrRzUKRCSGuh9mJnYmdnR29e/fmhhtuuOKg7avp2bMnJ06c4ODBgzz66KPMmjWLqKioaz5fY7zxxhu4u7urjy5dujTr9YRoDA0azv5wFoAor8s/A6ak6ciRI5w/fx5HR0fGjh17zdfp2rUrgwcPxt7e/po/1NQen2VaDSMtLe2a47qauLg4zp071yq7kNuq6uMbv/32WxRFQRts/LUgiZ0QbdM1J3ZNxc7OjpCQEMLDw3njjTcYMGAA77//Pn5+flRUVNSZaZudna2ub+jn51dnlqzpuemY+ixevJiCggL1kZqa2rQ3JcQ1CCSQkqwSyt3KWbLqcgu4KWn673//C8CYMWNwdHS8rmuNGzeOJ554gn79+l3T682tPwcNd9fWN6GitrKyMrUVvlu3btcUs7gye3t70tPTKe1QigED3nhTlF5k6bCEEGayeGJXm8FgoLy8nPDwcGxtbdm+fbu6LyYmhpSUFCIiIgCIiIggMjKSnJzLi1Zv3boVNzc3evfu3eA17O3t1RIrpocQltaXvgA4jXCqN2nKyMigQ4cODB48+Lqv5ejoeF0lQxoanxUSElJjW1N116akpKAoCp6envLz2kxMJWYy8zLJJBOAlF0pdWY2CyFaN4smdosXL1Zn+EVGRrJ48WJ27tzJjBkzcHd3Z86cOTz11FPs2LGDo0eP8uCDDxIREcHw4cMBGD9+PL179+Yvf/kLJ0+eZPPmzbz44ovMnz8fe3t7S96aEGbRoqU3xg8jN8+8ud6kadasWdx666119l0PRVGIi4sjJibGrNc1pv5cU3bXmsYCSmtd8zHNSM7NzSXOJo5EEjnx2wnLBiWEMFujfkMMHjyYvDzjEjOvvfYapaV1a2tdi5ycHGbOnEnPnj0ZO3Yshw8fZvPmzdxyyy0AvPfee0yZMoXp06dz00034efnx48//qi+XqfTsXHjRnQ6HRERETzwwAPMnDmT1157rUniE6KldKYz2WRT7llOxJ8j6k2abr75Zrp3796k142MjOSrr75i06ZNdVoJr+Zq9eeupbu2IUlJSQAEBgaa/VrROI6Ojvj4+HDs2DF2Vu1kLWv5649/rdHqKoRo/Rq1pJijoyNxcXEEBASg0+nIzMzEx8enJeJrEbKkmLCkDz74gPnz5wPGWecfffQR9957Ly4uLmi1Wk6dOkWfPn2a5dqVlZUsXbqU0tJS/vznP5t1nastKZaWlmbWcmENKS8v580330RRFBYtWiQ17JrRZ599xuzZs2usKazT6tAbjPUS6/t3FkJcn6bOQWwac9DAgQN58MEHGTlyJIqi8K9//avBmbCy6oMQjVdf9f958+YxatQoAIYOHcovv/xCWVkZ4eHhTX59W1tbhgwZwq5duzhw4ECTJpCm7lpT0nq15cIaYhpf5+HhIUldM9Pr9dT+rG9K6oQQbUOjErs1a9bw8ssvs3HjRjQaDb/99hs2NnVfqtFoJLETwgwNdVcmJCSg0WgYNmwYly5dqvPLtikNHTqUvXv3kpaWRlpamtmJ15XMmjVLTeyioqLo0aOH2eeQ8XUtJyIiAo1GU+P/m1ajxaAY/4+mp6df07+hEKLlNCqx69mzJ9988w0AWq2W7du3t6uuWCEsJTQ0tM4vUp1OR/fu3enevTteXl7Y29vTv3//ZovBxcWFvn37cvLkSQ4ePNjoxM5UpqSxGrNcWH1kfF3L6dWrF/fccw/r1q1DURQ0aBjsOJgjpUcA48zmVatWXXE9XyGEZZk9vc5gMEhSJ0QTCQgI4P5O96NBA1zuruzcuTNDhw4FoE+fPtjZ2TVrHKaZ5mfOnKGgoKBZr2WOiooKMjIyAGmxayl33303ixYtYujgoTyie4SjpUfVfS1RiFoIcX2uqW5CQkICCxYsYNy4cWqh04SEhKaOTYh2L+9cHqEZoSxkIXbYqbNLKysr6dmzJ4Bat7E5+fn50a1bNzp27EhxcXGzX6+xTOPr3N3d6ywvKJpHly5dcHd3Z/DQwbj2dEWh1pi7a5zZLIRoGY3qiq1u8+bN3HbbbQwcOJARI0YAsHfvXvr06cOGDRvUUiVCiKs7+1/jEmJ55FFBhdpdeeSIsesrODiYDh06tEgsd999Nw4ODmg0mha5XmPI+LqWZ1pi0c/Pj6CRQWiiNDWSu/oKUQshWg+zE7sXXniBJ598kn/+8591tj///POS2Alhhpj/GgsDn+Wsuk2v13P8+HEAtTu2JVzvMmX1MXccXm033XQTQUFBzRKbqJ+Liwvnz5+nY8eO+A/xZ+qqqWxgAwrKNc9sFkK0nEbVsavOwcGByMhIQkNDa2yPjY2lf//+lJWVNWmALUHq2AlLKL1Qyr98/4ViUHiP9yigQK0Tlp2dzalTpxg7dmyTrjTRGBUVFaSmpjZ5MWTRNpSUlDBgwADKysqIPB7Jii4ryC3PZTWrORxzWGbFCtHEmjoHMfs3RseOHTlx4kSd7SdOnJBJFUKYIXZjLIpBwae/DwXUnLDg6+vLLbfc0uJJXWlpKe+88w5ffvklRUWyALw1cnZ2Jj4+nrS0NDw7euJ/gz/uuNODHtc8s1kI0XLM7op95JFHmDt3LufOnePGG28EjGPs3nzzTZ566qkmD1CI9qT6ag1fTPkCgLA7w1BONl+dOnM4OTnh6+tLamoqJ0+eZOTIkRaL5ciRI1y8eJF+/frh7+9vsTisXdfRXUndnUowwZYORQjRCGYndn/7299wdXXlnXfeYfHixQD4+/vzyiuv8MQTTzR5gEK0R7bYkrQ9CYBe03qp2w8ePEhGRgY33HCDxVpHBg0aRGpqKsePH2fEiBEWm0wRGRlJSkqKcayXJHYtLj4+nqioKDx6eQAQRBAGvXnrCQshWp7Z/TwajYYnn3yStLQ0CgoKKCgoIC0tjYULF7aq2XRCtGbBBFN1qQr3QHd8+/sCxuXEjhw5wqlTp8jOzrZYbKa6ebm5uaSkpFgsjuHDhzN48GCCgoIsFoM1i4+P5/jx4xQ4F+Dg4YAjjhREt54ah0KI+l3XAB5XV1dcXV2bKhYhrEYvjK10vab1Uj8QZWZmcuHCBWxsbOjdu7fFYrOzs1Ovf+rUKYvFERYWxtSpU/H09LRYDNYsLCyMiIgI+g/sT9AYY3J9bus5C0clhLialh2ZLYRAgwYHHCigoEY3rGlSUq9evXBwcLBQdEamJcyioqLQ62UReGsUGBjI+PHjCQwMJPgW4/g6SeyEaP0ksROiBa1duxYFhXWsYylL2Rq7FTDWrjt9+jQAAwYMsGSIgPGXuouLC2VlZRZZPuro0aOkpaVhMMiYrtYgeJwxsUvdn0pFcQUlJSVoNBo0Gg0lJSUWjk4IUZ3ZkyeEENcmLS2NBQsWqM8VFB597FEmTprIpUuXuHTpEs7OzgQHW372oVar5Y477sDLy6vFl/IqLS1l48aNADz99NPqLGLR8iorK0lJSaG8ohyPbh7kJ+WT9EcSnUdL2RMhWiuzWuwqKysZO3YscXFxzRWPEO1WXFxcnRYo07qbpta63r17t3jtuoYEBwdbZH3WxMREAHx8fCSps7CkpCS++OILtm3bdrk7dpt0xwrRmpn1G8TW1taig6mFaMtCQ0PrJG2mdTd9fX3p0KEDffv2tVB0V3Y9y4KZy5TYyWxYy+vatSsajYa8vDz8bvQDZJydEK2d2U0DDzzwAKtXr26OWIRo1wICAlg0cREajLNgq6+7eeONN/LYY4+pC7C3FllZWXz11Vd8++23LXZNSexaD3t7e7WeoiHQABo4f+Y8xZnF6jHp6emWCk8IUQ+zx9hVVVXxySefsG3bNsLDw3F2dq6x/913322y4IRob0IzQlnEIjawgV+ifqmx7mZrrAOp0+mIi4tDq9VSWlqKk5NTs14vPz+f3NxcNBoN3bp1a9ZricYJCgoiLS2NtNw0/MP9yTiSwfIly9X9YWFhrFq1ijlz5lgwSiGEidktdqdPn2bw4MG4uroSGxvL8ePH1Ud9a8gKYc2qzx7MjMkk+3g2briRSSadO3emsrKSqKgoKisrLR1qvTp27Iivry8Gg4GYmJhmv56pta5z587Y29s3+/XE1XXv3h2Ac+fOETQuiAIKeP2z19X9BoOBefPmWWT2tBCiLrNb7Hbs2NEccQjR7sVvjAcghRRKMJaIiI2N5fvvv8fHx4dHH33UkuE1KCwsjOzsbKKjoxk0aFCzXku6YVufgIAAbG1tKS0txTPck1xyUag55tI0CSggIMBCUQohTK55+l18fDybN2/m0qVLQMsOrhaiLUr4JQGAs5xVt505cwYwTqxorUyrUCQkJFBWVtZs11EUhXPnjAPzW0PJF2Gk0+nUbvFS71J8HHzUcaLVjwkJCbFAdEKI2sxO7C5evMjYsWPp0aMHkyZNIjMzE4A5c+bw9NNPN3mAQrQHDjiQujsVgBiMXZqVlZVq6aA+ffpYLLar6dixIx06dMBgMBAbG9ts1zl//jwlJSXY2NhIy08rY0q0k9KS6P+n/kxlqrqv+iQgIYTlmZ3YPfnkk9ja2pKSklJjIPU999zDpk2bmjQ4IdqLTnQiryqPjn06clG5iKIoZGVlUVVVhbu7O35+fpYO8YrCwsIAiI6ObrZrmFrrunbtio2N1E5vTUzj7JKTkwm6JYjBDGY60wHjsnMycUKI1sPsxG7Lli28+eabdT6dhYaGkpyc3GSBCdEerF27FoBEElnKUs51u1wD7OxZY5dsr169WuWM2Op69+5NYGBgs3a3mcbXSTds69OhQwdcXV3R6/U4DTB+oO9Nb+ywU8uhCCFaB7MTu5KSknpLHuTm5sosNiGqqW8JsaW/LSUtLQ29Xq/OMjW1hrVmfn5+zJ49m/Dw8GY5v16vVz8YysSJ1kej0aitdjn6HDyCPdChIxhJwoVobcxO7EaNGsVnn32mPtdoNBgMBt566y1uvvnmJg1OiLak9sLo9S4hZjDOHkxPT6esrAwnJ6dWV5TYEqqqqrjhhhsICgpq9d3S1srUkpqYmEjwBOPXobTeST9CWCuzB7K89dZbjB07liNHjlBRUcFzzz3HmTNnyM3NZe/evc0RoxBtkmkJserJnWn2YEBAAAsWLCA3N7fVrA3bGCUlJcTExNC/f/8mHQdnb2/PmDFjmux8oukFBwcTFBRE9+7d8enmw7EPjzHaf3SzF60WQpjH7N8offv2JTY2lpEjR3L77bdTUlLCnXfeyfHjx9WmeiGEsf7XsmXL1NIQWq22xuxBLy+vNlUiQlEUPv74YzZs2EBCQoKlwxEtzNnZmZkzZzJixAiCRgdh42hDUUYR2aeyLR2aEKKaa/rI7e7uzv/7f/+vqWMRot0ZHzaeRSwiiyz+dvJvhPVt/ePpGqLRaOjRoweHDh0iOjqanj17Nsl5S0tLSU1NJSgoCDs7uyY5p2heNg42BI8NJnZjLHG/xuE3QLrPhWgtrqkPKC8vj3/961/MmTOHOXPm8M4775Cbm9vUsQnRZpkWRo//JR533Kmggq5BXQH4448/WLduXZucRW4qVhwTE4Ner2+Sc8bHx/PNN9+oM4hF61ZcXMzp06cJmWRsbY77Jc7CEQkhqjM7sdu1axfdunVj2bJl5OXlkZeXx7JlywgKCmLXrl3NEaMQbUL1xCQsLIzVq1cTv8G4jJhptQlFUTh16hRnz56luLjYInFejy5duuDs7ExZWZlanuR6GQwGPD09pcxJG1BVVcX777/PDz/8gPcwbwDS9qdxKfeShSMTQpiYndjNnz+fe+65h8TERH788Ud+/PFHzp07x7333sv8+fObI0YhWr3apU0MBgPz5s4jMS4RPXriMSZ458+fJzc3t80uwaTVatUuWFMdvus1cOBAnnjiCUaPHt0k5xPNx8bGhsDAQDp16oRtR1s69umIYlBI2CJjLoVoLcxO7OLj43n66afR6XTqNp1Ox1NPPUV8fLxZ53rjjTcYOnQorq6u+Pj4MG3aNLW2l0lZWRnz58/H29sbFxcXpk+fTnZ2zcG6KSkpTJ48GScnJ3x8fHj22Wepqqoy99aEuGYNlTbJJZceE3pQppTh7OysJkPBwcFttu6jqe5eTExMk64RXf09RbRe9913H3PnzqVLly6ETjaWO5HuWCFaD7MTu8GDB9e7rFB0dDQDBgww61x//PEH8+fP58CBA2zdupXKykrGjx9PSUmJesyTTz7Jhg0b+O677/jjjz/IyMjgzjvvVPfr9XomT55MRUUF+/btY+3ataxZs4aXXnrJ3FsT4pqZSptUp0WLF170mtZL3VZ9tYm2KigoCHt7e0pKSsjJybmucxUWFjbZWD3RMqon4KGTjIld/KZ4DHpDQy8RQrSgRs2KPXXqlPr1E088wcKFC4mPj2f48OEAHDhwgBUrVvDPf/7TrIvXXlt2zZo1+Pj4cPToUW666SYKCgpYvXo1X331lVrj6tNPPyUsLIwDBw4wfPhwtmzZQlRUFNu2bcPX15eBAweyZMkSnn/+eV555RWZZSdaREBAAMuXL1eHI+i0OiYbJuOOOz1vM3Zd5ufnk5mZiUajabIZpZag0+m499576dixI87Oztd1ru+//57s7GzuuuuuNtk1bc0qKirw7O+JvZs9pRdKyTiSQcCwgKu/UAjRrBqV2A0cOBCNRlOj2+W5556rc9z999/PPffcc83BFBQUAMb6XgBHjx6lsrKScePGqcf06tWLrl27sn//foYPH87+/fvp168fvr6+6jETJkzg0Ucf5cyZMwwaNOia4xHCHLNmzVITu+9f/p6TL5+k8w2dcfV3BS631nXt2vW6EyJL69at23Wf49KlS6SlpaEoCh06dLj+oESLOXToEFu2bKF///50H9+dqO+jiN0YK4mdEK1AoxK7ppr9diUGg4FFixYxYsQI+vbtC0BWVhZ2dnZ4eHjUONbX15esrCz1mOpJnWm/aV99ysvLKS8vV58XFhY21W0IAUDBLuOHlF53Xu5ydXV1pUuXLm1ibVhzKIqCRqMx+3WJiYlqUlf7Z1y0bl5eXuj1xuXxxkwZY0zsfo5lzBJZPUQIS2tUYhcYGNjccTB//nxOnz7Nnj17mv1ab7zxBq+++mqzX0dYJwccSPkjBYCwOy4ncX369KFPnz5NOuHAkmJiYti3bx/du3fnpptuMvv1pslW0gXb9nTr1g1bW1uKiorwuNUDjU5D9qlsvDRepBantvkWaSHasmtaeSIjI4M9e/aQk5NTZybgE088Yfb5Hn/8cTZu3MiuXbvU5ZYA/Pz8qKioID8/v8Yn+uzsbHWhcD8/Pw4dOlTjfKZZsw0tJr548WKeeuop9XlhYaEsxC6aTA96YKgy4NPXB+8e3nX2X0vrVmtUWlpKSkoKFRUVZid2iqJIYteG2djYEBQURGxsLKkXUwkYEUDqrlR60nbHjgrRXpid2K1Zs4Z58+ZhZ2eHt7d3jV9SGo3GrMROURQWLFjA+vXr2blzJ0FBQTX2h4eHY2try/bt25k+fTpgbCVISUkhIiICgIiICP7xj3+Qk5ODj48PAFu3bsXNzU2tkl+bvb19my01IVovZ2dnFEVh3R3rOPvT2RrdsOfOnaNTp044OjpaMMKm1aNHDzQaDVlZWXU+fF1NdnY2RUVF2NjY0LVr1+YLUjSb0NBQYmNjiYuLI3RKKKm7UulF253tLUR7YXa5k7/97W+89NJLFBQUkJSURGJiovo4d+6cWeeaP38+X3zxBV999RWurq5kZWWRlZXFpUvGKubu7u7MmTOHp556ih07dnD06FEefPBBIiIi1Bm548ePp3fv3vzlL3/h5MmTbN68mRdffJH58+dL8iZaXEVJBfGbjC1RYXcau2HLy8v56quvePvtt8nPz7dgdE3L2dlZTcrMLVYcGxsLGOv52draNnlsovmFhhpLnaSlpRFwSwAFFBiLcZ8yr56pEKJpmZ3YlZaWcu+999ap2XUtPvzwQwoKChg9ejSdOnVSH+vWrVOPee+995gyZQrTp0/npptuws/Pjx9//FHdr9Pp2LhxIzqdjoiICB544AFmzpzJa6+9dt3xCWGu+E3xVJVV4RnsiW9/4ySe+Ph49Ho9np6euLu7WzjCpmWqx3etiV2PHj2aPCbRMtzd3fHx8UFRFD754ROWspTP+ZzBIwazevVqS4cnhNUyOzubM2cO3333XZNcXFGUeh+zZ89Wj3FwcGDFihXk5uZSUlLCjz/+WGfsXGBgIL/++iulpaWcP3+ef/3rX9jYXNPwQSGuy9kf/1eA+M5e6jCF6kWJ28v4OhNTYpeSklKjsPiVFBcXk56eDkhi19aFhoZSUFDAP/7xDxSMk4IMioF58+aRlpZm4eiEsE5mZz9vvPEGU6ZMYdOmTfTr169ON8q7777bZMEJ0ZZUlVcRu9HYEmXqhq2qqlJbp9pbmRMADw8POnXqRGZmJjExMQwePPiqrzF9P/z9/XF1dW3uEEUz6tGjB1988UWdmd6mUijVJ8MJIVrGNSV2mzdvVivn1548IYS1StyeSHlhOa7+rmqh1sTERCoqKnB1daVz584WjrB59O3bF1dX10ZPnpBu2PYjICAAf3//OgXstVqtzHYWwkLMTuzeeecdPvnkkxrdpUIIiP7RuIZyrzt6odEaP+SY1lXu2bNnu/3gc+ONN3LjjTc26tiqqip1klVbXlZNGGm1WsLDw5k6dSo///wzABo0zB08V1rrhLAQsxM7e3t7RowY0RyxCNFmGaoMxPw3BrjcDasoSrvuhr0WRUVFdOrUicLCwjorxoi2qUePHgwePBhPT082rN3ALGbRIaoDFSUV2DnLWt1CtDSzJ08sXLiQ5cuXN0csQrRZKXtSKL1QiqOXI4E3GVdq0Wg0/PWvf2XKlCktsnqLpeXl5amJbEM8PT158MEHmT9/frttwbQ2oaGh2NnZUVFRQZFNEV2DulJZWkncr3GWDk0Iq2R2i92hQ4f4/fff2bhxI3369KkzeaJ6KRIhrMWZ784A0PP2nmhtLn9ecnFxITw83FJhtZjMzExWrVqFnZ0dzz777FVnpcus9fbDwcGBxx57TB1j2fPOnhx65xBR30bR564+lg1OCCtk9rurh4cHd955Z3PEIkSbZKgyEP29cSxdn7ut8xeZn58fLi4uFBcXk5iYqBavra64uBitVouTk5MFIhTNyd3dXZ08kXk8k0PvHCL2l1gqiiuwc5HuWCFaktmJ3aefftoccQjRZiXtTKIkpwRHb0eCxhqXxcvKymLLli307du3USVA2jqNRkPPnj05evQoZ8+erTex27dvHwcOHGD06NFmry0r2oa8vDzce7rj2d2TvIQ8BrsO5gxnKC4uBowt2GBM8p2dnS0ZqhDt1vUvHyGElTu97jQAYdPD0NnqAONs2MTERHWhe2tgmiASExODwWCosz8vLw9FUejQoUNLhyZawE8//cSyZcs4c+aM2nLdB+tswRbCksxusQsKCrrioGdz14sVoi3TV+jV1Sb63ttX3W4qc2JamcEadOvWDXt7e0pKSkhLS1PXkTW55557yMvLU1ttRPvSsWNHNBoN+fn59Lu7H3ve2EMoodgja3YL0ZLMTuwWLVpU43llZSXHjx9n06ZNPPvss00VlxCtXklJCYNcBjGDGTj7OquzYS9evMj58+fRarX1dkm2Vzqdjh49ehAZGcnZs2frJHZgnBUr2qfBgwczaNAgnJycUBQFrx5eJMYmEkAA6enpNQp0p6enS4FqIZqJ2YndwoUL692+YsUKjhw5ct0BCdGWmLqaetzRA63OOLLBtDZst27dcHR0tFhsltCrVy8iIyOJj49n/Pjx6vaKigrs7GQQfXtW/f+6RqMhuWcyS2OXoqAQFhbGfffdp+4PCwtj1apVzJkzxxKhCtGuNdkYu4kTJ/LDDz801emEaPWqyqrwx59EEvG4yUPdbuqGtcaixCEhIdx11108/PDD6rYLFy7w1ltv8e2339ZZU1S0T3Fxcbz3y3soGP+9DQYDX375pbrfYDAwb9480tLSLBWiEO1WkxWT+v777/Hy8mqq0wnR6r37wrt8yIcoKHz+wOesKl3FXXfdRXp6OmCdS2bZ2dnRu3fvGtuio6PR6/VUVFRIUeJ2rqKigi+//JLdu3fXO4GmOr1eT3x8vCw9JkQTMzuxGzRoUI03Z0VRyMrK4vz583zwwQdNGpwQrVVaWhpLPl5So0Vi3rx5DBkyhJCQECorK3F1dbVwlK3DmTPG4s21Ez7R/tjZ2VFWVoaHhwdarfaKyZ1OpyMkJKQFoxPCOpid2E2bNq3Gc61WS8eOHRk9erRVzQAU1i3ySKSa1Jno9Xry8vKYMWOGVXc5KorC7t27iYqKYty4cWRnZ6PVaq2ya9oa9enTh5ycHGbNmqXWPdWg4Y6Jd/Djb8aViXQ6HStXrpTWOiGagdmJ3csvv9wccQjRplRFVqFBUyO5q94CYc1djhqNhsTERLKzs9m/fz9gHHtnbRNJrFWfPn3YsWMH3bp1w8HBgWFlwxjMYMZ0H8OPGBO7qKgomRUrRDORAsVCXIOsDVlMZar6XKfT8fbbb0v36/+YWu9TUlIA6Nu375UOF+2It7c3fn5+KIpC7969ySQTd9yJ+iYKHcYC3tVLnwghmlajEzutVotOp7viQxb2FtbgwtkLZBzOYIjNEBwxtkJFRUXRoUMHli5dyvHjxy0coeWZul2rqqqwsbGxyokk1qxPnz7q3/HE4+znzKULl+iJ/D8Qork1OhNbv359g/v279/PsmXLrjoLSoj24OTnJwHodks3Lv12CTAW3k1MTAQgMDDQYrG1Fm5ubri6ulJUVIS3t7fUsLMyffr0Yfv27YSEhJBfmM+hfx5iz+t7WDxhMQ9sesDS4QnRrjU6sbv99tvrbIuJieGFF15gw4YNzJgxg9dee61JgxOitTHoDZz6/BQAfe7rA78Zt8fGxqIoCp06dZKyPxgnUFRWVgKofwvr4enpSUBAAGlpaZw+fZpBDw1iz+t7SNiSQH5SPh7dPCwdohDt1jWNscvIyOCRRx6hX79+VFVVceLECdauXSstFaLdKikpQaPR0NOmJ4WphTh4OtD/rv4oioKiKMTHxwOXu6CsXUpKCmVlZQDk5uaSl5dn4YhES+vfvz8Ap06dwqu7F0Fjg0CB45/IUAUhmpNZiV1BQQHPP/88ISEhnDlzhu3bt7NhwwYZGC2sRjjhAAyYNQAbB2ODd1FREUlJSYAkdiYnTpwAwN3dnX79+skwDSvUp08ftFotWVlZZGdnM/iRwYAxsTPo5f+DEM2l0YndW2+9RXBwMBs3buTrr79m3759jBo1qjljE6JVccYZO+wooIDwR8LV7aYlxAICAvDw8LBQdK1HRUUFUVFRgLHu5Z133om3t7eFoxItzcnJSS1pcurUKXpN64WjtyNF6UXEb4q3cHRCtF+NHmP3wgsv4OjoSEhICGvXrmXt2rX1Hvfjjz82WXBCtBZr166lhBI+53M0aOizvw9zehsXMDcldrKygtGlS5cICgriwoULMjzDyvXv35+zZ88SGRnJ2LFjGTBrAAfePcDhFYfpMVnq2AnRHDRKI0vkz549u1FFV02VxtuSwsJC3N3dKSgowM3NzdLhiFYmLS2NwMDAGt2JOp2OpKQkAgICKC8vJyYmhqCgIKljV41er0en06EoCjk5OZSWlhIUFGTpsEQLqqqq4t///jdBQUGMHz+eSxmXWB66HBSYf3Y+HXp2sHSIQlhcU+cgjW6xW7NmzXVfTIi2KC4urs4YseoLmNvb26sDxcVlOp2xGG10dDTfffcdHTt25LHHHrNwVKIl2djY8MQTT6DVGkf9OHZ3pMeUHsRuiOXQvw8xafkkC0coRPsjK08IcRWhoaFoqNlaLQuY1y85ObnODNjg4GB0Oh3nz58nJyfHQpEJSzEldSbDnhgGwMk1JykrKLNESEK0a5LYCXEVTuVOTGWqmtyZFjB3cXFh1apV7N27l0aOaGjXFEXh559/ZtmyZcTGxqrbHRwc1CT49OnTlgpPWFhGRgaJiYkEjQ2iY++OVBRXcGLNCUuHJUS7I4mdEFdxaPkhBjOYaUwDjMuHzZkzh1OnTpGZmUlCQkKjxp+2d2VlZXh6emJvb19n0oSpDMzp06clCbZCp06d4qOPPmLTpk0A3PDEDYDxZ0sxyP8HIZqSJHZCXEF5YblaUPUUxhUnOnfujKIonDxpXFpswIABFouvNXF0dOSBBx5g4cKF2Nvb19jXs2dPbG1tycvLIy0tzUIRCksJDQ3FwcEBHx8fKisr6f9Afxw8HMhLyOPsf89aOjwh2hVJ7IS4guOfHKeiqIIOYR2IM8ShKArOzs6kp6eTm5uLra2tuuC9MHJ0dKyzzc7OTi0HYypeLKyHo6MjTz31FNOnT8fOzg47ZzuGPDYEgPfufA+NRkNJSYmFoxSifZDETogGGPQGDi47CMDwRcNrdLeaWuvCwsJkgXuMkyYKCwuveIypZTM5OVm6Y62Qra1tjefDFw7HxsGGznQmCCmDI0RTkcROiAac/eks+Yn5OHo50v+By+VMqqqq1EkA0g0LBoOBn376iaVLl3Lu3LkGj+vWrRv3338/jz76qIxJtGI5OTkkJSXh7ONMv1n9KKCAUEJJT0+3dGhCtAuS2AlRD0VR2P333QAMeWwItk6XWxvi4uIoKyvD1dWVbt26WSjC1iMhIYH8/Hzs7e3p0qVLg8dpNBpCQ0PV+nbC+kRFRfHhhx/yyy+/oCgKcQFxLGUpW9hCWFgYq1evtnSIQrR5Fk3sdu3axdSpU/H390ej0fDTTz/V2K8oCi+99BKdOnXC0dGRcePGERcXV+OY3NxcZsyYgZubGx4eHsyZM4fi4uIWvAvRHsVujCXrRBZ2LnYMXzS8xj43Nzf69OnDoEGD6tToskaHDx8GYODAgXW62xqiKApVVVXNGZZohbp3746dnR0XLlxgz549PPfycygYu+UNBgPz5s2TyTVCXCeL/lYqKSlhwIABrFixot79b731FsuWLeM///kPBw8exNnZmQkTJlBWdrmo5YwZMzhz5gxbt25l48aN7Nq1i7lz57bULYh2SFEUdr66E4Dfi39Hcag5Hqxz5878+c9/5uabb7ZAdK3LhQsX1A9bQ4YMadRrjh07xtKlSzl06FBzhiZaIXt7ewYNGgTApk2bGlzRRQhx7Sya2E2cOJG///3v3HHHHXX2KYrC0qVLefHFF7n99tvp378/n332GRkZGWrLXnR0NJs2beLjjz9m2LBhjBw5kuXLl/PNN9+QkZHRwncj2ouEzQlkHc3iIhfZwx4Z+3MFBw4cAIzlTLy9vRv1GoPBQGFhIcePH5dJFFbohhuMNewuXbpUp8Vbi1ZWdBHiOrXafqTExESysrIYN26cus3d3Z1hw4axf/9+APbv34+Hh0eNloJx48ah1Wo5ePBgg+cuLy+nsLCwxkNYr5KSEjQaDRqNhuLiYnYt2cUxjrGc5ZRRpo79URSFXbt2cfHiRUuH3CqUlpaqs4MjIiIa/bp+/fpha2vLhQsXSElJaa7wRCvl5eVFjx49cHd359FHH1W3a9AwhSkUnylWfx6lBIoQ5mu1iV1WVhYAvr6+Nbb7+vqq+7KysvDx8amx38bGBi8vL/WY+rzxxhu4u7urjysN+BbWZf+X+zm97zQb2KBuM4392bdvHzt27OCjjz6S8WHAkSNHqKqqolOnTnTt2rXRr7O3t6dv374AHD16tLnCE63YsGHG9WL9/f3VYtar7l3FYAaz59U96nHSWi6E+VptYtecFi9eTEFBgfpITU21dEjCgtauXat+PeGvEzjIQXVAt4ler2fbtm2AscXJxsamRWNsbaqqqtQxchEREWaXLzG1skdFRVFaWtrk8YnWLSgoSF2FYuvWrSiKwt3/uhsbBxs27L/8oUpmygphvlab2Pn5+QGQnZ1dY3t2dra6z8/Pj5ycnBr7q6qqyM3NVY+pj729PW5ubjUewjqlpaWxYMEC9bmCwj721Rn7o9PpKCoqAiA8PLxFY2yNTp06RUlJCW5ubuqKEubw9/enU6dO6PV6tTtXWA+NRsPIkSMB4zjNiooK3Dq70W1Wt3pby2WmrBCN12oTu6CgIPz8/Ni+fbu6rbCwkIMHD6rjeSIiIsjPz6/RnfP7779jMBjUpn4hriQuLq7OzDygRrKn0+l49tlncXV1xd/f/4ofGqyBwWBgzx5jd9mwYcOuuS6dKUE+evSoTKKwQn369MHT05PS0lKOHTsGgPck73pby2WmrBCNZ9HErri4mBMnTqhrRyYmJnLixAlSUlLQaDQsWrSIv//97/z8889ERkYyc+ZM/P39mTZtGmBspr/11lt55JFHOHToEHv37uXxxx/n3nvvxd/f33I3JtqM0NDQelvnHnvsMfX56dOn1WROWusgMjKSvLw8nJycGl3ipD59+/YlPDy83lnxov3TarWMGDECgH379lFVVUXfwX3Raur+PMpMWSEaz6KJ3ZEjRxg0aJBa1+ipp55i0KBBvPTSSwA899xzLFiwgLlz5zJ06FCKi4vZtGkTDg4O6jm+/PJLevXqxdixY5k0aRIjR45k1apVFrkf0fYEBATwxv+9gQbjGDGtVsvKlSvp3LmzekxZWRn5+fk4OjrSr18/S4Xaapjq1kVERFzXOrn29vZMmTKFzp07yxJjVmrAgAG4urpSVFTEqVOnCAgIYNmyZZd/HjXGn8eAgAALRypE26FRpA+EwsJC3N3dKSgokPF2VkYxKHw84mOiD0RzilOsOLuCnj171jjm2LFjbN26lSFDhjB27FgLRdp6KIpCXFwcgYGB6oxGIa7V/v372bJlC+Hh4UyZMoWSkhJ6uPTgFm7BCy+eOfwM/kOkB0a0X02dg1j31D5h9Y6sPELGgQw6unTkhzM/4N7Vvc4xgwcPpm/fvvWOxbNGGo2GHj16NNn5Ll68yN69e3FwcGD8+PFNdl7RNoSHh+Pv709gYKC6LYMMiigiiCB+nvMzjxx+BJ2drDEsRGO02skTQjS3wvRCtj1vLGEy5vUx9SZ1JnZ2djWGAFijjIyMGsv5NZWCggKOHz/OkSNHmuX8onWzs7OrkdQ5OzujKAqf5XyGo7cj2aeyGWM/RgoWC9FIktgJq1NSUoJWo+XxgMepKKqg87DODH1saL3HJSQkyIxNoLKyknXr1rFs2bImX66vek0zKVhs3YqLi0lISADAuaMzE5dPBGAQg/DAQwoWC9EIktgJqzSUoWjRUuJQwu2f3o5WV/dHYf/+/XzxxRfq2sTWrLCwEDs7O2xtbenYsWOTnluj0TB8+HAADh06hF6vb9Lzi7YhKyuLZcuW8f3333Pp0iUA+t7bl9R+qSxjGfnkS8FiIRpBEjthdd578T0Oc5i1rOWd8nf4ed/PdY65dOkShw8fBrimArztjbe3N48++igzZ87E1ta2yc/fr18/nJ2dKSws5NSpU01+ftH6+fj44OnpSYcOHdTVSNLT0/n0zKdqbTspWCzE1UliJ6xKzPEYXlr60uVfFEr9vygOHjxIRUUFvr6+TTpRoC3TarV4e3s3y7ltbGy48cYbAdi9e7dMVLFCWq2WmTNn8tBDD6n/z+orIC4Fi4W4MknshNWoKKlg1b2rrlrZvry8nIMHDwIwatQoq66xlpOTw549e1qke3TIkCE4OTmRl5cnrXZWytnZucbPW30FxDVo8HO17tVfhLgSSeyEVTBUGfjh3h9QYhW1+KlJ7cr2hw4doqysjA4dOlh1N6yiKPz6669s376dzZs3N/v17OzsGD16NH/605/q1BIU1qW8vJytW7dSWlrK8uXL1e1atExlKgeePoC+QsZiClEfSexEm1VSUoJGo7lqGQRFUfh1wa/EbozF28GbJU8vUffpdLoale3Ly8s5cOAAIK11p06dIjk5GVtbW7WbtLkNHTqU0aNH4+jo2CLXE63TgQMH2LdvH5s2bWLGjBnq9n2/7mO4y3CS/0jm18d/lRnrQtRDEjvRLpjKIFRP9mJjYzHoDWyct5Gj/zkKGrjzyztZ9Ooi9XVRUVHMmTNHfV5cXIyrqyteXl707du3pW+j1bh06RJbtmwB4KabbsLDw6PFY1AURcbaWamIiAhcXV3Jy8vjyJEjKIqCoigMmziM6d9MR6PVcOyjYxxYesDSoQrR6khi14bVTmKszdq1a9WvTWUQam97fMTjHPvoGBqthttW30bYnWFqAVRFUepMjPD29mbu3LnMnDmzztgea2LqBuvYsSMREREtfv3U1FQ+/vhjDh061OLXFpZnZ2fHxInGGnZ79+6tUTuxx+Qe3PKvWwDY8vQWzv73rEViFKK1st7fXO1AfYmNtUhLS2PBggXqc4PBwNy5c+ts+8/B/1CkK+LOr+5k0IODGnVurVaLu3vDq1C0d7GxsRw/fhyAyZMno9O1/FJOOTk5ZGRksGvXLrWmmbAuYWFh9O3bF0VR+O9//0tVVZW6b/ii4QyeOxgU+P7u70nYmmDBSIVoXSSxa6PqS2ysqb5TfWUQDAZDnW0KCl/qv6Tfvf2u2KqZk5PDrl27qKysbJZ424rS0lJ+/tlY1y8iIqLGUk8tadCgQXTs2JFLly6xa9cui8QgLG/ixIk4OTmpP58mGo2GySsmE3ZnGPoKPd/c/g3Ju5MtGKkQrYckdtW4u7u3mW5Na6vvVLvbub4yCFqtts5kB41GQxZZQMOtmoqisGXLFnbs2MGmTZua7yZaOUVR2LhxIyUlJXTs2JExY8ZYLBatVssttxi72w4dOkRubq7FYhGW4+TkxOTJkwHYs2cPKSkp6j6tjZbpX08nZGIIVZeq+GryVyTvaji5s/ahK8J6SGJXj7bQrVlfYlO7bEd7UrvbefPmzTXKIOi0Oh4IfICpylS1nEnt709DrZpnzpwhISEBnU7XYrM/W6Pjx48THR2NVqvljjvuwMbGxqLxhISEEBwcjMFgYNOmTTID0kr17t2bfv36oSgKP/zwA6WlpWqSZmNvw8B/DqTbzd2oKKrg8/Gfc/an+sfcWfPQFWFdJLGrhykBaKpPd83xSTEgIKBmYlOrbEdLuNb7aszrqh+za9euerudb7vtNiL3RrLk1iUsZCHBicEMdxtOP/oB8Omnn9ZJBmq3al66dEltpRs5cmSzrazQ2mVkZPDrr78CMHr0aDp16mThiIytrbfeeis6nY64uDjOnDlj6ZCEhUyePBlvb28KCwv56aefWLNmjbqv/6D+lN9VTs/beqIv1/Pt9G85uupoo95DrGXoirAuktg1oHql/ev9dNdcnxRnzZqlfl27bMeVmJtYNXTMtd5XY15X/ZjRo0fX2+285pE1rP/TevSb9LgZ3Ai7M4z5UfM5qZxEURTGjBlz1VbNbdu2UVJSQocOHRg5cmSj4m9vSktL+fbbb9Hr9fTo0aNVfR86duzIqFGjAOP/cWGd7O3tueuuu7CxseHIkSM88cQT6j6DwcBjCx7jxvdvZNCcQSgGhY3zNvL8xOfVYxp6D2mvQ1eEddMo0r9BYWHhVWdBatDw2pjXOBNzhtyqXCaNn0RA5wDsXOxwcHHA3tUeB1cHNHYa7p55N0UVRfy25Tc8fTzp2btnjTcVnU6nJo4xMTFNvhZpWloacXFxhIaG1tuC98EHHzB//nzA2F25atUq7r33XlxcXNSYtm3bVueYOXPmqOd2cXFh+PDhde4rKipKXTUgJiaGzp071zivk5MTgYGBdV6XlJSkxpqWllbnmNo0aFjEItxxp/v47ox+dTQBw698r6ZWTVMCnJycrH7ynz17tsUmClhafn4+X3/9NZWVlcydOxcHBwdLh1SDXq/nzJkz9OvXz6oLRgs4duwYy5Ytq/HBz+Tbb7/F29ubi79eZP87+1nK0jrLB1ZX+31HCEsx5SAFBQW4ubld9/ksO4imDVFQ+O3339jPfhQUtn6+lalMZTCDaxx3jGMkk4yCwrCbhhFBBAbqflI06dWzF3eH3M3IbiOxcbLB1skWW2dbbJ1ssXexx87Fzpg0ujjg4OaAo5sjDq4OOLo74uzhjJOHE7YOtuovvPqStuoteQ3Nps3KyrocU69eNeKtfsyLL74IGLvJ6uvm/OCDD9TnYWFh3HfffTWeP/XUU/V+ct6/fz8dOnQgNDS03okhYEzmFIxLgt1uczuj7hvFkEeH0CWiS51jTWbNmqV+P6KiotQkWlEUtQt20KBBVpvUAXh4eDBnzhyKi4tbXVIHxl/A/fv3t3QYohUYNGgQo0eP5rPPPqvx/qPRaLj77rsB4/ve7Dtmo6y/clJX39CVkpKSGh9Em/pDtxAtQVrsuJwtB7sHo0PHk48/yfzX59d84/jfgPzqnwA1aHih1wsYygycLzmPTaUNH+V/VOdToikhaYip9Qkgl1y88MKd+lsQCyioe4wWsIVCm0LeK3mvToz/r///w9vNGxt7G+JL4nn/wPt1Y6gnUTP3GFO355Va2uo7pvp5NWiY3nU6P6T8UOc+HuRBUknlr3/7K7cuvBUnb6crxns1BQUFbN++ncmTJ2Nvb39d52qLzp8/T8eOHS0dhlkqKirYtm0bI0aMsOpag9bMYDDw73//m4ULFwLG9xRTwXGT+t5ntBotv//yO4qjQkhISKN7Mxo7xEWIa9XULXaS2FH/N7V2F96TTz7Jv/71rzqvXbhwIe+/b0yUGkp8Hpn5CB999tEVj7m1761sPr1ZbZG6K+QuPIo9KKgoINA1EDe9G4fzD/Nz8c/qMbVbDBNJZC11uyhmMYsgggBjYni1LgpzVG9Fu9HhRvaW7b3qa27kRrXls6FzjmMc29iGgoJWo+WVv77CM/94BkdPWUO0KRw/fpyff/6ZW265pU3NBP7xxx+JjIykS5cuzJo1yyLFk0XrkJaWRnx8PIcPH+a5556rs7/Ge/P/3i+Huw7npr/dxPCFw9HZ6eqc72rDRIRoDpLYNYOGvqmmNw7TYPvaP/SNaaEyvTEAxMfH4+zsXGds2tVasbRaLf/85z954YUX6rzpnDx0Ek8nT0oLSklOTGb8/eMxKDU/pX742Ie42bhRWVpJ5aVKfj/zO18d/0pNyCZ1nsSv6b822NJYO9Gqvn8Oc6ikEi+8AK6aNNZondTlUmJbwvdl39c5bva02fiE+FBQVICfnx8dOnTAxsYGW1tbbGxs1Eft57W31d5fWFhIeXk5wcHB9Z7LWsZwbd++nT179jBixAjGjRtn6XAaLS8vj5UrV1JeXt7mYhdN7/jx43z++ecsXbq0xgfm2u+7rpdcOfbyMTIOG5cm8wrx4qaXbiL4tmDcPIzv+WvXrq0xIc1kx44djB49utnvRVgvSeyaQWO/qY1txTOpPVjfZPXq1cybNw+9Xt+o84Axuasvgaz9plM7xmXLlqnPq48ZqZ60BgQE1DvJYMKECcTHxxMcHEzHDh1ZsWwFzy5+Vo3n5WdfZsq4KVSWVVJZbnz8tOknln2+zHiMRsuI8BHsObJHbXmbeddMboy4Eb2tniqligsXLvDaa6/VGS+zaNEii3S16XS6RieJV0s0G5OE2tjYoNPp6i2u3JwUReHs2bP06tWrzSWzZ86c4fvvjR8Gpk2bxoABAywckbCUvLw8Pv30U5KTk1m2zPi+09D7rmJQOPnZSba9sI2S7BIAzvqc5ZucbwDUn4P6EsTaLXZXm6AmhDkksWsG5nxTr9aKp9Pp2L9/PyUlJQ2O42jMeepTuxv3Sm86pnP//PPPjR4zUjvZa6pjrvaa2knl8uXLmTFjBlVVVVRWVlJVVaU+qj+/0r7a2yoqKsjJyaGqqgqtVouDg4N6zNW+7y1Bo9GoSV59iV9D2xp7vFarJSUlheDgYBwdHes9zpRgtgVbt25l3759aLVaZsyYQXBwsKVDEhZSWlqKo6Mj6enpV31vAigvKufwisP8+uav/DP/nzV7Iaq9x1ZPEKsncua8pwrRGJLYNYPr+aZeqZzGtZ6nvsHAOp2OV199VZ2V2phrtaUxI41JGK+VXq/n22+/JTY2FicnJx5++GE8PT3V/QaDwezE0ZyksqH9rSGhrE2r1TYqoWxoW33JYu0ktPa2hr6+UiumaRWCM2fOYG9vz4MPPoivr28Lf7dEa1NVVcUPP/zAiBEjrvo+suXXLUyYPKHO9rlBcxkwaQA33XcTfUf0rfHebE6rHkjLnmgcSeyawfV+U5sqKal+ns2bN9forq3+ybGx19qxY0e9631a05iRqqoqvvvuO2JjY9HpdMyePbvVvMEaDAb0er2a6FX/+nq2Vf/a1FJZXl4OgIODAzY2NjWOa81vAVdL/HJzc6msrCQgIAAnJyd1vylBbWwSae7Xba372lqYxo7qdDomTZrEoEGDGvy3qu+Db/X6mADaYC0vJ7581Z+RHTt2EBISUiOJq/1hffny5fUOi2ltJBlteZLYNYOm/qY2letNGNtSi11zMBgMfPPNN8TFxWFjY8M999zTbtfSrU9KSgo//PADhYWF2Nracuedd9apUagoSp0EsykTzep/N+brtvJ2pNVqG50MmpLQ6s8b2tbQo7HH1j6upcduWlpFRQU//PCDulrOwIEDmTRpEra2tvUeX3u887K3lzHEdgjRP0STsieFhKqEeisNVFe7N6WhyW61J8Q1tgu3JWvrtXS5l9aWRFqqjqEkds2gtSZ2TaH2G9e1dhW3VTt27GDfvn3cd999VjMOS6/Xs3v3bnbt2oWiKHh5efHnP/+5Vaz/ejWmJNPchND0d3Z2NgaDAXd393qPNXW7m3uN1tht3ljXmhReb1JZ377G/m1azvBaKIrCnj172LFjB4qi4O3tze23306XLvUXMm/oA3R5YTn71u1j7LyxdT5wVK8YcJv3bfx88ecaY/W0Gm2N6gT1aezEjGtNtsxNmq63IcDc611PEtlcCWFjY2rq60ti1wzac2IHzTt+rTVSFKXGWJj8/PwaY+ras5SUFDZu3Mj58+cB6N+/P5MmTbKKAswZGRl8+umn6PV6xo0bR0RERJO1VimKck3JoOn51R71HdvY19c+rr0wNxms/felS5dIT0+nqqoKAF9fX7p06YKtrS1arbbR5/n222957bXXjDFptMwdOZeuRV1JjEvEpcSFXHLrbdW7WmF6gE9f+ZSQkBDS89LpGdaT7fu388zfnlHvv6EyV1dLCK9lgseVhu7U7maundisXr2auXPnYjAYGnW9KyWRwBWTpvquNWHChDqvaarEdv/+/RQXF18x0b7e60ti1wzae2JnLRRF4fjx45w4cYIHHngAOzs7S4fUYgoKCti5cycnTpwAwMnJiVtvvZV+/fpZNrAWVFVVxS+//KJ+D/r06cPkyZNxdLSeotamrvXrTSqbK/ls6O/WrqCggNzcXLy8vC6XYVKAYihILGDpj0vr1Pisr/ZndY05piEPBDyAq4MrPi4+eLt5c+D8Ab6O/lo9T+2kUqvR8u85/8bHywetrRadrQ4bOxt0djp0tjp0djouFl/knufuqVkHVavlqXlP8e7Kd9VEatrkafy44Ud1/5JXlvC3V/521YQILic758+f55577qlzX9WLSje0JGadcZH1dHED9SaaV0q2Gkpsq38vGupi12g0Na5VXl5uVmItiV0zkMSu7SssLGTDhg3Ex8cDMGbMGEaNGmXhqFrG9u3b2b9/v/oLcuDAgYwfP96qEhoTRVE4fPgwmzdvxmAw4OLiwuTJk+uMLRStS/VktDn+zsnJITY2lrKyMsD4wadTp064u7s3ybUPHTrE+vXr1d6CqVOnMrj3YAqyCsjNysXL1ouE5AQ2nNpwuei79zi2Xbx6Uldfy9/VisfXZxaz8MKrxpKUtZeoPMYxNrDB7HNfKW4NGqY6TAUtbCjdcNUC9rUT5IX9FlJJJT7OPlwov8Dy48uvel2gTmI74+YZfP7758ZjNBoW3bOIG/reQGZuJl39u6Kz1TF90fQrdqE3pou9vgUHrtalLYldM5DEru2qrKzkwIED7Nmzh4qKCnQ6HWPGjGH48OFtpibb9frpp584efIkgYGBjBs3ziq6268mNTWV//73v1y8eBEwdknfcccdFo5KWFJVVRWHDx/mjz/+UGeJ33fffU02QN405KV79+506tSp3iQwNTWVhIQEAgMDiY+P5+67777iObVaLXPvm8uqr1dhMBgaXLO8McnhlMApbEzeqCZbg9wHcbzguPr8ds/bCXcIp6CigIuVF/HEk9zKXNZcWnPVe29sDFdKUCOIYB/7GnxdUyWaDZ17KlMB1MTWnPM0xiyHWQTbBYMWNDoNaKFQKeSi4SJeHbx4J/YdSeyakiR2bdOxY8fYuXMnRUVFAHTu3Jlp06bRoUMHC0fWfE6dOsXRo0eZMGEC/v7+AJw/f578/HxCQkKsagbk1VRVVbFz50727dvHqFGjuPnmmy0dkmgFSktLOXjwIImJiTz44IPqz8zZs2dxcXGhc+fOLfJz1FC3olarrTPZzZQ05uTk1NuFWbt4fe3zvPHGG3W6EGurr1Wpvhjre93L//cyr77+Knq9vlGtWiYvz3sZN0c3Onl2Qq/XM3PJzCvOjNdqtPw5/M98f/R7DIqhwSTrWpIvDRqe7vA0ikEhtzIXG8WGj4s/NruLvb7r115+s3brqEmT5SCKUAoKChRAKSgosHQowgzr169XXnnlFWXp0qXKqVOnFIPBYOmQmlxhYWGN+/rhhx+UV155RdmwYYMFo2pbsrOzlUuXLqnPY2JilC+//FKJi4tT9Hq9BSMTllT956qqqkp56623lFdeeUU5d+5ci8Xw8ccfKzqdTgEUnU6nfPzxx0pqaqqyY8cOJTU1tc7xqampilarVTCO8FNf9/bbb1/xPL///nuN1zT02LFjx1VjnDVrVp1rmWLbsWOHcujQoToxarXaeuOufY/Vr1X7+OoxVr+3+r6Htbe99dZbDZ7vSvdf37kVRVFSUlKUbdu2KefizikfLP+gxjHvvvGu8q8l/1J02sv3MfWWqZe/FxqtsnD2QkWrqRtPU+Ug7abFbsWKFbz99ttkZWUxYMAAli9fzg033NCo10qLXeulKArnz58nPj6eM2fOcOutt6plC7Kzs0lKSiI8PBwbGxsLR9o0CgoKSElJITU1lZSUFLKzs5k7d65aqiQ1NZWkpCQGDhyIq6urhaNtmz7//HPOnTsHgLOzM2FhYYSFhdG1a9d28/9ImKe4uJjNmzeTlpbGggUL1GEcmzdv5vz58wQHBxMQEICfn1+TT8oyt2pBQyWsrnSexra8XWkFDXOWiawvRqBRpbdM53Z2dmb48OGNnhFcO57a26rH1NDqTo0999W+P1e7j4bWfpeu2GrWrVvHzJkz+c9//sOwYcNYunQp3333HTExMfj4+Fz19ZLYtR56vZ7MzEzS09NJT08nKSlJ7WoFGDp0KJMmTbJghNdPURSKi4spKCjg/Pnz5OTkqI/i4uI6x0+ePJkhQ4ZYINL26eLFixw6dIjIyEguXbqkbtfpdISEhHDvvfdaMDphSaaZjSbLli0jLy9Pfa7RaOjQoQP+/v506NABb29vOnTogKenZ4t+KLiWEla1k60HHniAL774otlqnDYm2TI35uuNsTGrOzW1hmbb1pfcSWJXzbBhwxg6dCj//ve/AeMPZ5cuXViwYAEvvPDCVV8viV3L0Ov1lJeXU1JSQnFxMUVFRRQVFdGxY0d1AHNBQQFLly6t8TobGxsCAwPp2bMnvXv3xtnZ2QLRN0xRFCorK9VlrMBYwTwhIQGNRlOj5Minn35Kenp6gyUeNBoNnTp1okuXLnTt2pWuXbuqldBF09Lr9SQmJnLmzBkSEhIoKioiICCgxpv7J598gqIoeHp64u7ujqenJ66urjg5OeHq6irvF+2YqbcgISGB5ORkMjIyanzIrE6j0eDs7IybmxsjRoygd+/egLElMCUlBVdX1xoFkpVqtTZbkrktb61Bc8bYEvffUH08U+kUUwuiwWBoshykzfc7VFRUcPToURYvXqxu02q1jBs3jv3795t1rnXr1uHk5FRne4cOHdRkorS0lJycHAACAwOBy28ApaWlDBw4UP1FnpSUxK5du2qcq3oeXb0mUllZGRkZGQAEBASg0+lQFIXc3FyKi4sJCwtj2LBhAGRlZfHbb781eF4PDw+1IG9lZSWpqakAdOrUCVtbW7Vob2FhIcHBweqnicLCQr799tsGz+vq6krHjh0BY/KcmJiIwWDAy8sLnU6HXq+nqKiI4uJi/P39ueuuuwC4dOkSb7/9doODYr29vUlOTlavZ29vj5OTE927d1e7yM6fP09kZCTR0dE1Wq9+//13Kisr6z1v7fhN+vTpo77JXrhwgcOHD+Pq6srIkSPVY3777TcKCwvrndlWWVlJRUWF+jBd/5ZbbuHGG28EIC8vj/Xr1+Ph4VEjsTOdR6PR4OrqipeXFz4+Pvj6+uLj44OPj49V1d+zJFMLXUhICIqicPHiRUpKStT9lZWVpKWloSgKaWlpdV4fGBjI7Nmz1ecrV67EYDBga2tb42FjY0PHjh1r/P/avn27+mHAtOyX6W83NzcGDx6sHnvw4EF1Fmdtzs7OhIeHq8+PHj1aoxWyOgcHhxo/OydPnqxxv9XZ2toydOhQ9fnp06cpLCys91itVsvw4cPV51FRUeTn59d7LKD+jIBx2SbTzOX6DBs2DJ1OB6DWP2vI0KFD1aXDEhISyM7ObvDYwYMH4+DgABjfp03vvfUZOHAgERERgHGCRUxMDEVFRZSUlFBaWkpJSQl6vZ7i4mKKi4vV94P09HSOHDnCiRMncHV1rfE92rNnD1VVVer/D41Go7Ycmf5PmP4/aDQaPDw8GDJkCCEhIeTk5HDq1ClSUlKws7OrsaJOSkoKLi4u6u+xS5cuqd/f6omk6XeCt7c3vXv3JiAggNzcXE6dOkV6ejparVb9/QbG3zmmDzNg/H11pe+vp6cnPXr0oHv37hQVFXHi/7d353FR1XsfwD8z7AgMIMuwb3IlExTUyDJUNNy6LabZk3VR0bSwq/jYzW5XTEutW4/aYmqpaIu3krzZ7ZapqPVUalguWYqCKAoMgsgiKiDze/7gmXM5s8AsZ+acmfm+ffF6OTNn+Z3fdr7nd7Zjx7h1xsTEcGmpra2Fm5sbtx9sb283WBZVVVXw8/NDnz59kJSUhJs3b+KXX37hHmocFRXF1RXNNgcGBgLoPIjT14Y1GhsbcfXqVSQnJ6OjowOHDx/GxYsX0dHRgfDwcK5PbmhoQHt7O7cfZIxx+y59vLy8EBsbi3fffZd3GnjGjBlITU1FYWEh6urqeAcDQrD7wK6urg4dHR0IDQ3lfR8aGorTp0/rnae1tZXXUWo6rHPnznGNvSvNs9G0lZWV6Xzn7e3N7cgrKytRXl5uMO2aCqlNX0WRy+VcYHflyhVUVFQYXK6mAWnTV7Fv3brFBXYtLS2orKw0uFygsyPWpq+Bdz060QSThly5cgU//si/zb21tRXx8fFcp1VXV4eDBw8iLi6Ot3MqLi7mnk1lrKCgIC6wa2pqwk8//YSQkBDejresrKzbHY4+bW1t3P99fX0RHx+vc/R1//33w9XVFX5+flwnRMSnOcXW9Y5qFxcXPPnkk6ivr8fVq1fR0NCAhoYGXLt2DdevX9cp29raWoMjsbGxsbz61V0AFhERwQvsfvzxR4NBVXBwMC+wO3ToEOrq6vROqwkONA4fPozq6mq90/bq1YsX2B05csTgDszNzY0XtBw9etRgnwnwA7vjx4/j1KlTBqcdMmQI105+++03HD9+3OC0AwcO5AK7U6dO4eeffzY4bb9+/bi+/syZM90OAiQmJnKBUnV1NfcAbH2ysrIQFxcHACgvL+embW5uxp49e3Sm7+6gtKuamhrExcV1vqWishI//PAD95u+/ZCxNPu82NhY1NXV4dtvv+V+07xv11wdHR1ISEhAY2Mj9u3bx31/9uxZi5bb0tKCpKQk3Lhxg5enli63vr6eC+yEXG5lZSXmzp2LMWPGYMmSJVAoFFAoFPj+++8BACEhIYiIiLBoHdrsPrAzx8qVK7F06VKd7wMCAniBneaoonfv3tyI3Y0bN1BbWwuZTIbo6Ghu2traWty4cYNXQNo7Cm3+/v7czqGtrY0LkLSPPJqbm3lHT/7+/nqvHdSk18/PjzsCunXrFtd5R0ZGckcemh1V16M9zUM7DfHx8UFAQAD3lO3KykouHzSBSmNjI1QqFfcoDqBzB5mamsq9HF07vYZojraAzh3YXXfdxfsO6Dyi17wyyBDt9XTdRn9/fwwbNkzndGdGRgba2tr0vmbIzc0N7u7uvD/N6IyGQqHAE088oZMWzZEekT65XA6lUgmlUmnU9NnZ2Whvb9f5u3Xrlk4QeOedd6KtrY33pgi1Wg3GGPz9/XnTJicn6wSBmgMl7RtobrvtNoOnC7UfWJ2YmGjwGmTtUeOEhASddGloH6DExcUZfblETExMtyPUXa93M/SuV33piIyM7LZf6LrOsLAwDBgwwOC0XfcJSqWy22mTkpK4sg4JCTE4bXt7O9LS0uDr64tbt27hwoULKC0t5dWDrn8xMTHcPiAwMBC33XYb6uvr4eLiwutTLl++jMDAQC7/r1271u3IWlBQELfP8vPzQ79+/aBSqSCXy3n7ssuXL3Mjdowx3Lx5kztzpY+/vz93atPb2xv9+/fnBg2ioqK4Prmurk5nxM7QwYYmjbGxsQA6y3DAgAHcIEdERARXB65evcq9JxvoDDK7G7To1asXEhISAHTWuQEDBnCXzHS9YaaxsRHt7e3cfp0xZnAgBeisO5p9bGRkJB544AFUVlaivb0dISEh8PT0tMpNcHZ/jV1bWxu8vb1RWFiIBx98kPs+OzsbDQ0N2Llzp848+kbsoqKi6Bo7QgghhNiU0Nf52/2j+d3d3TFo0CAUFRVx36nVahQVFXHXRWjz8PCAn58f748QQgghxN45xKnYBQsWIDs7G4MHD8Ydd9yBNWvWoKWlBdOnTxc7aYQQQgghNuMQgd2UKVNQW1uL/Px8qFQqDBw4ELt27dK5oYIQQgghxJHZ/TV2QqDn2BFCCCFEDHSNHSGEEEII0YsCO0IIIYQQB0GBHSGEEEKIg6DAjhBCCCHEQVBgRwghhBDiICiwI4QQQghxEBTYAdzrxbq+ZsyZtba24sUXX6T8+H+UH3yUH3yUH7ooT/goP/goP/iEjkHoOXYALly4gNjYWBw+fJj38npn1dzcjH79+uH333+3yguK7Q3lBx/lBx/lhy7KEz7KDz7KD76qqiqkp6fj/PnziImJsXh5FNgB2L9/PzIzM8VOBiGEEEKc1L59+zBy5EiLl+MQrxSzVHx8PADg4sWL9OYJQgghhNhMU1MToqKiuFjEUhTYAfD29gYA+Pn5UWBHCCGEEJvTxCKWopsnAHh4eIidBEIIIYQ4MaFiEQrsCCGEEEIcBAV2hBBCCCEOggI7QgghhBAHQYEdIYQQQoiDoMCOEEIIIcRB2H1gt3LlSgwZMgS+vr4ICQnBgw8+iJKSErGTRQghhBBic3Yf2H377bfIzc3FoUOHsGfPHrS3tyMrKwstLS1iJ40QQgghxKYc7pVitbW1CAkJwbfffouMjAyj5mlqaoJCoUBjY6PdPaD40qVLOHv2LBITExEZGSl2cojIqD4QQoh9EToGsfsRO22NjY0AgMDAQJFTYn2bNm1CTEwMMjMzERMTg02bNomdJCIiqg9E6i5duoT9+/fj0qVLYieFEIflUCN2arUa999/PxoaGvD9998bnK61tRWtra3cZ8172moqauxmxO5S5SX0Te4LtVrNfefi4oLTJ04jMoJGapwN1QcidVve34Lc+blQq9WQy+VYu2Ytpv1pmtjJIkR0TU1NCI0OFWzEzqHeFZubm4uTJ092G9QBnTdcLF26VOf737b/Bh8vH2slT1BHSo7wduIA0NHRgb3v7cWgPwwSKVVELFQfiJTVXK1B7t9yoWaddVStViN3fi4imyMRGhBq03RcvHwRUSFRNl0vId25duOaoMtzmMBu7ty5+PLLL/Hdd9/1eG3R888/jwULFnCfNSN2rl6u8AzwtHZSBdEnsQ/kMjnXUQKAXC5HQp8Eu9kGIhyqD0TKaqpqeHUT6AzuLt+8jJiAGJukYcf+HVj23jKomRpymRz5s/IxceREm6ybkO7cxE1Bl2f3gR1jDM888wz++c9/4sCBA4iLi+txHg8PD70v23X1cIV7L3drJFNw0b2isSx3GfLfyedObSx7ehmio6PFTppTU9WpcL7qPGLDY6EMUtpsvVKpD2JtP5G2PvEGDjziEmzS56rqVFxQBwBqpsayjcsw4s4ROvWU6jCxNdfrwoZiZi/tiy++MHmee++9F15eXuauUq/c3Fxs27YNO3fuhK+vL1QqFQBAoVAIvi6pmZQ1CcPShuFC9QXEhMVQJySywt2FyF+bz40ILMtdhklZk2y2frHrg9jbT6RLGaTUe+Bhqzp6vuq83hHDC9UXeGmgOkwcgdk3T8jlpt1QK5PJcPbsWcTHx5uzum6Xq09BQQGmTZtm1DI0txr/uOlHBAY7/t20RHiqOhUyczJ1RiT2bdznFAG3s28/MY6qTiXKgYcx9ZPqMAHEGbGtr63HXTl3SeNxJyqVCmq12qg/b29vixOrD2NM75+xQR2xb6o6FQ6dOARVnUrUdHQ3IuAMnH37hSaVei00ZZAS6cnpNg+UNCOGmgEJfSOGVIdJ4e5CZOZkYtrfpiEzJxOFuwvFTpJZzD4Vm52dbdKpzscff9xuHiVC7IOUTpvEhsfqvYYoJsw2F4aLzdm3X0hSqteOpKdLFagOOzdVnYprd0DndZj57+RjWNowuxuxNXvErqCgAL6+vgCAa9d6vlV33bp1CAoKMnd1hPAYaoRijXAYMyLgyJx9+4UitXrtaLobMaQ63MlRR4t74kgjtoLciqFQKPDpp5/i4YcfFmJxhPTI2IuhbUnsmxfE5uzbLwQp1mtnYmwddtQ7Z515tNiUEVupl78grxRjjGHDhg24++67MWzYMMyfPx/FxcVCLJpInFhHd5pG2JUUTpuIdQ2RVDj79ltKqvXamUZxeqrDjnIdljZnHy02dsTWHspfsHfFHj16FGlpaRg2bBh+++033HPPPVi4cKFQiycSJGYFp9Mm1uVMO3Kxdc1rKdZrQ+3cGeuIIwc/YpyKlFodmpQ1Cfs27sPW5Vuxb+M+ndFKeyl/wZ6Kt23bNtx7773c5xMnTuCBBx5AREQE8vLyhFoNkQgpXGhKp/6sw5lPx9iaobyWSr021M4brzXif7b+j9PVEUc+VW7rm0ek2s8og5QGy9Jeyl+QwC4wMBBRUVG871JSUvD2228jLy/PbgK7Wzduob2lXexk2IWyc2V6K/i58nPo7dW7x/lVV1SoUFUgWhkNZW/zG0Rvr97oHd+5Pio7y6mu6N+RpyelW1ROzqq7et5TXkuhXhtq569vfR2aR6A6Ux2J8I/QG/yEK8Ltvv/p7dUbS2YtwdKNS7mHSC+ZuQS9vXoLvm322s9Yq/xv3bglRPI4ggR2AwcOREFBAV599VXe93369EFFRYUQq7CJSwcvodG3Uexk2AX5NTlkMhm6Pt9aLpNDVi7D+drz3c67+9RuvP3d22CMQSaTYW7GXGTdlmXlFBNjnKg8oXdHXvxNMZIjkkVKlX3qqZ7bQ17ra+cy8D8D0ku3NeVm5GLtd2u5kabce3Jx8+RNnMd5nWnrrtWhqrEK4YpwBPkE6XyWmjR5GjY9tgnVjdUIU4QhSB6E89+eF3w99lD3DTGl/I3V3NwsXAIhUGD38ssvY+TIkaiqqsLTTz+NlJQUtLS0YMWKFUa9u1Uq5B5yuPvYx7tibaG2uRaVVysRERCBYN9g3m/hPuGYnzUfb+x+g6vg87LmIVwZ3uMy1363ltsxMMaw9ru1SE9K11mHKekhwogJj9E9IpXJER0eTW3DBMbUc3vIa33tfEbGDGz+brOk021N9w25D+lJ6ai6WoXwgHCDfdGuX3fx8m1Uv1Eo+r2I11+OTR5r1Dpt2feF+4T32I9byh7qviHGlr8p5G2C3e4AQKDA7s4778ShQ4cwb9483HPPPVxn5unpie3btwuxCptwcXOBq6ewL+OVqtqmWlyqv4TIwEgE++lWzK+OfoXVX63mOqG88XkYnzqeN819Q+5Det90VNZXIiIwQu9ytKlUKt0jNaZGTUsNwoLDDKaxuKy4x/QQy4V5hiFvfJ5OXmuXjbX1VD+Fnk9oxtRzS/PaVtuqr50rfBSi1xExhXmGdbu9tU21XFAHdJb9nt/2cL+rmRpv7H4D6X3Teyw7Y/pieyOVfsZcPZU/YFr7dHFzETJ5wt08MWDAABw4cACXL1/Gzz//DLVajfT0dHoosQT11FHUNtVyvwOdndDqr1ZjSMIQnQoa7Bds0k4lMjBS75FaRGCEwTTK0Pk+YIb/XNNjKD3EcuNTx2NIwhCTAnZTCHFQoY+UdoDG1nNz89rYbRUq+NNu59auI/buUv0lncBem5qpUVlf2W3emdIX2xtHrkNi90XCjv8BCAkJwbhx4zBhwgS7C+quXLuCo+ePorapVuykWI2hjqLrNuvrlDSdkKWC/YKRNz6Pe1aXptJ3bdTaaWT//8/Y9NQ21ZpcjubM48iC/YIxMHag4J3tV0e/wmNvPYaFHy7EY289hq+OfsX73Zj62XVaTZmZMp8tGFPPu05rSl4bu62G8lqoum6tOuIINIF9d/QF+tos6YvtoU8ztw7ZcttMXZcU+iKzR+xOnDiB/v37c89b6slvv/2Gvn37wtVVuqc653w0BwCsEmFL5RRRdx2FJl3GjjaYq6cjNWOOdg2lx5wjJWsfXUml7MVmzOiDMfUT0C2zh+942Kj5TEmrpWVmrREJY/LIUF4332zGxn0bJTGq6cg0gX3XOjq6/2jsPbmXl/c91Qlz+2KxR4ysyZbbZs66jO3DrMnsKCs1NRUqlQrBwcYldOjQoTh27Bji4+PNXaXNCD3cLaVGZkxHoa9TMqYT0tDeKerbSXZ3CldfGmWQQSaTdZsec05bWPtUhxTK3pggxRbBp1AHFfrKrPBwod67tM05GBGyzEy9VMEYxuSRobx+r+g9uqTBRvQF9jNGzjAp0DenL3bk07eGti0+JB432m8I2n+Zko9d+09rD4wYw+zAjjGGxYsXw9vb26jp29razF2VKISKsKXWyIztKIS69kffUWpPO0lDaewpPeYcKVnz6EoKZW9MkGKr4FOogwp9ZcbA8Ej6Iyg8XMibDwCOnj9qdIcvhTLriTF5ZOjgyNAlDVLZNkejHdibE+ib2heLNWIk5sHh3IK5YGCC9l/mnj3IG59n0cCIEMwO7DIyMlBSUmL09EOHDoWXl5e5q7M5uUwOTzdPk3YK+khhWFaboY5Cu2Hq64S6a7z6doq7f93N/W7KTtJQGrubz5wjJWseXdmi7E0tD+38t2UgY+lBhWZbvdy89JbZxDsmYuIdE7n5isuK8dhbj9ndaRR9tMu5p529vryeOXImNu7fKOpIgr0Se9TblIBQjBEjIQ8Ou8tHfdsGWOfGOnPPHqz+ajW2PbMN257ZJtqNIWYHdgcOHBAwGdKgOaLVjDQ9s+UZiyuqFIZl9dHuKIQY2RHqTjBDaTRmelOPlCw97dwda5e9OeWhnf+2DmSMHX3oqX52d72S5vS/OQGrFNuroXLuqX3oy2tfL19RRxKMJVSQJMRypDTqbQxr9mn6CHlw2FM+am9bd6PQACwqe3PPHmjWL+aNRdK9k8FEa9euxWuvvQaVSoUBAwbgrbfewh133GHSMtZNXYcWWQs83Ty5oA6wrKLaupGZQ6iRHUNHU11Zeydpzilka13kbs2yN7c8tPNfjEDG1IBd37buPbkXb017Czfbbxp9A44xAaspZWaLU0+W7jS189oeHjEhVJAkxCNhpDbqbSxbPrJIqINDY/Ox67Zp76uBzv6rpLoEz370rMV1qKd8lOKBIOAggd0nn3yCBQsWYP369UhPT8eaNWswZswYlJSUICQkxOjl9PbpjcTgRBw9f1TQUQypd6ZCjezo2ymacyeYpcy5jsWceYxhbNmbGiSYWx7a+W8PBx6GtvVm+00MjB2odx5LOlxjLlWw1QOzrTGiaq26LgShgiRjlyPFUW9rPXtQKNp5NnPkTEGCG1Pyseu26b3kYN9Gi+uQvnXp+02K/adDBHarVq3CrFmzMH36dADA+vXr8e9//xubN2/GokWLjF5OR3sHOto6EOYbpreiKn2V6GjrMCuNgZ6BCAwP7FxPW0fnK2I0Ow6BXxFj6rKN2V5j82TM7WOQFp3Ge91K9rBs3mdz89BeaZe9tq9PfI03vunyarYx8zAuZVy3y7SkPLTTYMw0YjKnPQZ6BmLemHk6+RroGWjUtmmXWdcyMvTA7LToNMHbsjX6IimrqKnQu3P/9fyvUHgpjO7TDC3n4uWLCPTsLNfaZv3BX9dyFLJvNIY5fYEt6cuzjfs3Imd4DjZ9u8mstqZhbj5q91+V9ZUGy76jvUPw/a4Q/WdHu7BtWca03+ZsZ9ra2uDt7Y3CwkI8+OCD3PfZ2dloaGjAzp07deZpbW1Fa2sr97mpqQlRUVFYhEXwhCcA4Bf8gn/hX2BgkEGGP+KPSEOaIGmW4rKNmc+a6bYHjWhEPeoRiEAooBBkOQCwBmt414nIIMN8zO9xHc5UHuZuqxBl1ohGnTLSJxvZiIPw78a253I2Nf8N5bXmWipjt1/fcrTbVTnKsRVbdebVLkdb9Y3GpFls3eVZIAItbmvWzMfRGI292CvJdnQTN/EKXkFjYyP8/PwsXp4gI3Y3btwAY4x79MmFCxfwz3/+E/369UNWVpYQqzCorq4OHR0dCA0N5X0fGhqK06dP651n5cqVWLp0abfLTUMaEpAgyI68q0Y0chUX6Dzq/xf+hQQkWLwOS5ZtzPZaK0/EYOoOR6idq/ZyhmKozk6MgaEe9YKUmaMwd1sV///PEvWo7zGok0HGBepCs5dy1m5T5rQZBRT4I/7I68cAmNynaS9Hs/6u8wQiUOfie33laKu+UV89M7YvsDZN2brBzWCeCdHWhMhHfWXfNagDhN3vSpEggd0DDzyAiRMnYs6cOWhoaEB6ejrc3NxQV1eHVatW4amnnhJiNYJ5/vnnsWDBAu6zZsRu4IyBCAyyTuescezCMbBPdBtv+KPhGBA9QLLLtjZrnprWZurpjtrmWixbv4x7+C0Dw5eyLzFlzhST0qpvOQdxUO+DdbPmZFk9H4hxEpsT8cH6D3ind7QfmC21U2a2pt2mZgyfgS+//dKoNqPd9u/CXZjSPAVVV6tw9fpVrPhiBW96Y/u0rsvRnCLTcQKSOfWpr55JoS/QLtvRt49G0W9FksgzQ7TLvrK+Ens+2cObRkr7xvq6emCzcMsTJLD75ZdfsHr1agBAYWEhQkNDcfToUXz22WfIz8+3amAXFBQEFxcX1NTU8L6vqamBUqnUO4+Hhwc8PDx0vndxc4GLu4vFaeru4tfo0Gi91xFEhURZvG5rLtuabPmogNqmWq6TAjqvvXjjmzeQ/od0gxe8VjdX671mQ9Wsgoubi9EXOutbjqEH6yp766+7YnLWV6MpeyvNemC2s9DXpjYd2KT3MRSqZhWvbhtq+8reSih7K1HbVGtRn6ZZjiH3Db4P6X9Il0Q5GqpnYvYF+sq26Leibu9Il4quZe/i5iLpfaOLm7BpECSwu379Onx9fQEAu3fvxsSJEyGXy3HnnXfiwoULQqzCIHd3dwwaNAhFRUXcNXZqtRpFRUWYO3euVdetj6nP4RHyLhqp3qHTHVs/KsCcO9gM3WFp6i31hpaj/WBdKZaXlJ7TJQZzHpjtLAy9CUT7lJ2xD3ft2vZt0adJ6S5hqT1BwZw70qXIHveNlhAksOvTpw8+//xzPPTQQ/jmm2+Ql9f5Kp/Lly8LciFgTxYsWIDs7GwMHjwYd9xxB9asWYOWlhbuLlkhWfrMI8C6jVdqHUNPbP2AXHMeg6GvUzDnlvqeOheplpUUn9MlBikFAFJiqE3NzPxPGzH14a729uw9IZlbz6wxoi7V57SZw5nqkSCBXX5+Ph577DHk5eVh1KhRGDp0KIDO0bvU1FQhVtGtKVOmoLa2Fvn5+VCpVBg4cCB27dqlc0OFpYR45pGGNXcS9rQDsnXHYe6Rm3anYG5Aao+di1RfsyUkZz3NLARDbWp86nhk3p4pyMNd7alPM5Wt3o5hDqFHusRuZ45cj7oS7HEnKpUK1dXVGDBgAORyOQDgp59+gp+fH5KSkoRYhdU0NTVBoVBg++ztCAzWf/NEbVMt995JDblMjm3PbOM9wLSnaYguMU7z1TbVWhRcOVNZ22Jbxezwnf00s1DMaVPOnvdCbL+t2qepZavdpp29rLtTX1uPyRsmS+txJwCgVCp1blYw9ZVeUibUk/6JLjFGsSw9cnOmsrb2torZ4dNpZv3MCbTNaVP2OIItFKHqni1G1E0tW31vp9i4X7i3QZDuCRbY/e///i82bNiAsrIyFBYWIiIiAh988AHi4uIwbNgwoVYjGmNPGzhzR2UJexwid6aytta2ih1YSfV1UGKydaBtj21fCJbUva71TGrXwelr0+/te0/vXdKmbqsz1hNzCBLYffbZZ3jiiScwdepUHD16lHurQ2NjI1asWIGvvvpKiNWIypRRC2t2VFTJpcWZdkrW2Faxr98TcqfoCKeaxA60nYm5dU9fPZPS2QNz75LWx9ptylH3p4IEdi+//DLWr1+PP/3pT/j444+57++++268/PLLQqxCEsQeoXGEHYc9cdRGLyVijzYIdZrZUQIisQNtZ2JO3TNUz7Y9sw3bntkmibMH5t4lrc3abUoK+1PNPsaH+Qi6XEECu5KSEmRkZOh8r1Ao0NDQIMQqJEOs0ThH2XHYCyk0em2OGGhK4VpFIQ7YHCUgEjvQdjam1r3u6tnA2IGSqGvm3iWtzZptSgr70677GKEJEtgplUqUlpYiNjaW9/3333+P+Ph4IVbh8PQFEkMShnA7ckfZcdgDKTR6TTo05V9cVixYoCm1AFHskXDA8gM2RwmIpBBoOxtT6p691LPuHugthW0Ve3+qvY8RmiCB3axZszBv3jxs3rwZMpkMVVVVOHjwIBYuXIjFixcLsQqb6GjvwK2bt2y+3tpm3UBi1b9XATKAMdb57sWMGXoreWivUFHS7MguqC7obfQVqgoEuAfYJA27ft2FN3Z3vspHBhmA/7wIXRNopkammvwOya7LlcvkmJc1D2OTxwqeflMFuAcgQNmZt9auz7XNtai8WomIAOHeSxzgHoB5WfN08jbAPcCm7VOIbcu6LQupkam8d6xSHyMNQtcza7SFrmm1pE1bs00peylF3Z/q28cISZDAbtGiRVCr1Rg1ahSuX7+OjIwMeHh4YOHChXjmmWeEWIVNqFvVaLvWZvP1XqjSLWQGBs11pmqmxubvNiM7PRtbD2/lKnluRi4UMoUoaXZkIe4hkMlk6PqIR7lMjmD3YJvkdd21OqzZvYb3AnVtaqZGRVUFFBEKs5erZmq8sfsNpASnIMgnSJjES9zuU7vx9ndvgzEGmUyGuRlzkXVbliDLzozLRMrUFFQ3ViNMEYYgnyCbtk0ht00hU0AR2Fm3qH+RFqHqmTXbglCs1aYUMgVyM3Kx9ru1ouxP9e1jhCTYA4oBoK2tDaWlpbh27Rr69esHHx8f3LhxA15eXkKtwio0Dyj+7u3vENDb9BEZ1RUVKlQViFZGm/XCZtUVFcY8M6bHCH7z4s2ICo3CxZqLiAqNkuSL4h3Fjv07sHTjUqjVasjlciyZuQQTR060ybp/+u0n5Lyc0+00crkc37z5jUl1wNByNy/ejCH9hpicTmNZ2j6ETId2OzMnH6XIkbeNCI/qSyfVFZVo+9Ou+xhNkCe5BxQDgLu7O/r16wcAaG1txapVq/D3v/8dKpVKyNVYjauXK9x6uZk0T+HuQuSvzeei/mW5yzApa5JJy4jqFYVlucuQ/04+V8gA+CNGcjni4+KhDFIiKjrKpOUT0025bwqG3zkcF6ovICYsBsog2zX6hPgEndMEMpkMMpmMCzSXPb3M5Hqgb7maemVqvTeWEO1DKJVllbqn2NVqVDVW2X2bcuRtI8Kj+tIpqleUaNvbdR/j5+6Hh559SLBlyy2ZubW1Fc8//zwGDx6Mu+66C59//jkAoKCgAHFxcVi9ejXy8vKESKckqepU3E4L6Dy1lf9OPlR1pgeyk7ImYd/Gfdi6fCv2b9qPl3Jf4l7NptmR2zK4IIAySIn05HSb57sySIlluct45f9S7ktc/di3cZ9ZwZG+5VqzXgnZPoQQGx4LuYzf5cnlcsSExYiSHiE58rYR4VF9kQbNPiY0UNj32ls0Ypefn48NGzZg9OjR+PHHHzF58mRMnz4dhw4dwqpVqzB58mS4uLgIlVbJOV91Xu9Rz4XqC2btLJVBSm6+SVmTMCxtmCgjRkR8hsrf0npgy3oldPuwlCaw1YyMO9IBkyNvGxEe1RfHZlFgt337drz//vu4//77cfLkSaSkpODWrVs4fvw4dzrRkWmOerRPbQl11NM10LOEqk6F81XnERse65QN1163X6jyt+Zyu8tba7cPczjyAZMjbxsRRtf2SvXFcVkU2F26dAmDBg0CAPTv3x8eHh7Iy8tziqAOsI+jHild4yQGZ99+a+opb6XaPqwVMEuBI28bsYyh9kr1xfFYdFesi4sLVCoVgoM7n3/j6+uLEydOIC4uTrAE2oLmrtgfN/2IwOBAk+dX1akkedSjqlMhMydTZ8Rk38Z9kkqntTj79luTKXkr1fZBiLOgvlB83Z3dqK+tx105d0njrljGGKZNmwYPDw8AwM2bNzFnzhz06tWLN92OHTssWY3kSfUoWWrXONmas2+/NZmSt1JtH4Q4C+oLxWXrM0cW3RWbnZ2NkJAQKBQKKBQKPP744wgPD+c+a/6s5fz588jJyUFcXBy8vLyQkJCAJUuWoK2NHqgJ0J1Pzr791kR56zhUdSocOnFItLuVheIo22EN1F7FI8bTASwasSsoKBAqHWY5ffo01Go1NmzYgD59+uDkyZOYNWsWWlpa8Prrr4uaNimQ6jVOtuLs229NlLeOwVGuQXWU7bAWaq/iEWO0VNA3T0jBa6+9hnXr1uHcuXNGz2PpNXZS5+zXODn79lsT5a39cpTrrhxlO2yB2qvtGVM/JXWNnRQ1NjYiMLD74Ky1tRWtra3c56amJgDArdZbaGtxvNO4gV6BCIzvzBNH3L6eOPv2WxPlrf0qPVeqdyShrLwMgV72c4DrKNthC9RebS/QKxD5s/KxbOMybrQ0f2Y+Ar0CuTK41XpL0HU6VGBXWlqKt956q8fTsCtXrsTSpUt1vr914xZu4qa1kkcIIai5WoOLly8iKiQKoQHCPnHeFKFeoXqfMxjiGYKbV+2nH3SU7SCOa/zA8Rj00iBcqr2EyOBIhAaE8urmrRvCBnaSPBW7aNEivPrqq91Oc+rUKSQlJXGfKysrMXz4cIwYMQIbN27sdl59I3ZRUVGoqagRZBiUEEL02fL+FuTOz+WO3NeuWYtpf5omanrm5s1FR0cHXFxc8Pbqt0VNjykuVV5CWVkZEhISsLdor91uByFNTU0IjQ4V7FSsJAO72tpaXLlypdtp4uPj4e7uDgCoqqrCiBEjcOedd2LLli3cuzCNpbnGTqhMJYQQbZcuXUJMTAzU6v+MLLm4uOD8+fOIjIwUNV2lpaXo06ePqOkwxaZNm/Dkk09yAfK7776LMWPG2N12EAIIH4NIMrAzRWVlJUaOHIlBgwbhww8/NOvdtBTYEUKsbf/+/cjMzNT7/YgRI2yfIDsl1QCZEHMJHYNY9Bw7sVVWVmLEiBGIjo7G66+/jtraWqhUKqhU9BwjQoi0JCYm6pxNcHFxQZ8+fURKkX06e/YsL6gDgI6ODpSWloqUIkKkxa4Duz179qC0tBRFRUWIjIxEWFgY90cIIVISGRmJd999lzur4OLigg0bNtAok4koQCake3Z/KlYIdCqWEGIr9nhNm9Rs2rQJs2fP5m6W2LBhA3JycsROFiFmoWvsrIACO0IIsS8UIBNHIXQM4lDPsSOEEOIcIiMjKaAjRA+7vsaOEEIIIYT8BwV2hBBCCCEOggI7QgghhBAHQYEdIYQQQoiDoJsnAGhuDG5qahI5JYQQQghxJprYQ6iHlFBgB3DvpY2KihI5JYQQQghxRleuXIFCobB4ORTYAQgMDAQAVFRUCJKp9q6pqQlRUVG4ePEiPdcPlB/aKD/4KD90UZ7wUX7wUX7wNTY2Ijo6motFLEWBHcC9nkahUFAl68LPz4/yowvKDz7KDz7KD12UJ3yUH3yUH3zar8ozezmCLIUQQgghhIiOAjtCCCGEEAdBgR0ADw8PLFmyBB4eHmInRRIoP/goP/goP/goP3RRnvBRfvBRfvAJnR8yJtT9tYQQQgghRFQ0YkcIIYQQ4iAosCOEEEIIcRAU2BFCCCGEOAinDexeeeUVyGQyzJ8/n/vu5s2byM3NRe/eveHj44OHH34YNTU14iXShvTlx4gRIyCTyXh/c+bMES+RVvTiiy/qbGtSUhL3uzPWjZ7yxJnqh0ZlZSUef/xx9O7dG15eXkhOTsaRI0e43xljyM/PR1hYGLy8vDB69GicPXtWxBRbV0/5MW3aNJ06MnbsWBFTbD2xsbE62yqTyZCbmwvA+fqQnvLD2fqPjo4OLF68GHFxcfDy8kJCQgJeeukl3mvEhOo/nPIBxcXFxdiwYQNSUlJ43+fl5eHf//43tm/fDoVCgblz52LixIn44YcfREqpbRjKDwCYNWsWli1bxn329va2ZdJs6vbbb8fevXu5z66u/2kezlo3ussTwLnqx9WrV3H33Xdj5MiR+PrrrxEcHIyzZ88iICCAm+bvf/873nzzTWzduhVxcXFYvHgxxowZg99//x2enp4ipl54xuQHAIwdOxYFBQXcZ0e9E7K4uBgdHR3c55MnT+Lee+/F5MmTAThfH9JTfgDO1X+8+uqrWLduHbZu3Yrbb78dR44cwfTp06FQKPDnP/8ZgID9B3Myzc3NLDExke3Zs4cNHz6czZs3jzHGWENDA3Nzc2Pbt2/npj116hQDwA4ePChSaq3PUH4wxnQ+O7IlS5awAQMG6P3NWetGd3nCmHPVD8YYe+6559iwYcMM/q5Wq5lSqWSvvfYa911DQwPz8PBg//jHP2yRRJvqKT8YYyw7O5s98MADtkmQxMybN48lJCQwtVrttH1IV13zgzHn6z8mTJjAZsyYwftu4sSJbOrUqYwxYfsPpzsVm5ubiwkTJmD06NG873/++We0t7fzvk9KSkJ0dDQOHjxo62TajKH80Pjoo48QFBSE/v374/nnn8f169dtnELbOXv2LMLDwxEfH4+pU6eioqICgPPWDcBwnmg4U/344osvMHjwYEyePBkhISFITU3Fe++9x/1eXl4OlUrFqycKhQLp6ekOWU96yg+NAwcOICQkBH379sVTTz2FK1euiJBa22pra8OHH36IGTNmQCaTOXUfAujmh4Yz9R933XUXioqKcObMGQDA8ePH8f3332PcuHEAhO0/nOpU7Mcff4xffvkFxcXFOr+pVCq4u7vD39+f931oaChUKpWNUmhb3eUHADz22GOIiYlBeHg4Tpw4geeeew4lJSXYsWOHjVNqfenp6diyZQv69u2L6upqLF26FPfccw9OnjzplHUD6D5PfH19nap+AMC5c+ewbt06LFiwAH/9619RXFyMP//5z3B3d0d2djZXF0JDQ3nzOWo96Sk/gM7TsBMnTkRcXBzKysrw17/+FePGjcPBgwfh4uIi8hZYz+eff46GhgZMmzYNgHPuX7rSzg/AufYvALBo0SI0NTUhKSkJLi4u6OjowPLlyzF16lQAELT/cJrA7uLFi5g3bx727NnjcNe6mMOY/HjyySe5/ycnJyMsLAyjRo1CWVkZEhISbJVUm9AcNQFASkoK0tPTERMTg08//RReXl4ipkw83eVJTk6OU9UPAFCr1Rg8eDBWrFgBAEhNTcXJkyexfv16LpBxJsbkx6OPPspNn5ycjJSUFCQkJODAgQMYNWqUKOm2hU2bNmHcuHEIDw8XOymSoC8/nK3/+PTTT/HRRx9h27ZtuP3223Hs2DHMnz8f4eHhgvcfTnMq9ueff8bly5eRlpYGV1dXuLq64ttvv8Wbb74JV1dXhIaGoq2tDQ0NDbz5ampqoFQqxUm0FfWUH10vetVIT08HAJSWlto6uTbn7++PP/zhDygtLYVSqXSqumFI1zzRx9HrR1hYGPr168f77rbbbuNOT2vqgvadjo5aT3rKD33i4+MRFBTksHUEAC5cuIC9e/di5syZ3HfO3Ifoyw99HL3/ePbZZ7Fo0SI8+uijSE5OxhNPPIG8vDysXLkSgLD9h9MEdqNGjcKvv/6KY8eOcX+DBw/G1KlTuf+7ubmhqKiIm6ekpAQVFRUYOnSoiCm3jp7yQ99pkmPHjgHo7NAd3bVr11BWVoawsDAMGjTIqeqGIV3zRB9Hrx933303SkpKeN+dOXMGMTExAIC4uDgolUpePWlqasLhw4cdsp70lB/6XLp0CVeuXHHYOgIABQUFCAkJwYQJE7jvnLkP0Zcf+jh6/3H9+nXI5fyQy8XFBWq1GoDA/Yfl93rYL+27cubMmcOio6PZvn372JEjR9jQoUPZ0KFDxUugjXXNj9LSUrZs2TJ25MgRVl5eznbu3Mni4+NZRkaGuIm0kv/+7/9mBw4cYOXl5eyHH35go0ePZkFBQezy5cuMMeesG93libPVD8YY++mnn5irqytbvnw5O3v2LPvoo4+Yt7c3+/DDD7lpXnnlFebv78927tzJTpw4wR544AEWFxfHbty4IWLKraOn/GhubmYLFy5kBw8eZOXl5Wzv3r0sLS2NJSYmsps3b4qceuvo6Ohg0dHR7LnnntP5zRn7EEP54Yz9R3Z2NouIiGBffvklKy8vZzt27GBBQUHsL3/5CzeNUP0HBXZdArsbN26wp59+mgUEBDBvb2/20EMPserqavESaGNd86OiooJlZGSwwMBA5uHhwfr06cOeffZZ1tjYKG4irWTKlCksLCyMubu7s4iICDZlyhRWWlrK/e6MdaO7PHG2+qHxr3/9i/Xv3595eHiwpKQk9u677/J+V6vVbPHixSw0NJR5eHiwUaNGsZKSEpFSa33d5cf169dZVlYWCw4OZm5ubiwmJobNmjWLqVQqEVNsXd988w0DoLfMnbEPMZQfzth/NDU1sXnz5rHo6Gjm6enJ4uPj2QsvvMBaW1u5aYTqP2SMdXnsMSGEEEIIsVtOc40dIYQQQoijo8COEEIIIcRBUGBHCCGEEOIgKLAjhBBCCHEQFNgRQgghhDgICuwIIYQQQhwEBXaEEEIIIQ6CAjtCCCGEEAdBgR0hhNjIiBEjIJPJIJPJuHdjHjhwADKZTOcF8UJ78cUXuXWvWbPGqusihIiHAjtCiCRNmzaNC0S6/o0dO1bspFlk1qxZqK6uRv/+/S1eVk1NDdzc3PDxxx/r/T0nJwdpaWkAgIULF6K6uhqRkZEWr5cQIl0U2BFCJGvs2LGorq7m/f3jH/+w6jrb2tqsunxvb28olUq4urpavKzQ0FBMmDABmzdv1vmtpaUFn376KXJycgAAPj4+UCqVcHFxsXi9hBDposCOECJZHh4eUCqVvL+AgADud5lMho0bN+Khhx6Ct7c3EhMT8cUXX/CWcfLkSYwbNw4+Pj4IDQ3FE088gbq6Ou73ESNGYO7cuZg/fz6CgoIwZswYAMAXX3yBxMREeHp6YuTIkdi6dSt3yrSlpQV+fn4oLCzkrevzzz9Hr1690NzcbPY2X79+HePGjcPdd9/NnZ7duHEjbrvtNnh6eiIpKQnvvPMON31OTg6KiopQUVHBW8727dtx69YtTJ061ey0EELsDwV2hBC7tnTpUjzyyCM4ceIExo8fj6lTp6K+vh4A0NDQgMzMTKSmpuLIkSPYtWsXampq8Mgjj/CWsXXrVri7u+OHH37A+vXrUV5ejkmTJuHBBx/E8ePHMXv2bLzwwgvc9L169cKjjz6KgoIC3nIKCgowadIk+Pr6mrUtDQ0NuPfee6FWq7Fnzx74+/vjo48+Qn5+PpYvX45Tp05hxYoVWLx4MbZu3QoAGD9+PEJDQ7FlyxadtEycOBH+/v5mpYUQYqcYIYRIUHZ2NnNxcWG9evXi/S1fvpybBgD729/+xn2+du0aA8C+/vprxhhjL730EsvKyuIt9+LFiwwAKykpYYwxNnz4cJaamsqb5rnnnmP9+/fnfffCCy8wAOzq1auMMcYOHz7MXFxcWFVVFWOMsZqaGubq6soOHDhgcJuGDx/O5s2bx/tu//79DAA7deoUS0lJYQ8//DBrbW3lfk9ISGDbtm3jzfPSSy+xoUOHcp8XLVrE4uLimFqtZowxVlpaymQyGdu7d69OGmJiYtjq1asNppEQYt9oxI4QIlkjR47EsWPHeH9z5szhTZOSksL9v1evXvDz88Ply5cBAMePH8f+/fvh4+PD/SUlJQEAysrKuPkGDRrEW2ZJSQmGDBnC++6OO+7Q+Xz77bdzI2cffvghYmJikJGRYda23nvvvejTpw8++eQTuLu7A+i8Tq6srAw5OTm8bXj55Zd56Z8xYwbKy8uxf/9+AJ2jdbGxscjMzDQrLYQQ+2X51buEEGIlvXr1Qp8+fbqdxs3NjfdZJpNBrVYDAK5du4Y//vGPePXVV3XmCwsL463HHDNnzsTatWuxaNEiFBQUYPr06ZDJZGYta8KECfjss8/w+++/Izk5mUs/ALz33ntIT0/nTd/1JojExETcc889KCgowIgRI/D+++9j1qxZZqeFEGK/KLAjhDistLQ0fPbZZ4iNjTXpLtS+ffviq6++4n1XXFysM93jjz+Ov/zlL3jzzTfx+++/Izs72+y0vvLKK/Dx8cGoUaNw4MAB9OvXD6GhoQgPD8e5c+d6vAkiJycHTz31FO6//35UVlZi2rRpZqeFEGK/6FQsIUSyWltboVKpeH9d72jtSW5uLurr6/Ff//VfKC4uRllZGb755htMnz4dHR0dBuebPXs2Tp8+jeeeew5nzpzBp59+yt2c0HUULCAgABMnTsSzzz6LrKwsi58R9/rrr2Pq1KnIzMzE6dOnAXTeHLJy5Uq8+eabOHPmDH799VcUFBRg1apVvHknT54MNzc3zJ49G1lZWYiKirIoLYQQ+0SBHSFEsnbt2oWwsDDe37Bhw4yePzw8HD/88AM6OjqQlZWF5ORkzJ8/H/7+/pDLDXd/cXFxKCwsxI4dO5CSkoJ169Zxd8V6eHjwps3JyUFbWxtmzJhh3kZqWb16NR555BFkZmbizJkzmDlzJjZu3IiCggIkJydj+PDh2LJlC+Li4njzeXt749FHH8XVq1cFSwshxP7IGGNM7EQQQojULV++HOvXr8fFixd533/wwQfIy8tDVVUVd9ODISNGjMDAgQNFfaVXbGws5s+fj/nz54uWBkKI9dCIHSGE6PHOO++guLgY586dwwcffIDXXnuNdw3d9evXUVZWhldeeQWzZ8/uMajrulwfHx/8+uuv1kq6XitWrICPj4/Og4wJIY6FRuwIIUSPvLw8fPLJJ6ivr0d0dDSeeOIJPP/889xNGC+++CKWL1+OjIwM7Ny5Ez4+Pj0us7KyEjdu3AAAREdHGx0MCqG+vp57cHNwcDAUCoXN1k0IsR0K7AghhBBCHASdiiWEEEIIcRAU2BFCCCGEOAgK7AghhBBCHAQFdoQQQgghDoICO0IIIYQQB0GBHSGEEEKIg6DAjhBCCCHEQVBgRwghhBDiICiwI4QQQghxEP8HRlSRp1IzOxQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_fit = plt.figure(constrained_layout=True)\n", "gs = fig_fit.add_gridspec(5, 5, hspace=0)\n", "\n", "\n", "main_axis = fig_fit.add_subplot(gs[:4, :])\n", "res_axis = fig_fit.add_subplot(gs[4:, :], sharex=main_axis)\n", "fig_fit.tight_layout()\n", "\n", "\n", "main_axis.errorbar(center, entries, np.sqrt(entries), ls='', marker='.', color='k')\n", "\n", "main_axis.plot(x, peak(x, *mi.values['A_p1', 'mu_p1', 'sigma_p1']), color='gray', ls='--')\n", "main_axis.plot(x, peak(x, *mi.values['A_p2', 'mu_p2', 'sigma_p2']), color='gray', ls='-.')\n", "main_axis.plot(x, bkg(x, *mi.values['A_bkg', 'tau_bkg']), color='gray')\n", "\n", "x = np.arange(40, 80, 0.1)\n", "main_axis.plot(x, fit_model(x, *mi.values), color='purple', label='Best fit')\n", "main_axis.legend()\n", "main_axis.set_ylabel('Number of entries per bin')\n", "main_axis.xaxis.set_tick_params(direction='inout')\n", "main_axis.tick_params(axis='x', labelcolor=(0, 0, 0, 0))\n", "main_axis.set_xlim(40, 80)\n", "\n", "res_axis.set_xlabel('Energy [keV]')\n", "res_axis.set_ylabel('Res [$\\sigma$]')\n", "res_axis.set_ylim(-3, 3)\n", "res_axis.set_yticks([-2, 0, 2])\n", "res_axis.fill_between((40, 80), -1, 1, alpha=0.3, color='purple')\n", "res_axis.fill_between((40, 80), -2, 2, alpha=0.3, color='purple')\n", "res_axis.axhline(0, color='purple')\n", "res_axis.set_xlim(40, 80)\n", "res_axis.plot(center, \n", " residuals,\n", " color='k', marker='.', ls=''\n", " )\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "id": "dbe65a21-572e-4618-bcd8-78f13e945e8a", "metadata": {}, "source": [ "Sofern unser Fitmodel unsere Daten gut beschreibt, erwarten wir, dass die Residuen sich Gaußförmig zufällig um den Wert 0 herum verteilen. Dies folgt direkt aus der Annahme, dass sich die Unsicherheiten unserer Messwerte durch eine Gaußverteilung darstellen lassen. Dies können wir direkt überprüfen, sofern wir unsere Residuen in ein Histogramm eintragen. " ] }, { "cell_type": "code", "execution_count": 522, "id": "05e24224-66f7-45ed-99c6-f6d257e2c779", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAukUlEQVR4nO3dfVRVdaLG8ecgcETeQRFQQJIZy3zrYhqjJQqpNGmMTDk194bp1LXQUuyNxmrsRcpetLpmTRnq3Fxa3tDJVppaYI3iKMWoWd5g7Pr+UgrIEQE55/7R9dxhRDxHD+yz8ftZa6/Ffjn7POzlkmft/dt7WxwOh0MAAAAm5GN0AAAAgItFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKbla3SA1ma323Xw4EEFBwfLYrEYHQcAALjA4XDo5MmTio2NlY/P+c+7tPsic/DgQcXFxRkdAwAAXIR9+/ape/fu513f7otMcHCwpJ8OREhIiMFpAACAK6qrqxUXF+f8O34+7b7InL2cFBISQpEBAMBkLjQshMG+AADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtNr9268BtG8HKmt1wlZvdAy3hAf6q1tYgNExgHaBIgPAtA5U1ir9pWLVNjQaHcUtAX4dtH7GMMoM4AEUGQCmdcJWr9qGRs0bP0BJUUFGx3FJ+dEaTVtephO2eooM4AEUGQCmlxQVpD7dQo2OAcAADPYFAACmRZEBAACmRZEBAACmZWiRWbBggfr166eQkBCFhIQoJSVFH3/8sXN9amqqLBZLk2ny5MkGJgYAAN7E0MG+3bt313PPPaef/exncjgcWrx4sW655RZ99dVXuvrqqyVJd999t5566innZzp16mRUXAAA4GUMLTJjxoxpMv/ss89qwYIFKikpcRaZTp06KTo62oh4AADAy3nNGJnGxkYtW7ZMNptNKSkpzuXvvvuuOnfurD59+igvL0+nTp1qcT91dXWqrq5uMgEAgPbJ8OfI7NixQykpKTp9+rSCgoJUWFio3r17S5LuuOMOJSQkKDY2Vtu3b9cjjzyi3bt364MPPjjv/vLz8zVr1qy2ig8AAAxkeJHp1auXysrKVFVVpRUrVig7O1vFxcXq3bu37rnnHud2ffv2VUxMjNLS0lRRUaGePXs2u7+8vDzl5uY656urqxUXF9fqvwcAAGh7hhcZf39/JSUlSZKSk5O1detWvfLKK3rzzTfP2Xbw4MGSpPLy8vMWGavVKqvV2nqBAQCA1/CaMTJn2e121dXVNbuurKxMkhQTE9OGiQAAgLcy9IxMXl6eMjIyFB8fr5MnT2rp0qUqKirS2rVrVVFRoaVLl+qmm25SZGSktm/frunTp+uGG25Qv379jIwNAAC8hKFF5ujRo7rzzjt16NAhhYaGql+/flq7dq1uvPFG7du3T+vXr9e8efNks9kUFxenrKwszZw508jIAADAixhaZBYuXHjedXFxcSouLm7DNAAAwGy8bowMAACAqygyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtAwtMgsWLFC/fv0UEhKikJAQpaSk6OOPP3auP336tHJychQZGamgoCBlZWXpyJEjBiYGAADexNAi0717dz333HMqLS3Vtm3bNGLECN1yyy36+uuvJUnTp0/Xhx9+qPfff1/FxcU6ePCgxo0bZ2RkAADgRXyN/PIxY8Y0mX/22We1YMEClZSUqHv37lq4cKGWLl2qESNGSJIKCgp01VVXqaSkRNddd50RkQEAgBfxmjEyjY2NWrZsmWw2m1JSUlRaWqqGhgalp6c7t7nyyisVHx+vzZs3n3c/dXV1qq6ubjIBAID2yfAis2PHDgUFBclqtWry5MkqLCxU7969dfjwYfn7+yssLKzJ9l27dtXhw4fPu7/8/HyFhoY6p7i4uFb+DQAAgFEMLzK9evVSWVmZtmzZonvvvVfZ2dnatWvXRe8vLy9PVVVVzmnfvn0eTAsAALyJoWNkJMnf319JSUmSpOTkZG3dulWvvPKKxo8fr/r6elVWVjY5K3PkyBFFR0efd39Wq1VWq7W1YwMAAC9g+BmZf2a321VXV6fk5GT5+flpw4YNznW7d+/W3r17lZKSYmBCAADgLQw9I5OXl6eMjAzFx8fr5MmTWrp0qYqKirR27VqFhoZq0qRJys3NVUREhEJCQjR16lSlpKRwxxIAAJBkcJE5evSo7rzzTh06dEihoaHq16+f1q5dqxtvvFGSNHfuXPn4+CgrK0t1dXUaNWqUXn/9dSMjAwAAL2JokVm4cGGL6zt27Kj58+dr/vz5bZQIAACYideNkQEAAHAVRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJgWRQYAAJiWoUUmPz9f1157rYKDgxUVFaXMzEzt3r27yTapqamyWCxNpsmTJxuUGAAAeBNDi0xxcbFycnJUUlKidevWqaGhQSNHjpTNZmuy3d13361Dhw45pzlz5hiUGAAAeBNfI798zZo1TeYXLVqkqKgolZaW6oYbbnAu79Spk6Kjo9s6HgAA8HJeNUamqqpKkhQREdFk+bvvvqvOnTurT58+ysvL06lTp867j7q6OlVXVzeZAABA+2ToGZl/ZLfbNW3aNA0ZMkR9+vRxLr/jjjuUkJCg2NhYbd++XY888oh2796tDz74oNn95Ofna9asWW0VGwAAGMhrikxOTo527typL774osnye+65x/lz3759FRMTo7S0NFVUVKhnz57n7CcvL0+5ubnO+erqasXFxbVecAAAYBivKDJTpkzR6tWrtXHjRnXv3r3FbQcPHixJKi8vb7bIWK1WWa3WVskJAAC8i6FFxuFwaOrUqSosLFRRUZESExMv+JmysjJJUkxMTCunAwAA3u6iiozdbld5ebmOHj0qu93eZN0/3m10ITk5OVq6dKlWrVql4OBgHT58WJIUGhqqgIAAVVRUaOnSpbrpppsUGRmp7du3a/r06brhhhvUr1+/i4kOAADaEbeLTElJie644w79z//8jxwOR5N1FotFjY2NLu9rwYIFkn566N0/Kigo0IQJE+Tv76/169dr3rx5stlsiouLU1ZWlmbOnOlubAAA0A65XWQmT56sgQMH6qOPPlJMTIwsFstFf/k/F6F/FhcXp+Li4ovePwAAaN/cLjLfffedVqxYoaSkpNbIAwAA4DK3H4g3ePBglZeXt0YWAAAAt7h9Rmbq1KmaMWOGDh8+rL59+8rPz6/JegbhAgCAtuJ2kcnKypIkTZw40bnMYrHI4XC4PdgXAADgUrhdZPbs2dMaOQAAANzmdpFJSEhojRwAAABuc6nI/PnPf1ZGRob8/Pz05z//ucVtx44d65FgAAAAF+JSkcnMzNThw4cVFRWlzMzM827HGBkAANCWXCoy//gagn9+JQEAAIBR3H6ODAAAgLe4qCKzYcMG3XzzzerZs6d69uypm2++WevXr/d0NgAAgBa5XWRef/11jR49WsHBwXrggQf0wAMPKCQkRDfddJPmz5/fGhkBAACa5fbt17Nnz9bcuXM1ZcoU57L7779fQ4YM0ezZs5WTk+PRgAAAAOfj9hmZyspKjR49+pzlI0eOVFVVlUdCAQAAuMLtIjN27FgVFhaes3zVqlW6+eabPRIKAADAFS5dWnr11VedP/fu3VvPPvusioqKlJKSIkkqKSnRX/7yF82YMaN1UgIAADTDpSIzd+7cJvPh4eHatWuXdu3a5VwWFhamd955RzNnzvRsQgAAgPNwqcjwokgAAOCNeCAeAAAwLYoMAAAwLYoMAAAwLbcfiAcAuHTlR2uMjuCW8EB/dQsLMDoGcA63isyZM2c0e/ZsTZw4Ud27d2+tTADQboUH+ivAr4OmLS8zOopbAvw6aP2MYZQZeB23ioyvr69eeOEF3Xnnna2VBwDatW5hAVo/Y5hO2OqNjuKy8qM1mra8TCds9RQZeB23Ly2NGDFCxcXF6tGjRyvEAYD2r1tYAIUA8BC3i0xGRoYeffRR7dixQ8nJyQoMDGyyfuzYsR4LBwAA0BK3i8x9990nSXr55ZfPWWexWNTY2HjpqQAAAFzgdpGx2+2tkQMAAMBtl/QcmdOnT3sqBwAAgNvcLjKNjY16+umn1a1bNwUFBenvf/+7JOnxxx/XwoULPR4QAADgfNwuMs8++6wWLVqkOXPmyN/f37m8T58+evvttz0aDgAAoCVuj5FZsmSJ/vjHPyotLU2TJ092Lu/fv7++/fZbj4YD0LYOVNaa7vkmAC5vbheZAwcOKCkp6ZzldrtdDQ0NHgkFoO0dqKxV+kvFqm0w152HAX4dFB7of+ENAbRLbheZ3r176/PPP1dCQkKT5StWrNA111zjsWAA2tYJW71qGxo1b/wAJUUFGR3HZbwDCLi8uV1knnjiCWVnZ+vAgQOy2+364IMPtHv3bi1ZskSrV69ujYwA2lBSVJD6dAs1OgYAuMTtwb633HKLPvzwQ61fv16BgYF64okn9M033+jDDz/UjTfe2BoZAQAAmuX2GRlJuv7667Vu3TpPZwEAAHDLRRUZSdq2bZu++eYbST+Nm0lOTvZYKAAAAFe4fWlp//79uv766zVo0CA98MADeuCBB3Tttddq6NCh2r9/v1v7ys/P17XXXqvg4GBFRUUpMzNTu3fvbrLN6dOnlZOTo8jISAUFBSkrK0tHjhxxNzYAAGiH3C4yv/vd79TQ0KBvvvlGx48f1/Hjx/XNN9/Ibrfrd7/7nVv7Ki4uVk5OjkpKSrRu3To1NDRo5MiRstlszm2mT5+uDz/8UO+//76Ki4t18OBBjRs3zt3YAACgHXL70lJxcbE2bdqkXr16OZf16tVLr732mq6//nq39rVmzZom84sWLVJUVJRKS0t1ww03qKqqSgsXLtTSpUs1YsQISVJBQYGuuuoqlZSU6LrrrnM3PgAAaEfcPiMTFxfX7IPvGhsbFRsbe0lhqqqqJEkRERGSpNLSUjU0NCg9Pd25zZVXXqn4+Hht3ry52X3U1dWpurq6yQQAANont4vMCy+8oKlTp2rbtm3OZdu2bdMDDzygF1988aKD2O12TZs2TUOGDFGfPn0kSYcPH5a/v7/CwsKabNu1a1cdPny42f3k5+crNDTUOcXFxV10JgAA4N3cvrQ0YcIEnTp1SoMHD5av708fP3PmjHx9fTVx4kRNnDjRue3x48dd3m9OTo527typL774wt1ITeTl5Sk3N9c5X11dTZkBAKCdcrvIzJs3z+MhpkyZotWrV2vjxo3q3r27c3l0dLTq6+tVWVnZ5KzMkSNHFB0d3ey+rFarrFarxzMCAADv43aRyc7O9tiXOxwOTZ06VYWFhSoqKlJiYmKT9cnJyfLz89OGDRuUlZUlSdq9e7f27t2rlJQUj+UAAADmdNEPxPOEnJwcLV26VKtWrVJwcLBz3EtoaKgCAgIUGhqqSZMmKTc3VxEREQoJCdHUqVOVkpLCHUsAAMDYIrNgwQJJUmpqapPlBQUFmjBhgiRp7ty58vHxUVZWlurq6jRq1Ci9/vrrbZwUAAB4I0OLjMPhuOA2HTt21Pz58zV//vw2SAQAAMzE7duvAQAAvMUlF5nq6mqtXLnS+QJJAACAtuL2paXbbrtNN9xwg6ZMmaLa2loNHDhQ33//vRwOh5YtW+a8uwi43B2orNUJW73RMVxWfrTG6AgA4Da3i8zGjRv1+9//XpJUWFgoh8OhyspKLV68WM888wxFBtBPJSb9pWLVNjQaHcUtAX4dFB7ob3QMAHCZ20WmqqrK+S6kNWvWKCsrS506ddIvf/lLPfTQQx4PCJjRCVu9ahsaNW/8ACVFBRkdx2Xhgf7qFhZgdAwAcJnbRSYuLk6bN29WRESE1qxZo2XLlkmSTpw4oY4dO3o8IGBmSVFB6tMt1OgYANBuuV1kpk2bpt/+9rcKCgpSfHy88xkwGzduVN++fT2dDwAA4LzcLjL33XefBg0apH379unGG2+Uj89PNz5dccUVeuaZZzweEAAA4Hwu6oF4AwcOVL9+/bRnzx717NlTvr6++uUvf+npbAAAAC1y+zkyp06d0qRJk9SpUyddffXV2rt3ryRp6tSpeu655zweEAAA4HzcLjJ5eXn629/+pqKioiaDe9PT07V8+XKPhgMAAGiJ25eWVq5cqeXLl+u6666TxWJxLr/66qtVUVHh0XAAAAAtcfuMzLFjxxQVFXXOcpvN1qTYAAAAtDa3i8zAgQP10UcfOefPlpe3335bKSkpnksGAABwAW5fWpo9e7YyMjK0a9cunTlzRq+88op27dqlTZs2qbi4uDUyAgAANMvtMzJDhw5VWVmZzpw5o759++qTTz5RVFSUNm/erOTk5NbICAAA0KyLeo5Mz5499dZbb3k6CwAAgFtcKjLV1dUKCQlx/tySs9sBAAC0NpeKTHh4uA4dOqSoqCiFhYU1e3eSw+GQxWJRY2Ojx0MCAAA0x6Ui8+mnnyoiIkKS9Nlnn7VqIAAAAFe5VGSGDRsmSTpz5oyKi4s1ceJEde/evVWDAQAAXIhbdy35+vrqhRde0JkzZ1orDwAAgMvcvv16xIgRPC8GAAB4Bbdvv87IyNCjjz6qHTt2KDk5WYGBgU3Wjx071mPhAAAAWuJ2kbnvvvskSS+//PI567hrCQAAtCW3i4zdbm+NHAAAAG5ze4zMkiVLVFdXd87y+vp6LVmyxCOhAAAAXOF2kbnrrrtUVVV1zvKTJ0/qrrvu8kgoAAAAV7hdZM4+wfef7d+/X6GhoR4JBQAA4AqXx8hcc801slgsslgsSktLk6/v/3+0sbFRe/bs0ejRo1slJAAAQHNcLjKZmZmSpLKyMo0aNUpBQUHOdf7+/urRo4eysrI8HhAAAOB8XC4yTz75pCSpR48eGj9+vDp27NhqoQAAAFzh9u3X2dnZkn66S+no0aPn3I4dHx/vmWQAAAAX4HaR+e677zRx4kRt2rSpyfKzg4B5IB4AAGgrbheZCRMmyNfXV6tXr1ZMTEyzdzABAAC0BbeLTFlZmUpLS3XllVe2Rh4AAACXuf0cmd69e+uHH35ojSwAAABucbvIPP/883r44YdVVFSkH3/8UdXV1U0md2zcuFFjxoxRbGysLBaLVq5c2WT9hAkTnM+uOTvxrBoAAHCW25eW0tPTJUlpaWlNll/MYF+bzab+/ftr4sSJGjduXLPbjB49WgUFBc55q9XqbmQAANBOuV1kPvvsM499eUZGhjIyMlrcxmq1Kjo62mPfCQAA2g+3i8ywYcNaI8d5FRUVKSoqSuHh4RoxYoSeeeYZRUZGtmkGAADgnVweIzNnzhzV1tY65//yl7+orq7OOX/y5Endd999Hg03evRoLVmyRBs2bNDzzz+v4uJiZWRktHj5qq6u7pLG7QAAAPNwucjk5eXp5MmTzvmMjAwdOHDAOX/q1Cm9+eabHg33m9/8RmPHjlXfvn2VmZmp1atXa+vWrSoqKjrvZ/Lz8xUaGuqc4uLiPJoJAAB4D5eLjMPhaHG+LVxxxRXq3LmzysvLz7tNXl6eqqqqnNO+ffvaMCEAAGhLbo+RMdL+/fv1448/KiYm5rzbWK1W7mwCAOAyYWiRqampaXJ2Zc+ePSorK1NERIQiIiI0a9YsZWVlKTo6WhUVFXr44YeVlJSkUaNGGZgaAAB4C7eKzNtvv62goCBJ0pkzZ7Ro0SJ17txZkpqMn3HVtm3bNHz4cOd8bm6upJ/esL1gwQJt375dixcvVmVlpWJjYzVy5Eg9/fTTnHEBAACS3Cgy8fHxeuutt5zz0dHR+tOf/nTONu5ITU1tcazN2rVr3dofAAC4vLhcZL7//vtWjAEAAOA+t9+1BAAA4C0uqshMmTJFx48f93QWAAAAt7hcZPbv3+/8eenSpaqpqZEk9e3bl2e1AAAAQ7g8RubKK69UZGSkhgwZotOnT2vfvn2Kj4/X999/r4aGhtbMCAAA0CyXz8hUVlbq/fffV3Jysux2u2666Sb9/Oc/V11dndauXasjR460Zk4AAIBzuFxkGhoaNGjQIM2YMUMBAQH66quvVFBQoA4dOuidd95RYmKievXq1ZpZAQAAmnD50lJYWJgGDBigIUOGqL6+XrW1tRoyZIh8fX21fPlydevWTVu3bm3NrAAAAE24fEbmwIEDmjlzpqxWq86cOaPk5GRdf/31qq+v15dffimLxaKhQ4e2ZlYAAIAmXC4ynTt31pgxY5Sfn69OnTpp69atmjp1qiwWix588EGFhoZq2LBhrZkVAACgiYt+IF5oaKhuu+02+fn56dNPP9WePXt03333eTIbAABAiy7q7dfbt29Xt27dJEkJCQny8/NTdHS0xo8f79FwAAAALbmoIhMXF+f8eefOnR4LAwAA4A7etQQAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEyLIgMAAEzL0CKzceNGjRkzRrGxsbJYLFq5cmWT9Q6HQ0888YRiYmIUEBCg9PR0fffdd8aEBQAAXsfQImOz2dS/f3/Nnz+/2fVz5szRq6++qjfeeENbtmxRYGCgRo0apdOnT7dxUgAA4I18jfzyjIwMZWRkNLvO4XBo3rx5mjlzpm655RZJ0pIlS9S1a1etXLlSv/nNb9oyKgAA8EJeO0Zmz549Onz4sNLT053LQkNDNXjwYG3evNnAZAAAwFsYekamJYcPH5Ykde3atcnyrl27Otc1p66uTnV1dc756urq1gkIAAAM57VnZC5Wfn6+QkNDnVNcXJzRkQAAQCvx2iITHR0tSTpy5EiT5UeOHHGua05eXp6qqqqc0759+1o1JwAAMI7XFpnExERFR0drw4YNzmXV1dXasmWLUlJSzvs5q9WqkJCQJhMAAGifDB0jU1NTo/Lycuf8nj17VFZWpoiICMXHx2vatGl65pln9LOf/UyJiYl6/PHHFRsbq8zMTONCAwAAr2Fokdm2bZuGDx/unM/NzZUkZWdna9GiRXr44Ydls9l0zz33qLKyUkOHDtWaNWvUsWNHoyIDAAAvYmiRSU1NlcPhOO96i8Wip556Sk899VQbpgIAAGbhtWNkAAAALoQiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATIsiAwAATMvQl0YCAMyj/GiN0RHcEh7or25hAUbHQCujyAAAWhQe6K8Avw6atrzM6ChuCfDroPUzhlFm2jmKDACgRd3CArR+xjCdsNUbHcVl5UdrNG15mU7Y6iky7RxFBgBwQd3CAigE8EoM9gUAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKZFkQEAAKbF7dcwhQOVtaZ7hgUAoPVRZOD1DlTWKv2lYtU2NBodxS0Bfh0UHuhvdAwAaNcoMvB6J2z1qm1o1LzxA5QUFWR0HJfxnhcAaH0UGZhGUlSQ+nQLNToGAMCLMNgXAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYFkUGAACYllcXmT/84Q+yWCxNpiuvvNLoWAAAwEt4/duvr776aq1fv9457+vr9ZEBAEAb8fpW4Ovrq+joaKNjAAAAL+TVl5Yk6bvvvlNsbKyuuOIK/fa3v9XevXuNjgQAALyEV5+RGTx4sBYtWqRevXrp0KFDmjVrlq6//nrt3LlTwcHBzX6mrq5OdXV1zvnq6uq2igsAANqYVxeZjIwM58/9+vXT4MGDlZCQoPfee0+TJk1q9jP5+fmaNWtWW0UEAAAG8vpLS/8oLCxMP//5z1VeXn7ebfLy8lRVVeWc9u3b14YJAQBAWzJVkampqVFFRYViYmLOu43ValVISEiTCQAAtE9eXWQefPBBFRcX6/vvv9emTZv0q1/9Sh06dNDtt99udDQAAOAFvHqMzP79+3X77bfrxx9/VJcuXTR06FCVlJSoS5cuRkcDAABewKuLzLJly4yOAAAAvJhXX1oCAABoCUUGAACYlldfWkLrOFBZqxO2eqNjuKz8aI3REQAAXooic5k5UFmr9JeKVdvQaHQUtwT4dVB4oL/RMQAAXoYic5k5YatXbUOj5o0foKSoIKPjuCw80F/dwgKMjgEA8DIUmctUUlSQ+nQLNToGAACXhMG+AADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtCgyAADAtLj9GgDQbpntyeA8M8t9FBkAQLsTHuivAL8Omra8zOgobgnw66D1M4ZRZtxAkQEAtDvdwgK0fsYw071XbtryMp2w1VNk3ECRAQC0S93CAigElwEG+wIAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANOiyAAAANMyRZGZP3++evTooY4dO2rw4MH661//anQkAADgBby+yCxfvly5ubl68skn9eWXX6p///4aNWqUjh49anQ0AABgMK8vMi+//LLuvvtu3XXXXerdu7feeOMNderUSe+8847R0QAAgMF8jQ7Qkvr6epWWliovL8+5zMfHR+np6dq8eXOzn6mrq1NdXZ1zvqqqSpJUXV3t8XzHqk/rWE3dhTf0In8/ZpO97pRqTlarutpidBwAwP+pOVkte90pbf/7IdWc9PzfrNbSJciqLiEdPb7fs3+3HQ5Hi9t5dZH54Ycf1NjYqK5duzZZ3rVrV3377bfNfiY/P1+zZs06Z3lcXFyrZDSrlHlGJwAANOe384xO4F1Onjyp0NDQ86736iJzMfLy8pSbm+uct9vtOn78uCIjI2WxeO4MRHV1teLi4rRv3z6FhIR4bL/tFcfLdRwr13GsXMexch3HynWteawcDodOnjyp2NjYFrfz6iLTuXNndejQQUeOHGmy/MiRI4qOjm72M1arVVartcmysLCw1oqokJAQ/qG7gePlOo6V6zhWruNYuY5j5brWOlYtnYk5y6sH+/r7+ys5OVkbNmxwLrPb7dqwYYNSUlIMTAYAALyBV5+RkaTc3FxlZ2dr4MCBGjRokObNmyebzaa77rrL6GgAAMBgXl9kxo8fr2PHjumJJ57Q4cOHNWDAAK1Zs+acAcBtzWq16sknnzznMhaax/FyHcfKdRwr13GsXMexcp03HCuL40L3NQEAAHgprx4jAwAA0BKKDAAAMC2KDAAAMC2KDAAAMC2KjIeMHTtW8fHx6tixo2JiYvRv//ZvOnjwoNGxvM7333+vSZMmKTExUQEBAerZs6eefPJJ1dfXGx3NKz377LP6xS9+oU6dOrXqgx3NaP78+erRo4c6duyowYMH669//avRkbzSxo0bNWbMGMXGxspisWjlypVGR/Ja+fn5uvbaaxUcHKyoqChlZmZq9+7dRsfySgsWLFC/fv2cD8JLSUnRxx9/bEgWioyHDB8+XO+99552796t//qv/1JFRYV+/etfGx3L63z77bey2+1688039fXXX2vu3Ll644039NhjjxkdzSvV19fr1ltv1b333mt0FK+yfPly5ebm6sknn9SXX36p/v37a9SoUTp69KjR0byOzWZT//79NX/+fKOjeL3i4mLl5OSopKRE69atU0NDg0aOHCmbzWZ0NK/TvXt3PffccyotLdW2bds0YsQI3XLLLfr666/bPowDrWLVqlUOi8XiqK+vNzqK15szZ44jMTHR6BheraCgwBEaGmp0DK8xaNAgR05OjnO+sbHRERsb68jPzzcwlfeT5CgsLDQ6hmkcPXrUIclRXFxsdBRTCA8Pd7z99ttt/r2ckWkFx48f17vvvqtf/OIX8vPzMzqO16uqqlJERITRMWAS9fX1Ki0tVXp6unOZj4+P0tPTtXnzZgOTob2pqqqSJP5/uoDGxkYtW7ZMNpvNkNcHUWQ86JFHHlFgYKAiIyO1d+9erVq1yuhIXq+8vFyvvfaa/v3f/93oKDCJH374QY2Njec83btr1646fPiwQanQ3tjtdk2bNk1DhgxRnz59jI7jlXbs2KGgoCBZrVZNnjxZhYWF6t27d5vnoMi04NFHH5XFYmlx+vbbb53bP/TQQ/rqq6/0ySefqEOHDrrzzjvluEwenOzusZKkAwcOaPTo0br11lt19913G5S87V3MsQLQtnJycrRz504tW7bM6Cheq1evXiorK9OWLVt07733Kjs7W7t27WrzHLyioAXHjh3Tjz/+2OI2V1xxhfz9/c9Zvn//fsXFxWnTpk2XxZu63T1WBw8eVGpqqq677jotWrRIPj6XT6e+mH9XixYt0rRp01RZWdnK6bxffX29OnXqpBUrVigzM9O5PDs7W5WVlZwJbYHFYlFhYWGT44ZzTZkyRatWrdLGjRuVmJhodBzTSE9PV8+ePfXmm2+26fd6/UsjjdSlSxd16dLloj5rt9slSXV1dZ6M5LXcOVYHDhzQ8OHDlZycrIKCgsuqxEiX9u8Kkr+/v5KTk7VhwwbnH2S73a4NGzZoypQpxoaDqTkcDk2dOlWFhYUqKiqixLjJbrcb8jePIuMBW7Zs0datWzV06FCFh4eroqJCjz/+uHr27HlZnI1xx4EDB5SamqqEhAS9+OKLOnbsmHNddHS0gcm80969e3X8+HHt3btXjY2NKisrkyQlJSUpKCjI2HAGys3NVXZ2tgYOHKhBgwZp3rx5stlsuuuuu4yO5nVqampUXl7unN+zZ4/KysoUERGh+Ph4A5N5n5ycHC1dulSrVq1ScHCwc8xVaGioAgICDE7nXfLy8pSRkaH4+HidPHlSS5cuVVFRkdauXdv2Ydr8Pql2aPv27Y7hw4c7IiIiHFar1dGjRw/H5MmTHfv37zc6mtcpKChwSGp2wrmys7ObPVafffaZ0dEM99prrzni4+Md/v7+jkGDBjlKSkqMjuSVPvvss2b/DWVnZxsdzeuc7/+mgoICo6N5nYkTJzoSEhIc/v7+ji5dujjS0tIcn3zyiSFZGCMDAABM6/IanAAAANoVigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAADAtigwAw6WmpmratGmXvI2nvzc1NVUWi0UWi8X5nitXTJgwwfm5lStXXnJOAOdHkQHQon/8o+zn56fExEQ9/PDDOn36tMe+44MPPtDTTz/tsf150t13361Dhw6pT58+Ln/mlVde0aFDh1oxFYCzePs1gAsaPXq0CgoK1NDQoNLSUmVnZ8tisej555/3yP4jIiI8sp/W0KlTJ7ffzB4aGqrQ0NBWSgTgH3FGBsAFWa1WRUdHKy4uTpmZmUpPT9e6deuc6+12u/Lz85WYmKiAgAD1799fK1asaLKPFStWqG/fvgoICFBkZKTS09Nls9kknXuJx2az6c4771RQUJBiYmL00ksvnZOpR48emjdvXpNlAwYM0B/+8AdJ0po1azR06FCFhYUpMjJSN998syoqKjxzQCSVlJQoLS1NkZGRzjNWZ6fq6mqPfQ+AllFkALhl586d2rRpk/z9/Z3L8vPztWTJEr3xxhv6+uuvNX36dP3rv/6riouLJUmHDh3S7bffrokTJ+qbb75RUVGRxo0bJ4fD0ex3PPTQQyouLtaqVav0ySefqKioSF9++aVbOW02m3Jzc7Vt2zZt2LBBPj4++tWvfiW73X7xv/z/+dvf/qbU1FRdc801+vzzz7VmzRpFREQoLS1Ny5cvV0hIyCV/BwDXcGkJwAWtXr1aQUFBOnPmjOrq6uTj46P/+I//kCTV1dVp9uzZWr9+vVJSUiRJV1xxhb744gu9+eabGjZsmA4dOqQzZ85o3LhxSkhIkCT17du32e+qqanRwoUL9Z//+Z9KS0uTJC1evFjdu3d3K3NWVlaT+XfeeUddunTRrl273Brv0pz7779f48aN04svvihJ6t27t26//XaVlpbqtttuu6R9A3APRQbABQ0fPlwLFiyQzWbT3Llz5evr6ywK5eXlOnXqlG688cYmn6mvr9c111wjSerfv7/S0tLUt29fjRo1SiNHjtSvf/1rhYeHn/NdFRUVqq+v1+DBg53LIiIi1KtXL7cyf/fdd3riiSe0ZcsW/fDDD84zMXv37r2kInPkyBF98cUXzrNNZwUGBspisVz0fgFcHIoMgAsKDAxUUlKSpJ/ObPTv318LFy7UpEmTVFNTI0n66KOP1K1btyafs1qtkqQOHTpo3bp12rRpkz755BO99tpr+v3vf68tW7YoMTHxojL5+Picc2mqoaHB+fOYMWOUkJCgt956S7GxsbLb7erTp4/q6+sv6vvOKi0tld1uV//+/c9ZPnDgwEvaNwD3MUYGgFt8fHz02GOPaebMmaqtrVXv3r1ltVq1d+9eJSUlNZni4uKcn7NYLBoyZIhmzZqlr776Sv7+/iosLDxn/z179pSfn5+2bNniXHbixAn993//d5PtunTp0uQW5+rqau3Zs0eS9OOPP2r37t2aOXOm0tLSdNVVV+nEiRMe+f3Pntk5O1BZkrZv366NGzfqjjvu8Mh3AHAdRQaA22699VZ16NBB8+fPV3BwsB588EFNnz5dixcvVkVFhb788ku99tprWrx4sSRpy5Ytmj17trZt26a9e/fqgw8+0LFjx3TVVVeds++goCBNmjRJDz30kD799FPt3LlTEyZMkI9P0/+uRowYoT/96U/6/PPPtWPHDmVnZ6tDhw6SpPDwcEVGRuqPf/yjysvL9emnnyo3N9cjv/vgwYMVEBCghx56SN9++60++ugjjR07Vjk5Obruuus88h0AXMelJQBu8/X11ZQpUzRnzhzde++9evrpp9WlSxfl5+fr73//u8LCwvQv//IveuyxxyRJISEh2rhxo+bNm6fq6molJCTopZdeUkZGRrP7f+GFF1RTU6MxY8YoODhYM2bMUFVVVZNt8vLytGfPHt18880KDQ3V008/7Twj4+Pjo2XLlun+++9Xnz591KtXL7366qtKTU295N+9S5cueu+99zRjxgz169dP8fHxmjJliseKEgD3WBznu/8RAC5zqampGjBgwDnPq3GVxWJRYWGhMjMzPZoLwP/j0hIAtOD1119XUFCQduzY4fJnJk+erKCgoFZMBeAszsgAwHkcOHBAtbW1kqT4+PgmDwFsydGjR51P942JiVFgYGCrZQQudxQZAABgWlxaAgAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApkWRAQAApvW/nnljBU1CFakAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(residuals, bins=10, range=(-3, 3), histtype='step')\n", "plt.xlabel('Residual [$\\sigma$]')\n", "plt.ylabel('#Entries per bin')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "24ce04cc-5234-4326-9a28-7624b9c7d23e", "metadata": {}, "source": [ "Bzw. den Anteil an Residuen berechnen, welcher innerhalb der 1 $\\sigma$ Umgebung liegt." ] }, { "cell_type": "code", "execution_count": 523, "id": "39009321-41f4-49f4-820a-717be277b1b0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.6833333333333333" ] }, "execution_count": 523, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(np.abs(residuals) < 1)/len(residuals)" ] }, { "cell_type": "markdown", "id": "08579cdf-3b28-4ea2-9c61-6ae62974af51", "metadata": {}, "source": [ "Zeigen unsere Residuen eine Struktur oder ein systematisches Verhalten, deutet dies auf einen ungenauen Fit oder ein falsches Fitmodel hin. Dies ist im Folgenden gezeigt. " ] }, { "cell_type": "code", "execution_count": 524, "id": "850870af-e546-4d95-b9de-8a4e7b61c241", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Matthias\\AppData\\Local\\Temp\\ipykernel_67644\\2321973434.py:8: UserWarning: The figure layout has changed to tight\n", " fig_fit.tight_layout()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEsElEQVR4nOzdd1iV9f/H8edhCwiKiGgKzhT3Vly5cWuaaUmOzMrUTJs2LFu2vtm3UhuaWmaWK/feMydOnKmIynKAioJwzu8Pf53iqykHDt4ceD2u61yX5z73eB3Aw5vP/Rkmi8ViQUREREQcnpPRAURERETEPlTYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikke4GB0gNzCbzZw7d46CBQtiMpmMjiMiIiJiZbFYuHLlCiVKlMDJ6e5tcirsgHPnzlGqVCmjY4iIiIj8qzNnzlCyZMm77qPCDihYsCBw6wvm4+NjcBoRERGRvyUlJVGqVClrvXI3KuzAevvVx8dHhZ2IiIjkSpnpLqbBEyIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqG1YkVEMikqKoqEhAS7n9ff35+goCC7n1dE8h8VdiIimRAVFUVISAjJycl2P7enpyeRkZEq7kQk21TYiYhkQkJCAsnJyUyfPp2QkBC7nTcyMpLw8HASEhJU2IlItqmwExGxQUhICLVr1zY6hojIHWnwhIiIiEgeocJOREREJI9QYSciIiKSR+Sawu6jjz7CZDLxwgsvWLfduHGDIUOGUKRIEby9venRowexsbEZjouKiqJjx454enoSEBDAyy+/TFpa2n1OLyIiImK8XFHY7dixg2+//Zbq1atn2D5ixAgWLlzIrFmzWL9+PefOnaN79+7W19PT0+nYsSOpqals2bKFadOmMXXqVEaPHn2/34KIiIiI4Qwv7K5evUqfPn34/vvvKVy4sHV7YmIikydP5vPPP6dly5bUqVOHKVOmsGXLFrZt2wbAihUrOHToENOnT6dmzZq0b9+e9957j/Hjx5OammrUWxIRERExhOHTnQwZMoSOHTvSunVr3n//fev2Xbt2cfPmTVq3bm3dVqlSJYKCgti6dSsNGzZk69atVKtWjWLFiln3CQsLY/DgwRw8eJBatWrd8ZopKSmkpKRYnyclJeXAOxMRueX6peuc33We+Mh4rl+4zvVL17lx6QbXL14nITqBAQxg+8jtnClzBo/CHngU9sDT35Ni1YsRWDMQNy83o9+CiDgIQwu7mTNnsnv3bnbs2HHbazExMbi5uVGoUKEM24sVK0ZMTIx1n38WdX+9/tdr/2bs2LGMGTMmm+lFRG5nTjcTvTWaM1vPcH7nec7tPMelPy/d9ZhggoldH0vs+tjbXjM5mfAP8adE3RKUqFuCoKZBFKteDJPJlFNvQUQcmGGF3ZkzZxg+fDgrV67Ew8Pjvl571KhRjBw50vo8KSmJUqVK3dcMIpJ3WMwWojZHcfC3g0TOjuRqzNXb9ilcrjCBNQLxDPCkQOECFPArgEdhD85fOs8rL7/C+2+8T9GCRbl+8VZr3pVzV4jZE8OVc1eIPxhP/MF49k7bC4BfBT+qPFqFKo9WIaBagIo8EbEyrLDbtWsXcXFxGWZwT09PZ8OGDXz99dcsX76c1NRULl++nKHVLjY2lsDAQAACAwPZvn17hvP+NWr2r33uxN3dHXd3dzu+GxHJj2L2xrBn8h4OzT7E1fN/F3MehTwo07IMJerdamUrXrs4BfwK3PEcu3fv5hCHCO4efMcVLa6cu8K5Xec4t/Mc57af49S6U1w8dpGNH2xk4wcbKVKxCJV7Vqb2U7UpFFwop96qiDgIwwq7Vq1asX///gzbBgwYQKVKlXj11VcpVaoUrq6urF69mh49egBw5MgRoqKiCA0NBSA0NJQPPviAuLg4AgICAFi5ciU+Pj5Urlz5/r4hEckXLBYLp9adYtNHmzix/IR1u7uvO5W6VaLKo1Uo27oszm7OdrlewRIFqViiIhU7VwQg5UoKRxcd5dBvhzi29BgXjlxg4/sb2TR2E9Ueq0ajVxpRrFqxe5xVRPIqwwq7ggULUrVq1QzbvLy8KFKkiHX7wIEDGTlyJH5+fvj4+DBs2DBCQ0Np2LAhAG3btqVy5co88cQTfPLJJ8TExPDmm28yZMgQtciJiF1ZzBYqUYlN/TZx+eBl4Fb/t5AeIdToV4Oyrcvi4p7zH6nuBd2p9lg1qj1WjZSkW0Xensl7OLnmJPum72Pf9H1U6FiBJq81IahJUI7nEZHcxfBRsXczbtw4nJyc6NGjBykpKYSFhTFhwgTr687OzixatIjBgwcTGhqKl5cX/fr149133zUwtYjkNceWHGPd0HX0pjeXD17GxcOFmgNqEvpiKH7l/AzL5e7jTrXHq1Ht8Wqc23mOzR9v5tCcQxxbfIxji48R3CyYsC/CKF6ruGEZReT+MlksFovRIYyWlJSEr68viYmJ+Pj4GB1HRHKJS39eYtkLyzi68CgA17lOtSer0fXDrngX87bLNXbv3k2dOnXYtWvXHfvY2erC0Qts+WwLe6ftJT01HUxQ99m6tHy/5b/28xOR3M2WOsXwCYpFRHKbm8k3WTt6LeMrj+fowqM4uThR7olyfMEXhAwJsVtRlxOKPFiEzt915vkTz1Pt8WpggZ0Td/LVg1+x89udmNPNRkcUkRykwk5E5B+OLjrK+JDxbHhvA+kp6ZRtXZZn9z1L5Rcqk0LKvU+QS/iU9KH7z93pt64fAVUDuH7hOoufXcyk+pM4t+uc0fFEJIeosBMR4VYr3aLBi/il8y8kRiXiU8qHnrN7Er4inKIhRY2Ol2WlHyrNM3ueod1/2+Hu48753eeZHDqZzZ9sxmLO9z1xRPIcFXYiku/F7I3hu7rfseubXQA0HNmQoYeHUrlH5Twx+a+TixMNnm/A0KNDCekRgvmmmVWvruKnNj+RdFZLKorkJSrsRCTfspgtbB23lUn1J5EQmYB3cW/CV4QT9p8wXD1djY5nd97FvOk5qyedJ3XG1dOVk2tO8k31bzj8+2Gjo4mInaiwE5F8KTkhmZ87/MyKkStIT02nYpeKDN43mHJtyhkdLUeZTCZqD6zN07ufpnjt4ly/eJ1fH/6VRc8uIi0lzeh4IpJNKuxEJN+JOxjH9/W/58TyE7h4uNBxYkd6/d4LT39Po6PdN/4V/Rm4dSCNXmkEwK5vd/Fjyx+5FnfN4GQikh0q7EQkXzm25BiTQydz+eRlCpctzKAdg6j7bN080ZfOVs5uzrT5uA3hy8PxKOTBmS1n+L7e98TuizU6mohkkQo7EckXLJZb/el+6fwLqVdSCX4omKe2P0VA1QCjoxmuXNtyDNw2EL8KfiRGJTK50WSOLDhidCwRyQIVdiKS56WnprPw6YWsGLkCi9lCradq8cSKJ/Askn9uvd6Lf0V/ntr2FGValeHmtZvM7Dbz1pQoWpxIxKGosBORPC3lSgrT201nz6Q9mJxMhI0Lo/N3nXF2czY6Wq5TwK8AfZb2oe7gumCBVa+uYuHTC7VahYgDUWEnInnW9YvX+an1T5xaewq3gm48tvAxGr7QMF/2p8ssZ1dnOk7oSPuv22NyMrFn0h7mPj731rqzIpLruRgdQEQkJ1yNucpPbX4i7kAcBYoUIHx5OCXqlDA6lsOoP6Q+3oHezHlsDgd/O0jqtVR6zuqJa4G8N7+fSF6iFjsRyXMSoxKZ0mwKcQfi8C7uTf/1/VXUZUHlHpV5bMFjuHi4cGzxMWZ0nEHKFcdZL1ckP1JhJyJ5yoWjF/ihyQ9cPHYR32BfBmwcQEAVjXzNqvLtyhO+PBy3gm6cWnuKn9r8xPWL142OJSL/QrdiRSTPiDsYx4+tfuRa7DWKVCxC31V98SnpY3SsTImMjLT7Of39/QkKCsr2eYKbBdN3dV9+bvczZ/84y7QW03hi1RN4FfWyQ0oRsScVdiKSJ1w4doGfWv/EtdhrBNYMJHx5OF4Bub/w8Pf3x9PTk/DwcLuf29PTk7lz51K0aNHsn8wZ6k+sz7bnthG7L5bpYdPpt6YfHoU8sn9uEbEbFXYi4vASoxL5sdWPXI25SrHqxei7ui8F/AoYHStTgoKCiIyMJCEhwa7njY+Pp3v37rRr186u5y1CEZ7kSWL2xPBzh595YsUTuHm72fUaIpJ1KuxExKFdOX+FH1v9SNKZJIo8WITwFeEOU9T9JSgoyC63TP9XThSMkZGRvBj+Is/7PE/01mhmdp3J44sfx8VDv05EcgP9TxQRh5V8IZmf2vzExeMXKVS6EH1X98W7mDdRUVE5UtA4mpwqGGOJpcFXDdg+ZDsn15zkt0d+o9fcXpr0WSQXUGEnIg7pRuINpodNJ/5gPAVLFOSJVU/gU9KHqKgoQkJCSE5Otvs1PT098ff3t/t5HVHhqoV5bNFj/NzuZ44tPsa8J+bRfUZ3nJw12YKIkVTYiYghstOqlp6SzrYh27i45yJuhdyo82UdTiWe4tTuU0RGRpKcnMz06dMJCQmxa2Z7jTLNK0o/VJpe83rxS5dfOPjbQdwKutH5+85a2UPEQCrsROS+y06rmgkTj/AIVajCDW7wzeVveP2R1zPs4+npSdOmTVWE3Qfl25XnkV8fYdYjs9gzeQ++wb489NZDRscSybdU2InIfZeQkJDlVrVD/z3EiR9PYHIx0eLrFvSs1/O2fdSydn+FPBxChwkdWPzsYtaNXkeh0oWo8UQNo2OJ5Esq7ETEMCEhIdSuXTvT+++YuIMTP54AoNuUblQPr55T0cRGdZ+py+WTl9n88WYWDFyAzwM+lGlZxuhYIvmOermKiEM4uugoS4cuBaDFey1U1OVCrT5sRdXeVTHfNPNr91+JOxhndCSRfMfQwm7ixIlUr14dHx8ffHx8CA0NZenSpdbXmzdvjslkyvB49tlnM5wjKiqKjh074unpSUBAAC+//DJpaWn3+62ISA46t+scs3vNxmK2UGtgLZq+0dToSHIHJicTXad0JahJECmJKczoMIMr568YHUskXzG0sCtZsiQfffQRu3btYufOnbRs2ZKuXbty8OBB6z6DBg3i/Pnz1scnn3xifS09PZ2OHTuSmprKli1bmDZtGlOnTmX06NFGvB0RyQGXT1/ml06/cDP5JuXalqPjxI4adZmLuXi40Ov3XhR5sAiJUYn80ukXUq+mGh1LJN8wtLDr3LkzHTp0oEKFCjz44IN88MEHeHt7s23bNus+np6eBAYGWh8+Pn8v6L1ixQoOHTrE9OnTqVmzJu3bt+e9995j/PjxpKbqg0TE0aVeS2Vml5nWpcJ6zuqJs6smwc3tPIt40mdpHzyLenJ+93l+7/87FovF6Fgi+UKu6WOXnp7OzJkzuXbtGqGhodbtP//8M/7+/lStWpVRo0ZlmB5h69atVKtWjWLFilm3hYWFkZSUlKHVT0Qcj8ViYcGTC4jdF4tXgBePLXoMdx93o2NJJhUuW5je83vj5OpE5JxINn640ehIIvmC4aNi9+/fT2hoKDdu3MDb25t58+ZRuXJlAB5//HGCg4MpUaIE+/bt49VXX+XIkSPMnTsXgJiYmAxFHWB9HhMT86/XTElJISUlxfo8KSnJ3m9LRLJp88ebOfjbQZxcnOg5uye+pXyNjiQ2KhVaio4TOrJw0ELWvrWWwBqBPNjpQaNjieRphhd2FStWJCIigsTERGbPnk2/fv1Yv349lStX5umnn7buV61aNYoXL06rVq04ceIE5cqVy/I1x44dy5gxY+wRX0RywLElx1j9+moA2n/VnuCmwQYnkqyq/VRtzu85z84JO5nz+BwGbR+EfyUtyyaSUwy/Fevm5kb58uWpU6cOY8eOpUaNGvz3v/+9474NGjQA4Pjx4wAEBgYSGxubYZ+/ngcGBv7rNUeNGkViYqL1cebMGXu8FRGxgwtHLzDn8TlggdpP16bus3WNjiTZ1O6LdgQ3Cyb1Siozu87kxuUbRkcSybMML+z+l9lsznCb9J8iIiIAKF68OAChoaHs37+fuLi/50pauXIlPj4+1tu5d+Lu7m6dYuWvh4gYLyUphZldZ5KSmEKpxqXo8FUHoyOJHTi7OtNzVk98Svlw4egF5vaZizndbHQskTzJ0MJu1KhRbNiwgVOnTrF//35GjRrFunXr6NOnDydOnOC9995j165dnDp1igULFtC3b1+aNWtG9eq3JiZt27YtlStX5oknnmDv3r0sX76cN998kyFDhuDurk7WIo7EYrYwN3wuCYcTKPhAQR6d/SjObhoBm1d4BXjRa14vXDxcOLbkGGtHrzU6kkieZGhhFxcXR9++falYsSKtWrVix44dLF++nDZt2uDm5saqVato27YtlSpV4sUXX6RHjx4sXLjQeryzszOLFi3C2dmZ0NBQwsPD6du3L++++66B70pEsmLzJ5s5uvAozu7O9JrXC+9Ab6MjiZ2VqFOCzpM6A7Dpw00cXXTU4EQieY+hgycmT578r6+VKlWK9evX3/McwcHBLFmyxJ6xROQ+O7X+FGveWANAh6878EC9BwxOJDmlep/qnN1+lu1fbmde33k8s+cZCgUXMjqWSJ6R6/rYiUj+cjX2KnMem4PFbKFG3xrUGljL6EiSw9p+2pYH6j/AjUs3mP3obNJT042OJJJnqLATEcNY0i3M7TOXq+evUrRyUTpM6KDlwvIBZzdnHvn1ETwKe3B2+1lWvLzC6EgieYbh89iJSP51dNJRTq4+iaunKz1n98TNy83oSJJJkZGR2T5H9dHV2T5iO9u/3E76A+lU712doKAgO6QTyb9U2ImIIcpSlqPf3+o83+nbThQNKWpwIskMf39/PD09CQ8Pt8v5WtOaJjRhy6tbeObtZ9h6ZKuKO5FsUGEnIvfd9bjr9KCHdRLi6uHVjY4kmRQUFERkZCQJCQl2OZ/5ppmtz27lYsRFOt/oTGx0rAo7kWzIUmFnNps5fvw4cXFxmM0ZJ5ls1qyZXYKJSN5kTjez5809eOGFT0Uf2v+3vdGRxEZBQUF2Lb4eXPQg46uNp/il4hz64hD1GtWz27lF8hubC7tt27bx+OOPc/r0aSwWS4bXTCYT6eka3SRihKioKLu1ovyTv7+/XX+Jb/54Mxd2XSCVVOp8VAcXD904yO98HvCh1nu1+GPoH5yadYojC45QsUtFo2OJOCSbP1GfffZZ6taty+LFiylevLhGsInkAlFRUYSEhJCcnGz3c3t6ejJ37lyKFs1+H7hL+y+xefRmABazmB5BPbJ9TskbAkID2MIWGtGI+U/OZ/C+wRQsUdDoWCIOx+bC7tixY8yePZvy5cvnRB4RyYKEhASSk5OZPn06ISEhdjtvfHw83bt3p127dtk+lzvuPMMz+OHHfvZzrMAx/P397ZBS8orVrKZdxXYkHUliXt95PLHiCUxOajwQsYXNhV2DBg04fvy4CjuRXCgkJITatWvb9Zz26ii/Z/QeohdHU6B4AV7+5WU+L/O5OslLBumkU+fDOmx6YhMnV59ky3+20PjlxkbHEnEoNhd2w4YN48UXXyQmJoZq1arh6uqa4fXq1TW6TSQvsUdH+X0/7yN6cTQmJxO9Z/UmqLEKOrkz79LetPtvOxYOWsia19dQpkUZStQtYXQsEYdhc2HXo8etPjFPPvmkdZvJZMJisWjwhIjc5tKfl1g8eDEAzUY3U1En91RrYC2OLztO5JxI5jw+h2d2P4ObtyavFskMmwu7kydP5kQOEcmDzGlm5vaZS+qVVEo1LkWzNzQdktybyWSi83edOfvHWS4eu8jS55fS9YeuRscScQg2F3bBwcE5kUNE8qCNYzcSvS0ad193uv/cHScXLU8tmVPArwAPT3+YaS2mETElgopdKlKpWyWjY4nkepkq7BYsWED79u1xdXVlwYIFd923S5cudgkmIo7t/O7zbHh3AwAdxnegUHAhYwOJwyn9UGkav9KYzR9vZuHTCynVqBReAV5GxxLJ1TJV2HXr1o2YmBgCAgLo1q3bv+6nPnYiApB2I415T8zDnGam8iOVqfZ4NaMjiYNqPqY5x5YcI25/HAufXkiveb00f6rIXWTqvojZbCYgIMD67397qKgTEYA1b64h/lA8XsW86Dixo34RS5a5uLvw8E8P4+TqxJH5R9j7416jI4nkaurwIiJ2dWr9KbZ+vhWALpO64OnvaXAicXSBNQJp8W4LAJY9v4zLpy8bG0gkF8tSYbd69Wo6depEuXLlKFeuHJ06dWLVqlX2ziYiDiYlKYX5/eeDBWo9VYsHOz1odCTJIxq93IhSjUrd+hkbMB+L2XLvg0TyIZsLuwkTJtCuXTsKFizI8OHDGT58OD4+PnTo0IHx48fnREYRcRDLRy7n8qnLFCpdiLDPw4yOI3mIk7MT3aZ1w9XTlVNrT/HHV38YHUkkV7K5sPvwww8ZN24cv/zyC88//zzPP/88M2bMYNy4cXz44Yc5kVFEHMCRhUfYM3kPmKDbtG64F3Q3OpLkMX7l/Wj7n7YArH5tNfGR8QYnEsl9bC7sLl++fMcFwdu2bUtiYqJdQomIY7l+8TqLnl4EQOiLoQQ303yXkjPqPFOHcmHlSLuRxvz+8zGnmY2OJJKr2FzYdenShXnz5t22ff78+XTq1MkuoUTEsSx7YRlXY67iX8mflu+1NDqO5GEmk4kuk7vg7uvO2e1n2Tpuq9GRRHKVTM1j9+WXX1r/XblyZT744APWrVtHaGgoANu2bWPz5s28+OKLOZNSRHKto4uOsu+nfZicTHSd0hUXD5sXtBGxic8DPoSNC2PBkwtY+9ZaKnauiH8lf6NjieQKmfoEHjduXIbnhQsX5tChQxw6dMi6rVChQvzwww+8+eab9k0oIrnW9UvXWfTM37dgSzYsaXAiyS9q9q/JwV8PcmL5CeY/OZ8BGwfg5KwZvEQyVdidPHkyp3OIiANaMXIFV85dociDRWg+prnRcSQfMZlMdP6+MxOqTCB6azR//PcPQkeGGh1LxHD680ZEsuTY0mNETI0AE3Sd0hXXAq5GR5J8xreUr3WU7Jo31nDh6AWDE4kYz9DCbuLEiVSvXh0fHx98fHwIDQ1l6dKl1tdv3LjBkCFDKFKkCN7e3vTo0YPY2NgM54iKiqJjx454enoSEBDAyy+/TFpa2v1+KyL5yo3EGywctBCAhiMaUqpRKYMTSX5V+6nalG1d9tYo2SfnY07XKFnJ3wwt7EqWLMlHH33Erl272LlzJy1btqRr164cPHgQgBEjRrBw4UJmzZrF+vXrOXfuHN27d7cen56eTseOHUlNTWXLli1MmzaNqVOnMnr0aKPekki+sOLFFVw5ewW/8n4aBSuGMplMdJ7UGTdvN85sPsP2r7cbHUnEUIYWdp07d6ZDhw5UqFCBBx98kA8++ABvb2+2bdtGYmIikydP5vPPP6dly5bUqVOHKVOmsGXLFrZt2wbAihUrOHToENOnT6dmzZq0b9+e9957j/Hjx5OammrkWxPJs06sPGGdiLjLD11w9dQtWDFWoeBCtPm0DQCrR63m4omLBicSMY5NhV1aWhrvvvsu0dHRdg+Snp7OzJkzuXbtGqGhoezatYubN2/SunVr6z6VKlUiKCiIrVtvzVu0detWqlWrRrFixaz7hIWFkZSUZG31u5OUlBSSkpIyPETk3lKvplonIq4/tD7BTTURseQOdZ6uQ+kWpUm7nsaipxdhsWgtWcmfbCrsXFxc+PTTT+3ah23//v14e3vj7u7Os88+y7x586hcuTIxMTG4ublRqFChDPsXK1aMmJgYAGJiYjIUdX+9/tdr/2bs2LH4+vpaH6VKqX+QSGasHb2Wy6cu4xvkS6sPWxkdR8TK5GSi83edcfFw4eSak7cG9ojkQzbfim3ZsiXr16+3W4CKFSsSERHBH3/8weDBg+nXr1+G+fFywqhRo0hMTLQ+zpw5k6PXE8kLzm4/yx//vbXweqdvO+Hm7WZwIpGM/Mr70fzd5sCtqXiuxlw1NpCIAWyeIr59+/a89tpr7N+/nzp16uDl5ZXh9S5duth0Pjc3N8qXLw9AnTp12LFjB//973/p1asXqampXL58OUOrXWxsLIGBgQAEBgayfXvGjrJ/jZr9a587cXd3x91dC5SLZFZ6ajoLBi7AYrZQPbw65duVNzqSyB2Fjgjl4MyDnN99nqXDltJzVk+jI4ncVzYXds899xwAn3/++W2vmUwm0tPTsxXIbDaTkpJCnTp1cHV1ZfXq1fTo0QOAI0eOEBUVZV3KLDQ0lA8++IC4uDgCAgIAWLlyJT4+PlSuXDlbOUTkb5s+3kTcgTg8/T0JGxdmdByRf+Xk4kSXyV34ru53HJp9iMO/H6ZSt0pGxxK5b2wu7Mxm+80RNGrUKNq3b09QUBBXrlxhxowZrFu3juXLl+Pr68vAgQMZOXIkfn5++Pj4MGzYMEJDQ2nYsCEAbdu2pXLlyjzxxBN88sknxMTE8OabbzJkyBC1yInYSXxkPBvf3whAuy/b4envaXAikbsLrBlIo5cbsfmjzSx+bjGlm5fGo5CH0bFE7otsTXdy48aNbF08Li6Ovn37UrFiRVq1asWOHTtYvnw5bdrcGrY+btw4OnXqRI8ePWjWrBmBgYHMnTvXeryzszOLFi3C2dmZ0NBQwsPD6du3L++++262conILRazhYVPLSQ9NZ0KHSpQtXdVoyOJZMpDox/Cr4IfV89fZeUrK42OI3Lf2Nxil56ezocffsg333xDbGwsR48epWzZsrz11luULl2agQMHZvpckydPvuvrHh4ejB8/nvHjx//rPsHBwSxZsiTT1xSRzNsxcQdntpzBzduNjhM7YjKZjI4kkimuBVzpMqkLUx+ayu7vd1Pt8WqUbl7a6FgiOc7mFrsPPviAqVOn8sknn+Dm9veouKpVqzJp0iS7hhMR4yRFJ7H6tdUAtPqoFb5BvgYnErFNcLNg6jxTB4CFTy8k7YaWm5S8z+bC7scff+S7776jT58+ODs7W7fXqFGDw4cP2zWciBhn6bClpF5NpWRoSeoNrmd0HJEsaf1xa7yLe3Px2EU2frjR6DgiOc7mwu7s2bPW6Un+yWw2c/PmTbuEEhFjRc6L5PDvh3FycaLzd50xOekWrDgmD18P2n/ZHoBNH20i/lC8wYlEcpbNhV3lypXZuPH2v3pmz55NrVq17BJKRIyTkpTC0mFLAWj0ciMCqgYYnEgke0J6hPBgpwcx3zSz6JlFWMxabkzyLpsHT4wePZp+/fpx9uxZzGYzc+fO5ciRI/z4448sWrQoJzKKyH20+o3VXDl7hcLlCtPsrWZGxxHJNpPJRIfxHTi59iRRm6LYPXk3dQbVMTqWSI6wucWua9euLFy4kFWrVuHl5cXo0aOJjIxk4cKF1mlKRMQxRf8RzY7xOwDo9E0nXAu4GpxIxD58g3xp8V4LAFa9skrLjUmeZXOLHUDTpk1ZuVLzAonkJek301n09CKwQPUnqlO2dVmjI4nYVYNhDdj/837O7zrP8hHL6fFLD6Mjidhdlico3rlzJz/99BM//fQTu3btsmcmETHAtnHbiN0XS4EiBWj7n7ZGxxGxu38OBjow8wDHlh4zOpKI3dlc2EVHR9O0aVPq16/P8OHDGT58OPXq1aNJkyZER0fnREYRyWGXTl5i3TvrAGj7WVu8inoZG0gkhxSvXZwGLzQAYPHgxaReSzU4kYh92VzYPfXUU9y8eZPIyEguXrzIxYsXiYyMxGw289RTT+VERhHJQRaLhSXPLSHtehqlW5SmRr8aRkcSyVEtxrTAN9iXxNOJbHhvg9FxROzK5sJu/fr1TJw4kYoVK1q3VaxYka+++ooNG/QfRMTRHJp9iOPLjuPs5qxlwyRfcPN2o8PXHQDY+p+txB2IMziRiP3YXNiVKlXqjhMRp6enU6JECbuEEpH7IyUphWXDlwHQ+LXG+Ff0NziRyP3xYKcHqfRwJcxpZhY9q7ntJO+wubD79NNPGTZsGDt37rRu27lzJ8OHD+ezzz6zazgRyVlr3lzD1fNX8SvvR9NRTY2OI3Jftf+yPW7ebpzZfIY9P+wxOo6IXdhc2PXv35+IiAgaNGiAu7s77u7uNGjQgN27d/Pkk0/i5+dnfYhI7nVu5znrnHUdJnTAxSNLsx+JOCyfkj40f7c5ACtfWcm1+GvGBhKxA5s/yb/44osciCEi95M5/e/bT1Ufq0q5NuWMjiRiiAbDGrDvx33ERMSw8qWVdJvWzehIItlic2HXr1+/nMghIvfRjvE7OL/rPO6+7oR9HmZ0HBHDOLk40fGbjkwOnczeH/dSo38NyrQoY3QskSzL8gTFIuKYks4msebNNQC0GtsK70BvgxOJGKtkg5LUfbYucGtuu7SUNIMTiWSdCjuRfGb5iOWkXknlgQYPUPeZukbHEckVWn3YCq9iXlw4coHNn2w2Oo5IlqmwE8lHji87zqFZhzA5mej0TSdMTpqzTgTAo5AHYeNudUvY+MFGLp64aHAikaxRYSeST9y8fpMlQ5YAUP/5+gTWDDQ4kUjuUrV3Vcq0KkN6SjpLhy7FYtHcduJ4sl3YJSUl8fvvvxMZGWmPPCKSQzZ9tIlLf16iYImCtHi3hdFxRHIdk8lExwkdcXZz5viy40TO0e81cTw2F3aPPvooX3/9NQDXr1+nbt26PProo1SvXp05c+bYPaCIZN+FoxfY/NGtfkNhX4ThXtDd4EQiuVORB4vQ+NXGACx7YRkpV1IMTiRiG5sLuw0bNtC06a0Z6ufNm4fFYuHy5ct8+eWXvP/++3YPKCLZY7FYWDJkCemp6ZQLK0flRyobHUkkV2syqgmFyxbmytkrrHt7ndFxRGxic2GXmJhoXVVi2bJl9OjRA09PTzp27MixY8fsHlBEsufgrwf5c9WfOLs70+HrDphMGjAhcjeuBVzpML4DAH98+Qcxe2MMTiSSeTYXdqVKlWLr1q1cu3aNZcuW0bZtWwAuXbqEh4eH3QOKSNbdSLzB8hHLAWj6elP8ymupP5HMKN+uPJUfqYwl3cLiwYuxmDWQQhyDzStPvPDCC/Tp0wdvb2+CgoJo3rw5cOsWbbVq1eydT0SyYe3otVyNuYpfBT9rvyGR3CynBuL5+/sTFBRk0zFhX4RxfNlxordGs+eHPdR+qnaOZBOxJ5sLu+eee4769etz5swZ2rRpg5PTrUa/smXL2tzHbuzYscydO5fDhw9ToEABGjVqxMcff0zFihWt+zRv3pz169dnOO6ZZ57hm2++sT6Piopi8ODBrF27Fm9vb/r168fYsWNxcdGi5pJ/nd9znh1f7wCg44SOuLjr/4PkXv7+/nh6ehIeHp4j5/f09CQyMtKm4s7nAR+av9ucFSNXsOrVVVTsWhGvol45kk/EXrL0SV+3bl2qV6/OyZMnKVeuHC4uLnTs2NHm86xfv54hQ4ZQr1490tLSeP3112nbti2HDh3Cy+vv/zyDBg3i3XfftT739PS0/js9PZ2OHTsSGBjIli1bOH/+PH379sXV1ZUPP/wwK29PxOFZzBYWP3vr9lGVXlUo27qs0ZFE7iooKIjIyEgSEhLsfu7IyEjCw8NJSEiwudWuwbAG7J22l9i9sax6bRVdJ3e1ez4Re7K5sEtOTmbYsGFMmzYNgKNHj1K2bFmGDRvGAw88wGuvvZbpcy1btizD86lTpxIQEMCuXbto1qyZdbunpyeBgXeeTHXFihUcOnSIVatWUaxYMWrWrMl7773Hq6++yjvvvIObm5utb1HE4e2etJuz28/iVtCNsM/DjI4jkilBQUE2F145zcnFiY4TOvJD4x+I+CGCWk/WIqhx7soo8k82D54YNWoUe/fuZd26dRkGS7Ru3Zpff/01W2ESExMBrKNu//Lzzz/j7+9P1apVGTVqFMnJydbXtm7dSrVq1ShWrJh1W1hYGElJSRw8eDBbeUQc0bX4a6x6bRUALd5rQcESBQ1OJOLYSjUqRa2BtQBYPHgx5jSzwYlE/p3NLXa///47v/76Kw0bNswwbUKVKlU4ceJEloOYzWZeeOEFGjduTNWqVa3bH3/8cYKDgylRogT79u3j1Vdf5ciRI8ydOxeAmJiYDEUdYH0eE3PnIeopKSmkpPw96WRSUlKWc4vkNqteXcWNSzcIrBlI/SH1jY4jkie0/qg1h+cdJm5/HH989QehI0KNjiRyRzYXdvHx8QQEBNy2/dq1a9maH2vIkCEcOHCATZs2Zdj+9NNPW/9drVo1ihcvTqtWrThx4gTlypXL0rXGjh3LmDFjspxVJLe6sOcCEVMiAOg4sSNOLloOWsQePP09af1JaxY+tZB1o9dR5dEq+DzgY3QskdvY/Klft25dFi9ebH3+VzE3adIkQkOz9hfM0KFDWbRoEWvXrqVkyZJ33bdBgwYAHD9+HIDAwEBiY2Mz7PPX83/rlzdq1CgSExOtjzNnzmQpt0hu4oQT+8fuB6D2oNqUbHj3/0siYptaA2pRMrQkqVdTWTFyhdFxRO7I5ha7Dz/8kPbt23Po0CHS0tL473//y6FDh9iyZctt05Lci8ViYdiwYcybN49169ZRpkyZex4TEREBQPHixQEIDQ3lgw8+IC4uztqSuHLlSnx8fKhc+c5LJ7m7u+PurrUyJW9pQAOunLhCgSIFaDW2ldFxRPIck5OJjhM78l3t7zj420FqDaxFubZZu3MkklNsbrFr0qQJERERpKWlUa1aNVasWEFAQABbt26lTp06Np1ryJAhTJ8+nRkzZlCwYEFiYmKIiYnh+vXrAJw4cYL33nuPXbt2cerUKRYsWEDfvn1p1qwZ1atXB6Bt27ZUrlyZJ554gr1797J8+XLefPNNhgwZouJN8o3rsddpTnMA2nzSBs8innc/QESyJLBGIPWfv9V3dcmQJaTdSDM4kUhGWZrHrly5cnz//ffZvvjEiRMBrKtX/GXKlCn0798fNzc3Vq1axRdffMG1a9coVaoUPXr04M0337Tu6+zszKJFixg8eDChoaF4eXnRr1+/DPPeieR1Bz8/iDvuFK5RmJr9axodRyRXsteqFoUfLoz7dHcuHr/IkjeW0OU/XexyXhF7MFkslnsugJeUlISPj4/133fz136OJCkpCV9fXxITEx0yvziWqKgou07CGrcljj+G/YEZM81/aU6L3i3sdm6RvCAqKoqQkJAMU2VlVxWq0JOepJFGrw29qNq06r0PEskiW+qUTLXYFS5cmPPnzxMQEEChQoXuOPrVYrFgMplIT0/PWmqRfMDev2BccGEwgylCEXa57GJgo4F2Oa9IXpITq1pYLBZW91/N9QPX2ThqI1U2VsnWzBAi9pKpwm7NmjXWSYPXrl2bo4FE8rKEhASSk5OZPn06ISEh2T7f0e+OcuTbI3gU9eCLtV/kuln7RXKLnFjV4tq711jZfSVxm+M4/PthQh7O/v9pkezKVGH30EMPAZCWlsb69et58skn7zktiYj8u5CQEGrXrp2tc1w8cZElU5cA0OnrTpSvUt4e0UQkk7yDvdnMZh7iIZYNX0a5NuVw89YylmIsm0bFuri48Omnn5KWplFAIkayWCwsHbqU9JR0yrYpS+Wed57aR0Ry1kY24vmAJ0lnklj/nm1TfonkBJunO2nZsqXN89WJiH0dnneY48uO4+zmTIevO6hvj4hB0kij6ku3Bk5s+3wbcQfjDE4k+Z3N0520b9+e1157jf3791OnTh28vLwyvN6li4Z9i+Sk1KupLBu+DIDGrzamyINFDE4kkr8Va1aMSt0qcfj3wyx5bgn91vXTH1tiGJsLu+eeew6Azz///LbXNCpWJOetG7OOpOgkCpUpRJNRTYyOIyJA2BdhnFhxgtMbTrPvp33U6FvD6EiST9l8K9ZsNv/rQ0WdSM6KOxDHtnHbAOjwdQdcC7ganEhEAAoFF6LZ6GYArHhpBdcvXTc4keRXNhd2P/74IykpKbdtT01N5ccff7RLKBG5ncVsYfHgxVjSLVTqVokKHSoYHUlE/iF0RCj+If4kxyez+vXVRseRfMrmwm7AgAEkJibetv3KlSsMGDDALqFE5HZ7f9xL1KYoXD1dafffdkbHEZH/4ezmTMcJHQHY9e0uzm4/a3AiyY9sLuz+WmHif0VHR+Pr62uXUCKSUfKFZFa+vBKAh955CN8g/V8TyY1KNy9N9SeqgwUWD16MOd1sdCTJZzI9eKJWrVqYTCZMJhOtWrXCxeXvQ9PT0zl58iTt2qkVQSQnrB61muSEZAKqBtDwhYZGxxGRu2j7WVuOLjzK+d3n2TFhBw2GNTA6kuQjmS7sunXrBkBERARhYWF4e3tbX3Nzc6N06dL06NHD7gFF8rszW8+w+/vdAHSc2BFnV2eDE4nI3XgFeNFqbCsWD17M2jfXUvmRyhQsXtDoWJJPZLqwe/vttwEoXbo0vXr1wsPDI8dCicgt5jQziwcvBqBm/5oENdFasCKOoPag2uz5YQ/ndpxjxcgV9PhFDR9yf9jcx65fv354eHiQmppKdHQ0UVFRGR4iYj9/fPUHsXtj8SjsQetPWhsdR0QyycnZiU7fdMLkZOLAzAOcWHnC6EiST9hc2B07doymTZtSoEABgoODKVOmDGXKlKF06dKUKVMmJzKK5EtJZ5NYN3odAK0/bo1XUa+7HyAiuUrx2sWpN6QeAEuGLCEtReusS86zeeWJ/v374+LiwqJFiyhevLiWTRHJIctHLCf1aiolQ0tSe2Bto+OISBa0eK8Fh2Yd4uKxi2z+ZDMPvfWQ0ZEkj7O5sIuIiGDXrl1UqlQpJ/KICHB82XEOzTqEydlEx4kdMTnpDygRR+Th60HYuDDmPDaHjR9spNpj1fAr72d0LMnDbL4VW7lyZRISEnIii4gAN6/fZPFztwZMNHi+AYE1Ag1OJCLZUaVXFcq2KUt6SjpLhizBYrEYHUnyMJsLu48//phXXnmFdevWceHCBZKSkjI8RCR7Nn6wkcsnL+NT0ofmY5obHUdEsslkMtFhfAec3Z05seIEB387aHQkycNsvhXbuvWtkXmtWrXKsP2vFSnS09Ptk0wkH4qPjGfzJ5sBaPdlO9wLuhucSETsoUiFIjR9vSnr3l7H8heWU75deTx8NW2Y2J/Nhd3atWtzIodIvmexWFj87GLMN8082PlBKnVTP1aRvKTxq43Z//N+Lhy9wJo31tDh6w5GR5I8yObC7qGHNKJHJCfsnbaX0xtO4+rpSvuv2mvEuUge4+LuQseJHfmx1Y/smLCDGv1q8EC9B4yOJXmMzX3sADZu3Eh4eDiNGjXi7NmzAPz0009s2rTJruFE8ovkC8mseGkFAA+9/RCFggsZG0hEckSZlmWoHl4dLLDomUWY08xGR5I8xubCbs6cOYSFhVGgQAF2795NSkoKAImJiXz44Yd2DyiSH6x6dRXXL1wnoGoADUc0NDqOiOSgNp+1waOQBzF7YtgxYYfRcSSPsbmwe//99/nmm2/4/vvvcXV1tW5v3Lgxu3fvtms4kfwgalMUeybvAaDjNx1xdnU2OJGI5CTvYt60+ujWAMQ1b64h6axmlBD7sbmwO3LkCM2aNbttu6+vL5cvX7ZHJpF8Iz01nUXPLAKg1lO1CGocZHAiEbkf6gyqQ8mGJUm9ksqy4cuMjiN5iM2DJwIDAzl+/DilS5fOsH3Tpk2ULVvWpnONHTuWuXPncvjwYQoUKECjRo34+OOPqVixonWfGzdu8OKLLzJz5kxSUlIICwtjwoQJFCtWzLpPVFQUgwcPZu3atXh7e9OvXz/Gjh2Li4vNb0/kvtr86WbiD8XjWdSTNh+3MTqOiGRBZGRklo4r90I5zvY5S+ScSJZ8sYTAZn9PRu7v709QkP7QE9vZXPkMGjSI4cOH88MPP2AymTh37hxbt27lpZde4q233rLpXOvXr2fIkCHUq1ePtLQ0Xn/9ddq2bcuhQ4fw8rq14PmIESNYvHgxs2bNwtfXl6FDh9K9e3c2b74111d6ejodO3YkMDCQLVu2cP78efr27Yurq6v6/EmudvH4RTa8twGAsHFhFPArYHAiEbGFv78/np6ehIeHZ/kcrWlNE5qwasQqxjOeVFIB8PT0JDIyUsWd2MxksXFtE4vFwocffsjYsWNJTk4GwN3dnZdeeon33nsvW2Hi4+MJCAhg/fr1NGvWjMTERIoWLcqMGTN45JFHADh8+DAhISFs3bqVhg0bsnTpUjp16sS5c+esrXjffPMNr776KvHx8bi5ud3zuklJSfj6+pKYmIiPj0+23oPkHVFRUXZfPi8yMpLw8HB27tzJwVcPcnL1Scq2KUv48nBNbyLigLL7OZF2PY11j67j+rnrlO1Tliojq1g/J3bt2kXt2rXtmFYclS11is0tdiaTiTfeeIOXX36Z48ePc/XqVSpXroy3t3eWA/8lMTERAD+/Wwsk79q1i5s3b1pXuwCoVKkSQUFB1sJu69atVKtWLcOt2bCwMAYPHszBgwepVavWbddJSUmxjuYFtBSa3CYqKoqQkBDrHy/25OnpSeLGRE6uPomLx615rVTUiTimoKCgbLeq+U324+f2P3Pyl5O0GtEKQuwUTvKlLHdCc3Nzo3LlynYLYjabeeGFF2jcuDFVq1YFICYmBjc3NwoVKpRh32LFihETE2Pd559F3V+v//XanYwdO5YxY8bYLbvkPQkJCSQnJzN9+nRCQuz7Kevt7M381vMBaPZWM/zK+dn1/CLiWMq3K0/V3lU5MPMAi55eRO2JaqWTrMs1owuGDBnCgQMH7sskx6NGjWLkyJHW50lJSZQqVSrHryuOJyQkxO63QuY/OZ/khGSKVilKo5ca2fXcIuKYwsaFcXzZcc7vPs+p304ZHUccWJZWnrC3oUOHsmjRItauXUvJkiWt2wMDA0lNTb1tGpXY2FgCAwOt+8TGxt72+l+v3Ym7uzs+Pj4ZHiL3w6l1p4iYEgFAp2874eymOetEBLwDvWn98a1uR4cnHMYH/V6SrDG0sLNYLAwdOpR58+axZs0aypQpk+H1OnXq4OrqyurVq63bjhw5QlRUFKGhoQCEhoayf/9+4uLirPusXLkSHx8fu94qFsmutJQ0Fj17a866Os/U0Zx1IpJB7adqU6pxKdKvp9OBDtg4tlEEyGRhV7t2bS5dugTAu+++a7cO5UOGDGH69OnMmDGDggULEhMTQ0xMDNevXwduTXo8cOBARo4cydq1a9m1axcDBgwgNDSUhg1vLbvUtm1bKleuzBNPPMHevXtZvnw5b775JkOGDMHd3d0uOUXsYeMHG7lw5AJexbxoNbaV0XFEJJcxOZno9G0nTC4mKlGJ86vPGx1JHFCmCrvIyEiuXbsGwJgxY7h69apdLj5x4kQSExNp3rw5xYsXtz5+/fVX6z7jxo2jU6dO9OjRg2bNmhEYGMjcuXOtrzs7O7No0SKcnZ0JDQ0lPDycvn378u6779olo4g9xB2MY9NHt/qPtv+qPQUKa846EbldQJUAyvcvD8CBTw5w/dJ1gxOJo8nU4ImaNWsyYMAAmjRpgsVi4bPPPvvX6U1Gjx6d6YtnppnZw8OD8ePHM378+H/dJzg4mCVLlmT6uiL3kzndzMKnFmK+aebBzg9S+RF1ERCRf1fhyQpsnbQV/wv+rHxlJV2+72J0JHEgmSrspk6dyttvv82iRYswmUwsXbr0jst1mUwmmwo7kfxg58SdRG+Lxq2gGx0naM46Ebk7Z3dnFrCAJ3mSPZP2UL1PdUo3L210LHEQmSrsKlasyMyZMwFwcnJi9erVBAQE5Ggwkbwg8Uwiq0fdGvzTamwrfEpqpJuI3FsUUQT3COb0nNMsfHohz+59FtcCrkbHEgdg86hYs9msok4kEywWC0ueW0Lq1VRKhpak3uB6RkcSEQcSMiwE7+LeXDx2kQ3vbzA6jjiILE13cuLECYYNG0br1q1p3bo1zz//PCdOnLB3NhGHdmjWIY4uOoqTqxNdJnXB5KRbsCKSea4FXekwvgMAWz7ZQuy+2HscIZKFwm758uVUrlyZ7du3U716dapXr84ff/xBlSpVWLlyZU5kFHE41y9eZ+mwpQA0fb0pRSsXNTiRiDiikIdDCOkegjnNzIKnFmBONxsdSXI5m5cUe+211xgxYgQfffTRbdtfffVV2rRpY7dwIo5qxcsruBZ3Df8Qf5qMamJ0HBFxYO2/as+fq//k3I5z/PHlH4SOCDU6kuRiNrfYRUZGMnDgwNu2P/nkkxw6dMguoUQc2YmVJ4j4IQJM0Pm7zri455olmUXEARUsUZA2n9xqNFnzxhounrhocCLJzWz+jVO0aFEiIiKoUKFChu0REREaVCH5XurVVBYOWghAvSH1CGqiZcNEJGsiIyP/flIbitQtwoWdF5jRewah34Rmaeokf39/goL0uZSX2VzYDRo0iKeffpo///yTRo0aAbB582Y+/vhjRo4cafeAIo5k1ahVJJ5OxDfYl9ZjWxsdR0QckL+/P56enoSHh2fYXpjCPMdzXNh5gWfqPsMudtl8bk9PTyIjI1Xc5WE2F3ZvvfUWBQsW5D//+Q+jRo0CoESJErzzzjs8//zzdg8o4ihObzzNjq93AND5+864ebsZnEhEHFFQUBCRkZEkJCTc9tqJn09w6PNDPOz1MP/97b8UCMz88oSRkZGEh4eTkJCgwi4Ps7mwM5lMjBgxghEjRnDlyhUAChYsaPdgIo7k5vWbLBi4AICaT9akXJtyBicSEUcWFBR0x+KrZo2aJG1JInpbNKfHn+axRY9pNRvJIEvz2P2lYMGCKupEgHXvrOPisYt4F/cm7D9hRscRkTzKydmJLpO74OzmzLElx9j/836jI0kuk63CTkTg3M5zbP1sKwCdvumERyEPgxOJSF5WtHJRmo1uBsCy4cu4GnvV4ESSm6iwE8mG9NR05j85H4vZQtXeVanYpaLRkUQkH2j8SmMCawbemgx96FKj40guosJOJBs2fLCBuP1xePp70u7LdkbHEZF8wtnVmS4/dMHkbOLQ7EMcnHXQ6EiSS9hU2N28eZNWrVpx7NixnMoj4jDO7z7Pxg82AtD+6/Z4FfUyOJGI5CfFaxW3rmyz5LklXIu7ZnAiyQ1sKuxcXV3Zt29fTmURcRhpKWn83u93LOkWKvesTNVeVY2OJCL50ENvPUSx6sVITkhm8XOLsVgsRkcSg9l8KzY8PJzJkyfnRBYRh7HhvQ3EHYjDs6gnHcZ3MDqOiORTzm7OdJ3aFScXJyLnRHLwN92Sze9snscuLS2NH374gVWrVlGnTh28vDLefvr888/tFk4kNzq74yybPtoEQMeJHXULVkQMVbxWcZq+0ZT1Y9az5LkllH6oNN6B3kbHEoPYXNgdOHCA2rVrA3D06NEMr2mSRMnr0m6kMb//fCzpt0bBVu5R2ehIIiI0fb0pR+YfISYihsWDF/Po3Ef1OzmfsrmwW7t2bU7kEHEI68asI/5QPF7FvGj/dXuj44iIAH/fkv2+3vcc/v0wB345QLXHqxkdSwyQ5elOjh8/zvLly7l+/TqAOmxKnhf9RzRbPtkC3JqI2LOIp8GJRET+FlgjkGZv3Zq4eMnQJVw5f8XgRGIEmwu7Cxcu0KpVKx588EE6dOjA+fPnARg4cCAvvvii3QOK5AY3k2/eGgVrtlCtTzUqdatkdCQRkds0ea0JxWsX58alGywctFCNLvmQzYXdiBEjcHV1JSoqCk/Pv1ssevXqxbJly+waTiS3WPXaKi4cuYB3cW/af6lbsCKSOzm7OtNtWrdba8kuPsbuSbuNjiT3mc2F3YoVK/j4448pWbJkhu0VKlTg9OnTdgsmklucWHmC7V9tB6DrlK4U8CtgcCIRkX8XUDWAlh+2BGD5iOVcPHHR4ERyP9lc2F27di1DS91fLl68iLu7u11CieQWqUmpzB8wH4C6z9WlfFh5gxOJiNxbwxcaEtwsmJvXbnUjMaebjY4k94nNhV3Tpk358ccfrc9NJhNms5lPPvmEFi1a2HSuDRs20LlzZ0qUKIHJZOL333/P8Hr//v0xmUwZHu3aZVyP8+LFi/Tp0wcfHx8KFSrEwIEDuXr1qq1vS+SODnx8gCtnr+BXwY82n7QxOo6ISKY4OTvRbVo33Aq6cWbzGbZ8usXoSHKf2FzYffLJJ3z33Xe0b9+e1NRUXnnlFapWrcqGDRv4+OOPbTrXtWvXqFGjBuPHj//Xfdq1a8f58+etj19++SXD63369OHgwYOsXLmSRYsWsWHDBp5++mlb35bIbapQhbPLzmJyNvHwTw/j5uVmdCQRkUwrVLoQ7f57qzFk7ei1JB5JNDiR3A82z2NXtWpVjh49ytdff03BggW5evUq3bt3Z8iQIRQvXtymc7Vv35727e/eEd3d3Z3AwMA7vhYZGcmyZcvYsWMHdevWBeCrr76iQ4cOfPbZZ5QoUcKmPCJ/uRF/g050Am5N/FmyQcl7HCEikvvU7F+TI/OPcGT+Efa8tQcX23/ti4PJ0nfY19eXN954w95Z7mjdunUEBARQuHBhWrZsyfvvv0+RIkUA2Lp1K4UKFbIWdQCtW7fGycmJP/74g4cffvi+ZJS8xWKxEDEmggIUwDfE1zovlIiIozGZTHT+rjPRW6O5cuIKLbCty5Q4niwVdpcuXWLy5MlERkYCULlyZQYMGICfn59dw7Vr147u3btTpkwZTpw4weuvv0779u3ZunUrzs7OxMTEEBAQkOEYFxcX/Pz8iImJ+dfzpqSkkJKSYn2elJRk19zi2HZM2EH81nhucpNa79XC2dXZ6EgiIlnmFeBF5+87M7PrTBrRiIQdCVDb6FSSU2zuY7dhwwZKly7Nl19+yaVLl7h06RJffvklZcqUYcOGDXYN17t3b7p06UK1atXo1q0bixYtYseOHaxbty5b5x07diy+vr7WR6lSpewTWBxe3IE4Vry4AoBVrKJgmYIGJxIRyb6KXSoS1C0IEyb2jN5D8oVkoyNJDrG5sBsyZAi9evXi5MmTzJ07l7lz5/Lnn3/Su3dvhgwZkhMZrcqWLYu/vz/Hjx8HIDAwkLi4uAz7pKWlcfHixX/tlwcwatQoEhMTrY8zZ87kaG5xDGk30pjz2BzSU9IJaBzAH/xhdCQREbup8mIVLnCBG3E3WPT0Iq1KkUfZXNgdP36cF198EWfnv29POTs7M3LkSGvBlVOio6O5cOGCdZBGaGgoly9fZteuXdZ91qxZg9lspkGDBv96Hnd3d3x8fDI8RFa+upK4A3F4BXhR8+2aRscREbErF08XZjMbk4uJyLmR7Jm8x+hIkgNsLuxq165t7Vv3T5GRkdSoUcOmc129epWIiAgiIiIAOHnyJBEREURFRXH16lVefvlltm3bxqlTp1i9ejVdu3alfPnyhIWFARASEkK7du0YNGgQ27dvZ/PmzQwdOpTevXtrRKzY5NjSY2z/8u/VJdyLaLJtEcl7znOeSs/dWut62fBlJBxJMDiR2FumBk/s27fP+u/nn3+e4cOHc/z4cRo2bAjAtm3bGD9+PB999JFNF9+5c2eGSY1HjhwJQL9+/Zg4cSL79u1j2rRpXL58mRIlStC2bVvee++9DCtc/PzzzwwdOpRWrVrh5OREjx49+PLLL23KIfnb1dirzO9/a3WJ+sPqU6FDBXbv1vqKIpI3lXuiHDcO3ODkmpPM7TOXgVsG4uymQWJ5hcmSiZvsTk5OmEyme96PN5lMpKen2y3c/ZKUlISvry+JiYm6LZvPWCwWZnScwfGlxwmoGsCgHYNw8XBh9+7d1KlTh127dlG7toaPiYjj++fnWvli5fmm+jdcv3idRq80os3HWlknN7OlTslUi93JkyftEkwkJ0RFRZGQkLXbCX/+8ifHlx7Hyc2JkLdC2HfoVuv0nbobiIjkFT4P+NB5Umd+6/4bWz7ZQrm25SjbqqzRscQOMlXYBQcH53QOkSyJiooiJCSE5GTbh+4HEshTPIULLixKXcToXqMzvO7p6Ym/v7+9ooqI5CohD4dQ++na7P5uN/PC5/Hs3mfxCvAyOpZkU5YmKD537hybNm0iLi4Os9mc4bXnn3/eLsFEMiMhIYHk5GSmT59OSEhIpo9Lu5bGhj4buHbmGsWaFWPC5xMwmUwZ9vH39ycoKMjekUVEco1249pxZtMZ4g/FM++JefRZ2geTk+neB0quZXNhN3XqVJ555hnc3NwoUqRIhl+GJpNJhZ0YIiQkJNN94SwWC3P7zOXamWv4lPKh37x+FPArkMMJRURyH1dPVx757RG+r/c9J1acYNPHm2g6qqnRsSQbbJ7u5K233mL06NEkJiZy6tQpTp48aX38+eefOZFRxK72TN7DgV8OYHI28cjMR1TUiUi+FlAlgA5fdwBg7VtridoUZXAiyQ6bC7vk5GR69+6Nk5PNh4oYLu5AHEuHLQWg5QctKdVIy8mJiNQcUJNqfaphSbcw57E5WnLMgdlcnQ0cOJBZs2blRBaRHJV6LZVZj84i7UYa5duVp/HLjY2OJCKSK5hMJjpO7IhfBT+SopOY33++lhxzUDb3sRs7diydOnVi2bJlVKtWDVdX1wyvf/7553YLJ2JPS4cuJSEygYIlCtLtx27qICwi8g/uBd3p+VtPJjWcxNFFR9k2bhuhI0ONjiU2ylJht3z5cipWrAhw2+AJkdwoYloEEVMjMDmZ6D6jO15FNaRfROR/BdYMJGxcGEueW8KqV1dRMrQkpULVZcWR2FzY/ec//+GHH36gf//+ORBHxP5i9saw+NnFADz0zkOUfqi0sYFERHKxus/W5dTaUxyadYhZPWfxzJ5n9MewA7G5j527uzuNG6tvkjiGG5dv8FuP3271q2tfnmZvNDM6kohIrmYymegyqQtFKhbhytkrzHlsDuZ0870PlFzB5sJu+PDhfPXVVzmRRcSuLGYL8/rO49KJS/gG+9J9enf1qxMRyQR3H3cenfMorp6unFx9krWj1xodSTLJ5lux27dvZ82aNSxatIgqVarcNnhi7ty5dgsnkh2bP9nM0YVHcXZ35tE5j2q+OhERGwRUCaDzpM7MfXwumz7cRMmGJanYuaLRseQebC7sChUqRPfu3XMii4jd/Ln6T9a8sQaADl93oESdEgYnEhFxPNUeq0b01mi2f7WdeU/M4+ldT+NXzs/oWHIXNhd2U6ZMyYkcksdFRUWRkJBg9/NGRkbeti0pOok5j83BYrZQc0BNag2sZffriojkF20/a8u5neeI3hrNbz1+Y+DWgbgWcL33gWIImws7EVtFRUUREhJCcnLOzGTu6emJv78/AGkpaczqOYvk+GSK1ShGh/EdNA2PiEg2OLs50/O3nnxb+1ti98ay+NnFdJ3aVZ+tuZTNhV2ZMmXu+s3UerHyvxISEkhOTmb69OmEhITY/fz+/v4EBQVhsVhYMmQJ0duicff9/46/+qtSRCTbfEr68MjMR/ipzU/s/XEvgbUDaTi8odGx5A5sLuxeeOGFDM9v3rzJnj17WLZsGS+//LK9ckkeFBISQu3atXPs/Dsm7GDP5D2YnEw88usj6gciImJHZVqWoc1nbVgxcgUrXlxBQNUAyrYqa3Qs+R82F3bDhw+/4/bx48ezc+fObAcSyYpT606xbPgyAFp91IryYeUNTiQikvc0fKEhMXti2PfTPmY/OptBOwZRuGxho2PJP9g8j92/ad++PXPmzLHX6UQy7fLpy8zqOQtLuoVqj1ej0UuNjI4kIpInmUwmOn3biRL1SnD94nVmdptJ6tVUo2PJP9itsJs9ezZ+frr1JfdX6rVUfu32K8kJyRSvXZzOkzqrQ6+ISA5yLeBKr7m98CrmRdz+OH7v/zsWi8XoWPL/bL4VW6tWrQy/OC0WCzExMcTHxzNhwgS7hhO5G4vFwoKBC4iJiMErwIte83ppsISIyH3gU9KHXnN7MbX5VCLnRLLxg400e1NLNuYGNhd23bp1y/DcycmJokWL0rx5cypVqmSvXCL3tPHDjRz89SBOLk70nN0T3yBfoyOJiOQbpRqVouOEjiwctJC1b62laJWihDxs/5kPxDY2F3Zvv/12TuQQscmBXw+w9s1baxe2/7o9wU2DDU4kIpL/1H6qNjF7Y9jx9Q7m9pnLgI0DtNKPwezWx07kfoneFs3v/X4HoOGIhtR9pq6xgURE8rF249pRvl150q6n8UvnX0iKTjI6Ur6W6cLOyckJZ2fnuz5cXLSQheSsy6cuM7PrTNJT0nmw84O0+bSN0ZFERPI1JxcnHvn1EQKqBnD1/FVmdJqhkbIGynQlNm/evH99bevWrXz55ZeYzWa7hBK5kxuJN5jRaQbX4q4RWDOQHjN64OSsRmcREaO5+7jz2KLHmFR/ErF7Y5nz2Bx6/d5Ln9EGyPRXvGvXrrc9KlWqxNSpU/nss8/o2bMnR44cseniGzZsoHPnzpQoUQKTycTvv/+e4XWLxcLo0aMpXrw4BQoUoHXr1hw7dizDPhcvXqRPnz74+PhQqFAhBg4cyNWrV23KIbmfOc3M7EdnE38wnoIlCvLYwsdw83YzOpaIiPy/QsGF6L2gNy4eLhxddJQVL60wOlK+lKV7p+fOnePtt99m2rRphIWFERERQdWqVW0+z7Vr16hRowZPPvkk3bt3v+31Tz75hC+//JJp06ZRpkwZ3nrrLcLCwjh06BAeHh4A9OnTh/Pnz7Ny5Upu3rzJgAEDePrpp5kxY0ZW3prkQhaLhSXDlnBixQlcPV15bOFj+JT0MTqWiIhDioyMtPs5/1qzu2SDknT7sRuzH53NH1/8gV95P+oPqW/368ldWGxw+fJlyyuvvGIpUKCAJTQ01LJhwwZbDr8rwDJv3jzrc7PZbAkMDLR8+umnGa7v7u5u+eWXXywWi8Vy6NAhC2DZsWOHdZ+lS5daTCaT5ezZs5m+dmJiogWwJCYmZv+NyG127dplASy7du3K0vEbPtxgeYd3LO+Y3rFE/h5p53QiIvnD6dOnLZ6enhbA7g9PT0/L6dOnrdfa8MGtz+0xTmMskfP0uZ1dttQpmW6x++STT/j4448JDAzkl19+oWvXrtmvKu/i5MmTxMTE0Lp1a+s2X19fGjRowNatW+nduzdbt26lUKFC1K3796jI1q1b4+TkxB9//MHDDz98x3OnpKSQkpJifZ6UpBE8uVXE1AjWvL4GgHZftKNSV82VKCKSFUFBQURGRpKQkGDX80ZGRhIeHk5CQgJBQUEANBnVhEsnL7Fn0h7mPDaHJ1Y9QVDjILteV+4s04Xda6+9RoECBShfvjzTpk1j2rRpd9xv7ty5dgkWExMDQLFixTJsL1asmPW1mJgYAgICMrzu4uKCn5+fdZ87GTt2LGPGjLFLTsk5x5YcY8FTCwBo/GpjGjzfwOBEIiKOLSgoyFp85SSTyUSniZ24FnuNowuP8kvnX3hy05MUrVw0x6+d32V68ETfvn159NFH8fPzw9fX918fjmDUqFEkJiZaH2fOnDE6kvyPs9vPMqvnLCzpFmr0rUGrsa2MjiQiIjZwcnHikZmPULJhSW5cusH0dtM1x919kOkWu6lTp+ZgjNsFBgYCEBsbS/Hixa3bY2NjqVmzpnWfuLi4DMelpaVx8eJF6/F34u7ujru7u/1Di11cOHqBGR1ncDP5JuXCytF5UucM6xOLiIhjcPV05bFFj/FD4x+4cOQCP7f/mQEbB+BRyMPoaHlWrp1gpkyZMgQGBrJ69WrrtqSkJP744w9CQ0MBCA0N5fLly+zatcu6z5o1azCbzTRooNt2juhqzFWmh00nOSGZEnVL8OjsR3F2dTY6loiIZJFnEU/Cl4fjXdybuANxzOw6k7QbaUbHyrMMLeyuXr1KREQEERERwK0BExEREURFRWEymXjhhRd4//33WbBgAfv376dv376UKFGCbt26ARASEkK7du0YNGgQ27dvZ/PmzQwdOpTevXtTooTWqnM01y9e56e2P3H51GUKlyvM44sf11x1IiJ5QKHgQvRZ2gd3H3dObzjN7F6zSb+ZbnSsPMnQwm7nzp3UqlWLWrVqATBy5Ehq1arF6NGjAXjllVcYNmwYTz/9NPXq1ePq1assW7bMOocdwM8//0ylSpVo1aoVHTp0oEmTJnz33XeGvB/JupQrKfzc/mfi9sfhXdyb8OXheAV4GR1LRETsJLBGoHUC4yMLjvB7v98xp2vFKnszdHHX5s2bY7FY/vV1k8nEu+++y7vvvvuv+/j5+WkyYgd3M/kmv3T+hbPbz1KgSAGeWPkEfuX8jI4lIiJ2Vvqh0jw651Fmdp3JgV8O4OrlSufv1I/annJtHzvJH9JT0/ntkd84vf407j7uhC8PJ6BKwL0PFBERh1ShQwW6z+iOycnEnkl7WPHiirs28ohtVNiJYcxpZuY8PofjS4/jUsCFxxc/Tok66hspIpLXVelZhS6TuwCwbdw21o9Zb3CivEOFnRjCYraw4KkFRM6JxNnNmd6/9yaoiWYlFxHJL2r2r0m7L9sBsH7MerZ8tsXgRHmDCju57yxmCwsGLWDvtL2YnE30mNmDcm3LGR1LRETuswbDGtDyg5YArHx5JVs/32pwIsenwk7uq79a6iJ+iMDkZOLhnx4m5OEQo2OJiIhBmr7elGZvNQNgxYsr2PIftdxlhwo7uW8s6RYWDFxAxJRbRV33n7tT7bFqRscSERGDtXi3BQ+9/RAAK19ayeZPNxucyHEZOt2J5B8mTESMiSB6cTQm51tFXdVeVY2OJSIiuUTzd5oDt/rbrXplFVig8SuNjQ3lgNRiJznOkm6hG92sRV2PX3qoqBMRkds0f6c5D71zq+Vu1aur2PTRJoMTOR4VdpKj0m+ms2f0HmpQw1rUVelZxehYIiKSSzV/uznNxzQHYPWo1ax/d73mubOBCjvJMTev3+S37r9xdtlZ0kmn9oe1VdSJiMg9PTT6IVq83wKAdW+v0yTGNlBhJzkiJenW2q9HFx3Fyd2JmcykRGtNPiwiIpnT7I1mhH0RBtyaxHjBwAWY07S27L2osBO7S05IZlrLadZlwhqOb8gxjhkdS0REHEzD4Q3pOrUrJicTEVMimN1rNmkpaUbHytU0KlYyiIqKIiEhIcvHX4+9zrYh27h68ipuhd2o/1V9znPejglFRCQ/qdmvJu4+7szpPYfIuZH80vkXes3rhZuXm9HRciUVdmIVFRVFSEgIycnJWTreH3/CCacQhUgkkR8v/ciF8AsAeHp64u/vb8+4IiKST4Q8HMLjix9nZreZ/LnyT35q/ROPLXwMT39Po6PlOirsxCohIYHk5GSmT59OSIhtq0Fc2HOBHSN3cDPpJl5BXrSa0Irw4uHW1/39/QkK0lqwIiKSNWVbl6Xv6r783P5nordFM7nRZPos7YNfOT+jo+UqKuzkNiEhIdSuXTvT+x/49QB/PPcH6anplGxYkt4LeuNV1CsHE4qISH5UskFJntz8JD+3/5mLxy4yueFkHlv0GCUblDQ6Wq6hwROSZRaLhc2fbmZO7zmkp6ZT6eFK9F3TV0WdiIjkmKIhRXlq21MUr1P81mC9FtM4/Ptho2PlGirsJEvMaWaWDF1ya9kXoMHwBvSc1RPXAq4GJxMRkbzOO9Cb/uv6U6FjBdKup/Fr91/546s/jI6VK6iwE5vdSLzBzG4z2TlhJ5ggbFwY7b5oh5OzfpxEROT+cPN2o/fvvanzTB2wwLLnl7H0+aX5fq47/SYWm1w4doHJDSdzbPExXDxc6DmrJw1faGh0LBERyYecXJzoOLEjrca2AmD7V9uZ3m46yReyNrtDXqDBE5JpJ1acYHav2dy4fAOfkj70+r0XJepoNQkREYHIyEi7nzMzMyqYTCaavNaEIhWLMO+JeZxcfZJJ9SfRe0FvAqoE2D1TbqfCTu7JYrGwbdw2Vr68EovZQqlGpXh0zqN4B3obHU1ERAzm7++Pp6cn4eHh997ZRp6enkRGRmZquqyQh0Pw2+rHzK4zufTnJSY3nMzD0x+mUtdKds+Vm6mwk7u6ef0miwcvZu+0vQDUfLImHSd0xMVdPzoiIgJBQUFERkZma9WiO4mMjCQ8PJyEhIRMz4NarFoxBm0fxKxHZ3Fq7Sl+7fYrLd5rQdPXm2JyMtk1X26l387yry4ev8isnrOIiYjB5Gwi7PMw6g+rj8mUP/5ziIhI5gQFBeWaSeg9/T0JXx7O8pHL2fH1Dta+tZbobdE8/OPDFPArYHS8HKfBE3JHh+Yc4rs63xETEYNnUU/Cl4XT4PkGKupERCTXc3Z1psNXHeg8qTPO7s4cW3yMb2t9y9ntZ42OluPUYicZOOPMgc8OcPKXkwAENQmix8we+DzgY3AyERHJj7I1KKMWNJ7SmJ2v7CQxKpHJjSdTZUQVSvcqTdGiRXNNK6M9mSwWi8XoEP/mnXfeYcyYMRm2VaxYkcOHb80wfePGDV588UVmzpxJSkoKYWFhTJgwgWLFitl0naSkJHx9fUlMTMTHJ/8WMJsWb2Jqp6mUohQAjV5uRMsPWuLs6mxwMhERyW+ioqIICQkhOTn7U5e4405XulKZygAc5CArC6xk7+G9DlHc2VKn5PoWuypVqrBq1SrrcxeXvyOPGDGCxYsXM2vWLHx9fRk6dCjdu3dn8+bNRkR1aAd+PcCGQRsoRSlcC7rSY3oPKnapaHQsERHJp+w9KMNisXDyl5Mc+uIQVdKrUOJ6CY6uOkrQk7m/sLNFri/sXFxcCAwMvG17YmIikydPZsaMGbRs2RKAKVOmEBISwrZt22jYMG9PmhsVFWWXH/abV25y4NMDRC+OBuAsZ+n7c18qdlZRJyIixrL3oIw6deoQ/Ug0M7rPgPOwedBmnE468dDoh/LM3alcX9gdO3aMEiVK4OHhQWhoKGPHjiUoKIhdu3Zx8+ZNWrdubd23UqVKBAUFsXXr1jxd2NmreTqIILrTnUIUwoyZjWxkR4EdvFnjTTslFRERyV1KNizJQ788xMfNP6aGuQYb39/Inyv+5OHpD1OkQhGj42Vbri7sGjRowNSpU6lYsSLnz59nzJgxNG3alAMHDhATE4ObmxuFChXKcEyxYsWIiYm563lTUlJISUmxPk9KSsqJ+DkmISGB5ORkpk+fTkhIiM3Hm2+aOfr9UY5NOQZm8HzAk1rv1qJrza6ZmuVbRETEkbkWdGUe8xjw4QAOfXKIs9vP8m2tbwkbF0btp2o79AwQubqwa9++vfXf1atXp0GDBgQHB/Pbb79RoEDW56IZO3bsbYMyHFFISAi1a9e26ZhzO88xf9B84vbHAVCzf03a/bcd7j7uORFRREQk13og7AGahTfj936/c2rtKRY9vYjI2ZF0+q4ThYILGR0vSxxqHrtChQrx4IMPcvz4cQIDA0lNTeXy5csZ9omNjb1jn7x/GjVqFImJidbHmTNncjB17nDz+k1WvrqSSQ0mEbc/Dk9/T3rO6knXKV1V1ImISL7lW8qXvqv60ubTNji7O3NixQkmVJnA9vHbsZhz7cQh/8qhCrurV69y4sQJihcvTp06dXB1dWX16tXW148cOUJUVBShoaF3PY+7uzs+Pj4ZHnlZ1KYovq35LVs+2YLFbKHqY1V57tBzVH6kstHRREREDGdyMtHopUYM3jeYoCZB3Lx2k6VDlzK1+VQuHL1gdDyb5OrC7qWXXmL9+vWcOnWKLVu28PDDD+Ps7Mxjjz2Gr68vAwcOZOTIkaxdu5Zdu3YxYMAAQkND8/TACVvcuHyDxUMWM6XZFC4cvYB3cW96z+9Njxk98CrqZXQ8ERGRXKXIg0Xov74/7b9uj6uXK1Ebo/imxjdsHLuR9NR0o+NlSq7uYxcdHc1jjz3GhQsXKFq0KE2aNGHbtm0ULVoUgHHjxuHk5ESPHj0yTFCc31nMFvb+uJeVr6wkOf7WyNlaA2vR9rO2eBTyMDidiIhI7mVyMlF/SH0e7PQgi55exIkVJ1jz+hr2TttL+6/aU65NOaMj3lWuLuxmzpx519c9PDwYP34848ePv0+Jcr+YvTEsGbKEM5tv9Rv0D/Gnw9cdKNOyjMHJREREHEeh4EL0WdaH/T/vZ8VLK7hw5ALT206ncs/KhH0ehk/J3NmNK1cXdpJ51y9dZ90769jx9Q4sZguuXq489PZDNBzeEGe3vDHpooiIyP1kMpmoHl6dBzs/yLq317H9q+0cmnWIY0uO0eytZjR8oSEu7rmrlMpdacRm6anp7Jiwg/XvrufGpRsAVHm0Cm3/0zbX/jUhIiLiSDx8PWj3RTtqDqhpvSu2+rXV7Pp2F60+bEWVXlVyzdx3KuxymL2W/vqnyMhIAM6tPMemnpu49OclAIpWKUrYuLBcf/9fREQkN/jr96ktanxRgyKLixD5dSSXT15mzmNzWP3+aiqPqEyRWkUMn+jfZLFYHG+SFjtLSkrC19eXxMREu059Yq+lv/5XEEGEOYXxgPkBALwDvWnxXgtq9q+Jk0uuHugsIiJiOHv8fnbFlVBCaUIT3HADIJJINntsZvORzXYt7mypU9Ril4Oyu/TX/7q0/xJHvjlC/LZ4MIOrlyuNXm5Eoxcb4ebtZofEIiIieV9QUBCRkZF2uaN2I+EGR787yul5pwkxh1DxRkVWPreSh794GL/yfnZIaxu12JFzLXa7d++mTp067Nq1y+alv/7p3M5zrHt7HceWHAPAycWJmk/WpPk7zSlYvKC94oqIiEgWxR+KZ85zc4hdHwuAydlEjb41aPZmMwqXLZytc6vFLo84u+MsG9/fyJEFR4D//yHp9/8/JGWy90MiIiIi9lO0clHqf16fznU682aTN4nbFEfElAj2/bSPGv1r0OTVJvelBU+FXS5jsVg4vuw4Wz7Zwql1p4BbkyVWD69Os7eaGdKsKyIiIplzjnM0+G8DAm4GsO7tdZxYfoI9k/YQ8UMEIT1CaPxKY0rULZFj11dhl0uk30zn4G8H2fLJFmL33WrGdXJxotrj1WjyehP8K/obnFBEREQyq2SDkoQvCydqcxSbPtzEsSXHODTrEIdmHaJMyzI0eqUR5dqWs/s0KSrs/iEiIgJvb2+7nS8zw6ivxV9j96Td7Jy4k6QzSQC4ebtR++naNHyhIb6lfO2WR0RERO6voMZBPL74cWL3x7Ll0y0c+OUAJ9ec5OSakwRUC6D+0PpU61MNNy/7DILU4An+7pSYEzw9PYmMjLxt2PPZHWfZ8fUODsw8YF1Y2CvAiwbDG1B3cF0KFC6QI3lEREQkZ2Rm0GRiVCJbx21l9/e7uXntJgAehTyo+WRN6j1XD79yt3e5smXwhAo7/v6Cfffdd9SpU8eu5/7nRIWpV1M5OOsgu77ZxdntZ637lKhbgnpD61G1V1VcPNSIKiIi4ohsmQ3j+qXrREyNYMf4HVw6cWuhAUxQoX0FGo5sSNlWZa37alRsFlWsWDFb05LcicViIWpzFHt+2MPBXw9aq3NnN2eq9KpC/aH1eaD+A3a9poiIiORuBQoXIHREKA2HN+T4suNs/3o7x5ce59iSY/iH+Gco7Gyhwi6HXD59mQO/HCBiSgQXjl6wbver4EetJ2tR68laeAV4GZhQREREjGZyMlGhQwUqdKjAxeMX2TFxB3UH183y+VTY2dHV2KscmnWIA78c4MyWM9btrl6uVHm0CrWerEWpxqVyzULBIiIiknv4lfcj7D9h2TqHCrtsuhp7lSMLjnBo1iFOrj6Jxfz/XRZNULp5aar1qUaVR6vgXtDd2KAiIiKS56mwy4ILxy5w+PfDHPn9CGe2noF/DD95oP4DVH2sKlUerULBElruS0REJL/JzHRntrh69Wqm91VhlwlpKWlEbYri+NLjHF96nPhD8RleL1GvBJUerkSVR6vccZiyiIiI5H3+/v54enoSHh5uWAYVdndgsVi4ePwif678k+NLj3NyzUluJt+0vu7k4kTp5qWp2K0ilbpWwqfk3Ycei4iISN4XFBREZGQkCQkJdj3vrl27ePrppzO1rwq7f4heHM3c7+Zyat0prpy9kuE170BvyrcrT7l25SjXtpwmEBYREZHbBAUF3bYoQXbpVmwW7f9kPx54ALfmmSsZWpLy7cpTvl15itUoptGsIiIikqupsPuHwlULU7dbXcq0KEPJ0JK4FnA1OpKIiIhIpqmw+4eG4xvSrFkzo2OIiIiIZImT0QFERERExD5U2ImIiIjkESrsRERERPIIFXYiIiIieUSeKezGjx9P6dKl8fDwoEGDBmzfvt3oSCIiIiL3VZ4o7H799VdGjhzJ22+/ze7du6lRowZhYWHExcUZHU1ERETkvskThd3nn3/OoEGDGDBgAJUrV+abb77B09OTH374wehohktJSeGdd94hJSXF6ChiI33vHJe+d45L3zvHpe/dLSaLxWIxOkR2pKam4unpyezZs+nWrZt1e79+/bh8+TLz58+/7ZiUlJQM3/hLly5RunRpZs2aRcOGDe9H7PvmypUrVK5cmUOHDlGwYEGj44gN9L1zXPreOS597xxXXv7ebdu2jZ49e3Lx4kUKFy58950tDu7s2bMWwLJly5YM219++WVL/fr173jM22+/bQH00EMPPfTQQw89HOaxffv2e9ZF+XLliVGjRjFy5Ejr879a7M6cOYOPj4+ByUREREQySkpKolSpUpQvX/6e+zp8Yefv74+zszOxsbEZtsfGxhIYGHjHY9zd3XF3d79tu4+Pjwo7ERERyZWcnZ3vuY/DD55wc3OjTp06rF692rrNbDazevVqQkNDDUwmIiIicn85fIsdwMiRI+nXrx9169alfv36fPHFF1y7do0BAwYYHU1sFB0dzbFjx6hQoQIlS5Y0Oo6IiIhDyROFXa9evYiPj2f06NHExMRQs2ZNli1bRrFixYyOJjaYPHkyTz/9NGazGScnJ7777jsGDhxodCwRERGH4fDTndhDUlISvr6+JCYmqo+dQaKjowkODsZsNlu3OTs7c+rUKbXciYhIvmZLneLwfewkbzh27FiGog4gPT2d48ePG5RIRETE8aiwk1yhQoUKODll/HF0dnbO1NBuERERucXhC7uxY8dSr149ChYsSEBAAN26dePIkSNGxxIblSxZku+++846lNvZ2Zlvv/3WIW7DRkdHs3btWqKjo42OIiIi+ZzDF3br169nyJAhbNu2jZUrV3Lz5k3atm3LtWvXjI4mNho4cCCnTp1i7dq1nDp1yiEGTkyePJng4GBatmxJcHAwkydPNjqSiIjkY3lu8ER8fDwBAQGsX7+eZs2aZeoYWzolajoO+YsGfIiIyP2QrwdPJCYmAuDn52f3c6t1Rv5JAz5ERCS3yVMtdmazmS5dunD58mU2bdr0r/ulpKSQkpJiff7XGmyxUbH/WglHn42mYrWKt7XOHN53mJIPqHUmP9LPhIiI3A9JSUkUCyqWqRa7PDFB8V+GDBnCgQMH7lrUwa0BF2PGjLlt+8FZB/Eu4H3HY3Ye2XnH1plV36+izoN1sh5aHNqox0Yx9pex1kmVX+v9GpfWX+ISl4yOJiIiecTV61czvW+eabEbOnQo8+fPZ8OGDZQpU+au+/5bi92GCRsoVLjQHY+JuRBDu2HtMFv+Lu6cnJxY9uUyAosE2uU9iGOKuRDDmdgzlCpWSj8LIiJid5cvXabZc83yR4udxWJh2LBhzJs3j3Xr1t2zqANwd3fH3d39tu0u7i64ebnd8ZggryDeHfIuoyeMtrbOvPvcuwQFBWX7PYhjC/IK0s+BiIjkGJfkzJdrWS7sFixYYPMxbdq0oUCBAlm95B0NGTKEGTNmMH/+fAoWLEhMTAwAvr6+dr/WI20foUntJpw+f5rg4sEE+tuvdSYmIYZT505RukRpu55XRERE8o8s34r931UC7nkhk4ljx45RtmzZrFzurue9kylTptC/f/9MneOvYcRbJm/Br6j9R9Pey+wVsxk9fjRmixknkxPvDnmXR9o+ct9zSO6iYl9ERAAuxl+k0cBGOX8rNiYmhoCAgEztW7Bgwexc6l85ehfBmIQYa1EHYLaYGT1hNE1qN9Ev83xMxb6IiGRFluex69evn023OsPDw+9ZZeZHp86dyjAgA25N23L6/GmDEonR/q3Yj0mIMTiZiIjkdlku7KZMmWJthbt69d7DcCdOnIi/v39WL5dnlS5RGidTxm+Dk5MTwcWD7XL+mIQYtu3bpqLAgajYFxGRrLLLyhO+vr7MmTPHHqfKdwL9A3l3yLvWPot/jba1x23Y2Stm03JgS/q/2Z+WA1sye8XsbJ9Tcl5OF/siIpJ32WUeOycnJ1q3bs21a9cwmUzUrVuXPn36UK9ePXtkzHFGD56AWy1r9hxtG5MQQ8uBLW+bd2/NpDXqu+cAZq+YfdvUOupjJyKSP923wRP/tGfPHnr37o2Xlxe7du2iadOmDB06lM8++8xel8jTAv0D7Vpw3e12ngq73C8np9YREZG8y26F3YwZM2jTpo31+b59++jatSsPPPAAI0aMsNdlJJP+up33vy129uy752hTcThaZnsX+znN0b6+IiJ5kV0KOz8/P0qVKpVhW/Xq1fn6668ZMWKEwxR2adfTuHntptEx7KJIgSK8PehtxkwaY72d9/ZTb1OkQJFsv8e5a+cy5vsx1qk43h70Nt1bdLdT8pzhiJkdib6+IiI5J+16Wqb3tUsfu9atW1OnTh0+/vjjDNuPHDlCjRo1uHHjRnYvkaP+6mM3o8+MHJtvzygJVxM4n3ie4r7F8ffO/qjkhKsJPPnzkxnmD3QyOTG5z2S7nD8nOGJmR6Kvr4hIzrpy5QqP//z4/etj9/7779OiRQvOnTvHc889R/Xq1bl27RoffvhhptZuzS2c3J1w877zWrGOqoR3CUoElrDb+eIuxt02KbTZYiY+NZ4S3va7jj05YmZHoq/v7eKvxHP20lkeKPwARQsWNTqOiDg4p9TMT2Jil8KuYcOGbNu2jeHDh9O0aVPrh7yHhwezZs2yxyXuC2dXZ1w87NbtME8KDgy+ve+eyYmgwKBc+7VzxMyORF/fjJbsWcK4JeOst6VHdBhBh1odjI4lIg7M2dU50/vaZR47gBo1arBu3TrOnTvHokWLWLBgAadPn6ZDB32g5SVFfYoyosMI6zxrf/3iKuqTe1slHDGzI9HX92/xSfHWog5utVyOWzKO+KR4g5NJXhWfFM+eU3v0MyZWdv9zOiAggPbt29v7tJKLdKjVgXrl6nH24lke8HvAIX6BO2JmR6Kv7y3RF6Nvn2bIYubsxbP59msiOUetw3InWW6x27dvH2az+d47/r+DBw+Slpb5UR2SuxX1KUrN0jUd6peVI2Z2JDn19XWkFomSfiVvXzXE5MQDfg8YlEjyKrUOy7/JcmFXq1YtLly4kOn9Q0NDiYqKyurlRCQfWrJnCY9/9TgvTX+Jx796nCV7lhgd6a50W1rul7u1Dkv+luVbsRaLhbfeegtPT89M7Z+amprVS4lIPvRvLRL1ytXL1YWSbkvL/fBX6/D/DlpS67BkubBr1qwZR44cyfT+oaGhFChQIKuXE5F8xpH7qxX1KZrrM4pj+6t1+H/72OnnTrJc2K1bt86OMUREMlKLhMjdqXVY7sRu050Ybfz48ZQuXRoPDw8aNGjA9u3bjY4kItmg/moi96ZBYfK/8sTsob/++isjR47km2++oUGDBnzxxReEhYVx5MgRAgICjI4nIlmkFgkREdvYZa1YozVo0IB69erx9ddfA2A2mylVqhTDhg3jtddeu+fxf60VO/PJmfj5++V0XBEREZFMu5hwkd4/9L5/a8UaKTU1lV27djFq1CjrNicnJ1q3bs3WrVvveExKSgopKSnW50lJSQBE/BCBBx45G1hERETEBje4kel97dLH7vr16yQnJ1ufnz59mi+++IIVK1bY4/R3lZCQQHp6OsWKFcuwvVixYsTExNzxmLFjx+Lr62t9lCpVKsdzioiIiOQ0u7TYde3ale7du/Pss89y+fJlGjRogKurKwkJCXz++ecMHjzYHpexm1GjRjFy5Ejr86SkJEqVKkXNJ2vqVqyIiIjkKhcTLsIPmdvXLoXd7t27GTduHACzZ8+mWLFi7Nmzhzlz5jB69OgcLez8/f1xdnYmNjY2w/bY2FgCAwPveIy7uzvu7u63bXd2dcbZzTlHcoqIiIhkhbNr5msTu9yKTU5OpmDBggCsWLGC7t274+TkRMOGDTl9+rQ9LvGv3NzcqFOnDqtXr7ZuM5vNrF69mtDQ0By9toiIiEhuYpfCrnz58vz++++cOXOG5cuX07ZtWwDi4uLuOXrDHkaOHMn333/PtGnTiIyMZPDgwVy7do0BAwbk+LVFREREcgu73IodPXo0jz/+OCNGjKBVq1bWlrIVK1ZQq1Yte1zirnr16kV8fDyjR48mJiaGmjVrsmzZstsGVIiIiIjkZXabxy4mJobz589To0YNnJxuNQRu374dHx8fKlWqZI9L5Ji/5rGb9cws/Ipq8ISIiIjkHhfjL9Lz2573dx67wMDA2wYr1K9f316nFxGRHBKfFE/0xWhK+pXU6h4iDs5ua8Vu3LiR8PBwQkNDOXv2LAA//fQTmzZtstclRETEzpbsWcLjXz3OS9Nf4vGvHmfJniV2O3d8Ujx7Tu0hPinebucUkbuzS2E3Z84cwsLCKFCgAHv27LGu6pCYmMiHH35oj0uIiIidxSfFM27JOMwWMwBmi5lxS8bZpRDLyYJRRP6dXQq7999/n2+++Ybvv/8eV1dX6/bGjRuze/due1xCRMTu8nuLUvTFaGtR9xezxczZi2ezdd6cLBhF7jdH+5ywSx+7I0eO0KxZs9u2+/r6cvnyZXtcQkTErpbsWWItPpxMTozoMIIOtToYHeu+KulXEieTU4bizsnkxAN+D2TrvHcrGPNrHz71Y3RMjvg5YZcWu8DAQI4fP37b9k2bNlG2bFl7XEJExG7UonRLUZ+ijOgwAifTrV8Ff/3iym7h8VfB+E/2KBgdlW5LOyZH/ZywS4vdoEGDGD58OD/88AMmk4lz586xdetWXnrpJd566y17XOK+SL+ZTtqNNKNjiEgOOx1z+o4tSlExURR2K2xQKmO0DWlLrZK1OHfpHCUKl6BowaLZ/hws7FaY4W2H898V/7W2dAxvO5zCboXz3Wds/JU7Fwe1StaiaEG13OVmuelzIv1meqb3tUth99prr2E2m2nVqhXJyck0a9YMd3d3XnrpJYYNG2aPS9wX5hQzqVdTjY4hIjkswC0Ak8nEP6fxdDI5UdStaL78DPA1+eLr5wtgt/ffskxLqvepzvnE8xT3LY6/t3++/NqePvcvxcG5KHwf8DUolWRGbvqcMKeY773T/7PbBMUAqampHD9+nKtXr1K5cmW8vb25fv06BQoUsNclcsRfExRv+HoDhYvkr7/WRfKruWvnMmbSGMxmM05OTrz91Nt0b9Hd6FiSx8RciCFsWFjGfoxOTiz/cjmBRQLvcqTYKuZCDFExUQQFBtnta5tbPicuXbhEs6HNMjVBsV0Lu39KSUlh/PjxfPLJJ8TExOTEJezmr8Juy+QtWnlCJB+JSYjh9PnTBBcPJtBfv2QlZ8xeMZvRE0Zbi4N3n3uXR9o+YnSsPGX2itmMHj/aeuv/3SH2+xrnhs+Ji/EXaTSwUc6vPJGSksI777zDypUrcXNz45VXXqFbt25MmTKFN954A2dnZ0aMGJGdS4iI5JhA/0CHKuhiEmI4de4UpUuUdqjc+d0jbR+hSe0mhhcHeVVMQoy1qINbt7pHTxhNk9pN7PK1drTPiWwVdqNHj+bbb7+ldevWbNmyhZ49ezJgwAC2bdvG559/Ts+ePXF2drZXVhGRfCsnWyTkbzlVPDtaceBITp07dXs/RrOZ0+dP58uvebYKu1mzZvHjjz/SpUsXDhw4QPXq1UlLS2Pv3r2YTCZ7ZRQRyddyukVCblHx7JhKlyh9+3yMTk4EFw82MJVxsjWPXXR0NHXq1AGgatWquLu7M2LECBV1IiJ2dLcWCbGPfyueYxJydx9xudUa+u6Qd3Fy+v/5GP+/H2N+/aMnWy126enpuLm5/X0yFxe8vb2zHUpERP6mFomcp9t5jk39GP+WrcLOYrHQv39/3N3dAbhx4wbPPvssXl5eGfabO3dudi4jIpKv/dUi8b8jK/PzLy97U/Hs+NSP8ZZsFXb9+vXL8Dw8PDxbYWx16tQp3nvvPdasWUNMTAwlSpQgPDycN954I0NLooiIo1OLRM5S8Sx5RbYKuylTptgrR5YcPnwYs9nMt99+S/ny5Tlw4ACDBg3i2rVrfPbZZ4ZmExGxN7VI5CwVz5IX2GVJMaO0a9eOdu3aWZ+XLVuWI0eOMHHiRBV2IiJiMxXP4ugcurC7k8TERPz87r56REpKCikpKdbnSUlJAKSlpJF6Lf+tZSgiIiL3ly1LoKWlpGX6vHmqsDt+/DhfffXVPVvrxo4dy5gxY27bnnY9jRvcyKl4IiIiIszfPJ+xM8Za50wc9fgoujbu+q/7p13PfGGXY2vFZsdrr73Gxx9/fNd9IiMjqVSpkvX52bNneeihh2jevDmTJk2667F3arErVaoUsVGx91yDTURERCSros9GU7FaRczmv0dgOzs7c3jfYUo+UPKOxyQlJVEsqFjOrxWbU1588UX69+9/133Kli1r/fe5c+do0aIFjRo14rvvvrvn+d3d3a1TtPyTh68HHj4eNucVERERyYwzu89kKOrg1rzA0XHRlK9c/o7HpJoy300sVxZ2RYsWpWjRopna9+zZs7Ro0YI6deowZcoU68zTIiIiIrlNhQoVcHJyuq3Frnz5Oxd1tnLoKujs2bM0b96coKAgPvvsM+Lj44mJiSEmRkvAiIiISO5TsmRJvvvuO5ydnYFbRd23335LyZJ3vg1rq1zZxy6zpk6dyoABA+74mi1vKykpCV9f30zduxYRERHJrujoaI4fP0758uXvWdTZUqc4dGFnLyrsRERE/hYdHc2xY8eoUKGC3VqSJOtsqVMc+lasiIiI2NfkyZMJDg6mZcuWBAcHM3nyZKMjiQ3UYoda7EREROBWS11wcPBtHftPnTqlljsDqcVOREREbHbs2LE7TsVx/PhxgxKJrVTYiYiICPD3VBz/ZM+pOCTnqbATERERIOen4pCcpz52qI+diIjIP9kyFYfkPFvqlFy58sT99ldtm5SUZHASERER4/n4+FC7dm1Avxtzg7++B5lpi1NhB1y5cgWAUqVKGZxERERE5M6uXLmCr6/vXffRrVjAbDZz7tw5ChYsiMlkMjqOXSUlJVGqVCnOnDmj28wORt87x6XvnePS985x5eXvncVi4cqVK5QoUeK2wS3/Sy12gJOTU57vQ+Dj45PnftDzC33vHJe+d45L3zvHlVe/d/dqqfuLRsWKiIiI5BEq7ERERETyCBV2eZy7uztvv/027u7uRkcRG+l757j0vXNc+t45Ln3vbtHgCREREZE8Qi12IiIiInmECjsRERGRPEKFnYiIiEgeocIuH0pJSaFmzZqYTCYiIiKMjiP3cOrUKQYOHEiZMmUoUKAA5cqV4+233yY1NdXoaHIH48ePp3Tp0nh4eNCgQQO2b99udCS5h7Fjx1KvXj0KFixIQEAA3bp148iRI0bHkiz46KOPMJlMvPDCC0ZHMYwKu3zolVdeoUSJEkbHkEw6fPgwZrOZb7/9loMHDzJu3Di++eYbXn/9daOjyf/49ddfGTlyJG+//Ta7d++mRo0ahIWFERcXZ3Q0uYv169czZMgQtm3bxsqVK7l58yZt27bl2rVrRkcTG+zYsYNvv/2W6tWrGx3FUBoVm88sXbqUkSNHMmfOHKpUqcKePXuoWbOm0bHERp9++ikTJ07kzz//NDqK/EODBg2oV68eX3/9NXBrucJSpUoxbNgwXnvtNYPTSWbFx8cTEBDA+vXradasmdFxJBOuXr1K7dq1mTBhAu+//z41a9bkiy++MDqWIdRil4/ExsYyaNAgfvrpJzw9PY2OI9mQmJiIn5+f0THkH1JTU9m1axetW7e2bnNycqJ169Zs3brVwGRiq8TERAD9H3MgQ4YMoWPHjhn+/+VXWis2n7BYLPTv359nn32WunXrcurUKaMjSRYdP36cr776is8++8zoKPIPCQkJpKenU6xYsQzbixUrxuHDhw1KJbYym8288MILNG7cmKpVqxodRzJh5syZ7N69mx07dhgdJVdQi52De+211zCZTHd9HD58mK+++oorV64watQooyPL/8vs9+6fzp49S7t27ejZsyeDBg0yKLlI3jVkyBAOHDjAzJkzjY4imXDmzBmGDx/Ozz//jIeHh9FxcgX1sXNw8fHxXLhw4a77lC1blkcffZSFCxdiMpms29PT03F2dqZPnz5MmzYtp6PK/8js987NzQ2Ac+fO0bx5cxo2bMjUqVNxctLfZblJamoqnp6ezJ49m27dulm39+vXj8uXLzN//nzjwkmmDB06lPnz57NhwwbKlCljdBzJhN9//52HH34YZ2dn67b09HRMJhNOTk6kpKRkeC0/UGGXT0RFRZGUlGR9fu7cOcLCwpg9ezYNGjSgZMmSBqaTezl79iwtWrSgTp06TJ8+Pd99UDmKBg0aUL9+fb766ivg1m29oKAghg4dqsETuZjFYmHYsGHMmzePdevWUaFCBaMjSSZduXKF06dPZ9g2YMAAKlWqxKuvvpovb6erj10+ERQUlOG5t7c3AOXKlVNRl8udPXuW5s2bExwczGeffUZ8fLz1tcDAQAOTyf8aOXIk/fr1o27dutSvX58vvviCa9euMWDAAKOjyV0MGTKEGTNmMH/+fAoWLEhMTAwAvr6+FChQwOB0cjcFCxa8rXjz8vKiSJEi+bKoAxV2IrneypUrOX78OMePH7+tCFeDe+7Sq1cv4uPjGT16NDExMdSsWZNly5bdNqBCcpeJEycC0Lx58wzbp0yZQv/+/e9/IJFs0K1YERERkTxCva9FRERE8ggVdiIiIiJ5hAo7ERERkTxChZ2IiIhIHqHCTkRERCSPUGEnIiIikkeosBMRERHJI1TYiYiIiOQRKuxERAzSvHlzTCYTJpOJiIgIANatW4fJZOLy5cs5eu133nnHeu0vvvgiR68lIvePCjsRcQj9+/e3FiL/fLRr187oaNkyaNAgzp8/b5d1LWNjY3F1dWXmzJl3fH3gwIHUrl0bgJdeeonz589rrWiRPEaFnYg4jHbt2nH+/PkMj19++SVHr5mampqj5/f09CQwMBAXl+wv3V2sWDE6duzIDz/8cNtr165d47fffmPgwIEAeHt7ExgYiLOzc7avKyK5hwo7EXEY7u7uBAYGZngULlzY+rrJZGLSpEk8/PDDeHp6UqFCBRYsWJDhHAcOHKB9+/Z4e3tTrFgxnnjiCRISEqyvN2/enKFDh/LCCy/g7+9PWFgYAAsWLKBChQp4eHjQokULpk2bZr1leu3aNXx8fJg9e3aGa/3+++94eXlx5cqVLL/n5ORk2rdvT+PGja23ZydNmkRISAgeHh5UqlSJCRMmWPcfOHAgq1evJioqKsN5Zs2aRVpaGn369MlyFhHJ/VTYiUieMmbMGB599FH27dtHhw4d6NOnDxcvXgTg8uXLtGzZklq1arFz506WLVtGbGwsjz76aIZzTJs2DTc3NzZv3sw333zDyZMneeSRR+jWrRt79+7lmWee4Y033rDu7+XlRe/evZkyZUqG80yZMoVHHnmEggULZum9XL58mTZt2mA2m1m5ciWFChXi559/ZvTo0XzwwQdERkby4Ycf8tZbbzFt2jQAOnToQLFixZg6deptWbp3706hQoWylEVEHIRFRMQB9OvXz+Ls7Gzx8vLK8Pjggw+s+wCWN9980/r86tWrFsCydOlSi8Visbz33nuWtm3bZjjvmTNnLIDlyJEjFovFYnnooYcstWrVyrDPq6++aqlatWqGbW+88YYFsFy6dMlisVgsf/zxh8XZ2dly7tw5i8ViscTGxlpcXFws69at+9f39NBDD1mGDx+eYdvatWstgCUyMtJSvXp1S48ePSwpKSnW18uVK2eZMWNGhmPee+89S2hoqPX5a6+9ZilTpozFbDZbLBaL5fjx4xaTyWRZtWrVbRmCg4Mt48aN+9eMIuJY1GInIg6jRYsWREREZHg8++yzGfapXr269d9eXl74+PgQFxcHwN69e1m7di3e3t7WR6VKlQA4ceKE9bg6depkOOeRI0eoV69ehm3169e/7XmVKlWsLWfTp08nODiYZs2aZem9tmnThvLly/Prr7/i5uYG3Oond+LECQYOHJjhPbz//vsZ8j/55JOcPHmStWvXArda60qXLk3Lli2zlEVEHEf2e+uKiNwnXl5elC9f/q77uLq6ZnhuMpkwm80AXL16lc6dO/Pxxx/fdlzx4sUzXCcrnnrqKcaPH89rr73GlClTGDBgACaTKUvn6tixI3PmzOHQoUNUq1bNmh/g+++/p0GDBhn2/+cgiAoVKtC0aVOmTJlC8+bN+fHHHxk0aFCWs4iI41BhJyL5Ru3atZkzZw6lS5e2aRRqxYoVWbJkSYZtO3bsuG2/8PBwXnnlFb788ksOHTpEv379spz1o48+wtvbm1atWrFu3ToqV65MsWLFKFGiBH/++ec9B0EMHDiQwYMH06VLF86ePUv//v2znEVEHIduxYqIw0hJSSEmJibD458jWu9lyJAhXLx4kccee4wdO3Zw4sQJli9fzoABA0hPT//X45555hkOHz7Mq6++ytGjR/ntt9+sgxP+2QpWuHBhunfvzssvv0zbtm2zPUfcZ599Rp8+fWjZsiWHDx8Gbg0OGTt2LF9++SVHjx5l//79TJkyhc8//zzDsT179sTV1ZVnnnmGtm3bUqpUqWxlERHHoMJORBzGsmXLKF68eIZHkyZNMn18iRIl2Lx5M+np6bRt25Zq1arxwgsvUKhQIZyc/v3jsEyZMsyePZu5c+dSvXp1Jk6caB0V6+7unmHfgQMHkpqaypNPPpm1N/k/xo0bx6OPPkrLli05evQoTz31FJMmTWLKlClUq1aNhx56iKlTp1KmTJkMx3l6etK7d28uXbpktywikvuZLBaLxegQIiKO5oMPPuCbb77hzJkzGbb/9NNPjBgxgnPnzlkHPfyb5s2bU7NmTUOX9CpdujQvvPACL7zwgmEZRMR+1GInIpIJEyZMYMeOHfz555/89NNPfPrppxn60CUnJ3PixAk++ugjnnnmmXsWdf88r7e3N/v378+p6Hf04Ycf4u3tfdtExiLi2NRiJyKSCSNGjODXX3/l4sWLBAUF8cQTTzBq1CjrIIx33nmHDz74gGbN/q+dO7RhAIahKOgBIgWFZpTunKFCQ0PLSlvQFnzdDWDTJ1nyo9Za1Vp7O3PvXffeqqqac34cg99wznk9bh5jVO/9b7uB3xF2AAAhnGIBAEIIOwCAEMIOACCEsAMACCHsAABCCDsAgBDCDgAghLADAAgh7AAAQjwBQ9rRyfLvLZwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pseudo_data = np.random.normal(0, 2, 5000)\n", "\n", "fig_fit = plt.figure(constrained_layout=True)\n", "gs = fig_fit.add_gridspec(5, 5, hspace=0)\n", "\n", "main_axis = fig_fit.add_subplot(gs[:4, :])\n", "res_axis = fig_fit.add_subplot(gs[4:, :], sharex=main_axis)\n", "fig_fit.tight_layout()\n", "\n", "entries1, edges1, _ = main_axis.hist(pseudo_data, bins=25, range=(-5,5), histtype='step', color='k')\n", "center1 = edges1[:-1] + np.diff(edges1)/2\n", "\n", "residuals1 = (entries1 - peak(center1, 400, 0.2, 2))/np.sqrt(entries1)\n", "\n", "x = np.arange(-5, 5, 0.1)\n", "\n", "main_axis.plot(x, peak(x, 400, 0.2, 2), color='purple')\n", "main_axis.set_ylabel('Number of entries per bin')\n", "main_axis.xaxis.set_tick_params(direction='inout')\n", "main_axis.tick_params(axis='x', labelcolor=(0, 0, 0, 0))\n", "main_axis.set_xlim(-5, 5)\n", "\n", "res_axis.set_xlabel('Energy [keV]')\n", "res_axis.set_ylabel('Res [$\\sigma$]')\n", "res_axis.set_ylim(-3, 3)\n", "res_axis.set_yticks([-2, 0, 2])\n", "res_axis.fill_between((-5, 5), -1, 1, alpha=0.3, color='purple')\n", "res_axis.fill_between((-5, 5), -2, 2, alpha=0.3, color='purple')\n", "res_axis.axhline(0, color='purple')\n", "res_axis.set_xlim(-5, 5)\n", "res_axis.plot(center1, \n", " residuals1,\n", " color='k', marker='.', ls=''\n", " )\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "id": "48e95a88-0742-4221-a716-17dacfc02823", "metadata": {}, "source": [ "Zusätzlich zu den Fit-Residuen bietet das $\\chi^2$ selbst einen Weg, um die „goodness-of-fit“ unseres Model bestimmen zu können ...\n", "\n", "### $\\chi^2$:" ] }, { "cell_type": "markdown", "id": "fe1789cf-7ed3-4db3-a0ae-9e563a9dc85e", "metadata": {}, "source": [ "Wie gut fittet unsere obige Funktion unsere Messdaten? Sehr gut? Gut? Befriedigend? Oder doch eher schlecht? Wäre es nicht gut, ein Maß für die Güte des Fits zu haben? Wie könnte ein solches Maß aussehen?\n", "\n", "Sie haben das entscheidende Kriterium bereits kennengelernt: bei der Methode der kleinsten Quadrate geht es darum, das $\\chi^2$ zu minimieren. Gucken wir uns hierzu erst noch einmal an, wie sich das $\\chi^2$ berechnet:\n", "\n", "$$ \\chi(\\phi_1 ... \\phi_N)^2 = \\sum_{i = 1}^{N} \\frac{ (y_i - \\lambda(x_i; \\phi))^2}{\\Delta y_i^2}$$\n", "\n", "Bei der Minimierung werden dabei Werte mit geringerer Unsicherheit bevorzugt, d.h. stärker gewichtet (s. Bild unten).\n", "\n", "
\n", "\"{{\n", "
\n", "\n", "Damit man für einen gegebenen Datensatz nicht hunderte von verschiedenen Funktionen durchprobieren muss, gibt es für das $\\chi^2$ eine allgemeine Faustregel, welche den berechneten $\\chi^2$-Wert mit der Anzahl unserer Freiheitsgrade vergleicht. Die Anzahl an Freiheitsgrade ist gemeinhin gegeben als *Anzahl der Messwerte - Anzahl der Funktionsparameter* ($m - n$).\n", "\n", "1. Sofern $\\chi^2/\\text{ndof} >> 1$: sollte die Hypothese bzw. die Fitfunktion angezweifelt werden. Sie beschreibt in diesem Fall die Messdaten nur unzureichend. (Bzw. sollte $\\chi^2/\\text{ndof} > 1$ kann dies auch bedeuten, dass die Unsicherheiten unterschätzt sind)\n", "2. Sofern $\\chi^2/\\text{ndof} \\approx 1$: beschreibt die Hypothese bzw. die Fitfunktion die Daten wie erwartet und wird nicht abgelehnt. \n", "3. Falls $\\chi^2/\\text{ndof} << 1$ beschreibt die Hypothese bzw. die Fitfunktion die Daten wesentlich besser als erwartet. In diesem Fall heißt das nicht automatisch, dass unsere Hypothese falsch ist, aber man sollte überprüfen, ob die gemessenen Fehler nicht überschätzt worden sind (oder eine Korrelation zwischen den Messfehlern vorliegt). \n", "\n", "Sofern Sie eine Arbeit schreiben und Ihre **Goodness-of-the-Fit** ($\\chi^2/\\text{ndof}$) angeben wollen, so geben Sie immer beides an, das $\\chi^2$ und die Anzahl an Freiheitsgraden *ndof*. Beide Werte getrennt haben einen größeren Informationsgehalt als der resultierende Quotient (Genaueres lernen Sie z.B. in der Vorlesung *Statistik, Datenanalyse und Simulationen* im Master).\n", "\n", "Sehen wir uns hierzu nochmal unseren Doppelpeakfit etwas genauer an. `iminuit` berechnet hier für uns bereits das reduzierete $\\chi^2$." ] }, { "cell_type": "code", "execution_count": 525, "id": "fa85a19a-f066-4567-abb0-6283ae1bc90b", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 106.4 (χ²/ndof = 0.9) Nfcn = 530
EDM = 1.61e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 317 7
1 A_p2 580 7
2 mu_p1 53.24 0.07
3 mu_p2 60.43 0.05
4 sigma_p1 1.99 0.05
5 sigma_p2 2.80 0.04
6 A_bkg 147 14
7 tau_bkg 34.1 2.0 0
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg
A_p1 51.5 10 (0.153) 0.103 (0.202) 0.1006 (0.267) -0.0808 (-0.207) -0.0969 (-0.327) -0 (-0.031) 0 (0.031)
A_p2 10 (0.153) 50.6 0.026 (0.052) 0.0402 (0.108) -0.0047 (-0.012) -0.1329 (-0.452) -0 (-0.025) 0 (0.021)
mu_p1 0.103 (0.202) 0.026 (0.052) 0.00503 0.0027 (0.720) 0.0025 (0.659) -0.0020 (-0.666) -0.057 (-0.055) 0.010 (0.072)
mu_p2 0.1006 (0.267) 0.0402 (0.108) 0.0027 (0.720) 0.00276 0.0018 (0.623) -0.0015 (-0.680) -0.0513 (-0.068) 0.0062 (0.059)
sigma_p1 -0.0808 (-0.207) -0.0047 (-0.012) 0.0025 (0.659) 0.0018 (0.623) 0.00297 -0.0012 (-0.518) -0.1409 (-0.179) 0.0155 (0.142)
sigma_p2 -0.0969 (-0.327) -0.1329 (-0.452) -0.0020 (-0.666) -0.0015 (-0.680) -0.0012 (-0.518) 0.00171 0.0816 (0.137) -0.0142 (-0.172)
A_bkg -0 (-0.031) -0 (-0.025) -0.057 (-0.055) -0.0513 (-0.068) -0.1409 (-0.179) 0.0816 (0.137) 209 -28 (-0.965)
tau_bkg 0 (0.031) 0 (0.021) 0.010 (0.072) 0.0062 (0.059) 0.0155 (0.142) -0.0142 (-0.172) -28 (-0.965) 4.01
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:40:53.558660\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 106.4 (χ²/ndof = 0.9) │ Nfcn = 530 │\n", "│ EDM = 1.61e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 317 │ 7 │ │ │ │ │ │\n", "│ 1 │ A_p2 │ 580 │ 7 │ │ │ │ │ │\n", "│ 2 │ mu_p1 │ 53.24 │ 0.07 │ │ │ │ │ │\n", "│ 3 │ mu_p2 │ 60.43 │ 0.05 │ │ │ │ │ │\n", "│ 4 │ sigma_p1 │ 1.99 │ 0.05 │ │ │ │ │ │\n", "│ 5 │ sigma_p2 │ 2.80 │ 0.04 │ │ │ │ │ │\n", "│ 6 │ A_bkg │ 147 │ 14 │ │ │ │ │ │\n", "│ 7 │ tau_bkg │ 34.1 │ 2.0 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬─────────────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 A_bkg tau_bkg │\n", "├──────────┼─────────────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 51.5 10 0.103 0.1006 -0.0808 -0.0969 -0 0 │\n", "│ A_p2 │ 10 50.6 0.026 0.0402 -0.0047 -0.1329 -0 0 │\n", "│ mu_p1 │ 0.103 0.026 0.00503 0.0027 0.0025 -0.0020 -0.057 0.010 │\n", "│ mu_p2 │ 0.1006 0.0402 0.0027 0.00276 0.0018 -0.0015 -0.0513 0.0062 │\n", "│ sigma_p1 │ -0.0808 -0.0047 0.0025 0.0018 0.00297 -0.0012 -0.1409 0.0155 │\n", "│ sigma_p2 │ -0.0969 -0.1329 -0.0020 -0.0015 -0.0012 0.00171 0.0816 -0.0142 │\n", "│ A_bkg │ -0 -0 -0.057 -0.0513 -0.1409 0.0816 209 -28 │\n", "│ tau_bkg │ 0 0 0.010 0.0062 0.0155 -0.0142 -28 4.01 │\n", "└──────────┴─────────────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 525, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mi" ] }, { "cell_type": "markdown", "id": "9f464246-d333-4143-baf0-aa2a632c5be4", "metadata": {}, "source": [ "Eine eigene Abschätzung für das $\\chi^2$ ergibt:" ] }, { "cell_type": "code", "execution_count": 526, "id": "b0ad46ce-f541-40bb-898c-154ad5f94787", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "106.36771764289108 112 0.9497117646686704\n" ] } ], "source": [ "def chi_square_ndof(x_values, y_values, dy_values, fit_model, minuit):\n", " ndof = len(x_values) - len(minuit.values)\n", " chi2 = np.sum((y_values - fit_model(x_values, *minuit.values))**2/dy_values**2)\n", " return chi2, ndof\n", "\n", "\n", "chi_square, ndof = chi_square_ndof(center, entries, np.sqrt(entries), fit_model, mi)\n", "print(chi_square, ndof, chi_square/ndof)" ] }, { "cell_type": "markdown", "id": "295031f4-6d18-411c-b5dd-a62ed97da7f1", "metadata": {}, "source": [ "### Hypothesen-Test mittels $\\chi^2$\n", "Wie schon im vorherigen Abschnitt erwähnt, kann man das $\\chi^2$ auch dazu verwenden, die Gültigkeit des gewählten Models zu prüfen.\n", "Hierzu schauen wir uns die $\\chi^2$-Verteilung an. Der einzige freie Parameter ist die Anzahl der Freiheitsgrade. Die Anzahl der Freiheitsgrade ist auch gleichzeitig der Erwartungswert der $\\chi^2$-Verteilung. In unserem Beispiel oben ist die Anzahl der Freiheitsgrade 112 und die entsprechende Verteilung sieht wie folgt aus..." ] }, { "cell_type": "code", "execution_count": 527, "id": "8c11bc85-4e25-4d40-8397-257414d48a1f", "metadata": {}, "outputs": [], "source": [ "from scipy.stats import chi2\n", "# chi_distribution = lambda x, ndof: chi2.pdf(x, ndof)" ] }, { "cell_type": "code", "execution_count": 528, "id": "76836863-109c-4e7c-989e-04b62ec4ca9d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXg0lEQVR4nO3deXhU5d0+8PvMTGYm+0oyJGQDAmEJBAiE4ILWaKi44PKKFIVS6tIKoumriBWwtRWXQlHhlVf7av1ZEIulFJFSMSCgiRCysIYQ1gSyb5M9meX8/pjMwEiADJnMmeX+XNdc6syZM98TdXLzPN/zPIIoiiKIiIiIqNdkUhdARERE5GoYoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERERENlJIXYA7MhqNKC8vh7+/PwRBkLocIiIi6gVRFNHc3IzIyEjIZNceY2KA6gfl5eWIjo6WugwiIiK6AWVlZRg0aNA1j2GA6gf+/v4ATP8CAgICJK6GiIiIeqOpqQnR0dGW3+PXwgDVD8zTdgEBAQxQRERELqY37TdsIiciIiKyEQMUERERkY0YoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERERENmKAIiIiIrIRAxQRERGRjRigiIiIiGzEAEVERERkIwYoIiIiIhsxQBER2eBCQxv2nqxBTXOn1KUQkYQUUhdAROTscs/V4/PcMvxwpg4XGtotzw8e4IvU+FDMnRKLRE2AhBUSkaMxQBERXYXBKOK9XSV4J6sEomh6TiYAob4q1LZ04kxNK87UtOKLvDL89u4RmDslDoIgSFs0ETkEAxQRUQ+qmzvw3MZCZJ+uAwBMHhyCtMGhGDLAD2ovOVo69SipasbeklocuajFq18ex3en6vD2w2MQ7KuUuHoi6m+CKJr/XEX20tTUhMDAQGi1WgQEcFifyNVUN3Xg/rXfo0LbAaVChscnxyJtcGiPx4qiiKwT1fgi7wL0RhGDw3yx+ddTEOTDEEXkamz5/c0mciKiy3TpjfjV+nxUaDsQ4a/CK3ePuGp4AgBBEJA+IgIv3z0CIT5KnKltxa/X50NnMDqwaiJyNAYoIqLL/O7LY8g73wBvLzmevSMBkUHevXpfTIgPFt4xFCqFDNmn67B86zFwgJ/IfTFAERF123igFOv3l0IA8MQt8YgIUNv0/uhgHzxxy2AIADbsL8Vfs8/1R5lE5AQYoIiIABRXNmPpv44CAO5PjsSYQUE3dJ7k6CA8PGEQAOC1bcdx9KLWXiUSkRNhgCIijyeKIn6/7Rh0BhFjBgVietLAPp3vrpERSIkNhlEEfrvlKIxGTuURuRsGKCLyeDuPV+H7U3VQyAT8bFJMn9dyEgQBj06MhtpLhkNljdiYW2anSonIWTBAEZFH69Qb8MevigAAd42KQJifyi7nDfJRYkZyFADgzR0nUNfCrV+I3AkDFBF5tL9+fw7n69sQ6O2Fu0f3berux24fHo7oYG9o23V4498n7HpuIpIWAxQReaya5k68t+sUAODBcVFQe8nten65TMBjk2MBAJvyLiDvfINdz09E0mGAIiKPtW7PabR06jFyYADShlx9scy+GDLADzd1n/udrJJ++QwicjwGKCLySNp2HTYeKAUA/Oq2wZD14ybA94yJhEwA9p6sQWFZY799DhE5DgMUEXmkjQdK0dplwPAI/2tu1WIPA/xVmNz9GWt2cRSKyB0wQBGRx9EZjJZVwuffEt/nZQt64+7RAyEA+KaoGsfKubgmkatjgCIij/PV4QpUaDswwF+F+5MjHfKZmkA1JsaFAADW7j7lkM8kov7DAEVEHkUURXyw9wwAYG5aLFQK+955dy3mFc7/fbQSJVXNDvtcIrI/Bigi8ig5p+twvKIJ3l5yzE6NdehnRwV7Y1xMEEQRlhBHRK6JAYqIPMpH358DAPxXyiAE+yod/vkZIzUAgK2HyqFt0zn884nIPpw+QK1duxZxcXFQq9VITU3FgQMHrnn8pk2bkJiYCLVajaSkJGzfvt3ymk6nw+LFi5GUlARfX19ERkZizpw5KC8vtzpHXFwcBEGwerzxxhv9cn1E5Dg1zZ3YXVwNAJiTFidJDUMG+GJQsDc69UZsyuMeeUSuyqkD1Oeff47MzEwsX74c+fn5GDt2LDIyMlBdXd3j8dnZ2Zg1axbmz5+PgoICzJgxAzNmzMDRo0cBAG1tbcjPz8fSpUuRn5+PzZs3o7i4GPfdd98V5/r973+PiooKy2PhwoX9eq1E1P/+VXgRBqOI5OggDA33k6QGQRBw27ABAIAN+0shiqIkdRBR3wiiE//fm5qaiokTJ2LNmjUAAKPRiOjoaCxcuBAvvfTSFcfPnDkTra2t2LZtm+W5yZMnIzk5GevWrevxM3JzczFp0iScP38eMTExAEwjUM899xyee+65G6q7qakJgYGB0Gq1CAgIuKFzEJF9iaKIn76zDycqm/GHGaMtW6wAQF1LJwpKGx1WS4fOgP/+4hA6dEas/2Uqbhoa5rDPJqKrs+X3t9OOQHV1dSEvLw/p6emW52QyGdLT05GTk9Pje3JycqyOB4CMjIyrHg8AWq0WgiAgKCjI6vk33ngDoaGhGDduHN5++23o9fqrnqOzsxNNTU1WDyJyLsfKm3CishlKhQz3jnHM0gVXo/aSWxbv/NsP5yWthYhujNMGqNraWhgMBkRERFg9HxERgcrKyh7fU1lZadPxHR0dWLx4MWbNmmWVNJ999lls3LgRu3fvxlNPPYXXX38dL7744lVrXbFiBQIDAy2P6Ojo3l4mETnIP/IvAADuHBmBQB8viasBbhsWDgD4+ngVqpo6JK6GiGzltAGqv+l0OjzyyCMQRRHvv/++1WuZmZm47bbbMGbMGDz99NNYuXIl3nvvPXR2dvZ4riVLlkCr1VoeZWVsDCVyJl16I/5VaLpZ5OHxgySuxiQq2BsJ4X4wGEV81r0nHxG5DqcNUGFhYZDL5aiqqrJ6vqqqChqNpsf3aDSaXh1vDk/nz5/Hzp07rzvPmZqaCr1ej3PnzvX4ukqlQkBAgNWDiJzH7uJq1Ld2YYC/CrckOE+/kbmZfNPBCzAanbYdlYh64LQBSqlUYsKECcjKyrI8ZzQakZWVhbS0tB7fk5aWZnU8AOzcudPqeHN4KikpwTfffIPQ0OtvIlpYWAiZTIbw8PAbvBoiktI/8kzTdw+Mi4JC7jxfe+NiguHtJcfFxnbknquXuhwisoFC6gKuJTMzE3PnzkVKSgomTZqE1atXo7W1FfPmzQMAzJkzB1FRUVixYgUAYNGiRZg6dSpWrlyJ6dOnY+PGjTh48CA++OADAKbw9PDDDyM/Px/btm2DwWCw9EeFhIRAqVQiJycH+/fvx+233w5/f3/k5OTg+eefx2OPPYbg4GBpfhBEdMO07TrL2k8POcn0nZlSIcOE2GB8d6oWWwovInXw9f9AR0TOwakD1MyZM1FTU4Nly5ahsrISycnJ2LFjh6VRvLS0FDLZpT9NTpkyBRs2bMArr7yCl19+GQkJCdiyZQtGjx4NALh48SK2bt0KAEhOTrb6rN27d+O2226DSqXCxo0b8eqrr6KzsxPx8fF4/vnnkZmZ6ZiLJiK72n2iGjqDiKHhfhiu8Ze6nCtMHhyC707VYtvhCiy/dxTUXo7bm4+IbpxTrwPlqrgOFJHzeOrTg/jPsSos/MlQ/Oau4T0e4+h1oC5nFEUs/sdhNLTpsO6x8Zg2eqAkdRCRm6wDRUTUV21deuw5WQMAmDa655tPpCYTBKTGm6buNudflLgaIuotBigiclt7imvQoTMiOsQbIwc672iweVHN3cXVaGzrkrgaIuoNBigicls7jpluEvnp6IEQBEHiaq4uKtgb0cHe0BlEfHWkQupyiKgXGKCIyC116g3YVWS6+y5jlHNO311ucvco1JYCTuMRuQIGKCJyS9mn6tDcqUdEgArjooOkLue6UuNDIADIPdeA8sZ2qcshoutggCIit/Tvo6apsIxRGshkzjt9Zxbko8TQcD8AwI6jPe/fSUTOgwGKiNyO3mDEzuOmbZ2c9e67nkyINS3WywBF5PwYoIjI7eSdb0BDmw7BPl6YFBcidTm9Nj7GFKByz9ejurlD4mqI6FoYoIjI7XzbvfbT1GEDnGrvu+sJ8VUiPswXogh8fazq+m8gIsm4zjcLEVEv7T5huvvutuGutwH4+JggAJzGI3J2DFBE5FYqtR04UdkMQQBuHTZA6nJsZu6DyjlTh4ZWLqpJ5KwYoIjIrew5aRp9GjsoCCG+SomrsV24vxrRwd4wGEXsLOI0HpGzYoAiIrfybbGp/+m24a43+mRmbibnNB6R82KAIiK3oTMY8V1JLQDX7H8yG989jfddSS2aO3QSV0NEPWGAIiK3kXe+Ac2deoT4KjEmKlDqcm5YZKAamgA1ugxGy4gaETkXBigichvmsHFrQphLrD5+NYIgYGy0KQDu6r6jkIicCwMUEbmNb4tNYeP2RNedvjMbOygIALC7uBoGoyhtMUR0BQYoInILFdp2y/IFtyS4bgO52ZABfvBRytHYpkN+aYPU5RDRjzBAEZFb2Nu9+rirLl/wY3KZgKTuPq6sIk7jETkbBigicgvfn6oDANySECZxJfZjnsbL4npQRE6HAYqIXJ4oisg+bQpQU4a4T4AaFRkAmQCUVLegtK5N6nKI6DIMUETk8kqqW1Db0gmVQobxsUFSl2M3vioFhob7AQCyTnAUisiZMEARkcvLPmVaPHNiXAhUCrnE1diXeRqPyxkQORcGKCJyed+bp++Ghkpcif2ZA9QPZ+q4KjmRE2GAIiKXZjCK+OGMKUDd5Eb9T2YRASqE+6ugM4jY171NDRFJjwGKiFza0YtaNHfo4a9WYLQLb99yNYIgYMwg03Xt4bYuRE6DAYqIXNr3p02jMpMHh0Luwtu3XMvoyO4AdbIGoshVyYmcAQMUEbm0nNPm6Tv3638yGxbhDy+5gMqmDpRUt0hdDhGBAYqIXFin3oDcc/UAgClD3a//yUypkGFYhD8ATuMROQsGKCJyWQWljejQGRHmp0JC93pJ7so8jbe3hAGKyBkwQBGRyzKv/zRlSCgEwT37n8xGRwUAAPafqUdbl17iaoiIAYqIXNYPZ03Td2lu3P9kpglQI8RXiS6DEfvP1EtdDpHHY4AiIpfUqTegsKwRAJAaHyJtMQ4gCAJGR5pGofac5DQekdQYoIjIJR2+oEWX3ogwPyXiw3ylLschRpn7oBigiCTHAEVELulA9/TdpPgQt+9/Mhsx0B8yAThT24qy+japyyHyaAxQROSSzAFqYpz7T9+Z+SgVGDLAdLchp/GIpMUARUQuR28wIu98AwDTCJQnGdXdB8VpPCJpMUARkcspqmhGS6dp/7tETYDU5TiUuQ8q50wd9AajxNUQeS4GKCJyOfvPmrZvSYkNdtv9764mNsQHPko5mjv0OHJRK3U5RB6LAYqIXI55+5ZJ8e6//tOPyWQCEjWmbV2+715IlIgcjwGKiFyKKIqX3YEXLHE10hgx0DRt+R0DFJFkGKCIyKWcqm5BQ5sOKoUMSVFBUpcjiZHdASr/fCO3dSGSCAMUEbmUA93Td+NjgqFUeOZXWLi/CqHd27rknmuQuhwij+SZ3z5E5LIs6z952PIFlxMEwTKNxz4oImkwQBGRSznYPeIyyYMW0OyJeRpvXwkDFJEUGKCIyGVUaNtxsbEdMgEYFxMkdTmSMt+JV1TRhNqWTomrIfI8DFBE5DLyzzcCMN2F5qtSSFuMxAK8vRAd7A0AyD5dJ3E1RJ6HAYqIXIZ5+5YJsZ65fMGPWfqgOI1H5HAMUETkMvJKGaAuN5LrQRFJhgGKiFxCh86AY91bl4yPYYACgIRwP8gFARcb21FW3yZ1OUQehQGKiFzC4Qta6I0iwv1VGNTd++PpVF5yxIX5AABy2AdF5FAMUETkEi7vfxIEz9pA+FoSNaZpvJwzDFBEjsQARUQugQ3kPTMvZ/DDmTqIoihxNUSegwGKiJyeKIrI724gH88AZWXwAF8oZAIqtB04X8c+KCJHYYAiIqd3rq4N9a1dUCpkGBUZIHU5TkWlkCM+zBcAp/GIHMnpA9TatWsRFxcHtVqN1NRUHDhw4JrHb9q0CYmJiVCr1UhKSsL27dstr+l0OixevBhJSUnw9fVFZGQk5syZg/Lycqtz1NfXY/bs2QgICEBQUBDmz5+PlpaWfrk+Iro+8/TdmKhAqBRyiatxPuZpPDaSEzmOUweozz//HJmZmVi+fDny8/MxduxYZGRkoLq6usfjs7OzMWvWLMyfPx8FBQWYMWMGZsyYgaNHjwIA2trakJ+fj6VLlyI/Px+bN29GcXEx7rvvPqvzzJ49G8eOHcPOnTuxbds27N27F08++WS/Xy8R9Yz9T9c2nH1QRA4niE78f1tqaiomTpyINWvWAACMRiOio6OxcOFCvPTSS1ccP3PmTLS2tmLbtm2W5yZPnozk5GSsW7eux8/Izc3FpEmTcP78ecTExKCoqAgjR45Ebm4uUlJSAAA7duzA3XffjQsXLiAyMvK6dTc1NSEwMBBarRYBAZxuIOqrjD/vRXFVMz54fALuGqWx+/nrWjpRUNpo9/M6is5gxMLPCqA3isj6zVQMGeAndUlELsmW399OOwLV1dWFvLw8pKenW56TyWRIT09HTk5Oj+/JycmxOh4AMjIyrno8AGi1WgiCgKCgIMs5goKCLOEJANLT0yGTybB///4ez9HZ2YmmpiarBxHZR1OHDiermwGwgfxqvOQyS2jiNB6RYzhtgKqtrYXBYEBERITV8xEREaisrOzxPZWVlTYd39HRgcWLF2PWrFmWpFlZWYnw8HCr4xQKBUJCQq56nhUrViAwMNDyiI6O7tU1EtH1Hb2ghSgCg4K9Eeankrocp2Xpg2IjOZFDOG2A6m86nQ6PPPIIRFHE+++/36dzLVmyBFqt1vIoKyuzU5VEdOiCafuWsYOCpC3EyZn7oPazD4rIIRRSF3A1YWFhkMvlqKqqsnq+qqoKGk3PPRAajaZXx5vD0/nz57Fr1y6reU6NRnNFk7per0d9ff1VP1elUkGl4p+MifrDobJGAMCYQYHSFuLk4sN8oZTLUNvShVPVLUiI8Je6JCK35rQjUEqlEhMmTEBWVpblOaPRiKysLKSlpfX4nrS0NKvjAWDnzp1Wx5vDU0lJCb755huEhoZecY7Gxkbk5eVZntu1axeMRiNSU1PtcWlEZIPDFxoBAGOjgyStw9mZ+qC4HhSRozhtgAKAzMxMfPjhh/jkk09QVFSEX/3qV2htbcW8efMAAHPmzMGSJUssxy9atAg7duzAypUrceLECbz66qs4ePAgFixYAMAUnh5++GEcPHgQ69evh8FgQGVlJSorK9HV1QUAGDFiBKZNm4YnnngCBw4cwPfff48FCxbg0Ucf7dUdeERkPzXNnSjXdkAQgNFRHIG6nuFcD4rIYZx2Cg8wLUtQU1ODZcuWobKyEsnJydixY4elUby0tBQy2aUMOGXKFGzYsAGvvPIKXn75ZSQkJGDLli0YPXo0AODixYvYunUrACA5Odnqs3bv3o3bbrsNALB+/XosWLAAd9xxB2QyGR566CG8++67/X/BRGTFPPo0dIAf/FRO/XXlFEwbC5dj/9l6GI0iZDJuukzUX5x6HShXxXWgiOxj1c6TeDerBA+NH4SVj4ztt89x9XWgzPRGIxZtLESn3ogdz93SHaiIqLfcYh0oIiJzA/nYaE7f9YZCJsPQcK4HReQIDFBE5JREUbRM4Y3hEga9NjyCfVBEjsAARURO6UJDOxradPCSCxgxkLfk95Z5QU1zHxQR9Q8GKCJySoe6R59GDAyASiGXthgXEhvqC7WXDNp2HYoqua0UUX9hgCIip3S4ewVyLqBpG7lMQEI4p/GI+hsDFBE5pUsrkAdJWocrMvdB/cAFNYn6DQMUETkdg1HEkYvcA+9GXd4HZWAfFFG/YIAiIqdzuqYFbV0G+CjlltvyqfdiQnzg7SVHc4cex8q1UpdD5JYYoIjI6Zin70ZHBULO1bRtJpMJSIgwBc/9Z+olrobIPTFAEZHTMTeQj2UD+Q0z90HtP8s+KKL+wABFRE6HC2j2nTlAHWAfFFG/YIAiIqfSqTegqKIZABvI+yI6xAdqLxmaOvQ4wfWgiOyOAYqInMqJimZ0GYwI9vFCdIi31OW4LLlMsDTgsw+KyP4YoIjIqZin75IGBUEQ2EDeF+yDIuo/DFBE5FQOdTeQJ7OBvM+GXdYHxX3xiOyLAYqInAobyO0nNtQHKoUMDW06lFS3SF0OkVthgCIip9Haqcep7l/0Y6I5AtVXCpkMQwZ090FxGo/IrhigiMhpHL2ohVEEBgaqEe6vlroctzCMC2oS9QsGKCJyGocs03ccfbKXyxvJRZF9UET2wgBFRE7D3EDO/if7iQvzhZdcQG1LF07XtEpdDpHbYIAiIqdhbiBPjg6StA534iVnHxRRf2CAIiKnUN/ahbL6dgCmTYTJfszLGbAPish+GKCIyCmYR58Gh/ki0NtL2mLcjKWRnH1QRHbDAEVETuGwpf+Jo0/2NjjMDwqZgKqmTpyva5O6HCK3wABFRE7hUFkjADaQ9welQob4MF8AwA9n2AdFZA8MUEQkOVEULXfgjeUCmv3i0nIG7IMisgcGKCKSXIW2A7UtnZDLBIyKZIDqD5caydkHRWQPDFBEJDlzA/nwCH+oveTSFuOmhgzwhVwQUK7twIWGdqnLIXJ5DFBEJDlO3/U/lZcccWE+ANgHRWQPDFBEJLnDli1cgiStw90NYx8Ukd0wQBGRpIxGEYfLuISBI1y+Lx4R9Q0DFBFJ6mxdK5o79VApZJYREuofQ8P9IBOAsvp2lDeyD4qoLxigiEhS5um7UZEB8JLzK6k/qb3kiAkx9UFxFIqob/htRUSSOlRmbiAPkrYQDzGc++IR2QUDFBFJyjwCNZYN5A4xTMNGciJ7YIAiIsnoDEYcK28CwAZyR0kI94MA4GxtK6qbOqQuh8hlMUARkWSKK5vRqTfCX61AXKiv1OV4BB+lAtHdfVA/cBSK6IYxQBGRZA5fuLR8gUwmSFyN5xgW4QfAtK0LEd0YBigikgwX0JQGNxYm6jsGKCKSjGULFwYoh0oINwWoU9UtqG3plLgaItfEAEVEkmjvMuBkVTMA7oHnaH5qBaKCvAEABzgKRXRDGKCISBLHK7QwGEUM8FdBE6CWuhyPc2k9KPZBEd0IBigikkSheQHNQYEQBDaQO9owTXcjOUegiG4IAxQRSYIN5NIa1t0HdaKyGQ2tXRJXQ+R6GKCISBKXL2FAjhfg7YWBgaap0wPnOApFZCsGKCJyOG27DmdrWwHwDjwpDeO+eEQ3jAGKiBzuSPfoU0yID4J9lRJX47kurQfFRnIiWzFAEZHDHbL0P3H6TkrmFcmPVzRB266TuBoi18IARUQOd6isEQCn76QW5KNEhL8KoggcZB8UkU0YoIjI4dhA7jyGcVsXohvCAEVEDlXd1IHKpg7IBGB0FAOU1IZpuKAm0Y1ggCIihzLvf5cQ7g9flULiasjcSH60vAktnXqJqyFyHQxQRORQh9lA7lRCfJUI81PCYBTZB0VkAwYoInKowu4G8jHRQZLWQZewD4rIdk4foNauXYu4uDio1WqkpqbiwIED1zx+06ZNSExMhFqtRlJSErZv3271+ubNm3HXXXchNDQUgiCgsLDwinPcdtttEATB6vH000/b87KIPJIoijhy8dIeeOQcuLEwke3sEqB0Oh3KyspQXFyM+nr7/Qnm888/R2ZmJpYvX478/HyMHTsWGRkZqK6u7vH47OxszJo1C/Pnz0dBQQFmzJiBGTNm4OjRo5ZjWltbcfPNN+PNN9+85mc/8cQTqKiosDzeeustu10XkacqrW9DY5sOSrkMiZoAqcuhbuYRqMMXtGjrYh8UUW/ccIBqbm7G+++/j6lTpyIgIABxcXEYMWIEBgwYgNjYWDzxxBPIzc3tU3GrVq3CE088gXnz5mHkyJFYt24dfHx88NFHH/V4/DvvvINp06bhhRdewIgRI/Daa69h/PjxWLNmjeWYxx9/HMuWLUN6evo1P9vHxwcajcbyCAjglz1RX5kbyEcM9IdS4fQD4B4jzE+JEB8l9EYR+ecbpS6HyCXc0DfYqlWrEBcXh48//hjp6enYsmULCgsLcfLkSeTk5GD58uXQ6/W46667MG3aNJSUlNj8GV1dXcjLy7MKOjKZDOnp6cjJyenxPTk5OVcEo4yMjKsefy3r169HWFgYRo8ejSVLlqCtre2qx3Z2dqKpqcnqQURXOmxeQJP9T05FEAQM05hWJee2LkS9c0P3EOfm5mLv3r0YNWpUj69PmjQJv/jFL7Bu3Tp8/PHH2LdvHxISEmz6jNraWhgMBkRERFg9HxERgRMnTvT4nsrKyh6Pr6ystOmzf/aznyE2NhaRkZE4fPgwFi9ejOLiYmzevLnH41esWIHf/e53Nn0GkSe6tIBmkLSF0BWGRfjjhzP13FiYqJduKEB99tlnlr9vbm6Gv79/j8epVCqXbL5+8sknLX+flJSEgQMH4o477sDp06cxZMiQK45fsmQJMjMzLf/c1NSE6Ohoh9RK5Cr0BiMbyJ2YuZG8sKwRHToD1F5yiSsicm59bkK45ZZbbB7h6Y2wsDDI5XJUVVVZPV9VVQWNRtPjezQajU3H91ZqaioA4NSpUz2+rlKpEBAQYPUgImunalrQrjPAVynH4AF+UpdDPxLur0Kgtxe6DEYUlDZKXQ6R0+tzgBo3bhxSU1OvmFYrLCzE3XfffcPnVSqVmDBhArKysizPGY1GZGVlIS0trcf3pKWlWR0PADt37rzq8b1lXupg4MCBfToPkSc7XGYafRodFQi5TJC4GvoxQRAuLWfAPiii6+pzgPr444/x85//HDfffDO+++47nDx5Eo888ggmTJgAubxvQ8CZmZn48MMP8cknn6CoqAi/+tWv0Nrainnz5gEA5syZgyVLlliOX7RoEXbs2IGVK1fixIkTePXVV3Hw4EEsWLDAckx9fT0KCwtx/PhxAEBxcTEKCwsto2inT5/Ga6+9hry8PJw7dw5bt27FnDlzcOutt2LMmDF9uh4iT3aoewVyNpA7r2ER3Y3k7IMiui67bET1u9/9DiqVCnfeeScMBgPuuOMO5OTkYNKkSX0678yZM1FTU4Nly5ahsrISycnJ2LFjh6VRvLS0FDLZpQw4ZcoUbNiwAa+88gpefvllJCQkYMuWLRg9erTlmK1bt1oCGAA8+uijAIDly5fj1VdfhVKpxDfffIPVq1ejtbUV0dHReOihh/DKK6/06VqIPJ25gXwsG8idlnk9qPzSBnTqDVAp2AdFdDWCKIpiX05QVVWF119/HR9++CFGjBiBEydO4KOPPsLMmTPtVaPLaWpqQmBgILRaLfuhiAB06AxIevU/0BlE7HvxdkSH+EhdkpW6lk72/cC0UnzmpkNo7tBj09NpmBgXInVJRA5ly+/vPk/hxcfHY+/evdi0aRPy8vLwj3/8A08++STefvvtvp6aiNxEUUUTdAYRIb5KDAr2lrocugpBEC7ti8dtXYiuqc8B6qOPPkJBQQGmT58OAJg2bRp2796NP//5z3jmmWf6XCARub5L6z8FQhDYQO7MhnNjYaJe6XOAMvcQXW78+PHIzs7Grl27+np6InID5gZyLqDp/MyN5HnnG6AzGCWuhsh53VCAKi0tve4xcXFxyM7OBgBcvHjxRj6GiNzEpQZyLqDp7CKDvOGrlKOty2BZ+JSIrnRDAWrixIl46qmnrrlZsFarxRdffIHRo0fjH//4xw0XSESuraVTj9M1LQA4AuUKZFZ9UJzGI7qaG1rG4Pjx4/jjH/+IO++8E2q1GhMmTEBkZCTUajUaGhpw/PhxHDt2DOPHj8dbb73VpwU1ici1HbmghSgCUUHeGOCvkroc6oVhEf4oKGvE/rN1+NVtV25fRUQ3OAIVGhqKVatWoaKiAmvWrEFCQgJqa2tRUlICAJg9ezby8vKQk5PD8ETk4S71P3H6zlWYG8kPnmuAnn1QRD3q00Ka3t7eePjhh/Hwww/bqx4icjOH2UDucgYFe8PbS46WTj2OVzTx3x1RD/p8Fx4R0bUcKmMDuauRyQQkdN+N9wPXgyLqkc0Bqr29vce76o4dO2aXgojIfdS1dOJiYzsAYDQDlEtJ1Jim8bJPM0AR9cSmAPXFF18gISEB06dPx5gxY7B//37La48//rjdiyMi12ZevmDIAF8EqL0kroZsMUJj2sbiwNl6dOnZB0X0YzYFqD/84Q/Iy8tDYWEhPv74Y8yfPx8bNmwAYNpDiYjocuYGcm4g7Hqigr3hp1Kgrctg6WMjoktsaiLX6XSIiIgAAEyYMAF79+7FAw88gFOnTnF7BiK6wqGyRgC8A88VyQQBiRp/HDzfgO9P1SGFGwsTWbFpBCo8PByHDx+2/HNISAh27tyJoqIiq+eJiERRvLQHXnSQtMXQDRkx0DSNl326VuJKiJyPTQHq008/RXh4uNVzSqUSn332Gfbs2WPXwojItV1sbEddaxcUMgEju38Rk2sxN5IXlDaivcsgcTVEzsWmADVo0CBoNBqr57755hsAwE033WS/qojI5ZlHn4Zr/KH2kktcDd2IcH8VQnyU6DIYcfA8t3Uhulyf14GaPn06MjMz0dXVZY96iMhNWBrIOX3nsgRBQOJA0yjU96e4nAHR5focoPbu3Ytt27YhJSUFR48e7fGYiooKPPTQQ339KCJyIYe5gKZbMC9nkMM+KCIrfQ5QqampyM/PR0pKCiZOnIhVq1ZZXjMajTh+/DiWLVuGffv29fWjiMhFGI0ijlzsbiDnEgYuzTwCdeSiFtp2ncTVEDmPPu2FZ+bn54eVK1fCx8cHL7zwAj777DNLeOrs7ERsbCxWrFhhj48iIhdwprYFLZ16qL1kSAj3k7oc6oNgHyU0AWpUNnVg/5k63DVKc/03EXmAPo9A/eUvf0FMTAzCwsLw17/+FZMmTYJCoUBBQQF++ctfor6+HmfPnsX8+fPtUS8RuQDz/nejIwOhkHPLTVc3YiC3dSH6sT5/s7388suYPn06jh8/jubmZuTk5CAnJwcrV67EX/7yF2RmZqKtrc0etRKRiyjsXkAzmQ3kbiGxuw/q+1PsgyIy63OAuu222/Dqq69i+PDhVquRP//88zhw4AAOHjx4xb55ROTezAGKd+C5h+ER/hAAlFS3oLq5Q+pyiJxCnwPU3//+d8v2Lj+WlJSE3Nxc3HPPPbj11lv7+lFE5AI6dAYUVTQB4AiUu/BTKxAd4gMAyOE0HhEAOwSo61GpVFi9ejW2bdvW3x9FRE7gWLkWeqOIMD8lBgV7S10O2cmI7lXJs7keFBEABwQoszvvvNNRH0VEEioobQRgGn3iJuPuI7F7O57vuR4UEQAHBigi8gxsIHdPCeF+kAsCLjS0o6yeNwYRMUARkV2Zt3BJjg6WthCyK7WXHPFhvgB4Nx4RwABFRHZU19KJsvp2CAIwJppbuLgbrgdFdAkDFBHZjXn6bsgAPwSovaQthuzOvB5U9uk6iKIocTVE0mKAIiK7Yf+Texs8wBdKuQy1LZ0oqW6RuhwiSTFAEZHdMEC5Ny/5pb0N2QdFno4BiojswmgUGaA8QGJ3H9T3XA+KPBwDFBHZxZnaVjR36KFSyDC8e9FFcj8juvug9p+pg95glLgaIukwQBGRXZhHn5KiAuEl51eLu4oJ8YGvUo7mTr1lyQoiT8RvOSKyi8KyBgCcvnN3MpmAEd2rku89yT4o8lwMUERkF5b+p5ggSeug/jcq0hSg9pXUSFwJkXQYoIiozzp0BpyoaAbAEShPMLJ7BOrQBS207TqJqyGSBgMUEfXZsXIt9EYRYX4qRAV5S10O9bNQPxU0AWoYjCJyuCo5eSgGKCLqs4LSRgCm0SdBEKQthhxiJKfxyMMxQBFRn5n7n8ax/8ljXOqDYiM5eSYGKCLqMy6g6XmGR/hDLhNQWt+G83WtUpdD5HAMUETUJ7UtnbjQ0A5BAJIGBUpdDjmI2kuOIQN8AQB7OQpFHogBioj6pLC7/2nIAD8EqL2kLYYcalSkKTDvO8k+KPI8DFBE1CecvvNc5uUMck7XQcdtXcjDMEARUZ8wQHmu2BAf+KkUaO7UW/47IPIUDFBEdMOMRhGHGKA8lkwmWEahvi2ulrgaIsdigCKiG3amthXNnXqovWRI1PhLXQ5JYHSUOUCxD4o8CwMUEd0w87RNUlQgFHJ+nXgicyP5sfImVDd3SFwNkePwG4+IblhhWQMATt95skBvL8SG+gAA9p7kcgbkORigiOiGXWogD5a2EJJUUvcoFPugyJMwQBHRDWnt1KOoohkAMD42SNpiSFKjoi5t66LncgbkIRigiOiGHLrQCINRRGSgGgMDvaUuhyQ0OMwPPko5tO06HLqglbocIodggCKiG5J/3tT/ND6W03eeTn7ZcgZ7OI1HHoIBiohuSF53gJrAAEUw3YkJAN9yWxfyEE4foNauXYu4uDio1WqkpqbiwIED1zx+06ZNSExMhFqtRlJSErZv3271+ubNm3HXXXchNDQUgiCgsLDwinN0dHTgmWeeQWhoKPz8/PDQQw+hqqrKnpdF5NKMRhH53XvgMUARAIyKNI1AHb6gRW1Lp8TVEPU/pw5Qn3/+OTIzM7F8+XLk5+dj7NixyMjIQHV1z0PE2dnZmDVrFubPn4+CggLMmDEDM2bMwNGjRy3HtLa24uabb8abb7551c99/vnn8eWXX2LTpk3Ys2cPysvL8eCDD9r9+ohc1ZnaFmjbdVB7yTCie+qGPFuQjxLRwaZeuD1cVJM8gCCKoih1EVeTmpqKiRMnYs2aNQAAo9GI6OhoLFy4EC+99NIVx8+cOROtra3Ytm2b5bnJkycjOTkZ69atszr23LlziI+PR0FBAZKTky3Pa7VaDBgwABs2bMDDDz8MADhx4gRGjBiBnJwcTJ48+bp1NzU1ITAwEFqtFgEB/OVC7ufz3FIs/scRpMaH4POn0qQup8/qWjpR0D2iRjfunwUX8dWRCkwfMxBrfzZe6nKIbGbL72+nHYHq6upCXl4e0tPTLc/JZDKkp6cjJyenx/fk5ORYHQ8AGRkZVz2+J3l5edDpdFbnSUxMRExMzFXP09nZiaamJqsHkTtj/xP1ZMwgUx/U3uIa6LicAbk5pw1QtbW1MBgMiIiIsHo+IiIClZWVPb6nsrLSpuOvdg6lUomgoKBen2fFihUIDAy0PKKjo3v9eUSuiAGKehIf6gt/tQLNnXrknquXuhyifuW0AcqVLFmyBFqt1vIoKyuTuiSiftPQ2oXTNa0AgHExDFB0iUwmWO7G21XE5QzIvTltgAoLC4NcLr/i7reqqipoNJoe36PRaGw6/mrn6OrqQmNjY6/Po1KpEBAQYPUgclf5pabRp8EDfBHiq5S4GnI2YwcFAQB2nWCAIvfmtAFKqVRiwoQJyMrKsjxnNBqRlZWFtLSem1bT0tKsjgeAnTt3XvX4nkyYMAFeXl5W5ykuLkZpaalN5yFyV5bpO44+UQ9GDgyAXCbgTG0rztS0SF0OUb9RSF3AtWRmZmLu3LlISUnBpEmTsHr1arS2tmLevHkAgDlz5iAqKgorVqwAACxatAhTp07FypUrMX36dGzcuBEHDx7EBx98YDlnfX09SktLUV5eDsAUjgDTyJNGo0FgYCDmz5+PzMxMhISEICAgAAsXLkRaWlqv7sAjcnfsf6Jr8VbKMSzCD0UVzdh1ohqDB/hJXRJRv3DaESjAtCzBn/70JyxbtgzJyckoLCzEjh07LI3ipaWlqKiosBw/ZcoUbNiwAR988AHGjh2LL774Alu2bMHo0aMtx2zduhXjxo3D9OnTAQCPPvooxo0bZ7XMwZ///Gfcc889eOihh3DrrbdCo9Fg8+bNDrpqIuelMxhx6EIjAAYoujpO45EncOp1oFwV14Eid1VQ2oAH/icbgd5eKFh6J2QyQeqS7ILrQNlXdXMHXv7nUShkAvKX3YkAtZfUJRH1ilusA0VEzsd8a/rEuGC3CU9kf+H+amgC1dAbRew7WSt1OUT9ggGKiHrtwFlT/9PEuBCJKyFnN7Z7OYNviriPKLknBigi6hWjUcTB890jUPEMUHRtydFBAICsoiquSk5uiQGKiHrlVE0LGtt08PaSY3RkoNTlkJMbMsAP/moFmjr0OHCWq5KT+2GAIqJeMf8SHBcTBKWCXx10bTKZYLkb7+tjvd9Oi8hV8FuQiHrlUgM5p++od8bFBAEAvj5eBd7wTe6GAYqIeiW3ewRqEvufqJdGaAKgUshQoe3A0YtNUpdDZFcMUER0XRca2lCu7YBCJlhGFYiuR6mQWfrlvj7OaTxyLwxQRHRd5um7UVGB8FE69Q5Q5GSSzdN4x7icAbkXBigiui5zA/mkOG7fQrYZExUImQAUVzXjXG2r1OUQ2Q0DFBFdlzlAsYGcbOWrUmB4hD8AYOdxjkKR+2CAIqJrqmvpxOka08gBAxTdiHExppHLHVzOgNwIAxQRXZO5/ykh3A/BvkqJqyFXZL7xIO98Ayq1HdIWQ2QnDFBEdE05p+sAAGlDQiWuhFxVsI8SQwb4AgB2HK2QuBoi+2CAIqJryjnTHaAGM0DRjZsQa5rG236E03jkHhigiOiqals6cbKqBQCQygBFfZASa+qfyz1fj+omTuOR62OAIqKr2n/G1P+UqPFHCPufqA9CfJUYHOYLUWQzObkHBigiuqqcM7UAgMkcfSI7ME/jfXWYfVDk+higiOiq2EBO9pTSHaAOnKtHTXOnxNUQ9Q0DFBH1qLqpA6drWiEIQCo3ECY7CPVTIS7Uh9N45BYYoIioRz90rz4+QhOAIB/2P5F9mJvJ/32E03jk2higiKhHnL6j/mDug/rhTB2qm3k3HrkuBigi6tEPXP+J+sEAfxUGh/nCKALb2UxOLowBioiuUKntwNnaVsgEYNJg9j+RfU3q7qn716FyiSshunEMUER0BfPyBaOjAhGg9pK4GnI3E+NCIAhAQWkjSuvapC6H6IYwQBHRFb4/xek76j+B3l5I1PgDALYeuihxNUQ3hgGKiKyIoojvSkwjUDcnhElcDbmr1HhTOP9XYTlEUZS4GiLbMUARkZVT1S2obOqASiHDxDj2P1H/GB8TBIVMQEl1C05UNktdDpHNGKCIyMq+7tGnSfEhUHvJJa6G3JWPUoExgwIBmEahiFwNAxQRWfnuVPf03VBO31H/Mk/jfXmoHEYjp/HItTBAEZFFl95oWf/ploQBEldD7i4pKhDeXnJcbGxH7rl6qcshsgkDFBFZ5Jc2oK3LgDA/peUuKaL+olTILCuT/yP/gsTVENmGAYqILMx33900NAwymSBxNeQJpnRvFfTV4Qq0deklroao9xigiMhiX0kNAPY/keMkhPthgJ8KrV0G/OdYpdTlEPUaAxQRAQAa27pw+KIWAPufyHEEQcCUoaZRqC/yOI1HroMBiogAANmn6yCKphEBTaBa6nLIg0zpXvE++3QdLjRwaxdyDQxQRATg0vpPXH2cHC3UT4VEjT9EEfhnPrd2IdfAAEVEEEUR3xZXAwBuHcbpO3K8m4aYgvsX+Re4tQu5BAYoIsKJymZUaDug9pJxA2GSxPiYIKgUMpyva0PuuQapyyG6LgYoIsKuE6bRpylDwrh9C0lC5SVHSveaUJ/nlklcDdH1MUAREXZ3B6jbE8MlroQ8mXn6eNvhcmjbdBJXQ3RtDFBEHq6htQv5paYpk58wQJGEBof5IirIG516I/5ZwCUNyLkxQBF5uL0lNTCKwPAIf0QFeUtdDnkwQRAwtXsUasOBUjaTk1NjgCLycJy+I2cyeXAIlHIZTla1WEZGiZwRAxSRBzMYRew5adq+hdN35Ax8lApMjDM1k6/fXypxNURXxwBF5MEKyxrQ0KZDoLcXxscESV0OEQBYpvG+OlzBZnJyWgxQRB7MvHzBrcMGQCHn1wE5h/gwXwwKNjWTb2YzOTkpfmMSebBdJ0zTd7cP5+rj5DwEQcDU7g2tP/3hPIxGNpOT82GAIvJQZfVtKKpogkwAbhvO/idyLmlDQuHtJceZmlbsO1UrdTlEV2CAIvJQ/zlWCQCYFB+CEF+lxNUQWVN7yXHTUNO2Qh9/f1biaoiuxABF5KHMAWraKI3ElRD17CeJ4RAAfFtcgzM1LVKXQ2SFAYrIA9U0d+LgedMaO3cxQJGTCvdXY8ygQADAJ9nnpC2G6EcYoIg80M7jVRBFYOygQERy9XFyYnckRgAAvsi7gKYOLmlAzoMBisgD7eievssYzdEncm4jBvpjYKAarV0GbDrIJQ3IeTBAEXkYbbsO2d13NbH/iZydIAi4o3uV/L9mn4XeYJS4IiITpw9Qa9euRVxcHNRqNVJTU3HgwIFrHr9p0yYkJiZCrVYjKSkJ27dvt3pdFEUsW7YMAwcOhLe3N9LT01FSUmJ1TFxcHARBsHq88cYbdr82IinsPlENvVFEQrgfBg/wk7ocoutKGxwKP5UCZfXt+PfRSqnLIQLg5AHq888/R2ZmJpYvX478/HyMHTsWGRkZqK6u7vH47OxszJo1C/Pnz0dBQQFmzJiBGTNm4OjRo5Zj3nrrLbz77rtYt24d9u/fD19fX2RkZKCjo8PqXL///e9RUVFheSxcuLBfr5XIUXZ0/wKaxuk7chEqL7llsdd1e05DFLmwJknPqQPUqlWr8MQTT2DevHkYOXIk1q1bBx8fH3z00Uc9Hv/OO+9g2rRpeOGFFzBixAi89tprGD9+PNasWQPANPq0evVqvPLKK7j//vsxZswY/L//9/9QXl6OLVu2WJ3L398fGo3G8vD19b1qnZ2dnWhqarJ6EDmj9i4Dvj1p+gNIBqfvyIX8JDEcSrkMx8qb8B0X1iQn4LQBqqurC3l5eUhPT7c8J5PJkJ6ejpycnB7fk5OTY3U8AGRkZFiOP3v2LCorK62OCQwMRGpq6hXnfOONNxAaGopx48bh7bffhl6vv2qtK1asQGBgoOURHR1t8/USOULWiSp06IwYFOyNUZEBUpdD1Gv+ai/ckhAGwDQKRSQ1pw1QtbW1MBgMiIiIsHo+IiIClZU9z4FXVlZe83jzX693zmeffRYbN27E7t278dRTT+H111/Hiy++eNValyxZAq1Wa3mUlZX1/kKJHOhfheUAgPvGRkIQBImrIbLNXSMjIBOA70/V4cgFrdTlkIdTSF2AM8rMzLT8/ZgxY6BUKvHUU09hxYoVUKlUVxyvUql6fJ7ImWjbdPi22DR9d39ylMTVENku1E+FSfEh+OFMPdbtOY21s8dLXRJ5MKcdgQoLC4NcLkdVVZXV81VVVdBoeu7d0Gg01zze/FdbzgkAqamp0Ov1OHfunK2XQeQ0dhyrgM4gIlHjj+Eaf6nLIboh5qU3th+twKlqbu9C0nHaAKVUKjFhwgRkZWVZnjMajcjKykJaWlqP70lLS7M6HgB27txpOT4+Ph4ajcbqmKamJuzfv/+q5wSAwsJCyGQyhIdzx3pyXebpu3vHRkpcCdGNGxTsg+RBQRBF4N2skuu/gaifOPUUXmZmJubOnYuUlBRMmjQJq1evRmtrK+bNmwcAmDNnDqKiorBixQoAwKJFizB16lSsXLkS06dPx8aNG3Hw4EF88MEHAEwLsj333HP4wx/+gISEBMTHx2Pp0qWIjIzEjBkzAJga0ffv34/bb78d/v7+yMnJwfPPP4/HHnsMwcHBkvwciPqqqqkDOWfqAJj6n4hc2X1jI1F4oRFfHi7Hwp8MRUIER1TJ8Zw6QM2cORM1NTVYtmwZKisrkZycjB07dliawEtLSyGTXRpEmzJlCjZs2IBXXnkFL7/8MhISErBlyxaMHj3acsyLL76I1tZWPPnkk2hsbMTNN9+MHTt2QK1WAzD1M23cuBGvvvoqOjs7ER8fj+eff96qL4rI1Xx5qByiCEyIDUZ0iI/U5RD1SUyoD8bFBKGgtBHvZJVgzc/YC0WOJ4hckczumpqaEBgYCK1Wi4AA3ipO0rtvzXc4fEGL398/CnPS4qQux+nUtXSioLRR6jLIBmUNbfjdl8chCMCORbeyr4/swpbf307bA0VE9nG2thWHL2ghlwm4O2mg1OUQ2UV0sA8mxARDFIF3sk5KXQ55IAYoIje3Od+0g/1NQ8MQ5sflNsh93Dc2EgKA7UcqcbycO0CQYzFAEbkxvcGITQdNAeqRlEESV0NkX1HB3kiJM93c88aOExJXQ56GAYrIje0tqUFlUweCfbxw58iI67+ByMU8MC4KcpmAvSdrsK+kRupyyIMwQBG5sc9zTdsKPTBuEFQKucTVENlfuL8atw8fAAB4ffsJGI28L4ocgwGKyE1VN3cgq8i0dcvMidzgmtzX9KSB8PaSo6iiCf8suCh1OeQhGKCI3NTm/IvQG0WMiwniLd7k1vzVXrg7ybTFy8qvi9GhM0hcEXkCBigiNySKIv7ePX33KEefyAPckRiBEB8lyrUd+L/vzkpdDnkABigiN5R7rgFnalvhq5TjnjHcuoXcn1IhwwPjowAAa3adwsXGdokrInfHAEXkhtbvPw8AuGdMJHxVTr1jE5HdTI4PQUK4H9p1Bvxh23GpyyE3xwBF5Gaqmjrw1eEKAMBjk2MlrobIcQRBwM9SYyATgH8frcTek1zWgPoPAxSRm/nbD+ehN4qYGBeMpEGBUpdD5FDRwT74SWI4AODVrcfQqWdDOfUPBigiN9KhM2D9/lIAwC9uipe4GiJp3Dc2EgFqBc7UtuIv+9hQTv2DAYrIjfyr8CLqW7sQFeTNlcfJY/koFfivFNPdp+9kleB0TYvEFZE7YoAichOiKOLj788BAOZOiYVCzv+9yXNNjg/BqMgAdOmNWPzFYRi4QjnZGb9hidxEzuk6nKhsho9SjpkpMVKXQyQpQRAwZ3IsVAoZDp5vwCfZ56QuidwMAxSRmzAvHvjwhEEI9PGSuBoi6YX6qfBfEwYBAN76zwmcr2uVuCJyJwxQRG7g6EUtsk5UQyYAP58SJ3U5RE7j1mEDkKjxR4fOiBc5lUd2xABF5AbW7DoFALh3bCQGD/CTuBoi5yETBMxNi4NSIcP+s/X4372npS6J3AQDFJGLK6powo5jlRAEYMHtQ6Uuh8jpDPBX4WcTTX2Bq74+icKyRmkLIrfAAEXk4syjT3cnDURChL/E1RA5p5uGhiIlNhh6o4hnPytAc4dO6pLIxTFAEbmwk1XN2H7UtG3Lwp9w9InoagRBwJy0WIT6KlFa34alW45KXRK5OAYoIhf23q5TEEXgp6M1SNQESF0OkVPzUSrwxC2DIROALYXllk23iW4EAxSRizpWrsW2w+UAgAUcfSLqlaHhfnhgXBQA0155B8/VS1wRuSoGKCIXJIoi/vhVEUQRuGfMQIyK5KbBRL01bZQGE2KDoTOI+NX6fFQ1dUhdErkgBigiF5RVVI3s03VQKmRYPC1R6nKIXIogCJg3JQ5RQd6oae7E03/LQ6feIHVZ5GIYoIhcjM5gxOvbiwAA82+OR3SIj8QVEbketZccz9w+BD5KOQpKG7H4i8MwcpFNsgEDFJGLWf/DeZypbUWorxK/vm2I1OUQuaxwfzWeunUw5IKALYXleOs/xVKXRC6EAYrIhTS2dWF1VgkAIPOuYfBXc887or4YFRmIOWmxAIB1e07j/+Wck7YgchkMUEQu5I9fFaGxTYdhEX6YmRItdTlEbuGmoWGYkRwJAFi+9Rh2dK+tRnQtDFBELmJfSQ025V2AIACvP5AEhZz/+xLZy/Skgbg1IQyiCCz8rADfHK+SuiRycvwGJnIBrZ16LNl8BAAwNy0OKXEhEldE5F4EQcDs1FhMiguBziDi1+vzsftEtdRlkRNjgCJyAX/6uhgXGtoRFeSNFzKGS10OkVuSywTMvzkeKbHB6DIY8dTf8rDnZI3UZZGTYoAicnIHz9Xjr9nnAACvP5gEX5VC2oKI3JhcJuCXt8RjXEwQuvRGPPHJQXx1mD1RdCUGKCIn1tDahWc/K4AoAg+Oj8LUYQOkLonI7SlkMjx1y2BM6B6JWvBZPj7l3Xn0IwxQRE7KaBTxm02HUK7tQFyoD3533yipSyLyGAq5KUTdNmwARBFY+q9jWPV1MUSRi22SCQMUkZP6YN8Z7DpRDaVChrWzx3PNJyIHk8kEzE6NwX1jTUscvLvrFBZ8VoC2Lr3ElZEzYIAickK55+rxdveqyK/eO4qbBRNJRBAE3Dc2EnPSYiGXCfjqcAUefj8HFxvbpS6NJMYAReRkztW24qlP82Awirg/ORKzJnHBTCKp3ZowAP995zD4qxU4XtGE+977jnfoeTgGKCInUtvSibkfH0B9axeSogLx+gNJEARB6rKICEBChD9euXsEYkJ8UNfahbkfHcDr24vQpTdKXRpJgAGKyEm0dekx/6+5OF/XhugQb3z084lcsoDIyYT6qfDStETcPtx0R+wHe8/g4XXZOFXdInFl5GgMUEROoENnwK/X5+PQBS2Cfbzw13mTMMBfJXVZRNQDpUKG2amxeOa2IfBVynH4ghZ3v7MPa3aVQGfgaJSnYIAiklhrpx7zP8nFt8U1UClk+MvcFAwZ4Cd1WUR0HeNigrH83lEYHRmALoMRf/r6JO597zsUlDZIXRo5AAMUkYS07TrM+egAvj9VB1+lHH+dNwkTYrnPHZGrCPFVYtEdCZh/czz8VAqcqGzGA/+TjczPC1Gp7ZC6POpHDFBEEilvbMfPPvwBeecbEKBW4G+/TEXakFCpyyIiGwmCgLTBofj9faMwpfv/4c0FF3H7n77Fn3eeRFOHTuIKqT8IIpdVtbumpiYEBgZCq9UiICBA6nLICf1wpg7PrM9HXWsXQn2V+HR+KkZG8r8VqdS1dKKgtFHqMshNnK1txcbcUpyuaQUABHp74Zc3x+PnN8VxQVwnZ8vvbwaofsAARVcjiiI+/v4c/ri9CAajiJEDA/C/j09AdIiP1KV5NAYosjdRFJF3vgH/OlSOiu6pvEBvL/wsNQZz0+KgCVRLXCH1hAFKYgxQ1JOLje1YsvkI9nYvvjcjORIrHhwDb6Vc4sqIAYr6i9EoIvd8Pb48VIHKJlOQUsgE3Ds2Eo9NjsH4mGCu9eZEGKAkxgBFlzMaRaw/UIo3thehtcsApUKGJT9NxM+nxPGL00kwQFF/MxpFHLrQiK+PV6HksjWjhob74dGJ0bg/OYpLlzgBBiiJMUCR2b6SGry54wSOXmwCAEyIDcZbD4/hMgVOhgGKHOlsbSt2F1fj4LkGdHWvGyUTgLQhobhnTCQyRmkQ4quUuErPxAAlMQYozyaKIvJLG7Bq50l8f6oOAOCrlOM3dw3H3ClxkMs46uRsGKBICm1deuSea8B3p2pxtrbV8rxMAMbHBOOOERG4PXEAhoX7Q8bvDYdggJIYA5Rn6tIb8dWRcnz8/TkcvqAFAHjJBTw2ORYLbh+KUD8OzzsrBiiSWk1zJ3LP1SP3XD3KGtqtXgv28cLEuBBMig9BanwoRkYG8A9i/YQBSmIMUJ7DaBRx4Fw9vjxUju1HKtDQZlrvRamQYUZyJBb+JIF32LkABihyJnUtnTh8UYtDFxpRUtWCzh9tVuyvUmBCXDCSogIxYmAAEjX+iAv15SiVHTBASYwByr3Vt3bhu1O12HuyBntP1qC6udPyWri/Co9PjsXPUmM44uRCGKDIWemNRpTWteFkVQtOVjWjpLoF7TrDFcd5e8kxXOOPEQMDMCzCD7GhPogJ8UV0iDdUCt7p21u2/P52+q3e165di7fffhuVlZUYO3Ys3nvvPUyaNOmqx2/atAlLly7FuXPnkJCQgDfffBN333235XVRFLF8+XJ8+OGHaGxsxE033YT3338fCQkJlmPq6+uxcOFCfPnll5DJZHjooYfwzjvvwM+Pjb+eprGtCyXVLSiqaEJhaSMKyxpx5rJeBQDwVyswbZQG946NxJQhoVDIucA/EdmHQibD4AF+GDzAD9NGa2A0irjQ2I5T1S0oq29DWUMbLja2o11nQGGZ6TvqcoIADAxQIybUBzEhPtAEqBEeoEZEgBoRASpEBKgR6qvk99YNcOoA9fnnnyMzMxPr1q1DamoqVq9ejYyMDBQXFyM8PPyK47OzszFr1iysWLEC99xzDzZs2IAZM2YgPz8fo0ePBgC89dZbePfdd/HJJ58gPj4eS5cuRUZGBo4fPw612rSw2ezZs1FRUYGdO3dCp9Nh3rx5ePLJJ7FhwwaHXj/1H1EU0dShR31rF+pbO1HX0oW61i5UaDtwob4NFxracaa2FbUtnT2+f8TAANyaEIZbEgZgYnww/4RHRA4hkwmICTGFITOjUURVcwfK6ttR1tCGqqYO1DR3orq5E516I8q1HSjXduCHM/U9n1MwLfIZ5KNEgLcXgry9ENj9CPK59PeB3l7wUSrgrZTDp/vh7SXv/meFx/VlOfUUXmpqKiZOnIg1a9YAAIxGI6Kjo7Fw4UK89NJLVxw/c+ZMtLa2Ytu2bZbnJk+ejOTkZKxbtw6iKCIyMhK/+c1v8N///d8AAK1Wi4iICPz1r3/Fo48+iqKiIowcORK5ublISUkBAOzYsQN33303Lly4gMjIyOvW3V9TeO1dBuw5WQ0AuPzf2uX/Aq2fF6/y/OXH9/yvv1fn6cU5rc5uc209H28UAb3BCL1BhM5o+qveYITO2P1Xgwi90YgOnRHtXQa0dunR1mVAW/dfWzr0aGjrgs7Qu//0o4K8kRDhh7GDgpAcE4TkQUEI5i3GboVTeOSORFFEc4ceNS2mMFXb0gltmw6N7To0tnVB266Dtl0Ho51SgFIhg49SDrVCDi+FAC+5DEq5DF5yGbzk3f+s+NE/d78ulwtQyATIBAFymekhE7qfkwmQCwLkMiAq2BsPjBtkn4J74BZTeF1dXcjLy8OSJUssz8lkMqSnpyMnJ6fH9+Tk5CAzM9PquYyMDGzZsgUAcPbsWVRWViI9Pd3yemBgIFJTU5GTk4NHH30UOTk5CAoKsoQnAEhPT4dMJsP+/fvxwAMPXPG5nZ2d6Oy8NFKh1ZruwGpqarL9wq/hYkMbnvy/7+x6Tk/no5Qh2FeJYB8VQny9EO6vRlSwGlFBPhgU7I3BA/zgp/rR/yaGDjQ1cZd1d9LeoYNS5L9Tcj8qNRCmVmBEmAKA7xWvG4wimjv1aOnQo7Wr+6+dBsvft3Xp0dJpQGun6fVOnRFdegM6dEZ0Gozo0hktf7zt6AQ6Wq/4CLtKjg5CWrQPZIIAtZf9R/7Nv7d7M7bktAGqtrYWBoMBERERVs9HRETgxIkTPb6nsrKyx+MrKystr5ufu9YxP54eVCgUCAkJsRzzYytWrMDvfve7K56Pjo6+2uURERGRjcoADPxN/39Oc3MzAgMDr3mM0wYoV7JkyRKrkS+j0Yj6+nqEhobafauOpqYmREdHo6yszCPv8PP06wf4M/D06wf4M/D06wf4M+iv6xdFEc3Nzb1q13HaABUWFga5XI6qqiqr56uqqqDRaHp8j0ajuebx5r9WVVVh4MCBVsckJydbjqmurrY6h16vR319/VU/V6VSQaWyvmU9KCjo2hfYRwEBAR75P42Zp18/wJ+Bp18/wJ+Bp18/wJ9Bf1z/9UaezJz2vkWlUokJEyYgKyvL8pzRaERWVhbS0tJ6fE9aWprV8QCwc+dOy/Hx8fHQaDRWxzQ1NWH//v2WY9LS0tDY2Ii8vDzLMbt27YLRaERqaqrdro+IiIhcl9OOQAFAZmYm5s6di5SUFEyaNAmrV69Ga2sr5s2bBwCYM2cOoqKisGLFCgDAokWLMHXqVKxcuRLTp0/Hxo0bcfDgQXzwwQcAAEEQ8Nxzz+EPf/gDEhISLMsYREZGYsaMGQCAESNGYNq0aXjiiSewbt066HQ6LFiwAI8++mivhvSIiIjI/Tl1gJo5cyZqamqwbNkyVFZWIjk5GTt27LA0gZeWlkImuzSINmXKFGzYsAGvvPIKXn75ZSQkJGDLli2WNaAA4MUXX0RrayuefPJJNDY24uabb8aOHTssa0ABwPr167FgwQLccccdloU03333Xcdd+DWoVCosX778iilDT+Hp1w/wZ+Dp1w/wZ+Dp1w/wZ+AM1+/U60AREREROSOn7YEiIiIiclYMUEREREQ2YoAiIiIishEDFBEREZGNGKBcwBtvvGFZgsGso6MDzzzzDEJDQ+Hn54eHHnroikVEXd3Fixfx2GOPITQ0FN7e3khKSsLBgwctr4uiiGXLlmHgwIHw9vZGeno6SkpKJKzYfgwGA5YuXYr4+Hh4e3tjyJAheO2116w3anaz69+7dy/uvfdeREZGQhAEyx6WZr253vr6esyePRsBAQEICgrC/Pnz0dLS4sCruHHXun6dTofFixcjKSkJvr6+iIyMxJw5c1BeXm51Dne9/h97+umnIQgCVq9ebfW8K18/0LufQVFREe677z4EBgbC19cXEydORGlpqeV1V/7dcL3rb2lpwYIFCzBo0CB4e3tj5MiRWLdundUxjrx+Bignl5ubi//93//FmDFjrJ5//vnn8eWXX2LTpk3Ys2cPysvL8eCDD0pUpf01NDTgpptugpeXF/7973/j+PHjWLlyJYKDgy3HvPXWW3j33Xexbt067N+/H76+vsjIyEBHh+tvCvvmm2/i/fffx5o1a1BUVIQ333wTb731Ft577z3LMe52/a2trRg7dizWrl3b4+u9ud7Zs2fj2LFj2LlzJ7Zt24a9e/fiySefdNQl9Mm1rr+trQ35+flYunQp8vPzsXnzZhQXF+O+++6zOs5dr/9y//znP/HDDz/0uC6fK18/cP2fwenTp3HzzTcjMTER3377LQ4fPoylS5daLcPjyr8brnf9mZmZ2LFjB/72t7+hqKgIzz33HBYsWICtW7dajnHo9YvktJqbm8WEhARx586d4tSpU8VFixaJoiiKjY2NopeXl7hp0ybLsUVFRSIAMScnR6Jq7Wvx4sXizTfffNXXjUajqNFoxLffftvyXGNjo6hSqcTPPvvMESX2q+nTp4u/+MUvrJ578MEHxdmzZ4ui6P7XD0D85z//afnn3lzv8ePHRQBibm6u5Zh///vfoiAI4sWLFx1Wuz38+Pp7cuDAARGAeP78eVEUPeP6L1y4IEZFRYlHjx4VY2NjxT//+c+W19zp+kWx55/BzJkzxccee+yq73Gn3w09Xf+oUaPE3//+91bPjR8/Xvztb38riqLjr58jUE7smWeewfTp05Genm71fF5eHnQ6ndXziYmJiImJQU5OjqPL7Bdbt25FSkoK/uu//gvh4eEYN24cPvzwQ8vrZ8+eRWVlpdXPIDAwEKmpqW7xM5gyZQqysrJw8uRJAMChQ4fw3Xff4ac//SkA97/+H+vN9ebk5CAoKAgpKSmWY9LT0yGTybB//36H19zftFotBEGw7Lvp7tdvNBrx+OOP44UXXsCoUaOueN0Trv+rr77CsGHDkJGRgfDwcKSmplpNc7n774YpU6Zg69atuHjxIkRRxO7du3Hy5EncddddABx//QxQTmrjxo3Iz8+3bFNzucrKSiiVyis2LI6IiEBlZaWDKuxfZ86cwfvvv4+EhAT85z//wa9+9Ss8++yz+OSTTwDAcp3mVenN3OVn8NJLL+HRRx9FYmIivLy8MG7cODz33HOYPXs2APe//h/rzfVWVlYiPDzc6nWFQoGQkBC3+5l0dHRg8eLFmDVrlmUjVXe//jfffBMKhQLPPvtsj6+7+/VXV1ejpaUFb7zxBqZNm4avv/4aDzzwAB588EHs2bMHgPv/bnjvvfcwcuRIDBo0CEqlEtOmTcPatWtx6623AnD89Tv1Vi6eqqysDIsWLcLOnTut5rY9idFoREpKCl5//XUAwLhx43D06FGsW7cOc+fOlbi6/vf3v/8d69evx4YNGzBq1CgUFhbiueeeQ2RkpEdcP12dTqfDI488AlEU8f7770tdjkPk5eXhnXfeQX5+PgRBkLocSRiNRgDA/fffj+effx4AkJycjOzsbKxbtw5Tp06VsjyHeO+99/DDDz9g69atiI2Nxd69e/HMM88gMjLyipkaR+AIlBPKy8tDdXU1xo8fD4VCAYVCgT179uDdd9+FQqFAREQEurq60NjYaPW+qqoqaDQaaYq2s4EDB2LkyJFWz40YMcJyt4n5On98d4W7/AxeeOEFyyhUUlISHn/8cTz//POWEUl3v/4f6831ajQaVFdXW72u1+tRX1/vNj8Tc3g6f/48du7caRl9Atz7+vft24fq6mrExMRYvhPPnz+P3/zmN4iLiwPg3tcPAGFhYVAoFNf9XnTX3w3t7e14+eWXsWrVKtx7770YM2YMFixYgJkzZ+JPf/oTAMdfPwOUE7rjjjtw5MgRFBYWWh4pKSmYPXu25e+9vLyQlZVleU9xcTFKS0uRlpYmYeX2c9NNN6G4uNjquZMnTyI2NhYAEB8fD41GY/UzaGpqwv79+93iZ9DW1ma1UTYAyOVyy59C3f36f6w315uWlobGxkbk5eVZjtm1axeMRiNSU1MdXrO9mcNTSUkJvvnmG4SGhlq97s7X//jjj+Pw4cNW34mRkZF44YUX8J///AeAe18/ACiVSkycOPGa34sTJkxw298NOp0OOp3umt+LDr9+u7elU7+4/C48URTFp59+WoyJiRF37dolHjx4UExLSxPT0tKkK9DODhw4ICoUCvGPf/yjWFJSIq5fv1708fER//a3v1mOeeONN8SgoCDxX//6l3j48GHx/vvvF+Pj48X29nYJK7ePuXPnilFRUeK2bdvEs2fPips3bxbDwsLEF1980XKMu11/c3OzWFBQIBYUFIgAxFWrVokFBQWWu8x6c73Tpk0Tx40bJ+7fv1/87rvvxISEBHHWrFlSXZJNrnX9XV1d4n333ScOGjRILCwsFCsqKiyPzs5Oyznc9fp78uO78ETRta9fFK//M9i8ebPo5eUlfvDBB2JJSYn43nvviXK5XNy3b5/lHK78u+F61z916lRx1KhR4u7du8UzZ86IH3/8sahWq8X/+Z//sZzDkdfPAOUifhyg2tvbxV//+tdicHCw6OPjIz7wwANiRUWFdAX2gy+//FIcPXq0qFKpxMTERPGDDz6wet1oNIpLly4VIyIiRJVKJd5xxx1icXGxRNXaV1NTk7ho0SIxJiZGVKvV4uDBg8Xf/va3Vr8s3e36d+/eLQK44jF37lxRFHt3vXV1deKsWbNEPz8/MSAgQJw3b57Y3NwswdXY7lrXf/bs2R5fAyDu3r3bcg53vf6e9BSgXPn6RbF3P4P/+7//E4cOHSqq1Wpx7Nix4pYtW6zO4cq/G653/RUVFeLPf/5zMTIyUlSr1eLw4cPFlStXikaj0XIOR16/IIqXLW1MRERERNfFHigiIiIiGzFAEREREdmIAYqIiIjIRgxQRERERDZigCIiIiKyEQMUERERkY0YoIiIiIhsxABFREREZCMGKCIiIiIbMUARERER2YgBioiIiMhGDFBERL1QU1MDjUaD119/3fJcdnY2lEolsrKyJKyMiKTAzYSJiHpp+/btmDFjBrKzszF8+HAkJyfj/vvvx6pVq6QujYgcjAGKiMgGzzzzDL755hukpKTgyJEjyM3NhUqlkrosInIwBigiIhu0t7dj9OjRKCsrQ15eHpKSkqQuiYgkwB4oIiIbnD59GuXl5TAajTh37pzU5RCRRDgCRUTUS11dXZg0aRKSk5MxfPhwrF69GkeOHEF4eLjUpRGRgzFAERH10gsvvIAvvvgChw4dgp+fH6ZOnYrAwEBs27ZN6tKIyME4hUdE1AvffvstVq9ejU8//RQBAQGQyWT49NNPsW/fPrz//vtSl0dEDsYRKCIiIiIbcQSKiIiIyEYMUEREREQ2YoAiIiIishEDFBEREZGNGKCIiIiIbMQARURERGQjBigiIiIiGzFAEREREdmIAYqIiIjIRgxQRERERDZigCIiIiKy0f8HByiqFSq2NssAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = np.arange(40., 180.)\n", "# plt.plot(x, chi_distribution(x, 112))\n", "plt.plot(x,chi2.pdf(x, 112))\n", "x = np.arange(chi_square, 180, 0.1)\n", "plt.fill_between(x, chi2.pdf(x, 112), alpha=0.3)\n", "plt.ylim(0, None)\n", "plt.xlabel('x')\n", "plt.ylabel('$\\chi^2(x)$')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "b30829b3-a9e8-4d93-8895-9fd9f67ab9dc", "metadata": {}, "source": [ "Der erste Schritt für den Hypothesen-Test ist die Berechnung des $P$-Werts\n", "$$ P = \\int_{\\chi^2}^{\\infty} f(z,n_d)dz $$\n", "wobei $f(z,n_d)$ die $\\chi^2$-Verteilung und $n_d$ die Anzahl der Freiheitsgrade ist.\n", "Im Bild oben entspricht dies der ausgefüllten Fläche.\n", "\n", "Die praktische Berechnung erfolgt mittels der kumulativen Verteilungsfunktion via\n", "$$ P = 1 - \\chi^2_{CDF}(x, n_d) $$\n", "wobei für $x$ das im Fit bestimmte $\\chi^2$ eingesetzt wird. Die praktische Bedeutung des $P$-Werts ist die Wahrscheinlichkeit bei einer Wiederholung des Experiments in größeres $\\chi^2$ zu erhalten, wenn unser Model die Daten richtig beschreibt und die ermittelten Fitparameter den wahren Werten entsprechen." ] }, { "cell_type": "code", "execution_count": 529, "id": "cfa9d88a-eada-49dd-8cb3-73c7dd345c08", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.6323451110506132, 0.884238547608047, 0.48222800598351057)" ] }, "execution_count": 529, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p_value = lambda x, ndof: 1 - chi2.cdf(x, ndof)\n", "p_value(chi_square, ndof), p_value(chi_square*10, ndof*10), p_value(ndof, ndof)" ] }, { "cell_type": "markdown", "id": "9cba146a-6309-42d1-92cb-8bdde2da42a2", "metadata": {}, "source": [ "Kehren wir zu unserem Doppelpeak-Spektrum zurück und änderen das Fitmodell, indem wir statt eines exponentiellen einen konstanten Untergrund annehmen." ] }, { "cell_type": "code", "execution_count": 530, "id": "9b91ee55-ac17-4dd6-9827-48677f772096", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Migrad
FCN = 369.6 (χ²/ndof = 3.3) Nfcn = 415
EDM = 5.63e-05 (Goal: 0.0002)
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
0 A_p1 319 7
1 A_p2 583 7
2 mu_p1 53.31 0.08
3 mu_p2 60.52 0.06
4 sigma_p1 2.23 0.07
5 sigma_p2 2.72 0.04
6 c 21.4 0.6 0
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 c
A_p1 47.8 10 (0.148) 0.096 (0.167) 0.0895 (0.224) -0.108 (-0.235) -0.0881 (-0.301) 0.1 (0.023)
A_p2 10 (0.148) 52.4 -0.036 (-0.060) -0.0034 (-0.008) -0.064 (-0.132) -0.1062 (-0.347) 0.0 (0.005)
mu_p1 0.096 (0.167) -0.036 (-0.060) 0.00694 0.0038 (0.785) 0.004 (0.743) -0.0025 (-0.711) 0.002 (0.030)
mu_p2 0.0895 (0.224) -0.0034 (-0.008) 0.0038 (0.785) 0.00333 0.0027 (0.695) -0.0017 (-0.714) -0.0018 (-0.051)
sigma_p1 -0.108 (-0.235) -0.064 (-0.132) 0.004 (0.743) 0.0027 (0.695) 0.00444 -0.0016 (-0.559) -0.005 (-0.132)
sigma_p2 -0.0881 (-0.301) -0.1062 (-0.347) -0.0025 (-0.711) -0.0017 (-0.714) -0.0016 (-0.559) 0.00179 -0.0033 (-0.124)
c 0.1 (0.023) 0.0 (0.005) 0.002 (0.030) -0.0018 (-0.051) -0.005 (-0.132) -0.0033 (-0.124) 0.39
\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2024-10-16T21:41:00.276254\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.8.2, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "┌─────────────────────────────────────────────────────────────────────────┐\n", "│ Migrad │\n", "├──────────────────────────────────┬──────────────────────────────────────┤\n", "│ FCN = 369.6 (χ²/ndof = 3.3) │ Nfcn = 415 │\n", "│ EDM = 5.63e-05 (Goal: 0.0002) │ │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Valid Minimum │ Below EDM threshold (goal x 10) │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ No parameters at limit │ Below call limit │\n", "├──────────────────────────────────┼──────────────────────────────────────┤\n", "│ Hesse ok │ Covariance accurate │\n", "└──────────────────────────────────┴──────────────────────────────────────┘\n", "┌───┬──────────┬───────────┬───────────┬────────────┬────────────┬─────────┬─────────┬───────┐\n", "│ │ Name │ Value │ Hesse Err │ Minos Err- │ Minos Err+ │ Limit- │ Limit+ │ Fixed │\n", "├───┼──────────┼───────────┼───────────┼────────────┼────────────┼─────────┼─────────┼───────┤\n", "│ 0 │ A_p1 │ 319 │ 7 │ │ │ │ │ │\n", "│ 1 │ A_p2 │ 583 │ 7 │ │ │ │ │ │\n", "│ 2 │ mu_p1 │ 53.31 │ 0.08 │ │ │ │ │ │\n", "│ 3 │ mu_p2 │ 60.52 │ 0.06 │ │ │ │ │ │\n", "│ 4 │ sigma_p1 │ 2.23 │ 0.07 │ │ │ │ │ │\n", "│ 5 │ sigma_p2 │ 2.72 │ 0.04 │ │ │ │ │ │\n", "│ 6 │ c │ 21.4 │ 0.6 │ │ │ 0 │ │ │\n", "└───┴──────────┴───────────┴───────────┴────────────┴────────────┴─────────┴─────────┴───────┘\n", "┌──────────┬────────────────────────────────────────────────────────────────┐\n", "│ │ A_p1 A_p2 mu_p1 mu_p2 sigma_p1 sigma_p2 c │\n", "├──────────┼────────────────────────────────────────────────────────────────┤\n", "│ A_p1 │ 47.8 10 0.096 0.0895 -0.108 -0.0881 0.1 │\n", "│ A_p2 │ 10 52.4 -0.036 -0.0034 -0.064 -0.1062 0.0 │\n", "│ mu_p1 │ 0.096 -0.036 0.00694 0.0038 0.004 -0.0025 0.002 │\n", "│ mu_p2 │ 0.0895 -0.0034 0.0038 0.00333 0.0027 -0.0017 -0.0018 │\n", "│ sigma_p1 │ -0.108 -0.064 0.004 0.0027 0.00444 -0.0016 -0.005 │\n", "│ sigma_p2 │ -0.0881 -0.1062 -0.0025 -0.0017 -0.0016 0.00179 -0.0033 │\n", "│ c │ 0.1 0.0 0.002 -0.0018 -0.005 -0.0033 0.39 │\n", "└──────────┴────────────────────────────────────────────────────────────────┘" ] }, "execution_count": 530, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def alternative_fit_model(x, A_p1, A_p2, mu_p1, mu_p2, sigma_p1, sigma_p2, c):\n", " return peak(x, A_p1, mu_p1, sigma_p1) + peak(x, A_p2, mu_p2, sigma_p2) + c\n", "\n", "ls = cost.LeastSquares(center, entries, np.sqrt(entries), alternative_fit_model)\n", "\n", "mi = Minuit(ls, \n", " A_p1 = 800, \n", " A_p2 = 1400,\n", " mu_p1 = 54,\n", " mu_p2 = 60,\n", " sigma_p1 = 2,\n", " sigma_p2 = 2,\n", " c = 100, \n", " )\n", "mi.limits['c'] = (0, None)\n", "mi.fixed[:] = True\n", "ls.mask = (center < 45) | (center >= 70)\n", "mi.fixed[['c']] = False\n", "mi.migrad()\n", "ls.mask = None\n", "mi.values['A_p1'] = 700\n", "mi.values['sigma_p1'] = 3\n", "mi.fixed[:] = True\n", "mi.fixed[['A_p1', 'mu_p1', 'sigma_p1']] = False\n", "mi.migrad()\n", "mi.fixed[:] = True\n", "mi.fixed[['A_p2', 'mu_p2', 'sigma_p2']] = False\n", "mi.migrad()\n", "mi.fixed[:] = False\n", "mi.migrad()\n", "mi.hesse()" ] }, { "cell_type": "markdown", "id": "c9fbbebc", "metadata": {}, "source": [ "Diese Änderung ist gering und der Fit scheint die Daten weiterhin zu beschreiben. Allerdings gibt bei kleinen Energien eine deutlich sichtbare Diskrepanz. Dies zeigt sich auch in einem größeren $\\chi^2$-Wert. Wie wirkt sich dies auf den $P$-Wert aus?" ] }, { "cell_type": "code", "execution_count": 478, "id": "4aa0f3d9-1d0b-4b4c-b816-2a0cb9ae9793", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "329.01941626278426 113 2.911676250113135\n" ] } ], "source": [ "chi_square, ndof = chi_square_ndof(center, entries, np.sqrt(entries), alternative_fit_model, mi)\n", "print(chi_square, ndof, chi_square/ndof)" ] }, { "cell_type": "code", "execution_count": 479, "id": "607ddd33", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "329.01941626278426 113\n" ] }, { "data": { "text/plain": [ "0.0" ] }, "execution_count": 479, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p_value = lambda x, ndof: 1 - chi2.cdf(x, ndof)\n", "print(chi_square, ndof)\n", "p_value(chi_square, ndof)" ] }, { "cell_type": "markdown", "id": "bcb62098-1e8b-4c9f-8aa3-048037f0d21e", "metadata": {}, "source": [ "Der Fit ist offensichtlich viel schlechter und der $P$-Wert liegt nahe bei null, so dass man dieses Model ausschließen sollte.\n", "\n", "Was aber, wenn die Änderung nicht so dramatisch ist? Ist ein $P$-Wert von 0,4 besser als 0,2? Nein, das kann man so nicht beantworten. Aber für einen Hypothesen-Test sollten man vorher eine Schwelle festlegen für die Akzeptanz oder Ablehnung des Models.\n", "\n", "Wie ein solcher Hypothesen-Test aussehen kann, wollen wir im Folgenden betrachten. Hierbei benutzen wir\n", "1. ein korrektes Model (Normalverteilung),\n", "2. ein korrektes Model mit überschätztem Fehler (10% größer),\n", "3. und ein falsches Model (Lorentzverteilung)" ] }, { "cell_type": "code", "execution_count": 264, "id": "c3f1f1d4-4b84-45a1-9d23-4cbb8ba32c8c", "metadata": {}, "outputs": [], "source": [ "def lorentzian( x, x0, a, gam ):\n", " return a * gam**2 / ( gam**2 + ( x - x0 )**2)" ] }, { "cell_type": "markdown", "id": "0e3fcfd5", "metadata": {}, "source": [ "Den Fit der drei Modelle und die Bestimmung des entsprechenden $P$-Werts wiederholen wir 5000-mal um eine ausreichende Statistik zu erhalten." ] }, { "cell_type": "code", "execution_count": 7, "id": "9667c766", "metadata": {}, "outputs": [], "source": [ "# Diese Zelle nur auf JupyterHub des ZDV ausführen um `tqdm` zu installieren falls es nicht vorhanden sein sollte!\n", "# import sys\n", "# import subprocess\n", "# subprocess.check_call([\n", "# sys.executable, \n", "# '-m',\n", "# 'pip',\n", "# 'install',\n", "# '--proxy',\n", "# 'http://webproxy.zdv.uni-mainz.de:3128',\n", "# 'tqdm'\n", "# ])" ] }, { "cell_type": "code", "execution_count": 531, "id": "c3b58808-f155-4194-b02e-e5f649cb86aa", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9401e27e0abe463ab485a539ee58e61e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/5000 [00:00" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHdCAYAAAAU4dNnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUhElEQVR4nO3dd1gU1/4G8HfpVRBQioBdIhYUC9cSBUOuJTGiXuNNLGiMJhEMir2bxKgxFtS7xpui6I1GU8TcG2MloLFEFMWoIDYMFsCGhQVB4Pz+8Mcmq6AsO8sus+/neXjCzsye+e642X05c+aMQgghQERERCRDZoYugIiIiEhfGHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIgq6cqVKwgODoa/vz9at26N7777ztAlEdFzKHhTTyKiysnKykJOTg7atGmD7OxstGvXDufOnYO9vb2hSyOiCrBHh4hkKzg4GOPHj5esPU9PT7Rp0wYA4OHhATc3N9y5c0ey9olIegw6RGRQI0aMgEKhgEKhgKWlJRo2bIgpU6bg4cOHhi7tmZKTk1FSUgIfHx9Dl0JEz2Bh6AKIiHr16oV169bh0aNHSE5ORnh4OBQKBT755BNDl1auO3fuYPjw4fjiiy8MXQoRPQd7dIjI4KytreHh4QEfHx+EhYUhNDQUe/bsUa8vLS3FwoUL0bBhQ9ja2iIgIADff/+9RhsqlQrDhw+Hg4MDPD09sXTpUq3rGDRoEOrUqYPPP/9cvezIkSOwsrLC7t27AQCFhYUICwvDtGnT0Llz5yq+YiKqLgw6RGRUTp8+jUOHDsHKykq9bOHChdiwYQPWrFmDM2fOYMKECRg6dCj27dun3mby5MnYt28ffvzxR+zevRuJiYk4fvy4VvteuXIlBg4ciA8//BAAkJeXh6FDh+K9997D3//+dwghMGLECPTo0QPDhg2T5gUTkV7xqisiMqgRI0bg66+/ho2NDYqLi1FYWAgzMzN8++23GDhwIAoLC+Hi4oK9e/eiU6dO6ue9/fbbyM/Px6ZNm5CXlwdXV1d8/fXXGDRoEIDHp5e8vb0xZswYxMTEVLqes2fPonnz5rh16xYmT56MpKQkHDt2DDY2Njhw4AC6deuG1q1bq7f/z3/+g1atWkl2PIhIWhyjQ0QGFxISgs8++wwqlQrLly+HhYUFBg4cCAC4cOEC8vPz8fLLL2s8p6ioCG3btgUAXLx4EUVFRQgKClKvd3FxgZ+fn9a1NGvWDHZ2dpgzZw42btyIpKQk2NjYAAC6du2K0tLSqr5MIjIABh0iMjh7e3s0adIEALB27VoEBATgq6++wqhRo5CXlwcA2L59O+rVq6fxPGtra8lrMTMzQ6tWrbB69WosXrwYAQEBku+DiKoPx+gQkVExMzPDjBkzMGvWLBQUFMDf3x/W1tbIzMxEkyZNNH7KLu1u3LgxLC0tceTIEXU7ubm5OHfunNb7LzubHxgYiIkTJ0rzoojIYBh0iMjoDBo0CObm5lAqlXB0dMSkSZMwYcIErF+/HhcvXsTx48exatUqrF+/HgDg4OCAUaNGYfLkyfjll19w+vRpjBgxAmZmf37E/etf/8JLL7303H3HxMTgyJEjKC0t1Xg+EdVMPHVFREbHwsICkZGRWLx4Md577z189NFHqFOnDhYuXIhLly7B2dkZgYGBmDFjhvo5n376KfLy8tC3b184Ojpi4sSJuHfvnnr9rVu3cPHixWfu99SpU5g+fTrGjh2LL7/8EsXFxbCw4MckUU3Gq66IiAA8fPgQHTp0QGBgIGJiYuDi4oJTp06hZcuWhi6NiHTAflkiIgDTpk2DSqXCv/71L9SuXRv169dHTEwMrl+/bujSiEgHDDpEZPJ2794NpVKJr7/+Go6OjgCAWbNmYdu2bYiIiDBwdUSkC566IiIiItlijw4RERHJFoMOERERyRaDDhEREckWgw4Ztf3796Nv377w8vKCQqHAtm3bDF0S1QB831B14vvNuDHokF5dv34dxcXFVX6+SqVCQEAAlEqlhFWR3PF9Q1LKzc1V33OtPHy/GTdO+Ul69cUXX+Czzz7D0KFDER4ejlatWmn1/N69e6N37956qo7kiu8b0lVxcTF27dqF2NhY/O9//8ORI0cqvMEr32/GjT06pFdTp07FihUrkJaWhsDAQAQGBmLlypW4efOmoUsjInrKqVOnMHHiRHh7e2P48OGoU6cOEhISeBf7GoxBh/TKxsYGgwcPxvbt23Ht2jUMHz4csbGxqFevHsLCwhAXF6fTqS0iIl3dvn0bK1asQGBgINq3b49Lly5h9erVyMrKwurVq9GpUydDl0g6YNChalO3bl2MHz8ex48fx48//ojDhw9jwIABOH36tKFLIyITtmrVKowfPx4ODg64cOEC4uLiMGDAAFhZWRm6NJIAgw5VmwcPHmDdunXo0aMH+vbti5YtW2L9+vXw9/c3dGlEZMLGjBmDjz76CNnZ2WjRogVGjhyJX375BaWlpYYujSTAoEN6VVJSgh07duDNN9+Eu7s7Fi1ahJdeegmXLl1CfHw8hg8fzr+aiMigvLy8MGvWLJw7dw47d+6ElZUVBgwYgPr162PatGk4c+aMoUskHTDokF4tWLAAb7zxBhwdHbF3716kp6dj5syZ8PX1rdTz8/LykJKSgpSUFABARkYGUlJSkJmZqceqqabj+4aqqnPnzvj3v/+N7OxsfPrpp0hJSUFAQABOnTpV4XP4fjNuvKkn6dXly5fh4eEBGxubKj0/MTERISEhTy0PDw9HbGysjtWRXPF9Q1K6fv06HBwcUKtWrXLX8/1m3Bh0iIiISLZ46oqIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeMRmFhIebNm4fCwkJDl0IywfcUSYnvp5qJ8+iQ0bh//z6cnJxw7969CifmItIG31MkJb6faib26BAREZFsMegQERGRbFkYugBDKy4uxokTJ+Du7g4zM+Y+Q3rw4AEA4Nq1a7h//76BqyE54HuKpMT3k3EpLS1FTk4O2rZtCwuLiuOMyY/ROXr0KDp27GjoMoiIiKgKkpKS0KFDhwrXm3yPjru7O4DHB8rT09PA1RhOfn4+/Pz8AADp6emws7MzcEVEREQVy8rKQseOHdXf4xUx+aBTdrrK09MT3t7eBq7GcFQqlfr3evXqwd7e3oDVEBERVc7zhp1wUAoRERHJlskGHaVSCX9/fwQHBxu6FCIiItITkw06ERERSE1NRWJioqFLISIiIj0x+TE6RGTcSkpK8OjRI0OXQUTVzNLSEubm5jq3w6BDREZJCIHs7GzcvXvX0KUQkYE4OzvDw8MDCoWiym0w6BCRUSoLOXXr1oWdnZ1OH3REVLMIIZCfn48bN24AgE7TvzDoEJHRKSkpUYccV1dXQ5dDRAZga2sLALhx4wbq1q1b5dNYJjsYmVddERmvsjE5nLiSyLSVfQboMk7PZIMOr7oiMn48XUVk2qT4DDDZoENERETyxzE6RFRj3Mu8h/xb+dW2Pzs3Ozj5OlXb/qSgUCgQFxeHsLAwQ5eC4OBgtGnTBjExMZXaPjY2FuPHj+eVdiQpBh0iqhHuZd6DsrkSj/Krb04dSztLRKRFaBV2srOzsXDhQmzfvh1Xr16Fk5MTmjRpgqFDhyI8PJzjjoiqGYMOEdUI+bfy8Sj/Efp/3R91mtfR+/5upt1E3NA45N/Kr3TQuXTpErp06QJnZ2csWLAArVq1grW1NU6dOoXPP/8c9erVw2uvvabnyonorxh09EmVCRTe0r0dazfA3lf3dohkoE7zOvAMrPqcGvo0duxYWFhY4NixY7C3t1cvb9SoEfr16wchhHpZZmYmxo0bh/j4eJiZmaFXr15YtWoV3N3d1dt89tlnWLJkCa5cuYKGDRti1qxZGDZsmHr9+fPnMWrUKCQlJaFRo0ZYsWLFc2sMDg5Gq1atYG5ujvXr18PKygrz58/Hm2++icjISHz//fdwd3fHqlWr0Lt3b/Xz9u3bh8mTJ+PkyZNwcXFBeHg45s+fDwuLx18jKpUK7733HrZu3QpHR0dMmjTpqX0XFhZi5syZ+Oabb3D37l20bNkSn3zyCa9+Jb0y2aCjVCqhVCpRVFSknx2oMoGfmgMlEownMLcDXk1j2CEyYrdv38bu3buxYMECjZDzV2VXkJSWlqJfv35wcHDAvn37UFxcjIiICAwePFh9JWhcXByioqIQExOD0NBQ/PTTTxg5ciS8vb0REhKC0tJSDBgwAO7u7jhy5Aju3buH8ePHV6rW9evXY8qUKUhKSsKWLVvw3nvvIS4uDv3798eMGTOwfPlyDBs2DJmZmbCzs8O1a9fQp08fjBgxAhs2bMDZs2cxevRo2NjYYN68eQCAyZMnY9++ffjxxx9Rt25dzJgxA8ePH0ebNm3U+42MjERqaio2b94MLy8vxMXFoVevXjh16hSaNm1a1UNP9GzCxF25ckUAEFeuXJG24dvJQmyEEJe+fvx7VX8uff24ndvJ0tb3hLy8PAFAABB5eXl63RfR8xQUFIjU1FRRUFCgXnY9+bqYh3nievL1aqlB2/399ttvAoDYunWrxnJXV1dhb28v7O3txZQpU4QQQuzevVuYm5uLzMxM9XZnzpwRAERSUpIQQojOnTuL0aNHa7Q1aNAg0adPHyGEELt27RIWFhbi2rVr6vU7duwQAERcXFyFdXbv3l107dpV/bi4uFjY29uLYcOGqZdlZWUJAOLw4cNCCCFmzJgh/Pz8RGlpqXobpVIpHBwcRElJiXjw4IGwsrIS3377rXr97du3ha2trYiKihJCCPHHH38Ic3NzjXqFEOKll14S06dPF0IIsW7dOuHk5FRh7WR6yvssKFPZ72+T7dGpNk7NAZdAQ1dBRAaSlJSE0tJSDBkyBIWFhQCAtLQ0+Pj4wMfHR72dv78/nJ2dkZaWhg4dOiAtLQ1jxozRaKtLly7q01NlbXh5eanXd+rUqVI1tW7dWv27ubk5XF1d0apVK/WystNnZdPvp6WloVOnThpzmnTp0gV5eXm4evUqcnNzUVRUhKCgIPV6FxcX+Pn5qR+fOnUKJSUlaNasmUYthYWFnP2a9IpBh4hIAk2aNIFCoUB6errG8kaNGgH4czp7Y2BpaanxWKFQaCz76yk2qeTl5cHc3BzJyclPTeXv4OAg2X6InsQJA4mIJODq6oqXX34Z//rXv6BSqZ65bfPmzXHlyhVcuXJFvSw1NRV3796Fv7+/epuDBw9qPO/gwYMa669cuYKsrCz1+t9++02ql/NUvYcPH9YYTH3w4EE4OjrC29sbjRs3hqWlJY4cOaJen5ubi3Pnzqkft23bFiUlJbhx4waaNGmi8ePh4aGXuokABh0iIsmsXr0axcXFaN++PbZs2YK0tDSkp6fj66+/xtmzZ9U9GaGhoWjVqhWGDBmC48ePIykpCcOHD0f37t3Rvn17AI8H98bGxuKzzz7D+fPnsWzZMmzdulV9NVNoaCiaNWuG8PBwnDx5Er/++itmzpypl9c1duxYXLlyBePGjcPZs2fx448/Yu7cuYiOjoaZmRkcHBwwatQoTJ48Gb/88gtOnz6NESNGwMzsz6+YZs2aYciQIRg+fDi2bt2KjIwMJCUlqeccItIXnroiohrlZtpNo91P48aNceLECSxYsADTp0/H1atXYW1tDX9/f0yaNAljx44F8PjU0I8//ohx48ahW7duGpeXlwkLC8OKFSuwZMkSREVFoWHDhli3bp36UmwzMzPExcVh1KhR6NixIxo0aICVK1eiV69ekrz+v6pXrx5+/vlnTJ48GQEBAXBxccGoUaMwa9Ys9Taffvop8vLy0LdvXzg6OmLixIm4d++eRjvr1q3D/PnzMXHiRFy7dg1ubm7429/+hldffVXymonKKMRf+yJN0NWrV+Hj44MrV67A29tbuobvHAd2tgN6Jes2GFmqdp5DpVKpz5Pn5eVVeHksUXV4+PAhMjIy0LBhQ9jY2ACoOTMjE5F0yvssKFPZ72/26BBRjeDk64SItAje64qItGKyQUfvEwYSkeScfJ0YPIhIKyY7GDkiIgKpqanqWUiJiIhIfkw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsMegQERGRbDHoEBERkWyZ7Dw6RFQDqTKBwlvVtz9rN8Det/r2Z2JGjBiBu3fvYtu2bZXaPjExESEhIcjNzYWzs7NeayP5YNAhoppBlQn81Bwoqb6ZkWFuB7yaVqmws2bNGkyePBm5ubmwsHj80ZqXl4fatWujS5cuGnN2lX1hX7hwAY0bN9ZX9UQEBh0iqikKbz0OOZ2+Bpya639/99KAw0Mf77cSQSckJAR5eXk4duwY/va3vwEAfv31V3h4eODIkSN4+PCh+l49CQkJ8PX1LTfkFBUVwcrKStrXQmTCTHaMjlKphL+/v/pOwERUQzg1f3yDW33/aBmm/Pz84Onp+VTPTb9+/dCwYUP89ttvGstDQkIAPD59ExYWho8//hheXl7w8/MDAJw6dQo9evSAra0tXF1dMWbMGOTl5anbKHvekiVL4OnpCVdXV0RERODRoz9vepqVlYVXXnkFtra2aNiwITZt2oQGDRogJiamwtdR1u6CBQvg7u4OZ2dnfPjhhyguLsbkyZPh4uICb29vrFu3TuN5z6u3pKQE0dHRcHZ2hqurK6ZMmYIn7yldWlqKhQsXomHDhrC1tUVAQAC+//77yv8jEJXDZIMObwFBRFILCQlBQkKC+nFCQgKCg4PRvXt39fKCggIcOXJEHXQAID4+Hunp6dizZw9++uknqFQq9OzZE7Vr18bRo0fx3XffYe/evYiMjNTYX0JCAi5evIiEhASsX78esbGxiI2NVa8fPnw4rl+/jsTERPzwww/4/PPPcePGjee+jl9++QXXr1/H/v37sWzZMsydOxevvvoqateujSNHjuDdd9/FO++8g6tXrwJApepdunQpYmNjsXbtWhw4cAB37txBXFycxn4XLlyIDRs2YM2aNThz5gwmTJiAoUOHYt++fZX/RyB6kjBxV65cEQDElStXpG34drIQG/H4v8bQznPk5eUJAAKAyMvL0+u+iJ6noKBApKamioKCgj8XVtP/C7rs74svvhD29vbi0aNH4v79+8LCwkLcuHFDbNq0SXTr1k0IIUR8fLwAIP744w8hhBDh4eHC3d1dFBYWqtv5/PPPRe3atTX+X9y+fbswMzMT2dnZ6ufVr19fFBcXq7cZNGiQGDx4sBBCiLS0NAFAHD16VL3+/PnzAoBYvnx5ha+hrN2SkhL1Mj8/P/Hiiy+qHxcXFwt7e3vxzTffVLpeT09PsXjxYvX6R48eCW9vb9GvXz8hhBAPHz4UdnZ24tChQxr1jBo1SrzxxhtCCCESEhIEAJGbm1th/SQv5X4W/L/Kfn9zjA4RkUSCg4OhUqlw9OhR5ObmolmzZqhTpw66d++OkSNH4uHDh0hMTESjRo3g6/vnuJ9WrVppjMtJS0tDQEAA7O3t1cu6dOmC0tJSpKenw93dHQDQokULmJubq7fx9PTEqVOnAADp6emwsLBAYGCgen2TJk1Qu3bt576OFi1awMzszw5/d3d3tGzZUv3Y3Nwcrq6u6t6h59VrY2ODrKwsBAUFqddbWFigffv26tNXFy5cQH5+Pl5++WWNWoqKitC2bdvn1kxUEQYdIiKJNGnSBN7e3khISEBubi66d+8OAPDy8oKPjw8OHTqEhIQE9OjRQ+N5fw0I2rC0tNR4rFAoUFpaWrXin9OuvvZVpmw8z/bt21GvXj2NddbW1pLth0yPyY7RISLSh5CQECQmJiIxMVHjYodu3bphx44dSEpK0hifU57mzZvj5MmTUKlU6mUHDx6EmZmZerDy8/j5+aG4uBgnTpxQL7tw4QJyc3O1e0GV8Lx6nZyc4OnpiSNHjqjXFxcXIzk5Wf3Y398f1tbWyMzMRJMmTTR+fHx8JK+ZTAeDDhGRhEJCQnDgwAGkpKSoe3QAoHv37vj3v/+NoqKi5wadIUOGwMbGBuHh4Th9+jQSEhIwbtw4DBs2TH3a6nleeOEFhIaGYsyYMUhKSsKJEycwZswY2NraQqFQ6PQaq1JvVFQUFi1ahG3btuHs2bMYO3Ys7t69q27D0dERkyZNwoQJE7B+/XpcvHgRx48fx6pVq7B+/XpJ6yXTwlNXRFSz3Esz6v2EhISgoKAAL7zwgkYo6d69Ox48eKC+DP1Z7OzssGvXLkRFRaFDhw6ws7PDwIEDsWzZMq1q2bBhA0aNGoVu3brBw8MDCxcuxJkzZ9Tz+UilMvVOnDgRWVlZCA8Ph5mZGd566y30798f9+7dU2/z0UcfoU6dOli4cCEuXboEZ2dnBAYGYsaMGZLWS6ZFIcQTExmYmKtXr8LHxwdXrlyBt7e3dA3fOQ7sbAf0Sn48J4eh23kOlUoFBwcHAI/PlVd1zACRFB4+fIiMjAw0bNjwzy9lI58ZuSYo+7zbu3cvXnrpJUOXQ/Rc5X4W/L/Kfn+zR4eIagZ738ehg/e6qrRffvkFeXl5aNWqFbKysjBlyhQ0aNAA3bp1M3RpRNWGQYeIag573xodPKrbo0ePMGPGDFy6dAmOjo7o3LkzNm7c+NQVVERyxqBDRCRTPXv2RM+ePQ1dBpFB8aorIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki2TDTpKpRL+/v4aU7QTERGRvJhs0ImIiEBqaioSExMNXQoRERHpCS8vJ6IaI//6dRTduVNt+7NycYGdl1e17U8biYmJCAkJQW5uLpydnQ1djslQKBSIi4tDWFiYTu00aNAA48ePx/jx4yWpqzzx8fGIjIzE6dOnYW5urrf9VMXOnTsxbdo0HD9+HGZm+u1zYdAhohoh//p1JP797ygpKKi2fZrb2iJ49+5KhZ3n3Shz7ty5mDdvnkSVkS4uX76Mhg0b4sSJE2jTpo1Wz83KykLt2rUrvX1sbCzGjx+vcQNTADh69Kjeb7UzZcoUzJo1Sx1ysrKyMHHiRBw7dgwXLlzA+++/j5iYmKee991332H27Nm4fPkymjZtik8++QR9+vSpcD8nTpzAW2+9hfPnzyMkJATr16+Hi4sLgMd3qQ8KCsJnn32Gjh07qp/Tq1cvzJ49Gxs3bsSwYcOkfeFPYNAhohqh6M4dlBQUoO2yZXBo3Fjv+8u7eBEnoqNRdOdOpYJOVlaW+vctW7Zgzpw5SE9PVy8ru5ecMSkqKoKVlZWhy6hWRUVFOj3fw8NDkjrq1KkjSTsVOXDgAC5evIiBAweqlxUWFqJOnTqYNWsWli9fXu7zDh06hDfeeAMLFy7Eq6++ik2bNiEsLAzHjx9Hy5Yty33O22+/jR49emDLli14++23sWDBAixZsgQAsHTpUnTp0kUj5JQZMWIEVq5cqfegA2Hirly5IgCIK1euSNvw7WQhNuLxf42hnefIy8sTAAQAkZeXp9d9ET1PQUGBSE1NFQUFBepluadOif82aiRyT52qlhp02d+6deuEk5OT+nFJSYn44IMPRL169YSVlZUICAgQO3bs0HjO77//LkJCQoSNjY1wcXERo0ePFg8ePKhwHwkJCQKAyM3NFUIIcevWLfHPf/5TeHl5CVtbW9GyZUuxadMmjed0795dREREiKioKOHq6iqCg4OFEEL8+OOPokmTJsLa2loEBweL2NhYjbaFEOLXX38VXbt2FTY2NsLb21uMGzfumZ8V4eHhol+/fhrLoqKiRPfu3TXqGTdunJg8ebKoXbu2cHd3F3PnztV4Tm5urhgzZoyoW7eusLa2Fi1atBD/+9//Kl1X/fr1xYcffiiGDRsmHB0dRXh4uPqzruynrKakpCQRGhoqXF1dRa1atUS3bt1EcrLmZy8AERcXJ4QQIiMjQwAQP/zwgwgODha2traidevW4tChQxr/Rn/9KXt99evXF8uXL9d4naNGjRJubm7C0dFRhISEiJSUFPX6lJQUERwcLBwcHISjo6MIDAwUR48erfD4R0REiH/84x8Vru/evbuIiop6avnrr78uXnnlFY1lQUFB4p133qmwLVtbW5GWliaEEGL16tWiT58+QgghLl68KJo2bSru379f7vP++OMPAUBcuHChwrbL+ywoU9nvb5MdjExEVF1WrFiBpUuXYsmSJfj999/Rs2dPvPbaazh//jwAQKVSoWfPnqhduzaOHj2K7777Dnv37kVkZGSl9/Hw4UO0a9cO27dvx+nTpzFmzBgMGzYMSUlJGtutX78eVlZWOHjwINasWYOMjAz84x//QFhYGE6ePIl33nkHM2fO1HjOxYsX0atXLwwcOBC///47tmzZggMHDmhVX0XWr18Pe3t7HDlyBIsXL8aHH36IPXv2AABKS0vRu3dvHDx4EF9//TVSU1OxaNEi9amYyta1ZMkSBAQE4MSJE5g9e7b6mOzduxdZWVnYunUrAODBgwcIDw/HgQMH8Ntvv6Fp06bo06cPHjx48MzXMHPmTEyaNAkpKSlo1qwZ3njjDRQXF6Nz586IiYlBrVq1kJWVhaysLEyaNKncNgYNGoQbN25gx44dSE5ORmBgIF566SXc+f8xaUOGDIG3tzeOHj2K5ORkTJs27Zn3LPv111/Rvn37SvwLaDp8+DBCQ0M1lvXs2ROHDx+u8DkBAQHYs2cPiouLER8fj9atWwMA3n33XSxevBiOjo7lPs/X1xfu7u749ddfta5TK8+MQSaAPTqPsUeHjIncenS8vLzExx9/rLFNhw4dxNixY4UQQnz++eeidu3aGv/vbd++XZiZmYns7Oxy9/Fkj055XnnlFTFx4kT14+7du4u2bdtqbDN16lTRsmVLjWUzZ87UaHvUqFFizJgxGtv8+uuvwszMrNy/tIWofI9O165dNbbp0KGDmDp1qhBCiF27dgkzMzORnp5e7j4qU1f9+vVFWFiYxjZlPTEnTpwot90yJSUlwtHRUaMHCeX06Hz55Zfq9WfOnBEA1D0cT74Xyvy1R+fXX38VtWrVEg8fPtTYpnHjxuLf//63EEIIR0dHERsb+8x6/8rJyUls2LChwvUV9ehYWlo+1ROoVCpF3bp1K2zr9OnTolu3bsLX11e88cYb4t69e2LDhg2iX79+4urVq+Lvf/+7aNy4sZg5c+ZTz23btq2YN29ehW1L0aPDMTpERHp0//59XL9+HV26dNFY3qVLF5w8eRIAkJaWhoCAAI3BqV26dEFpaSnS09Ph7u7+3P2UlJRgwYIF+Pbbb3Ht2jUUFRWhsLAQdnZ2Gtu1a9dO43F6ejo6dOigsezJ8RQnT57E77//jo0bN6qXCSFQWlqKjIwMNG/e/Ln1VaTsr/8ynp6euHHjBgAgJSUF3t7eaNasWbnPrWxdle3ZyMnJwaxZs5CYmIgbN26gpKQE+fn5yMzMrPRr8PT0BADcuHEDL7zwQqX2e/LkSeTl5cHV1VVjeUFBAS5evAgAiI6Oxttvv43//Oc/CA0NxaBBg9D4GWPVCgoKYGNjU6n966pFixbYt2+f+vHt27cxd+5c7N+/H+PGjUPnzp2xdetWdOjQAUFBQejbt696W1tbW+Tn5+u1PgYdIiIZ+PTTT7FixQrExMSgVatWsLe3x/jx458afFuVK33y8vLwzjvv4P33339qna+vb7nPMTMzgxBCY9mjR4+e2u7J0y8KhQKlpaUAHn8JSlFXZV9zeHg4bt++jRUrVqB+/fqwtrZGp06dnjuA+a+voezqu7LXUBl5eXnw9PQsd163sqkD5s2bhzfffBPbt2/Hjh07MHfuXGzevBn9+/cvt003Nzfk5uZWuoYyHh4eyMnJ0ViWk5Oj1SDs6OhojB8/Ht7e3khMTMT8+fNhb2+PV155BYmJiRpB586dO3ofmM2gQ0SkR7Vq1YKXlxcOHjyI7t27q5cfPHhQ3XPSvHlzxMbGQqVSqb+UDx48CDMzM/j5+VVqPwcPHkS/fv0wdOhQAI+/aM+dOwd/f/9nPs/Pzw8///yzxrKjR49qPA4MDERqaiqaNGlSqVqAx1cVnT59WmNZSkrKM8eVPKl169a4evUqzp07V26vTlXqAqC+0qykpERj+cGDB7F69Wr1pdRXrlzBrVu3tGq7vH09uZ8nBQYGIjs7GxYWFmjQoEGF2zVr1gzNmjXDhAkT8MYbb2DdunUVBp22bdsiNTVV63o7deqE+Ph4jfl99uzZg06dOlXq+fHx8UhLS8O6desAPD7GZQH3yaD78OFDXLx4EW3bttW6Tm1wMDIRkZ5NnjwZn3zyCbZs2YL09HRMmzYNKSkpiIqKAvB4oKmNjQ3Cw8Nx+vRpJCQkYNy4cRg2bFilTlsBQNOmTbFnzx4cOnQIaWlpeOedd576y7w877zzDs6ePYupU6fi3Llz+PbbbxEbGwvgz96JqVOn4tChQ4iMjERKSgrOnz+PH3/88ZmDkXv06IFjx45hw4YNOH/+PObOnftU8Hme7t27o1u3bhg4cCD27NmDjIwM7NixAzt37qxyXQBQt25d2NraYufOncjJycG9e/cAPD6G//nPf5CWloYjR45gyJAhz+1Vep4GDRogLy8P8fHxuHXrVrmnaUJDQ9GpUyeEhYVh9+7duHz5Mg4dOoSZM2fi2LFjKCgoQGRkJBITE/HHH3/g4MGDOHr06DNPGfbs2RMHDhx4anlKSgpSUlKQl5eHmzdvIiUlRSMQRUVFYefOnVi6dCnOnj2LefPm4dixY5UaeP7w4UNERkbi888/V08C2KVLFyiVSpw8eRI//PCDxinc3377Td1rpk/s0SGiGiXv/8cs1KT9vP/++7h37x4mTpyIGzduwN/fH//973/RtGlTAICdnR127dqFqKgodOjQAXZ2dhg4cCCWLVtW6X3MmjULly5dQs+ePWFnZ4cxY8YgLCxM/SVekYYNG+L777/HxIkTsWLFCnTq1AkzZ87Ee++9B2trawCPe1b27duHmTNn4sUXX4QQAo0bN8bgwYMrbLdnz56YPXs2pkyZgocPH+Ktt97C8OHDcerUqUq/JgD44YcfMGnSJLzxxhtQqVRo0qQJFi1aVOW6AMDCwgIrV67Ehx9+iDlz5uDFF19EYmIivvrqK4wZMwaBgYHw8fHBggULKrxKqrI6d+6Md999F4MHD1aPXXly4kiFQoGff/4ZM2fOxMiRI3Hz5k14eHigW7ducHd3h7m5OW7fvo3hw4cjJycHbm5uGDBgAD744IMK9ztkyBBMmTIF6enpGr2Cf+09SU5OxqZNm1C/fn1cvnxZXe+mTZswa9YszJgxA02bNsW2bdsqnEPnrz744AO88sorGpMwrly5Em+++Sa6deuGIUOGaMzr880332DIkCFPjSOTmkI8eRLVxFy9ehU+Pj64cuUKvL29pWv4znFgZzugVzLgEmj4dp5DpVKpJzTLy8vT+4ydRM/y8OFDZGRkoGHDhuoBlcY+M7KcfPzxx1izZg2uXLli6FJIB5MnT8b9+/fx73//29ClPOXWrVvw8/PDsWPH0LBhwwq3K++zoExlv7/Zo0NENYKdlxeCd+/mva70YPXq1ejQoQNcXV1x8OBBfPrpp5LMkUOGNXPmTKxevRqlpaV6v5+Uti5fvozVq1c/M+RIhUGHiGoMOy8vkwge1e38+fOYP38+7ty5A19fX0ycOBHTp083dFmkI2dnZ8yYMcPQZZSrffv2VZrQsCoYdIiITNzy5csrvPcRUU1nXH1ZRERERBJi0CEio2Xi10oQmTwpPgMYdIjI6JRNKqfvqeGJyLiVfQZoM9HkkzhGh4iMjrm5OZydndX3PLKzs1NPXkdE8ieEQH5+Pm7cuAFnZ2f1HeurgkGHiIxS2b11ysIOEZkeZ2dnre6zVZ4aH3Tu3r2L0NBQFBcXo7i4GFFRURg9erShyyIiHSkUCnh6eqJu3brl3gySiOTN0tJSp56cMjU+6Dg6OmL//v2ws7ODSqVCy5YtMWDAgKdud09ENZO5ubkkH3ZEZJpq/GBkc3Nz9X0yCgsLIYTglRpEREQEwAiCzv79+9G3b194eXlBoVBg27ZtT22jVCrRoEED2NjYICgoCElJSRrr7969i4CAAHh7e2Py5Mlwc3OrpuqJiIjImBk86KhUKgQEBECpVJa7fsuWLYiOjsbcuXNx/PhxBAQEoGfPnhoDFJ2dnXHy5ElkZGRg06ZNyMnJqXB/hYWFuH//vvrnwYMHkr8mIiIiMg4GDzq9e/fG/Pnz0b9//3LXL1u2DKNHj8bIkSPh7++PNWvWwM7ODmvXrn1qW3d3dwQEBODXX3+tcH8LFy6Ek5OT+sff31+y10JERETGxeBB51mKioqQnJyM0NBQ9TIzMzOEhobi8OHDAICcnBx1r8y9e/ewf/9++Pn5Vdjm9OnTce/ePfVPamqqfl8EERERGYxRX3V169YtlJSUwN3dXWO5u7s7zp49CwD4448/MGbMGPUg5HHjxqFVq1YVtmltbQ1ra2v14/v37+uneCIiIjI4ow46ldGxY0ekpKQYugwiIiIyQkZ96srNzQ3m5uZPDS7OycnReaZEpVIJf39/BAcH69QOERERGS+jDjpWVlZo164d4uPj1ctKS0sRHx+PTp066dR2REQEUlNTkZiYqGOVREREZKwMfuoqLy8PFy5cUD/OyMhASkoKXFxc4Ovri+joaISHh6N9+/bo2LEjYmJioFKpMHLkSANWTURERDWBwYPOsWPHEBISon4cHR0NAAgPD0dsbCwGDx6MmzdvYs6cOcjOzkabNm2wc+fOpwYoExERET3J4EEnODj4ubdsiIyMRGRkZDVVRERERHJh1GN09ImDkYmIiOTPZIMOByMTERHJn8kGHSIiIpI/Bh0iIiKSLQYdIiIiki2TDTocjExERCR/Jht0OBiZiIhI/kw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsmWzQ4VVXRERE8meyQYdXXREREcmfyQYdIiIikj8GHSIiIpItBh0iIiKSLQYdIiIiki0LQxdARERExif/+nUU3bmjcztWLi6w8/KSoKKqYdAhIiIiDfnXryPx739HSUGBzm2Z29oiePdug4Udkw06SqUSSqUSRUVFhi6FiIjIqBTduYOSggK0XbYMDo0bV7mdvIsXcSI6GkV37jDoVLeIiAhERETg6tWr8PHxMXQ5RERERsehcWM4t2xp6DJ0wsHIREREJFsMOkRERCRbDDpEREQkWww6REREJFsMOkRERCRbDDpEREQkWyZ7eTnn0SEiIjmSYkbjvIsXJarG8Ew26HAeHSIikhupZzS2cnGRoCrDMtmgQ0REJDdSzWgMGP4eVVJh0CEiIpIZOcxoLBUORiYiIiLZYo8OERGRDqQY/CsVOQ0ilgqDDhERURVJOfhXKnIZRCwVBh0iIqIqknLwr1TkMohYKgw6REREOuLgX+PFwchEREQkWww6REREJFs8dUVERCaJt0owDSYbdHivKyKimkmKgFJ05w6OjR3LWyWYAJMNOrzXFRFRzSP1vZyC1q3TOaTwKifjZrJBh4iIah7ey4m0xaBDREQ1Di/npsriVVdEREQkWww6REREJFsMOkRERCRbDDpEREQkWxyMTEREzyTFvDVS4QR9pC2tg87OnTvh4OCArl27Ang88d4XX3wBf39/KJVK1K5dW/IiiYhIe8Y2sZ5UOEEfaUProDN58mR88sknAIBTp05h4sSJiI6ORkJCAqKjo7Fu3TrJiyTg5tmbKLbJ0lv7+QX56t+zU7JhZ2tX4bZ2bnZw8nXSWy1Eps7YAopUE+tJhfPfkDa0DjoZGRnw9/cHAPzwww949dVXsWDBAhw/fhx9+vSRvEBT9yD7ARwBbB2yFdmXf9Pbforw560w1nZdCytYVbitpZ0lXt/6Ouzr2OutHm1IFbzuZd5D/q38529YTfWQaeLMv0TS0jroWFlZIT//8ZfB3r17MXz4cACAi4sL7t+/L211hId3H8IRQI/5PeDQvJve9pNfkI8FXRcAAN468FaFPTqqmyp8O+BbbOy1UW+1aMvSzhIRaRE6hYt7mfegbK7Eo/xHRlEPmS5jnPn3XuY9ZB3XvUeZfwSQIWgddLp27Yro6Gh06dIFSUlJ2LJlCwDg3Llz8Pb2lrzAmk7XU055GXdRRwE4N3RGnUBPCSvTpFKp1L97tPGAvX3FvTURaRGS9HxI4WbaTcQNjUP+rXydPkDzb+XjUf4j9P+6P+o0r6NzPX/8+odO7QDsqTJ1xjLzL/8IoJpO66Dzr3/9C2PHjsX333+Pzz77DPXq1QMA7NixA7169ZK8wJpKqlNOHg2uo+nHgI2zjXTF6cjJ10m2H1R1mteBpw6B0s7NDpZ2logbGqdzLcbYUyXVKUu5hiYpQqXq0i2JqpGmnptpNyX9I0DXP0qItKV10PH19cVPP/301PLly5dLUpBcSHXKyeLh78Dlz+Ho4ShdcTJ0M+2mQZ9fxsnXSZIeL2PrqZL6lKVUoUmqwCTF4N+87Dx80/+/yM+z1qkdW6vbaO79uD1nHTp0pA659V+sz4BCNZLWQcfc3BxZWVmoW7euxvLbt2+jbt26KCkpkaw4fVIqlVAqlSgqKnr+xjrQ+ZTTnSzgsmTlyI7UPSh2bhVfbVZZxtjjpWtPFSDdKUspQ5MUganwZjbORA9F6cOHOtfT1M0CvotWw7OTf5XbuBr/G7LXbEfWiSyYu1T9tLdUPTGAtD1wUvxRwR7B6iGX46x10BFClLu8sLAQVlYVX6ljbCIiIhAREYGrV6/Cx8fH0OVQFUnVgwLI539qfZEywEnxbyZVYHrcg/IQfjPmo25Qqyq3czU+GRkrP0Qtd3OdQmXJHU9kA0iYlYCCKb9XuR3AuHpijO20LmBc49ek7IGTilzGVFU66KxcuRIAoFAo8OWXX8LBwUG9rqSkBPv378cLL7wgfYVEz2GMPSj0bFL9m0kRmMp6UMycPHUa/HvrrDRjaxw8Hn+2Dtg4APaN/HRqy5jCu7Gd1jW2QdZSnWaWipzGVFU66JSNwRFCYM2aNTA3N1evs7KyQoMGDbBmzRrpKyQyYcYy9shYWVqoYGul29gaW6vH02LkZuTqdAl1bkauTnU8ye0FNzi31N+VloZgTH+USH2lpVSBQIrTzKSp0kEnIyMDABASEoKtW7fyVg9EemSMY4+MjZQT65WWWmDP9EN4VFL1U0Vlg4iN6QpJOZPqjwAGC/nTeoxOQkKCPuogor/g2KPnk3JivcICC3Q01+0YqS6lI23qdkCVg7unT1e5Hd608tmM9Y8Aufa+6lqXlNMlVFWlgk50dDQ++ugj2NvbIzo6+pnbLlu2TJLCiEydMXXzGzNjmVgv30PgnK0tTjznM7IyeNPKihnbHwHGGrx0JdXrkmq6BF1UKuicOHECjx49HrB1/PhxKBSKcreraDkR0V9JMm+NkfV82Hl5IXj3bp1fF8B7Sz2PMf0RYGzBSypSva6ywf4P7+o+fUNVVSrorFixArVq1QIAJCYm6rMeIpKYFKFCSlLfVduYej7svLwYUEyQMQUvKUnxulSXaiNbonqqqlJBp23btupJAhs1aoSjR4/C1dVV37URkY6kHLArJd5Vm4iqS6WCjrOzMzIyMlC3bl1cvnwZpaWl+q6LiCQg5YBdKTGgEFF1qVTQGThwILp37w5PT08oFAq0b99eYx6dv7p06ZKkBRKZKinHsRjLgF0ioupWqaDz+eefY8CAAbhw4QLef/99jB49Go6OvMkkkb5IecrJ2MaxEBFVp0rPo9OrVy8AQHJyMqKiohh0iCogVU+MVKeceJqIiEyZ1hMGrlu3Th91EMmC1D0xLh06MKQQEelA66BDRBWTcvAve2KIiHTHoEOkBxz8S0RkHMwMXQARERGRvlQq6AQGBiI3NxcA8OGHHyI/X/epromIiIj0rVJBJy0tDSqVCgDwwQcfIC8vT69FEREREUmhUmN02rRpg5EjR6Jr164QQmDJkiVwcHAod9s5c+ZIWiBRdZHjjSaJiExdpYJObGws5s6di59++gkKhQI7duyAhcXTT1UoFAw6VO2kCChyvtEkEZEpq1TQ8fPzw+bNmwEAZmZmiI+PR926dfVaWGVduXIFw4YNw40bN2BhYYHZs2dj0KBBhi6LqonU89bwRpNERPKi9eXlxnZDTwsLC8TExKBNmzbIzs5Gu3bt0KdPH9jb2xu6NKoGnLeGiIiepUrz6Fy8eBExMTFIS0sDAPj7+yMqKgqNDXB3ZE9PT3h6egIAPDw84Obmhjt37jDomBjOW0NEROXReh6dXbt2wd/fH0lJSWjdujVat26NI0eOoEWLFtizZ4/WBezfvx99+/aFl5cXFAoFtm3b9tQ2SqUSDRo0gI2NDYKCgpCUlFRuW8nJySgpKYGPj4/WdRAREZH8aN2jM23aNEyYMAGLFi16avnUqVPx8ssva9WeSqVCQEAA3nrrLQwYMOCp9Vu2bEF0dDTWrFmDoKAgxMTEoGfPnkhPT9cYJ3Tnzh0MHz4cX3zxxTP3V1hYiMLCQvXjBw8eaFUvERER1Rxa9+ikpaVh1KhRTy1/6623kJqaqnUBvXv3xvz589G/f/9y1y9btgyjR4/GyJEj4e/vjzVr1sDOzg5r165Vb1NYWIiwsDBMmzYNnTt3fub+Fi5cCCcnJ/WPv7+/1jUTERFRzaB1j06dOnWQkpKCpk2baixPSUmR/EqsoqIiJCcnY/r06eplZmZmCA0NxeHDhwEAQgiMGDECPXr0wLBhw57b5vTp0xEdHa1+fO3aNYYdA+G8NUREpG9aB53Ro0djzJgxuHTpkrr35ODBg/jkk080AoQUbt26hZKSEri7u2ssd3d3x9mzZ9X73rJlC1q3bq0e3/Of//wHrVq1KrdNa2trWFtbqx/fv39f0pqpcqS+LJzz1hARUXm0DjqzZ8+Go6Mjli5dqu5p8fLywrx58/D+++9LXuDzdO3a1egueafn42XhRERUHbQOOgqFAhMmTMCECRPUA3kdHR0lLwwA3NzcYG5ujpycHI3lOTk58PDw0KltpVIJpVKJoqIindoh3fCycCIi0ietByP/laOjo95CDgBYWVmhXbt2iI+PVy8rLS1FfHw8OnXqpFPbERERSE1NRWJioo5VEhERkbGq0oSBUsrLy8OFCxfUjzMyMpCSkgIXFxf4+voiOjoa4eHhaN++PTp27IiYmBioVCqMHDnSgFUTERFRTWDwoHPs2DGEhISoH5cNaA4PD0dsbCwGDx6MmzdvYs6cOcjOzkabNm2wc+fOpwYoExERET3J4EEnODgYQohnbhMZGYnIyMhqqoiIiIjkQqug8+jRI/Tq1Qtr1qx5ah6dmoaDkauO898QEVFNoVXQsbS0xO+//66vWqpVREQEIiIicPXqVd4bSwuc/4aIiGoSrU9dDR06FF999dVT97oi08D5b4iIqCbROugUFxdj7dq12Lt3L9q1awd7e3uN9cuWLZOsODJenP+GiIhqAq2DzunTpxEYGAgAOHfunMY6hUIhTVVEREREEtA66CQkJOijjmrHwchERETyV+XLyy9cuICLFy+iW7dusLW1hRCiRvXomOJg5GddLaXKz1f/fvfMGTyysyt3O14tRURENYnWQef27dt4/fXXkZCQAIVCgfPnz6NRo0YYNWoUateujaVLl+qjTtLR866WeviXG6MeGjwYNmYV3x2EV0sREVFNoXXQmTBhAiwtLZGZmYnmzZurlw8ePBjR0dEMOkbqeVdLqfLzgaAgAEDnLVtgX0GPDsCrpYiIqObQOujs3r0bu3btgre3t8bypk2b4o8//pCsMNKPiq6WslSp1L87t2jx1NV0RERENZHWdy9XqVSwK+ev/Tt37sDa2lqSooiIiIikoHXQefHFF7Fhwwb1Y4VCgdLSUixevFjj5pzGTqlUwt/fH8HBwYYuhYiIiPRE61NXixcvxksvvYRjx46hqKgIU6ZMwZkzZ3Dnzh0cPHhQHzXqhSledUVERGRqtO7RadmyJc6dO4euXbuiX79+UKlUGDBgAE6cOIHGOt4SgIiIiEhKVZpHx8nJCTNnzpS6FiIiIiJJVSno5Obm4quvvkJaWhoAwN/fHyNHjoQL51YhIiIiI6L1qav9+/ejQYMGWLlyJXJzc5Gbm4uVK1eiYcOG2L9/vz5qJCIiIqoSrXt0IiIiMHjwYHz22WcwNzcHAJSUlGDs2LGIiIjAqVOnJC+SiIiIqCq0DjoXLlzA999/rw45AGBubo7o6GiNy85JOvl3zVF09hJQy6rKbfAeVUREZIq0DjqBgYFIS0uDn5+fxvK0tDQEBARIVpi+1ZS7l+dn30TiSh+UPJqqc1u8RxUREZmaSgWd33//Xf37+++/j6ioKFy4cAF/+9vfAAC//fYblEolFi1apJ8q9aCmzKNTdPcBSh6Zoe2H78Mh4CWd2uI9qoiIyNRUKui0adMGCoUCQgj1silTpjy13ZtvvonBgwdLVx2pOTSsV+49qoiIiKhilQo6GRkZ+q6DiIiISHKVCjr169fXdx1EREREkqvShIHXr1/HgQMHcOPGDZSWlmqse//99yUpjIiIiEhXWged2NhYvPPOO7CysoKrqysUCoV6nUKhYNAhIiIio6F10Jk9ezbmzJmD6dOnw8xM64mViYiIiKqN1kklPz8f//znP2t8yFEqlfD390dwcLChSyEiIiI90TqtjBo1Ct99950+aqlWERERSE1NRWJioqFLISIiIj3R+tTVwoUL8eqrr2Lnzp1o1aoVLC0tNdYvW7ZMsuKIiIiIdFGloLNr1y71LSCeHIxMREREZCy0DjpLly7F2rVrMWLECD2UIy/5d82hupwJy1qnq9xGXsY1CSsiIiIyLVoHHWtra3Tp0kUftchK4a07OLrSByWPdL//l7llKaycHSWoioiIyLRoHXSioqKwatUqrFy5Uh/1yEZxXh5KHpmhybsj4Nm7f9Ubun8WVin/hJ1HHemKIyIiMhFaB52kpCT88ssv+Omnn9CiRYunBiNv3bpVsuLkwLaeh24347xTBFwuka4gIiIiE6J10HF2dsaAAQP0UQsRERGRpLQOOuvWrdNHHURERESSq9nTGxMRERE9g9Y9Og0bNnzmfDmXLl3SqSAiIiIiqWgddMaPH6/x+NGjRzhx4gR27tyJyZMnS1WX3imVSiiVShQVFRm6FCIiItKTKl1eXh6lUoljx47pXFB1iYiIQEREBK5evQofHx9Dl0NERER6INkYnd69e+OHH36QqjkiIiIinUkWdL7//nu4uLhI1RwRERGRzrQ+ddW2bVuNwchCCGRnZ+PmzZtYvXq1pMURERER6ULroBMWFqbx2MzMDHXq1EFwcDBeeOEFqeoiIiIi0pnWQWfu3Ln6qIOIiIhIcpwwkIiIiGSr0j06ZmZmz5woEAAUCgWKi4t1LoqIiIhICpUOOnFxcRWuO3z4MFauXInS0lJJiiIiIiKSQqWDTr9+/Z5alp6ejmnTpuF///sfhgwZgg8//FDS4oiIiIh0UaUxOtevX8fo0aPRqlUrFBcXIyUlBevXr0f9+vWlro+IiIioyrQKOvfu3cPUqVPRpEkTnDlzBvHx8fjf//6Hli1b6qs+IiIioiqr9KmrxYsX45NPPoGHhwe++eabck9lERERERmTSgedadOmwdbWFk2aNMH69euxfv36crfbunWrZMURERER6aLSQWf48OHPvbyciIiIyJhUOujExsbqsYzqp1QqoVQqUVRUZOhSiIiISE9MdmbkiIgIpKamIjEx0dClEBERkZ6YbNAhIiIi+WPQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItmSRdDp378/ateujX/84x+GLoWIiIiMiCyCTlRUFDZs2GDoMoiIiMjIyCLoBAcHw9HR0dBlEBERkZExeNDZv38/+vbtCy8vLygUCmzbtu2pbZRKJRo0aAAbGxsEBQUhKSmp+gslIiKiGsfC0AWoVCoEBATgrbfewoABA55av2XLFkRHR2PNmjUICgpCTEwMevbsifT0dNStW1fr/RUWFqKwsFD9+MGDBzrVX23upenehrUbYO+reztEREQ1hMGDTu/evdG7d+8K1y9btgyjR4/GyJEjAQBr1qzB9u3bsXbtWkybNk3r/S1cuBAffPBBleutdtZugLkdcHio7m2Z2wGvpjHsEBGRyTB40HmWoqIiJCcnY/r06eplZmZmCA0NxeHDh6vU5vTp0xEdHa1+fO3aNfj7++tcq97Y+z4OJ4W3dGvnXtrjsFR4i0GHiIhMhlEHnVu3bqGkpATu7u4ay93d3XH27Fn149DQUJw8eRIqlQre3t747rvv0KlTp3LbtLa2hrW1tfrx/fv39VO8lOx9GU6IiIiqwKiDTmXt3bvX0CUQERGRETL4VVfP4ubmBnNzc+Tk5Ggsz8nJgYeHh05tK5VK+Pv7Izg4WKd2iIiIyHgZddCxsrJCu3btEB8fr15WWlqK+Pj4Ck9NVVZERARSU1ORmJioY5VERERkrAx+6iovLw8XLlxQP87IyEBKSgpcXFzg6+uL6OhohIeHo3379ujYsSNiYmKgUqnUV2ERERERVcTgQefYsWMICQlRPy67Iio8PByxsbEYPHgwbt68iTlz5iA7Oxtt2rTBzp07nxqgTERERPQkgwed4OBgCCGeuU1kZCQiIyOrqSIiIiKSC6Meo6NPHIxMREQkfyYbdDgYmYiISP5MNugQERGR/DHoEBERkWwx6BAREZFsmWzQ4WBkIiIi+TPZoMPByERERPJnskGHiIiI5I9Bh4iIiGSLQYeIiIhki0GHiIiIZMtkgw6vuiIiIpI/kw06vOqKiIhI/kw26BAREZH8MegQERGRbDHoEBERkWwx6BAREZFsMegQERGRbJls0OHl5URERPJnskGHl5cTERHJn8kGHSIiIpI/Bh0iIiKSLQYdIiIiki0GHSIiIpItBh0iIiKSLQYdIiIiki0GHSIiIpItkw06nDCQiIhI/kw26HDCQCIiIvkz2aBDRERE8segQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREsmWyQYf3uiIiIpI/kw06vNcVERGR/Jls0CEiIiL5Y9AhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2WLQISIiItli0CEiIiLZYtAhIiIi2TLZoKNUKuHv74/g4GBDl0JERER6YrJBJyIiAqmpqUhMTDR0KURERKQnJht0iIiISP4YdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLYYdIiIiEi2GHSIiIhIthh0iIiISLZkEXR++ukn+Pn5oWnTpvjyyy8NXQ4REREZCQtDF6Cr4uJiREdHIyEhAU5OTmjXrh369+8PV1dXQ5dGREREBlbje3SSkpLQokUL1KtXDw4ODujduzd2795t6LKIiIjICBg86Ozfvx99+/aFl5cXFAoFtm3b9tQ2SqUSDRo0gI2NDYKCgpCUlKRed/36ddSrV0/9uF69erh27Vp1lE5ERERGzuBBR6VSISAgAEqlstz1W7ZsQXR0NObOnYvjx48jICAAPXv2xI0bN6q5UiIiIqppDD5Gp3fv3ujdu3eF65ctW4bRo0dj5MiRAIA1a9Zg+/btWLt2LaZNmwYvLy+NHpxr166hY8eOFbZXWFiIwsJC9eMHDx5I8CpqkHtp5S9XFfz5+50UoNC2WsqRhLUbYO9r6CqIiMgIGTzoPEtRURGSk5Mxffp09TIzMzOEhobi8OHDAICOHTvi9OnTuHbtGpycnLBjxw7Mnj27wjYXLlyIDz74QO+1Gx1rN8DcDjg8tPz1D//y+56ugE21VCUNczvg1TSGHSIieopRB51bt26hpKQE7u7uGsvd3d1x9uxZAICFhQWWLl2KkJAQlJaWYsqUKc+84mr69OmIjo5WP7527Rr8/f318wKMib3v4zBQeKv89aoCAF0f//7yAcC+hvTo3Et7HN4KbzHoEBHRU4w66FTWa6+9htdee61S21pbW8Pa2lr9+P79+/oqy/jY+1YcBqxVf/7u0gawt6+WkoiIiPTJ4IORn8XNzQ3m5ubIycnRWJ6TkwMPDw8DVUVEREQ1hVEHHSsrK7Rr1w7x8fHqZaWlpYiPj0enTp10alupVMLf3x/BwcE6VklERETGyuCnrvLy8nDhwgX144yMDKSkpMDFxQW+vr6Ijo5GeHg42rdvj44dOyImJgYqlUp9FVZVRUREICIiAlevXoWPj4+uL4OIiIiMkMGDzrFjxxASEqJ+XDZQODw8HLGxsRg8eDBu3ryJOXPmIDs7G23atMHOnTufGqBMRERE9CSDB53g4GAIIZ65TWRkJCIjI6upIiIiIpILox6jQ0RERKQLkw06HIxMREQkfyYbdCIiIpCamorExERDl0JERER6YrJBh4iIiOSPQYeIiIhki0GHiIiIZMtkgw4HIxMREcmfyQYdDkYmIiKSP4NPGGhopaWlAICsrCxJ2826nYtbxcXIup0Li6tXJW1bH/Lz89W/X7t2DXZ2dgasRgu5OcBtANdygHzjP85ERKYk6/bN//8uvAkbib8Ly763y77HK6IQz5uWWOaOHj2Kjh07GroMIiIiqoKkpCR06NChwvUmH3SKi4tx4sQJuLu7w8xMujN5Dx48gL+/P1JTU+Ho6ChZu6SJx7l68DhXHx7r6sHjXD30eZxLS0uRk5ODtm3bwsKi4hNUJh909OX+/ftwcnLCvXv3UKtWLUOXI1s8ztWDx7n68FhXDx7n6mEMx9lkByMTERGR/DHoEBERkWwx6OiJtbU15s6dC2tra0OXIms8ztWDx7n68FhXDx7n6mEMx5ljdIiIiEi22KNDREREssWgQ0RERLLFoENERESyxaBDREREssWgowOlUokGDRrAxsYGQUFBSEpKeub23333HV544QXY2NigVatW+Pnnn6up0ppNm+P8xRdf4MUXX0Tt2rVRu3ZthIaGPvffhR7T9v1cZvPmzVAoFAgLC9NvgTKi7bG+e/cuIiIi4OnpCWtrazRr1oyfH5Wg7XGOiYmBn58fbG1t4ePjgwkTJuDhw4fVVG3NtH//fvTt2xdeXl5QKBTYtm3bc5+TmJiIwMBAWFtbo0mTJoiNjdVvkYKqZPPmzcLKykqsXbtWnDlzRowePVo4OzuLnJyccrc/ePCgMDc3F4sXLxapqali1qxZwtLSUpw6daqaK69ZtD3Ob775plAqleLEiRMiLS1NjBgxQjg5OYmrV69Wc+U1i7bHuUxGRoaoV6+eePHFF0W/fv2qp9gaTttjXVhYKNq3by/69OkjDhw4IDIyMkRiYqJISUmp5sprFm2P88aNG4W1tbXYuHGjyMjIELt27RKenp5iwoQJ1Vx5zfLzzz+LmTNniq1btwoAIi4u7pnbX7p0SdjZ2Yno6GiRmpoqVq1aJczNzcXOnTv1ViODThV17NhRREREqB+XlJQILy8vsXDhwnK3f/3118Urr7yisSwoKEi88847eq2zptP2OD+puLhYODo6ivXr1+urRFmoynEuLi4WnTt3Fl9++aUIDw9n0KkkbY/1Z599Jho1aiSKioqqq0RZ0PY4R0REiB49emgsi46OFl26dNFrnXJSmaAzZcoU0aJFC41lgwcPFj179tRbXTx1VQVFRUVITk5GaGioepmZmRlCQ0Nx+PDhcp9z+PBhje0BoGfPnhVuT1U7zk/Kz8/Ho0eP4OLioq8ya7yqHucPP/wQdevWxahRo6qjTFmoyrH+73//i06dOiEiIgLu7u5o2bIlFixYgJKSkuoqu8apynHu3LkzkpOT1ae3Ll26hJ9//hl9+vSplppNhSG+Cyu+3SdV6NatWygpKYG7u7vGcnd3d5w9e7bc52RnZ5e7fXZ2tt7qrOmqcpyfNHXqVHh5eT31Pxb9qSrH+cCBA/jqq6+QkpJSDRXKR1WO9aVLl/DLL79gyJAh+Pnnn3HhwgWMHTsWjx49wty5c6uj7BqnKsf5zTffxK1bt9C1a1cIIVBcXIx3330XM2bMqI6STUZF34X3799HQUEBbG1tJd8ne3RIthYtWoTNmzcjLi4ONjY2hi5HNh48eIBhw4bhiy++gJubm6HLkb3S0lLUrVsXn3/+Odq1a4fBgwdj5syZWLNmjaFLk5XExEQsWLAAq1evxvHjx7F161Zs374dH330kaFLIx2xR6cK3NzcYG5ujpycHI3lOTk58PDwKPc5Hh4eWm1PVTvOZZYsWYJFixZh7969aN26tT7LrPG0Pc4XL17E5cuX0bdvX/Wy0tJSAICFhQXS09PRuHFj/RZdQ1XlPe3p6QlLS0uYm5urlzVv3hzZ2dkoKiqClZWVXmuuiapynGfPno1hw4bh7bffBgC0atUKKpUKY8aMwcyZM2Fmxn4BKVT0XVirVi299OYA7NGpEisrK7Rr1w7x8fHqZaWlpYiPj0enTp3KfU6nTp00tgeAPXv2VLg9Ve04A8DixYvx0UcfYefOnWjfvn11lFqjaXucX3jhBZw6dQopKSnqn9deew0hISFISUmBj49PdZZfo1TlPd2lSxdcuHBBHSYB4Ny5c/D09GTIqUBVjnN+fv5TYaYsXAreElIyBvku1NswZ5nbvHmzsLa2FrGxsSI1NVWMGTNGODs7i+zsbCGEEMOGDRPTpk1Tb3/w4EFhYWEhlixZItLS0sTcuXN5eXklaHucFy1aJKysrMT3338vsrKy1D8PHjww1EuoEbQ9zk/iVVeVp+2xzszMFI6OjiIyMlKkp6eLn376SdStW1fMnz/fUC+hRtD2OM+dO1c4OjqKb775Rly6dEns3r1bNG7cWLz++uuGegk1woMHD8SJEyfEiRMnBACxbNkyceLECfHHH38IIYSYNm2aGDZsmHr7ssvLJ0+eLNLS0oRSqeTl5cZs1apVwtfXV1hZWYmOHTuK3377Tb2ue/fuIjw8XGP7b7/9VjRr1kxYWVmJFi1aiO3bt1dzxTWTNse5fv36AsBTP3Pnzq3+wmsYbd/Pf8Wgox1tj/WhQ4dEUFCQsLa2Fo0aNRIff/yxKC4uruaqax5tjvOjR4/EvHnzROPGjYWNjY3w8fERY8eOFbm5udVfeA2SkJBQ7mdu2bENDw8X3bt3f+o5bdq0EVZWVqJRo0Zi3bp1eq1RIQT75IiIiEieOEaHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeIiIhki0GHiIiIZItBh4iIiGSLQYeITMq8efPQpk0bQ5dBRNWEQYeIiIhki0GHiIiIZItBh4gMJjg4GJGRkYiMjISTkxPc3Nwwe/ZslHcLvvv378PW1hY7duzQWB4XFwdHR0fk5+cDAKZOnYpmzZrBzs4OjRo1wuzZs/Ho0aNn1jB+/HiNZWFhYRgxYoT6cWFhISZNmoR69erB3t4eQUFBSExMrPLrJqLqw6BDRAa1fv16WFhYICkpCStWrMCyZcvw5ZdfPrVdrVq18Oqrr2LTpk0ayzdu3IiwsDDY2dkBABwdHREbG4vU1FSsWLECX3zxBZYvX65TjZGRkTh8+DA2b96M33//HYMGDUKvXr1w/vx5ndolIv2zMHQBRGTafHx8sHz5cigUCvj5+eHUqVNYvnw5Ro8e/dS2Q4YMwbBhw5Cfnw87Ozvcv38f27dvR1xcnHqbWbNmqX9v0KABJk2ahM2bN2PKlClVqi8zMxPr1q1DZmYmvLy8AACTJk3Czp07sW7dOixYsKBK7RJR9WCPDhEZ1N/+9jcoFAr1406dOuH8+fP4+OOP4eDgoP7JzMxEnz59YGlpif/+978AgB9++AG1atVCaGio+vlbtmxBly5d4OHhAQcHB8yaNQuZmZlVru/UqVMoKSlBs2bNNOrZt28fLl68WPUXTkTVgj06RGSU3n33XQwePFj92MvLCxYWFvjHP/6BTZs24Z///Cc2bdqEwYMHw8Li8UfZ4cOHMWTIEHzwwQfo2bMnnJycsHnzZixdurTC/ZiZmT01JuivY3ry8vJgbm6O5ORkmJuba2zn4OAgxUslIj1i0CEigzpy5IjG499++w1NmzaFq6srXF1dn9p+yJAhePnll3HmzBn88ssvmD9/vnrdoUOHUL9+fcycOVO97I8//njm/uvUqYOsrCz145KSEpw+fRohISEAgLZt26KkpAQ3btzAiy++WKXXSESGw1NXRGRQmZmZiI6ORnp6Or755husWrUKUVFRFW7frVs3eHh4YMiQIWjYsCGCgoLU65o2bYrMzExs3rwZFy9exMqVKzXG75SnR48e2L59O7Zv346zZ8/ivffew927d9XrmzVrhiFDhmD48OHYunUrMjIykJSUhIULF2L79u06v34i0i8GHSIyqOHDh6OgoAAdO3ZEREQEoqKiMGbMmAq3VygUeOONN3Dy5EkMGTJEY91rr72GCRMmIDIyEm3atMGhQ4cwe/bsZ+7/rbfeQnh4OIYPH47u3bujUaNG6t6cMuvWrcPw4cMxceJE+Pn5ISwsDEePHoWvr2/VXzgRVQuFKG/CCiKiahAcHIw2bdogJibG0KUQkUyxR4eIiIhki0GHiIiIZIunroiIiEi22KNDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLLFoENERESyxaBDREREssWgQ0RERLL1f5QROv7aux+5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "execution_count": 266, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig, axes = plt.subplots()\n", "axes.hist(res_good_model, bins=25, range=(0, 1), histtype='step', color='purple', label='Good model')\n", "axes.hist(res_wrong_model, bins=25, range=(0, 1), histtype='step', color='orange', label='Wrong model')\n", "axes.hist(res_overfitting, bins=25, range=(0, 1), histtype='step', color='firebrick', label='Too large uncertainties (10 %)')\n", "axes.set_xlabel('p-value')\n", "axes.set_ylabel('Number of fits')\n", "axes.legend()\n", "axes.axvline(0.1, color='k')\n", "axes2 = plt.twiny()\n", "axes2.set_xlabel('Red. $\\chi^2$')\n", "axes2.set_xticks([0.2, 0.5, 0.8], ['> 1', '1', '< 1'])\n", "plt.show()\n", "\n", "axes.set_yscale('log')\n", "fig" ] }, { "cell_type": "markdown", "id": "86237b4b", "metadata": {}, "source": [ "Wie man sieht, wird das falsche Modell nahezu immer verworfen während das richtige Modell meistens nicht verworfen wird. Das Modell mit dem überschätzten Fehler wird sogar häufiger akzeptiert, so dass man hier keine Unterscheidung vornehmen kann." ] }, { "cell_type": "code", "execution_count": 532, "id": "fc58ee5c-308c-4479-9236-751d7f158fe5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fraction of wrong model fits rejected: 0.9998\n", "Fraction of good model fits rejected: 0.1002\n", "Fraction of overfitting model fits rejected: 0.0250\n" ] } ], "source": [ "print(f'Fraction of wrong model fits rejected: {np.sum(res_wrong_model<0.1)/len(res_wrong_model):.4f}')\n", "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.1)/len(res_good_model):.4f}')\n", "print(f'Fraction of overfitting model fits rejected: {np.sum(res_overfit_model<0.1)/len(res_overfit_model):.4f}')" ] }, { "cell_type": "markdown", "id": "392f4ef2", "metadata": {}, "source": [ "Wenn man das Limit für den Hypothesen-Test auf 0,05 festlegt, ändern die Ergebnisse wie folgt:" ] }, { "cell_type": "code", "execution_count": 533, "id": "d5f5efbe-ef8f-48b0-b27b-166f21cb5a06", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fraction of wrong model fits rejected: 0.9986\n", "Fraction of good model fits rejected: 0.0534\n", "Fraction of overfitting model fits rejected: 0.0114\n" ] } ], "source": [ "print(f'Fraction of wrong model fits rejected: {np.sum(res_wrong_model<0.05)/len(res_wrong_model):.4f}')\n", "print(f'Fraction of good model fits rejected: {np.sum(res_good_model<0.05)/len(res_good_model):.4f}')\n", "print(f'Fraction of overfitting model fits rejected: {np.sum(res_overfit_model<0.05)/len(res_overfit_model):.4f}')" ] }, { "cell_type": "markdown", "id": "de9861f6-7870-4dd8-8366-15e0c7dd5125", "metadata": {}, "source": [ "Der Hypothesen-Test kann das Modell nicht ablehnen, statt es zu bestätigen!" ] } ], "metadata": { "kernelspec": { "display_name": "jupyter", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 5 }